



•

## DISCOVERY REPORTS

VOLUME XXI

CAMBRIDGE UNIVERSITY PRESS LONDON: BENTLEY HOUSE NEW YORK, TORONTO, BOMBAY CALCUTTA, MADRAS: MACMILLAN

All rights reserved

-

# DISCOVERY REPORTS

Issued by the Discovery Committee Colonial Office, London on behalf of the Government of the Dependencies of the Falkland Islands

VOLUME XXI





2

## CAMBRIDGE AT THE UNIVERSITY PRESS

1942

PRINTED IN GREAT BRITAIN BY WALTER LEWIS, M.A., AT THE UNIVERSITY PRESS, CAMBRIDGE

.



## CONTENTS

#### STATION LIST, 1931-1933 (published 31st January, 1941)

| INTRODUCTION .   | •     | •      |      |        | •  | • | • | • |   |   |      |       | . pa | ge 2 |
|------------------|-------|--------|------|--------|----|---|---|---|---|---|------|-------|------|------|
| References .     |       | •      |      |        |    | • | • |   |   |   |      | •     |      | -4   |
| R.R.S. 'DISCOVER | ΥП',  | STAT   | IONS | 701-11 | 84 | • |   | • | • | • |      |       |      | - 6  |
| Summarized List  | OF S' | TATION | ıs.  |        | •  |   |   |   | • | • | •    |       |      | 226  |
| PLATES I-IV .    |       |        |      |        | •  |   |   |   | • |   | foll | owing | page | 226  |

### A RARE PORPOISE OF THE SOUTH ATLANTIC, PHOCAENA DIOPTRICA (LAHILLE, 1912) (published 3rd March, 1941)

### By J. E. Hamilton, D.Sc.

| EXTERNAL APP | PEARA | NCE |   |   |   | • | • | • | • | • |   | •   | •       | page | 229 |
|--------------|-------|-----|---|---|---|---|---|---|---|---|---|-----|---------|------|-----|
| Skeleton     |       |     | • |   | • |   |   |   |   |   |   |     |         |      | 230 |
| Skull .      |       |     |   |   |   |   |   |   |   |   |   |     |         |      | 232 |
| References   |       |     |   | • |   | • |   |   |   |   |   | •   |         |      | 233 |
| Plates V, VI |       |     |   |   |   |   |   |   |   |   | • | fol | llowing | page | 234 |

### THE ECHIURIDAE, SIPUNCULIDAE AND PRIAPULIDAE COLLECTED BY THE SHIPS OF THE DISCOVERY COMMITTEE DURING THE YEARS 1926 TO 1937 (published 10th November, 1941)

#### By A. C. Stephen, D.Sc.

| INTRODUCTION .    |        |     | •     |    |         |       |      |      | • |   |   |     |       | page   | 237 |
|-------------------|--------|-----|-------|----|---------|-------|------|------|---|---|---|-----|-------|--------|-----|
| Acknowledgemen    | ITS    |     |       |    |         |       |      |      |   | - | • |     |       |        | 238 |
| LIST OF THE SPECI | ES TAI | KEN |       |    |         |       |      |      |   |   |   |     |       |        | 238 |
| LIST OF STATIONS  | WITH   | THE | NAMES | OF | Species | TAKEN | I AT | EACH |   |   |   |     |       |        | 238 |
| BIPOLAR DISTRIBU  | TION   |     |       |    |         |       |      |      |   |   |   |     |       |        | 243 |
| Echiuridae .      |        |     | •     |    |         |       |      |      |   |   |   |     |       |        | 245 |
| SIPUNCULIDAE .    |        |     | •     |    | •       |       |      |      |   |   |   |     |       |        | 250 |
| PRIAPULIDAE .     |        |     |       |    |         |       |      |      |   |   |   |     |       |        | 257 |
| LITERATURE CITED  |        |     |       |    | •       |       |      |      |   | • |   |     |       |        | 259 |
| PLATES VII, VIII  |        |     |       |    |         |       |      |      |   |   |   | fol | lowin | g page | 260 |

## PHYTOPLANKTON PERIODICITY IN ANTARCTIC SURFACE WATERS (published 29th October, 1942)

### By T. John Hart, D.Sc.

| INTRODUCTION .    |            |           |             |             |              |       | •     | page 263 |
|-------------------|------------|-----------|-------------|-------------|--------------|-------|-------|----------|
| DISCUSSION OF THE | Methods    | EMPLOYED  | IN RELATION | TO RECENT   | Advances in  | Рнуто | PLANK | ΓΟΝ      |
| Technique         |            |           |             |             |              |       |       | . 276    |
| DIVISION OF THE A | NTARCTIC Z | Zone into | BIOGEOGRAP  | hical Regio | ns and Areas | S     | •     | . 279    |

### CONTENTS

| ECOLOGICAL C  | ROUF   | PING O | F THE  | IMPOR  | iant Pi | IYTOPI | ANK  | TON S | PECIE | s.   |     | •      |     | •    | page | 281 |
|---------------|--------|--------|--------|--------|---------|--------|------|-------|-------|------|-----|--------|-----|------|------|-----|
| NOTES ON THE  |        |        |        |        |         |        |      |       |       |      |     |        |     |      | -    | 286 |
| ITINERARIES O | F TH   | е Рну  | TOPLA  | NKTON  | OBSER   | VATION | NS D | URING | THE   | Thir | хD, | Fourth | AND | Fift | H    |     |
| Commissi      | IONS 0 | OF THE | 8 R.R. | S. 'Di | SCOVERY | П'     |      |       |       |      |     |        | •   | •    | •    | 295 |
| DESCRIPTION ( |        |        |        |        |         |        |      |       |       |      |     |        |     |      |      | 307 |
| BIOLOGICAL F  |        |        |        |        |         |        |      |       |       |      |     |        |     |      |      | 322 |
| Discussion    |        |        |        |        |         |        |      |       |       |      |     |        |     |      |      |     |
| Summary       |        |        |        |        |         | •      |      | •     |       | •    |     | •      | •   |      | •    | 340 |
| Acknowledgi   | EMEN   | TS     |        |        |         |        |      |       |       |      | ·   | •      | •   | •    | •    | 344 |
| References    |        |        |        |        |         |        |      |       |       |      |     |        | •   | •    | •    | 345 |
| Appendix      |        |        |        |        |         |        |      |       | •     | •    | •   |        | •   | •    | •    | 348 |

.

[Discovery Reports. Vol. XXI, pp. 1-226, Plates I-IV, February, 1941.]

## DISCOVERY INVESTIGATIONS STATION LIST

### 1931-1933

### CONTENTS

| INTRODUCTION     | •    | •        |     | •      | •  | • | • | • | • |        | •     | page 3  |
|------------------|------|----------|-----|--------|----|---|---|---|---|--------|-------|---------|
| R.R.S. 'DISCOVER | Y II | ', STATI | ONS | 701–11 | 84 | • | • | • | • | •      | •     | 6       |
| SUMMARIZED LIS   | T OF | STATIC   | NS  | •      | •  | • |   |   |   |        |       | 226     |
| PLATES I-IV      | •    | •        | •   | •      | •  | • |   |   |   | follou | ing p | age 226 |

### DISCOVERY INVESTIGATIONS STATION LIST

#### 1931-1933

### (Plates I-IV)

### INTRODUCTION

THIS list is a continuation of the Station Lists already published in *Discovery Reports*, vols. I, III and IV, and it gives particulars of the observations made by the R.R.S. 'Discovery II' from October 1931 to April 1933. It is drawn up on the same lines as before, but some alterations have been made in the method of recording hydrological data to facilitate comparison with the figures published in other reports. In 1936 the Association d'Océanographie Physique (1937) set up a committee to report on chemical methods and units, and in accordance with the findings of this committee, the nutrient salt concentrations are, in this Station List, expressed in milligramme-atoms of the particular element per cubic metre of sea-water, and the *p*H values are those *in situ* (Buch, 1929), corrected for temperature and salt error, but not for pressure. For *p*H estimation McClendon's Standards (1917) were used, and a correction was made for fading of the tubes. Even though the buffer solutions were sterilized with toluene it was found that the old solutions had faded, when compared with new solutions, by an amount corresponding to 0.01 *p*H per month.

In the estimation of the phosphate concentration 2 c.c. of ammonium molybdate and a trace of copper were used, and the resulting figures have been corrected for salt error by multiplying by a factor of 1.35 (1938). In working out the concentration of dissolved oxygen the volume of the added reagents (3 c.c.) has been subtracted from the volume of the oxygen sample bottle. The figures for oxygen concentration published in the previous Station Lists are from 0.5 to 2 per cent too low, the oxygen sample bottles used varying in volume between 150 and 200 c.c. Silica was measured by the method described by Atkins (1923) and Cooper (1933), and no correction has been made for salt error.

To convert the new units for nutrient salt concentrations to those used in previous Station Lists and reports, they must be multiplied by the following factors:

| To convert                                                                      | Multiply by |
|---------------------------------------------------------------------------------|-------------|
| mgatoms $N_2/m$ . <sup>3</sup> to mg. nitrate or nitrite $N_2/m$ . <sup>3</sup> | 14.0        |
| mgatoms $P/m.^3$ to mg. $P_2O_5/m.^3$                                           | 71.0        |
| mgatoms Si/m. <sup>3</sup> to mg. $SiO_2/m.^3$                                  | 60.1        |

To make the opposite conversions, from the old units to the new, the factors are:

| To convert                                                                      | Multiply by |
|---------------------------------------------------------------------------------|-------------|
| mg. nitrate or nitrite $N_2/m$ . <sup>3</sup> to mgatoms $N_2/m$ . <sup>3</sup> | 0.0214      |
| mg. $P_2O_5/m.^3$ to mgatoms $P/m.^3$                                           | 0.0141      |
| mg. SiO <sub>2</sub> /m. <sup>3</sup> to mgatoms Si/m. <sup>3</sup>             | 0.0167      |

#### INTRODUCTION

At some stations in this list the depths of observations were measured by unprotected thermometers, and these are shown in the column headed "Depth by thermometer". The next column, "Depth (metres)", gives intermediate depths obtained graphically from the thermometric measurements, or, when unprotected thermometers were not used, from the length of wire paid out, on the assumption that the wire hung vertically.

Time is again expressed on the 24-hour system, the day ending with midnight (0000). The difference of the ship's time from Greenwich mean time (GMT) is noted in the "Remarks" column, this difference holding good until another entry is made. To convert ship's time to GMT the figure in the "Remarks" column is to be added or subtracted according to sign. Times in heavy type refer to biological observations made between sunset and sunrise.

The following symbols are used for nets, apparatus, etc.:

| B<br>CPR       | Oblique.<br>Continuous plankton recorder                                                                                           |
|----------------|------------------------------------------------------------------------------------------------------------------------------------|
| DC             | Continuous plankton recorder.<br>Conical dredge. Mouth 16 in. in diameter (40.5 cm.) with canvas bag.                              |
| DGP            | Pressure depth gauge: a modification of the Budenberg pattern.                                                                     |
| DRL            | Large rectangular dredge.                                                                                                          |
| Н              | Horizontal.                                                                                                                        |
| KT             | Kelvin tube.                                                                                                                       |
| N 4-T<br>N 7-T | Nets with mesh of 4 or 7 mm. (0.16 in. or 0.28 in.) attached to back of trawl.                                                     |
| N 50           | 50 cm. tow-net. Mouth circular, 50 cm. in diameter (19.5 in.): 200 meshes to the linear inch.                                      |
| N 70           | 70 cm. tow-net. Mouth circular, 70 cm. in diameter $(27.5 \text{ in.})$ : mesh graded, at cod-end 74 to the linear inch.           |
| N 100          | 1 m. tow-net. Mouth circular, 1 m. in diameter (3.3 ft.): mesh graded, at cod-end of stramin with 10–12 meshes to the linear inch. |
| NH             | Hand net.                                                                                                                          |
| NS             | Seine net. Length 30 fathoms (55 m.): mesh at cod-end $1\frac{1}{2}$ in. (3.8 cm.).                                                |
| OTL            | Large otter trawl. Head rope 40 ft. long (12.2 m.): mesh at cod-end 1 <sup>1</sup> / <sub>4</sub> in. (3.2 cm.).                   |
| Sh. Coll.      | Shore collecting.                                                                                                                  |
| TYF            | Young-fish trawl. A bag of stramin, with 10-12 meshes to the linear inch, attached to a                                            |
|                | circular frame 2 m. in diameter (6.6 ft.).                                                                                         |
| TYFS           | Similar to TYF but with the stramin of the net lined for 8 ft. above the bucket with                                               |
|                | No. 60 silk netting for eatching small organisms.                                                                                  |
| V              | Vertical.                                                                                                                          |

To the symbols for tow nets (N 450, N 100, N 70, N 50, TYF and TYFS) B, H or V is always added to indicate the direction in which the haul was taken. For determining the depths of horizontal and oblique nets, Kelvin tubes or depth gauges were constantly employed. Their use is indicated by symbols in the "Remarks" column, and where no such symbol appears it is to be understood that the depth was estimated.

The following symbols are used to denote meteorological observations:

b blue sky whether with clear or hazy atmosphere, or sky not more than one-quarter clouded.

- bc sky between one-quarter and three-quarters clouded.
- c mainly cloudy (not less than three-quarters covered).

#### INTRODUCTION

- d drizzle or fine rain.
- e wet air without rain falling.
- f fog.
- fe wet fog.
- g gloomy.
- h hail.
- kq line squall.
- l lightning.
- m mist.
- o overcast sky (i.e. the whole sky covered with unbroken cloud).
- p passing showers.
- q squalls.
- r rain.
- rs sleet (i.e. rain and snow together).
- s snow.
- t thunder.
- tl thunderstorm.
- u ugly, threatening sky.
- v unusual visibility.
- w dew.
- z dust haze; the turbid atmosphere of dry weather.

At the end of the lists (p. 226) will be found a summary of the stations made by the R.R.S. 'Discovery II' from October 1931 to April 1933 with references to the charts on which the station positions are marked.

#### REFERENCES

Association d'Océanographie Physique, 1937. Proc. verb., No. 2, p. 56.

- BUCH, K., 1929. On the determination of pH in sea water at different temperatures. Journ. du Cons. IV, No. 3, pp. 267-80.
- McCLENDON, J. F., 1917. The standardization of a new colorimetric method for the determination of the hydrogen-ion concentration, CO<sub>2</sub> tension, and CO<sub>2</sub> and O<sub>2</sub> content of sea water, etc. Journ. Biol. Chem., XXX, pp. 265–88.
- ATKINS, W. R. G., 1923. The silica content of some natural waters and of culture media. Journ. Mar. Biol. Ass. U.K., XIII, pp. 151-9.
- COOPER, L. H. N., 1933. Chemical constituents of biological importance in the English Channel, November 1930 to January 1932. Part I. Phosphate, silicate, nitrate, nitrite, ammonia. Journ. Mar. Biol. Ass. U.K., XVIII, pp. 677–728. Part II. Hydrogen-ion concentration, excess base, carbon dioxide and oxygen. Journ. Mar. Biol. Ass. U.K., XVIII, pp. 729–54. Part III, June–December 1932. Phosphate, silicate, nitrite, hydrogen-ion concentration, with a comparison with wind records. Journ. Mar. Biol. Ass. U.K., XIX, pp. 55–62.
- ---- 1938. Salt error in determinations of phosphate in sea water. Journ. Mar. Biol. Ass. U.K., XXIII, pp. 171-78.

## R.R.S. 'DISCOVERY II', STATIONS 701-1184

|         |                            |              |      | Sounding | WIN       | D                | SEA       | ļ     |         | ieter<br>bars)           | Air Ten     | ър. С.      |                                           |
|---------|----------------------------|--------------|------|----------|-----------|------------------|-----------|-------|---------|--------------------------|-------------|-------------|-------------------------------------------|
| Station | Position                   | Date         | Hour | (metres) | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                                   |
| 701     | 14° 39'3' N, 25° 51'7' W   | 1931<br>16 x | 2000 |          | NE        | 16               | NE        | 3     | bew     | 1015-1                   | 26.2        | 24.2        | mod. NE swell                             |
| 702     | 10° 59.3′ N, 27° 03.8′ W   | 17 X         | 2000 | _        | NE        | 13               | NE        | 2     | bc      | 1013.6                   | 27.8        | 25.6        | mod. conf. swell                          |
| 703     | 07° 17′ N, 28° 01.9′ W     | 18 x         | 2000 |          | Lt airs   | 1-3              | _         | 0     | b       | 1013.5                   | 27.8        | 24.1        | mod. SE swell                             |
| 704     | 03° 37.7′ N, 29° 14′ W     | 19 X         | 2000 |          | SE        | 10               | SE        | 2     | bc      | 1013.4                   | 27.0        | 24.9        | mod. SE swell                             |
| 705     | 00° 03·4′ N, 30° 36·8′ W   | 20 X         | 2000 |          | SE×E      | 10               | SE×E      | 2     | bc      | 1013.6                   | 26.7        | 24.1        | mod. SE $\times$ S swell                  |
| 706     | 03° 26·2′ S, 32° 08·3′ W   | 21 X         | 2000 | 4302*    | SE×E      | 18               | SE×E      | 4     | bc      | 1013.9                   | 25.6        | 23.4        | mod. SE swell                             |
| 707     | 06° 44′ S, 33° 33′ W       | 22 X         | 2000 | 4409*    | ESE       | 15               | ESE       | 3     | b       | 1014.9                   | 26.1        | 23.0        | mod. $\mathbf{E} \times \mathbf{S}$ swell |
| 708     | 10° 20.6′ S, 34° 54.7′ W   | 23 X         | 2000 | 4000*    | Е         | 10               | E         | 2     | bc      | 1016.8                   | 25.8        | 22.8        | mod. ENE swell                            |
| 709     | 14° 01·4′ S, 36° 30·7′ W   | 24 X         | 2000 | 4360*    | Е         | 5                | E         | I     | b       | 1016.9                   | 25.6        | 21.7        | conf. $SE \times E$ swell                 |
| 710     | 21° 45′ S, 39° 50′ W       | 26 x         | 2000 | 1583*    | SSW       | 17               | SSW       | 3-4   | bc      | 1011.2                   | 23.3        | 19.7        | conf. swell                               |
| 711     | 24° 40.7′ S, 41° 30.8′ W   | 27 x         | 2000 | 2487*    | SSW       | II               | SSW       | 3     | cr      | 1010.0                   | 19.4        | 10.0        | mod. SW swell                             |
| 715     | 2 28° 02°1′ S, 43° 09°5′ W | 28 x         | 2000 | 2994*    | E         | 19               | Е         | 4     | or      | 1016-2                   | 20.3        | 19.5        | heavy E×S swell                           |

|         |                | IIYDROLOGICAL OBSERVATIONS       |                          |                                       |                                                                                                            |                                           |    |           |                                  |                           |    |                              | BIOLOGICAL OBSERVATIONS |                   |      |      |      |           |
|---------|----------------|----------------------------------|--------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------|----|-----------|----------------------------------|---------------------------|----|------------------------------|-------------------------|-------------------|------|------|------|-----------|
|         | Age of         |                                  | Mg.—atom m. <sup>3</sup> |                                       |                                                                                                            |                                           |    |           |                                  |                           |    |                              |                         |                   | TI   |      |      |           |
| Station | moon<br>(days) | Depth<br>(metres)                | Depth by<br>thermometer  | Temp.<br>°C,                          | S 1/20                                                                                                     | σt                                        | pH | P         | $Nitrate \\ + \\ Nitrite \\ N_2$ | Nitrite<br>N <sub>2</sub> | Si | O2<br>c.c.<br>litre          | Gear                    | Depth<br>(metres) | From | To   | 1    | Remarks   |
| 701     | 5              | 0<br>600<br>850<br>1100<br>1350  |                          | 27·22<br>8·74<br>6·75<br>5·72<br>5·15 | 36.09<br>35.04<br>34.84<br>34.84<br>34.93                                                                  | 23·49<br>27·21<br>27·35<br>27·48<br>27·62 |    |           |                                  |                           |    | 1·72<br>2·19<br>2·73<br>3·47 | TYFB                    | 242-0             | 2129 | 2219 | DGP. | + 2 hours |
| 702     | 6              | 0<br>600<br>850<br>1100<br>1350  |                          | 27·95<br>7·40<br>5·95<br>5·16<br>4·46 | 35 <sup>.</sup> 99<br>34 <sup>.</sup> 92<br>34 <sup>.</sup> 84<br>34 <sup>.</sup> 79<br>34 <sup>.</sup> 90 | 23.17<br>27.32<br>27.46<br>27.51<br>27.68 |    |           |                                  |                           |    | 1.97<br>2.40<br>2.67<br>4.17 | TYFB                    | 236-0             | 2059 | 2151 | DGP  |           |
| 703     | 7              | 0<br>600<br>850<br>1100          |                          | 28·45<br>7·43<br>5·49<br>4·76         | 34·38<br>34·76<br>34·65                                                                                    | 21·80<br>27·19<br>27·36<br>—              |    |           |                                  |                           |    | 1.79<br>2.45<br>3.16         | TYFB                    | 358-0             | 2058 | 2148 | DGP  |           |
| 704     | 9              | 0<br>600<br>850<br>1100          |                          | 27·73<br>6·14<br>4·65<br>4·45         | 35 <sup>.7</sup> 1<br>34 <sup>.52</sup><br>34 <sup>.49</sup><br>34 <sup>.62</sup>                          | 23.04<br>27.17<br>27.33<br>27.47          |    |           |                                  |                           |    | <br>2·62<br>3·23<br>3·58     | TYFB                    | 231-0             | 2058 | 2149 | DGP  |           |
| 705     | 10             | 0<br>600<br>800<br>1000<br>1200  |                          | 26.68<br>5.50<br>4.55<br>4.37<br>4.37 | 36·10<br>34·54<br>34·54<br>34·67<br>34·79                                                                  | 23.67<br>27.28<br>27.39<br>27.50<br>27.60 |    |           |                                  |                           |    | 3.00<br>3.17<br>3.53<br>3.77 | TYFB                    | 150-0             | 2104 | 2155 | DGP  |           |
| 706     | II             | 0<br>600<br>900<br>1200<br>1500  |                          | 26.04<br>5.44<br>4.10<br>4.28<br>4.20 | 36·38<br>34·54<br>34·53<br>34·74<br>34·97                                                                  | 24.08<br>27.28<br>27.43<br>27.57<br>27.77 |    | <br> <br> |                                  |                           |    |                              | TYFB                    | 354-0             | 2058 | 2148 | DGP  |           |
| 707     | I2             | 0<br>600<br>900<br>1200<br>1500  |                          | 26·28<br>5·96<br>4·07<br>4·15<br>4·16 | 36·29<br>34·54<br>34·54<br>34·80<br>34·98                                                                  | 27.64                                     |    |           |                                  | <br> <br>                 |    | 2·47<br>3·50<br>3·92<br>4·84 | TYFB                    | 182–0             | 2106 | 2156 | DGP  |           |
| 708     | 13             | 0<br>600<br>900<br>1200<br>1500  |                          | 26.16<br>4.95<br>4.00<br>3.96<br>4.07 | 36·96<br>34·42<br>34·46<br>34·69<br>34·90                                                                  | 24·48<br>27·23<br>27·38<br>27·56<br>27·72 |    |           |                                  |                           |    |                              | TYFB                    | 208–0             | 2125 | 2215 | DGP  |           |
| 709     | 14             | 0<br>600<br>900<br>1200<br>1500  |                          | 26·20<br>5·54<br>3·71<br>3·89<br>4·10 | 37·15<br>34·41<br>34·41<br>34·68<br>34·88                                                                  | 24.61<br>27.16<br>27.37<br>27.57<br>27.70 |    |           |                                  |                           |    |                              | TYFB                    | 216-0             | 2108 | 2158 | DGP  |           |
| 710     | 16             | 0<br>800<br>1000<br>1200<br>1400 |                          | 23.84<br>4.43<br>3.71<br>3.30<br>3.48 | 37·27<br>34·32<br>34·34<br>34·48<br>34·61                                                                  | 25·42<br>27·22<br>27·32<br>27·47<br>27·56 |    |           |                                  |                           |    |                              | TYFB                    | 294-0             | 2100 | 2150 | DGP  |           |
| 711     | 17             | 0<br>800<br>1200<br>1600<br>2000 |                          | 22·25<br>4·66<br>3·29<br>3·83<br>3·51 | 37·01<br>34·34<br>34·56<br>34·85<br>34·96                                                                  | 25.69<br>27.22<br>27.53<br>27.70<br>27.82 |    | -         |                                  |                           |    |                              | TYFB                    | 290-0             | 2128 | 2219 | DGP. | + 3 hours |
| 712     | 18             | 0<br>800<br>1200                 |                          | 19·19<br>4·61<br>3·14                 | 36·44<br>34·24<br>34·45                                                                                    | 26·09<br>27·14<br>27·45                   |    |           | e                                |                           |    | <br>5.00<br>4.13             | TYFB                    | 224-0             | 2111 | 2201 | DGP  |           |

|              |                                                    |                |      | Sounding             | WIN          | D                | SEA          |        |         | neter<br>Dars)           | Air Ten     | np. ° C.    |                                  |
|--------------|----------------------------------------------------|----------------|------|----------------------|--------------|------------------|--------------|--------|---------|--------------------------|-------------|-------------|----------------------------------|
| Station      | Position                                           | Date           | Hour | Sounding<br>(metres) | Direction    | Force<br>(knots) | Direction    | Force  | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                          |
| 712<br>cont. | 28° 02°1′ S, 43° 09°5′ W                           | 1931<br>28 x   |      |                      |              |                  |              |        |         |                          |             |             |                                  |
| 713          | 31 3711′S, 45° 00′ W                               | 29 X           | 2000 | 3703*                | ENE          | 20               | ENE          | 4      | oe      | 1022.8                   | 19.4        | 18.8        | mod. ENE swell                   |
| 714          | 35 ° 09 5 ′ S, 47° 00′ W                           | 30 x           | 2000 | 4840*                | NE×N         | 19-20            | NE 	imes N   | 4      | bc      | 1021.2                   | 18.1        | 16.9        | mod. NE swell                    |
| 715          | 38° 44.2' S, 49° 18.7' W                           | 31 X           | 2000 | 5306*                | $W \times N$ | 9                | $W \times N$ | 2      | or      | 1006.3                   | 17.3        | 17.2        | mod. conf. NW swell              |
| 716          | 42° 08.8′ S, 51° 35′ W                             | ı xi           | 2000 | 57 <sup>1</sup> 5*   | WNW          | 7                | WNW          | I-2    | b       | 1003.2                   | 10.6        | 9.3         | mod. conf. swell                 |
| 717          | 44° 42′ S, 53° 32·2′ W                             | 2 xi           | 2000 | _                    | WSW          | 27-3 I           | WSW          | 6      | bc      | 985.1                    | 10.6        | 8.8         | heavy WSW swell                  |
| 718          | 47° 27·2′ S, 55° 10·2′ W                           | 3 xi           | 2000 | _                    | s            | 19               | S            | 3      | orrs    | 978.8                    | 4.3         | 4.3         | heavy conf. WSW<br>swell         |
| 719          | 54° 00' S, 60° 00' W                               | 13 xi          | °545 | 108*                 | N            | 17               | Ν            | 3      | ord     | 1002.1                   | 4.6         | 4·1         | mod. conf. swell                 |
|              | 53° 58′ S, 61° 10·5′ W<br>53° 58·5′ S, 61° 59·1′ W | 13 xi<br>13 xi | 1210 | 141*<br>304*         | W×N<br>W     | 10               | W×N<br>W     | 3<br>2 | om<br>o | 1003.1                   | 6·4<br>6·3  |             | mod. conf. swell<br>low NW swell |
| 722          | 53° 55.8′ S, 64° 14′ W                             | 14 xi          | 0145 | 130*                 | NW           | 4-6              | NW           | I      | bc      | 1004.0                   | 6.1         | 5.2         | low NW swell                     |

|              |                |                                                                  | -*                      |                                                              | HYDR                                                                                   | OLOGIC                                                                                 | AL OBS                                                       | ERVAT | TIONS                                     | -             |    |                                      | BIOLO                                            | OGICAL OBS                    | ERVATIO | )NS                  |               |
|--------------|----------------|------------------------------------------------------------------|-------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|-------|-------------------------------------------|---------------|----|--------------------------------------|--------------------------------------------------|-------------------------------|---------|----------------------|---------------|
| Station      | Age of<br>moon |                                                                  | oy<br>eter              |                                                              |                                                                                        |                                                                                        |                                                              |       | Mg.—a                                     | tom m.3       |    |                                      | -                                                |                               | Т       | IMF                  | -             |
| Station      | (days)         | Depth<br>(metres)                                                | Depth by<br>thermometer | Temp.<br>C.                                                  | S .                                                                                    | σt                                                                                     | pН                                                           | Р     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | $Nitrite N_2$ | Si | Oj<br>c.c.<br>litre                  | Gear                                             | Depth<br>(metres)             | From    | То                   | - Remarks     |
| 712<br>cont. | 18             | 1600<br>2000                                                     |                         | 3·33<br>3·63                                                 | 34 <sup>.</sup> 74<br>34 <sup>.</sup> 94                                               | 27·67<br>27·80                                                                         |                                                              |       |                                           | -             |    | 4·26<br>5·06                         |                                                  |                               |         |                      |               |
| 713          | 19             | 0<br>800<br>1200<br>1600<br>2000                                 |                         | 18.88<br>4.72<br>3.06<br>3.09<br>3.39                        | 36·16<br>34·34<br>34·58<br>34·87                                                       | 25·95<br>27·21<br>27·57<br>27·76                                                       |                                                              |       |                                           |               |    |                                      | TYFB                                             | 200-0                         | 2122    | 2212                 | DGP           |
| 714          | 20             | 0<br>800<br>1200<br>1600<br>2000<br>2400                         |                         | 17.55<br>4.36<br>2.82<br>2.78<br>2.99<br>2.95                | 35.97<br>34.30<br>34.27<br>34.58<br>34.84<br>34.84<br>34.85                            | 26.14<br>27.21<br>27.34<br>27.59<br>27.78<br>27.79                                     |                                                              |       |                                           |               |    | 5·17<br>4·84<br>3·86<br>4·47<br>4·57 | TYFB                                             | 246-0                         | 2125    | 2214                 | DGP           |
| 715          | 21             | 0<br>600<br>1000<br>1400<br>1800<br>2200                         |                         | 15.76<br>4.37<br>2.98<br>2.76<br>2.96<br>3.19                | 34·29<br>34·24<br>34·24<br>34·45<br>34·63<br>34·81                                     | 25·27<br>27·17<br>27·30<br>27·49<br>27·62<br>27·74                                     |                                                              |       |                                           |               |    | 5.57<br>4.94<br>4.22<br>4.07<br>4.73 | TYFB                                             | 230-0                         | 2135    | 2225                 | DGP           |
| 716          | 22             | 0<br>600<br>1000<br>1400<br>1800<br>2200                         |                         | 10.52<br>3.07<br>2.67<br>2.73<br>2.68<br>2.71                |                                                                                        | 26·34<br>27·24<br>27·42<br>27·58<br>27·68<br>27·68<br>27·76                            |                                                              |       |                                           |               |    | 5.64<br>4.69<br>3.97<br>4.21<br>4.57 | TYFB                                             | 212-0                         | 2135    | 2225                 | DGP           |
| 717          | 23             | 0<br>800<br>1200<br>1600                                         |                         | 13·28<br>3·71<br>2·70<br>2·63                                | 34.27                                                                                  | 26·74<br>27·26<br>27·37<br>27·42                                                       | <br>                                                         |       |                                           |               |    | <br>5·68<br>5·02<br>4·83             | TYFB                                             | 212-0                         | 2113    | 2203                 | DGP. +4 hours |
| 718          |                | 0<br>600<br>1000<br>1400<br>1800                                 |                         | 8.00<br>2.81<br>2.60<br>2.59<br>2.87                         | 34·42<br>34·60                                                                         | 27·01<br>27·26<br>27·47<br>27·62<br>27·75                                              |                                                              |       |                                           |               |    | 5·58<br>4·85<br>4·20<br>4·64         | TYFB                                             | 262-0                         | 2128    | 2218                 | DGP           |
| 719          | 3              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100               |                         | 4·93<br>4·84<br>4·82<br>4·74<br>4·74<br>4·74                 | 34.06<br>34.06<br>34.06<br>34.06<br>34.06<br>34.06<br>34.06                            | 26.94<br>26.96<br>26.97<br>26.97<br>26.98<br>26.98<br>26.98<br>26.98                   | 8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19 |       |                                           |               |    |                                      | N 50 V<br>N 70 B<br>N 100 B<br>DC                | 90-0<br>} 109-0<br>108        |         | 0557<br>0701<br>0718 | КТ            |
| 720          | 4              | -                                                                | -                       | _                                                            | _                                                                                      | -                                                                                      | _                                                            | _     | _                                         | _             |    | -                                    | DC                                               | 141                           | 1220    | 1225                 |               |
| 721          | 4              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200 |                         | 4·83<br>4·75<br>4·57<br>4·46<br>4·42<br>4·36<br>4·30<br>4·26 | 34·12<br>34·12<br>34·12<br>34·12<br>34·12<br>34·12<br>34·12<br>34·12<br>34·12<br>34·12 | 27.00<br>27.02<br>27.03<br>27.05<br>27.05<br>27.07<br>27.07<br>27.07<br>27.08<br>27.08 | 8.20<br>8.20<br>8.20<br>8.20<br>8.20<br>8.20<br>8.20<br>8.20 |       |                                           |               |    | 6·84<br>                             | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>  125-0<br>  250-144 | 1700    |                      | KT<br>DGP     |
| 722          | 4              | 0<br>10<br>20                                                    |                         | 5.22                                                         | 33.81                                                                                  | 26.70                                                                                  | 8·25<br>8·25<br>8·25                                         |       |                                           |               |    |                                      | N 50 V<br>N 70 B<br>N 100 B                      | 100-0<br>90-0                 |         | 0205<br>0302         | КТ            |

|              |                                       |               |      | Sounding    | WIN          | D                | SEA       |       |         | leter<br>Dars)           | Air Ten     | ър. † С.    |                 |
|--------------|---------------------------------------|---------------|------|-------------|--------------|------------------|-----------|-------|---------|--------------------------|-------------|-------------|-----------------|
| Station      | Position                              | Date          | Hour | (metres)    | Direction    | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks         |
| 722<br>cont. | . 53° 55 <sup>.</sup> 8′ S, 64° 14′ W | 1931<br>14 xi |      |             |              |                  |           |       |         |                          |             |             |                 |
| 723          | 53° 56·5′ S, 66° 05′ W                | 14 xi         | 1020 | ð1 <b>*</b> | NW           | 10               | NW        | 3     | bc      | 1003.2                   | 8.4         | 6.9         | low NW swell    |
|              | Fortescue Bay, Magellan<br>Strait     |               |      | —           | SSW          | 14               | SSW       | 2     | с       | 1005.0                   |             |             | no swell        |
| 725          | 53° 23.6′ S, 74° 57.8′ W              | 17 XI         | 2000 | 1960*       | $W \times N$ | 6                | W×N       | 2     |         | 1018.0                   | 6.9         | 0.0         | heavy WSW swell |
| 726          | 55° 05·4′ S, 75° 00·1′ W              | 18 xi         | 0900 | 4281*       | $W \times N$ | 18               | W 	imes N | 4     | og      | 1018.7                   | 6-9         | 6.4         | mod. WSW swell  |
| 727          | 56° 13.4′ S, 75° 07.3′ W              | 18 xi         | 2000 | 4287*       | W×S          | 17               | W×S       | 4     | с       | 1018.č                   | 6·0         | 5.2         | mod. W×S swell  |

722-727

|              |                |                                                                                                        |                              |                                                                                                                                                                              | HYDRO                                                                                                                                                          | LOGICA                                                                                                                                                         | L OBSE                                                                                               | RVATI | ONS                                  |               |    |                                                                                                                                                                   | BIOLOG                                           | GICAL OBSER                   | VATIO:               | vs.                  |                                     |
|--------------|----------------|--------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------|--------------------------------------|---------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------|----------------------|----------------------|-------------------------------------|
| Station      | Age of<br>moon |                                                                                                        | by<br>teter                  |                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                |                                                                                                      |       | Mg.—at                               | om m.ª        |    | Ο,                                                                                                                                                                |                                                  |                               | TI                   | ME                   | Remarks                             |
|              | (days)         | Depth<br>(metres)                                                                                      | Depth by<br>thermometer      | Temp.<br>°C,                                                                                                                                                                 | Síc                                                                                                                                                            | σt                                                                                                                                                             | pН                                                                                                   | Р     | Nitrate<br>Nitrate<br>N <sub>2</sub> | Nitrite<br>N2 | Si | c.c.<br>htre                                                                                                                                                      | Gear                                             | Depth<br>(metres)             | l rom                | То                   |                                     |
| 722<br>cont. | 4              | 30<br>40<br>50<br>60<br>80<br>100                                                                      |                              | 5·40<br>5·38<br>5·37<br>5·36<br>5·35<br>5·35                                                                                                                                 | 33.81<br>33.81<br>33.81<br>33.81<br>33.81<br>33.81<br>33.81                                                                                                    | 26.71<br>26.71<br>26.71<br>26.71<br>26.72<br>26.72                                                                                                             | 8·25<br>8·25<br>8·25<br>8·25<br>8·25<br>8·25<br>8·24                                                 |       |                                      |               |    |                                                                                                                                                                   |                                                  |                               |                      |                      |                                     |
| 723          | 4              | 0<br>20<br>30<br>40<br>50<br>60<br>80                                                                  |                              | 6·30<br>6·26<br>6·24<br>6·24<br>6·24<br>6·24<br>6·24<br>6·24<br>6·22                                                                                                         | 33.04<br>33.04<br>33.04<br>33.04<br>33.04<br>33.04<br>33.04<br>33.04<br>33.04                                                                                  | 25.99<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00<br>26.00                                                                                           | 8.23<br>8.23<br>8.23<br>8.23<br>8.23<br>8.23<br>8.23<br>8.23                                         |       |                                      |               |    | 6.64<br>                                                                                                                                                          | N 50 V<br>N 70 B<br>N 100 B                      | 80—0<br>} 79−0                | 1023<br>1100         | 1030<br>1112         | КТ                                  |
| 724          | 8              | -                                                                                                      |                              | _                                                                                                                                                                            | —                                                                                                                                                              | —                                                                                                                                                              | —                                                                                                    | -     | —                                    |               | -  | —                                                                                                                                                                 | NS                                               | 0-5                           |                      | _                    | Two hauls                           |
| 725          | 8              | 0<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>290<br>390<br>580<br>780<br>970<br>1460<br>1750 | <br><br><br><br><br><br>1746 | 6.84<br>6.72<br>6.54<br>6.32<br>5.95<br>5.81<br>5.57<br>5.32<br>5.91<br>4.92<br>4.94<br>4.61<br>4.17<br>3.61<br>2.65<br>2.28                                                 | 33:94<br>33:95<br>33:96<br>33:96<br>33:99<br>34:04<br>34:05<br>34:06<br>34:07<br>34:14<br>34:22<br>34:23<br>34:23<br>34:23<br>34:25<br>34:35<br>34:38<br>34:60 | 26.63<br>26.66<br>26.66<br>26.68<br>26.74<br>26.82<br>26.85<br>26.89<br>26.92<br>27.01<br>27.08<br>27.10<br>27.13<br>27.19<br>27.34<br>27.45<br>27.65          | 8.20<br>8.20<br>8.20<br>8.20<br>8.20<br>8.20<br>8.20<br>8.20                                         |       |                                      |               |    | 6.49<br>6.45<br>6.45<br>6.40<br>6.88<br>6.40<br>6.88<br>6.47<br>6.25<br>6.30<br>6.13<br>5.95<br>5.31<br>4.50<br>4.63<br>3.10                                      | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>} 150-0<br>} 250-196 | 2003<br>2146<br>2146 | 2012<br>2205<br>2220 | + 5 hours<br>Estimated depth<br>DGP |
| 726          | 9              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>500<br>2500<br>3500<br>4000 | <br><br><br><br><br>4025     | 7.01<br>6.95<br>6.27<br>5.82<br>5.76<br>5.71<br>5.65<br>5.60<br>5.52<br>5.15<br>5.09<br>5.04<br>4.89<br>4.47<br>3.95<br>3.34<br>2.58<br>2.18<br>1.94<br>1.78<br>1.24<br>0.92 | 33.72<br>33.72<br>33.85<br>33.98<br>34.02<br>34.04<br>34.05<br>34.09<br>34.14<br>34.16<br>34.23<br>34.18<br>34.18<br>34.14<br>34.33<br>34.64                   | 26·44<br>26·63<br>26·80<br>26·83<br>26·85<br>26·87<br>26·87<br>26·87<br>26·87<br>26·87<br>27·00<br>27·00<br>27·00<br>27·10<br>27·11<br>27·14<br>27·33<br>27·69 | 8.28<br>8.28<br>8.27<br>8.23<br>8.19<br>8.20<br>8.20<br>8.20<br>8.20<br>8.20<br>8.20<br>8.20<br>8.20 |       |                                      |               |    | $\begin{array}{c} 6.94 \\ \\ 6.50 \\ \\ 6.34 \\ 6.34 \\ 6.30 \\ 6.24 \\ 6.04 \\ 6.18 \\ 6.10 \\ 6.00 \\ 6.08 \\ 5.41 \\ 5.27 \\ 4.23 \\ 4.09 \\ 4.01 \end{array}$ | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>} 108-0<br>} 270-190 | 0935<br>1213<br>1213 | 0942<br>1233<br>1246 | KT<br>DGP                           |
| 727          | 9              | 0<br>10<br>20<br>30<br>40<br>50                                                                        |                              | 5.91<br>5.91<br>5.81<br>5.31<br>5.23<br>5.15                                                                                                                                 | 34.03<br>34.03<br>34.04<br>34.13<br>34.14<br>34.14                                                                                                             | 26.82<br>26.82<br>26.84<br>26.97<br>27.00<br>27.00                                                                                                             | 8·20<br>8·20<br>8·20<br>8·21<br>8·21<br>8·21                                                         |       |                                      |               |    | 6·79<br><br>6·69<br><br>6·65                                                                                                                                      | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>124-0<br>310-170     | 2005<br>2250<br>2250 | 2010<br>2311<br>2323 | KT<br>DGP                           |

| Station      | Position                 | Data           |              | Sounding             | WIN               | SD .             | SEA               |       |         | neter<br>Dars)           | Air Ter     | np. C.      |                                    |
|--------------|--------------------------|----------------|--------------|----------------------|-------------------|------------------|-------------------|-------|---------|--------------------------|-------------|-------------|------------------------------------|
| Station      | Position                 | Date           | Hour         | Sounding<br>(metres) | Direction         | Force<br>(knots) | Direction         | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                            |
| 727<br>cont. | 56° 13.4′ S, 75° 07.3′ W | 1931<br>18 xi  |              |                      |                   |                  |                   |       |         |                          |             |             |                                    |
|              | 57° 39·2′ S, 75° 08·5′ W | 19 Xi          | 0900         | 4726*                | $W \\ W \times N$ | 21<br>25         | $W \\ W \times N$ | 4     | 0<br>0  | 1018-6<br>1019-3         | 5.5<br>6.3  | 4·9<br>5·6  | mod. WSW swell<br>heavy W swell    |
| 729          | 58° 26.7′ S, 75° 07.2′ W | 19 xi<br>20 xi | 2000<br>0040 | 4479*                | W×S<br>W×S        | 24<br>20         | W×S<br>W×S        | 4 4   | o<br>oe | 1016·3<br>1017·7         | 5°0<br>4'9  | 4·5<br>4·4  | heavy WSW swell<br>heavy WSW swell |
| 730          | 59° 36·7′ S, 75° 05·3′ W | 20 xi          | 0900         | 4819*                | W                 | 18               | W                 | 4     | ome     | 1014-1                   | 4.5         | 4·1         | heavy conf. W swell                |

| 727-730 | 72 | 7— | -73 | <b>50</b> |
|---------|----|----|-----|-----------|
|---------|----|----|-----|-----------|

|              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                                                                                                                                                              | HYDROI                                                                                                                              | LOGICA                                                                                                                                                                                                                        | L OBSE                                                                                                                                                                                                                                                                                                                                  | RVATI | ONS         |                              |    |                                                                                                                                                                                                                                                                          | BIOLOC                                           | ACAL OBSER                           | VATION                       |                              |           |
|--------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------|------------------------------|------------------------------|-----------|
|              | Age of         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | it.                     |                                                                                                                                                                              |                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                         |       | Mg.—at      | an m.ª                       |    |                                                                                                                                                                                                                                                                          |                                                  |                                      | 115                          | 1L.                          |           |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Depth by<br>thermometer | Temp.<br>† C.                                                                                                                                                                | S' .                                                                                                                                | σt                                                                                                                                                                                                                            | pН                                                                                                                                                                                                                                                                                                                                      | р     | Nitrate<br> | $\frac{\text{Nitrite}}{N_2}$ | Sı | O,<br>c.c.<br>htre                                                                                                                                                                                                                                                       | Gear                                             | Depth<br>(metres)                    | From                         | To                           | Remarks   |
| 727<br>cont. | 9              | 60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>1000<br>1500<br>2000<br>2500<br>3000<br>3500<br>4000                                                                                                                                                                                                                                                                                                                                                                                         |                         | 5.05<br>5.00<br>4.99<br>4.98<br>4.91<br>4.84<br>4.81<br>4.55<br>4.10<br>3.47<br>2.62<br>2.20<br>2.17<br>1.76<br>1.35<br>0.92                                                 | 34'14<br>34'14<br>34'20<br>34'20<br>34'22<br>34'22<br>34'22<br>34'22<br>34'23<br>34'31<br>34'43<br>34'54<br>34'54<br>34'70<br>34'70 | 27.02<br>27.02<br>27.02<br>27.06<br>27.06<br>27.09<br>27.09<br>27.12<br>27.19<br>27.19<br>27.49<br>27.49<br>27.62<br>27.81<br>27.81<br>27.84                                                                                  | 8.20<br>8.21<br>8.19<br>8.18<br>8.18<br>8.18<br>8.19<br>8.19<br>8.14<br>8.11<br>8.10<br>8.21<br>8.21                                                                                                                                                                                                                                    |       |             |                              |    | 6.56<br>6.50<br>6.42<br>6.34<br>6.30<br>6.20<br>6.07<br>5.10<br>4.51<br>3.92                                                                                                                                                                                             |                                                  |                                      |                              |                              |           |
| 728          | IO             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>150<br>200<br>300<br>400<br>150<br>200<br>300<br>400<br>150<br>200<br>300<br>400<br>150<br>200<br>300<br>400<br>150<br>200<br>300<br>400<br>150<br>200<br>300<br>400<br>150<br>200<br>300<br>400<br>150<br>200<br>300<br>400<br>150<br>200<br>300<br>400<br>150<br>200<br>300<br>400<br>150<br>200<br>300<br>400<br>150<br>200<br>300<br>400<br>150<br>200<br>300<br>400<br>100<br>100<br>100<br>100<br>100<br>100<br>1 |                         | 5.22<br>5.22<br>5.22<br>5.20<br>5.05<br>4.98<br>4.93<br>4.90<br>4.85<br>4.80<br>4.79<br>4.72<br>4.54<br>4.54<br>4.288<br>3.34<br>2.57<br>2.23<br>1.94<br>1.63                | 3+21<br>3+21<br>3+21<br>3+21<br>3+21<br>3+21<br>3+21<br>3+21                                                                        | 27.05<br>27.05<br>27.05<br>27.05<br>27.05<br>27.06<br>27.07<br>27.08<br>27.09<br>27.09<br>27.09<br>27.09<br>27.10<br>27.11<br>27.14<br>27.14<br>27.17<br>27.28<br>27.40<br>27.70<br>27.77<br>27.80<br>27.78<br>27.82<br>27.82 | 8.16<br>8.16<br>8.16<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.12<br>8.00<br>8.21<br>8.22<br>8.22<br>8.22<br>8.23                                                                                            |       |             |                              |    | $\begin{array}{c}\\\\\\ 6\cdot 57\\\\ 6\cdot 56\\ 6\cdot 59\\ 5\cdot 85\\ 6\cdot 47\\ 6\cdot 41\\ 6\cdot 34\\ 6\cdot 32\\ 5\cdot 43\\ 4\cdot 57\\ 3\cdot 82\\ 3\cdot 62\\ 3\cdot 49\\ 3\cdot 83\\ 3\cdot 94\\ 4\cdot 59\\ 4\cdot 63\end{array}$                          | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>} 160-0?<br>} 400-300?      | 0000                         | 0910<br>1357<br>1410         | KT<br>DGP |
| 729          | 10             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>2000<br>2000<br>2000<br>2500<br>3000<br>3500<br>4000                                                                                                                                                                                                                                                                                                                                                                                  |                         | 4.61<br>4.61<br>4.61<br>4.61<br>4.61<br>4.61<br>4.60<br>4.44<br>4.24<br>4.21<br>4.02<br>3.48<br>3.15<br>2.85<br>3.09<br>2.86<br>2.34<br>2.12<br>1.78<br>1.50<br>1.12<br>0.78 | 34.14<br>34.15<br>34.34<br>34.39<br>34.60<br>34.70<br>34.71<br>34.70<br>34.70<br>34.70                                              | 27·79<br>27·80<br>27·82                                                                                                                                                                                                       | $\begin{array}{c} 8\cdot 18\\ 8\cdot 17\\ 8\cdot 17\\ 8\cdot 17\\ 8\cdot 18\\ 8\cdot 18\\ 8\cdot 18\\ 8\cdot 18\\ 8\cdot 14\\ 8\cdot 15\\ 8\cdot 15\\ 8\cdot 08\\ 8\cdot 09\\ 8\cdot 04\\ 8\cdot 18\\ 8\cdot 11\\ 8\cdot 24\\ 8\cdot 27\\ 8\cdot 26\end{array}$ |       |             |                              |    | $\begin{array}{c} 6\cdot 58\\\\ 6\cdot 64\\\\ 6\cdot 64\\\\ 6\cdot 63\\ 6\cdot 56\\ 6\cdot 50\\ 6\cdot 50\\ 6\cdot 34\\ 6\cdot 27\\ 6\cdot 67\\ 5\cdot 89\\ 4\cdot 52\\ 4\cdot 32\\ 3\cdot 70\\ 3\cdot 73\\ 3\cdot 61\\ 3\cdot 96\\ 3\cdot 97\\ 4\cdot 01\\ \end{array}$ |                                                  | 100-0<br>102-0<br>256-194<br>358-174 | 2005<br>2306<br>2306<br>0001 | 2014<br>2325<br>2337<br>0031 | KT<br>DGP |
| 730          | II             | 0<br>10<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                       | 3·24<br>3·23<br>3·23                                                                                                                                                         | 34.14                                                                                                                               | 27.21                                                                                                                                                                                                                         | 8·14<br>8·15<br>8·15                                                                                                                                                                                                                                                                                                                    | -     | -           |                              |    | 6·77<br>6·77                                                                                                                                                                                                                                                             | N 50 V<br>N 70 B<br>N 100 B                      | 73-0                                 | 0905                         | 0914<br>1223                 | КТ        |

## R.R.S. Discovery II

•

|              |                                 |               |      | Sounding             | WIN       | D                | SEA       |       |         | neter<br>bars)          | Air Ter     | np. ° C.    |                          |
|--------------|---------------------------------|---------------|------|----------------------|-----------|------------------|-----------|-------|---------|-------------------------|-------------|-------------|--------------------------|
| Station      | Position                        | Date          | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(milhbars) | Dry<br>bulb | Wet<br>bulb | Remarks                  |
| 730<br>cont. | 59° 36·7′ S, 75° 05·3′ W        | 1931<br>20 xi |      |                      |           |                  |           |       |         |                         |             |             |                          |
|              |                                 |               |      |                      |           |                  |           |       |         |                         |             |             |                          |
|              |                                 |               |      |                      |           |                  |           |       |         |                         |             |             |                          |
|              |                                 |               |      |                      |           |                  |           |       |         | -<br>-<br>-             |             |             |                          |
|              |                                 |               |      |                      |           |                  |           |       |         |                         |             |             |                          |
|              |                                 |               |      |                      |           |                  |           |       |         |                         |             |             |                          |
| 731          | 60° 35·8′ S, 75° 03·7′ W        | 20 xi         | 2000 | 4643*                | WSW       | 13               | wsw       | 3     | ofe     | 1012.7                  | 2.2         | 2.2         | mod. WSW swell           |
|              |                                 |               |      |                      |           |                  |           |       |         |                         |             |             |                          |
|              |                                 |               |      |                      |           |                  |           |       |         |                         |             |             |                          |
|              |                                 |               |      |                      |           |                  |           |       |         |                         |             |             |                          |
|              |                                 |               |      |                      |           |                  |           |       |         |                         |             |             |                          |
|              |                                 |               |      |                      |           |                  |           |       |         |                         |             |             |                          |
|              |                                 |               |      |                      |           |                  |           |       |         |                         |             |             |                          |
| 732          | 61° 58' S, 75° 01 <b>·5</b> ' W | 21 xi         | 0900 | 4572*                | wsw       | 7                | wsw       | 2     | 0       | 1013.9                  | 1.1         | 0.1         | heavy conf. WSW<br>swell |
|              |                                 |               |      |                      |           |                  |           |       |         |                         |             |             |                          |
|              |                                 |               |      |                      |           |                  |           |       |         |                         |             |             |                          |
|              |                                 |               |      |                      |           |                  |           |       |         |                         |             | -           |                          |
|              |                                 |               |      |                      |           |                  |           |       |         |                         |             |             |                          |
|              |                                 |               |      |                      |           |                  |           |       |         |                         |             |             |                          |
|              |                                 |               |      |                      |           |                  |           |       |         |                         |             |             |                          |

٩.

| 7 | 3 | 0 | <br>7 | 3 | 2 |
|---|---|---|-------|---|---|
|   |   |   |       |   |   |

|              | . /            |                                                                                                                                                                                                                 |                          |                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | K.F    | (.5. ]                                                                      | Disco                     | over | уП                                                                                                                                                                                                                            |                   |                          |                      |      | /30-/32   |
|--------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------|---------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|----------------------|------|-----------|
|              | 10.5           |                                                                                                                                                                                                                 |                          |                                                                                                                                                                              | HYDRO                                                                                                                                                                                                       | LOGICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L OBSE                                                                                                                       | RVA'TI | ONS                                                                         |                           |      |                                                                                                                                                                                                                               | BIOLOG            | GICAL OBSER              | VATION               | cs – |           |
|              | Age of         |                                                                                                                                                                                                                 | ter                      |                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |        | Mg.—at                                                                      | om m. <sup>3</sup>        |      |                                                                                                                                                                                                                               |                   |                          | TE                   | VIE. |           |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                                                                                                                               | Depth by<br>thermometer  | Temp.<br>° C.                                                                                                                                                                | s °i.,                                                                                                                                                                                                      | σt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pН                                                                                                                           | Р      | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ N_2 \end{array}$ | Nitrite<br>N <sub>2</sub> | Si   | O2<br>c.c.<br>htre                                                                                                                                                                                                            | Gear              | Depth<br>(metres)        | From                 | То   | Remarks   |
| 730<br>cont. | 1 I<br>1 I     | 30<br>40<br>50<br>60                                                                                                                                                                                            |                          | 3·23<br>3·22<br>3·02<br>2·89                                                                                                                                                 | 34·14<br>34·14<br>34·14<br>34·14                                                                                                                                                                            | 27 <sup>.</sup> 21<br>27 <sup>.</sup> 21<br>27 <sup>.</sup> 23<br>27 <sup>.</sup> 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.15<br>8.15<br>8.15<br>8.15<br>8.15                                                                                         |        |                                                                             |                           |      | 6·76<br>6·86                                                                                                                                                                                                                  | N 70 B<br>N 100 B | 250-170                  | 1203                 | 1235 | DGP       |
|              |                | 80<br>100<br>150<br>200<br>300<br>390<br>590<br>780<br>980<br>1470<br>1960<br>2420<br>2910<br>3390<br>3880<br>4360                                                                                              | <br><br>1477<br><br>4364 | 2·79<br>2·82<br>2·67<br>2·42<br>2·42<br>2·42<br>2·42<br>2·42<br>2·44<br>2·36<br>2·13<br>1·81<br>1·51<br>1·21<br>0·92<br>0·67<br>0·52                                         | 34.14<br>34.14<br>34.13<br>34.13<br>34.13<br>34.14<br>34.19<br>34.32<br>34.32<br>34.45<br>34.54<br>34.67<br>34.71<br>34.72<br>34.71<br>34.72<br>34.71<br>34.72<br>34.70<br>34.69<br>34.69                   | 27:25<br>27:24<br>27:24<br>27:26<br>27:28<br>27:32<br>27:42<br>27:51<br>27:60<br>27:72<br>27:78<br>27:78<br>27:78<br>27:81<br>27:83<br>27:84<br>27:83<br>27:84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.15<br>8.15<br>8.15<br>8.17<br>8.17<br>8.07<br>8.07<br>8.07<br>8.05<br>8.08<br>8.12<br>8.17<br>8.17<br>8.18<br>8.24<br>8.24 |        |                                                                             |                           |      | 6.61<br>6.40<br>6.47<br>6.00<br>5.48<br>4.56<br>3.01<br>3.80<br>3.68<br>3.90<br>3.94<br>4.05<br>4.15<br>4.24<br>4.09                                                                                                          |                   |                          |                      |      |           |
| 731          | II             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>1500<br>2000<br>2500<br>3000<br>3500<br>4000<br>4500                                                                                 |                          | 1.81<br>1.83<br>1.92<br>1.98<br>1.97<br>1.64<br>1.52<br>1.31<br>0.96<br>0.97<br>1.73<br>1.94<br>2.23<br>2.23<br>2.23<br>1.97<br>1.61<br>1.29<br>1.00<br>0.70<br>0.50<br>0.46 | 33.96<br>34.04<br>34.04<br>34.05<br>34.08<br>34.09<br>34.07<br>34.05<br>34.04<br>34.07<br>34.22<br>34.30<br>34.43<br>34.52<br>34.61<br>34.70<br>34.71<br>34.72<br>34.71<br>34.70<br>34.69<br>34.69<br>34.69 | 27.28<br>27.28<br>27.29<br>27.32<br>27.38<br>27.44<br>27.52<br>27.59<br>27.67<br>27.76<br>27.80<br>27.80<br>27.82<br>27.84<br>27.85<br>27.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.09<br>8.16<br>8.25<br>8.21                                                                                                 |        |                                                                             |                           |      | $\begin{array}{c} 7.14 \\ - \\ 7.14 \\ - \\ 7.09 \\ 7.09 \\ 7.00 \\ 7.03 \\ 7.15 \\ 6.84 \\ 5.63 \\ 4.96 \\ 4.03 \\ 3.82 \\ 3.62 \\ 3.94 \\ 4.05 \\ 4.00 \\ 4.22 \\ 4.22 \\ 4.22 \\ 4.22 \\ 4.22 \\ 4.22 \\ 4.12 \end{array}$ |                   | 100-0<br>62-0<br>246-170 | 2005<br>2318<br>2318 |      | KT<br>DGP |
| 732          | 12             | 0<br>10<br>20<br>30<br>40<br>50<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500<br>2000<br>300<br>400<br>500<br>200<br>300<br>400<br>600<br>800<br>100<br>100<br>100<br>100<br>100<br>100<br>1 | 990                      | 1.66<br>1.61<br>1.61<br>1.61<br>1.60<br>1.54<br>1.51<br>1.56<br>1.17<br>1.09<br>1.74<br>1.55<br>2.13<br>2.36<br>2.31<br>2.23<br>1.99<br>1.64<br>1.21<br>1.01<br>0.73<br>0.51 | 34'04<br>34'04<br>34'04<br>34'05<br>34'14<br>34'21<br>34'33<br>34'43<br>34'52<br>34'60<br>34'70<br>34'70<br>34'70<br>34'70<br>34'70                                                                         | 27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.26<br>27.26<br>27.26<br>27.26<br>27.26<br>27.28<br>27.30<br>27.33<br>27.39<br>27.39<br>27.44<br>27.51<br>27.55<br>27.76<br>27.75<br>27.76<br>27.85<br>27.75<br>27.75<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25<br>27.25 | 8.15<br>8.15<br>8.15<br>8.15<br>8.15<br>8.15<br>8.15<br>8.15                                                                 |        |                                                                             |                           |      | 7·23<br>7·18<br>7·20<br>7·18<br>7·20<br>7·18<br>7·02<br>6·84<br>5·98<br>5·78<br>4·81<br>4·11<br>3·82<br>3·84<br>3·93<br>3·91<br>4·06<br>4·23<br>4·22<br>4·20                                                                  | N 70 B<br>N 100 B | 1 278-170                | 0910                 | 1219 | KT        |

15

|         |                                     |                        |              | Sounding             | WIN       | Ð                | SE.       | A        |         | eter<br>ars)             | Air Ter                 | np.°C.         |                              |
|---------|-------------------------------------|------------------------|--------------|----------------------|-----------|------------------|-----------|----------|---------|--------------------------|-------------------------|----------------|------------------------------|
| Station | Position                            | Date                   | Hour         | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force    | Weather | Rarometer<br>(millibars) | Dry<br>bulb             | Wet<br>bulb    | Remarks                      |
| 733     | 62° 56.7′ S, 75° 02′ W              | 1931<br>21 xi<br>22 xi | 2000<br>0010 | 4336*                | WSW<br>W  | 6<br>6           | WSW<br>W  | 1-2<br>1 | om<br>o | 1012·9<br>1010·8         | $-2\cdot 3$ $-0\cdot 5$ | - 2·5<br>- 0·7 | mod. W swell<br>mod. W swell |
|         |                                     |                        |              |                      |           |                  |           |          |         |                          |                         |                |                              |
|         |                                     |                        |              |                      |           |                  |           |          |         |                          |                         |                |                              |
|         |                                     |                        |              |                      |           |                  |           |          |         |                          |                         |                |                              |
|         |                                     |                        |              |                      |           |                  |           |          |         |                          |                         |                |                              |
| 734     | 64° 14′ S, 74° 59 <sup>.</sup> 2′ W | 22 xi                  | 0900         | 3934*                | SE        | 11               | SE        | 2        | ome     | 1010.1                   | - 1.3                   | - 1.2          | mod. W swell                 |
|         |                                     |                        |              |                      |           |                  |           |          |         |                          |                         |                |                              |
|         |                                     |                        |              |                      |           |                  |           |          |         |                          |                         |                |                              |
|         |                                     |                        |              |                      |           |                  |           |          |         |                          |                         |                |                              |
|         |                                     |                        |              |                      |           |                  |           |          |         |                          |                         |                |                              |
| 735     | 63° 55′ S, 73° 28·8′ W              | 22 xi                  | 2000         | 3879*                | SSE       | 5                | SSE       | I        | b       | 1011.5                   | - 1.7                   | - 2.0          | mod. $W \times N$ swell      |
|         |                                     |                        |              |                      |           |                  |           |          |         |                          |                         |                |                              |
|         |                                     |                        |              |                      |           |                  |           |          |         |                          |                         |                |                              |
|         |                                     |                        |              |                      |           |                  |           |          | 1       |                          |                         |                |                              |
|         |                                     |                        |              |                      |           |                  |           |          |         | -                        |                         |                |                              |
| 736     | 63° 00.8′ S, 72° 13.5′ W            | 23 xi                  | 0900         | 4082*                |           | 0                | _         | 0        | bm      | 1010.8 -                 | - 1 · 1 -               | - 1.7          | low NW×W swell               |

### R.R.S. I

|    |    |                      | BIOLO             | GICAL OBSEI       | NATIO? | \$8  |         |
|----|----|----------------------|-------------------|-------------------|--------|------|---------|
| 3  |    |                      |                   |                   | TI     | VIL. | Remails |
| te | Si | O,<br>c.c.<br>litre  | Gear              | Depth<br>(metres) | From   | То   |         |
|    |    | 7.31                 | N 50 V            | 100-0             | 2006   | 2013 |         |
|    |    | 7.29                 | N 70 B<br>N 100 B | 84-0              | 2235   | 2255 | КТ      |
|    |    | 7·29                 | N 70 B<br>N 100 B | 260-148<br>260-0  | 2235   | 2308 | DGP     |
|    |    | 7.11                 | N 100 B           | 300-140           | 2334   | 0005 | DGP     |
|    |    | 6.85                 |                   |                   |        |      |         |
|    |    | 6.39                 |                   |                   |        |      |         |
|    |    | 6.01<br>5.42<br>4.66 |                   |                   |        |      |         |
|    |    | 3.95                 |                   |                   |        |      |         |

|         |                |                   |                         |                  | HYDRO                                    | LOGICA                  | L OBSE       | RVATI | ONS                     |                    |    |                                         | BIOLOG            | GICAL OBSER       | NATIO: | \$8   |          |
|---------|----------------|-------------------|-------------------------|------------------|------------------------------------------|-------------------------|--------------|-------|-------------------------|--------------------|----|-----------------------------------------|-------------------|-------------------|--------|-------|----------|
|         | Age of         |                   | y<br>ter                |                  |                                          |                         |              |       | Mg.—at                  | om m. <sup>3</sup> |    |                                         | ·                 |                   | TT     | ML    |          |
| Station | moon<br>(days) | Depth<br>(metres) | Depth by<br>thermometer | Temp.<br>°C.     | $\mathbf{S}^{\pm \prime}_{tr}$           | σt                      | pH           | <br>ч | Nitrate<br>+<br>Nitrite | Nitrite<br>N2      | Si | O.<br>c.c.<br>litre                     | Gear              | Depth<br>(metres) | From   | То    | Remail.s |
|         |                |                   |                         |                  |                                          |                         |              |       |                         |                    |    |                                         |                   |                   |        |       |          |
| 733     | 12             | 0                 | _                       | 1.02             | 33.94                                    | 27.21                   | 8.16         |       | _                       |                    |    | 7.31                                    | N 50 V            | 100-0             | 2006   | 2013  |          |
|         |                | 10                |                         | 1.06             | 33.94                                    | 27·21                   | 8·16<br>8·16 |       |                         |                    |    |                                         | N 70 B<br>N 100 B | 84-0              | 2235   | 2255  | КТ       |
|         |                | 20<br>30          |                         | 1.02             | 33 <sup>.</sup> 94<br>33 <sup>.</sup> 95 | 2 <b>7</b> ·21<br>27·22 | 8.10         |       |                         | _                  |    | 7.29                                    | N 70 B            | 260-148           | 1      |       | DCD      |
|         |                | 40                |                         | 1.11             | 33.96                                    | 27.23                   | 8.16         |       | -                       |                    |    | 7.28                                    | N 100 B           | 260-0             | 2235   |       | DGP      |
|         |                | 50                |                         | 1.43             | 34.01                                    | 27.24                   | 8.16         |       |                         |                    |    |                                         | N 100 B           | 300-140           | 2334   | 0005  | DGP      |
|         | i              | 60<br>80          |                         | 1·44<br>1·76     | 34.01<br>34.08                           | 27·24<br>27·28          | 8.16<br>8.14 |       |                         |                    |    | 7.11                                    |                   |                   |        |       |          |
|         |                | 100               |                         | 1.24             | 34.08                                    | 27.30                   | 8.14         |       | _                       |                    |    | 6.85                                    |                   |                   |        |       |          |
|         |                | 150               |                         | 1.20             | 34.09                                    | 27.28                   | 8.10         | —     | -                       |                    |    | 6.39                                    |                   |                   |        |       |          |
|         |                | 200<br>300        |                         | 1.62<br>1.72     | 34·14<br>34·20                           | 27·34<br>27·37          | 8.06<br>8.02 |       |                         |                    |    | 6.01<br>5.42                            |                   |                   |        |       |          |
|         |                | 400               |                         | 2.01             | 34.34                                    | 27.47                   | 7.96         | _     |                         |                    |    | 4.66                                    |                   |                   |        |       |          |
|         |                | 600               |                         | 2.32             | 34.45                                    | 27.52                   | 7.98         |       | -                       | -                  |    | 3.95                                    |                   |                   |        |       |          |
|         |                | 800               |                         | 2.29             | 34.55                                    | 27·62<br>27·68          | 8.02<br>8.02 |       |                         |                    | _  | 3·86<br>3·66                            |                   |                   |        |       |          |
|         |                | 1000<br>1490      | 997<br>—                | 2·22<br>1·93     | 34·62<br>34·69                           | 27.74                   | 8.02         | _     | _                       | _                  |    | 3.95                                    |                   |                   |        |       |          |
|         |                | 1990              |                         | 1.57             | 34.21                                    | 27.80                   | 8.14         |       |                         | -                  |    | 3.76                                    |                   |                   | _      |       |          |
|         |                | 2490              | -                       | 1.53             | 34.71                                    | 27.83                   | 8.19         |       |                         | _                  | _  | 4.16                                    |                   |                   |        |       |          |
|         |                | 2990<br>3480      | _                       | 0.93<br>0.66     | 34 <sup>.</sup> 70<br>34 <sup>.</sup> 69 | 27·84<br>27·83          | 8·19<br>8·18 | _     |                         | _                  |    | 3.88<br>4.24                            |                   |                   |        |       |          |
|         |                | 3980              | 3981                    | 0.50             | 34.09<br>34.68                           | 27.84                   | 8.12         | _     |                         | _                  | _  | 4.25                                    |                   |                   |        |       |          |
|         |                |                   |                         |                  |                                          |                         |              |       |                         |                    |    |                                         | NT N/             |                   |        |       |          |
| 734     | 13             | 0                 |                         | - 1.30           | 33.82                                    | 27.23                   | 8·16<br>8·16 |       | _                       |                    |    | 7.58                                    | N 50 V<br>N 70 B  | 100-0             | 0918   | 0924  |          |
|         |                | 10<br>20          |                         | - 1·45<br>- 1·50 | 33·82<br>33·82                           | 27·24<br>27·24          | 8.10         |       |                         |                    |    | 7.60                                    | N 100 B           | 104-0             | 1147   | 1208  | КТ       |
|         |                | 30                |                         | -1.2             | 33.82                                    | 27.24                   | 8.16         | -     |                         | —                  |    |                                         | N 70 B            | 314-184           | 1147   | 1219  | DGP      |
|         |                | 40                |                         | - 1.60           | 33.83                                    | 27.25                   | 8.16         |       |                         | -                  |    | 7.26                                    | N 100 B           | 1 314 104         |        |       |          |
|         |                | 50<br>60          |                         | - 1.66<br>- 1.75 | 33·83<br>33·94                           | 27.25                   | 8·16<br>8·15 |       |                         |                    | _  | 7.42                                    |                   |                   |        |       |          |
|         |                | 80                | _                       | -1.75<br>-1.67   | 33.94                                    | 27.36                   | 8.14         |       |                         |                    |    | / 4~                                    |                   |                   |        |       |          |
|         |                | 100               | —                       | - 1.00           | 34.11                                    | 27.45                   | 8.08         | -     |                         |                    |    | 6.49                                    |                   | 1                 |        |       |          |
|         |                | 150               |                         | 0.67             | 34.27                                    | 27.20                   | 8.00         |       |                         |                    |    | 5.22                                    |                   |                   |        |       |          |
|         |                | 200<br>300        |                         | 1·29<br>1·82     | 34·38<br>34·53                           | 27·55<br>27·63          | 7.96         |       |                         |                    |    | 4·62<br>4·03                            |                   | 4                 |        |       |          |
|         |                | 400               |                         | 2.14             | 34.60                                    | 27.66                   | 7.94         |       |                         | _                  | —  | 3.86                                    |                   |                   |        |       |          |
|         |                | 600               | —                       | 2.02             | 34.67                                    | 27.73                   | 8·o8         | -     | _                       | -                  |    | 3.90                                    |                   |                   |        |       |          |
|         |                | 800               |                         | 1.92             | 34·68<br>34·69                           | 27.74                   | 8·14<br>8·09 |       |                         |                    |    | 3·92<br>3·70                            |                   |                   |        |       |          |
|         |                | 1000<br>1500      |                         | 1·79<br>1·43     | 34.70                                    | 27.75                   | 8.13         |       |                         | _                  |    | 4.08                                    |                   |                   |        |       |          |
|         |                | 2000              |                         | 1.15             | 34.69                                    | 27.80                   | 8.19         | _     |                         |                    | _  | 4.10                                    |                   |                   |        |       |          |
|         |                | 2500              |                         | 0.82             | 34.69                                    | 27.82                   | 8.20         | -     | -                       | -                  | _  | 4.12                                    |                   |                   |        |       |          |
| 735     | 13             | 0                 |                         | - 1.39           | 33.84                                    | 27.24                   | 8.16         | _     |                         | -                  |    | 7.58                                    | N 50 V            | 100-0             | 2000   | 2012  |          |
|         | - 5            | 10                |                         | - 1.22           | 33.85                                    | 27.26                   | 8.16         | -     | -                       | -                  |    | -                                       | N 70 B            | 62-0              | 2150   | 2210  | КТ       |
|         |                | 20                | -                       | - <b>1</b> .68   | 33.86                                    | 27.26                   | 8.16         | -     | _                       |                    | -  | 7.58                                    | N 100 B<br>N 70 B |                   |        |       |          |
|         |                | 30<br>40          |                         | -1.63<br>-1.20   | 33·86<br>33·86                           | 27·26<br>27·26          | 8·16<br>8·17 |       |                         |                    |    | 7.56                                    | N 100 B           | 216-168           | 2150   | 2223  | DGP      |
|         |                | 50                |                         | -1.70<br>-1.73   | 33.86                                    | 27 26                   | 8.17         |       |                         |                    |    | , , , , , , , , , , , , , , , , , , , , |                   |                   |        | 1     |          |
|         |                | 60                | -                       | - 1.80           | 34.01                                    |                         | 8.17         |       | -                       |                    |    | 7.36                                    |                   | 1                 |        |       |          |
|         |                | 80<br>100         |                         | - 1.00           | 34.10                                    | 27.46                   | 8·13<br>8·07 |       | _                       |                    |    | 6.41                                    |                   |                   |        |       |          |
|         |                | 150               |                         | 0.20             | 34.14                                    |                         |              | _     |                         |                    | _  | 5.10                                    |                   |                   |        |       |          |
|         |                | 200               | -                       | 1.38             | 34.42                                    | 27.57                   | 7.95         |       | -                       | -                  |    | 4.47                                    |                   |                   |        | ,     |          |
|         | ļ              | 300               |                         | 1.81             | 34.56                                    |                         | 7.94         |       |                         |                    |    | 3.97<br>3.82                            |                   |                   |        |       |          |
|         |                | 400<br>600        |                         | 1.94             | 34.61<br>34.67                           | 27·69<br>27·73          | 7·94<br>8·06 | _     |                         | -                  |    | 3.82                                    |                   |                   |        |       |          |
|         |                | 800               | _                       | 1.89             | 34.70                                    |                         | ~            | -     |                         |                    | -  | 3.84                                    |                   |                   |        |       |          |
|         |                | 1000              | -                       | 1.77             | 34.21                                    | 27.79                   | 8.08         |       | -                       | -                  | -  | 3.87                                    |                   |                   |        |       |          |
|         |                | 1500              | 1                       | 1·43<br>1·11     | 34.71<br>34.70                           | 27.81                   |              | _     |                         | _                  | _  | 4.04                                    |                   |                   |        |       | 1        |
|         |                | 2500              |                         | 0.79             | 34.70                                    |                         |              | -     | _                       | -                  | -  | 4.30                                    |                   |                   |        |       |          |
|         |                | 3000              | _                       | 0.26             | 34.69                                    | 27.84                   | 8.20         | -     | —                       |                    | -  | 4.55                                    |                   |                   |        |       |          |
|         |                | 3500              | 3497                    | 0.43             | 34.68                                    | 27.85                   | 8.10         | -     | -                       |                    |    | 4.33                                    |                   |                   |        |       |          |
| 736     | 14             | 0                 | -                       | - 0.96           | 33.86                                    | 27.24                   | 8.18         |       | _                       | _                  |    | 7.78                                    | N 50 V            | 100-0             | 0905   | 0911  |          |
|         | '              | 10                |                         | - 1.40           | 33.87                                    | 27.27                   | 8.18         | _     | _                       | _                  |    |                                         | N 70 B            | 100-0             | 1042   | 1 102 | KT       |
|         |                | 20                |                         | - 1.53           |                                          |                         |              |       |                         |                    |    | 7.74                                    | N 100 B           | <u></u>           |        | 1     | <u> </u> |
|         |                |                   |                         |                  |                                          |                         |              |       |                         |                    |    |                                         |                   |                   |        |       |          |

## R.R.S. Discovery II

|              | D. VI                               | Di            | 7.7  | Sounding<br>(metres) | WIN                            | D                | SEA       |       |         | neter<br>oars)           | Air Ter     | np. ' C.    |              |
|--------------|-------------------------------------|---------------|------|----------------------|--------------------------------|------------------|-----------|-------|---------|--------------------------|-------------|-------------|--------------|
| Station      | Position                            | Date          | Hour | (metres)             | Direction                      | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks      |
| 736<br>cont. | 63° 00.8′ S, 72° 13.5′ W            | 1931<br>23 xi |      |                      |                                |                  |           |       |         |                          |             |             |              |
|              |                                     |               |      |                      |                                |                  |           |       |         |                          |             |             |              |
|              |                                     |               | E    |                      |                                |                  |           |       |         |                          |             |             |              |
|              |                                     |               |      |                      |                                |                  |           |       |         |                          |             | r.          |              |
|              |                                     |               |      |                      |                                |                  |           |       |         |                          |             |             |              |
| 737          | 62° 47.5' S, 69° 24.8' W            | 23 xi         | 2000 | 4343*                | NNW                            | 10               | NNW       | 2     | с       | 1009.2                   | -0.4        | -0.8        | low NW swell |
|              |                                     |               |      |                      |                                |                  |           |       |         |                          |             |             |              |
|              |                                     |               |      |                      |                                |                  |           |       |         |                          |             |             |              |
|              |                                     |               |      |                      |                                |                  |           |       |         |                          |             |             |              |
|              |                                     |               |      |                      |                                |                  |           |       |         |                          |             |             |              |
|              |                                     |               |      | *                    |                                |                  |           |       |         |                          |             |             |              |
| 738          | 61° 49·7′ S, 66° 53′ W              | 24 xi         | 0900 | 3917*                | NNW                            | 2                | NNW       | I     | bc      | 1007.8                   | 2.3         | 1.4         | low NW swell |
|              |                                     |               |      |                      |                                |                  |           |       |         |                          |             |             |              |
|              |                                     |               |      |                      |                                |                  |           |       |         |                          |             |             |              |
|              |                                     |               |      |                      |                                |                  |           |       |         |                          |             |             |              |
|              |                                     |               |      |                      |                                |                  |           |       |         |                          |             |             |              |
|              |                                     |               |      |                      |                                |                  |           |       |         |                          |             |             |              |
| 739          | 61° 25 <sup>.</sup> 9' S, 64° 32' W | 24 xi         | 2000 | 334 <sup>8*</sup>    | $\mathbf{NW} 	imes \mathbf{W}$ | 14               | NW×W      | 3     | ofed    | 1006.4                   | 0.1         | 0.0         | low NW swell |
|              |                                     |               |      |                      |                                |                  |           |       |         |                          |             |             |              |

-

| 736-739 |
|---------|
|---------|

| []           |                          |                                                                                                                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HYDRO                                                                                                                                                                                              | LOGICA                                                                                                                                                                                                               | L OBSE                                                                                                                                                       | RVATI | ONS                                                |                    |    | _                                                                                                                                                                                                                        | BIOLOG                                 | GICAL OBSER                      | VATION                       | is –                 |                                             |
|--------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------|--------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------|------------------------------|----------------------|---------------------------------------------|
|              |                          |                                                                                                                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                    |                                                                                                                                                                                                                      |                                                                                                                                                              |       | Mg.—at                                             | om m. <sup>3</sup> |    |                                                                                                                                                                                                                          |                                        |                                  | TIM                          | IE                   |                                             |
| Station      | Age of<br>moon<br>(days) | Depth<br>(metres)                                                                                                                       | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mathbf{S}^{2} _{12}$                                                                                                                                                                             | σt                                                                                                                                                                                                                   | pН                                                                                                                                                           | Р     | Nitrate<br>$\stackrel{+}{\text{Nitrite}}$<br>$N_2$ | Nitrite<br>N2      | Sı | O.<br>c.c.<br>litre                                                                                                                                                                                                      | Gear                                   | Depth<br>(metres)                | From                         | To                   | Remarks                                     |
| 736<br>cont. | 14                       | 30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500<br>2000<br>2500<br>3500                     | 3505                    | $\begin{array}{c} -1.52 \\ -1.54 \\ -1.63 \\ -1.81 \\ -1.78 \\ -1.61 \\ -0.60 \\ 1.11 \\ 1.65 \\ 1.88 \\ 1.87 \\ 1.95 \\ 1.97 \\ 1.92 \\ 1.12 \\ 0.85 \\ 0.63 \\ 0.45 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33.87<br>33.87<br>33.87<br>33.93<br>34.01<br>34.04<br>34.20<br>34.42<br>34.53<br>34.60<br>34.61<br>34.62<br>34.61<br>34.62<br>34.64<br>34.72<br>34.72<br>34.72<br>34.72<br>34.70<br>34.69          | 27·28<br>27·28<br>27·28<br>27·33<br>27·40<br>27·41<br>27·51<br>27·58<br>27·65<br>27·68<br>27·70<br>27·70<br>27·70<br>27·70<br>27·77<br>27·83<br>27·85<br>27·85<br>27·85                                              | 8.18<br>8.18<br>8.18<br>8.13<br>8.09<br>8.04<br>7.97<br>7.94<br>7.94<br>7.94<br>7.94<br>7.94<br>8.00<br>8.00<br>8.00<br>8.10<br>8.10<br>8.12<br>8.07         |       |                                                    |                    |    | 7.79<br>7.55<br>7.00<br>6.03<br>4.67<br>4.12<br>3.93<br>3.92<br>3.81<br>3.80<br>4.14<br>4.34<br>4.34<br>4.31<br>4.31<br>4.39                                                                                             | N 70 B<br>N 100 B<br>N 100 B           | 320–184<br>320–0<br>216–140      | 1042                         | 1208                 | DGP<br>DGP                                  |
| 737          | 14                       | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>2500<br>3000<br>3500                                         |                         | $\begin{array}{c} -1 \cdot 12 \\ -1 \cdot 30 \\ -1 \cdot 41 \\ -1 \cdot 47 \\ -1 \cdot 51 \\ -1 \cdot 55 \\ -1 \cdot 71 \\ -1 \cdot 77 \\ -1 \cdot 67 \\ -0 \cdot 40 \\ 0 \cdot 22 \\ 1 \cdot 51 \\ 1 \cdot 75 \\ 2 \cdot 04 \\ 2 \cdot 03 \\ 1 \cdot 88 \\ 1 \cdot 54 \\ 1 \cdot 22 \\ 0 \cdot 91 \\ 0 \cdot 62 \\ 0 \cdot 44 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33.56<br>33.75<br>33.78<br>33.78<br>33.78<br>33.94<br>33.94<br>33.94<br>33.97<br>34.13<br>34.23<br>34.43<br>34.48<br>34.68<br>34.72<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.70<br>34.70 | 27.02<br>27.17<br>27.18<br>27.21<br>27.21<br>27.26<br>27.32<br>27.34<br>27.36<br>27.34<br>27.36<br>27.44<br>27.50<br>27.58<br>27.60<br>27.71<br>27.74<br>27.78<br>27.81<br>27.81<br>27.81<br>27.85<br>27.86<br>27.87 | 8.18<br>8.18<br>8.18<br>8.18<br>8.18<br>8.17<br>8.16<br>8.16<br>8.15<br>8.07<br>8.02<br>7.97<br>7.96<br>8.05<br>8.05<br>8.05<br>8.05<br>8.05<br>8.12<br>8.12 |       |                                                    |                    |    | $7 \cdot 80$ $$ $7 \cdot 85$ $$ $7 \cdot 85$ $$ $7 \cdot 50$ $7 \cdot 50$ $7 \cdot 32$ $6 \cdot 27$ $5 \cdot 67$ $4 \cdot 38$ $4 \cdot 05$ $3 \cdot 96$ $4 \cdot 22$ $4 \cdot 06$ $4 \cdot 34$ $4 \cdot 26$ $4 \cdot 15$ |                                        | 100-0<br>248-154<br>109-0        | 2007<br>2214<br>2301         | 2013<br>2245<br>2321 | DGP. Nets towed<br> ±milefrompack-ice<br>KT |
| 738          | 15                       | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>800<br>150<br>2000<br>300<br>400<br>600<br>800<br>1500<br>2000<br>2500<br>3000<br>3500<br>3500 |                         | $\begin{array}{c} - \circ \cdot 81 \\ - 1 \cdot \circ 3 \\ - 1 \cdot 28 \\ - 1 \cdot 50 \\ - 1$ | 34.71<br>34.71<br>34.70<br>34.70                                                                                                                                                                   | 27:25<br>27:25<br>27:33<br>27:35<br>27:39<br>27:46<br>27:53<br>27:58<br>27:66<br>27:75<br>27:77<br>27:81<br>27:82<br>27:85<br>27:85<br>27:84<br>27:85<br>27:84<br>27:85                                              | 8.09<br>8.08<br>8.06<br>8.16<br>8.16<br>8.12<br>8.11                                                                                                         |       |                                                    |                    |    | 7.74<br>7.80<br><br>7.75<br>7.61<br>7.16<br>6.69<br>5.58<br>4.32<br>3.75<br>3.85<br>3.85<br>4.03<br>4.03<br>4.03<br>4.15<br>4.22<br>4.33<br>7.8                                                                          | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>39-0<br>160-85<br>100-0 | 0905<br>1115<br>1154<br>2010 | 1135                 | КТ<br>DGP                                   |
| 73           | 9 15                     | 20<br>20<br>30<br>40                                                                                                                    |                         | $ \begin{array}{r} -1.31 \\ -1.40 \\ -1.40 \\ -1.40 \\ -1.40 \\ -1.40 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33.60<br>33.76<br>33.78                                                                                                                                                                            | 27.05<br>27.18<br>3 27.20                                                                                                                                                                                            | 8·17<br>8 8·17<br>8 8·17                                                                                                                                     |       |                                                    |                    |    | 7.8                                                                                                                                                                                                                      | N 70 B<br>N 100 B<br>N 70 B            | 172-85                           | 2133                         |                      |                                             |

## R.R.S. Discovery II

|              | D. /                     | T.            |      | Sounding<br>(metres) | WIN       | D                | SEA       |       |         | leter<br>Jars)           | Air Ter     | np. ' C.    |               |
|--------------|--------------------------|---------------|------|----------------------|-----------|------------------|-----------|-------|---------|--------------------------|-------------|-------------|---------------|
| Station      | Position                 | Date          | Hour | (metres)             | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks       |
| 739<br>cont. | 61° 25.9′ S, 64° 32′ W   | 1931<br>24 xi |      |                      |           |                  |           |       |         |                          |             |             |               |
| 740          | 60‴ 06·7′ S, 63° 35·9′ W | 25 xi         | 0900 | 3920*                | WSW       | 16               | WSW       | 3     | 0       | 1006.7                   | 1.2         | o·8         | low WSW swell |
| 741          | 59° 53·7′ S, 61° 03·2′ W | 25 xi         | 2000 | 4179*                | W×S       | 15               | W×S       | 3     |         | 1002.0                   | 0.9         | o·6         | low W swell   |
| 742          | 59° 19.6' S, 58° 35' W   | 26 xi         | 0900 | 3631*                | NNW       | 1.4              | NNW       | 3     | bc      | 1000-1                   | 3.3         | 1.8         | low W swell   |

1

|              |                | HYDROLOGICAL OBSERVATIONS                                                                                  |                         |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                           |                                                                                                                                                                      |   |                                      |                           |    |                                                                                                                                              | BIOLOG                                           | 15                            |                      |                      |           |
|--------------|----------------|------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------|---------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------|----------------------|----------------------|-----------|
| Station      | Age of         |                                                                                                            | sv<br>eter              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                           |                                                                                                                                                                      |   | Mg.—at                               | om m.3                    |    |                                                                                                                                              |                                                  |                               | TI                   | ME                   | line of   |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                          | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                                       | S°,                                                                                                                                                                                                                                    | σt                                                                                                                                                                                                                        | рН                                                                                                                                                                   | Р | Nitrate<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N <sub>2</sub> | Si | O2<br>c.c.<br>htre                                                                                                                           | Gear                                             | Depth<br>(metres)             | 1 ron                | Το                   | Remarks   |
| 739<br>cont. | 15             | 50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500<br>2000<br>2500<br>3000           |                         | $ \begin{array}{c} -1.36 \\ -1.51 \\ -1.59 \\ -1.61 \\ -1.15 \\ 0.68 \\ 1.99 \\ 1.90 \\ 2.19 \\ 2.06 \\ 1.99 \\ 1.65 \\ 1.30 \\ 0.93 \\ 0.58 \end{array} $                                                                        | 33'90<br>33'96<br>33'98<br>34'00<br>34'02<br>34'22<br>34'47<br>34'52<br>34'47<br>34'52<br>34'63<br>34'68<br>34'71<br>34'73<br>34'72<br>34'70<br>34'70                                                                                  | 27·29<br>27·35<br>27·37<br>27·38<br>27·39<br>27·45<br>27·57<br>27·62<br>27·68<br>27·73<br>27·77<br>27·81<br>27·82<br>27·84<br>27·84<br>27·86                                                                              | 8.17<br>8.16<br>8.13<br>8.08<br>8.01<br>7.95<br>7.94<br>8.08<br>8.08<br>8.09<br>8.09<br>8.09<br>8.15<br>8.11<br>8.20                                                 |   |                                      |                           |    | 7.50<br>7.28<br>6.73<br>5.46<br>4.16<br>4.03<br>3.67<br>3.73<br>3.91<br>3.98<br>4.07<br>4.21<br>4.28                                         |                                                  |                               |                      |                      |           |
| 740          | 16             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>1500<br>2500<br>3000<br>3500    |                         | $\begin{array}{c} -0.59 \\ -0.60 \\ -0.77 \\ -0.94 \\ -1.08 \\ -1.13 \\ -1.19 \\ -1.22 \\ 1.30 \\ 1.60 \\ 1.80 \\ 1.84 \\ 1.80 \\ 1.71 \\ 1.63 \\ 1.21 \\ 0.90 \\ 0.59 \\ 0.42 \\ \end{array}$                                    | 33.96<br>33.98<br>34.03<br>34.04<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.10<br>34.20<br>34.45<br>34.51<br>34.62<br>34.64<br>34.64<br>34.69<br>34.73<br>34.72<br>34.72<br>34.70<br>34.70<br>34.70<br>34.70 | 27:32<br>27:34<br>27:39<br>27:40<br>27:41<br>27:45<br>27:53<br>27:60<br>27:63<br>27:71<br>27:72<br>27:75<br>27:80<br>27:81<br>27:83<br>27:85<br>27:86<br>27:86<br>27:86<br>27:86<br>27:87                                 | 8.17<br>8.17<br>8.16<br>8.13<br>8.12<br>8.08<br>8.02<br>7.95<br>7.94<br>7.94<br>7.94<br>8.04<br>8.05<br>8.00<br>8.10<br>8.10<br>8.09<br>8.21<br>8.21                 |   |                                      |                           |    | 7.76<br>7.75<br>7.69<br>7.59<br>6.31<br>4.34<br>4.11<br>3.94<br>3.90<br>4.06<br>4.01<br>4.04<br>4.14<br>4.28<br>4.31<br>4.28<br>4.31<br>4.28 | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>266-126<br>128-0     | 0910<br>1056<br>1141 | 0915<br>1126<br>1201 | DGP<br>KT |
| 741          | 16             | 0<br>10<br>20<br>30<br>40<br>50<br>600<br>800<br>150<br>200<br>300<br>1500<br>2000<br>2500<br>3000<br>3500 |                         | $\begin{array}{c} - 0.53 \\ - 0.68 \\ - 0.71 \\ - 0.89 \\ - 0.91 \\ - 0.91 \\ - 0.92 \\ - 0.92 \\ - 0.98 \\ - 1.10 \\ - 0.04 \\ 1.21 \\ 1.80 \\ 1.91 \\ 1.99 \\ 1.90 \\ 1.81 \\ 1.92 \\ 1.07 \\ 0.74 \\ 0.54 \\ 0.51 \end{array}$ | 33.81<br>33.85<br>33.89<br>33.89<br>33.89<br>33.89<br>33.89<br>33.89<br>33.89<br>33.94<br>34.19<br>34.34<br>34.19<br>34.34<br>34.49<br>34.56<br>34.65<br>34.70<br>34.70<br>34.71<br>34.73<br>34.71<br>34.70<br>34.70                   | 27.19<br>27.23<br>27.26<br>27.27<br>27.27<br>27.27<br>27.27<br>27.27<br>27.32<br>27.48<br>27.53<br>27.48<br>27.53<br>27.60<br>27.65<br>27.71<br>27.77<br>27.77<br>27.77<br>27.77<br>27.78<br>5<br>27.86<br>27.86<br>28.86 | 8.14<br>8.14<br>8.15<br>8.12<br>8.12<br>8.11<br>8.11<br>8.12<br>8.01<br>7.97<br>7.94<br>7.93<br>8.04<br>8.07<br>8.03<br>8.03<br>8.13<br>8.09<br>8.10<br>8.10<br>8.21 |   |                                      |                           |    | 7.63<br>7.64<br>7.66<br>7.63<br>7.48<br>5.88<br>4.79<br>4.08<br>3.93<br>3.75<br>3.82<br>3.91<br>4.15<br>4.14<br>4.32<br>4.31<br>4.23         | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>} 286-126<br>} 123-0 | 2005<br>2143<br>2226 | 2019<br>2212<br>2246 |           |
| 742          | 17             | 0<br>10<br>20<br>30<br>40<br>50<br>60                                                                      |                         | $ \begin{array}{c} -0.21 \\ -0.29 \\ -0.30 \\ -0.31 \\ -0.37 \\ -0.43 \\ -0.61 \\ \end{array} $                                                                                                                                   | 33.96<br>33.96<br>33.96<br>33.96<br>33.98<br>34.00<br>34.04                                                                                                                                                                            |                                                                                                                                                                                                                           | 8.12<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11                                                                                                         |   |                                      |                           |    | 7·50<br>                                                                                                                                     | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>  178-110<br>  113-0 | 0905<br>1111<br>1155 | 0912<br>1141<br>1215 | DGP<br>KT |

| Station      | Position                            | Date          | Hour  | Sounding<br>(metres) | WIN           | 7D               | SE.       | Α     |         | oeter<br>oars)           | Air Temp, - C |             |                     |
|--------------|-------------------------------------|---------------|-------|----------------------|---------------|------------------|-----------|-------|---------|--------------------------|---------------|-------------|---------------------|
| Station      | rostion                             | Date          | riour | (metres)             | Direction     | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb   | Wet<br>bulb | Remarks             |
| 742<br>cont. | 59° 19 <sup>.</sup> 6' S, 58° 35' W | 1931<br>26 xi |       |                      |               |                  |           |       |         |                          |               |             |                     |
| 743          | 59° 23' S, 55° 54·1' W              | 26 xi         | 2000  | 3633*                | NNW           | 23               | NNW       | 5     | oe      | 991.5                    | I.I           | 1.0         | mod. NW swell       |
| 744          | 60° 54·5′ S, 55° 45·6′ W            | 27 xi         | 0815  | 214*                 | NW            | 25               | NW        | 5     | 0       | 979-0                    | 1.8           | I·I         | heavy NW swell      |
| 745          | 57° 35·1′ S, 55° 47·1′ W            | 28 xi         | 0900  | 4036*                | $NW \times W$ | 10               | NW×W      | 2     | bc      | 994.8                    | 2.7           | 1.8         | heavy conf. W swell |
|              |                                     |               |       |                      |               |                  |           |       |         |                          |               |             |                     |

|              |                |                                                                                                                               |                         |                                                                                                                                                                                                                      | HYDROI                                                                                                                                                                                    | LOGICA                                                                                                                                                                                             | L OBSE                                                                                                                                               | RVATE | ONS                                       |                           |    | BIOLOC                                                                                                                       |                                                  |                                    |                      |              |           |  |
|--------------|----------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------|---------------------------|----|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------|----------------------|--------------|-----------|--|
| Station      | Age of<br>moon |                                                                                                                               | oy<br>eter              |                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                      |       | Mg.—ato                                   | 5m m.3                    |    |                                                                                                                              |                                                  |                                    | TE                   | ME.          | Remarks   |  |
| Station      | (days)         | Depth<br>(metres)                                                                                                             | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                          | S° j                                                                                                                                                                                      | σt                                                                                                                                                                                                 | pН                                                                                                                                                   | Р     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N <sub>2</sub> | Si | O2<br>c.c.<br>litre                                                                                                          | Gear                                             | Depth<br>(metres)                  | From                 | То           |           |  |
| 742<br>cont. | 17             | 80<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500<br>2000<br>2500<br>3000                                   |                         | - 1.00<br>- 0.95<br>0.37<br>1.60<br>1.91<br>1.83<br>1.81<br>1.70<br>1.48<br>1.11<br>0.73<br>0.44<br>0.10                                                                                                             | 34.11<br>34.16<br>34.34<br>34.53<br>34.61<br>34.69<br>34.74<br>34.74<br>34.73<br>34.73<br>34.73<br>34.77<br>34.70                                                                         | 27.45<br>27.49<br>27.58<br>27.65<br>27.70<br>27.75<br>27.80<br>27.81<br>27.82<br>27.81<br>27.82<br>27.84<br>27.86<br>27.87<br>27.88                                                                | 8.06<br>8.05<br>8.01<br>7.95<br>7.95<br>8.09<br>8.09<br>8.09<br>8.04<br>8.04<br>8.08<br>8.16<br>8.21                                                 |       |                                           |                           |    | 6.70<br>5.23<br>4.08<br>3.81<br>3.85<br>3.83<br>3.99<br>4.14<br>4.11<br>4.27<br>4.42<br>4.39                                 |                                                  |                                    |                      |              |           |  |
| 743          | 17             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500<br>2000<br>2500<br>3000 |                         | $\begin{array}{c} -0.42 \\ -0.42 \\ -0.42 \\ -0.47 \\ -0.50 \\ -0.58 \\ -0.58 \\ -0.59 \\ 0.93 \\ 1.62 \\ 1.75 \\ 1.87 \\ 1.72 \\ 1.71 \\ 1.49 \\ 1.09 \\ 0.72 \\ 0.43 \\ 0.12 \end{array}$                          | 33.98<br>34.01<br>34.01<br>34.01<br>34.01<br>34.02<br>34.07<br>34.12<br>34.38<br>34.48<br>34.48<br>34.48<br>34.48<br>34.46<br>34.67<br>34.70<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71 | 27·33<br>27·35<br>27·35<br>27·35<br>27·35<br>27·35<br>27·37<br>27·42<br>27·45<br>27·45<br>27·45<br>27·61<br>27·66<br>27·74<br>27·78<br>27·80<br>27·81<br>27·83<br>27·86<br>27·88<br>27·88<br>27·88 | 8.10<br>8.10<br>8.10<br>8.10<br>8.07<br>8.06<br>8.07<br>8.06<br>8.02<br>7.96<br>7.94<br>7.94<br>7.94<br>8.04<br>8.09<br>8.11<br>8.09<br>8.09<br>8.26 |       |                                           |                           |    | 7.56<br>7.56<br>7.53<br>7.52<br>6.42<br>4.86<br>4.21<br>4.01<br>3.05<br>3.97<br>3.05<br>4.17<br>4.09<br>4.27<br>4.39<br>4.36 | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>264-108<br>149-0          | 2016<br>2148<br>2231 | -            | DGP<br>KT |  |
| 744          | 17             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>180                                                              |                         | $ \begin{array}{c} -0.51 \\ -0.51 \\ -0.51 \\ -0.54 \\ -0.59 \\ -0.59 \\ -0.60 \\ -0.60 \\ -0.60 \\ -0.58 \\ -0.22 \\ \end{array} $                                                                                  | 34·36<br>34·36<br>34·36<br>34·36<br>34·36<br>34·36<br>34·36<br>34·36<br>34·37<br>34·43<br>34·49                                                                                           | 27.64<br>27.64<br>27.64<br>27.64<br>27.64<br>27.64<br>27.64<br>27.64<br>27.64<br>27.65<br>27.65<br>27.70<br>27.72                                                                                  | 8.04<br>8.04<br>8.04<br>8.04<br>8.04<br>8.04<br>8.04<br>8.03<br>8.03                                                                                 |       |                                           |                           |    | $ \begin{array}{c} 6.91 \\ - \\ 6.84 \\ - \\ 6.78 \\ 6.73 \\ 6.42 \\ 6.06 \\ 5.68 \\ \end{array} $                           | N 50 V<br>N 70 V<br>,,<br>N 70 B<br>N 100 B      | 100-0<br>150-50<br>50-0<br>} 130-0 | 0818<br>             | 0838<br>0916 | КТ        |  |
| 745          | 19             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>1000<br>1500<br>2000<br>2500<br>3000<br>3500       |                         | $\begin{array}{c} 0.10 \\ -0.01 \\ -0.01 \\ -0.06 \\ -0.10 \\ -0.48 \\ -0.57 \\ -0.69 \\ -0.92 \\ -0.35 \\ 0.61 \\ 1.31 \\ 1.99 \\ 2.03 \\ 2.02 \\ 2.04 \\ 1.93 \\ 1.55 \\ 1.20 \\ 0.98 \\ 0.62 \\ 0.39 \end{array}$ | 33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.98<br>34.04<br>34.20<br>34.29<br>34.39<br>34.34<br>34.55<br>34.67<br>34.73<br>34.72<br>34.72<br>34.72<br>34.72                   | 27·29<br>27·30<br>27·31<br>27·32<br>27·32<br>27·35<br>27·37<br>27·45<br>27·47<br>27·51<br>27·57<br>27·68<br>27·73<br>27·78<br>27·78<br>27·80<br>27·83<br>27·84                                     | 8.15<br>8.15<br>8.15<br>8.15<br>8.15<br>8.15<br>8.14<br>8.00<br>7.98<br>7.95<br>7.95<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.0  |       |                                           |                           |    | $\begin{array}{c ccccc} 7.64 & & & & & & & & $                                                                               |                                                  | 100-0<br>260-104<br>117-0          | 0905                 | 1125         | DGP       |  |

| C       |                          |               |      | Sounding             | WIN                                                                                    | D                | SEA                                                              | 1       |           | leter<br>ars)                            | Air Ter     | np. C.      |                                               |
|---------|--------------------------|---------------|------|----------------------|----------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------|---------|-----------|------------------------------------------|-------------|-------------|-----------------------------------------------|
| Station | Position                 | Date          | Hour | Sounding<br>(metres) | Direction                                                                              | Force<br>(knots) | Direction                                                        | Force   | Weather   | Barometer<br>(millibars)                 | Dry<br>bulb | Wet<br>bulb | Remarks                                       |
| 746     | 56° 21·5′ S, 55° 50·5′ W | 1931<br>28 xi | 2000 | 5832*                | $\begin{array}{c} \mathbf{E}\times\mathbf{N}\\ \mathbf{E}\times\mathbf{N} \end{array}$ | 6<br>10          | $\mathbf{E} \times \mathbf{N}$<br>$\mathbf{E} \times \mathbf{N}$ | I<br>2  | ofe<br>me | 997 <sup>.</sup> 1<br>995 <sup>.</sup> 4 | 3.3<br>2.8  | 3·I<br>2·7  | mod. conf. W swell<br>mod. conf. W×S<br>swell |
| 747     | 55° 20′ S, 56° 14.6′ W   | 29 xi         | 0930 | 4008*                | ENE                                                                                    | 20               | ENE                                                              | 4       | oe        | 985.2                                    | 5.3         | 5.3         | mod. NNE swell                                |
| 748     | 55° 29.4′ S, 54° 13.8′ W | 29 xi         | 2100 | 2703*                | NE×E                                                                                   | IO               | NE×E                                                             | 3 conf. | ortl      | 976.4                                    | 4.4         | 4.4         | mod. conf. NE swell                           |

|         |                |                                                                                                                                             |                         |                                                                                                                                                      | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LOGICA                                                                                                                                                                                             | L OBSE                                                                                                                                                                                                                                                                                                                                                                                       | ERVATI | IONS                    |                           |    |                                                                                                                              | BIOLO                                            | GICAL OBSER               | VATIO                | <s< th=""><th></th></s<> |                        |
|---------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------|---------------------------|----|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------|----------------------|--------------------------|------------------------|
|         | Age of         |                                                                                                                                             | y<br>ter                |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                              |        | Mg.—at                  | om m.'                    |    |                                                                                                                              |                                                  |                           | TI                   | MŁ                       |                        |
| Station | moon<br>(days) | Depth<br>(metres)                                                                                                                           | Depth by<br>thermometer | Temp.                                                                                                                                                | S*,.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | σt                                                                                                                                                                                                 | нq                                                                                                                                                                                                                                                                                                                                                                                           | Р      | $Nitrate + Nitrite N_2$ | Nitrite<br>N <sub>2</sub> | Si | Og<br>c.c.<br>litre                                                                                                          | Gear                                             | Depth<br>(metres)         | From                 | 'To                      | Remarks                |
| 746     | 19             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300                                                                     |                         | 3.41<br>2.71<br>2.70<br>2.70<br>2.60<br>2.51<br>2.39<br>2.20<br>1.91<br>1.52<br>1.35                                                                 | 34.11<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.03<br>34.07<br>34.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27.16<br>27.17<br>27.17<br>27.18<br>27.18<br>27.18<br>27.18<br>27.19<br>27.20<br>27.20<br>27.22<br>27.24<br>27.26<br>27.30<br>27.34                                                                | 8.14<br>8.15<br>8.15<br>8.15<br>8.15<br>8.15<br>8.15<br>8.15<br>8.15                                                                                                                                                                                                                                                                                                                         |        |                         |                           |    | 7.00<br>                                                                                                                     | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>306-124<br>125-0 | 2010<br>0034<br>0121 | 2020<br>0104<br>0141     | DGP<br>KT              |
|         |                | 400<br>590<br>790<br>1480<br>1980<br>2470<br>2960<br>3460<br>3950<br>4450<br>4940                                                           | <br><br><br><br><br>    | 1.71<br>2.51<br>2.49<br>2.39<br>2.08<br>1.82<br>1.48<br>1.01<br>0.88<br>0.59<br>0.30<br>0.27                                                         | 34 10<br>34 37<br>34 51<br>34 55<br>34 70<br>34 72<br>34 72<br>34 72<br>34 72<br>34 70<br>34 70<br>34 68<br>34 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27 34<br>27 45<br>27 56<br>27 61<br>27 75<br>27 78<br>27 81<br>27 84<br>27 84<br>27 84<br>27 86<br>27 85<br>27 85                                                                                  | 8.05<br>8.05<br>8.05<br>8.02<br>8.07<br>8.15<br>8.31<br>8.23<br>8.16<br>8.15<br>8.20<br>8.25                                                                                                                                                                                                                                                                                                 |        |                         |                           |    | 5 93<br>4 37<br>3 79<br>3 64<br>3 69<br>3 68<br>3 84<br>3 93<br>4 25<br>4 34<br>4 44<br>4 41                                 |                                                  |                           |                      |                          |                        |
| 747     | 20             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>290<br>390<br>580<br>770<br>970<br>1450<br>1930<br>2420<br>2900<br>3380 |                         | 4.70<br>4.68<br>4.63<br>4.48<br>4.41<br>4.40<br>4.35<br>4.24<br>4.20<br>4.02<br>3.80<br>3.45<br>2.65<br>2.28<br>2.40<br>2.41<br>2.07<br>1.86<br>1.17 | 3421<br>3421<br>3421<br>3419<br>3419<br>3419<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3420<br>3475<br>34774<br>34774 | 27.11<br>27.11<br>27.12<br>27.13<br>27.13<br>27.13<br>27.13<br>27.14<br>27.15<br>27.16<br>27.17<br>27.19<br>27.22<br>27.27<br>27.34<br>27.45<br>27.63<br>27.71<br>27.80<br>27.83<br>27.83<br>27.85 | $8 \cdot 15$<br>$8 \cdot 15$<br>$8 \cdot 15$<br>$8 \cdot 16$<br>$8 \cdot 16$<br>$8 \cdot 15$<br>$8 \cdot 17$<br>$8 \cdot 17$<br>$8 \cdot 17$<br>$8 \cdot 17$<br>$8 \cdot 18$<br>$8 \cdot 29$ |        |                         |                           |    | 6.63<br>                                                                                                                     | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>282-148<br>155-0 | 0935                 | 0941<br>1147<br>1220     | + 4 hours<br>DGP<br>KT |
| 748     | 20             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>190<br>290<br>380<br>580<br>770<br>960<br>1440<br>1930<br>2410                        |                         | 4·38<br>4·37<br>4·35<br>4·31<br>4·03<br>3·91<br>3·79<br>3·71<br>3·65<br>3·44<br>3·31<br>2·71<br>2·82<br>2·68<br>2·70<br>2·56<br>2·20<br>1·99<br>1·88 | 34.14<br>34.14<br>34.15<br>34.15<br>34.15<br>34.15<br>34.15<br>34.15<br>34.14<br>34.14<br>34.14<br>34.14<br>34.14<br>34.14<br>34.14<br>34.21<br>34.29<br>34.41<br>34.29<br>34.44<br>34.49<br>34.66<br>34.67<br>34.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27.09<br>27.09<br>27.10<br>27.11<br>27.14<br>27.15<br>27.16<br>27.17<br>27.17<br>27.19<br>27.20<br>27.25<br>27.29<br>27.37<br>27.46<br>27.53<br>27.70<br>27.73<br>27.77                            | 8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16                                                                                                                                                                                                                                                                                                                                 |        |                         |                           |    | 6.75<br>6.75<br>6.82<br>6.78<br>6.62<br>6.62<br>6.62<br>6.27<br>6.25<br>5.63<br>4.75<br>4.05<br>3.74<br>3.63<br>3.71<br>3.78 | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>204-138<br>180-0 | 2112<br>2231<br>2315 | 1                        | DGP<br>KT              |

|         |                                       | _             |      | Sounding             | WIN       | D                | SEA       |       |         | leter<br>Dars)           | Air Ten     | np. ° C.    |                             |
|---------|---------------------------------------|---------------|------|----------------------|-----------|------------------|-----------|-------|---------|--------------------------|-------------|-------------|-----------------------------|
| Station | Position                              | Date          | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                     |
| 749     | 54° 07 <sup>.</sup> 9′ S, 54° 03.5′ W | 1931<br>30 xi | 1115 | 1540*                | WNW       | 17               | WNW       | 4     | b       | 99 <b>0</b> ·8           | 6.8         | 5.6         | very heavy conf. W<br>swell |
| 750     | 53° 04·7′ S, 54° 04·7′ W              | 30 xi         | 2000 | 3136*                | SE×S      | 19               | SE×S      | 4     | or      | 987.8                    | 4.2         | 4.4         | heavy W×N swell             |
| 751     | 51° 28·7′ S, 49° 17·7′ W              | ı xii         | 2000 | 2458*                | W         | 13               | W         | 3     | bc      | 1006.4                   | 4.4         | 3.8         | modheavy WSW<br>swell       |
| 752     | 52° 42.7′ S, 49° 16.8′ W              | 2 xii         | 0900 | 3563*                | NW×W      | 10               | NW×W      | 2     | bc      | 1001.8                   | 6.9         | 5.8         | mod. conf. SW swell         |

|         |                |                                   |                         |                                      | HYDRO                                     | LOGICA                                    | L OBSE                                                                                                   | RVATI | IONS                                                                        |                       |    |                                                                | BIOLOG                       | HCAL OBSER              | VATION               | (S                   |           |
|---------|----------------|-----------------------------------|-------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------|-----------------------|----|----------------------------------------------------------------|------------------------------|-------------------------|----------------------|----------------------|-----------|
|         | Age of         |                                   | ter                     |                                      |                                           |                                           |                                                                                                          |       | Mg.—at                                                                      | om m."                |    |                                                                |                              |                         | TI                   | VIE.                 |           |
| Station | moon<br>(days) | Depth<br>(metres)                 | Depth by<br>thermometer | Temp,<br>C.                          | S <sup>n</sup> /or                        | σt                                        | pHq                                                                                                      | P     | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ N_2 \end{array}$ | $\frac{Nitrite}{N_2}$ | Si | O2<br>c.c.<br>litre                                            | Gear                         | Depth<br>(metres)       | From                 | То                   | Remarks   |
| 749     | 21             | 0<br>10<br>20                     |                         | 4·59<br>4·54<br>4·53                 | 34·21<br>34·21<br>34·21                   | 27·12<br>27·12<br>27·12                   | 8·15<br>8·15<br>8·15                                                                                     |       |                                                                             |                       |    | 6.62<br>                                                       | N 50 V<br>N 70 B<br>N 100 B  | 100-0<br>250-160        | 1 I 20<br>I 253      | 1130<br>1322         | DGP       |
|         |                | 30<br>40<br>50<br>60<br>80        |                         | 4.52<br>4.51<br>4.49<br>4.44<br>4.38 | 34·21<br>34·21<br>34·21<br>34·21          | 27·12<br>27·13<br>27·13<br>27·13          | 8.15<br>8.15<br>8.15<br>8.15<br>8.15<br>8.15                                                             |       |                                                                             |                       |    | 6·65<br>6·63                                                   | N 70 B<br>N 100 B            | 166–0                   | 1334                 | 1354                 | KT        |
|         |                | 100<br>150<br>200<br>300          |                         | 4.19<br>4.10<br>3.91<br>3.66         | 34·20<br>34·19<br>34·17<br>34·14<br>34·14 | 27.13<br>27.15<br>27.14<br>27.14<br>27.14 | 8·14<br>8·14<br>8·14<br>8·14<br>8·15                                                                     |       |                                                                             |                       |    | 6·51<br>6·48<br>6·40<br>6·22                                   |                              |                         |                      | -                    |           |
|         |                | 400<br>600<br>800<br>1000         |                         | 3·33<br>2·77<br>2·65<br>2·74         | 34·14<br>34·20<br>34·29<br>34·38          | 27·20<br>27·29<br>27·37<br>27·44          | 8.11<br>8.18<br>8.09<br>8.16                                                                             |       |                                                                             |                       |    | 6·22<br>5·44<br>4·59<br>3·95                                   | 1                            |                         |                      |                      |           |
| 750     | 21             | 1200<br>0<br>10                   |                         | 2·51<br>4·73<br>4·73                 | 34·48<br>34·14<br>34·14                   | 27·54<br>27·05<br>27·05                   | 8·17<br>8·18<br>8·18<br>8·18                                                                             |       |                                                                             |                       |    | 3:49<br>6:71<br>6:76                                           | N 50 V<br>N 100 B<br>N 100 B | 1000<br>97-0<br>280-130 | 2005<br>2200<br>2200 | 2012<br>2220<br>2230 | KT<br>DGP |
|         |                | 20<br>30<br>40<br>50<br>60        | -                       | 4·70<br>4·62<br>4·61<br>4·51         | 34·14<br>34·14<br>34·14<br>34·14          | 27·06<br>27·06<br>27·07<br>27·08<br>27·08 | 5.18<br><u>5.18</u><br><u>5.18</u><br><u>5.18</u><br><u>5.18</u>                                         |       |                                                                             |                       |    | 6·76<br>6·66<br>6·73                                           | IN 100 D                     | 200-130                 | 22UV                 | 223U                 | 201       |
|         |                | 80<br>100<br>150<br>200           |                         | 4·42<br>4·22<br>4·12<br>3·81<br>3·62 | 34·14<br>34·14<br>34·14<br>34·16          | 27.09<br>27.11<br>27.12<br>27.16<br>27.19 | 8·18<br>8·18<br>8·18<br>8·18<br>8·15                                                                     |       |                                                                             |                       |    | 5·62<br>6·57<br>6·55                                           |                              |                         |                      |                      |           |
|         |                | 300<br>400<br>600                 |                         | 3·32<br>3·05<br>2·69                 | 34·17<br>34·14<br>34·16<br>34·23          | 27·20<br>27·23<br>27·33                   | 8·14<br>8·13<br>8·25<br>8·22                                                                             |       |                                                                             |                       |    | $6 \cdot 36$<br>$4 \cdot 33$<br>$5 \cdot 23$<br>$4 \cdot 31$ ? |                              |                         |                      |                      |           |
| 751     | 22             | 2170<br>0                         | 2170                    | 2·57<br>1·97<br>2·60                 | 34·32<br>34·68                            | 27·40<br>27·74<br>27·24                   | 8·33<br>8·17                                                                                             |       |                                                                             |                       |    | 3·44<br>6·84                                                   | N 50 V<br>N 70 B             | 100-0                   | 2008                 | 2015                 |           |
|         |                | 10<br>20<br>30<br>40              |                         | 2.60<br>2.60<br>2.56<br>2.56         | 34.12<br>34.12<br>34.12<br>34.12          | 27·24<br>27·25<br>27·25                   | 8.17<br>8.17<br>8.17<br>8.17                                                                             |       |                                                                             |                       |    | 6·85<br>6·82                                                   | N 100 B<br>N 70 B<br>N 100 B | 104-0<br>269-138        | 2124<br>2124         | 2145<br>2156         | KT<br>DGP |
|         |                | 50<br>60<br>80<br>100             |                         | 2·51<br>2·08<br>1·57<br>1·10         | 34·11<br>34·11<br>34·10<br>34·07          | 27·24<br>27·28<br>27·30<br>27·32          | 8.17<br>8.16<br>8.17<br>8.16<br>8.16                                                                     |       |                                                                             |                       |    | 6·90<br>6·85<br>6·67                                           |                              |                         |                      | -<br>                |           |
|         |                | 150<br>200<br>300<br>390<br>590   |                         | 0.98<br>0.47<br>0.28<br>0.97<br>2.37 | 34.08<br>34.10<br>34.13<br>34.25<br>34.43 | 27·33<br>27·37<br>27·41<br>27·46<br>27·51 | 8.14<br>8.09<br>8.08<br>8.02<br>8.16                                                                     |       |                                                                             |                       |    | 6·54<br>6·03<br>4·92<br>4·03                                   |                              |                         |                      |                      |           |
|         |                | 790<br>790<br>980<br>1480<br>1970 |                         | 2·19<br>2·19<br>2·18<br>2·00<br>1·56 | 3++3<br>3+52<br>3+58<br>3+71<br>3+71      | 27.59<br>27.59<br>27.64<br>27.77<br>27.80 | 8.15<br>8.07<br>8.07<br>8.22                                                                             |       |                                                                             |                       |    | 3.73<br>3.75<br>3.82<br>3.78                                   |                              |                         |                      |                      |           |
| 752     | 23             | 0<br>10<br>20                     |                         | 2·19<br>2·02<br>1·99                 | 34·14<br>34·13<br>34·13                   | 27.30                                     | 8.17<br>8.17<br>8.17                                                                                     | -     |                                                                             |                       |    | 6·92<br><br>6·94                                               | N 50 V<br>N 70 B<br>N 100 B  | 100-0                   | 0915<br>1031         | 0923<br>1051         | KT        |
|         |                | 30<br>40<br>50<br>60              |                         | 1.93<br>1.83<br>1.82<br>1.67         | 34·13<br>34·12<br>34·12<br>34·12          | 27·30<br>27·30<br>27·31                   | 8.17<br>8.17<br>8.17<br>8.17<br>8.17                                                                     |       | -                                                                           |                       | -  | 6·94                                                           | N 70 B<br>N 100 B            | 250-104                 | 1031                 | 1102                 | DGP       |
|         |                | 80<br>100<br>150<br>200           | <br>                    | 1.30<br>1.30<br>0.80<br>0.59         | 34·11<br>34·11<br>34·07<br>34·10          | 27·33<br>27·33<br>27·34                   | $ \begin{array}{c c} 8 \cdot 17 \\ 8 \cdot 17 \\ 8 \cdot 16 \\ 8 \cdot 16 \\ 8 \cdot 17 \\ \end{array} $ |       |                                                                             | -                     |    | 6·72<br>6·79<br>6·68                                           |                              |                         |                      |                      |           |
|         |                | 300<br>390                        |                         | 0.16<br>0.37                         | 34.13                                     | 27.41                                     | 8.13                                                                                                     | _     |                                                                             | _                     | -  | 6·29<br>6·20                                                   |                              |                         |                      |                      |           |

|                     |                          |               |              | Sounding             | WIN          | D                | SEA          |       |         | ars)                                    | Air Ten     | np. C.      |                                  |
|---------------------|--------------------------|---------------|--------------|----------------------|--------------|------------------|--------------|-------|---------|-----------------------------------------|-------------|-------------|----------------------------------|
| Station             | Position                 | Date          | Hour         | Sounding<br>(metres) | Direction    | Force<br>(knots) | Direction    | Force | Weather | Barometer<br>(millitiars)               | Dry<br>bulb | Wet<br>bulb | Remarks                          |
| <b>752</b><br>cont. | 52° 42.7′ S, 49° 16.8′ W | 1931<br>2 Xii |              |                      |              |                  |              |       |         |                                         |             |             |                                  |
| 753                 | 54° 02·4′ S, 49° 12·5′ W | 2 xii         | 2000<br>0000 | 4766*                | WSW<br>SW×W  | 2.4              | WSW<br>WSW   | 55    | bc<br>b | 995 <sup>.7</sup><br>997 <sup>.</sup> 4 | 3.9         | 2.9<br>2.7  | mod. WSW swell<br>mod. WSW swell |
| 754                 | 54° 54′ S, 49° 08.7′ W   | 3 xii         | 0900         | 4164*                | $S \times W$ | 25               | $S \times W$ | 5     | csp     | 1001.4                                  | 2.5         | 1.8         | heavy SW swell                   |
| 755                 | 55° 57·9′ S, 48° 59′ W   | 3 xii         | 2000         | 3606*                | W            | 9                | W            | 2     | 0       | 1006.7                                  | 0.9         | 0.7         | mod. SW swell                    |

|              |                |                                                                                                                                             |                         | 1                                                                                                                                                                            | HYDROI                                                                                                                                                                                        | LOGICAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , OBSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RVATI | ONS                                       |                           |    |                                                                                                                                                                                                                                                  | BIOLOG                                           | ICAL OBSER                    | VATION               | s                    |                              |
|--------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------|---------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------|----------------------|----------------------|------------------------------|
|              | Age of         |                                                                                                                                             | ter                     |                                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | Mg.—ator                                  | m m.ª                     |    |                                                                                                                                                                                                                                                  |                                                  |                               | TD                   | JE                   | Remarks                      |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                                                           | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                  | S*                                                                                                                                                                                            | σt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Р     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N <sub>2</sub> | Sı | O2<br>c.c.<br>htre                                                                                                                                                                                                                               | Gear                                             | Depth<br>(nictres)            | ŀrom                 | To                   | INCHIGHTS.                   |
| 752<br>cont. | 23             | 590<br>790<br>980<br>1480<br>1970<br>2460<br>2950                                                                                           | <br><br>2953            | 2·14<br>2·39<br>2·36<br>2·10<br>1·88<br>1·49<br>1·08                                                                                                                         | 34·35<br>34·48<br>34·57<br>34·69<br>34·73<br>34·74<br>34·72                                                                                                                                   | 27·47<br>27·55<br>27·62<br>27·73<br>27·79<br>27·83<br>27·84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.16<br>8.13<br>8.11<br>8.08<br>8.12<br>8.15<br>8.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                           |                           |    | 4.61<br>3.82<br>3.80<br>3.63<br>3.73<br>3.95<br>3.96                                                                                                                                                                                             |                                                  |                               |                      |                      |                              |
| 753          | 23             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>190<br>280<br>370<br>560<br>740<br>930<br>1400<br>1860<br>2330<br>2790<br>3260 |                         | 2·59<br>2·59<br>2·49<br>2·53<br>2·47<br>2·40<br>2·39<br>2·31<br>1·99<br>1·80<br>1·20<br>1·22<br>2·19<br>2·66<br>2·58<br>2·26<br>2·58<br>2·26<br>2·99<br>1·77<br>1·38<br>0·99 | 34'15<br>34'16<br>34'16<br>34'16<br>34'16<br>34'16<br>34'17<br>34'20<br>34'17<br>34'20<br>34'17<br>34'20<br>34'17<br>34'20<br>34'17<br>34'20<br>34'17<br>34'20<br>34'16<br>34'69<br>34'71<br> | 27·27<br>27·27<br>27·28<br>27·28<br>27·29<br>27·29<br>27·29<br>27·30<br>27·33<br>27·33<br>27·34<br>27·37<br>27·39<br>27·35<br>27·46<br>27·51<br>27·70<br>27·73<br>27·79<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                           |                           |    | $\begin{array}{c} 6\cdot75\\\\ 6\cdot74\\\\ 6\cdot74\\ 6\cdot75\\ 6\cdot72\\ 6\cdot72\\ 6\cdot72\\ 5\cdot20\\ 5\cdot27\\ 5\cdot20\\ 4\cdot26\\ 3\cdot92\\ 3\cdot58\\ 3\cdot49\\ 3\cdot70\\ 3\cdot80\\ 3\cdot98\\ 3\cdot98\\ 3\cdot98\end{array}$ | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>280-110<br>} 165-0   | 2015<br>2258<br>2346 | 2021<br>2328<br>0007 | DGP<br>KT                    |
| 754          | 24             | 3720<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>790<br>1490<br>1980<br>2480                       |                         | 0.50<br>2.59<br>2.58<br>2.58<br>2.57<br>2.54<br>2.52<br>2.49<br>2.31<br>2.20<br>1.99<br>1.80<br>1.46<br>0.98<br>2.22<br>2.27<br>2.41<br>2.12<br>1.90<br>1.60                 | 34.69<br>34.17<br>34.17<br>34.17<br>34.17<br>34.17<br>34.17<br>34.17<br>34.17<br>34.17<br>34.17<br>34.17<br>34.16<br>34.14<br>34.14<br>34.23<br>34.32<br>34.51<br>34.66<br>34.71<br>34.71     | 27·29<br>27·31<br>27·32<br>27·33<br>27·34<br>27·35<br>27·38<br>27·36<br>27·43<br>27·57<br>27·71<br>27·71<br>27·78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.39<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.15<br>8.15<br>8.15<br>8.16<br>8.15<br>8.16<br>8.15<br>8.15<br>8.16<br>8.15<br>8.16<br>8.15<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.15<br>8.16<br>8.15<br>8.16<br>8.15<br>8.16<br>8.15<br>8.16<br>8.15<br>8.16<br>8.15<br>8.16<br>8.15<br>8.16<br>8.15<br>8.16<br>8.15<br>8.16<br>8.16<br>8.15<br>8.16<br>8.16<br>8.16<br>8.15<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.16<br>8.16<br>8.17<br>8.16<br>8.16<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16<br>8.17<br>8.16 |       |                                           |                           |    | 4.02<br>6.70<br>                                                                                                                                                                                                                                 |                                                  | 100-0<br>} 200-142<br>} 151-0 | 0905                 | 1202                 | DGP. N 70 B<br>slightly torn |
| 758          | 24             | 2430<br>2980<br>3470<br>100<br>300<br>500<br>100<br>150<br>200<br>390<br>590                                                                |                         | 1.19<br>0.76<br>0.80<br>0.64<br>0.59<br>0.54<br>0.42<br>0.29<br>-0.10<br>-0.07<br>0.59<br>0.60<br>1.68<br>1.87<br>2.30                                                       | 34-70<br>34-69<br>33-88<br>33-88<br>33-88<br>33-88<br>33-92<br>33-92<br>33-92<br>33-92<br>34-04<br>34-12<br>34-32<br>34-40                                                                    | 27.82<br>27.83<br>27.19<br>27.19<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20<br>27.20 | 8.19<br>8.24<br>8.16<br>8.16<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.13<br>8.13<br>8.08<br>8.04<br>7.97<br>7.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                           |                           |    | 4·20<br>4·08<br>7·50<br>7·52<br>7·50<br>7·50<br>7·50<br>7·50<br>7·50<br>7·50<br>4·25<br>5·87<br>4·70<br>4·43<br>3·5-                                                                                                                             | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 11                            | 2003<br>2142<br>2226 | 2212                 | DGP                          |

| Station      | n Destrier               | Dete          |              | Sounding<br>(metres) | WIN                           | JD               | SEA                           |       |           | neter<br>bars)           | Air Ter     | mp. C.      |                                  |
|--------------|--------------------------|---------------|--------------|----------------------|-------------------------------|------------------|-------------------------------|-------|-----------|--------------------------|-------------|-------------|----------------------------------|
| Station      | Position                 | Date          | Hour         | (metres)             | Direction                     | Force<br>(knots) | Direction                     | Force | Weather   | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                          |
| 755<br>cont. | 55° 57·9′ S, 48° 59′ W   | 1931<br>3 xii |              |                      |                               |                  |                               |       |           |                          |             |             |                                  |
| 756          | 57° 28·7′ S, 48° 53·2′ W | 4 xii         | 0900         | 3877*                | $\mathbf{N} 	imes \mathbf{W}$ | 11               | $\mathbf{N} 	imes \mathbf{W}$ | 2     | ome       | 996.2                    | 2.7         | 2.6         | mod. NW swell                    |
| 757          | 58° 03.5′ S, 48° 50.5′ W | 4 xii         | 2000<br>0000 | <u>39</u> 16*        | WSW<br>SW×W                   | 17<br>16         | W×S<br>SW×W                   | 4     | ome<br>oe | 998·2<br>999·8           | 0·5<br>0·1  | 0·5<br>0·1  | mod. WSW swell<br>mod. WSW swell |
| 758          | 58° 42·3′ S, 48° 45·9′ W | 5 xii         | 0900         | 3994*                | SW×W                          | II               | SW×W                          | 2     | om        | 1004.5                   | -0.2        | -0.4        | mod. W swell                     |

| 755-758 |
|---------|
|---------|

|         |                |              |                         |                  | HYDRO          | LOGICA         | L OBSE           | RVATI | ONS           |                           |    |                         | BIOLOG            | GICAL OBSER       | RVATION | s      |         |
|---------|----------------|--------------|-------------------------|------------------|----------------|----------------|------------------|-------|---------------|---------------------------|----|-------------------------|-------------------|-------------------|---------|--------|---------|
|         | Age of         |              | . 5                     |                  |                |                |                  |       | Mg.—at        | om m.ª                    |    |                         |                   |                   | TI      | JE     |         |
| Station | moon<br>(days) | Depth        | th by<br>omet           | Temp.            | S' lus         | σt             | рH               |       | Nitrate       |                           |    | () <sub>2</sub><br>c.c. | Gear              | Depth<br>(metres) |         |        | Remarks |
|         |                | (metres)     | Depth by<br>thermometer | С.               | 0 105          | 01             | p                | Р     | Nitrite<br>N2 | Nitrite<br>N <sub>2</sub> | Si | htre                    |                   | (metres)          | I rom   | 'To    |         |
|         |                |              |                         |                  |                |                |                  |       |               |                           |    |                         |                   |                   |         |        |         |
| 755     | 24             | 780          |                         | 2.13             | 34.62          | 27.69          | 8.11             |       |               |                           |    | 3.59<br>3.87            |                   |                   |         |        |         |
| cont.   |                | 980<br>1470  |                         | 1·92<br>1·62     | 34·65<br>34·68 | 27·72<br>27·77 | 8.07<br>8.17     |       |               |                           | _  | 3.98                    |                   |                   |         |        |         |
|         |                | 1960         |                         | 1.51             | 34.71          | 27.83          | 8.17             |       |               | _                         | _  | 4.07                    |                   |                   |         |        |         |
|         | 1              | 2450         | —                       | o·83             | 34.69          | 27.82          | 8.18             |       | -             | -                         |    | 4.12                    |                   |                   |         |        |         |
|         |                | 2940         | 2937                    | 0.23             | 34.69          | 27.84          | 8.24             |       |               |                           |    | 4.14                    |                   |                   |         |        |         |
| 756     | 25             | 0            |                         | 0.81             | 33.87          | 27.18          | 8.18             |       |               | _                         |    | 7.45                    | N 50 V            | 100-0             | 0907    | 0914   |         |
| 1       |                | 10           | —                       | °'79             | 33.88          | 27.19          | 8.18             |       |               |                           |    | -                       | N 70 B<br>N 100 B | 310-126           | IIII    | 1141   | DGP     |
|         |                | 20<br>30     |                         | 0·68<br>0·49     | 33·88<br>33·95 | 27·19<br>27·25 | 8·18<br>8·18     | _     |               |                           |    | 7.50                    | N 70 B            | 1                 |         |        | 1700    |
|         |                | 40           |                         | 0.15             | 33.95          | 27.27          | 8.18             | —     | _             |                           |    | 7.54                    | N 100 B           | 135-0             | 1156    | 1216   | KT      |
| 1       |                | 50           |                         | - 0·2 I          | 33.95          | 27.29          | 8.17             |       |               |                           |    |                         |                   | ļ                 |         |        |         |
|         |                | 60           |                         | -0.41            | 33.94          | 27.29          | 8·17<br>8·14     |       |               | _                         |    | 7.45                    |                   |                   |         |        |         |
|         |                | 80<br>100    |                         | -0.30            | 33.97          | 27.31          | 8.14             |       |               |                           |    | 7.21                    |                   |                   |         |        |         |
|         |                | 150          |                         | 0.32             | 34.13          | 27.40          | 8.08             | -     |               |                           |    | 6.19                    |                   |                   |         |        |         |
|         |                | 200          | -                       | 1.87             | 34.33          | 27.46          | 7.99             | -     |               |                           |    | 5.08                    |                   |                   |         |        |         |
|         |                | 300          |                         | 2·22<br>2·37     | 34.43          | 27.52          | 7.97             |       |               |                           |    | 4·22<br>3·96            |                   |                   |         |        |         |
|         |                | 400<br>590   | _                       | 2.10             | 34.65          | 27.70          | 8.17             | _     |               | -                         |    | 3.26                    |                   |                   |         |        |         |
|         |                | 790          |                         | 2.01             | 34.69          | 27.74          | 8.13             |       |               |                           | -  | 3.87                    |                   |                   |         |        |         |
|         |                | 990          | -                       | 1.83             | 34.70          | 27·77<br>27·81 | 8·13<br>8·12     |       |               |                           |    | 3.97                    |                   |                   |         |        |         |
|         |                | 1480<br>1970 |                         | 1.31<br>0.80     | 34.70          | 27.81          | 8.12             | _     |               |                           | _  | 4.21                    |                   |                   |         |        |         |
|         |                | 2460         |                         | 0.38             | 34.68          | 27.85          | 8.18             | -     |               |                           |    | 4.40                    |                   |                   |         |        |         |
|         | 1              | 2960         | _                       | 0.08             | 34.68          | 27.87          | 8.12             | -     |               |                           | -  | 4.63                    |                   |                   |         |        |         |
|         |                | 3450         | 3447                    | -0.11            | 34.67          | 27.87          | 8.25             |       |               |                           |    | 4.43                    |                   |                   |         |        |         |
| 757     | 25             | 0            | -                       | 0.18             | 34.01          | 27.32          | 8.13             | _     |               |                           | _  | 7.51                    | N 50 V            | 100-0             | 2005    |        |         |
|         |                | IO           |                         | 0.18             | 34.01          | 27.32          | 8.13             | -     |               |                           | -  | -                       | N 70 B            | 324-162           | 2233    | 2303   | DGP     |
|         |                | 20           |                         | 0.18             | 34.01          | 27.32          | 8·13<br>8·13     |       |               |                           |    | 7.46                    | N 70 B            | 156-0             | 2324    | 2344   | KT      |
|         |                | 30           |                         | - 0.02<br>- 0.10 | 34.02          | 27.34          | 8.13             |       |               | _                         |    | 7.33                    | N 100 B           | 320-136           | 0000    | 0030   | DGP     |
|         | 1              | 50           | ·                       | -0.11            | 34.02          | 27.35          | 8.13             |       |               |                           |    |                         |                   |                   |         |        |         |
|         | 1              | 60           | -                       | -0.10            | 34.03          | 27.36          | 8·10             | -     | -             | -                         | -  | 7.27                    |                   |                   |         |        |         |
|         |                | 80<br>100    |                         | - 0·11<br>- 0·20 | 34.00          |                | 1                |       |               |                           |    | 7.26                    |                   |                   |         |        |         |
|         |                | 150          | 1                       | -0.18            | 34.27          |                | 8.04             | -     | _             |                           | -  | 6.44                    |                   |                   |         |        |         |
|         |                | 200          |                         | 0.00             | 34.36          |                | 8.00             |       |               | -                         |    | 6.00                    | 1                 |                   |         |        |         |
|         |                | 300          |                         | 0.53             | 34.44          | 27.67          | 7.98             | _     |               |                           | _  | 5°49<br>4°61            |                   |                   |         |        |         |
|         |                | 400          |                         | 1.31             | 34 59          |                | 8.06             | -     | - 1           | -                         |    | 4.26                    |                   |                   |         |        |         |
|         |                | 800          |                         | 1.33             | 34.68          | 27.80          |                  | -     | -             | -                         | -  | 4.26                    |                   |                   |         |        | 1       |
|         |                | 1000         |                         | 0.00             | 34.71          |                |                  |       |               |                           |    | 4·18                    |                   |                   |         | 1      |         |
|         |                | 1500         |                         | 0.40             | <b>.</b>       | 27.86          | 8.18             |       | _             | _                         |    | 4.29                    |                   |                   |         | ļ      |         |
|         |                | 2500         |                         | 0.10             | 34.68          | 27.86          | 8.18             | -     |               |                           | -  | 4.52                    |                   |                   |         |        |         |
|         |                | 3000         |                         | - 0.06           |                | 27.85          |                  |       |               |                           | _  | 4.63                    |                   |                   |         |        |         |
|         |                | 3500         | -                       | -0.12            | 34.00          | 2/00           | 0 29             |       |               |                           |    |                         |                   |                   |         |        |         |
| 758     | 3 26           | c            | -                       | 0.13             |                |                |                  |       |               |                           | -  | 7.2 I                   | N 50 V<br>N 70 B  | 100-0<br>236-0    | 0908    |        |         |
|         |                | 10           |                         | 0.13             |                |                |                  |       |               |                           |    | 7.51                    |                   |                   | 104     | 6 1116 | DGP     |
|         |                | 20           |                         | 0.00             |                |                |                  |       |               |                           |    | -                       | N 70 B            | 298-134           | 1134    | 1204   | DGP     |
|         |                | 40           |                         | -0.42            | 33.93          | 27.28          | 8.14             |       | _             | -                         |    | 7:40                    | N 70 B            |                   | 1219    | 1239   | KT      |
|         |                | 50           |                         | -0.21            |                |                | -                |       |               | _                         |    | 7.14                    | N 100 B           |                   |         |        | 1       |
|         |                | 60           |                         | - 0.62<br>- 0.49 |                |                | -                |       |               |                           |    |                         |                   |                   |         |        |         |
|         |                | 100          |                         | 0.20             | 34.20          | 27.45          | 8.02             |       | _             | -                         | -  | 5.68                    |                   |                   |         |        |         |
|         |                | 150          |                         | 1.42             |                |                |                  |       |               |                           |    | 4.69                    |                   |                   |         |        |         |
|         |                | 200          |                         | 2.05             | 1 .            |                | i 7.94<br>2 7.94 |       | _             |                           | _  | 3.76                    |                   |                   |         |        |         |
|         |                | 400          |                         | 2.10             |                | 27.68          |                  |       |               |                           | -  | 3.80                    |                   |                   |         |        |         |
|         |                | 600          | > —                     | 2.01             | 34.20          | 27.76          |                  |       |               |                           |    | 3.75                    |                   |                   |         |        |         |
|         |                | 800          |                         | 1.20             |                |                |                  |       |               |                           |    | 3.79                    |                   |                   |         |        |         |
|         |                | 1000         |                         | 1.24             | 34.72          | 1 27 30        |                  |       |               |                           |    |                         |                   |                   |         |        | 1       |

|              |                          |               |      | Sounding             | WIN       | 7D               | SEA       | ł     |         | eter<br>ars)            | Air Tei     | mp. ° C.    |                 |
|--------------|--------------------------|---------------|------|----------------------|-----------|------------------|-----------|-------|---------|-------------------------|-------------|-------------|-----------------|
| Station      | Position                 | Date          | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(milibars) | Dry<br>bulb | Wet<br>bulb | Remarks         |
| 758<br>cont. | 58° 42·3′ S, 48° 45·9′ W | 1931<br>5 xii |      |                      | -         |                  |           | -     |         |                         |             |             |                 |
| 759          | 59° 06·5′ S, 48° 39·9′ W | 5 xii         | 2000 | 3744*                | SW        | 2-3              | SW        | I     | fe      | 1008.0                  | - I · I     | - 1.1       | mod. W×S swell  |
| 760          | 60° 21.6′ S, 48° 40.2′ W | 6 xii         | 2000 | 2397*                | Ν         | 22               | N         | 4     | om      | 1002.9                  | <b>○</b> ·6 | 0.2         | mod. NW swell   |
| 761          | 59° 46·3′ S, 45° 30·5′ W | 7-8 xii       | 2115 | 3849*                | W×S       | 16               | conf.     | 3     | om      | 989.2                   | - 0.3       | - 0.3       | heavy NNW swell |

| 758— | 7 | 6 | 1 |
|------|---|---|---|
|------|---|---|---|

|              |                |                   |                         | <u> </u>         | HYDR                                     | )LOGIC         | AL OBSI      | RVAT | IONS                                                                          |                           |       |                                | BIOLO             | GICAL OBSE         | RVATIO | N5   |                    |
|--------------|----------------|-------------------|-------------------------|------------------|------------------------------------------|----------------|--------------|------|-------------------------------------------------------------------------------|---------------------------|-------|--------------------------------|-------------------|--------------------|--------|------|--------------------|
| Station      | Age of         |                   | y<br>etcr               |                  |                                          |                |              |      | Mg at                                                                         | om m. <sup>s</sup>        |       |                                |                   |                    | 11     | ML   |                    |
| Station      | moon<br>(days) | Depth<br>(metres) | Depth by<br>thermometer | Temp.<br>°C.     | s                                        | σt             | pН           | Р    | $\begin{array}{c} \text{Nitrate} \\ \text{Nitrite} \\ \text{N}_2 \end{array}$ | Nitrite<br>N <sub>2</sub> | $S_1$ | O <sub>2</sub><br>c.c.<br>htre | Gear              | Depth<br>(metres)  | I rom  | Γο   | - Rec il           |
| 758<br>cont. | 26             | 1500              |                         | 1.03             | 34.71<br>34.71                           | 27·84<br>27·86 | 8·18<br>8·17 |      |                                                                               |                           |       | 4·28<br>4·31                   |                   |                    |        |      |                    |
| contr.       |                | 2500              |                         | 0.12             | 34.67                                    | 27.85          | 8.19         |      |                                                                               |                           |       | 4.59                           |                   |                    |        |      |                    |
|              |                | 3000              | _                       | -0.03            | 34.66                                    | 27.86          | 8.12         | 1    |                                                                               |                           |       | 4.67                           |                   |                    |        |      |                    |
|              |                | 3500              |                         | -0.53            | 34.66                                    | 27.86          | 8.23         |      |                                                                               |                           |       | 4.61                           |                   |                    |        |      |                    |
| 759          | 26             | 0                 |                         | 0.32             | 34.13                                    | 27:40          | 8.13         |      |                                                                               |                           |       | 7.54                           | N 50 V            | 100-0              | 2004   | 2011 |                    |
|              |                | 10                |                         | 0.34             | 34.13                                    | 27.40          | 8.13         |      |                                                                               | -                         |       |                                | N 70 V            | 1000-750           | 2147   |      |                    |
|              |                | 20                |                         | 0.31             | 34.13                                    | 27.40          | 8.13         |      |                                                                               |                           |       | 7.60                           | 11                | 750-500            |        |      |                    |
|              |                | 30<br>40          |                         | 0.30<br>0.27     | 34.13                                    | 27.40          | 8.13         |      | _                                                                             |                           |       | 7.47                           |                   | 500-250<br>250-100 |        |      |                    |
|              |                | 50                |                         | 0.00             | 34.17                                    | 27.46          | 8.12         |      |                                                                               |                           |       | · · · · ·                      | ,,                | 100-50             |        |      |                    |
|              |                | 60                |                         | -0.05            | 34.19                                    | 27:48          | 8.09         | —    |                                                                               |                           |       | 7.59                           | · · ·             | 50-0               |        | 2330 |                    |
|              |                | So                |                         | - 0.1 I          | 34.28                                    | 27.56          | 8.04         |      |                                                                               |                           |       | -                              | N 70 B            | 260-100            | 2352   | 0022 | 1 DGP. Upper depth |
|              |                | 100               |                         | -0.31            | 34.38                                    | 27.65<br>27.69 | 8.03         |      |                                                                               |                           |       | 6.31                           | N 100 B<br>N 70 B |                    | 55     |      | / estimated        |
|              |                | 150<br>200        |                         | 0.00             | 34·45<br>34·47                           | 27.00          | 7'99<br>7'99 |      |                                                                               |                           |       | 5°75<br>5°57                   | N 100 B           | 119-0              | 0037   | 0057 | КТ                 |
|              |                | 300               |                         | 0.62             | 34.61                                    | 27.79          | 7.97         |      |                                                                               |                           |       | 4.95                           |                   | ,                  |        |      |                    |
|              |                | 400               |                         | 0.85             | 34.64                                    | 27.79          | 7.97         |      | ] —                                                                           | —                         |       | 4.76                           |                   |                    |        |      |                    |
|              |                | 600               |                         | 1.96             | 34.70                                    | 27.76          | 8.06         |      | _                                                                             |                           |       | 4.23                           |                   |                    | -      |      |                    |
|              |                | 800               |                         | 0.74             | 34.69                                    | 27·83<br>27·86 | 8.03<br>8.08 |      |                                                                               |                           |       | 4.38                           |                   |                    |        |      |                    |
|              |                | 1000<br>1500      |                         | 0·73<br>0·36     | 34·72<br>34·70                           | 27.87          | 8.08         |      |                                                                               |                           |       | 4.24                           |                   |                    |        |      |                    |
|              |                | 2000              | 2003                    | 0.10             | 34.69                                    | 27.86          | 8.18         | _    |                                                                               |                           |       | 4.40                           |                   |                    |        |      |                    |
|              |                | 2500              | 2501                    | -0.01            | 34.68                                    | 27.87          | 8.19         |      |                                                                               |                           |       | 4.45                           |                   |                    |        |      |                    |
|              |                | 3000              |                         | -0.12            | 34.67                                    | 27.87          | 8.14         |      |                                                                               | -                         | a     | 4.77                           |                   |                    |        |      |                    |
|              |                | 3500              |                         | -0.50            | 34.66                                    | 27.87          | 8.14         |      |                                                                               |                           |       | 4.98                           |                   |                    |        |      |                    |
| 760          | 27             | 0                 |                         | - 1.00           | 34.16                                    | 27:49          | 8.10         |      |                                                                               |                           |       | 7.56                           | N 50 V            | I 000              | 2010   |      | +3 hours           |
|              |                | 10                |                         | - 1.01           | 34.17                                    | 27.50          | 8.10<br>8.10 |      |                                                                               |                           |       |                                | N 70 V            | 1000-750           |        |      |                    |
|              |                | 20<br>30          |                         | - 1.02<br>- 1.53 | 34.10                                    |                | 8.10         |      | _                                                                             |                           |       | 7.58                           | 11                | 750-500<br>500-250 |        |      |                    |
|              |                | 40                |                         | - 1.58           | 34.20                                    | 27.53          | 8.09         |      |                                                                               | _                         |       | 7.43                           | ,,                | 250-100            |        |      |                    |
|              |                | 50                |                         | - 1.40           | 34.22                                    | 27.55          | 8.08         |      |                                                                               |                           |       |                                | ••                | 100-50             |        |      |                    |
|              |                | 60                |                         | - 1.30           | 34.53                                    | 27.56          | 8.05         |      |                                                                               |                           |       | 7.25                           | N = P             | 50-0               |        | 2220 |                    |
| 1            |                | 80<br>100 i       |                         | - 1·48<br>- 1·40 | 34.32                                    | 27·64<br>27·67 | 8.05<br>8.04 |      |                                                                               |                           |       | 6.88                           | N 70 B<br>N 100 B | 260-140            | 2255   | 2325 | DGP                |
|              |                | 150               | _                       | -1.58            | 34.40                                    |                | 8.04         |      |                                                                               | _                         |       | 6.64                           |                   | 1                  |        |      | 1.413              |
|              |                | 200               |                         | - 1.10           | 34.45                                    |                | 8.01         |      |                                                                               |                           |       | 6.44                           |                   | 176-0              | 2339   | 2359 |                    |
|              |                | 300               |                         | -0.75            | 34.23                                    | 27.79          | 7:99         |      |                                                                               |                           |       | 5.80                           |                   |                    |        |      |                    |
|              |                | 400               | —                       | -0.21            | 34.57                                    | 27.81          | 8.00         |      |                                                                               | _                         |       | 5.29                           |                   |                    |        |      |                    |
|              |                | 600<br>800        | _                       | 0·10<br>0·07     | 34·64<br>34·64                           | 27·83<br>27·84 | 8.08<br>8.12 |      |                                                                               |                           |       | 4·86<br>4·86                   |                   |                    |        |      |                    |
|              |                | 1000              |                         | -0.10            | 34.65                                    | 27.85          | 8.09         |      |                                                                               |                           |       | 4.82                           |                   |                    |        |      |                    |
|              |                | 1500              |                         | -0.10            | 34.65                                    | 27.85          | 8.14         |      | _                                                                             |                           |       | 4.81                           |                   |                    |        |      |                    |
|              |                | 1990              | 1991                    | -0.31            | 34.65                                    | 27.86          | 8.19         |      |                                                                               |                           |       | 4.21                           |                   |                    |        |      |                    |
| 761          | 28             | 0                 |                         | -0.87            | 33.86                                    |                | 8.00         |      |                                                                               |                           |       | 7.62                           | N 50 V            | I 00-0             | 2120   | 2130 |                    |
|              |                | 10                |                         | -0.82            | 33.88                                    |                | 8.09         |      |                                                                               | —                         |       | -                              | N 70 B            | 290-140            | 2341   | 0011 | DGP                |
|              |                | 20                |                         | -0.20            | 33.92                                    | 27.30          | 8.09         |      |                                                                               |                           |       | 7.57                           | N 100 B<br>N 70 B |                    |        |      |                    |
|              |                | 30<br>40          |                         | - 0.05<br>- 1.00 | 34 <sup>.</sup> 02<br>34 <sup>.</sup> 12 | 27·38<br>27·46 | 8∙08<br>8∙05 |      |                                                                               |                           |       | 7.26                           | N 100 B           | 151-0              | 0027   | 0047 | KT                 |
| 1            |                | 50                |                         | - 1.02           | 34.13                                    | 27.46          | 8.05         |      |                                                                               |                           |       | / =                            |                   |                    |        |      |                    |
| 1            |                | 60                |                         | -0.99            | 34.50                                    | 27.52          | 8.04         |      |                                                                               |                           |       | 7.03                           |                   |                    |        |      |                    |
|              |                | 80                | —                       | -0.80            | 34.37                                    | 27.66          | 8.04         |      |                                                                               |                           |       | 6.06                           |                   |                    |        |      |                    |
|              |                | 100               | _                       | -0.21<br>-0.80   | 34.38                                    | 27·66<br>27·71 | 8.02<br>8.02 |      |                                                                               |                           |       | 6.26<br>6.44                   |                   |                    |        |      |                    |
|              |                | 150<br>200        | _                       | -0.80<br>-0.85   | 34.43                                    | 27.72          | 8.00         |      |                                                                               | _                         |       | 6.28                           |                   |                    |        |      |                    |
|              |                | 300               |                         | -0.32            | 34.24                                    | 27.78          | 7.99         |      |                                                                               |                           |       | 5.84                           |                   |                    |        |      |                    |
|              |                | 400               |                         | 0.66             | 34.64                                    | 27.80          | 7.97         |      |                                                                               |                           | —     | 4.80                           |                   |                    |        |      |                    |
|              |                | 600               |                         | 0.39             | 34.63                                    | 27.81          | 8.08         |      |                                                                               |                           |       | 4.79                           |                   |                    |        |      |                    |
|              |                | 800<br>1000       |                         | 0.63<br>0.28     | 34.67                                    |                | 8·17<br>8·18 |      |                                                                               |                           | _     | 4.42<br>4.30                   |                   |                    |        |      |                    |
|              |                | 1500              |                         | 0.10             | 34.66                                    |                | 8.08         |      |                                                                               | _                         | _     | 4.68                           |                   |                    |        |      |                    |
|              |                | 2000              |                         | - 0.03           | 34.66                                    | 27.85          | 8.08         |      |                                                                               |                           |       | 4.66                           |                   |                    |        |      |                    |
|              |                | 2500              | —                       | -0.18            | 34.66                                    |                | 8.13         |      |                                                                               |                           |       | 4.80                           |                   |                    |        |      |                    |
|              |                | 3000              | 3012                    | -0.50            | 34.66                                    | 27.87          | 8.13         |      |                                                                               |                           |       | 4.68                           |                   |                    | 1      |      |                    |
|              |                |                   |                         | 1                | 1                                        |                |              |      |                                                                               |                           |       | ·                              |                   |                    |        |      |                    |

|         |                          |               |      | Sounding             | WIN                            | D                | SEA                                                              |        |          | ieter<br>ars)                          | Air Ten     | np.°C.      |                                      |
|---------|--------------------------|---------------|------|----------------------|--------------------------------|------------------|------------------------------------------------------------------|--------|----------|----------------------------------------|-------------|-------------|--------------------------------------|
| Station | Position                 | Date          | Hour | Sounding<br>(metres) | Direction                      | Force<br>(knots) | Direction                                                        | Force  | Weather  | Barometer<br>(mullibars)               | Dry<br>bulb | Wet<br>bulb | Remarks                              |
| 762     | 59° 50•7′ S, 43° 34•5′ W | 1931<br>8 xii | 0900 | 4662*<br>—           | W<br>NW×W                      | 22               | W<br>NW×W                                                        | 4<br>3 |          | 996·9<br>1000·5                        | - 0.2       |             | modheavy NW<br>swell<br>mod. W swell |
| 763     | 59° 35.5′ S, 42° 40.1′ W | 8 xii         | 2000 | 326 t *              | NW                             | 21               | NW                                                               | 3      | ome      | 1001.9                                 | - o·8       | - o·8       | mod. NW swell                        |
| 764     | 58° 48.9′ S, 42° 19.7′ W | 9 xii         | 0000 |                      | N × W<br>N × W                 | 25<br>35         | $\mathbf{N} \times \mathbf{W}$<br>$\mathbf{N} \times \mathbf{W}$ | 3<br>5 | o<br>ome | 907 <sup>.5</sup><br>993 <sup>.2</sup> | 0.2         | 0.3         | low NW swell<br>mod. NW swell        |
| 765     | 58° 11·3′ S, 41° 16·3′ W | 9 xii         | 2130 |                      | $\mathbf{NW} 	imes \mathbf{W}$ | 24               | NW×W                                                             | 4      | oe       | 997*3                                  | 0.6         | 0.6         | heavy NW swell                       |
| 766     | 58° 51′ S, 36° 54′ W     | 10 xii        | 1718 | 2699*                | $S \times W$                   | 7-10             | S×W                                                              | 2      | 0        | 1002-1                                 | 1.1         | I.I         | mod. WNW swell                       |

| /62-/66 |
|---------|
|---------|

| ĺ       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                       | HYDROL                                                                                                                                                         | .0GICAI                                                                                                                                                                                                     | , OBSE                                                                                      | RVATI | ONS                                       |               |    |                                                                                                                                          | BIOLOG                                                                                                | ACAL OBSER                                                                               | VATION                   |                      |           |
|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------|-------------------------------------------|---------------|----|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------|----------------------|-----------|
|         | Age of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , is l                  |                                                                                                                                                                                                       |                                                                                                                                                                |                                                                                                                                                                                                             |                                                                                             |       | Mgat                                      | om m.1        |    |                                                                                                                                          |                                                                                                       |                                                                                          | TIN                      | IL.                  | Remarks   |
| Station | (days) | Depth<br>(metres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                           | s.,                                                                                                                                                            | σt                                                                                                                                                                                                          | pН                                                                                          | P     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N2 | Si | $O_2$<br>$\leftarrow C_1$<br>http://doi.org/10.1000                                                                                      | Gear                                                                                                  | Depth<br>(metres)                                                                        | From                     | То                   | Remarks   |
| 762     | 29     | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>590<br>790<br>990<br>1480<br>1970<br>2470<br>2960<br>3450<br>3940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | $\begin{array}{c} -1.25 \\ -1.28 \\ -1.32 \\ -1.40 \\ -1.54 \\ -1.49 \\ -1.49 \\ -1.31 \\ -1.09 \\ -0.46 \\ 0.00 \\ 1.11 \\ 1.17 \\ 0.79 \\ 0.50 \\ 0.28 \end{array}$                                 | 33.94<br>33.95<br>33.96<br>33.96<br>34.14<br>34.22<br>34.31<br>34.38<br>34.48<br>34.48<br>34.56<br>34.73<br>34.70<br>34.68<br>34.66<br>34.66<br>34.66<br>34.66 | 27·32<br>27·32<br>27·33<br>27·34<br>27·50<br>27·55<br>27·62<br>27·68<br>27·73<br>27·77<br>27·84<br>27·84<br>27·84<br>27·84<br>27·84<br>27·84<br>27·84<br>27·85<br>27·85<br>27·86<br>27·87<br>27·87<br>27·87 | 8.20<br>8.10<br>8.10<br>8.10<br>8.00<br>8.04<br>8.04<br>8.04<br>8.04<br>8.04<br>8.04<br>8.0 |       |                                           |               |    | 8.28<br><br>8.21<br><br>7.85<br><br>6.59<br>5.74<br>5.40<br>4.53<br>4.53<br>4.51<br>4.53<br>4.51<br>4.54<br>4.72<br>4.76<br>4.88<br>4.72 | N 50 V<br>N 70 V<br><br><br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                    | 100-0<br>1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>235-145<br>128-0 | 0905<br>1159<br>1249     | 1135<br>1230<br>1309 | DGP<br>KT |
| 763     | 29     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | - 1.05                                                                                                                                                                                                | 33.67                                                                                                                                                          | 27.09                                                                                                                                                                                                       | 8.22                                                                                        |       |                                           |               |    |                                                                                                                                          | N 50 V<br>,,,<br>N 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,, | 50-0<br>100-20<br>1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>280-130 | 2010<br><br>2230<br>2314 | 2200<br>2300<br>2335 | DGP<br>KT |
| 764     | 0      | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1500<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>200<br>300<br>2000<br>300<br>200<br>300<br>2000<br>300<br>2000<br>300<br>2000<br>3000<br>2000<br>3000<br>2000<br>3000<br>2000<br>3000<br>2000<br>3000<br>2000<br>3000<br>2000<br>3000<br>2000<br>3000<br>2000<br>3000<br>2000<br>3000<br>2000<br>3000<br>2000<br>3000<br>2000<br>3000<br>2000<br>3000<br>2000<br>3000<br>2000<br>2000<br>3000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>20 |                         | $\begin{array}{c} -1.07\\ -1.08\\ -1.10\\ -1.20\\ -1.30\\ -1.31\\ -1.37\\ -1.48\\ -1.49\\ -1.49\\ -0.60\\ -0.13\\ 0.25\\ 0.28\\ 0.30\\ 0.30\\ 0.30\\ 0.13\\ -0.01\\ -0.16\\ -0.29\\ -0.31\end{array}$ |                                                                                                                                                                | 27:21<br>27:21<br>27:28<br>27:37<br>27:41<br>27:47<br>27:55<br>27:55<br>27:55<br>27:75<br>27:75<br>27:78<br>27:78<br>27:78<br>27:78<br>27:84<br>27:84<br>27:84<br>27:84                                     | 8-33                                                                                        |       |                                           |               |    | 8.30<br>                                                                                                                                 | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                                                | 100-50<br>50-0<br>1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>132-0              |                          | 1411                 | DGP<br>KT |
| 765     | 5 I    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 0.40                                                                                                                                                                                                  | 33.96                                                                                                                                                          | 27.27                                                                                                                                                                                                       | 8.17                                                                                        |       |                                           |               |    |                                                                                                                                          | N 50 V<br>,,<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                                | 1 101-0                                                                                  | 2135<br><br>2207<br>2249 | 2150                 | DGP       |
| 766     | 3 т    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | - 1·31<br>- 1·38                                                                                                                                                                                      | 33·82<br>33·83                                                                                                                                                 |                                                                                                                                                                                                             |                                                                                             |       |                                           |               |    | 8.05                                                                                                                                     | 5 N 50 V                                                                                              | 100-50<br>50-0                                                                           | 1720                     |                      |           |

|              |                          |                |              | Sounding                           | WIN                            |                   | SEA                             |       |         | reter<br>hars)                           | Arr Ter     | np. C.      |                    |
|--------------|--------------------------|----------------|--------------|------------------------------------|--------------------------------|-------------------|---------------------------------|-------|---------|------------------------------------------|-------------|-------------|--------------------|
| Station      | Position                 | Date           | Hour         | (metres)                           | Direction                      | l·orce<br>(knots) | Direction                       | Force | Weather | Barometer<br>(millihars)                 | Dry<br>bulb | Wet<br>bulb | Remarks            |
| 766<br>cont. | 58° 51′ S, 36° 54′ W     | 1931<br>10 xii |              |                                    |                                |                   |                                 |       |         | •                                        |             |             |                    |
| 767          | 57° 02.6′ S, 36° 47.2′ W | 11 XÏI         | 0900         | 3599*                              | SE - S                         | 17                | SE×S                            | 3     | 0       | 1000.3                                   | -0.3        | -0.0        | low conf. swell    |
| 768          | 56° 20.6′ S, 36° 34.7′ W | н хії          | 1700<br>2247 | 3555<br>gy. M.<br>bl. Sh.<br>3544* | $SE \times S$<br>$SE \times S$ | 18                | $SE \times S$<br>$SE \times S$  | +     | 0       | 995 <sup>.</sup> 5<br>999 <sup>.</sup> 1 |             |             | low conf. swell    |
| 769          | 55° 15.4' S, 36° 16.4' W | 12 xii         | 0510         | 1128*                              | $SW \times S$                  | 15                | $\mathbf{SW} \times \mathbf{S}$ | 3     | 0       | 999'4                                    | - 1 · 1     | - 1.4       | low conf. SW swell |

|                          |                |                                                                                                         |                         |                                                                                                                                                                                 | IIYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LOGICA                                                                                                                                                                                             | L OBSE                                                                                                                                                                                                                                                                       | RVATI | 085                                       |              |    |                                                                                                                                                                                 | BIOLOG                                                      | ACAL OBSER                                                                             | V VI IOS         | <b>\</b> -           |                                                 |
|--------------------------|----------------|---------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------|--------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------|----------------------|-------------------------------------------------|
|                          | Age of         |                                                                                                         | ter<br>ter              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                              |       | Mg. at                                    | om m."       |    |                                                                                                                                                                                 |                                                             |                                                                                        | .1.1             | VII                  |                                                 |
| Station                  | moon<br>(days) | Depth<br>(metres)                                                                                       | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                     | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | σt                                                                                                                                                                                                 | pН                                                                                                                                                                                                                                                                           | þ     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N | 51 | O <sub>z</sub><br>CC.<br>litre                                                                                                                                                  | Gear                                                        | Trepth<br>(metres)                                                                     | 1 rom            | 10                   | Reneal                                          |
| <b>766</b> <i>cont</i> . | I              | 20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>400<br>600<br>800<br>1500<br>2000<br>2500             |                         | $\begin{array}{c} -1.51\\ -1.52\\ -1.52\\ -1.52\\ -1.50\\ -1.60\\ -1.49\\ -1.36\\ -0.74\\ 0.21\\ 0.86\\ 1.00\\ 0.83\\ 0.63\\ 0.63\\ 0.13\\ 0.02\\ -0.10\end{array}$             | 33:87<br>33:87<br>33:88<br>34:04<br>34:05<br>34:13<br>34:22<br>34:30<br>34:41<br>34:56<br>34:65<br>34:70<br>34:65<br>34:70<br>34:68<br>34:68<br>34:67<br>34:67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27·28<br>27·28<br>27·20<br>27·41<br>27·42<br>27·48<br>27·55<br>27·62<br>27·69<br>27·76<br>27·79<br>27·83<br>27·83<br>27·84<br>27·83<br>27·86<br>27·86<br>27·86<br>27·86                            | 8.18<br>8.18<br>8.17<br>8.14<br>8.10<br>8.09<br>8.08<br>8.04<br>8.02<br>7.98<br>8.02<br>7.98<br>8.12<br>8.16<br>8.16<br>8.17<br>8.12<br>8.12                                                                                                                                 |       |                                           |              |    | 8.04 $$ $7.92$ $$ $7.14$ $6.66$ $5.02$ $5.09$ $4.82$ $4.27$ $4.31$ $4.34$ $4.40$ $4.59$ $4.32$                                                                                  | N 70 V<br><br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B        | 1000-750<br>750-500<br>500 250<br>250 100<br>100-50<br>50-0<br>230-110<br>102-0        | 2011<br>2055     | 1910<br>2041<br>2115 | DGP<br>KT                                       |
| 767                      | 2              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>1500<br>2000<br>2500<br>3000        | 2998                    | $\begin{array}{c} 0.00\\ 0.00\\ -0.02\\ 0.10\\ 0.04\\ -0.15\\ -0.20\\ -0.28\\ -0.30\\ -0.27\\ -0.10\\ 1.76\\ 1.71\\ 1.44\\ 1.37\\ 1.15\\ 0.81\\ 0.41\\ 0.29\\ 0.04 \end{array}$ | $\begin{array}{c} 33.94\\ 33.95\\ 33.96\\ 34.13\\ 34.14\\ 34.15\\ 34.15\\ 34.18\\ 34.19\\ 34.28\\ 34.19\\ 34.28\\ 34.35\\ 34.59\\ 34.65\\ 34.66\\ 34.70\\ 34.66\\ 34.69\\ 34.68\\ 34.67\\ 34.66\\ 34.67\\ 34.66\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27·27<br>27·28<br>27·29<br>27·41<br>27·44<br>27·46<br>27·46<br>27·48<br>27·50<br>27·56<br>27·56<br>27·56<br>27·56<br>27·61<br>27·73<br>27·76<br>27·81<br>27·80<br>27·82<br>27·85<br>27·84<br>27·85 | $8 \cdot 19$<br>$8 \cdot 19$<br>$8 \cdot 18$<br>$8 \cdot 17$<br>$8 \cdot 14$<br>$8 \cdot 14$<br>$8 \cdot 13$<br>$8 \cdot 12$<br>$8 \cdot 07$<br>$8 \cdot 02$<br>$7 \cdot 96$<br>$8 \cdot 02$<br>$8 \cdot 08$<br>$8 \cdot 08$<br>$8 \cdot 13$<br>$8 \cdot 22$<br>$8 \cdot 30$ |       |                                           |              |    | $\begin{array}{c} 8.19 \\ - \\ 8.03 \\ - \\ 7.59 \\ - \\ 7.41 \\ - \\ 7.34 \\ 6.68 \\ 6.09 \\ 4.99 \\ 4.20 \\ 4.90 \\ 4.22 \\ 4.33 \\ 4.25 \\ 4.39 \\ 4.25 \\ 4.30 \end{array}$ | N 70 V<br><br><br>N 50 V<br><br>N 70 B<br>N 100 B<br>N 70 B | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-50<br>50-25<br>25-0<br>270-118 | 0911             | 1105<br>1150<br>1222 | Drift ice and bergs<br>in vicinity<br>DGP<br>KT |
| 768                      | 2              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>1500<br>2000<br>2500<br>3000 |                         | 0.60<br>0.60<br>0.49<br>0.38<br>0.25<br>0.25<br>0.25<br>0.25<br>0.34<br>1.71<br>1.98<br>2.00<br>1.96<br>1.83<br>1.31<br>0.91<br>0.51<br>0.21                                    | 34.02<br>34.02<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.72<br>34.71<br>34.60<br>34.72<br>34.71<br>34.60<br>34.68<br>34.67 | 27:31<br>27:31<br>27:32<br>27:33<br>27:33<br>27:34<br>27:34<br>27:35<br>27:43<br>27:47<br>27:60<br>27:63<br>27:67<br>27:74<br>27:78<br>27:82<br>27:82<br>27:82<br>27:82<br>27:84<br>27:85          | 8.21<br>8.21<br>8.21<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.1                                                                                                                                                                                          |       |                                           |              |    | 8.14<br>8.14<br>7.77<br>7.50<br>7.28?<br>6.50<br>6.18<br>4.36<br>4.10<br>3.77<br>3.85<br>3.94<br>3.87<br>4.19<br>4.25<br>4.13                                                   | N 70 V<br><br>N 50 V<br><br>N 70 B<br>N 100 B<br>N 70 B     | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-50<br>50-0<br>248-120          | <br>2135<br>2220 | 1910<br>2206<br>2240 | DGP<br>KT                                       |
| 769                      | 3              | 0<br>10<br>20<br>30<br>40<br>50<br>60                                                                   |                         | 0.85<br>0.84<br>0.68<br>0.41<br>0.38<br>0.30<br>0.30                                                                                                                            | 33.96<br>33.96<br>33.97<br>33.97<br>33.97<br>33.98<br>33.98<br>33.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27·24<br>27·24<br>27·26<br>27·28<br>27·28<br>27·29<br>27·29                                                                                                                                        | 8.27<br>8.27<br>8.21<br>8.16<br>8.14<br>8.13<br>8.13                                                                                                                                                                                                                         |       |                                           |              |    | 8.64<br>8.13<br>7.39<br>7.20                                                                                                                                                    | N 70 V<br><br><br>N 50 V                                    | 1000-770<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-50                  | 0515             |                      |                                                 |

|              |                                                                          |                |      | Sounding             | WIN        | Ð                | SEA        |       |         | neter<br>bars)                          | Air Ten     | ар. <sup>-</sup> С. |                               |
|--------------|--------------------------------------------------------------------------|----------------|------|----------------------|------------|------------------|------------|-------|---------|-----------------------------------------|-------------|---------------------|-------------------------------|
| Station      | Position                                                                 | Date           | Hour | Sounding<br>(metres) | Direction  | Force<br>(knots) | Direction  | Force | Weather | Barometer<br>(millibars)                | Dry<br>bulb | Wet<br>bulb         | Remarks                       |
| 769<br>cont. | 55° 15.4' S, 36° 16.4' W                                                 | 1931<br>12 xii |      |                      |            |                  |            |       |         |                                         |             |                     |                               |
|              | 3 miles S 60° E of Jason I,<br>South Georgia<br>53° 43·7′ S, 37° 09·6′ W |                |      |                      | NNW<br>ESE | 7-10<br>24       | NNW<br>ESE | 2     | c       | 997 <sup>.2</sup><br>991 <sup>.</sup> 6 | 3.9<br>2.9  |                     | low SE swell<br>mod. NW swell |
| 772          | 53° 24.3′ S, 37° 11.3′ W                                                 | 15 xii         | 1642 | 1121*                | ESE        | 10               | ESE        | 3     | 0       | 991-9                                   | 2.2         | 1.2                 | mod. conf. N swell            |
| 773          | 53° 03.8′ S, 37° 14′ W                                                   | 15-16<br>xii   | 2208 | 2847*                | ESE        | 11–16            | ESE        | 3     | f       | 991.4                                   | 1.4         | 1.4                 | mod. conf. E swell            |
| 774          | 52° 43.4′ S, 37° 17.5′ W                                                 | 16 xii         | 0517 | 1867*                | SE         | 8                | SE         | I     | ce      | 991.1                                   | 1.5         | I·2                 | mod. conf. SE swell           |

|              |                |                                                                                                                              |                         |                                                                                                                                                                   | HYDROI                                                                                                                                                | LOGICA                                                                                                                                       | L OBSEI                                                                                                                      | RVATI | ONS .                                                                             |                           |    |                                                              | BIOFOC                                                                            | GICAL OBSER                                                                                       | VATION            | (8                   |                                             |
|--------------|----------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------|---------------------------|----|--------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------|----------------------|---------------------------------------------|
|              | Age of         |                                                                                                                              | v<br>ter                |                                                                                                                                                                   |                                                                                                                                                       |                                                                                                                                              |                                                                                                                              |       | Mg.—ato                                                                           | m m. <sup>3</sup>         |    |                                                              |                                                                                   |                                                                                                   | 118               | JE                   |                                             |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                                            | Depth by<br>thermometer | Temp,<br>C,                                                                                                                                                       | S' ,                                                                                                                                                  | σt                                                                                                                                           | Hq                                                                                                                           | Р     | $\begin{array}{c} \text{Nitrate} \\ \vec{n} \\ \text{Nitrite} \\ N_2 \end{array}$ | Nitrite<br>N <sub>2</sub> | Si | O <sub>2</sub><br>c.c.<br>htre                               | Gear                                                                              | Depth<br>(metres)                                                                                 | l rom             | 'To                  | Remark                                      |
| 769<br>cont. | 3              | 80<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>1000                                                                  |                         | 0.20<br>0.19<br>0.20<br>0.39<br>1.63<br>1.66<br>1.89<br>1.75<br>1.55                                                                                              | 34.02<br>34.05<br>34.06<br>34.17<br>34.42<br>34.49<br>34.67<br>34.70<br>34.70                                                                         | 27·33<br>27·35<br>27·36<br>27·44<br>27·55<br>27·61<br>27·74<br>27·78<br>27·78                                                                | 8.12<br>8.09<br>8.03<br>7.96<br>7.95<br>8.17<br>8.07<br>8.07                                                                 |       |                                                                                   |                           |    | 7·25<br>7·03<br>6·19<br>4·38<br>4·20<br>3·68<br>3·89<br>3·99 | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                  | 50-0<br>342-150<br>144-0                                                                          | 0729<br>0814      |                      | DGP<br>KT                                   |
| 770          | 3              | 0                                                                                                                            |                         | 3.40                                                                                                                                                              | 33.66                                                                                                                                                 | 26.80                                                                                                                                        | 8.09                                                                                                                         |       |                                                                                   |                           |    | _                                                            | N 50 V                                                                            | 100-0                                                                                             | 1600              | 1607                 |                                             |
| 771          | 6              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>125                                                                    |                         | 2.53<br>2.44<br>2.18<br>1.80<br>1.11<br>0.69<br>0.50<br>0.30<br>0.38<br>0.60                                                                                      | 34.01<br>34.00<br>33.98<br>33.98<br>34.02<br>34.04<br>34.05<br>34.13<br>34.15<br>34.22                                                                | 27.16<br>27.16<br>27.17<br>27.20<br>27.28<br>27.31<br>27.33<br>27.40<br>27.41<br>27.46                                                       | 8.15<br>8.15<br>8.16<br>8.16<br>8.16<br>8.12<br>8.12<br>8.07<br>8.05<br>8.01                                                 |       |                                                                                   |                           |    | 7.51<br>7.52<br>7.45<br>7.14<br>6.28<br>5.80                 | N 50 V<br>,,<br>N 70 V<br>,,<br>N 70 B<br>N 100 B                                 | 100-50<br>50-0<br>100-50<br>50-0                                                                  | 1320<br>—<br>1418 | 1355<br>1437         | + 1 <sup>1</sup> / <sub>2</sub> hours<br>KT |
| 772          | 6              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>1000                         |                         | 1.73<br>1.68<br>1.41<br>1.00<br>0.91<br>0.68<br>0.45<br>0.21<br>0.20<br>0.56<br>1.03<br>1.71<br>1.79<br>1.91<br>1.82<br>1.66                                      | 34.04<br>34.04<br>34.04<br>34.04<br>34.04<br>34.05<br>34.05<br>34.05<br>34.05<br>34.08<br>34.22<br>34.33<br>34.47<br>34.54<br>34.64<br>34.67<br>34.67 | 27·24<br>27·25<br>27·27<br>27·29<br>27·30<br>27·32<br>27·34<br>27·36<br>27·38<br>27·46<br>27·52<br>27·59<br>27·65<br>27·72<br>27·74<br>27·74 | 8.16<br>8.16<br>8.16<br>8.15<br>8.12<br>8.13<br>8.12<br>8.13<br>8.12<br>8.03<br>7.99<br>7.95<br>7.95<br>8.06<br>8.06<br>8.06 |       |                                                                                   |                           |    | 7.65<br>                                                     | N 50 V<br>,,,<br>N 70 V<br>,,<br>N 70 B<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-50<br>50-0<br>1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>222-110<br>133-0 |                   | 1840<br>1929<br>2002 | DGP<br>KT                                   |
| 773          | 7              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500<br>2000<br>2500 |                         | $\begin{array}{c} 1.62\\ 1.61\\ 1.59\\ 1.42\\ 1.31\\ 1.25\\ 1.01\\ 0.69\\ 0.52\\ -0.13\\ 0.04\\ 1.49\\ 1.82\\ 1.92\\ 1.79\\ 1.67\\ 1.27\\ 0.84\\ 0.58\end{array}$ | 34·67<br>                                                                                                                                             | 27·25<br>27·25<br>27·26<br>27·27<br>27·28<br>27·29<br>27·32<br>27·33<br>27·39<br>27·44<br>27·58<br>27·55<br>27·70<br>27·74<br>               | 8.15<br>8.14<br>8.14<br>8.15<br>8.13<br>8.08<br>8.05<br>7.95<br>7.94<br>7.98<br>8.04<br>7.99<br>8.30<br>8.18                 | _     |                                                                                   |                           |    | 7:49<br>                                                     | N 70 B<br>N 100 B                                                                 | 130-0                                                                                             |                   | 0150                 | DGP<br>KT                                   |
| 774          | k 7            | 20<br>20<br>30<br>40<br>50                                                                                                   |                         | 1.95<br>1.62<br>1.48<br>0.99<br>0.80<br>0.60                                                                                                                      | 33·98<br>33·98<br>33·99<br>34·02                                                                                                                      | 27·21<br>27·22<br>27·26<br>27·30                                                                                                             | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                       |       |                                                                                   |                           |    | 7·40<br>5·95<br>7·35                                         | N 70 V                                                                            | 100-50<br>50-0<br>1000-800<br>750-500<br>500-250<br>250-100                                       | 0523              |                      |                                             |

| Station      | Position                 | Det            |              | Sounding<br>(metres) | WIN                               | SD               | SEA                                                                                      |        |         | neter<br>bars)           | Air Ter     | np. C.      |                                           |
|--------------|--------------------------|----------------|--------------|----------------------|-----------------------------------|------------------|------------------------------------------------------------------------------------------|--------|---------|--------------------------|-------------|-------------|-------------------------------------------|
| atation      | Position                 | Date           | Hour         | (metres)             | Direction                         | Force<br>(knots) | Direction                                                                                | Force  | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                                   |
| 774<br>cont. | 52° 43.4′ S, 37° 17.5′ W | 1931<br>16 xii |              |                      |                                   |                  |                                                                                          |        |         |                          |             |             |                                           |
| 775          | 50° 48·3′ S, 37° 21·6′ W | 16 xii         | 2130         | 4910*                | NW                                | 19               | NW                                                                                       | 4      | 0       | 989·2                    | +*3         | 4. I        | mod. conf. NW swell                       |
| 776          | 49° 29′ S, 37° 22·5′ W   | 17 xii         | 0930<br>1200 | 5263*                | $\frac{NW \times W}{W}$           | 30<br>35         | NW ≺ W<br>W                                                                              | 5<br>7 | c<br>oq | 979'7<br>978'4           | 6·0<br>5·1  | 5·1<br>4·0  | no swell<br>heavy WNW swell               |
| 777          | 50° 52·3′ S, 36° 14·5′ W | 18 xii         | 0730<br>1200 | 5°33*                | WSW                               | 22-27<br>17      | WSW                                                                                      | 5 4    | 0<br>0  | 984°0<br>985°3           | 2·9<br>4·4  | 2·7<br>3·4  | heavy W swell<br>heavy W × N swell        |
| 778          | 52° 05·7′ S, 35° 22·7′ W |                | 2000         | 4372*                | $\frac{SW \times W}{SW \times W}$ | 11–16<br>8       | $\begin{array}{c} \mathbf{SW}\times\mathbf{W}\\ \mathbf{SW}\times\mathbf{W} \end{array}$ | 3 2    | 0<br>00 | 985.5<br>986.3           | 2·1<br>1·7  |             | mod. conf. S swell<br>mod. conf. SW swell |

|              |                |                                                                                                                                                        |                         |                                                                                                                                                                                      | HYDRO                                                                                                                                                                                                                                                                                        | LOGICA                                                                                                                                                                                                      | L OBSE                                                                                                                                                                                                       | RVAT | IONS                    |                       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BIOLO                                                                        | GICAL OBSER                                                                                | VATIO:       | NS                   |                       |
|--------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------|-----------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------|----------------------|-----------------------|
| Station      | Age of         |                                                                                                                                                        | oy<br>eter              |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                              |      | Mg at                   | om m. <sup>3</sup>    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              |                                                                                            | TI           | ME                   | 5                     |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                                                                      | Depth by<br>thermometer | Temp.<br>C,                                                                                                                                                                          | S                                                                                                                                                                                                                                                                                            | σt                                                                                                                                                                                                          | рН                                                                                                                                                                                                           | P    | Nitrate<br>Nitrate<br>N | $\frac{Nitrite}{N_2}$ | Si | O <sub>2</sub><br>c.c.<br>litre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gear                                                                         | Depth<br>(metres)                                                                          | 1 rom        | То                   | Remarks               |
| 774<br>cont. | 7              | 60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500                                                                                     |                         | 0.44<br>0.37<br>0.20<br>0.19<br>1.71<br>1.71<br>1.80<br>1.94<br>1.82<br>1.64<br>1.09                                                                                                 | 34'04<br>34'05<br>34'08<br>34'15<br>34'34<br>34'48<br>34'52<br>34'62<br>34'69<br>                                                                                                                                                                                                            | 27·33<br>27·34<br>27·38<br>27·44<br>27·49<br>27·60<br>27·62<br>27·70<br>27·75<br>                                                                                                                           | 8.13<br>8.13<br>8.08<br>8.06<br>7.98<br>7.95<br>8.16<br>8.23<br>8.07<br>8.13                                                                                                                                 |      |                         |                       |    | 6.68<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N 70 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                             | 100-50<br>50-0<br>250-100<br>137-0                                                         | 0727<br>0812 | 0715<br>0757<br>0832 | Estimated depth<br>KT |
| 775          | 8              | 0                                                                                                                                                      |                         | 3.73                                                                                                                                                                                 | 34.12                                                                                                                                                                                                                                                                                        | 27.17                                                                                                                                                                                                       | 8-20                                                                                                                                                                                                         |      |                         |                       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                       | 288-112<br>106-0                                                                           | 2143<br>2225 | 2213<br>2245         | DGP<br>KT             |
| 776          | 8              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500<br>1990<br>2490<br>2990<br>3490<br>3990<br>4480 | 4482                    | 5-29<br>5-28<br>5-26<br>5-25<br>4-84<br>4-29<br>3-51<br>3-13<br>3-01<br>1-86<br>1-52<br>1-81<br>2-09<br>2-07<br>2-29<br>2-10<br>2-04<br>1-60<br>1-09<br>0-66<br>0-28<br>0-12<br>0-03 | 34.12<br>34.13<br>34.14<br>34.14<br>34.09<br>34.02<br>34.02<br>34.05<br>34.05<br>34.01<br>34.16<br>34.29<br>34.39<br>34.54<br>34.61<br>34.72<br>34.72<br>34.72<br>34.72<br>34.70<br>34.61<br>34.72<br>34.61<br>34.72<br>34.61<br>34.72<br>34.61<br>34.61<br>34.61<br>34.62<br>34.63<br>34.65 | 26.97<br>26.99<br>26.99<br>27.04<br>27.05<br>27.08<br>27.14<br>27.15<br>27.21<br>27.24<br>27.34<br>27.34<br>27.34<br>27.51<br>27.61<br>27.67<br>27.77<br>27.80<br>27.82<br>27.83<br>27.84<br>27.84<br>27.84 | 8.23<br>8.23<br>8.23<br>8.19<br>8.19<br>8.19<br>8.19<br>8.15<br>8.14<br>8.11<br>8.02<br>7.99<br>8.01<br>8.07<br>8.07<br>8.07<br>8.07<br>8.07<br>8.07<br>8.07<br>8.07                                         |      |                         |                       |    | 7.03<br>-7.01<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7.07<br>-7 | N 70 V<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-50<br>50-0<br>} 356-170<br>} 120-0 |              | 1139<br>1355<br>1431 | DGP<br>KT             |
| 777          | 9              | 0<br>10<br>20<br>30<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1500<br>2500<br>3000<br>3500                                        |                         | 3.32<br>3.32<br>3.32<br>3.31<br>3.23<br>2.99<br>2.49<br>2.01<br>1.72<br>0.88<br>1.03<br>1.11<br>1.97<br>2.11<br>2.24<br>2.22<br>1.83<br>1.30<br>0.94<br>0.58<br>0.34                 | 33.98<br>33.98<br>33.98<br>33.98<br>33.98<br>33.99<br>33.99<br>33.99<br>33.99<br>34.00<br>34.00<br>34.00<br>34.07<br>34.18<br>34.37<br>34.52<br>34.64<br>                                                                                                                                    | 27.07<br>27.07<br>27.07<br>27.07<br>27.08<br>27.11<br>27.15<br>27.19<br>27.21<br>27.27<br>27.32<br>27.40<br>27.40<br>27.60<br>27.60<br>27.60<br>27.78<br>27.82<br>27.83<br>27.83<br>27.84<br>27.83          | 8.21<br>8.21<br>8.21<br>8.21<br>8.20<br>8.18<br>8.17<br>8.16<br>8.13<br>8.11<br>8.09<br>8.03<br>7.97<br>8.03<br>8.07<br>8.07<br>8.07<br>8.07<br>8.07<br>8.07<br>8.17<br>8.08<br>8.09<br>8.19<br>8.24<br>8.40 |      |                         |                       |    | 7.32<br>7.35<br>7.31<br>7.13<br>6.93<br>6.99<br>6.41<br>5.61<br>4.44<br>3.76<br>4.07<br>3.97<br>4.05<br>4.20<br>4.17<br>4.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N 50 V<br>N 70 V<br><br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B               | 100-50<br>50-0<br>1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>200-98<br>115-0      |              | 0940<br>1102<br>1140 | DGP<br>KT             |
| 778          | 10             | 0<br>10<br>20<br>30<br>40                                                                                                                              |                         | 2.89<br>2.88<br>2.82<br>2.09<br>1.50                                                                                                                                                 | 33.94<br>33.94<br>33.94<br>33.96<br>33.96<br>33.97                                                                                                                                                                                                                                           | 27.07<br>27.07<br>27.08<br>27.16<br>27.21                                                                                                                                                                   | 8·20<br>8·20<br>8·20<br>8·20<br>8·20<br>8·19                                                                                                                                                                 |      |                         |                       |    | 7·49<br>7·48<br>7·57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N 50 V<br>,,<br>N 70 V                                                       | 100-50<br>50-0<br>1000-770<br>750-500<br>500-250                                           | 2005         |                      |                       |

|                          |                          |                      |      | Sounding             | WIN           | D                | SEA           |       |         | leter<br>Jars)           | Air Ten     | np. C.      |                    |
|--------------------------|--------------------------|----------------------|------|----------------------|---------------|------------------|---------------|-------|---------|--------------------------|-------------|-------------|--------------------|
| Station                  | Position                 | Date                 | Hour | Sounding<br>(metres) | Direction     | Force<br>(knots) | Direction     | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks            |
| <b>778</b> <i>cont</i> . | 52° 05.7′ S, 35° 22.7′ W | 1931<br>18–19<br>xii |      |                      |               |                  |               |       |         |                          |             |             |                    |
| 779                      | 53* 27·3' S, 34° 31·8' W | 19 xii               | 0900 | 3445*                | $SW \times S$ | 4-6              | $SW \times S$ | 2     | 0       | 986·0                    | I.1         | 0.0         | low S swell        |
| 780                      | 54° 23' S, 33° 54.5' W   | 19 xii               | 1945 | 4484*                | SE×E          | 9                | SE×E          | 2     | oe      | 985.2                    | 0.1         | 0.4         | mod. conf. E swell |
| 781                      | 54° 24·4′ S, 34° 32·4′ W | 20 xii               | 0142 | 2943*                | Е             | 1-6              |               | I     | S       | 985.2                    | 0.5         | 0.1         | low conf. SE swell |

| 118-181 |
|---------|
|---------|

|              |                |                                                                                                                               |                         |                                                                                                                                                                                                                                                                  | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOGICA                                                                                                                                                                                                               | L OBSE                                                                                                                                       | RVATI | ONS                                       |                       |    |                                                                                                                                                                                                                        | BIOLO                                                          | JCAL OBSER                                                                             | SATIO.                   | NS -                 |           |
|--------------|----------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------|-----------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------|----------------------|-----------|
|              | Age of         |                                                                                                                               | er<br>Ter               |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                    |                                                                                                                                              |       | Mg.—at                                    | om m.'                |    |                                                                                                                                                                                                                        |                                                                |                                                                                        | TU                       | ME                   | D 1       |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                                             | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                                                                      | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | σt                                                                                                                                                                                                                   | рН                                                                                                                                           | Р     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | $\frac{Nitrite}{N_2}$ | Si | O2<br>c.c.<br>litre                                                                                                                                                                                                    | Gear                                                           | Depth<br>(metrics)                                                                     | I rom                    | То                   | Rec.atl.  |
| 778<br>cont. | 10             | 50<br>60<br>80<br>100<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500<br>2000<br>2500<br>3000<br>3500                      |                         | $ \begin{array}{c} 1 \cdot 30 \\ 1 \cdot 27 \\ 1 \cdot 11 \\ 0 \cdot 81 \\ 0 \cdot 29 \\ 1 \cdot 12 \\ 1 \cdot 63 \\ 1 \cdot 78 \\ 1 \cdot 78 \\ 1 \cdot 82 \\ 1 \cdot 79 \\ 1 \cdot 28 \\ 0 \cdot 88 \\ 0 \cdot 50 \\ 0 \cdot 25 \\ 0 \cdot 06 \\ \end{array} $ | 33.97<br>33.97<br>33.97<br>34.07<br>34.27<br>34.24<br>34.54<br>34.63<br>34.66<br>34.70<br>34.70<br>34.70<br>34.70<br>34.68<br>34.68<br>34.67<br>34.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27·22<br>27·23<br>27·24<br>27·26<br>27·36<br>27·47<br>27·58<br>27·65<br>27·71<br>27·73<br>27·73<br>27·78<br>27·84<br>27·84<br>27·84<br>27·85<br>27·86                                                                | 8.16<br>8.16<br>8.15<br>8.06<br>7.99<br>7.94<br>7.95<br>8.00<br>8.11<br>8.06<br>8.15<br>8.32<br>8.17<br>8.16<br>8.12                         |       |                                           |                       |    | $\begin{array}{c}\\ 7.40\\\\ 7.35\\ 6.50\\ 5.11\\ 4.23\\ 4.02\\ 3.80\\ 3.74\\ 4.01\\ 4.06\\ 4.03\\ 4.24\\ 4.49\\ 4.36\end{array}$                                                                                      | N 70 V<br>.,<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B         | 250-100<br>100-50<br>50-0<br>252-102                                                   | 2259<br>2344             | 2205<br>2329<br>0004 | DGP<br>KT |
| 779          | ΙΟ             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>1500<br>2000<br>2500<br>3000                              | 593<br>30000            | 0.90<br>0.89<br>0.82<br>0.72<br>0.64<br>0.52<br>0.10<br>0.30<br>1.31<br>1.71<br>1.82<br>1.62<br>1.45<br>1.37<br>1.19<br>0.92<br>0.48<br>0.21                                                                                                                     | 34.07<br>34.07<br>34.07<br>34.07<br>34.07<br>34.07<br>34.07<br>34.07<br>34.08<br>34.14<br>34.26<br>34.47<br>34.26<br>34.47<br>34.69<br>34.69<br>34.69<br>34.68<br>34.67<br>34.68<br>34.67<br>34.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.33<br>27.33<br>27.34<br>27.34<br>27.35<br>27.35<br>27.35<br>27.37<br>27.43<br>27.51<br>27.62<br>27.60<br>27.74<br>27.77<br>27.80<br>27.70<br>27.80<br>27.80<br>27.80<br>27.88<br>27.88<br>27.88<br>27.88<br>27.88 | 8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>8.11<br>8.11                                                                                 |       |                                           |                       |    | 7:40<br>                                                                                                                                                                                                               | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B            | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-50<br>50-0<br>280-140<br>146-0 |                          | 1145<br>1232<br>1304 | DGP<br>KT |
| 780          | IO             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1500<br>2000<br>2500<br>3000<br>3500 |                         | $\begin{array}{c} 0.58\\ 0.57\\ 0.32\\ 0.09\\ -0.32\\ -0.29\\ -0.38\\ -0.49\\ -0.58\\ -0.49\\ 0.90\\ 1.40\\ 1.49\\ 1.32\\ 1.10\\ 0.70\\ 0.36\\ 0.18\\ 0.00\\ -0.06\\ \end{array}$                                                                                | 33.99<br>33.99<br>33.99<br>3.99<br>3.99<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.109<br>3.1 | 27·29<br>27·29<br>27·30<br>27·32<br>27·33<br>27·39<br>27·41<br>27·44<br>27·54<br>27·54<br>27·54<br>27·54<br>27·61<br>27·68<br>27·71<br>27·79<br>27·80<br>27·83<br>27·85<br>27·85<br>27·85<br>27·85                   | 8.24<br>8.23<br>8.18<br>8.17<br>8.15<br>8.13<br>8.04<br>7.99<br>7.96<br>7.96<br>8.11<br>8.01<br>8.07<br>8.16<br>8.08<br>8.13<br>8.28<br>8.23 |       |                                           |                       |    | $\begin{array}{c c} 8.14 \\ \hline \\ 8.05 \\ \hline \\ 7.76 \\ \hline \\ 7.742 \\ \hline \\ 7.11 \\ 6.54 \\ 5.59 \\ 4.80 \\ 4.27 \\ 4.04 \\ 4.14 \\ 4.20 \\ 4.17 \\ 4.32 \\ 4.51 \\ 4.39 \\ 4.39 \\ 4.39 \end{array}$ | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-50<br>50-0<br>202-133          | 1955<br><br>2233<br>2317 | 2140<br>2303<br>2337 | DGP<br>KT |
| 781          | II             | 0<br>10<br>20<br>30<br>40<br>50<br>60                                                                                         |                         | 0.89<br>0.89<br>0.71<br>0.41<br>0.14<br>0.01<br>0.00                                                                                                                                                                                                             | 34.06<br>34.06<br>34.07<br>34.08<br>34.00<br>34.10<br>34.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27·32<br>27·32<br>27·34<br>27·37<br>27·38<br>27·40<br>27·40                                                                                                                                                          | 8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.10<br>8.13<br>8.13                                                                                 |       |                                           |                       |    | 7·79<br>7·75<br>7·63<br>7·48                                                                                                                                                                                           | N 50 V<br>N 70 V                                               | 100-50<br>50-0<br>1000-780<br>750-500<br>500-250<br>250-100<br>100-50                  | 0140                     |                      |           |

| _                        | _                                    |                |      | Sounding | WIN       | D                | SEA                             |       |         | leter<br>lars)           | Air Ter     | np. C.      |                    |
|--------------------------|--------------------------------------|----------------|------|----------|-----------|------------------|---------------------------------|-------|---------|--------------------------|-------------|-------------|--------------------|
| Station                  | Position                             | Date           | Hour | (metres) | Direction | Force<br>(knots) | Direction                       | Force | Weather | Barometer<br>(milliburs) | Dry<br>bulb | Wet<br>bulb | Remarks            |
| <b>781</b> <i>cont</i> . | 54 <sup>°</sup> 24·4′ S, 34° 32·4′ W | 1931<br>20 xii |      |          |           |                  |                                 |       |         |                          |             |             |                    |
| 782                      | 54 25.9´ S, 35° 10.1´ W              | 20 xii         | 0658 | 1247*    | ESE       | 9                | ESE                             | 2     | oesp    | 984.3                    | 0.2         | 0.3         | mod. conf. E swell |
| 783                      | 54° 27·3′ S, 35° 47·5′ W             | 20 xii         | 1159 | 210*     | SE×S      | 8                | $\mathbf{SE} \times \mathbf{S}$ | 3     | 0       | 983 <sup>.</sup> 8       | 1.8         | 1.0         | mod. SE swell      |
| 784                      | 55° 00′ S, 36° 54.5′ W               | 20 xii         | 2050 | 254*     | SSE       | 18               | SSE                             | 3     | osp     | 984.1                    | 1.5         | 0.2         | low conf. swell    |
| 785                      | 54° 45·1′ S, 37° 52·3′ W             | 21 xii         | 0133 | 258*     | S         | 19               | S                               | 4     | OS      | 985.5                    | 0.7         | 0.3         | mod. conf. S swell |
| 786                      | 54° 30·2′ S, 38° 50·6′ W             | 21 xii         | 0651 | 214*     | S         | 22-27            | s                               | 4     | с       | 989.4                    | 1.2         | o∙6         | mod. S swell       |

| 781- | -786 |
|------|------|
|------|------|

|                     |                |                                                                  |                         |                                                                                      | HYDRO                                                                                                    | LOGICA                                                                                                            | L OBSE                                                                                       | RVATI | ONS                |                           |     |                                                                                                    | BIOFO                                                    | GICAL OBSER                                                                  | NATIO?       | 15                   |                                                |
|---------------------|----------------|------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------|--------------------|---------------------------|-----|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|--------------|----------------------|------------------------------------------------|
| Station             | Age of<br>moon |                                                                  | by<br>eter              |                                                                                      |                                                                                                          |                                                                                                                   |                                                                                              |       | Mg at              | om m.ª                    |     |                                                                                                    |                                                          |                                                                              | i'l.         | ME                   | Revarks                                        |
| Station             | (days)         | Depth<br>(metres)                                                | Depth by<br>thermometer | Temp.<br>C.                                                                          | s .                                                                                                      | σt                                                                                                                | pH                                                                                           | Р     | Nitrate<br>Nitrite | Nitrite<br>N <sub>2</sub> | .\1 | Oy<br>e.c.<br>litre                                                                                | Gear                                                     | Depth<br>(metres)                                                            | Irom         | Τo                   |                                                |
| <b>781</b><br>cont. | 11             | 80<br>100<br>150<br>200<br>300<br>400<br>600<br>800              |                         | - 0.11<br>- 0.26<br>0.00<br>0.54<br>1.60<br>1.69<br>1.82<br>1.63                     | 34.11<br>34.14<br>34.24<br>34.34<br>34.47<br>34.57<br>34.69<br>34.70                                     | 27.42<br>27.45<br>27.52<br>27.57<br>27.60<br>27.67<br>27.75<br>27.75                                              | 8.13<br>8.08<br>8.01<br>7.98<br>7.96<br>7.96<br>8.02<br>8.11                                 |       | -                  |                           |     | 7.73?<br>6.21<br>5.43<br>4.45<br>4.01<br>3.87<br>3.92                                              | N 70 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B         | 50-0<br>  182-128<br>  139-0                                                 | 0351<br>0434 | 0330<br>0421<br>0454 | DGP<br>KT                                      |
| 782                 | II             | 1000<br>1500<br>2000<br>2490                                     | <br>2490                | 0.94<br>0.31<br>0.81                                                                 | 34.70<br>34.70<br>34.69<br>34.68<br>33.99                                                                | 27.80<br>27.83<br>27.84<br>27.85<br>27.27                                                                         | 8.17<br>8.08<br>8.27<br>8.21<br>8.17                                                         |       |                    |                           |     | 3·88<br>4·21<br>4·14<br>4·23<br>7·65                                                               | N 70 V                                                   | 1000-750                                                                     | 0703         |                      |                                                |
| 102                 | 11             | 10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200      |                         | 0.80<br>0.73<br>0.72<br>0.69<br>0.69<br>0.59<br>0.40<br>0.36<br>0.30<br>0.60         | 33.99<br>33.99<br>34.00<br>34.00<br>34.01<br>34.01<br>34.02<br>34.04<br>34.14<br>34.14<br>34.24          | 27·28<br>27·28<br>27·28<br>27·28<br>27·28<br>27·28<br>27·30<br>27·32<br>27·33<br>27·42<br>27·49                   | 8.17<br>8.16<br>8.16<br>8.16<br>8.15<br>8.12<br>8.12<br>8.12<br>8.12<br>8.06<br>8.01         |       |                    |                           |     | $ \begin{array}{c}    $                                                                            | N 70 B<br>N 70 B<br>N 70 B<br>N 70 B<br>N 70 B<br>N 70 B | 750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-50<br>50-0<br>204-116 |              | 0830<br>0928<br>1001 | DGP<br>KT                                      |
| 783                 |                | 300<br>400<br>600<br>800<br>1000                                 | <br><br>996             | 1.40<br>1.70<br>1.91<br>1.79<br>1.63                                                 | 34.43<br>34.53<br>34.62<br>34.67<br>34.70                                                                | 27.58<br>27.64<br>27.71<br>27.74<br>27.79                                                                         | 7.95<br>7.94<br>8.04<br>8.11<br>8.15                                                         |       |                    |                           |     | 3.99<br>3.78<br>3.77<br>3.97<br>7.57                                                               | N 50 V                                                   | 100-50                                                                       | 1209         |                      | Water bottle touched                           |
| 783                 | 11             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150        |                         | 1.68<br>1.61<br>1.44<br>1.27<br>0.90<br>0.70<br>0.67<br>0.60<br>0.50<br>0.36         | 33.90<br>33.90<br>33.90<br>33.90<br>33.94<br>33.95<br>33.96<br>33.96<br>33.96<br>33.99<br>34.04          | 27.14<br>27.14<br>27.15<br>27.17<br>27.22<br>27.24<br>27.25<br>27.26<br>27.29<br>27.33                            | 8.15<br>8.16<br>8.15<br>8.15<br>8.16<br>8.16<br>8.15                                         |       |                    |                           |     | 7.51<br>7.62<br>7.51<br>7.44<br>7.27<br>7.06                                                       | N 70 V<br><br>N 70 B<br>N 100 B                          | 50-0<br>160-100<br>100-50<br>50-0<br>} 88-0                                  | 1251         | 1220<br>1309         | bottom at 152 m.<br>KT                         |
| 784                 | 12             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200 |                         | 2.76<br>2.54<br>1.58<br>0.90<br>0.49<br>0.36<br>0.30<br>0.30<br>0.23<br>0.30<br>0.60 | 33.87<br>33.87<br>33.97<br>33.90<br>33.92<br>33.97<br>33.98<br>34.03<br>34.03<br>34.11<br>34.17          | 27.03<br>27.05<br>27.12<br>27.19<br>27.23<br>27.28<br>27.29<br>27.33<br>27.37<br>27.39<br>27.43                   | 8.35<br>8.35<br>8.36<br>8.21<br>8.16<br>8.11<br>8.11<br>8.06<br>8.06<br>8.06<br>8.05<br>8.00 |       |                    |                           |     | 9·38<br>8·96<br>7·40<br>7·15<br>6·59<br>6·33<br>5·78                                               | N 50 V<br>,,,<br>N 70 B<br>N 100 B                       | 100-50<br>50-0<br>} 109-0                                                    | 2057         | 2110                 | КТ                                             |
| 785                 | 12             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200 |                         | 1.73<br>1.80<br>1.12<br>0.81<br>0.70<br>0.62<br>0.60<br>0.43<br>0.10<br>0.82<br>0.72 | 33.90<br>33.90<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.90<br>33.99<br>34.07<br>34.26 | 27.13<br>27.13<br>27.22<br>27.25<br>27.25<br>27.26<br>27.26<br>27.26<br>27.27<br>27.31<br>27.31<br>27.33<br>27.49 | 8.30<br>8.30<br>8.21<br>8.17<br>8.16<br>8.16<br>8.16<br>8.15<br>8.10<br>8.05<br>7.99         |       |                    |                           |     | $ \begin{array}{c} 8.51 \\ - \\ 7.42 \\ - \\ 7.59 \\ 7.59 \\ 7.19 \\ 6.91 \\ 5.46 \\ \end{array} $ | N 50 V<br>,,<br>N 70 B<br>N 100 B                        | 100-50<br>50-0<br>95-0                                                       | 0301         | <b>0153</b><br>0321  | Water bottle touched<br>bottom at 222 m.<br>KT |
| 786                 | 12             | 0<br>10                                                          |                         | 1.52<br>1.58                                                                         | 33.91<br>33.91                                                                                           | 27·16<br>27·15                                                                                                    | 8·25<br>8·25                                                                                 | -     |                    |                           |     | 8.07                                                                                               | N 50 V<br>,,                                             | 100-50<br>50-0                                                               | 0700         | 0713                 |                                                |

|              |                          |                |      | Sounding             | WIN                             | D                | SEA                             |       |         | neter<br>Dars)           | Air Ter     | пр <b>.</b> <sup>-</sup> С. |                         |
|--------------|--------------------------|----------------|------|----------------------|---------------------------------|------------------|---------------------------------|-------|---------|--------------------------|-------------|-----------------------------|-------------------------|
| Station      | Position                 | Date           | Hour | Sounding<br>(metres) | Direction                       | Force<br>(knots) | Direction                       | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb                 | Remarks                 |
| 786<br>cont. | 54° 30°2′ S, 38° 50°6′ W | 1931<br>21 xii |      |                      |                                 |                  |                                 |       |         |                          |             |                             |                         |
|              |                          |                |      |                      |                                 |                  |                                 |       |         |                          |             |                             |                         |
|              |                          |                |      |                      |                                 |                  |                                 |       |         |                          |             |                             |                         |
| 787          | 54° 14·4′ S, 39° 47·4′ W | 21 xii         | 1137 | 1944*                | SSW                             | 20               | SSW                             | 4     | csp     | 992°0                    | 1.2         | 0.0                         | mod. $S \times W$ swell |
|              |                          |                |      |                      |                                 |                  |                                 |       |         |                          |             |                             |                         |
| 788          | 54° 00°2′ S, 40° 24°7′ W | 21 xii         | 1550 | 2724*                | $\mathbf{SW} \times \mathbf{S}$ | 17               | $\mathbf{SW} \times \mathbf{S}$ | 4     | csp     | 993.9                    | 1.2         | 0.0                         | mod. S swell            |
|              |                          |                |      |                      |                                 |                  |                                 |       |         |                          |             |                             |                         |
|              |                          |                |      |                      |                                 |                  |                                 |       |         |                          |             |                             |                         |
|              |                          |                |      |                      |                                 |                  |                                 |       |         |                          |             |                             |                         |
|              |                          |                |      |                      |                                 |                  |                                 |       |         |                          |             |                             |                         |
| 789          | 53° 58·5′ S, 39° 50·6′ W | 21 xii         | 2047 | 788*                 | SW                              | 17-21            | SW                              | 4     | 0       | 995·0                    | <b>o</b> ·6 | 0.0                         | mod. SW swell           |
|              |                          |                |      |                      |                                 |                  |                                 |       |         |                          |             |                             |                         |
|              |                          |                |      |                      |                                 |                  |                                 |       |         |                          |             |                             |                         |
|              |                          |                |      |                      |                                 |                  |                                 |       |         |                          |             |                             |                         |
| 790          | 53° 56.8' S, 39° 16' W   | 22 xii         | 0142 | 397*                 | SSW                             | 16               | SSW                             | 3     | с       | 995 <sup>.</sup> 1       | - 0.6       | - 1.0                       | mod. SW swell           |
|              |                          |                |      |                      |                                 |                  |                                 |       |         |                          |             |                             |                         |
|              |                          |                |      |                      |                                 |                  |                                 |       |         |                          |             |                             |                         |
|              |                          |                |      |                      |                                 |                  |                                 |       |         |                          |             |                             |                         |
| 791          | 53° 55.6′ S, 38° 45.7′ W | 22 xii         | 0522 | I 77*                | $SW \times W$                   | 13               | $SW \times W$                   | 3     | be      | 994.7                    | 0.6         | - o·8                       | mod. SW swell           |

| 786-79 | ] |
|--------|---|
|--------|---|

|                     |                |                                                                                                                |                              |                                                                                                                                                      | HYDRO                                                                                                                                                          | LOGICA                                                                                                                                                                                             | L OBSE                                                                                       | RVATI | ONS                                       |                       |    |                                                              | BIOLO                                                                  | GICAL OBSLI                                                                            | evano.               | 15                   |                                                                        |
|---------------------|----------------|----------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------|-------------------------------------------|-----------------------|----|--------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------|----------------------|------------------------------------------------------------------------|
| 0.1                 | Age of         |                                                                                                                | y<br>ter                     |                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                              |       | Mg.—at                                    | om m.1                |    |                                                              |                                                                        |                                                                                        |                      | VII.                 |                                                                        |
| Station             | moon<br>(days) | Depth<br>(metres)                                                                                              | Depth by<br>thermometer      | Temp.<br>C.                                                                                                                                          | S °/,,,                                                                                                                                                        | σt                                                                                                                                                                                                 | рН                                                                                           | p     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | $\frac{Nitrite}{N_2}$ | Si | O2<br>c.c.<br>litre                                          | Gear                                                                   | Depth<br>(metres)                                                                      | Irom                 | Τo                   | Remarks                                                                |
| <b>786</b><br>cont. | 12             | 20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200                                                          |                              | 1.59<br>1.69<br>1.40<br>0.25<br>-0.02<br>-0.10<br>-0.09<br>0.19<br>0.74                                                                              | 33.91<br>33.92<br>33.91<br>33.92<br>33.93<br>33.93<br>33.97<br>34.05<br>34.10<br>34.26                                                                         | 27.15<br>27.16<br>27.17<br>27.25<br>27.26<br>27.31<br>27.37<br>27.39<br>27.49                                                                                                                      | 8.25<br>8.16<br>8.16<br>8.16<br>8.16<br>8.15<br>8.11<br>8.06<br>7.99                         |       |                                           |                       |    | 8.11<br>7.69<br>7.42<br>6.93<br>6.47<br>5.38                 | N 70 B<br>N 100 B                                                      | 82-0                                                                                   | 0749                 | 0809                 | КТ                                                                     |
| 787                 | 12             | 0                                                                                                              |                              | 1.20                                                                                                                                                 | 33.87                                                                                                                                                          | 27.13                                                                                                                                                                                              | 8.12                                                                                         |       |                                           |                       |    |                                                              | N 50 V<br>,,<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                 | 100-50<br>50-0<br>200-148<br>154-0                                                     | 1140<br>             | 1152<br>1244<br>1317 | DGP<br>KT                                                              |
| 788                 | 12             | 0<br>10<br>20<br>30<br>50<br>60<br>80<br>150<br>200<br>300<br>390<br>590<br>790<br>980<br>1470<br>1960<br>2450 | <br><br><br><br><br><br><br> | 1.58<br>1.58<br>1.56<br>1.49<br>0.88<br>0.80<br>0.62<br>0.19<br>0.20<br>0.60<br>1.05<br>1.80<br>1.72<br>2.08<br>2.00<br>1.95<br>1.52<br>1.15<br>0.69 | 33.84<br>33.84<br>33.84<br>33.85<br>33.87<br>33.88<br>33.90<br>33.92<br>34.07<br>34.16<br>34.34<br>34.40<br>34.50<br>34.61<br>34.61<br>34.61<br>34.69<br>34.68 | 27.09<br>27.09<br>27.10<br>27.11<br>27.17<br>27.18<br>27.20<br>27.23<br>27.25<br>27.35<br>27.39<br>27.49<br>27.53<br>27.58<br>27.58<br>27.69<br>27.78<br>27.60<br>27.78<br>27.80<br>27.80<br>27.80 | 8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17                                 |       |                                           |                       |    | $\begin{array}{c} 7.44 \\$                                   | N 50 V<br>N 70 V<br>''<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B       | 100-50<br>50-0<br>1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>280-100<br>119-0 | 1557<br>1754<br>1834 | 1736<br>1824<br>1854 | DGP<br>KT                                                              |
| 789                 | 12             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600                          |                              | 1.12<br>1.12<br>1.09<br>0.94<br>0.84<br>0.70<br>0.20<br>0.29<br>0.11<br>0.21<br>1.10<br>1.52<br>1.93                                                 | 33.90<br>33.90<br>33.90<br>33.90<br>33.93<br>33.93<br>33.94<br>33.96<br>33.98<br>34.04<br>34.10<br>34.37<br>34.52<br>34.65                                     | 27:18<br>27:18<br>27:18<br>27:21<br>27:21<br>27:23<br>27:28<br>27:29<br>27:34<br>27:39<br>27:56<br>27:65<br>27:71                                                                                  | 8.18<br>8.18<br>8.18<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17                                 |       |                                           |                       |    | 7.67<br>                                                     | N 70 V<br>,,<br>N 50 V<br>,,<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 500-250<br>250-100<br>100-50<br>50-0<br>2222-104<br>118-0                              | 2055<br>2244<br>2329 | 2230<br>2314<br>2349 | Stray on wire<br>DGP<br>KT<br>Water bottle touched<br>bottom at 600 m. |
| 790                 | 13             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300                                        |                              | 1·32<br>1·32<br>1·31<br>1·30<br>0·90<br>0·62<br>0·50<br>0·45<br>0·37<br>0·63<br>1·48                                                                 | 33.96<br>33.96<br>33.96<br>33.98<br>33.98<br>33.98<br>33.98<br>33.99<br>34.04<br>34.05<br>34.14<br>34.23<br>34.49                                              | 27·21<br>27·21<br>27·21<br>27·21<br>27·26<br>27·27<br>27·29<br>27·32<br>27·34<br>27·42<br>27·48<br>27·62                                                                                           | 8.22<br>8.22<br>8.22<br>8.17<br>8.17<br>8.17<br>8.12<br>8.12<br>8.12<br>8.06<br>8.02<br>7.95 |       |                                           |                       |    | 8.19<br>8.18<br>7.60<br>7.39<br>7.10<br>6.36<br>5.77<br>4.37 | N 50 V<br>,,,<br>N 70 V<br>,,<br>,,<br>,,<br>N 70 B<br>N 100 B         | 100-50<br>50-0<br>350-250<br>250-100<br>100-50<br>50-0<br>97-0                         | <b>0150</b>          | 0258<br>0328         | Stray on wire<br>"""<br>KT                                             |
| 791                 | 13             | 0                                                                                                              |                              | 1·23<br>1·23                                                                                                                                         | 34.01<br>34.01                                                                                                                                                 | 27·26<br>27·26                                                                                                                                                                                     | 8·17<br>8·17                                                                                 |       |                                           |                       |    | 7.80                                                         | N 50 V<br>,,                                                           | 100-50<br>50-0                                                                         | 0527                 |                      |                                                                        |

|                  |                                                                                                                          |                              |                              | Sounding      | WIN                     | D                  | SEA                     |                  |             | neter<br>bars)                      | Air Ter     | np. ° C.    |                                                                                   |
|------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|---------------|-------------------------|--------------------|-------------------------|------------------|-------------|-------------------------------------|-------------|-------------|-----------------------------------------------------------------------------------|
| Station          | Position                                                                                                                 | Date                         | Hour                         | (metres)      | Direction               | Force<br>(knots)   | Direction               | Готсе            | Weather     | Rarometer<br>(milhbars)             | Dry<br>bulb | Wet<br>bulb | Remarks                                                                           |
| <b>791</b> cont. | 53° 55.6′ S, 38° 45.7′ W                                                                                                 | 1931<br>22 xii               |                              |               |                         |                    |                         |                  |             |                                     |             |             |                                                                                   |
| 793              | 3 miles S 60° E of Jason I,<br>South Georgia<br>3 miles S 60° E of Jason I,<br>South Georgia<br>53° 42'4' S, 32° 53'2' W | 22 xii<br>1932<br>5 i<br>6 i | 1652<br>1803<br>0900<br>1200 | <br>3318*     | NW<br>W×N<br>SSW<br>NNW | 6<br>14<br>6<br>10 | NW<br>W×N<br>SSW<br>NNW | 2<br>3<br>3<br>2 | 0<br>C<br>0 | 991.5<br>1004.6<br>1004.3<br>1003.9 | 2·8         | 0.0         | low NW swell<br>mod. conf. swell<br>heavy conf. SSW<br>swell<br>heavy conf. swell |
| 795              | 53° 44.6′ S, 31° 02.1′ W                                                                                                 | 6 i                          | 2000                         | 3919*         | NNW                     | 14                 | NNW                     | 3                | 0           | 1003.1                              | 0.0         | 0.4         | mod. conf. swell                                                                  |
| 796              | 53° 47°1′ S, 28° 14°9′ W                                                                                                 | 7 i                          | 0900                         | +945 <b>*</b> | N×W                     | 22                 | N×W                     | 4                | od          | 994.6                               | 2.7         | 2.6         | mod. conf. swell                                                                  |

|                          |                |                                                                                                                               |                         |                                                                                                                                                                                 | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DLOGIC.                                                                                                                                                                                                                       | L OBS                                                                                                                                                        | ERVAT | 1085               |               |       |                                                                                                                                                                            | BIOLO                                                       | GICAL OBSEI                           | RV VTIO.                     | NS                           |                        |
|--------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|---------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|------------------------------|------------------------------|------------------------|
|                          | Age of         |                                                                                                                               | y<br>ter                |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                              |       | Mg.—a              | ton m.        |       |                                                                                                                                                                            |                                                             |                                       | TI                           | ME                           |                        |
| Station                  | moon<br>(days) | Depth<br>(metres)                                                                                                             | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                     | S 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | σt                                                                                                                                                                                                                            | рH                                                                                                                                                           | P     | Nitrate<br>Nitrite | Nitrite<br>Ng | $S_1$ | O <sub>2</sub><br>c.c.<br>litre                                                                                                                                            | Gear                                                        | Depth<br>(metres)                     | From                         | То                           | Remarks                |
| <b>791</b> <i>cont</i> . | 13             | 20<br>30<br>40<br>50<br>60<br>80<br>100<br>150                                                                                |                         | 1.22<br>1.18<br>0.03<br>0.80<br>0.78<br>0.74<br>0.64<br>0.42                                                                                                                    | 34.01<br>34.01<br>33.99<br>33.99<br>33.99<br>33.99<br>34.01<br>34.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27:26<br>27:26<br>27:27<br>27:28<br>27:28<br>27:28<br>27:28<br>27:30<br>27:34                                                                                                                                                 | 8.17<br>8.17<br>8.16<br>8.16<br>8.16<br>8.16<br>8.12<br>8.12<br>8.12                                                                                         |       |                    |               |       | 7:79<br>7:54<br>7:47<br>7:30                                                                                                                                               | N 70 V<br>,,<br>N 70 B<br>N 100 B                           | 100-50<br>50-0<br>} 110-0             | 0628                         | 0555<br>0646                 | КТ                     |
| 792                      | 13             | 0                                                                                                                             |                         | 3.12                                                                                                                                                                            | 32.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.15                                                                                                                                                                                                                         | 8.15                                                                                                                                                         |       |                    |               |       |                                                                                                                                                                            | N 50 V                                                      | 100-0                                 | 1850                         | 1900                         |                        |
| 793                      | 27             | 0                                                                                                                             |                         | 2.28                                                                                                                                                                            | 33.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.89                                                                                                                                                                                                                         | 8.20                                                                                                                                                         |       |                    | _             |       |                                                                                                                                                                            | N 50 V                                                      | I 00-0                                | 1813                         | 1820                         |                        |
| 794                      | 28             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500<br>2000<br>2500<br>3000 |                         | $\begin{array}{c} 0.55\\ 0.53\\ 0.52\\ 0.50\\ 0.50\\ 0.50\\ 0.55\\ -0.42\\ -0.57\\ -0.13\\ 1.30\\ 1.32\\ 1.50\\ 1.50\\ 1.22\\ 1.02\\ 0.62\\ 0.32\\ 0.11\\ -0.01\end{array}$     | 34.07<br>34.08<br>34.08<br>34.08<br>34.08<br>34.08<br>34.09<br>34.14<br>34.18<br>34.31<br>34.45<br>34.66<br>34.68<br>34.69<br>34.70<br>34.72<br>34.71<br>34.69<br>34.72<br>34.71<br>34.69<br>34.72<br>34.71<br>34.69<br>34.72<br>34.69<br>34.72<br>34.69<br>34.72<br>34.69<br>34.72<br>34.69<br>34.72<br>34.69<br>34.72<br>34.69<br>34.72<br>34.69<br>34.72<br>34.69<br>34.72<br>34.69<br>34.72<br>34.69<br>34.72<br>34.69<br>34.72<br>34.69<br>34.72<br>34.69<br>34.72<br>34.69<br>34.69<br>34.72<br>34.69<br>34.69<br>34.69<br>34.72<br>34.69<br>34.69<br>34.72<br>34.69<br>34.69<br>34.69<br>34.72<br>34.69<br>34.69<br>34.69<br>34.69<br>34.72<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.72<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>3 | 27:35<br>27:36<br>27:36<br>27:36<br>27:36<br>27:36<br>27:36<br>27:50<br>27:58<br>27:58<br>27:58<br>27:58<br>27:77<br>27:78<br>27:78<br>27:78<br>27:78<br>27:78<br>27:78<br>27:78<br>27:78<br>27:85<br>27:85<br>27:85<br>27:85 | 8.13<br>8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>8.02<br>7.96<br>7.95<br>7.98<br>8.01<br>8.11<br>8.11<br>8.05<br>8.05<br>8.05<br>8.17                 |       |                    |               |       | $\begin{array}{c} 7.42 \\ - \\ 7.42 \\ - \\ 7.44 \\ - \\ 7.45 \\ 7.10 \\ 6.06 \\ 4.84 \\ 4.26 \\ 4.16 \\ 4.23 \\ 4.22 \\ 4.33 \\ 4.41 \\ 4.58 \\ 4.68 \\ 4.68 \end{array}$ | N 50 V<br>N 100 B<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>250-0<br>} 202-98<br>} 102-0 | 0905<br>1216<br>1312<br>1358 | 0925<br>1246<br>1343<br>1418 | DGP<br>DGP<br>KT       |
| 795                      | 29             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1500<br>2500<br>3000                 |                         | $\begin{array}{c} 0.55\\ 0.54\\ 0.49\\ 0.41\\ 0.40\\ -0.02\\ -0.80\\ -1.01\\ -1.02\\ -0.79\\ -0.04\\ 0.61\\ 0.78\\ 0.70\\ 0.57\\ 0.49\\ 0.22\\ 0.01\\ -0.09\\ -0.14\end{array}$ | 33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>34.01<br>34.10<br>34.14<br>34.17<br>34.28<br>34.45<br>34.61<br>34.67<br>34.68<br>34.68<br>34.67<br>34.67<br>34.67<br>34.67<br>34.67<br>34.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27·26<br>27·26<br>27·27                                                                                                                                                                                                       | 8.12<br>8.12<br>8.12<br>8.13<br>8.11<br>8.12<br>8.09<br>8.08<br>8.07<br>8.03<br>8.00<br>7.96<br>7.97<br>8.01<br>8.01<br>8.02<br>8.06<br>8.07<br>8.22<br>8.16 |       |                    |               |       | 7:46<br>7:48<br>7:46<br>7:50<br>7:13<br>6:29<br>5:34<br>4:67<br>4:50<br>4:40<br>4:40<br>4:49<br>4:54<br>4:66<br>4:64<br>4:77                                               | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B            | 100-0<br>310-124<br>124-0             | 2016<br>2230<br>2314         | 2025<br>2300<br>2334         | DGP<br>KT              |
| 796                      | 29             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150                                                                     |                         | 1.93<br>1.92<br>1.91<br>1.91<br>1.91<br>1.83<br>1.80<br>0.33<br>0.39<br>1.19                                                                                                    | 33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>34.04<br>34.11<br>34.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.17<br>27.17<br>27.17<br>27.17<br>27.17<br>27.17<br>27.17<br>27.18<br>27.33<br>27.39<br>27.51                                                                                                                               | 8.15<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.07<br>8.06<br>7.96                                                                         |       |                    |               |       | 7·12<br>7·13<br>7·13<br>7·11<br>6·53<br>4·80                                                                                                                               | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B            | 100-0<br>248-102<br>131-0             | 0010<br>1200<br>1240         | 0914<br>1230<br>1300         | + 2 hours<br>DGP<br>KT |

|                     |                         |             |              |                      | WIN             | D                | SEA         |       |           | neter<br>bars)           | Air Ten     | np.°C.      |                                         |
|---------------------|-------------------------|-------------|--------------|----------------------|-----------------|------------------|-------------|-------|-----------|--------------------------|-------------|-------------|-----------------------------------------|
| Station             | Position                | Date        | Hour         | Sounding<br>(metres) | Direction       | Force<br>(knots) | Direction   | Force | Weather   | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                                 |
| <b>796</b><br>cont. | 53° 47°1′ S, 28 14°9′ W | 1932<br>7 i |              |                      |                 |                  |             |       |           |                          |             |             |                                         |
| 797                 | 54° 44.7′ S, 27 20.8′ W | 7 i         | 2000<br>0000 | 6377*<br>7076*       | N × E<br>NE × N | 27<br>28         | N×E<br>NE×N | 55    | o<br>orsq | 985·1<br>979·8           | 2·2<br>I·2  | 1.8<br>1.0  | mod. conf. NNE swell<br>heavy NNW swell |
| 798                 | 54° 50.5' S, 25° 56' W  | 8 i         | 0900         | 5010*                | NE              | 22               | NE          | 5     | O         | 979.3                    | 1.2         | 1.2         | heavy conf. NE swell                    |
| 799                 | 54° 43.7′ S, 24° 30′ W  | 8 i         | 2000<br>0000 | 4282*                | E<br>E×S        | 19<br>18         | E<br>E×S    | 4 +   | ors<br>oe | 984'0<br>987'7           | 1·2<br>1·3  | 1.1         | heavy conf. NE swell<br>heavy NNE swell |

796-799

|         |                |              |                         |                  | HYDRO                                    | LOGICA         | L OBSE                                 | RV.VTI | ONS                       |                |    |                         | BIOLOG            | GICAL OBSER        | VATIO? | \$8  |                                 |
|---------|----------------|--------------|-------------------------|------------------|------------------------------------------|----------------|----------------------------------------|--------|---------------------------|----------------|----|-------------------------|-------------------|--------------------|--------|------|---------------------------------|
|         | Age of         |              | . ter                   |                  |                                          |                |                                        |        | Mg.—at                    | om m.³         |    |                         |                   |                    | TE     | ME   | T. 1                            |
| Station | moon<br>(days) | Depth        | th by                   | Temp.<br>C.      | S °/                                     | σt             | pH                                     |        | Nitrate                   | Nitrite        |    | () <sub>2</sub><br>c.c. | Gear              | Depth<br>(nietres) |        |      | Remarks                         |
|         |                | (metres)     | Depth by<br>thermometer | С.               |                                          |                |                                        | Р      | Nitrite<br>N <sub>2</sub> | N <sub>2</sub> | Si | litre                   |                   |                    | From   | To   |                                 |
|         |                |              |                         |                  |                                          |                |                                        |        |                           |                |    |                         |                   |                    |        |      |                                 |
| 796     | 29             | 200          | -                       | 1.58             | 34.45                                    | 27.58          | 7.94                                   |        |                           |                | _  | 4·21<br>4·01            |                   |                    |        |      |                                 |
| cont.   |                | 300<br>400   |                         | 1·70<br>1·90     | 34 <sup>.</sup> 54<br>34 <sup>.</sup> 61 | 27·65<br>27·70 | 7 <sup>.</sup> 94<br>7 <sup>.</sup> 94 |        |                           |                | _  | 3.89                    |                   |                    |        |      |                                 |
|         |                | 600          |                         | 1.82             | 34.67                                    | 27.74          | 8.01                                   |        | _                         | —              |    | 3.87                    |                   |                    |        |      |                                 |
|         |                | 800<br>1000  |                         | 1·89<br>1·78     | 34 <sup>.</sup> 72<br>34 <sup>.</sup> 74 | 27·78<br>27·81 | 8·05<br>8·11                           |        |                           |                |    | 4.08<br>4.14            |                   |                    |        |      |                                 |
|         |                | 1500         |                         | 1.08             | 34.71                                    | 27.84          | 8.12                                   |        |                           |                |    | 4.51                    |                   |                    |        |      |                                 |
|         |                | 2000         |                         | 0.26             | 34·69<br>34·68                           | 27·84<br>27·86 | 8·12<br>8·12                           |        |                           |                | _  | 4·37<br>4·76            |                   |                    |        |      |                                 |
|         |                | 2500<br>3000 |                         | 0·23<br>0·06     | 34.67                                    | 27.86          | 8.17                                   |        | -                         | _              |    | 4.55                    |                   |                    |        |      |                                 |
|         |                |              |                         |                  |                                          |                | 0                                      |        |                           |                |    | 7.36                    | N 70 B            | 1                  |        |      |                                 |
| 797     | 0              | 0<br>10      | _                       | o∙76<br>o•74     | 33 <sup>.</sup> 99<br>34 <sup>.</sup> 03 | 27·28<br>27·31 | 8·11<br>8·11                           |        | _                         |                |    |                         | N 100 B           | 250-122            | 2016   | 2046 | DGP                             |
|         |                | 20           |                         | 0.73             | 34.03                                    | 27.31          | 8.11                                   | —      |                           |                |    | 7.34                    | N 70 B            | 153-0              | 2101   | 2121 | KT                              |
|         |                | 30           | _                       | 0.21<br>0.69     | 34 <sup>.04</sup><br>34 <sup>.05</sup>   | 27·31<br>27·32 | 8.11<br>8.11                           |        |                           |                |    | 7.38                    | N 100 B<br>N 50 V | 100-0              | 2139   | 2145 |                                 |
|         |                | 40<br>50     | _                       | 0.09<br>0.60     | 34.05                                    | 27.32          | 8.11                                   |        |                           |                |    |                         |                   |                    |        |      |                                 |
|         |                | 60           | —                       | 0.46             | 34.05                                    | 27.34          | 8·10                                   |        |                           | -              |    | 7.38                    |                   |                    |        |      |                                 |
|         |                | 80<br>100    |                         | — 0·65<br>— 0·70 | 34.09<br>34.14                           | 27·42<br>27·47 | 8∙08<br>8∙04                           | _      |                           |                |    | 5.64                    |                   |                    |        |      |                                 |
|         |                | 150          | _                       | 0.30             | 34.39                                    | 27.62          | 7.96                                   |        |                           |                | -  | 5.36                    |                   |                    |        | t    |                                 |
|         |                | 200          |                         | 1.10             | 34.52                                    | 27.67          | 7.95                                   | _      |                           |                | _  | 4·50<br>4·21            |                   |                    |        |      |                                 |
|         |                | 300<br>400   |                         | 1.32<br>1.32     | 34·60<br>34·64                           | 27·72<br>27·76 | 7 <sup>.</sup> 94<br>7 <sup>.</sup> 95 | _      |                           |                |    | 4.28                    |                   |                    |        |      |                                 |
|         |                | 500          |                         | 1.32             | 34.68                                    | 27.79          | 8.07                                   | —      | -                         | -              |    | 4.06                    |                   |                    |        |      |                                 |
|         |                | 600<br>800   |                         | 1.30             | 34·68<br>34·67                           | 27·79<br>27·79 | 8.01<br>8.07                           |        |                           |                | _  | 4·16<br>4·29            |                   |                    |        |      |                                 |
|         |                | 1000         |                         | 0.78             | 34.07                                    | 27.85          | 8.22                                   |        |                           | -              |    | 4.30                    |                   |                    |        |      |                                 |
|         |                | 1 500        |                         | 0.42             | 34.70                                    | 27.87          | 8.02                                   |        |                           |                |    | 4.45                    |                   |                    |        |      |                                 |
|         |                | 2000<br>2500 |                         | 0.13<br>0.03     | 34·67<br>34·67                           | 27·85<br>27·86 | 8·39<br>8·13                           |        |                           |                |    | 4·39<br>4·50            |                   |                    |        |      |                                 |
|         |                | 3000         |                         | -0.15            | 34.67                                    | 27.87          | 8.22                                   | -      | -                         |                | _  | 4.44                    |                   |                    |        |      |                                 |
|         |                | 3500         | 3518                    | -0.53            | 34.66                                    | 27.86          | 8.18                                   |        |                           |                |    |                         |                   |                    |        |      |                                 |
| 798     | 0              | 0            | _                       | <b>o</b> ∙96     |                                          |                | 8.11                                   | —      |                           | _              |    | 7.33                    | N 70 B            | 242-116            | 0918   | 0948 | (DGP. Salinity)<br>samples lost |
|         |                | 10           |                         | <b>o</b> ∙96     | -                                        |                | 8.11<br>8.11                           |        |                           |                |    | 7.34                    | N 100 B<br>N 70 B | 4                  |        |      |                                 |
|         |                | 20<br>30     |                         | 0·94<br>0·91     |                                          |                | 8.11                                   | _      | -                         |                | _  |                         | N 100 B           | 137-0              | 1002   | 1022 | KT                              |
|         |                | 40           | -                       | 0.90             | —                                        | —              | 8.11                                   |        | -                         |                | -  | 7.32                    | N 50 V            | 100-0              | 1027   | 1038 |                                 |
|         |                | 50<br>60     |                         | o∙86<br>o∙8o     |                                          |                | 8.11<br>8.11                           |        |                           |                |    |                         |                   |                    |        |      |                                 |
|         |                | 80           | -                       | 0.08             | -                                        | _              | 8.09                                   |        |                           |                |    |                         |                   |                    |        |      |                                 |
|         |                | 100          |                         | -0.30            |                                          |                | 8.08<br>8.02                           |        |                           |                |    | 7·34<br>6·45            |                   |                    |        |      |                                 |
|         |                | 150<br>200   |                         | - 0.22<br>0.80   |                                          |                | 7.96                                   |        |                           |                |    | 5.02                    |                   |                    |        |      |                                 |
|         |                | 300          | -                       | 1.29             |                                          | -              | 7.94                                   |        |                           |                |    | 4.40                    |                   |                    |        |      |                                 |
|         | 1              | 390<br>590   | _                       | 1·70<br>1·62     |                                          |                | 7·95<br>8·01                           |        |                           |                |    |                         |                   |                    |        |      |                                 |
|         |                | 780          |                         | 1.43             |                                          | _              | 8.00                                   | -      | -                         |                |    | 4·12<br>4·18            | 1                 |                    |        |      |                                 |
|         | ļ              | 980<br>1470  |                         | 1·21<br>0·62     |                                          |                | 8·12<br>8·12                           |        | _                         |                |    | 4.33                    | 1                 |                    |        |      |                                 |
|         |                | 1960         |                         | 0.02             | _                                        |                | 8.11                                   |        |                           |                | -  | 4.48                    |                   |                    |        |      |                                 |
|         |                | 2440         | -                       | 0.20             |                                          | _              | 8·23<br>8·08                           |        | _                         |                | _  | 4.54                    |                   |                    |        |      |                                 |
|         |                | 2930<br>3420 |                         | 0.05             |                                          |                | 8.23                                   |        | _                         | —              | -  | 4.44                    |                   |                    |        |      |                                 |
|         |                | 3910         | -                       | -0.35            | -                                        |                | 8.33                                   |        | _                         |                |    | 4.64<br>4.60            |                   |                    |        |      |                                 |
|         |                | 4400         | 4402                    | - o· 36          | -                                        | _              | 8.28                                   |        |                           |                |    |                         |                   |                    |        |      | Most salinity                   |
| 799     | I              | 0            | -                       | 1.30             | -                                        | _              | 8.12                                   | _      | -                         | -              |    | 7.29                    | N 50 V            | 100-0              | 2010   | 2020 | samples lost                    |
|         |                | 10           | _                       | 1.30             |                                          |                | 8·12<br>8·12                           |        |                           |                |    | 7.26                    | N 70 B            | 1 221-120          | 2309   | 2339 | DGP                             |
| 1       |                | 30           |                         | 1.30             |                                          | _              | 8.12                                   | -      |                           |                |    |                         | N 100 B           | 334-130            |        |      |                                 |
|         |                | 40           |                         | 1.28             |                                          | _              | 8·12<br>8·12                           |        |                           |                |    | 7.28                    | N 70 B<br>N 100 B | 131-0              | 2351   | 0011 | KT                              |
|         |                | 50<br>60     |                         | 1·23<br>1·02     |                                          |                | 8.12                                   |        |                           |                |    | 7.29                    |                   |                    |        |      |                                 |
|         |                | 80           |                         | 0.31             |                                          | -              | 8.08                                   |        |                           | l              |    | 7.57                    |                   |                    |        |      |                                 |
|         |                | 100          |                         | -0.18            |                                          |                | 8.04                                   |        |                           |                | -  | 7.21                    |                   |                    |        |      | <u> </u>                        |
|         |                |              | 1                       |                  | I                                        | <u> </u>       |                                        |        | 1                         |                | ·  |                         | •                 |                    |        |      |                                 |

|              |                          |               |      | Sounding             | WIN       | D                | SEA       | <u></u> |         | neter<br>Dars)           | Air Ter     | np. C.      |                      |
|--------------|--------------------------|---------------|------|----------------------|-----------|------------------|-----------|---------|---------|--------------------------|-------------|-------------|----------------------|
| Station      | Position                 | Date          | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Гогсе   | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks              |
| 799<br>cont. | 54° 43.7′ S, 24° 30′ W   | 1932<br>8–9 i |      |                      |           |                  |           |         |         |                          |             |             |                      |
| 800          | 54° 33·3′ S, 22° 28·4′ W | 9 i           | 0900 | 2958*                | ESE       | 13               | ESE       | 3       | om      | 992.2                    | 1.7         | 1.4         | heavy conf. NE swell |
| 801          | 54° 26.4′ S, 21° 11.1′ W | 9 i           | 1742 | 2492*                | E×S       | 15               | E×S       | 3       | 0       | 994*9                    | 2.0         | 1.3         | heavy conf. E swell  |
| 802          | 54° 15′ S, 19° 11·1′ W   | 10 İ          | 0400 | 4342*                | ESE       | II               | ESE       | 3       | o       | 997.7                    | 1.4         | 0.6         | mod. conf. E swell   |

|                     |                |                                                                                                          |                         |                                                                                                                                                                                      | HYDRO                                                                                                                                                                                                                                           | LOGIC                                                                                                                                                                   | L OBSE                                                                                                                                               | RVATI | IONS                                 |                           |    |                                                                                                                                                                                         | BIOLOG                                           | GICAL OBSET                  | RVATIO:              | NS                          |                                   |
|---------------------|----------------|----------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------|---------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------|----------------------|-----------------------------|-----------------------------------|
| Station             | Age of         |                                                                                                          | y<br>eter               |                                                                                                                                                                                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                      |       | Mg.—at                               | oni m.3                   |    |                                                                                                                                                                                         | ·                                                |                              | TI                   | ML                          | Rumort.                           |
| Station             | moon<br>(days) | Depth<br>(metres)                                                                                        | Depth by<br>thermometer | Temp.<br>°C.                                                                                                                                                                         | S°¦₀₀                                                                                                                                                                                                                                           | σt                                                                                                                                                                      | pН                                                                                                                                                   | Р     | Nitrate<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N <sub>2</sub> | Si | O <sub>2</sub><br>c.c.<br>litre                                                                                                                                                         | Gear                                             | Depth<br>(metres)            | From                 | То                          | Remarks                           |
| 799<br>cont.<br>800 | I              | 150<br>200<br>300<br>400<br>590<br>790<br>990<br>1480<br>1970<br>2470<br>2960<br>3450                    | 3453                    | $\begin{array}{c} - 0.12 \\ 0.73 \\ 1.28 \\ 1.39 \\ 1.50 \\ 1.62 \\ 1.40 \\ 0.72 \\ 0.41 \\ 0.22 \\ 0.10 \\ - 0.03 \\ 0.83 \\ 0.83 \\ 0.83 \end{array}$                              | 34·68<br>34·66<br>34·66                                                                                                                                                                                                                         | 27·86<br>27·84<br>27·85<br>27·08                                                                                                                                        | 8.00<br>7.96<br>7.93<br>7.92<br>8.12<br>8.17<br>8.16<br>8.09<br>8.08<br>8.09<br>8.09<br>8.09<br>8.09<br>8.18                                         |       |                                      |                           |    | 6.59<br>5.10<br>4.25<br>4.17<br>3.99<br>3.95<br>4.04<br>4.30<br>4.39<br>4.47<br>4.63<br>4.62<br>7.36                                                                                    | N 50 V<br>N 70 B                                 | 100-0                        | 0909                 | 0916                        |                                   |
|                     |                | 10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1500<br>2000<br>2500 |                         | o·83<br>o·89<br>o·92<br>o·93<br>o·94<br>o·96<br>o·88<br>o·66<br>o·61<br>1·40<br>1·62<br>1·79<br>1·86<br>1·62<br>1·37<br>o·72<br>o·39<br>o·19                                         | 33'77<br>33'78<br>33'78<br>33'79<br>33'80<br>33'80<br>33'81<br>33'83<br>33'91<br>34'19<br>34'19<br>34'19<br>34'19<br>34'19<br>34'19<br>34'19<br>34'19<br>34'19<br>34'19<br>34'41<br>34'55<br>34'60<br>34'70<br>34'70<br>34'68<br>34'68<br>34'67 | 27.08<br>27.10<br>27.10<br>27.11<br>27.11<br>27.11<br>27.12<br>27.14<br>27.21<br>27.45<br>27.56<br>27.67<br>27.69<br>27.77<br>27.79<br>27.81<br>27.83<br>27.85<br>27.85 | 8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>7.97<br>7.95<br>7.93<br>8.11<br>8.08<br>8.08<br>8.08<br>8.08<br>8.18                         |       |                                      |                           |    | 7·36<br>7·34<br>7·33<br>5·54<br>4·47<br>4·99<br>3·92<br>4·10<br>4·17<br>4·41<br>4·46<br>4·56                                                                                            | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B           | } 310-140<br>} 144-0         | 1045                 | 1115                        | DGP<br>KT                         |
| 801                 | 2              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>800<br>1000<br>1500<br>2000          |                         | $\begin{array}{c} 1.71 \\ 1.71 \\ 1.71 \\ 1.70 \\ 1.69 \\ 1.70 \\ 1.70 \\ 1.71 \\ 1.53 \\ 0.41 \\ -0.11 \\ 0.92 \\ 1.73 \\ 1.83 \\ 1.71 \\ 1.61 \\ 1.63 \\ 1.12 \\ 0.65 \end{array}$ | 33.89<br>33.89<br>33.89<br>33.89<br>33.89<br>33.90<br>33.90<br>33.90<br>34.03<br>34.14<br>34.35<br>34.52<br>34.63<br>34.67<br>34.69<br>34.70<br>34.70<br>34.68                                                                                  | 27.12<br>27.12<br>27.13<br>27.13<br>27.13<br>27.13<br>27.20<br>27.33<br>27.45<br>27.56<br>27.63<br>27.71<br>27.75<br>27.77<br>27.79<br>27.82<br>27.83                   | 8.14<br>8.14<br>8.14<br>8.14<br>8.13<br>8.13<br>8.13<br>8.13<br>8.11<br>8.11<br>8.02<br>7.96<br>7.94<br>7.93<br>8.00<br>8.10<br>8.10<br>8.11<br>8.12 |       |                                      |                           |    | $7 \cdot 29$ $-7 \cdot 28$ $-7 \cdot 31$ $7 \cdot 30$ $7 \cdot 28$ $6 \cdot 74$ $5 \cdot 05$ $4 \cdot 13$ $4 \cdot 09$ $3 \cdot 94$ $4 \cdot 04$ $4 \cdot 04$ $4 \cdot 04$ $4 \cdot 32$ | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>210-128<br>104-0    | 1744<br>1857<br>1938 | 1753<br>1927<br><b>1958</b> | DGP<br>KT                         |
| 802                 | 2              | 0<br>10<br>20<br>30<br>40<br>50<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800                   |                         | 2.11<br>2.12<br>2.11<br>2.11<br>2.11<br>2.11<br>2.11<br>2.10<br>1.02<br>1.08<br>0.71<br>0.73<br>1.77<br>1.98<br>2.08<br>2.01                                                         | 33.93<br>33.93<br>33.93<br>33.93<br>33.93<br>33.93<br>33.93<br>33.93<br>33.93<br>33.93<br>34.99<br>34.17<br>34.42<br>34.51<br>34.61<br>34.69                                                                                                    | 27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.13<br>27.16<br>27.35<br>27.35<br>27.35<br>27.35<br>27.35<br>27.35<br>27.35<br>27.54<br>27.54<br>27.56<br>27.68<br>27.74 | 8.15<br>8.15<br>8.15<br>8.15<br>8.15<br>8.15<br>8.15<br>8.15                                                                                         |       |                                      |                           |    | 7.14<br>7.15<br>7.12<br>7.13<br>6.85<br>6.42<br>5.88<br>4.36<br>4.00<br>3.68<br>3.84                                                                                                    | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>} 320-70<br>} 126-0 | 0405<br>0633<br>0721 | 0415<br>0704<br>0741        | (DGP. Depths un-<br>certain<br>KT |

|                      |                                      |              |              | Sounding<br>(metres) | WIN          | D                | SEA          |        |         | leter<br>bars)                           | Air Ter        | mp. ° C.       |                                 |
|----------------------|--------------------------------------|--------------|--------------|----------------------|--------------|------------------|--------------|--------|---------|------------------------------------------|----------------|----------------|---------------------------------|
| Station              | Position                             | Date         | Hour         | (metres)             | Direction    | Force<br>(knots) | Direction    | Force  | Weather | Barometer<br>(millibars)                 | Dry<br>bulb    | Wet<br>bulb    | Remarks                         |
| <b>80</b> 2<br>cont. | 54° 15′ S, 19° 11·1′ W               | 1932<br>10 i |              |                      |              |                  |              |        |         |                                          |                |                |                                 |
| 803                  | 53 <sup>°</sup> 24.7′ S, 22° 19.1′ W | 10 i         | 2100         | 4142*                | $W \times S$ | 10               | $W \times S$ | 2      | o       | 1002.0                                   | 2.0            | 2.8            | mod. conf. E swell              |
| 804                  | 55° 30·3′ S, 21° 02·6′ W             | II İ         | 2000<br>0000 | 4932*<br>            | SSE<br>S     | 14<br>6          | SSE<br>S     | 3<br>1 | b<br>c  | 1005·7<br>1007·1                         | - 0.1<br>- 0.2 | - 1·2<br>- 1·3 | low SE swell<br>low conf. swell |
| 805                  | 56° 41.4′ S, 20° 38.2′ W             | 12 İ         | 0906<br>1200 | +303*<br>—           | SSW<br>S     | 10<br>8          | SSW<br>S     | 32     | 0       | 1007 <sup>-1</sup><br>1007 <sup>-6</sup> | 0.0<br>- 0.5   | - 1·7<br>- 2·1 | low S swell<br>low S swell      |
| 806                  | 57° 27·2′ S, 21° 28·8′ W             | 12 İ         | 2000         | 4057*                | S            | 10               | S            | 2      | 0       | 1009.0                                   | - 1 - 1        | - 2.3          | low S swell                     |

802-806

|                     | !              |                      |                         |                      | HYDRO                                                          | LOGICA                  | L OBSE                                 | RVATI | 085                                     |               |    |                                 | BIOLOG                                | GICAL OBSER        | evanto: | \$8  |         |
|---------------------|----------------|----------------------|-------------------------|----------------------|----------------------------------------------------------------|-------------------------|----------------------------------------|-------|-----------------------------------------|---------------|----|---------------------------------|---------------------------------------|--------------------|---------|------|---------|
| Station             | Age of         |                      | S.<br>Hur               |                      |                                                                |                         |                                        |       | Mg.—at                                  | om m.         |    |                                 |                                       |                    | TE      | ME   | 5       |
| Station             | moon<br>(days) | Depth<br>(metres)    | Depth by<br>thermometer | Temp.<br>C.          | S* .                                                           | σt                      | РĦ                                     | ч     | $\frac{\text{Nitrate}}{\text{Nitrate}}$ | Nitrite<br>N2 | Si | O <sub>2</sub><br>c.c.<br>litre | Gear                                  | Depth<br>(metres)  | From    | To   | Remarks |
| <b>802</b><br>cont. | 2              | 1000<br>1500<br>2530 | <br>2526                | 2·10<br>1·50<br>0·51 | 34 <sup>.</sup> 74<br>34 <sup>.</sup> 73<br>34 <sup>.</sup> 68 | 27·78<br>27·82<br>27·84 | 8.05<br>8.11<br>8.16                   |       |                                         |               |    | 4.06<br>4.11<br>4.39            |                                       |                    |         |      |         |
| 803                 | 3              | 0                    |                         | 2.70                 | 33.94                                                          | 27.09                   | 8.15                                   |       |                                         | _             |    | _                               | N 50 V                                | 100-0              | 2104    | 2111 |         |
|                     |                |                      |                         |                      |                                                                |                         |                                        |       |                                         |               |    |                                 | N 70 B<br>N 100 B                     | 308-130            | 2130    | 2200 | DGP     |
|                     |                |                      |                         |                      |                                                                |                         |                                        |       |                                         |               |    |                                 | N 70 B<br>N 100 B                     | 120-0              | 2211    | 2231 | КТ      |
| 804                 | 4              | 0                    |                         | 0.53<br>0.57         | 33 <sup>.</sup> 54<br>33 <sup>.</sup> 55                       | 26·92<br>26·93          | 8·15<br>8·15                           |       |                                         |               |    | 7.57                            | N 50 V<br>N 70 V                      | 100-0<br>750-500   | 2007    |      |         |
|                     |                | 20                   |                         | 0.01                 | 33.57                                                          | 26.94                   | 8.12                                   |       |                                         |               |    | 7.55                            | 1,                                    | 500-250            |         |      |         |
|                     |                | 30<br>40             |                         | 0.48<br>0.41         | 33·57<br>33·69                                                 | 26·94<br>27·05          | 8·15<br>8·14                           |       |                                         |               |    | 7.57                            | • •                                   | 250-100<br>100-50  |         |      |         |
|                     |                | 50                   |                         | -0.08                | 33.80                                                          | 27.16                   | 8.10                                   |       | -                                       | -             |    | —                               | ,,                                    | 50-0               | -       | 2230 |         |
|                     |                | 60<br>80             |                         | -0.39<br>-0.67       | 33·81<br>33·90                                                 | 27·19<br>27·27          | 8.10<br>8.11                           | _     |                                         | -             |    | 7.63                            | N 70 B<br>N 100 B                     | 290-104            | 2300    | 2330 | DGP     |
|                     |                | 100                  | —                       | -0.59                | 33.99                                                          | 27.35                   | 8.06                                   | —     |                                         | -             |    | 6.90                            | N 70 B                                | 130-0              | 2348    | 0008 | KT      |
|                     |                | 140<br>190           |                         | -0.04<br>I.II        | 34.20                                                          | 27·48<br>27·60          | 8.00<br>7.99                           |       |                                         |               |    | 6.04<br>4.65                    | N 100 B                               | 1 - 50 0           | -54-    |      |         |
|                     |                | 280                  | —                       | 1.21                 | 34.54                                                          | 27.67                   | 7.98                                   | _     | _                                       | -             |    | 4.30                            |                                       |                    |         |      |         |
|                     |                | 380<br>570           |                         | 1.65<br>1.57         | 34·62<br>34·69                                                 | 27.73                   | 7:94<br>8:03                           |       |                                         |               |    | 4.12                            |                                       |                    |         |      |         |
|                     |                | 760                  |                         | 1.43                 | 34.70                                                          | 27.80                   | 8.04                                   | -     | _                                       | —             |    | 4.18                            |                                       |                    |         |      |         |
|                     |                | 950<br>1420          |                         | 1·22<br>0·73         | 34·70<br>34·69                                                 | 27·82<br>27·83          | 8∙o8<br>8∙o8                           | _     | _                                       | _             |    | 4·22<br>4·30                    |                                       |                    |         |      |         |
|                     |                | 1890                 | 1893                    | 0.40                 | 34.69                                                          | 27.85                   | 8.05                                   | -     |                                         | -             |    | 4.22                            |                                       |                    |         |      |         |
| 805                 | 4              | 0                    |                         | 0.28                 | 33.53                                                          | 26.91                   | 8.15                                   | _     | _                                       |               |    | 7.53                            | N 70 V                                | 1000-750           | 0919    |      |         |
|                     |                | 10                   |                         | 0.20                 | 33.53                                                          | 26.91                   | 8·15<br>8·15                           |       |                                         |               |    |                                 | ,,                                    | 750-500            |         |      |         |
|                     |                | 20<br>30             |                         | 0.58<br>0.20         | 33·53<br>33·58                                                 | 26·91<br>26·98          | 8.16                                   |       | _                                       |               | _  | 7.53                            | · ·<br>· ·                            | 500-250<br>250-100 |         |      |         |
|                     |                | 40                   | —                       | 0.11                 | 33.64                                                          | 27.02                   | 8.16                                   | —     |                                         |               |    | 7.62                            | • •                                   | 100-50             |         |      |         |
|                     |                | 50<br>60             |                         | 0.08<br>0.12         | 33·87<br>33·96                                                 | 27.22                   | 8·16<br>8·11                           |       |                                         |               |    | 7.67                            | N 50 V                                | 50-0<br>100-0      |         | 1051 |         |
|                     |                | 80                   |                         | -0.29                | 33.99                                                          | 27.33                   | 8.10                                   | _     |                                         | —             |    |                                 | N 70 B<br>N 100 B                     | 274-138            | 1218    | 1249 | DGP     |
|                     |                | 100<br>150           | _                       | -0.49<br>-0.49       | 34.06                                                          | 27·39<br>27·46          | 8·10<br>8·04                           |       |                                         |               |    | 7:40<br>6:70                    | N 70 B                                | 1                  |         |      | KT      |
|                     |                | 200                  |                         | 0.95                 | 34.44                                                          | 27.63                   | 7.93                                   | _     | -                                       | _             | —  | 4.83                            | N 100 B                               | 122-0              | 1300    | 1322 | K I     |
|                     |                | 300<br>400           |                         | 1·38<br>1·50         | 34·60<br>34·65                                                 | 27·72<br>27·75          | 7 <sup>.</sup> 93<br>7 <sup>.</sup> 94 | _     |                                         |               |    | 4·23<br>4·16                    |                                       |                    |         |      |         |
|                     |                | 580                  | 582                     | 1.63                 | 34.70                                                          | 27.79                   | 8.04                                   | -     | -                                       | -             | —  | 4.04                            |                                       |                    |         |      |         |
|                     |                | 770<br>970           |                         | 1·44<br>1·13         | 34·72<br>34·73                                                 | 27·81<br>27·84          | 8·14<br>8·08                           |       |                                         |               |    | 4·12<br>4·20                    |                                       |                    |         |      |         |
|                     |                | 1450                 |                         | 0.20                 | 34.70                                                          | 27.86                   | 8.04                                   |       |                                         | -             | —  | 4.40                            |                                       |                    |         |      |         |
|                     |                | 1930<br>2420         |                         | 0.34<br>0.11         | 34·70<br>34·69                                                 | 27·87<br>27·86          | 8.04<br>8.15                           |       |                                         |               |    | 4.35                            |                                       |                    |         |      |         |
|                     |                | 2900<br>3370         |                         | - 0.09<br>- 0.24     | 34·68<br>34·68                                                 | 27·88<br>27·88          | 8·16<br>8·16                           | _     |                                         |               |    | 4.47                            |                                       |                    |         |      |         |
| 806                 | 5              | 0                    |                         | 0.21                 | 33.60                                                          | 26.97                   | 8.12                                   | _     |                                         |               | _  | 7.48                            | N 70 V                                | 1000-800           | 2005    |      |         |
|                     | -              | 10                   |                         | 0.40                 | 33.65                                                          | 27.02                   | 8.12                                   | _     |                                         |               |    |                                 | • •                                   | 750-500            |         |      |         |
|                     |                | 20<br>30             |                         | 0·34<br>0·31         | 33·65<br>33·66                                                 | 27·02<br>27·02          | 8.12<br>8.12                           | _     |                                         |               |    | 7:46                            | · · · · · · · · · · · · · · · · · · · | 500-250<br>250-100 |         |      |         |
|                     |                | 40                   |                         | 0.13                 | 33.69                                                          | 27.06                   | 8.11                                   | -     |                                         |               | —  | 7:49                            | ۰ ۲                                   | 100-50             |         |      |         |
|                     |                | 50<br>60             |                         | - 0.10               | 33·81<br>33·92                                                 | 27·17<br>27·27          | 8·12<br>8·09                           |       |                                         |               | _  | 7.51                            | N 50 V                                | 50-0<br>100-0      |         | 2144 |         |
|                     |                | 80                   |                         | - 0.30               | 33.99                                                          | 27.33                   | 8.09                                   |       |                                         |               |    | -                               | N 70 B<br>N 100 B                     | 216-144            | 2213    | 2243 | DGP     |
|                     |                | 100<br>150           |                         | - 0·38<br>0·22       | 34.06                                                          | 27·39<br>27·51          | 8·08<br>7·98                           | _     |                                         |               |    | 6·99<br>5·86                    | N 70 B                                | 116-0              | 2254    | 2214 | КТ      |
|                     |                | 200                  | _                       | 1.34                 | 34.49                                                          | 27.63                   | 7.93                                   |       | _                                       |               |    | 3.72                            | N 100 B                               | 1 110-0            | 2254    | 2314 |         |
| l                   | ]              | 300                  | _                       | 1.68<br>1.71         | 34·61<br>34·63                                                 | 27·71<br>27·72          | 7 <sup>.</sup> 92<br>7 <sup>.</sup> 95 |       |                                         |               |    | 4.15                            |                                       |                    |         |      |         |
|                     |                | 590                  | _                       | 1.64                 | 34.69                                                          | 27.77                   | 8.01                                   |       |                                         |               | _  | 4.12                            |                                       |                    |         |      |         |
|                     |                | 790<br>980           |                         | I·52<br>I·21         | 34·76<br>34·75                                                 | 27·84<br>27·86          | 8.02<br>8.03                           |       |                                         |               | _  | 4.10                            |                                       |                    |         |      |         |
|                     |                |                      |                         |                      |                                                                |                         |                                        |       |                                         |               |    |                                 |                                       |                    |         |      |         |

|                     |                          |              |      | Nounding             | WIN       | D                | SEA       |       |         | beter<br>bars)           | Air Ter     | np, <sup>°</sup> C. |               |
|---------------------|--------------------------|--------------|------|----------------------|-----------|------------------|-----------|-------|---------|--------------------------|-------------|---------------------|---------------|
| Station             | Position                 | Date         | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(mullibars) | Dry<br>bulb | Wet<br>bulb         | Remarks       |
| <b>806</b><br>cont. | 57° 27·2′ S, 21° 28·8′ W | 1932<br>12 i |      |                      |           |                  |           |       |         |                          |             |                     |               |
| 807                 | 58° 47·7′ S, 21° 40·4′ W | 13 i         | 0830 | 4062*                | WNW       | 10               | WNW       | 2     | 0       | 1007.5                   | - o·8       | - 1 · 1             | low WNW swell |
|                     |                          |              |      |                      |           |                  |           |       |         |                          |             |                     |               |
|                     |                          |              |      |                      |           |                  |           |       |         |                          |             |                     |               |
|                     |                          |              |      |                      |           |                  |           |       |         |                          |             |                     |               |
| 808                 | 59° 56′ S, 22° 20·7′ W   | 13 i         | 2000 | 4442*                | NNE       | 19               | NNE       | 3     | OS      | 999 <sup>.</sup> 7       | - o·8       | - 1.0               | no swell      |
|                     |                          |              |      |                      |           |                  |           |       |         |                          |             |                     |               |
|                     |                          |              |      |                      |           |                  |           |       |         |                          | -           |                     |               |
|                     |                          |              |      |                      |           |                  |           |       |         |                          |             |                     |               |
| 809                 | 61° 09·9′ S, 22° 36·9′ W | 14 i         | 0924 | 4529*                | NE        | 14               | NE        | 2     | o       | 988·5                    | 0.3         | 0.0                 | no swell      |
|                     |                          |              |      |                      |           |                  |           |       |         |                          |             |                     |               |
|                     |                          |              |      |                      |           |                  |           |       |         |                          |             |                     |               |
|                     |                          |              |      |                      |           |                  |           |       |         |                          |             |                     |               |
|                     |                          |              |      |                      |           |                  |           |       |         |                          |             |                     |               |

|            |                |                      |                         |                  | HYDRO          | LOGIC.         | L OBSI        | ERVAT | IONS                                                 |                           |    |                                 | BIOLO             |                     |      |      |               |
|------------|----------------|----------------------|-------------------------|------------------|----------------|----------------|---------------|-------|------------------------------------------------------|---------------------------|----|---------------------------------|-------------------|---------------------|------|------|---------------|
|            | Age of         |                      | y.<br>iter              |                  |                |                |               |       | Mg at                                                | tom m.3                   |    |                                 |                   |                     | .L.I | ME   | 73            |
| tion       | moon<br>(days) | Depth<br>(metres)    | Depth by<br>thermometer | Temp.<br>C.      | S* .           | σt             | pН            | Þ     | Nitrate<br><sup>4</sup><br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N <sub>2</sub> | Si | O <sub>2</sub><br>c.c.<br>litre | Gear              | Depth<br>(metres)   | From | То   | Remark        |
| <b>0</b> 6 | 5              | 1480                 |                         | 0.20             | 34.70          | 27.86          | 8.13          |       |                                                      |                           |    | 4.37                            |                   |                     |      |      |               |
| ont.       |                | 1970                 |                         | 0.30             | 34·70<br>34·68 | 27·87<br>27·87 | 8∙o8<br>8∙o8  |       |                                                      |                           |    | 4·42<br>4·67                    |                   |                     |      |      |               |
|            |                | 2460<br>2950         | 2953                    | 0.03             | 34.65          | 27.86          | 8.13          |       | -                                                    |                           |    | 4.65                            |                   |                     |      |      |               |
|            |                | - 95-                | -955                    |                  | 51 7           |                |               |       |                                                      |                           |    | 1-5                             |                   |                     |      |      |               |
| 807        | 5              | 0                    |                         | -0.43            | 33.39          | 26.85          | 8.14          |       |                                                      |                           |    | 7.62                            | N 50 V            | 100-0               | 0835 |      | $\pm 4$ hours |
|            |                | 10<br>20             |                         | -0.40<br>-0.30   | 33·41<br>33·43 | 26·87<br>26·89 | 8-14<br>8-14  |       |                                                      |                           |    | 7.61                            | N 70 V            | 1000-770<br>750-500 |      |      |               |
|            |                | 30                   |                         | -0.67            | 33.21          | 26.96          | 8.15          |       |                                                      |                           |    |                                 | ,,                | 500-250             |      |      |               |
|            |                | 40                   |                         | - 1.00           | 33.71          | 27.14          | 8.14          |       |                                                      |                           |    | 7.54                            | ,,                | 250-100             | ŀ    |      |               |
|            |                | 50                   |                         | -0.20            | 33.85          | 27.24          | 8.11          |       |                                                      | _                         |    | -                               | ,,                | 100-50              |      |      |               |
|            |                | 60<br>80             |                         | -0.20            | 33.96          | 27.33          | 8.10<br>8.11  |       |                                                      |                           |    | 7.49                            | ,,<br>N 70 В      | 50-0                |      | 1017 |               |
|            |                | 100                  |                         | -1.22<br>-1.29   | 34.00<br>34.12 | 27·37<br>27·47 | 8.06          |       |                                                      |                           |    | 6.71                            | N 100 B           | 262-84              | 1109 | 1139 | DGP           |
|            |                | 150                  |                         | -0.40            | 34.32          | 27.60          | 8.00          |       |                                                      | _                         |    | 5.64                            | N 70 B            | 1                   |      |      | КТ            |
|            |                | 200                  |                         | 0.1.2            | 34.49          | 27.20          | 7.99          | —     |                                                      |                           |    | 4.96                            | N 100 B           | 137-0               | 1150 | 1210 | K I           |
|            |                | 300                  |                         | 0.00             | 34.63          | 27.78          | 7.97          |       |                                                      |                           |    | 4.40                            |                   |                     |      |      |               |
|            |                | 400<br>600           |                         | 0.84<br>0.67     | 34·68<br>34·67 | 27·82<br>27·82 | 7197<br>8108  |       |                                                      |                           |    | 4.40                            |                   |                     |      |      |               |
|            |                | 800                  |                         | 0.50             | 34.67          | 27.83          | 8.08          |       |                                                      | _                         |    | 4.34<br>4.28                    |                   |                     |      |      |               |
|            |                | 990                  |                         | 0.41             | 34.66          | 27.83          | 8 <b>∙o</b> 8 |       |                                                      |                           |    | 4.37                            |                   |                     |      |      |               |
|            |                | 1490                 | —                       | 0.35             | 34.66          | 27.84          | 8.04          |       |                                                      |                           |    | 4.2 I                           |                   |                     |      |      |               |
|            |                | 1990                 |                         | 0.03             | 34.66          | 27.85          | 8.15          |       |                                                      |                           |    | 4.42                            |                   |                     |      | Ì    |               |
|            |                | 2490<br>2980         |                         | -0.13<br>-0.30   | 34·66<br>34·66 | 27·86<br>27·87 | 8·15<br>8·15  |       |                                                      |                           |    | 4.89                            |                   |                     |      |      |               |
|            |                | 2980<br>3480         | 3477                    | -0.30            | 34.00          | 27.87          | 8.12          |       | _                                                    | _                         |    | 4.85                            |                   |                     |      |      |               |
| 808        | 6              | 0                    |                         | 0.15             | 33.23          | 26.93          | 8.12          | _     |                                                      |                           |    | 7.41                            | N 50 V            | 100-0               | 2012 |      |               |
|            |                | 10                   |                         | 0.40             | 33.64          | 27.01          | 8.12          |       |                                                      |                           |    | -                               | N 70 V            | 1000-750            |      |      |               |
|            |                | 20                   |                         | 0.45             | 33.69          | 27.05          | 8.12          | -     |                                                      | —                         |    | 7.43                            | ,,                | 750-500             |      |      |               |
|            |                | 30                   |                         | 0.32             | 33.77          | 27.11          | 8·12<br>8·12  |       |                                                      |                           |    | 7:16                            | • •               | 500250<br>250100    |      |      |               |
|            |                | 40<br>50             | _                       | 0·23<br>0·39     | 33.87          | 27·21<br>27·31 | 8.11          |       |                                                      |                           |    | 7.46                            | ,,                | 100-50              |      |      |               |
|            |                | 60                   |                         | 0.20             | 34.04          | 27.34          | 8.11          |       | _                                                    |                           |    | 7.42                            | ,,                | 50-0                | -    | 2206 |               |
|            |                | 8o                   |                         | -0.18            | 34.07          | 27.39          | 8.08          | —     | -                                                    |                           |    |                                 | N 70 B            | 250-100             | 2236 | 2306 | DGP           |
|            |                | 100                  |                         | -0.62            | 34.11          | 27'44          | 8.07          |       | -                                                    |                           |    | 7.37                            | N 100 B           | 1 ~ 3 ~             |      | - ,  |               |
|            |                | 150                  |                         | -0.10<br>-0.00   | 34.23          |                | 8.03<br>8.01  |       |                                                      |                           |    | 6·80<br>5·84                    | N 70 B<br>N 100 B | 120-0               | 2316 | 2336 | KT            |
|            |                | 190<br>290           | _                       | 1.03             | 34·35<br>34·61 | 27.76          | 7.95          |       |                                                      |                           |    | 4.60                            | 100 10            | ,                   |      |      |               |
|            |                | 390                  |                         | 1.31             | 34.66          | 27.77          | 7.95          |       | -                                                    |                           |    | 4.36                            |                   |                     |      |      |               |
|            |                | 580                  | —                       | 1.12             | 34.70          | 27.82          | 8.06          | _     |                                                      |                           |    | 4.54                            |                   |                     |      |      |               |
|            |                | 770                  |                         | 1.01             | 34.70          | 27.83          | 8.06          |       |                                                      |                           |    | 4.22                            |                   |                     |      |      |               |
|            |                | 960<br>1440          |                         | 0·81<br>0·43     | 34·70<br>34·70 | 27·84<br>27·86 | 8.02<br>8.11  |       |                                                      |                           |    | 4.37?                           |                   |                     |      |      |               |
|            |                | 1920                 |                         | 0.25             | 34.69          | 27.86          | 8.16          |       |                                                      |                           |    | 4.37                            |                   |                     |      |      |               |
|            |                | 2400                 |                         | 0.08             | 34.68          | 27.87          | 8.16          |       |                                                      |                           |    | 4.43                            |                   |                     |      |      |               |
|            |                | 2880                 | 2883                    | - 0.11           | 34.68          | 27.88          | 8.18          |       | _                                                    |                           |    | 4.62                            |                   |                     |      |      |               |
| 809        | 6              | 0                    |                         | - 1.00           | 32.82          | 26.41          | 8.13          | -     |                                                      |                           |    | 7.60                            | N 70 V            | 1000-750            | 0935 |      |               |
|            |                | 10                   |                         | -1.12<br>-1.21   | 32·84<br>33·81 | 26·43<br>27·23 | 8·13<br>8·10  | _     |                                                      |                           |    | 7.21                            | ,,                | 750-300<br>750-500  |      | 1    |               |
|            |                | 20<br>30             |                         | -1.51 <br> -1.59 | 33.98          | 27.23          | 8.09          |       |                                                      | _                         |    |                                 | • • • •           | 500-250             |      |      |               |
|            |                | 40                   | —                       | - 1.20           | 34.08          | 27.45          | 8.09          | -     | _                                                    |                           |    | 6.93                            | ,,                | 250-100             |      |      |               |
|            |                | 50                   | -                       | - 1.62           | 34.19          | 27.54          | 8.09          |       | -                                                    | -                         | -  |                                 | , ,               | 100-50              |      |      |               |
|            |                | 60                   | _                       | - 1.69           | 34.29          | 27.61          | 8.09          |       |                                                      | _                         |    | 6.71                            | N 50 V            | 50-0<br>100-0       |      | 1159 |               |
|            |                | 80<br>100            |                         | -1.71<br>-1.69   | 34·34<br>34·36 | 27.66          | 8.08<br>8.05  |       |                                                      |                           |    | 6.49                            | N 70 B            | 1                   |      |      | DCD           |
|            | l              | 150                  | _                       | - 1.21           | 34.44          | 27.74          | 8.03          | -     |                                                      |                           |    | 6.03                            | N 100 B           | 196-104             | 1221 | 1251 | DGP           |
|            | 1              | 200                  | -                       | -0.69            | 34.52          | 27.77          | 7.98          | -     |                                                      | _                         | -  | 5.25                            | N 70 B            | 128-0               | 1306 | 1326 | KT            |
|            |                | 300                  |                         | 0.26             | 34.66          | 27.84          | 7.96          |       | -                                                    | -                         |    | 4.30                            | N 100 B           | //                  |      |      |               |
|            |                | 390                  |                         | 0.41             | 34.69          | 27.85          | 7*95<br>8•06  | _     |                                                      |                           |    | 4·21<br>4·20                    |                   |                     |      |      |               |
|            |                | 590<br>780           |                         | 0.40             | 34·69<br>34·69 | 27·85<br>27·85 | 8.00          |       |                                                      |                           |    | 4.26                            |                   |                     |      |      |               |
|            |                | 980                  | 984                     | 0.26             | 34.68          | 27.86          | 8.07          |       |                                                      |                           |    | 4.26                            |                   |                     |      |      |               |
|            |                |                      | Г <u> </u>              | 0.04             | 34.67          | 27.86          | 8.08          |       | _                                                    |                           |    | 4.26                            |                   |                     |      |      |               |
|            |                | 1470                 |                         |                  |                |                | 0 0           |       |                                                      |                           |    |                                 |                   | 1                   |      |      |               |
|            |                | 1470<br>1990<br>2490 |                         | -0.10<br>-0.28   | 34.67          | 27·87<br>27·87 | 8.08<br>8.17  |       |                                                      |                           |    | 4·69<br>4·70                    |                   |                     |      |      |               |

8

#### 806-809

|              |                          |              |      | Sounding             | WIN                           | D                | SEA                           |       |         | ater<br>Jars)            | Air Ter     | np. °C.     |          |
|--------------|--------------------------|--------------|------|----------------------|-------------------------------|------------------|-------------------------------|-------|---------|--------------------------|-------------|-------------|----------|
| Station      | Position                 | Date         | Hour | Sounding<br>(metres) | Direction                     | Force<br>(knots) | Direction                     | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks  |
| 809<br>cont. | 61° 09.9′ S, 22° 36.9′ W | 1932<br>14 i |      |                      |                               |                  |                               |       |         |                          |             |             |          |
| 810          | 61° 30.7′ S, 23° 12.3′ W | 14 i         | 2000 | 4276*                | $\mathbf{N} 	imes \mathbf{E}$ | 5                | $\mathbf{N} 	imes \mathbf{E}$ | I     | om      | 987.7                    | - o·8       | - 0.0       | no swell |
| 811          | 62° 44' S, 23° 18·4' W   | 15 i         | 1740 | 5125*                | W                             | 10               | W                             | 2     | om      | 989 <b>.0</b>            | - I · I     | - 1 · 1     | no swell |
| 812          | 64° 12.5′ S, 22° 57′ W   | 16 i         | 0846 | 5013*                | S                             | 15               | S                             | 3     | 0       | <b>9</b> 89·8            | - 0.9       | - 1.1       | no swell |
| 813          | 64° 55.9' S, 23° 13' W   | 16 i         | 2000 | 5013*                | SE×S                          | 15               | SE×S                          | 2     | ο       | 991.9                    | - 2.2       | - 2.9       | no swell |

| 809-813 |
|---------|
|---------|

|                     |                | 1                                                                                                                                                         |                         |                                                                                                                                                                                                                                                   | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DLOGIC.                                                                                                                                                                                                                       | AL OBSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ERVAT | IONS                                      | <u></u>             |    |                                                                                                                                                                                                                                 | BIOLO                                                                              | GICAL OBSE                                                                               |                              | NS .                 |                                                                            |
|---------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------|---------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------|----------------------|----------------------------------------------------------------------------|
| Station             | Age of<br>moon |                                                                                                                                                           | by<br>eter              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | Mg. a                                     | tum m. <sup>3</sup> |    |                                                                                                                                                                                                                                 |                                                                                    |                                                                                          | Т                            | IMF                  | Remarks                                                                    |
|                     | (days)         | Depth<br>(metres)                                                                                                                                         | Depth by<br>thermometer | Temp.                                                                                                                                                                                                                                             | S°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | σt                                                                                                                                                                                                                            | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Р     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N2       | Si | O,<br>cc.<br>litre                                                                                                                                                                                                              | Gear                                                                               | Depth<br>(metres)                                                                        | l rom                        | То                   | . Kentarks                                                                 |
| <b>809</b><br>cont. | 6              | 2980<br>3480<br>3980                                                                                                                                      |                         | -0.36<br>-0.42<br>-0.50                                                                                                                                                                                                                           | 34.66<br>34.66<br>34.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27·87<br>27·87<br>27·88                                                                                                                                                                                                       | 8·17<br>8·18<br>8·18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                           |                     |    | 4·84<br>4·84<br>5·09                                                                                                                                                                                                            |                                                                                    |                                                                                          |                              |                      |                                                                            |
| 810                 | 7              | 0                                                                                                                                                         |                         | -0.26                                                                                                                                                                                                                                             | 33.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.81                                                                                                                                                                                                                         | 8.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                           |                     |    |                                                                                                                                                                                                                                 | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                             | } 304-130<br>} 166-0                                                                     | 2019<br>2101                 | 2049<br>2121         | DGP<br>KT                                                                  |
| 811                 | 8              | 0<br>10<br>20<br>30<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>590<br>790<br>990<br>1490<br>1980<br>2470<br>2970                             |                         | $\begin{array}{c} -1.55 \\ -1.56 \\ -1.58 \\ -1.61 \\ -1.69 \\ -1.78 \\ -1.81 \\ -1.83 \\ -1.83 \\ -1.47 \\ -0.17 \\ 0.39 \\ 0.41 \\ 0.34 \\ 0.25 \\ -0.14 \\ 0.02 \\ -0.14 \\ -0.24 \\ -0.32 \end{array}$                                        | 33.68<br>33.72<br>34.17<br>34.34<br>34.38<br>34.40<br>34.42<br>34.43<br>34.43<br>34.46<br>34.60<br>34.65<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.69<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60 | 27:12<br>27:12<br>27:16<br>27:52<br>27:66<br>27:70<br>27:71<br>27:72<br>27:74<br>27:75<br>27:81<br>27:85<br>27:85<br>27:85<br>27:85<br>27:85<br>27:85<br>27:85<br>27:87<br>27:87<br>27:87<br>27:87                            | 8.10<br>8.11<br>8.11<br>8.09<br>8.06<br>8.05<br>8.04<br>8.04<br>8.01<br>7.97<br>7.94<br>7.95<br>8.04<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.01<br>8.020<br>8.10 |       |                                           |                     |    | $\begin{array}{c} 7.46 \\ - \\ - \\ 6.96 \\ - \\ 6.72 \\ - \\ 6.39 \\ 5.99 \\ 4.76 \\ 4.28 \\ 4.29 \\ 4.07 \\ 4.22 \\ 4.38 \\ 4.50 \\ 4.61 \\ 4.68 \\ 4.86 \end{array}$                                                         | N 70 V<br><br><br>N 50 V<br>N 70 B<br>N 100 B                                      | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0                                | <b>1</b> 740<br><b>1</b> 939 | 1900<br>1959         | KT. Nets towed<br>in a circle among<br>light ice                           |
| 812                 | 8              | $\circ$<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>590<br>790<br>990<br>1480<br>1980<br>2470<br>3460<br>3960<br>4450 |                         | $\begin{array}{c} -1.26\\ -1.27\\ -1.20\\ -1.27\\ -1.55\\ -1.67\\ -1.75\\ -1.78\\ -1.66\\ -0.20\\ 0.14\\ 0.35\\ 0.39\\ 0.46\\ 0.31\\ 0.21\\ 0.39\\ 0.46\\ 0.31\\ 0.21\\ 0.019\\ -0.30\\ -0.32\\ -0.30\\ -0.32\\ -0.39\\ -0.45\\ -0.54\end{array}$ | 33.82<br>33.82<br>34.13<br>34.17<br>34.37<br>34.37<br>34.45<br>34.45<br>34.45<br>34.46<br>34.52<br>34.63<br>34.64<br>34.68<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.68<br>34.70<br>34.70<br>34.68<br>34.70<br>34.68<br>34.66<br>34.66<br>34.66<br>34.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27:23<br>27:23<br>27:47<br>27:51<br>27:64<br>27:68<br>27:75<br>27:76<br>27:80<br>27:80<br>27:83<br>27:85<br>27:87<br>27:88<br>27:87<br>27:88<br>27:87<br>27:88<br>27:87<br>27:88<br>27:87<br>27:87<br>27:87<br>27:87<br>27:87 | 8.08<br>8.09<br>8.08<br>8.09<br>8.08<br>8.08<br>8.07<br>8.04<br>7.97<br>7.95<br>7.94<br>7.97<br>8.06<br>8.07<br>8.12<br>8.17<br>8.17<br>8.17<br>8.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                           |                     |    | $\begin{array}{c} 7.53 \\ - \\ 7.30 \\ - \\ 6.93 \\ - \\ 6.62 \\ - \\ 6.18 \\ 4.71 \\ 4.38 \\ 4.71 \\ 4.38 \\ 4.71 \\ 4.38 \\ 4.71 \\ 4.48 \\ 4.75 \\ 4.61 \\ 4.88 \\ 4.75 \\ 4.84 \\ 4.75 \\ 4.84 \\ 5.00 \\ 5.20 \end{array}$ | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                     | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>318-102<br>137-0 | 0850                         |                      | DGP<br>KT                                                                  |
| 813                 | 9              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>100<br>150<br>200<br>300<br>400                                                                                  |                         | - 1·48<br>- 1·47<br>- 1·28<br>- 1·39<br>- 1·51<br>- 1·67<br>- 1·71<br>- 1·78<br>- 1·73<br>- 0·68<br>0·21<br>0·41<br>0·41                                                                                                                          | 33'49<br>33'88<br>34'15<br>34'37<br>34'42<br>34'44<br>34'44<br>34'44<br>34'50<br>34'58<br>34'66<br>34'69<br>34'69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.97<br>26.97<br>27.28<br>27.51<br>27.51<br>27.71<br>27.75<br>27.75<br>27.75<br>27.79<br>27.82<br>27.84<br>27.85<br>27.85                                                                                                    | 8.06<br>8.06<br>8.05<br>8.05<br>8.05<br>8.06<br>8.03<br>8.03<br>7.97<br>7.95<br>7.94<br>7.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                           |                     |    | 7.49                                                                                                                                                                                                                            | N 50 V<br>N 70 V<br>,,<br>,,<br>,,<br>,,<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>1000-800<br>750-525<br>500-250<br>100-50<br>50-0<br>340-100<br>340-0<br>135-0   | 2005                         | 2140<br>2245<br>2321 | Stray on wire<br>DGP. Closing<br>depth of <b>N 70 B</b><br>estimated<br>KT |

|              |                          |              |              | Sounding             | WIN           | D                | SEA           |       |           | ieter<br>Jars)                 | Air Ter      | np. C.         |                             |
|--------------|--------------------------|--------------|--------------|----------------------|---------------|------------------|---------------|-------|-----------|--------------------------------|--------------|----------------|-----------------------------|
| Station      | Position                 | Date         | Hour         | Sounding<br>(metres) | Direction     | Force<br>(knots) | Direction     | Force | Weather   | lårometer<br>(millibars)       | Dry<br>bulb  | Wet<br>bulb    | Remarks                     |
| 813<br>cont. | 64° 55·9′ S, 23° 13′ W   | 1932<br>16 i |              |                      |               |                  |               |       |           |                                |              |                |                             |
| 814          | 66° 02.8′ S, 22° 35.1′ W | 17 İ         | 0900<br>1200 | 4976 <b>*</b><br>    | SW × W<br>S   | 12<br>15         | SW > W<br>S   | 32    | bc<br>osp | 991. <b>3</b><br>991. <b>3</b> | 0.0<br>- 2.1 | - 1.0<br>- 2.2 | no swell<br>low conf. swell |
| 815          | 66° 57·3' S, 22° 38·3' W | 17–18 i      | 2025         | 4910*                | $SW \times S$ | 16               | $SW \times S$ | 2     | osp       | 992·6                          | - 2.4        | - 3.1          | low ESE swell               |
| 816          | 68° 09.6′ S, 22° 01.7′ W | 18 i         | 0910         | 4918*                | SW×S          | 16               | $SW \times S$ | 2     | 0         | 992.3                          | - I ·4       | - 2.8          | no swell                    |

| []                  |                |                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HYDROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JOGICAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , obset                                                                                                                                              | RVATI | ons                                  |                           |    |                                                                                                                                                                                                                                                             | BIOLOC                                                                          | GICAL OBSER                                         | VATION                   | 5                    |           |
|---------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------|---------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------|----------------------|-----------|
|                     | Age of         |                                                                                                                               | <u></u> 5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                      |       | Mg.—at                               | om m.1                    |    |                                                                                                                                                                                                                                                             |                                                                                 |                                                     | TIN                      | II.                  | Remarks   |
| Station             | moon<br>(days) | Depth<br>(metres)                                                                                                             | Depth Ly<br>thermometer | Temp.<br>°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | σt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pH                                                                                                                                                   | P     | Nitrate<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N <sub>2</sub> | 51 | O <sub>2</sub><br>c c.<br>litre                                                                                                                                                                                                                             | Gear                                                                            | Depth<br>(metres)                                   | From                     | То                   | Remarks   |
| 813<br>cont.<br>814 | 9              | 600<br>800<br>1500<br>2500<br>3000<br>0<br>10<br>20<br>30                                                                     | 3002                    | $\begin{array}{c} 0.35 \\ 0.29 \\ 0.21 \\ 0.01 \\ - 0.18 \\ - 0.29 \\ - 0.34 \\ - 1.20 \\ - 1.29 \\ - 1.30 \\ - 1.39 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34.68<br>34.68<br>34.67<br>34.66<br>34.66<br>34.66<br>33.77<br>33.79<br>33.88<br>34.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.85<br>27.85<br>27.86<br>27.86<br>27.86<br>27.87<br>27.87<br>27.87<br>27.18<br>27.21<br>27.28<br>27.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.00<br>8.01<br>8.01<br>8.11<br>8.16<br>8.16<br>8.16<br>8.05<br>8.06<br>8.06<br>8.06                                                                 |       |                                      |                           |    | +.07<br>+.10<br>+.41<br>+.43<br>+.55<br>+.75<br>+.82<br>7.26<br><br>7.19<br>                                                                                                                                                                                | N 70 V<br>,,<br>,,                                                              | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50 | 0916                     |                      |           |
|                     |                | 40<br>50<br>60<br>80<br>125<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500<br>2500<br>3000<br>3500<br>4000<br>4500 | 2002                    | $\begin{array}{c} -1.57 \\ -1.69 \\ -1.72 \\ -1.70 \\ -1.70 \\ -1.70 \\ -1.67 \\ -0.78 \\ 0.11 \\ 0.50 \\ 0.41 \\ 0.50 \\ 0.44 \\ 0.38 \\ 0.32 \\ 0.22 \\ 0.02 \\ -0.14 \\ -0.26 \\ -0.31 \\ -0.38 \\ -0.41 \\ -0.51 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $3+3^2$<br>$3+3^2$<br>$3+4^3$<br>$3+4^3$<br>$3+4^4$<br>$3+5^6$<br>$3+6^7$<br>$3+6^9$<br>$3+6^9$<br>$3+6^9$<br>$3+6^9$<br>$3+6^7$<br>$3+6^7$<br>$3+6^6$<br>$3+6^6$<br>$3+6^6$<br>$3+6^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.85<br>27.86<br>27.85<br>27.86<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.05<br>8.06<br>8.06<br>8.02<br>7.99<br>7.95<br>7.94<br>7.94<br>7.94<br>8.03<br>8.03<br>8.03<br>8.04<br>8.14<br>8.05<br>8.15<br>8.15<br>8.20<br>8.20 |       |                                      |                           |    | $\begin{array}{c} 6\cdot 5+\\ -\\ 6\cdot 28\\ -\\ 5\cdot 95\\ 5\cdot 25\\ +\cdot 47\\ +\cdot 22\\ 4\cdot 12\\ 4\cdot 13\\ 4\cdot 11\\ +\cdot 24\\ +\cdot 21\\ 4\cdot 59\\ 4\cdot 70\\ 4\cdot 84\\ 4\cdot 83\\ 4\cdot 91\\ 4\cdot 90\\ 5\cdot 03\end{array}$ | ,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                          | 100-50<br>50-0<br>100-0<br>} 280-140<br>} 133-0     | <br>1208<br>1252         | 1047<br>1239<br>1312 | DGP<br>KT |
| 815                 | 5 10           | C<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>100<br>150<br>199                                                       |                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.56<br>34.69<br>34.69<br>34.69<br>34.69<br>34.70<br>34.70<br>34.69<br>34.69<br>34.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.07<br>27.40<br>27.66<br>27.73<br>27.76<br>27.77<br>27.79<br>27.83<br>27.84<br>27.85<br>27.84<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85 | 8.08<br>8.08<br>8.08<br>8.08<br>8.04<br>8.04<br>8.04<br>7.95<br>7.95<br>7.95<br>7.92<br>7.92<br>7.92<br>7.92<br>7.92<br>7.92<br>7.92<br>7.92         |       |                                      |                           |    | $\begin{array}{c} 7.43 \\ - \\ 7.09 \\ - \\ 6.60 \\ - \\ 6.51 \\ - \\ 6.04 \\ + 433 \\ 4.30 \\ + 19 \\ 4.17 \\ 4.14 \\ 4.15 \\ 4.20 \\ 4.52 \\ 4.69 \end{array}$                                                                                            | ,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                          | 11 run n                                            | 2027<br><br>2310<br>2350 |                      | DGP<br>KT |
| 81                  | 6 10           | 1<br>2<br>3<br>4<br>5<br>6                                                                                                    |                         | $ \begin{array}{c} -1.47\\ -1.49\\ -1.50\\ -1.52\\ -1.52\\ -1.39\\ -0.98\\ 0.50\\ 0.71\\ 0.72\\ 0.62\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.4$ | 33:25       34:32       34:42       34:42       34:42       34:42       34:42       34:42       34:42       34:42       34:42       34:42       34:42       34:42       34:42       34:42       34:42       34:42       34:42       34:45       34:62       234:62       234:62       34:62       34:62       34:66       34:66       34:66       34:66       34:66       34:66       34:66       34:66       34:67       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:68       34:78       34:78       34:78 | 5 26.76<br>3 27.6<br>2 27.7<br>2 27.7<br>4 27.7<br>4 27.7<br>7 27.7<br>7 27.7<br>7 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.8<br>9 27.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 8.11<br>3 8.11<br>1 8.11<br>1 8.10<br>4 8.10<br>5 8.00<br>5 8.00<br>7 8.00<br>3 7.96<br>3 7.96<br>3 7.96<br>3 7.96<br>3 7.96<br>4 7.95<br>4 7.95   |       |                                      |                           |    | $- \frac{6 \cdot 3}{6 \cdot 2}$                                                                                                                                                                                                                             | 3 ","<br>3 ","<br>4 N 50 V<br>N 70 B<br>7 N 100 H<br>2 N 70 B<br>1 N 100 H<br>3 | s / 250-80                                          |                          | 1106                 | DGP       |

|                          |                          |              |      | Sounding                  | WIN                            | D                | SEA                            |       |         | neter<br>Dars)           | Air Ter     | np. ° C.    |          |
|--------------------------|--------------------------|--------------|------|---------------------------|--------------------------------|------------------|--------------------------------|-------|---------|--------------------------|-------------|-------------|----------|
| Station                  | Position                 | Date         | Hour | Sounding<br>(metres)      | Direction                      | Force<br>(knots) | Direction                      | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks  |
| <b>816</b> <i>cont</i> . | 68° 09.6' S, 22° 01.7' W | 1932<br>18 i |      |                           |                                |                  |                                |       |         |                          |             |             |          |
| 817                      | 69° 59' S, 23° 53' W     | 19 i         | 0444 | <b>44</b> 49 <sup>*</sup> | SSW                            | 11               | SSW                            | 2     | 0       | 988·9                    | - 5.6       | - 6.0       | no swell |
|                          |                          |              |      |                           |                                |                  |                                |       |         |                          |             |             |          |
| 818                      | 68° 11·3' S, 24° 52·8' W | 20 i         | 1123 | 4815*                     | $SW \times W$                  | 12               | $\mathbf{SW} 	imes \mathbf{W}$ | 2     | с       | 99 <b>0</b> .7           | - 2.0       | - 2.7       | no swell |
| 819                      | 67° 23.9′ S, 25° 40.7′ W | 20 i         | 2025 | 4742*                     | Lt airs                        | I-2              |                                | 0     | 0       | 992.4                    | -4.2        | - 5 · 1     | no swell |
| 820                      | 65° 44.9′ S, 28° 29.9′ W | 21 i         | 2005 | 4878*                     | $\mathbf{E} \times \mathbf{S}$ | 19               | $\mathbf{E} \times \mathbf{S}$ | 2     | os      | 988·6                    | - 2.7       | - 2.8       | no swell |
| 821                      | 65° 00.5′ S, 32° 32.8′ W | 22 i         | 2005 | 4892*                     | NE×E                           | 15               | NE×E                           | 2     | os      | 984-3                    | - 1.8       | - 1.9       | no swell |

|                             |                |                                                                                                                      |                         |                                                                                                                                                                                                                           | HYDRO                                                                                                                                                                                                                        | LOGICA                                                                                                                     | L OBSE                                                                                                                                                               | RVATI | ONS                                       |               |    |                                                                                                                                                                                                                                                     | BIOLOG                                                                               | GICAL OBSER                                                                            | WATIO?            | ss                   |                                            |
|-----------------------------|----------------|----------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------|---------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------|----------------------|--------------------------------------------|
| Station                     | Age of<br>moon |                                                                                                                      | oy<br>eter              |                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |                                                                                                                            | -                                                                                                                                                                    |       | Mg.—at                                    | om m.3        |    |                                                                                                                                                                                                                                                     |                                                                                      |                                                                                        | 112               | \1E                  | Remarks                                    |
| Station                     | (days)         | Depth<br>(metres)                                                                                                    | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                               | S°                                                                                                                                                                                                                           | σt                                                                                                                         | рH                                                                                                                                                                   | Р     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N2 | Sı | O <sub>2</sub><br>c.c.<br>litre                                                                                                                                                                                                                     | Gear                                                                                 | Depth<br>(metres)                                                                      | From              | То                   | TCHI6175                                   |
| <b>816</b><br><i>cont</i> . | 10             | 990<br>1480<br>1980<br>2470<br>2970                                                                                  |                         | $ \begin{array}{r} 0.31 \\ 0.13 \\ -0.06 \\ -0.20 \\ -0.28 \end{array} $                                                                                                                                                  | 34·68<br>34·67<br>34·66<br>—                                                                                                                                                                                                 | 27·85<br>27·85<br>27·85                                                                                                    | 8·15<br>8·15<br>8·14<br>8·14<br>8·14                                                                                                                                 |       |                                           |               |    | 4·39<br>4·40<br>4·49<br>4·74<br>4·86                                                                                                                                                                                                                |                                                                                      |                                                                                        |                   |                      |                                            |
| 817                         | 11             | 0<br>10<br>20<br>30<br>50<br>60<br>80<br>150<br>200<br>300<br>1500<br>2500<br>3500<br>4000                           |                         | $\begin{array}{c} -1.24\\ -1.23\\ -1.23\\ -1.48\\ -1.54\\ -1.55\\ -1.55\\ -1.55\\ -1.55\\ -1.33\\ -0.75\\ 0.46\\ 0.89\\ 0.89\\ 0.89\\ 0.81\\ 0.68\\ 0.55\\ 0.44\\ 0.21\\ 0.03\\ -0.13\\ -0.22\\ -0.28\\ -0.30\end{array}$ | 33 <sup>-</sup> 53<br>33 <sup>-</sup> 53<br>33 <sup>-</sup> 83<br>34 <sup>-</sup> 33<br>34 <sup>-</sup> 33<br>34 <sup>-</sup> 35<br>34 <sup>-</sup> 39<br>34 <sup>-</sup> 43<br>34 <sup>-</sup> 51<br>34 <sup>-</sup> 62<br> | 26·99<br>26·99<br>27·24<br>27·64<br>27·64<br>27·70<br>27·73<br>27·77<br>27·80<br>                                          | 8.08<br>8.08<br>8.07<br>8.03<br>8.03<br>8.03<br>8.03<br>8.02<br>7.99<br>7.96<br>7.93<br>7.96<br>8.00<br>8.01<br>8.11<br>8.11<br>8.11<br>8.16<br>8.16<br>8.20<br>8.20 |       |                                           |               |    | $\begin{array}{c} 7.30 \\ - \\ 6.91 \\ - \\ 5.94 \\ - \\ 5.94 \\ - \\ 5.94 \\ - \\ 5.94 \\ - \\ 5.94 \\ - \\ 5.94 \\ - \\ 3.90 \\ 4.22 \\ 4.33 \\ 4.30 \\ 4.22 \\ 4.19 \\ 4.34 \\ 4.58 \\ 4.53 \\ 4.70 \\ 4.75 \\ 4.78 \end{array}$                 | N 70 V<br>,,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>, | 1000-770<br>750-0<br>750-250<br>250-100<br>100-50<br>50-0<br>100-0<br>260-126<br>132-0 |                   | 0725<br>0838<br>0916 | DGP<br>KT                                  |
| 818                         | 13             | 0                                                                                                                    | _                       | - 1.42                                                                                                                                                                                                                    | 33.46                                                                                                                                                                                                                        | 26.93                                                                                                                      | 8.04                                                                                                                                                                 | -     |                                           | _             |    | _                                                                                                                                                                                                                                                   | N 70 B<br>N 100 B                                                                    | } 77-0                                                                                 | 1126              | 1146                 | КТ                                         |
| 819                         | 13             | 0                                                                                                                    | -                       | - 1.68                                                                                                                                                                                                                    | 33.64                                                                                                                                                                                                                        | 27.09                                                                                                                      | 8.03                                                                                                                                                                 | _     | _                                         | -             |    | -                                                                                                                                                                                                                                                   | N 70 B<br>N 100 B                                                                    | } 105-0                                                                                | 2027              | 2047                 | KT                                         |
| 820                         | 14             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1490<br>1990 |                         | $\begin{array}{c} -1.40 \\ -1.39 \\ -1.39 \\ -1.39 \\ -1.60 \\ -1.67 \\ -1.71 \\ -1.79 \\ -1.79 \\ -1.79 \\ -1.56 \\ 0.12 \\ 0.30 \\ 0.41 \\ 0.33 \\ 0.23 \\ 0.24 \\ -0.16 \end{array}$                                   | 33.82<br>33.82<br>33.87<br>34.00<br>34.43<br>34.43<br>34.45<br>34.50<br>34.50<br>34.50<br>34.50<br>34.50<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.68<br>34.68                                                      |                                                                                                                            | 8.07<br>8.06<br>8.06<br>8.06<br>8.03<br>8.02<br>8.02<br>8.02<br>8.02<br>7.96<br>7.95<br>7.95<br>8.01<br>8.00<br>8.05<br>8.10                                         |       |                                           |               |    | $\begin{array}{c} 7 \cdot 39 \\ - \\ 7 \cdot 33 \\ - \\ 6 \cdot 65 \\ - \\ 6 \cdot 47 \\ - \\ 6 \cdot 36 \\ 5 \cdot 98 \\ 4 \cdot 38 \\ 4 \cdot 23 \\ 4 \cdot 12 \\ 4 \cdot 07 \\ 4 \cdot 14 \\ 4 \cdot 30 \\ 4 \cdot 43 \\ 4 \cdot 66 \end{array}$ | N 70 V<br><br><br>N 50 V<br>N 70 B<br>N 100 B                                        | 1000-765<br>750-510<br>500-250<br>250-110<br>100-50<br>50-0<br>100-0<br>110-0          | 2015<br>—<br>2243 | 2227<br>2303         | КТ                                         |
| 821                         | 15             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400                                       |                         | $ \begin{array}{c} -1.74\\ -1.70\\ -1.48\\ -1.52\\ -1.60\\ -1.70\\ -1.77\\ -1.79\\ -1.80\\ -1.56\\ -0.29\\ 0.31\\ 0.34\\ \end{array} $                                                                                    | 33.72<br>33.72<br>34.19<br>34.40<br>34.42<br>34.43<br>34.43<br>34.43<br>34.43<br>34.43<br>34.50<br>34.52<br>34.61<br>34.68<br>34.68                                                                                          | 27.16<br>27.16<br>27.54<br>27.70<br>27.71<br>27.73<br>27.73<br>27.78<br>27.78<br>27.79<br>27.80<br>27.83<br>27.85<br>27.85 | 8.06<br>8.06<br>8.06<br>8.05<br>8.05<br>8.02<br>8.02<br>8.02<br>8.01<br>7.96<br>7.94<br>7.94                                                                         |       |                                           |               |    | $ \begin{array}{c} 7 \cdot 23 \\ - \\ 7 \cdot 03 \\ - \\ 6 \cdot 83 \\ - \\ 6 \cdot 74 \\ 6 \cdot 58 \\ 6 \cdot 28 \\ 4 \cdot 90 \\ 4 \cdot 23 \\ 4 \cdot 17 \\ \end{array} $                                                                       | N 50 V<br>N 70 V<br><br><br>                                                         | 100-0<br>1000-750<br>750-500<br>500-250<br>250-110<br>100-50<br>50-0                   | 2022              | 2148                 | Station worked in a<br>pool among pack-ice |

|                  |                                              |              |              | Sounding             | WIN          | D                | SEA           |        |         | neter<br>bars)                           | Air Ter        | np.°C.         |                              |
|------------------|----------------------------------------------|--------------|--------------|----------------------|--------------|------------------|---------------|--------|---------|------------------------------------------|----------------|----------------|------------------------------|
| Station          | Position                                     | Date         | Hour         | Sounding<br>(metres) | Direction    | Force<br>(knots) | Direction     | Force  | Weather | Barometer<br>(milbbars)                  | Dry<br>bulb    | Wet<br>bulb    | Remarks                      |
| <b>821</b> cont. | 65° 00·5′ S, 32° 32·8′ W                     | 1932<br>22 i |              |                      |              |                  |               |        |         |                                          |                |                |                              |
| 822              | 63° 53.7′ S, 33° 25.1′ W                     | 23 i         | 2000         | 4951*                | S            | 12               | S             | 2      | 0       | 979.5                                    | - 1.2          | - 2.0          | no swell                     |
| 823              | 61° 24·4′ S, 36° 03·6′ W                     | 27 i         | 0600<br>1036 | 4929*<br>            | SSW<br>SSW   | 22<br>12         | SSW<br>SSW    | 2<br>2 | 0       | 975 <sup>.</sup> 9<br>976 <sup>.</sup> 3 | - 1·6<br>- 0·7 | - 2·0<br>- 1·1 | low NW swell<br>low NW swell |
| 894              |                                              |              |              |                      | <b>CIW</b> 6 |                  |               |        |         |                                          |                |                |                              |
| 824              | 59° 57·4′ S, 36° 06·6′ W                     | 27 i         | 2015         | 1240*                | SW×S         | 12               | SW×S          | 3      | 0       | 979'0                                    | -0.0           | - 1.4          | mod. NNW swell               |
| 825              | 56° 31·2′ S, 36° 00·5′ W                     | 28 i         | 2000         | 3824*                | NE×N         | 10               | $NE \times N$ | 2      | ofe     | 983-8                                    | 1.8            | ъđ             | mod. conf. W swell           |
| 826              | 3 miles S 60° E of Jason I,<br>South Georgia | 8 ii         | 2109         | _                    | Lt airs      | 0-2              | NW            | I      | r       | 976·9                                    | 3.3            | 3.3            | mod. NW swell                |
| 827              | Port Stanley Harbour,<br>Falkland Islands    | 17 ii        | 0130         | _                    | Lt airs      | 0-1              |               | _      | e       | 990.3                                    | 1.2            | 0.0            | —                            |
| 828              | 51° 44.3′ S, 55° 57′ W                       | 17 ii        | 2000         | 1009*                | SW           | 13               | SW            | 3      | Ьс      | 1003.5                                   | 8.6            | 7.8            | mod. SSW swell               |

|              |                 |                                                                                                                              |                         |                                                                                                                                                                                                                 | HYDRO                                                                                                                                                                                                                                                                                                                                                                                               | LOGICA                                                                                                                                                                                                      | L OBSE                                                                                                                                                               | RVATI | ONS                                       |                    |    |                                                                                                                                                                                      | BIOLO                                                                                | GICAL OBSER                                                                   | WATIO:               | NS                   |                                                                 |
|--------------|-----------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------|--------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|----------------------|-----------------------------------------------------------------|
|              | Age of          |                                                                                                                              | . E                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                      |       | Mg.—at                                    | um m. <sup>3</sup> |    |                                                                                                                                                                                      |                                                                                      |                                                                               | TI                   | ME                   | Dumanlar                                                        |
| Station      | inoon<br>(days) | Depth<br>(metres)                                                                                                            | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                     | S° .                                                                                                                                                                                                                                                                                                                                                                                                | σt                                                                                                                                                                                                          | рН                                                                                                                                                                   | Р     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N2      | Si | O <sub>2</sub><br>c.c.<br>litre                                                                                                                                                      | Gear                                                                                 | Depth<br>(metres)                                                             | From                 | То                   | Remarks                                                         |
| 821<br>cont. | 15              | 600<br>800<br>1000<br>1500<br>2000<br>2500<br>3000<br>3500                                                                   | 3500                    | 0.40<br>0.32<br>0.23<br>0.02<br>- 0.14<br>- 0.20<br>- 0.31<br>- 0.38                                                                                                                                            | 34.68<br>34.68<br>34.68<br>34.67<br>34.67<br>34.67<br>34.66                                                                                                                                                                                                                                                                                                                                         | 27.86<br>27.85<br>27.86<br>27.87<br>27.88<br>27.88<br>27.88<br>27.88<br>27.88                                                                                                                               | 7.99<br>7.99<br>7.99<br>8.13<br>8.18<br>8.14<br>8.18<br>8.14                                                                                                         |       |                                           |                    |    | 3.99<br>4.13<br>4.42<br>4.49<br>4.53<br>4.80<br>4.86<br>4.93                                                                                                                         | N 70 B                                                                               | )<br>)                                                                        |                      |                      |                                                                 |
| 822          | 16              | 0                                                                                                                            | _                       | - 1.40                                                                                                                                                                                                          | 33.87                                                                                                                                                                                                                                                                                                                                                                                               | 27.27                                                                                                                                                                                                       | 8.02                                                                                                                                                                 |       |                                           |                    |    |                                                                                                                                                                                      | N 100 B<br>N 70 B<br>N 100 B                                                         | } 244-130<br>} 146-0                                                          | 2016<br>2056         | 2046<br>2116         | DGP<br>KT                                                       |
| 823          | 20              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>400<br>590<br>790<br>990<br>1480<br>1970<br>2460<br>2960 |                         | $\begin{array}{c} - 0.52 \\ - 0.54 \\ - 0.50 \\ - 1.31 \\ - 1.43 \\ - 1.64 \\ - 1.64 \\ - 1.64 \\ - 1.64 \\ - 0.89 \\ - 0.17 \\ 0.20 \\ 0.41 \\ 0.24 \\ 0.21 \\ 0.08 \\ - 0.09 \\ - 0.33 \\ - 0.49 \end{array}$ | $32 \cdot 83$<br>$32 \cdot 83$<br>$32 \cdot 84$<br>$33 \cdot 88$<br>$33 \cdot 99$<br>$34 \cdot 26$<br>$34 \cdot 34$<br>$34 \cdot 34$<br>$34 \cdot 43$<br>$34 \cdot 54$<br>$34 \cdot 54$<br>$34 \cdot 60$<br>$34 \cdot 63$<br>$34 \cdot 68$<br>$34 \cdot 67$ | 26.40<br>26.40<br>26.41<br>27.28<br>27.38<br>27.66<br>27.71<br>27.73<br>27.73<br>27.73<br>27.80<br>27.81<br>27.85<br>27.85<br>27.85<br>27.86<br>27.86<br>27.87<br>27.88<br>27.88<br>27.88<br>27.89<br>27.88 | 8.28<br>8.28<br>8.28<br>8.08<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>7.98<br>7.98<br>7.98<br>7.98<br>8.01<br>8.02<br>8.01<br>8.02<br>8.01<br>8.07<br>8.12<br>8.11 |       |                                           |                    |    | $\begin{array}{c} 8.44 \\ - \\ 8.38 \\ - \\ - \\ 6.53 \\ - \\ 6.53 \\ - \\ 6.55 \\ 5.87 \\ 5.40 \\ 4.88 \\ 4.66 \\ 4.49 \\ 4.52 \\ 4.57 \\ 4.74 \\ 4.90 \\ 5.07 \\ 5.27 \end{array}$ | N 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,, | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0<br>312-119<br>179-0 | 0618<br>             | 0745<br>1001<br>1034 | Station worked at<br>edge of pack-ice.<br>+5 hours<br>DGP<br>KT |
| 824          | 20              | 0                                                                                                                            |                         | -0.18                                                                                                                                                                                                           | 32.91                                                                                                                                                                                                                                                                                                                                                                                               | 26.42                                                                                                                                                                                                       | 8.31                                                                                                                                                                 |       |                                           |                    |    |                                                                                                                                                                                      | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                               | } 300-104<br>} 157-0                                                          | 2029<br>2111         | 2059<br>2131         | DGP<br>KT                                                       |
| 825          | 21              | 0                                                                                                                            |                         | 2.13                                                                                                                                                                                                            | 33.96                                                                                                                                                                                                                                                                                                                                                                                               | 27.15                                                                                                                                                                                                       | 8.19                                                                                                                                                                 | _     |                                           |                    |    |                                                                                                                                                                                      | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                               | } 117-0<br>} 310-100                                                          | 2015<br>2051         |                      | KT<br>DGP                                                       |
| 826          | 2               | 0                                                                                                                            | _                       | 2.60                                                                                                                                                                                                            | 33.40                                                                                                                                                                                                                                                                                                                                                                                               | 26.67                                                                                                                                                                                                       | 8.14                                                                                                                                                                 |       | -                                         | _                  | -  | -                                                                                                                                                                                    | N 50 V                                                                               | 100-0                                                                         | 2128                 | 2135                 | +1 hour                                                         |
| 827          | 10              | -                                                                                                                            | _                       | _                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                             |                                                                                                                                                                      | -     |                                           | -                  | -  | -                                                                                                                                                                                    | NH                                                                                   | 0                                                                             | 0130                 | 0131                 | +3 hours                                                        |
| 828          | 10              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>590<br>790                                 |                         | 7.81  7.81  7.81  7.81  7.72  7.69  7.53  5.90  5.18  4.57  4.39  4.22  4.09  3.60  7.312  12                                                                                                                   | 34.07<br>34.07<br>34.07<br>34.07<br>34.07<br>34.07<br>34.07<br>34.08<br>34.14<br>34.15<br>34.15<br>34.15<br>34.15<br>34.15<br>34.15<br>34.15<br>34.15                                                                                                                                                                                                                                               | 26.60<br>26.60<br>26.60<br>26.61<br>26.61<br>26.61<br>26.65<br>26.91<br>27.01<br>27.08<br>27.10<br>27.12<br>27.13<br>27.18<br>27.23                                                                         | 8.17<br>8.17<br>8.17<br>8.18<br>8.18<br>8.18<br>8.14<br>8.14<br>8.14<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.16                                                 |       |                                           |                    |    | 6.49<br>6.51<br>                                                                                                                                                                     |                                                                                      | 100-0<br>250-100<br>141-0                                                     | 2005<br>2146<br>2228 | 2216                 |                                                                 |

| Station | Position                                                               | Data           |              | Sounding<br>(metres) | WIN        | D                | SEA       |       |          | ieter<br>bars)           | Air Ter     | np.°C.      |                                  |
|---------|------------------------------------------------------------------------|----------------|--------------|----------------------|------------|------------------|-----------|-------|----------|--------------------------|-------------|-------------|----------------------------------|
| station | Position                                                               | Date           | Hour         | (metres)             | Direction  | Force<br>(knots) | Direction | Force | Weather  | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                          |
| 829     | 51° 42.8′ S, 50° 31.7′ W                                               | 1932<br>18 ii  | 2100         | 2264*                | SSW        | 20               | SSW       | 5     | 0        | 1011.0                   | 6.8         | 5.0         | heavy conf. SW swell             |
| 830     | 52° 32·1′ S, 44° 51·3′ W                                               | 19-20<br>ii    | 2100         | 3.410*               | NW         | 20               | NW        | 4     | o        | 1011.6                   | 5.6         | 4.2         | mod. conf. SSW<br>swell          |
| 831     | 53° 19·3′ S, 39° 32·1′ W                                               | 20–21<br>ii    | 2000         | -4031*               | NW × W     | 30               | NW×W      | 6     | ome      | 998·3                    | 5.2         | 5.2         | heavy NW swell                   |
|         | 3 miles S 60° E of Jason I,<br>South Georgia<br>53° 58·3′ S, 35° 50′ W | 22 ii<br>22 ii | 1902<br>2200 | <br>241**            | N×W<br>NNW | 29<br>38         | NNW       | 5     | or<br>or | 978·3<br>976·1           | 2.3         |             | heavy N×W swell<br>heavy N swell |

|         |                |                                                                                                                                              |                         |                                                                                                                                                                        | HYDRO                                                                                                                                                                            | LOGICA                                                                                                                                                                                             | L OBSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RVATI | ons                                       |                    |    |                                                                                                                                                                                                                                                                                                                                                  | BIOLOG                                           | JICAL OBSER                   | NATION               | ,s                   |                                 |
|---------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------|--------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------|----------------------|----------------------|---------------------------------|
| Station | Age of<br>moon |                                                                                                                                              | əy<br>eter              |                                                                                                                                                                        |                                                                                                                                                                                  |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Mg. at                                    | om m. <sup>3</sup> |    |                                                                                                                                                                                                                                                                                                                                                  |                                                  |                               | 115                  | 11-                  | Remarks                         |
|         | (days)         | Depth<br>(metres)                                                                                                                            | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                            | S ?'                                                                                                                                                                             | σt                                                                                                                                                                                                 | рЦ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Р     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>Ng      | S1 | O2<br>c.c.<br>litre                                                                                                                                                                                                                                                                                                                              | Gear                                             | Depth<br>(nietres)            | From                 | To                   |                                 |
| 829     | 12             | 0                                                                                                                                            |                         | 6·29<br>6·28<br>6·27                                                                                                                                                   | 34·06<br>34·06<br>34·06                                                                                                                                                          | 26·79<br>26·80<br>26·80                                                                                                                                                                            | 8·14<br>8·14<br>8·14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                           |                    |    | 6·70<br>                                                                                                                                                                                                                                                                                                                                         | N 70 B<br>N 100 B<br>N 70 B                      | 270-84                        | 2121                 | 2152                 | DGP                             |
|         |                | 20<br>30<br>40<br>50                                                                                                                         |                         | 6·25<br>6·13<br>5·50                                                                                                                                                   | 34.06<br>34.06<br>34.06                                                                                                                                                          | 26·80<br>26·82<br>26·89                                                                                                                                                                            | 8·14<br>8·14<br>8·14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _     |                                           |                    |    | 6.69                                                                                                                                                                                                                                                                                                                                             | N 100 B<br>N 50 V                                | 140-0                         | 2205<br>2240         | 2225<br>2250         | KT                              |
|         |                | 60<br>80<br>100<br>150<br>280<br>380<br>560<br>750<br>940<br>1410<br>1880                                                                    | <br><br><br><br>1879    | 5.12<br>4.50<br>4.01<br>3.51<br>3.30<br>2.61<br>2.57<br>2.54<br>2.15<br>2.27<br>1.95<br>1.64                                                                           | 34.08<br>34.11<br>34.14<br>34.14<br>34.14<br>34.14<br>34.21<br>34.34<br>34.34<br>34.46<br>34.52<br>34.66<br>34.69                                                                | 26.96<br>27.05<br>27.13<br>27.18<br>27.20<br>27.26<br>27.32<br>27.43<br>27.55<br>27.59<br>27.72<br>27.77                                                                                           | 8.14<br>8.11<br>8.07<br>8.07<br>8.08<br>8.02<br>8.04<br>7.93<br>7.97<br>8.04<br>8.04<br>8.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                           |                    |    | 6.70<br>6.46<br>6.35<br>6.34<br>6.24<br>5.52<br>4.61<br>4.03<br>3.95<br>3.91<br>4.17                                                                                                                                                                                                                                                             |                                                  |                               |                      |                      |                                 |
| 830     | 13             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>590<br>790<br>990<br>1480<br>1980<br>2470                  |                         | 5.13<br>5.14<br>5.15<br>5.16<br>5.16<br>4.81<br>3.99<br>2.76<br>2.09<br>1.41<br>1.60<br>1.61<br>2.11<br>2.24<br>2.04<br>2.05<br>1.79<br>1.36<br>0.06                   | 33.91<br>33.91<br>33.91<br>33.96<br>33.96<br>33.96<br>33.98<br>33.98<br>34.95<br>34.95<br>34.14<br>34.22<br>34.34<br>34.49<br>34.61<br>34.63<br>34.68<br>34.68                   | 26.82<br>26.82<br>26.82<br>26.82<br>26.90<br>26.90<br>27.12<br>27.18<br>27.28<br>27.34<br>27.39<br>27.46<br>27.56<br>27.70<br>27.70                                                                | 8.14<br>8.14<br>8.14<br>8.14<br>8.14<br>8.14<br>8.14<br>8.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                           |                    |    | $\begin{array}{c} 7 \cdot 00 \\ - \\ 7 \cdot 01 \\ \hline \\ 6 \cdot 95 \\ \hline \\ 6 \cdot 62 \\ \hline \\ 6 \cdot 62 \\ \hline \\ 6 \cdot 62 \\ \hline \\ 6 \cdot 62 \\ \hline \\ 6 \cdot 62 \\ \hline \\ 5 \cdot 37 \\ + \cdot 44 \\ + \cdot 47 \\ \hline \\ 3 \cdot 95 \\ 3 \cdot 87 \\ + \cdot 64 \\ + \cdot 33 \\ + \cdot 41 \end{array}$ | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>} 117-0<br>} 356-140 | 2112<br>2307<br>2340 | 2121<br>2327<br>0011 | KT<br>DGP                       |
| 831     | 14             | 2970<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>500<br>700<br>980<br>1480<br>1970<br>2460<br>2950<br>3450 |                         | 0.55<br>3.32<br>3.32<br>3.32<br>3.32<br>3.31<br>3.17<br>2.83<br>2.20<br>0.70<br>0.10<br>0.44<br>1.30<br>1.77<br>1.71<br>1.67<br>1.68<br>0.56<br>0.36<br>0.16<br>- 0.02 | 34·67<br>33·93<br>33·93<br>33·93<br>33·93<br>33·93<br>33·93<br>33·94<br>33·97<br>34·04<br>34·14<br>34·25<br>34·43<br>34·52<br>34·61<br>34·66<br>34·68<br>34·68<br>34·67<br>34·66 | 27.83<br>27.02<br>27.02<br>27.02<br>27.02<br>27.02<br>27.02<br>27.03<br>27.07<br>27.16<br>27.31<br>27.43<br>27.50<br>27.59<br>27.63<br>27.71<br>27.74<br>27.74<br>27.74<br>27.84<br>27.84<br>27.84 | 8.06<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.15<br>8.07<br>8.03<br>7.98<br>7.95<br>7.93<br>8.01<br>7.98<br>7.98<br>7.98<br>7.98<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03<br>8.03 |       |                                           |                    |    | 4.64<br>7.36<br><br>7.38<br>7.09<br>7.08<br>6.63<br>5.76<br>4.62<br>4.13<br>4.09<br>4.06<br>4.20<br>4.259<br>4.68<br>4.75<br>4.90                                                                                                                                                                                                                |                                                  | 100-0<br>250-100<br>130-0     | 2017<br>2300<br>2341 |                      | Estimated depth<br>KT           |
| 832     | 16             | 0                                                                                                                                            |                         | 2.20                                                                                                                                                                   | 33.73                                                                                                                                                                            | 26.93                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                           |                    |    |                                                                                                                                                                                                                                                                                                                                                  | N 50 V                                           | 100-0                         | 1905                 | 1915                 | Bad stray on wire.<br>+ 2 hours |
| 833     | 16             | 0                                                                                                                                            | _                       | 2.40                                                                                                                                                                   | 34.01                                                                                                                                                                            | 27.17                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -     | -                                         |                    | -  |                                                                                                                                                                                                                                                                                                                                                  | N 50 V<br>N 70 B<br>N 100 B                      | 100-0<br>173-0                | 2205<br>2232         |                      | кт                              |

|         |                                                    |                |      | Sounding             | WIN                            | D                | SEA                             |              |         | ncter<br>oars)           | Air Ter      | np. ° C.    |                                  |
|---------|----------------------------------------------------|----------------|------|----------------------|--------------------------------|------------------|---------------------------------|--------------|---------|--------------------------|--------------|-------------|----------------------------------|
| Station | Position                                           | Date           | Hour | Sounding<br>(metres) | Direction                      | Force<br>(knots) | Direction                       | Force        | Weather | Barometer<br>(millibars) | Dry<br>bulb  | Wet<br>bulb | Remarks                          |
| 834     | 52° 171′ S, 31° 01′ W                              | 1932<br>23 ii  | 2000 | 3438*                | WNW                            | 24               | WNW                             | 5            | bc      | 976-8                    | 2.4          | 1.2         | heavy NW swell                   |
|         | 49° 13·5′ S, 22° 29·2′ W<br>45° 28′ S, 11° 40·4′ W | 25 ii<br>27 ii |      |                      | WNW<br>WNW                     | 30<br>14         | WNW                             | 6<br>4 conf. | 0       | 991.3                    |              |             | heavy WNW swell<br>heavy W swell |
| 837     | 44° 44′ S, 09° 38′ W                               | 27 ii          | 2005 | 3696*                | $\mathrm{NW} 	imes \mathrm{W}$ | 26               | $\mathbf{NW} \times \mathbf{W}$ | 5            | oe      | 1011.3                   | 10.0         | 9.2         | heavy WNW swell                  |
| 838     | 42° 56′ S, 04° 52·2′ W                             | 28 ii          | 2000 | 4166*                | WSW                            | 19               | WSW                             | 4            | 0       | 1012.6                   | 9.4          | 8.3         | mod. W swell                     |
| 839     | 41° 04·4′ S, 00° 14·3′ W                           | 29 ii          | 2000 |                      | $\mathbf{S} 	imes \mathbf{W}$  | 23               | $S \times W$                    | 5            | bc      | 1021.4                   | 8.9          | 6.7         | heavy SW swell                   |
| 840     | 39° 21′ S, 04° 20'5′ E                             | ı iii          | 2000 |                      | W                              | 10               | W                               | 2            | с       | 1028-2                   | 10.6         | 5.7         | heavy SSW swell                  |
| 841     | 37° 46′ S, 08° 39·3′ E                             | 2 iii          | 2000 |                      | WNW                            | 20               | WNW                             | 4            | bc      | 1024.1                   | 15.0         | 12.7        | mod. SSW swell                   |
| 842     | 36° 04·8′ S, 13° 34·5′ E                           | 3 iii          | 2000 |                      | SW×W                           | 19               | SW×W                            | 4            | 0       | 1019.5                   | 17.8         | 16.6        | mod. conf. SW swell              |
| 843     | 34° 36.5′ S, 17° 56′ E                             | 4 iii          | 1800 | _                    | $\mathbf{S} 	imes \mathbf{W}$  | 14               | $\mathbf{S} 	imes \mathbf{W}$   | 3            | с       | 1017-2                   | 20 <b>.4</b> | 17.6        | mod. S swell                     |
| 844     | 35° 10·3′ S, 19° 06·1′ E                           | 8 iv           | 2000 | 189                  | NE×E                           | 3                | NE                              | I            | bc      | 1012.8                   | 20.2         | 20'1        | mod. SSE swell                   |
| 845     | 38° 08′ S, 20° 56·1′ E                             | 9-10<br>iv     | 2000 | 446 <b>0</b> *       | WNW                            | 19               | WNW                             | 3            | bc      | 1013.9                   | 18.9         | 16.7        | heavy E×N swell                  |

|         |                |                                               |                         |                                                                               | HYDRÖI.                                                                                                  | OGICAL                                                               | , OBSEF                                                                      | <b>WATI</b> | ONS                                                                                    |                           |                                                                           |                                 | BIOLOG                                           | ICAL OBSER                    | VATION               | .5           |                                        |
|---------|----------------|-----------------------------------------------|-------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------|---------------------------------|--------------------------------------------------|-------------------------------|----------------------|--------------|----------------------------------------|
|         | Age of         | [                                             | y<br>ter                |                                                                               |                                                                                                          |                                                                      |                                                                              |             | Mg.—at                                                                                 | om m. <sup>3</sup>        |                                                                           |                                 |                                                  |                               | TIN                  | IE           | Remarks                                |
| Station | moon<br>(days) | Depth<br>(metres)                             | Depth by<br>thermometer | Temp.                                                                         | S°.                                                                                                      | σt                                                                   | рН                                                                           | Р           | $\begin{array}{c} \text{Nitrate} \\ \overset{\tau}{\text{Nitrate}} \\ N_2 \end{array}$ | Nitrite<br>N <sub>2</sub> | Si                                                                        | O <sub>2</sub><br>c.e.<br>litre | Gear                                             | Depth<br>(metres)             | I rom                | То           | Remitiks                               |
| 834     | 17             | 0                                             |                         | 2.00                                                                          | 33-96                                                                                                    | 27.16                                                                |                                                                              |             |                                                                                        |                           |                                                                           |                                 | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>} 250-100<br>} 146-0 | 2009<br>2031<br>2118 | 2102         | Stray on wire<br>Estimated depth<br>KT |
| 835     | 19             | 0                                             |                         | 4.24                                                                          | 33.96                                                                                                    | 26.93                                                                |                                                                              |             |                                                                                        |                           | -                                                                         | _                               | N 70 B<br>N 100 B                                | 115-0                         | 1017                 | 1037         | KT. + i hour                           |
| 836     | 20             | 0                                             | —                       | 7.08                                                                          | 34.04                                                                                                    | 26.67                                                                |                                                                              |             |                                                                                        |                           |                                                                           |                                 | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B           | 102-0<br>250-100              | 0924<br>0959         | 0944<br>1028 | KT<br>Estimated depth                  |
| 837     | 21             | 0                                             |                         | 9.02                                                                          | 34.13                                                                                                    | 26.44                                                                |                                                                              | _           |                                                                                        |                           |                                                                           |                                 | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B           | } 250-100<br>} 125-0          | 2025<br>2110         | 2055<br>2130 | Estimated depth<br>KT                  |
| 838     | 22             | 0                                             |                         | 10.10                                                                         | 34.53                                                                                                    | 26.36                                                                |                                                                              |             |                                                                                        |                           |                                                                           |                                 | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B           | ) 250-100<br>) 137-0          | 2016<br>2058         | 2046<br>2118 | Estimated depth<br>KT                  |
| 839     | 23             | 0                                             |                         | 12.78                                                                         | 34.47                                                                                                    | 26.04                                                                | —                                                                            | _           | _                                                                                      |                           |                                                                           |                                 | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B           | ) 250-100<br>) 132-0          | 2019<br>2104         |              | Estimated depth.<br>  GMT<br>KT        |
| 840     | 24             | 0                                             |                         | 14.30                                                                         | 34.43                                                                                                    | 25.73                                                                |                                                                              |             |                                                                                        |                           |                                                                           |                                 | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B           | } 250-100<br>} 101-0          | 2017<br>2059         | 2047<br>2119 | Estimated depth<br>KT                  |
| 841     | 25             | 0                                             |                         | 16.80                                                                         | 34.29                                                                                                    | 25.42                                                                |                                                                              |             |                                                                                        |                           | _                                                                         |                                 | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B           | 320-140                       | 2013<br>2053         |              |                                        |
| 842     | 26             | 0                                             | -                       | 19.20                                                                         | 35.24                                                                                                    | 25.41                                                                |                                                                              | _           | -                                                                                      |                           |                                                                           |                                 | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B           | 1                             | }2009<br>2050        | 2049         |                                        |
| 843     | 27             | 0                                             |                         | 20.30                                                                         | 35.46                                                                                                    | 25.02                                                                |                                                                              |             | -                                                                                      | _                         | -                                                                         | -                               | N 70 B<br>N 100 B                                | } 144-0                       | 1807                 | 1827         | KT. – 2 hours                          |
| 844     | 4 3            | 20<br>20<br>30<br>40<br>50<br>60<br>80<br>100 |                         | 20.13<br>20.06<br>19.94<br>19.93<br>19.83<br>17.34<br>12.01<br>10.78<br>8.50  | 35.44<br>35.48<br>35.54<br>35.54<br>35.54<br>35.54<br>35.54<br>35.54<br>35.34<br>35.16<br>35.00<br>34.69 | 25.13<br>25.21<br>25.21<br>25.22<br>25.24<br>25.71<br>26.72<br>26.84 | 8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.14<br>8.13<br>8.03<br>8.00 |             |                                                                                        |                           | 4·3<br>4·4<br>4·6<br>4·5<br>5·1<br>5·1<br>6·2<br>9·4<br>15·4              |                                 | N 70 B<br>N 100 B                                |                               | 2026                 | 2117         |                                        |
| 84      | 5 4            | 10<br>20<br>30<br>40<br>50<br>60<br>80<br>100 |                         | 18.67<br>18.67<br>17.63<br>17.15<br>16.72<br>16.00<br>13.92<br>14.34<br>12.60 | 35·37<br>35·37<br>35·31<br>35·38<br>35·30<br>35·20<br>35·20<br>35·28                                     | 25.41<br>25.62<br>25.79<br>25.83<br>25.92<br>26.24                   | 8.18<br>8.19<br>8.20<br>8.20<br>8.16<br>8.13<br>8.13                         |             |                                                                                        |                           | 5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.6<br>5.6<br>9.6 | 5.05<br>5.12<br>5.09<br>5.09    | ,,,<br>,,<br>,,<br>N 50 V<br>N 70 B              |                               | 2045                 | 2308         |                                        |

## R.R.S. Discovery II

|              |                          |                    |              | Sounding             | WIN           | 1D               | SEA         |        |          | letur<br>Dars)           | Air Tei                                | np°C.                                |                                            |
|--------------|--------------------------|--------------------|--------------|----------------------|---------------|------------------|-------------|--------|----------|--------------------------|----------------------------------------|--------------------------------------|--------------------------------------------|
| Station      | Position                 | Date               | Hour         | Sounding<br>(metres) | Direction     | Force<br>(knots) | Direction   | Force  | Weather  | Barometer<br>(millibars) | Dry<br>bulb                            | Wet<br>bulb                          | Remarks                                    |
| 845<br>cont. | 38° 08′ S, 20° 56·1′ E   | 1932<br>9-10<br>iv |              |                      |               |                  |             |        |          |                          |                                        |                                      |                                            |
| 846          | 40° 41·3′ S, 23° 02′ E   | 10 iv              | 2005<br>0000 | 4959 <b>*</b>        | SW×W<br>WSW   | 18<br>19         | SW×W<br>WSW | 43     | bc<br>o  | 1016·4<br>1018·7         | 14 <sup>-</sup> 4<br>14 <sup>-</sup> 2 | 11.0                                 | mod. conf. swell<br>mod. conf. swell       |
| 847          | 43° 07·4′ S, 25° 04·6′ E | 11 iv              | 2000<br>0000 | 5260*                | WNW<br>NW×W   | 10<br>11–16      | WNW<br>NW×W | 2<br>3 | bc<br>o  | 1017·3<br>1017·6         | 11.7                                   | 9.5<br>10.2                          | heavy conf. W sweil<br>heavy conf. W swell |
| 848          | 45° 48·4′ S, 27° 13·6′ E | 12 iv              | 2000<br>0000 | 5560*                | NE × N<br>NNE | 18<br>23         | NE×E<br>NNE | 3<br>4 | bc<br>or | 1009.3                   | 8.6<br>9.8                             | 7 <sup>.</sup> 9<br>9 <sup>.</sup> 7 | mod. conf. SW swell<br>mod. conf. SW swell |

¢

|              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                                                                                                                                                                                                                                                                                  | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOGICA                                                                                                                                                                                                               | L OBSE                                                                                                                                                                               | RVATI | ONS                                       |               |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              | BIOLOG                                                   | GICAL OBSER                                                                              | VATION   | (S           |         |
|--------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------|----------|--------------|---------|
|              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                      |                                                                                                                                                                                      |       | Mgat                                      | om m.'        |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                          |                                                                                          | 1.17     | ME           |         |
| Station      | Age of<br>moon<br>(days) | Depth<br>(metres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                                                                                                      | S %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | σt                                                                                                                                                                                                                   | рН                                                                                                                                                                                   | Р     | Nitrate<br>H<br>Nitrite<br>N <sub>3</sub> | Nutrite<br>N2 | si                                                                                                                                                                                                                                                                                                                                                                 | Oj<br>c.c.<br>htre                                                                           | Gear                                                     | Depth<br>(metres)                                                                        | From     | То           | Remarks |
| 845<br>cont. | 4                        | 200<br>300<br>390<br>590<br>790<br>980<br>1470<br>1970<br>2460<br>2950<br>3440<br>3930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 574<br>                 | 11.89<br>9.77<br>7.58<br>5.91<br>4.38<br>3.07<br>2.81<br>2.66<br>2.50<br>2.33<br>2.11<br>1.21                                                                                                                                                                                                    | 35.05<br>34.79<br>34.49<br>34.43<br>34.41<br>34.39<br>34.68<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.66<br>26.85<br>26.95<br>27.14<br>27.30<br>27.42<br>27.67<br>                                                                                                                                                      | 8.10<br>8.11<br>8.03<br>8.03<br>8.01<br>8.01<br>8.11<br>8.12<br>8.12<br>8.08                                                                                                         |       |                                           |               | 13.1<br>10.9<br>11.6<br>24.5<br>32.0<br>36.6<br>54.7<br>43.8<br>42.9<br>51.0<br>71.1                                                                                                                                                                                                                                                                               | +'73<br>+'84<br>5'02<br>+'47<br>4'17<br>4'27<br>3'97<br>4'64<br>4'79<br>4'84<br>4'78<br>4'47 | N 70 B<br>N 100 B                                        | 148-0                                                                                    | 0015     | 0035         | КТ      |
| 846          | 5                        | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500<br>2000<br>2500<br>3000<br>3500<br>400<br>150<br>2500<br>3500<br>400<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>150<br>200<br>100<br>150<br>200<br>150<br>200<br>100<br>150<br>200<br>150<br>200<br>150<br>200<br>200<br>150<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2 |                         | 17.07<br>17.03<br>15.81<br>15.20<br>15.11<br>14.03<br>14.82<br>13.53<br>13.06<br>11.60<br>11.10<br>9.81<br>7.40<br>4.63<br>3.66<br>3.11<br>2.78<br>2.56<br>2.37<br>2.13<br>1.63<br>1.06<br>0.82                                                                                                  | $\begin{array}{c} 35\cdot22\\ 35\cdot20\\ 35\cdot06\\ 35\cdot03\\ 35\cdot03\\ 35\cdot03\\ 35\cdot02\\ 34\cdot94\\ 35\cdot11\\ 35\cdot03\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35\cdot01\\ 35$ | 25.69<br>25.68<br>25.85<br>25.97<br>25.99<br>26.03<br>26.05<br>26.26<br>26.49<br>26.71<br>26.79<br>26.88<br>27.07<br>27.26<br>27.39<br>27.50<br>27.73<br>27.51<br>27.81<br>27.83<br>27.84<br>27.86<br>27.86<br>27.85 | 8.22<br>8.22<br>8.22<br>8.24<br>8.24<br>8.23<br>8.16<br>8.11<br>8.12<br>8.08<br>8.10<br>8.02<br>8.00<br>8.02<br>7.96<br>8.02<br>8.11<br>8.17<br>8.14<br>8.09<br>8.09<br>8.09<br>8.09 |       |                                           |               | $\begin{array}{c} 4 \cdot 3 \\ 4 \cdot 2 \\ 4 \cdot 2 \\ 4 \cdot 2 \\ 4 \cdot 2 \\ 4 \cdot 2 \\ 4 \cdot 2 \\ 4 \cdot 3 \\ 5 \cdot 0 \\ 10 \cdot 0 \\ 10 \cdot 5 \\ 10 \cdot 9 \\ 14 \cdot 2 \\ 21 \cdot 8 \\ 30 \cdot 0 \\ 39 \cdot 3 \\ 48 \cdot 6 \\ 52 \cdot 8 \\ 45 \cdot 1 \\ 47 \cdot 4 \\ 50 \cdot 6 \\ 57 \cdot 7 \\ 77 \cdot 0 \\ 84 \cdot 0 \end{array}$ | 4.11<br>4.62<br>4.52<br>4.78<br>4.67<br>4.58                                                 |                                                          | 1000-760<br>750-500<br>500-220<br>250-100<br>100-50<br>50-0<br>100-0<br>370-170<br>128-0 |          |              |         |
| 847          | 6                        | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>100<br>150<br>200<br>200<br>300<br>590<br>780<br>980<br>1470<br>1950<br>2320<br>2790<br>3250<br>3710<br>4180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 15.13         15.12         15.11         15.03         15.03         15.03         14.83         13.65         12.71         11.50         11.22         9.71         7.51         6.04         4.28         3.65         2.85         2.63         2.51         2.28         1.91         1.37 | 35.10<br>35.10<br>35.00<br>35.00<br>35.00<br>35.00<br>35.00<br>35.00<br>35.05<br>35.01<br>34.93<br>34.82<br>34.86<br>34.76<br>34.47<br>34.40<br>34.34<br>34.67<br>34.77<br>34.81<br>34.77<br>34.81<br>34.76<br>34.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.95<br>27.09<br>27.26<br>27.39<br>27.66<br>27.66<br>27.66<br>27.81<br>27.81<br>27.82<br>27.85                                                                                                                      | 8.16<br>8.16<br>8.16<br>8.16<br>8.17<br>8.13<br>8.10<br>8.10<br>8.10<br>8.10<br>8.07<br>8.09<br>8.05<br>8.06<br>7.98<br>7.99<br>7.99<br>8.05<br>8.11<br>8.06                         |       |                                           |               | $\begin{array}{c} 6.7\\ 6.7\\ 6.7\\ 6.7\\ 6.7\\ 6.7\\ 6.7\\ 6.7\\$                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c}$                                                                          | ,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B | 1000-775<br>750-515<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>270-196<br>119-0 | 2030<br> | 2219<br>0046 | DGP     |
| 848          | 7                        | 0<br>10<br>20<br>30<br>40<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | 6.97<br>6.95<br>6.91<br>6.90<br>6.89<br>6.89                                                                                                                                                                                                                                                     | 33·87<br>33·87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.56<br>26.57<br>26.57<br>26.57                                                                                                                                                                                     | 8.11<br>8.11<br>8.11<br>8.11                                                                                                                                                         |       |                                           |               | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                             | 6·51<br>6·50                                                                                 | > > > > > > > > > > > > > > > > > > >                    | 1000-770<br>750-500<br>500-230<br>250-100<br>100-50<br>50-0                              | 2000     |              |         |

|              |                          |                     |              | Sounding             | WIN                          | D                | SEA                          |       |         | leter<br>bars)                         | Air Tei     | mp. ° C.    |                                    |
|--------------|--------------------------|---------------------|--------------|----------------------|------------------------------|------------------|------------------------------|-------|---------|----------------------------------------|-------------|-------------|------------------------------------|
| Station      | Position                 | Date                | Hour         | Sounding<br>(metres) | Direction                    | Force<br>(knots) | Direction                    | Force | Weather | Barometer<br>(millibars)               | Dry<br>bulb | Wet<br>bulb | Remarks                            |
| 848<br>cont. | 45° 48.4′ S, 27° 13.6′ E | 1932<br>12-13<br>iv |              |                      |                              |                  |                              |       |         |                                        |             |             |                                    |
| 849          | 48° 14.6′ S, 29° 23.7′ E | 14 iv               | 0000<br>0400 | 5527*                | NW×W<br>NW×W                 | 35<br>29         | NW×W<br>NW×W                 | 55    | bc<br>o | 998·2<br>997·2                         | 7·8<br>7·9  | 5·7<br>5·8  | heavy NW swell<br>heavy NW swell   |
| 850          | 50° 43.8′ S, 31° 44′ E   | 15 iv               | 0000         | 5492*                | $W \times N$<br>$W \times N$ | 22<br>20         | $W \times N$<br>$W \times N$ | 65    | bc<br>o | 995 <sup>.8</sup><br>997 <sup>.1</sup> | 2.9<br>3.2  | 1.8<br>2.2  | heavy WNW swell<br>heavy WNW swell |

|                     |        |                               |                         |                                      | HYDROI                           | .0GICAI                                   | , OBSEI                                | RVATI | ONS                                                                         |               |                              |                                | BIOLO                                  | GICAL OBSER                              | VATION        | s            | ]                                               |
|---------------------|--------|-------------------------------|-------------------------|--------------------------------------|----------------------------------|-------------------------------------------|----------------------------------------|-------|-----------------------------------------------------------------------------|---------------|------------------------------|--------------------------------|----------------------------------------|------------------------------------------|---------------|--------------|-------------------------------------------------|
|                     | Age of |                               | -1-2                    |                                      |                                  |                                           |                                        |       | Mg.—at                                                                      | om m.³        |                              |                                |                                        |                                          | TD            | VIE          |                                                 |
| Station             | (days) | Depth<br>(metres)             | Depth by<br>thermometer | Temp.<br>°C.                         | S '                              | σt                                        | рН                                     | Р     | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ N_2 \end{array}$ | Nitrite<br>N2 | Si                           | () <sub>2</sub><br>c.c<br>htre | Gear                                   | Depth<br>(metres)                        | Γrom          | То           | Remarks                                         |
| <b>848</b><br>cont. | 7      | 60<br>80                      |                         | 6·89<br>6·80<br>6·70                 | 33.87<br>33.89<br>33.91          | 26·57<br>26·59<br>26·62                   | 8.11<br>8.11<br>8.11                   |       |                                                                             |               | 6·1<br>6·1<br>6·1            | 6·48<br><br>6·53               | N 50 V<br>N 70 B<br>N 100 B            | 100-0<br>270-166                         | 2355          | 2135<br>0025 | DGP                                             |
|                     |        | 100<br>150<br>200<br>300      |                         | 5·34<br>5·39<br>4·90<br>4·20         | 34.09<br>34.23<br>34.26<br>34.23 | 26.93<br>27.04<br>27.12<br>27.18          | 8.08<br>8.07<br>8.02<br>8.02           |       |                                                                             |               | 9.6<br>12.3<br>17.7<br>20.8  | 6·27<br>5·91<br>5·40<br>5·47   | N 70 B<br>N 100 B                      | 117-0                                    | 0037          | 0057         | КТ                                              |
|                     |        | 400<br>600<br>800<br>1000     |                         | 4 20<br>3·41<br>2·94<br>2·64<br>2·58 | 34·25<br>34·34<br>34·42<br>34·67 | 27·27<br>27·39<br>27·47<br>27·68          | 8.00<br>8.04<br>7.99<br>7.96           |       |                                                                             |               | 31·2<br>42·6<br>55·1<br>63·5 | 5·13<br>4·42<br>4·14<br>3·92   |                                        |                                          |               |              |                                                 |
|                     |        | 1 500<br>2000<br>2500<br>3000 | <br>2497<br>            | 2·43<br>2·24<br>1·66<br>1·13         | 34·78<br>34·80<br>34·76<br>34·71 | 27·78<br>27·82<br>27·82<br>27·82<br>27·83 | 8.04<br>8.06<br>8.02<br>8.06           |       |                                                                             |               | 64·6<br>58·5<br>85·1<br>87·1 | 4·27<br>4·61<br>4·46<br>4·46   |                                        |                                          |               |              |                                                 |
|                     |        | 3500<br>4000<br>4500<br>5000  |                         | 0.74<br>0.39<br>0.22                 | 34·70<br>34·69<br>34·69          | 27·85<br>27·85<br>27·86                   | 8.06<br>8.14<br>8.04                   |       |                                                                             |               | 96.0<br>101.2<br>110.2       | 4·52<br>4·56<br>4·75           |                                        |                                          |               |              |                                                 |
| 849                 | 8      | 0<br>10<br>20                 |                         | 7·72<br>7·72<br>7·71<br>7·70         | 34·08<br>34·08<br>34·09<br>34·09 | 26.62<br>26.62<br>26.62<br>26.62          | 8.09<br>8.09<br>8.09<br>8.09           |       |                                                                             |               | 6.1<br>6.1<br>6.1            | 6·34<br>—<br>6·33<br>—         | N 70 V<br>,,<br>,,                     | 1000-0<br>1000-750<br>750-500<br>500-250 | 0010          |              |                                                 |
|                     |        | 30<br>40<br>50<br>60          | <br>                    | 7·81<br>8·00<br>8·04                 | 34.09<br>34.17<br>34.18<br>34.18 | 26.61<br>26.65<br>26.65<br>26.65          | 8.09<br>8.09<br>8.09<br>8.09           |       |                                                                             |               | 6.1<br>6.1<br>6.1            | 6·32<br>                       | ,,<br>,,<br>N 50 V                     | 250-100<br>100-50<br>50-0<br>100-0       |               | 0245         |                                                 |
|                     |        | 80<br>100<br>150<br>190       |                         | 8.06<br>8.05<br>7.10<br>6.28         | 34·18<br>34·27<br>34·25          | 26.65<br>26.85<br>26.94                   | 8.09<br>8.09<br>8.06                   | -     |                                                                             |               | 6·1<br>8·8<br>12·1<br>18·3   | 6·27<br>5·92<br>5·88<br>5·07   | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 300-110<br>300-0<br>71-0                 | }0430<br>0529 |              | DGP<br>KT                                       |
|                     |        | 280<br>380<br>570<br>760      |                         | 6·12<br>4·68<br>3·83<br>3·25         | 34·36<br>34·26<br>34·25<br>34·33 | 27·05<br>27·15<br>27·23<br>27·34          | 8.01<br>8.01<br>8.03<br>8.02           |       |                                                                             |               | 20·2<br>27·2<br>39·0<br>51·7 | 5·34<br>5·09<br>4·61<br>4·05   | N 100 B                                | 210-125                                  | 0529          | 0600         | DGP                                             |
|                     |        | 960<br>1430<br>1910<br>2470   |                         | 3.06<br>2.57<br>2.41<br>2.06         |                                  | 27.82                                     | 7.93<br>7.94<br>8.00<br>8.00           |       |                                                                             |               | 61·2<br>61·2<br>58·2<br>68·0 | 3.98<br>4.24<br>4.51           |                                        |                                          |               |              |                                                 |
|                     |        | 2960<br>3460<br>3950<br>4450  |                         | 1.63<br>1.08<br>0.73<br>0.43         | 34·79<br>34·74<br>34·71<br>34·70 | 27·86<br>27·86<br>27·86<br>27·86          | 8.00<br>8.00<br>8.02<br>8.03           |       |                                                                             |               | 85·3<br>94·1<br>99·2         | 1                              |                                        |                                          |               |              |                                                 |
| 850                 | 9      | 4940<br>0<br>10               | 4940<br>—               | 0·27<br>1·90<br>1·90                 | 34·70<br>34·02<br>34·02          | 1                                         | 8.08<br>8.07<br>8.07                   |       |                                                                             | -             | 40.0<br>40.0                 | 7.31                           | N 70 V                                 | 1000-720<br>750-485<br>500-260           | 0020          |              |                                                 |
|                     |        | 20<br>30<br>40<br>50          | -                       | 1.90<br>1.90<br>1.90                 | 34.02<br>34.02<br>34.02<br>34.02 | 27·22<br>27·22<br>27·22                   | 8.07<br>8.07<br>8.08<br>8.08           |       |                                                                             |               | 40.0<br>40.0<br>40.0<br>40.0 | 7.26                           | ,,<br>,,<br>,,<br>N 50 V               | 250-100<br>100-50<br>50-0<br>100-0       |               | 0245         |                                                 |
|                     |        | 60<br>80<br>100<br>150        |                         | 1.90<br>1.80<br>0.98                 | 34.02<br>34.02<br>34.02<br>34.09 | 27·22<br>27·23<br>27·33                   | 8.08<br>8.08<br>8.08<br>8.04           |       |                                                                             | -             | 40.4<br>40.8<br>50.0<br>51.3 | 7.25                           | N 70 B<br>N 100 B<br>N 100 B           | 100-0                                    | 0528<br>0528  | 0548         | Estimated depth<br>Closing depth esti-<br>mated |
|                     |        | 200<br>300<br>390<br>590      | -                       | 0.21<br>0.34<br>1.33<br>1.56         | 34·19<br>34·44<br>34·59<br>34·68 | 27.66<br>27.72<br>27.77                   | 7 <sup>.</sup> 92<br>7 <sup>.</sup> 93 |       |                                                                             |               | 59°3<br>69°0<br>69°0<br>70°3 | 5.45<br>4.31<br>4.08           |                                        |                                          |               |              |                                                 |
|                     |        | 780<br>980<br>1480<br>1970    | 981<br>                 | 1.53<br>1.40<br>0.86<br>0.59         | 34.70                            | 27·80<br>27·85<br>27·86                   | 8.00<br>8.00                           | _     |                                                                             |               | 73.0<br>77.5<br>82.5<br>88.3 | 4·22<br>4·55<br>4·66           |                                        |                                          |               |              |                                                 |
|                     |        | 2500<br>3000<br>3500<br>4000  |                         | 0.38<br>0.09<br>-0.12<br>-0.22       | 34.69                            | 27·87<br>27·88<br>27·88                   | 8.01<br>8.06<br>8.06                   |       |                                                                             |               | 94.9<br>97.3<br>97.3<br>97.3 | 4.82<br>4.98<br>5.07           |                                        |                                          |               |              |                                                 |
|                     |        | 4500                          | -                       | - 0°22<br>- 0°20                     | 34.69                            | 27.88                                     | 8.10                                   |       |                                                                             |               | 97·3<br>97·3                 |                                |                                        |                                          |               |              |                                                 |

848-850

|         |                          |               |              | Sounding             | WIN                                                            | D                | SEA                                                            |        |               | aeter<br>bars)                         | Air Ter      | np.°C.           |                                                                        |
|---------|--------------------------|---------------|--------------|----------------------|----------------------------------------------------------------|------------------|----------------------------------------------------------------|--------|---------------|----------------------------------------|--------------|------------------|------------------------------------------------------------------------|
| Station | Position                 | Date          | Hour         | Sounding<br>(metres) | Direction                                                      | Force<br>(knots) | Direction                                                      | Force  | Weather       | Barometer<br>(millibars)               | Dry<br>bulb  | Wet<br>bulb      | Remarks                                                                |
| 851     | 56° 22·1′ S, 37° 22·3′ E | 1932<br>17 iv | 0005<br>0400 | 5058*                | $\mathbf{W} 	imes \mathbf{N}$<br>$\mathbf{W} 	imes \mathbf{N}$ | 30-35<br>35      | $\mathbf{W} 	imes \mathbf{N}$<br>$\mathbf{W} 	imes \mathbf{N}$ | 6<br>6 | bcqsp<br>bcsp | 979 <sup>.0</sup><br>979 <sup>.2</sup> | - 0·7<br>0·0 | - 1·0<br>- 0·3   | heavy W swell<br>heavy W swell                                         |
| 852     | 58° 39.5′ S, 40° 03.9′ E | 18 iv         | 0000         | 5427*                | $\mathbf{E}$<br>SE × S                                         | 5<br>15          | SSE<br>SE × S                                                  | I<br>2 | o<br>osp      | 986·3<br>987·8                         | - 0.3        | I · I<br>- I · O | heavy conf. W swell<br>heavy W swell                                   |
| 853     | 61° 00.2′ S, 43° 11.1′ E | 19 iv         | 0000         | 5365*                | $S$ $S \times W$                                               | 9<br>10          | $S$ $S \times W$                                               | 2<br>2 | c<br>osp      |                                        |              |                  | mod. conf. ESE and<br>SW swells<br>mod. conf. ESE and<br>SW × W swells |

|         |                |                                                                                                                                                                         |                         |                                                                                                                                                                                                                          | HYDRO                                                                                                                                                                                                           | LOGICA                                                                                                                                                                                                                                          | L OBSE                                                                                                                                                                               | RVATI | ONS                                                                           |                           |                                                                                                                                                                                    |                                                                                                              | BIOLOG                                                                       | ACAL OBSER                                                                               | VATIO:               | NS .                 |                      |
|---------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------|----------------------|----------------------|
|         | Age of         |                                                                                                                                                                         | y<br>ter                |                                                                                                                                                                                                                          |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                      |       | Mg.—a                                                                         | tom m.3                   |                                                                                                                                                                                    |                                                                                                              |                                                                              |                                                                                          | .l.1                 | VIL.                 | Recal-               |
| Station | moon<br>(days) | Depth<br>(metres)                                                                                                                                                       | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                              | <b>S</b> */                                                                                                                                                                                                     | σt                                                                                                                                                                                                                                              | рП                                                                                                                                                                                   | Р     | $ \begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ N_2 \end{array} $ | Nitrite<br>N <sub>2</sub> | Si                                                                                                                                                                                 | O <sub>2</sub><br>c.c.<br>litre                                                                              | Gear                                                                         | Depth<br>(metres)                                                                        | From                 | То                   | Ket att -            |
| 851     | Π              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>290<br>390                                                                                          |                         | 1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10                                                                                                                                                             | 33.87<br>33.87<br>33.87<br>33.87<br>33.87<br>33.87<br>33.87<br>33.87<br>33.87<br>33.87<br>33.88<br>33.93<br>34.25<br>34.36<br>34.48<br>34.62                                                                    | 27.15<br>27.15<br>27.15<br>27.15<br>27.15<br>27.15<br>27.15<br>27.15<br>27.16<br>27.17<br>27.20<br>27.52<br>27.58<br>27.65<br>27.73                                                                                                             | 8.08<br>8.08<br>8.08<br>8.08<br>8.08<br>8.08<br>8.08<br>8.08                                                                                                                         |       |                                                                               |                           | 33'3<br>33'3<br>33'3<br>33'3<br>33'3<br>33'3<br>33'3<br>33'                                                                                                                        | 7·23<br>7·27<br>7·29<br>7·24<br>7·30<br>6·51<br>5·61<br>4·80<br>4·19                                         | N 100 B<br>N 100 B                                                           | 125-0<br>320-190                                                                         | 0411<br>0411         | 0431<br>0442         | KT. – 3 hours<br>DGP |
|         |                | 590<br>780<br>980<br>1470<br>1960<br>2430<br>2910<br>3400<br>3880<br>4370                                                                                               |                         | $ \begin{array}{r} 1.69\\ 1.60\\ 1.44\\ 1.54\\ 0.59\\ 0.40\\ 0.15\\ -0.01\\ -0.13\\ -0.24\\ \end{array} $                                                                                                                | 34.68<br>34.71<br>34.72<br>34.71<br>34.69<br>34.68<br>34.68<br>34.67<br>34.67<br>34.67                                                                                                                          | 27·76<br>27·80<br>27·81<br>27·80<br>27·86<br>27·85<br>27·86<br>27·86<br>27·86<br>27·86<br>27·87<br>27·87                                                                                                                                        | 7.98<br>8.08<br>7.98<br>8.03<br>8.04<br>8.04<br>8.04<br>8.04<br>8.05<br>8.05<br>8.05<br>8.05                                                                                         |       |                                                                               |                           | 74'4<br>77'5<br>79'1<br>88'3<br>102'6<br>102'6<br>82'5<br>92'6<br>102'6                                                                                                            | 4.08<br>4.16<br>4.33<br>4.43<br>4.43<br>4.66<br>4.77<br>4.85<br>5.06<br>5.09                                 |                                                                              |                                                                                          |                      |                      |                      |
| 852     | 12             | $\begin{array}{c} 0\\ 10\\ 20\\ 30\\ 40\\ 50\\ 60\\ 80\\ 100\\ 150\\ 200\\ 300\\ 400\\ 600\\ 800\\ 1500\\ 2000\\ 2500\\ 2500\\ 3000\\ 3500\\ 4500\\ 5000\\ \end{array}$ | 2000                    | $\begin{array}{c} 0.41 \\ 0.43 \\ 0.43 \\ 0.42 \\ 0.42 \\ 0.41 \\ 0.11 \\ -0.70 \\ 0.23 \\ 1.08 \\ 1.60 \\ 1.74 \\ 1.71 \\ 1.61 \\ 1.45 \\ 0.89 \\ 0.51 \\ 0.31 \\ 0.12 \\ -0.01 \\ -0.16 \\ -0.23 \\ -0.29 \end{array}$ | 33.87<br>33.87<br>33.87<br>33.87<br>33.87<br>33.87<br>33.87<br>33.87<br>33.91<br>3.414<br>3.431<br>3.473<br>3.473<br>3.473<br>3.4773<br>3.4773<br>3.4772<br>3.4770<br>3.470<br>3.470<br>3.469<br>3.467<br>3.467 | 27:19<br>27:19<br>27:19<br>27:19<br>27:19<br>27:19<br>27:24<br>27:46<br>27:56<br>27:64<br>27:56<br>27:64<br>27:72<br>27:82<br>27:82<br>27:82<br>27:82<br>27:82<br>27:85<br>27:85<br>27:86<br>27:87<br>27:87<br>27:87<br>27:87<br>27:87<br>27:88 | 8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.04<br>7.98<br>7.92<br>7.92<br>7.92<br>7.92<br>7.92<br>7.92<br>8.04<br>8.04<br>8.03<br>8.03<br>8.03<br>8.03<br>8.05<br>8.13 |       |                                                                               |                           | 33.6<br>33.6<br>33.6<br>33.6<br>33.9<br>33.9<br>38.7<br>47.5<br>60.3<br>66.6<br>71.6<br>77.5<br>79.1<br>84.4<br>88.3<br>99.9<br>105.5<br>108.5<br>102.6<br>102.6<br>102.6<br>108.5 |                                                                                                              | N 70 V<br>,,<br>,,<br>,,<br>N 50 V<br>N 100 B<br>N 70 B<br>N 100 B           | 1000-790<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>370-155<br>119-0 | 0000                 | 0145<br>0415<br>0449 | DGP<br>KT            |
| 853     | 13             | 0<br>20<br>30<br>40<br>50<br>60<br>100<br>290<br>390<br>580<br>770<br>960<br>1450<br>1930                                                                               |                         | $\begin{array}{c} 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ -1.20\\ -1.00\\ 1.42\\ 1.68\\ 1.71\\ 1.70\\ 1.56\\ 1.34\\ 0.88\\ 0.51\end{array}$                                                                     | 33.87<br>33.87<br>33.87<br>33.87<br>33.87<br>33.87<br>33.87<br>34.10<br>34.21<br>34.46<br>34.54<br>34.64<br>34.64<br>34.75<br>34.75<br>34.75<br>34.73<br>34.75                                                  | 27·22<br>27·22<br>27·22<br>27·22<br>27·22<br>27·22<br>27·22<br>27·45<br>27·53<br>27·63<br>27·63<br>27·63<br>27·63<br>27·63<br>27·63<br>27·63<br>27·75<br>27·80<br>27·80<br>27·86<br>27·86                                                       | 8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09                                                                                                                         |       |                                                                               |                           | 33.9<br>33.9<br>33.9<br>33.9<br>33.9<br>33.9<br>44.7<br>52.0<br>66.6<br>75.9<br>79.1<br>80.8<br>82.5<br>84.4<br>88.3<br>94.9<br>102.6                                              | 7:37<br>7:39<br>7:41<br>7:38<br>6:79<br>4:84<br>4:45<br>4:17<br>4:11<br>4:21<br>4:36<br>4:37<br>4:47<br>4:59 | N 70 V<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0<br>110-108                     | 0010<br>0355<br>0435 | 0143<br>0425<br>0455 | DGP<br>KT            |

|                     |                                                       |               |              | Sounding | WIN                            | D                | SEA              |        |           | leter<br>Jars)                         | Air Ter        | mp. ° C.       |                                                 |
|---------------------|-------------------------------------------------------|---------------|--------------|----------|--------------------------------|------------------|------------------|--------|-----------|----------------------------------------|----------------|----------------|-------------------------------------------------|
| Station             | Position                                              | Date          | Hour         | (metres) | Direction                      | Force<br>(knots) | Direction        | Force  | Weather   | Barometer<br>(millibars)               | Dry<br>bulb    | Wet<br>bulb    | Remarks                                         |
| <b>853</b><br>cont. | 61° 00·2′ S, 43° 11·1′ E                              | 1932<br>19 iv |              |          |                                |                  |                  |        |           |                                        |                |                |                                                 |
| 854                 | 63° 30·2′ S, 46° 24·9′ E                              | 20 iv         | 0000<br>0400 | 4227*    | NE×N<br>NE×N                   | 20<br>18         | NE × N<br>NE × N | 4<br>3 | os<br>osp | 992'7<br>992'4                         | - 1·9<br>- 2·8 | - 2·4<br>- 3·4 | mod. conf. NE swell<br>mod. NE swell            |
| 1                   | 65° 15′ S, 48° 43·7′ E to<br>65° 10·4′ S, 48° 43·7′ E | 20 iv         | 1828<br>2258 | 3132*    | E×N<br>E                       | 23<br>28         | E × N<br>E       | 3<br>4 | osp<br>o  |                                        |                |                | low conf. WNW and<br>ENE swells<br>mod. N swell |
| 856                 | 61° 06·6′ S, 53° 39·8′ E                              | 22 iv         | 2010         | 5325*    | $\mathbf{S} \times \mathbf{E}$ | 35-40            | S                | 6      | oq        | 988·6                                  | - 3·4          | - 3.7          | heavy conf. SSW and<br>S swells                 |
| 857                 | 60° 40·1′ S, 59° 23·7′ E                              | 23 iv         | 2000<br>0000 | 4977*    | ${f S	imes W}{f S}$            | I I<br>I I       | S×W<br>S         | 3<br>3 | 0<br>0    | 995 <sup>.6</sup><br>995 <sup>.7</sup> | - 3·9<br>- 3·9 | - 4·3<br>- 4·4 | mod. S×E swell<br>mod. S swell                  |

| 853- | ·857 |
|------|------|
|------|------|

| r            |                          |                                                                                                                                               |                         |                                                                                                                                                                                                                           | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DLOGIC.                                                                                                                                                                                                     | AL OBS                                                                                                                                                                               | ERVAT                                                                                                                                | IONS                             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BIOLOG                                              | GICAL OBSER                                                                              | NATIO:                   | NS                   |                                                                                                                   |
|--------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------|
| Station      | Age of<br>moon<br>(days) | Depth<br>(metres)                                                                                                                             | Depth by<br>thermometer | Temp.<br>– C.                                                                                                                                                                                                             | S°,                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | at                                                                                                                                                                                                          | pH                                                                                                                                                                                   | P                                                                                                                                    | Mg.—a<br>Nitrate<br>+<br>Nitrite | tom m. <sup>3</sup><br>Nitrite<br>N <sub>2</sub> | si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O <u>,</u><br>c.c.<br>litre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gear                                                | Depth<br>(mettes)                                                                        | TI:<br>From              | ME<br>To             | Remarks                                                                                                           |
| 853<br>cont. | 13                       | 2410<br>2890<br>3370<br>3860<br>4340<br>4820                                                                                                  | 2893<br>—<br>—<br>—     | 0.30<br>0.09<br>- 0.05<br>- 0.20<br>- 0.22<br>- 0.30                                                                                                                                                                      | 34.69<br>34.68<br>34.67<br>34.67<br>34.67<br>34.67                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.85<br>27.87<br>27.86<br>27.87<br>27.87<br>27.87<br>27.88                                                                                                                                                 | 8.08<br>8.13<br>8.04<br>.7.99<br>8.00<br>8.10                                                                                                                                        |                                                                                                                                      |                                  |                                                  | 105.5<br>108.5<br>108.5<br>108.5<br>108.5<br>111.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4'43<br>4'45<br>4'94<br>5'09<br>5'22<br>5'02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |                                                                                          |                          |                      |                                                                                                                   |
| 854          | 14                       | 0<br>10<br>20<br>30<br>40<br>50<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>990<br>1490<br>1990<br>2480<br>2980<br>3470<br>3970 | <br><br><br><br>3966    | $\begin{array}{c} - 0.80 \\ - 0.80 \\ - 0.78 \\ - 0.78 \\ - 0.78 \\ - 0.78 \\ - 0.78 \\ - 0.78 \\ - 0.45 \\ - 0.45 \\ - 0.45 \\ - 0.45 \\ - 0.45 \\ - 0.45 \\ - 0.45 \\ - 0.98 \\ - 0.28 \\ - 0.28 \\ - 0.39 \end{array}$ | 34.01<br>34.01<br>34.01<br>34.01<br>34.01<br>34.01<br>34.01<br>34.01<br>34.01<br>34.01<br>34.01<br>34.71<br>34.73<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.76<br>34.66<br>34.66<br>34.66<br>34.66 | 27·37<br>27·37<br>27·37<br>27·37<br>27·37<br>27·51<br>27·54<br>27·76<br>27·78<br>27·78<br>27·78<br>27·81<br>27·78<br>27·83<br>27·85<br>27·86<br>27·85<br>27·86<br>27·86<br>27·87<br>27·87<br>27·87<br>27·87 | 8.08<br>8.08<br>8.08<br>8.08<br>8.08<br>8.08<br>8.08<br>7.91<br>7.99<br>7.90<br>7.90<br>7.90<br>7.91<br>7.93<br>7.96<br>8.00<br>7.96<br>8.00<br>7.97<br>8.03<br>8.03<br>8.03<br>8.12 |                                                                                                                                      |                                  |                                                  | 52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>52.0<br>77.5<br>77.5<br>79.1<br>79.1<br>80.8<br>84.4<br>94.9<br>97.3<br>97.3<br>99.9<br>99.9<br>99.9<br>99.9 | 7.27<br>-7.27<br>7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.29<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7.28<br>-7. | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0<br>248-94<br>119-0             | 0005                     | 0142<br>0330<br>0402 | DGP<br>KT                                                                                                         |
| 855          | 15                       | 0<br>60<br>80<br>100<br>200<br>290<br>390<br>580<br>780<br>970<br>1460<br>1940<br>2430                                                        |                         | $ \begin{array}{c} -1.65 \\ -1.65 \\ -1.60 \\ -1.68 \\ 0.04 \\ 0.80 \\ 1.19 \\ 1.12 \\ 0.76 \\ 0.64 \\ 0.07 \\ -0.13 \\ -0.32 \end{array} $                                                                               | 34.07<br>34.07<br>34.12<br>34.14<br>34.58<br>34.66<br>                                                                                                                                                                                                                                                                                                                                                                                                                  | 27·44<br>27·44<br>27·44<br>27·48<br>27·68<br>27·74<br>27·78<br>27·85<br>27·83<br>27·83<br>27·83<br>27·85<br>27·86<br>27·86<br>27·87                                                                         | 8.05<br>8.05<br>8.05<br>7.97<br>7.93<br>7.94<br>7.94<br>7.94<br>7.95<br>8.03<br>7.98<br>7.99<br>8.09<br>8.09<br>8.04                                                                 | 1.60<br>1.60<br>1.60<br>1.88<br>1.90<br>1.92<br>1.88<br>1.96<br>2.11<br>2.03<br>1.98<br>2.01<br>1.92                                 |                                  |                                                  | 56.7<br>56.7<br>56.7<br>71.6<br>74.4<br>77.5<br>86.3<br>97.3<br>99.9<br>99.9<br>105.5<br>105.5<br>105.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 7.51\\ 7.61\\\\ 7.56\\ 5.45\\ 4.63\\ 4.41\\ 4.43\\ 4.57\\ 4.52\\ 4.54\\ 4.76\\ 4.94\\ 5.10\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N 70 B<br>N 100 B<br>N 70 B                         | 1000-750<br>750-500<br>500-230<br>250-100<br>100-50<br>50-0<br>100-0<br>125-0<br>280-154 | 1830<br><br>2310<br>2310 | 2035<br>2330<br>2340 | Streams of drift ice<br>in vicinity. Loose<br>pack to SE<br>Depth of <b>N 50 V</b><br>haul estimated<br>KT<br>DGP |
| 856          | 17                       | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500                                  |                         | 0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.21<br>- 1.27<br>0.20<br>1.12<br>1.80<br>1.90<br>1.88<br>1.76<br>1.22<br>0.70                                                                                    | 33.81<br>33.81<br>33.81<br>33.81<br>33.81<br>33.81<br>33.81<br>33.82<br>33.99<br>34.20<br>34.40<br>34.57<br>34.61<br>34.70<br>34.76<br>34.74<br>34.73                                                                                                                                                                                                                                                                                                                   | 27.16<br>27.16<br>27.16<br>27.16<br>27.16<br>27.16<br>27.17<br>27.17<br>27.17<br>27.37<br>27.47<br>27.57<br>27.66<br>27.70<br>27.77<br>27.82<br>27.85<br>27.87                                              | 8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11                                                                                                                         | 1.65<br>1.67<br>1.65<br>1.65<br>1.65<br>1.67<br>1.65<br>1.69<br>1.90<br>2.01<br>2.17<br>2.13<br>2.07<br>1.98<br>2.00<br>1.92<br>1.92 |                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7·31<br>7·31<br>7·34<br>7·20<br>7·23<br>5·78<br>4·67<br>3·89<br>3·87<br>4·03<br>4·23<br>4·23<br>4·23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N 100 B<br>N 100 B                                  | 89-0<br>224-120                                                                          | 2230 2230                | 2250 2310            | KT<br>DGP                                                                                                         |
| 857          | . 18                     | 0<br>10<br>20<br>30                                                                                                                           |                         | 0.01<br>0.01<br>0.00                                                                                                                                                                                                      | 33.81<br>33.81<br>33.81<br>33.81                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.17<br>27.17<br>27.17<br>27.17                                                                                                                                                                            | 8.13<br>8.13<br>8.13<br>8.13                                                                                                                                                         | 1.82<br>1.82<br>1.81<br>1.79                                                                                                         |                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7·31<br>7·31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N 70 V<br>.,<br>.,<br>.,                            | 1000-750<br>750-500<br>500-250<br>250-100                                                | 2005                     |                      |                                                                                                                   |

|              |                          |                     |              | Sounding | WIN                                                      | ND               | SE/                                                                                     | A.    |            | leter<br>Jars)          | Ан Те          | шр. ≜С.        |                                        |
|--------------|--------------------------|---------------------|--------------|----------|----------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------|-------|------------|-------------------------|----------------|----------------|----------------------------------------|
| Station      | Position                 | Date                | Hour         | (metres) | Direction                                                | Force<br>(knots) | Direction                                                                               | Force | Weather    | Barometer<br>(milhbars) | Dry<br>bulb    | Wet<br>bulb    | Remarks                                |
| 857<br>cont. | 60° 40°1′ S, 59° 23°7′ E | 1932<br>23-24<br>iv |              |          |                                                          |                  |                                                                                         |       |            |                         |                |                |                                        |
| 858          | 60° 10·1′ S, 63° 54·8′ E | 24 iv               | 2000<br>0000 | 4801*    | SS                                                       | 16<br>17         | S<br>S                                                                                  | 33    | 0<br>0     | 1000·9<br>1003·0        | - 4·7<br>- 5·1 | - 5·2<br>- 5·7 | mod. conf. swell<br>mod. SE swell      |
| 859          | 59° 19·1′ S, 68° 51·8′ E | 25 iv               | 2000<br>0000 | 4534**   | NNE<br>NNE                                               | 25-30<br>25-30   | Conf.<br>NNE                                                                            | 555   | osq<br>osq | 987•1<br>980·8          | - 2·1<br>- 0·8 | - 2·4<br>- 1·3 | heavy conf. N swell<br>heavy NNE swell |
| 860          | 57° 56·4′ S, 73° 58·8′ E | 26 iv               | 2000<br>0000 | 3251*    | $\begin{array}{c} SW \times W \\ W \times S \end{array}$ | 12<br>16         | $\begin{array}{c} \mathbf{SW}\times\mathbf{W}\\ \mathbf{W}\times\mathbf{S} \end{array}$ | 4     | 0<br>0     | 981.7<br>982.2          | 0°0<br>0°2     | - 0·7<br>- 0·5 | heav.conf.W×Nswell<br>mod.conf.Wswell  |

| 857-860 |
|---------|
|---------|

|                            |             |                                                                                                                                                                        |                         |                                                                                                                                                                                                                | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DLÓGICA                                                                                                                                                                                                                       | L OBSI                                                                                                                                       | <b>RVATI</b>                                                                                                                                                 | ONS                                                                         |                           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BIOLO                                                                              | GICAL OBSER                                                                             | RVATIO.              | NS                           |                                                      |
|----------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------|------------------------------|------------------------------------------------------|
| Station                    | Age of moon |                                                                                                                                                                        | oy<br>eter              |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                                                                              |                                                                                                                                                              | Mg.—at                                                                      | om m.3                    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                    |                                                                                         | TI                   | ME                           |                                                      |
| Station                    | (days)      | Depth<br>(metres)                                                                                                                                                      | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                    | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | σt                                                                                                                                                                                                                            | pH                                                                                                                                           | Р                                                                                                                                                            | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ N_2 \end{array}$ | Nitrite<br>N <sub>2</sub> | 51 | O2<br>c.c.<br>htre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gear                                                                               | Depth<br>(metres)                                                                       | From                 | To                           | Remark -                                             |
| <b>857</b><br><i>cont.</i> | 18          | 40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1500<br>2500<br>3000<br>3500                                                                         |                         | 0.01<br>0.00<br>- 1.10<br>- 1.16<br>1.20<br>1.61<br>1.89<br>1.73<br>1.75<br>1.62<br>1.13<br>0.73<br>0.42<br>0.23<br>0.04                                                                                       | 33.81<br>33.81<br>33.81<br>34.02<br>34.08<br>34.43<br>34.54<br>34.50<br>34.58<br>34.73<br>34.75<br>34.76<br>34.73<br>34.77<br>34.68<br>34.67<br>34.66                                                                                                                                                                                                                                                                                                                                                                                   | 27.17<br>27.17<br>27.17<br>27.39<br>27.44<br>27.59<br>27.66<br>27.60<br>27.60<br>27.60<br>27.80<br>27.80<br>27.83<br>27.83<br>27.84<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85                                              | 8.13<br>8.13<br>8.13<br>8.10<br>8.06<br>7.94<br>7.97<br>7.96<br>7.94<br>8.04<br>8.04<br>8.03<br>8.03<br>8.03<br>8.04<br>8.10<br>8.09<br>8.09 | 1.79<br>1.79<br>1.96<br>1.98<br>2.17<br>2.07<br>2.00<br>2.00<br>1.92<br>1.88<br>1.88<br>1.88<br>1.88<br>1.92<br>1.92<br>1.92<br>1.90                         |                                                                             |                           |    | 7.34<br>7.28<br>6.78<br>4.61<br>4.01<br>4.46<br>3.98<br>3.90<br>4.07<br>4.23<br>4.39<br>4.48<br>4.41<br>4.58<br>4.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N 70 V<br>N 50 V<br>N 70 B<br>N 70 B<br>N 100 B<br>N 100 B                         | 100-50<br>50-0<br>100-0<br>119-0<br>262-140<br>130-0                                    | 0132<br>0132<br>0212 | 2155<br>0152<br>0202<br>0232 | KT<br>DGP<br>DGP                                     |
| 858                        | 19          | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>400<br>600<br>800<br>1500<br>2000<br>2000<br>2000<br>2000<br>2000<br>2490<br>2990<br>3490<br>3990<br>4490 |                         | $\begin{array}{c} 0.52\\ 0.57\\ 0.58\\ 0.50\\ 0.50\\ 0.48\\ 0.42\\ 0.41\\ -0.69\\ -0.50\\ 1.40\\ 1.99\\ 2.01\\ 1.99\\ 2.01\\ 1.99\\ 2.01\\ 1.99\\ 2.01\\ 1.99\\ 0.63\\ 0.34\\ 0.11\\ -0.09\\ -0.20\end{array}$ | 33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>34.78<br>34.40<br>34.40<br>34.452<br>34.74<br>34.77<br>34.76<br>34.77<br>34.76<br>34.77<br>34.76<br>34.77<br>34.76<br>34.77<br>34.76<br>34.76<br>34.76<br>34.76<br>34.76<br>34.76<br>34.68<br>34.66 | 27:12<br>27:12<br>27:12<br>27:12<br>27:13<br>27:13<br>27:13<br>27:31<br>27:44<br>27:55<br>27:62<br>27:67<br>27:74<br>27:74<br>27:74<br>27:78<br>27:81<br>27:81<br>27:85<br>27:85<br>27:85<br>27:85<br>27:85<br>27:85<br>27:86 | 8.13<br>8.13<br>8.13<br>8.13<br>8.13<br>8.13<br>8.13<br>8.13                                                                                 | 1.82<br>1.82<br>1.82<br>1.82<br>1.82<br>1.82<br>1.82<br>1.82                                                                                                 |                                                                             |                           |    | 7.22<br>7.23<br>7.25<br>7.25<br>7.22<br>7.33<br>6.45<br>4.51<br>3.86<br>4.66<br>4.18<br>4.36<br>4.41<br>4.51<br>4.48<br>4.66<br>4.77<br>4.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N 70 V<br>,,<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-750<br>750-500<br>250-250<br>250-100<br>100-50<br>50-0<br>100-0<br>88-0<br>264-130 | 2005<br>             | 2150<br>2356<br>0006         | – 4 hours<br>KT<br>DGP                               |
| 859                        | 20          | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>290<br>390<br>780<br>980<br>1460<br>1950<br>2440<br>2930<br>3420<br>3900                           |                         | 0.71<br>0.74<br>0.77<br>0.78<br>0.78<br>0.78<br>0.79<br>0.55<br>-0.50<br>-0.01<br>1.40<br>1.83<br>2.03<br>2.04<br>1.52<br>1.16<br>0.74<br>0.42<br>0.20<br>-0.09                                                | 33.78<br>33.79<br>33.79<br>33.79<br>33.79<br>33.79<br>33.84<br>33.97<br>33.84<br>33.97<br>34.14<br>34.41<br>34.52<br>34.59<br>34.66<br>34.76<br>34.76<br>34.772<br>34.79<br>34.76<br>34.772<br>34.79<br>34.69<br>34.68                                                                                                                                                                                                                                                                                                                  | 27:11<br>27:12<br>27:12<br>27:12<br>27:12<br>27:12<br>27:12<br>27:16<br>27:32<br>27:44<br>27:56<br>27:62<br>27:62<br>27:67<br>27:72<br>27:80<br>27:81<br>27:84<br>27:86<br>27:86<br>27:86<br>27:86<br>27:86<br>27:86<br>27:86 | 8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.00<br>8.00                                                                         | 1.81<br>1.82<br>1.81<br>1.81<br>1.82<br>1.82<br>1.82<br>2.19<br>2.19<br>2.19<br>2.41<br>2.45<br>2.24<br>2.20<br>2.05<br>2.07<br>2.09<br>2.11<br>2.15<br>2.19 |                                                                             |                           |    | $7.21 \\ -7.20 \\ -7.19 \\ -7.20 \\ -7.50 \\ 6.22 \\ 4.48 \\ 3.92 \\ 3.79 \\ 3.81 \\ 3.95 \\ 4.17 \\ 4.33 \\ 4.42 \\ 4.48 \\ 4.53 \\ 4.68 \\ 4.70 \\ 1.68 \\ 4.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.68 \\ 1.70 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.68 \\ 1.6$ | N 70 V<br>,,<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-750<br>750-500<br>500-250<br>100-50<br>25-0<br>100-0<br>100-0<br>210-140           | 2015<br>             | 2240<br>0011<br>0023         | – 5 hours<br>KT<br>(DGP. Closing depth)<br>estimated |
| 860                        | 21          | 0                                                                                                                                                                      | _                       | 0.61<br>0.61                                                                                                                                                                                                   | 33·78<br>33·78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27·12<br>27·12                                                                                                                                                                                                                | 8·10<br>8·10                                                                                                                                 | 2·05<br>2·05                                                                                                                                                 |                                                                             |                           |    | 7.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N 70 V<br>,,                                                                       | 1000–750<br>750–520                                                                     | 2015                 |                              |                                                      |

860-863

|                             |                                      |                     |              | Sounding   | WIN        | D                | SEA        |       |            | neter<br>Jary)           | Air Tei        | np.C.              |                                            |
|-----------------------------|--------------------------------------|---------------------|--------------|------------|------------|------------------|------------|-------|------------|--------------------------|----------------|--------------------|--------------------------------------------|
| Station                     | Position                             | Date                | Hour         | (metres)   | Direction  | Force<br>(knots) | Direction  | Force | Weather    | Barometer<br>(mullibars) | Dry<br>bulb    | Wet<br>bulb        | Remarks                                    |
| <b>860</b><br><i>cont</i> , | 57° 56·4′ S, 73 <sup>-</sup> 58·8′ E | 1932<br>26–27<br>iv |              |            |            |                  |            |       |            |                          |                |                    |                                            |
| 861                         | 56° 28°9′ S, 79° 18°2′ E             | 27 iv               | 2000<br>0000 | 2293*      | W<br>WSW   | 13<br>19         | W<br>WSW   | 2 4   | besp<br>be | 985.1<br>983.7           | - 1·2<br>- 0·5 | - I • 4<br>- I • 2 | mod. W swell<br>mod. W × N swell           |
| 862                         | 55° 33·8′ S, 83° 00·4′ E             | 28 iv               | 2000         | 3815*      | SSW        | 15-18            | SSW        | 3     | с          | 989.3                    | - 1.4          | - 2.7              | low W swell                                |
| 863                         | 54° 15·3′ S, 88′ 22·4′ E             | 29 iv               | 2000<br>0000 | 4696*<br>— | N×E<br>WNW | 24<br>24         | N×E<br>WNW | 5 5 5 | OS<br>OS   | 983-8<br>979-9           | 0.0            | - o.0<br>- o.0     | mod. conf. SE swell<br>mod. conf. SE swell |

|                  |                |                                                                                                                               |                         |                                                                                                                                        | HYDRC                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOGICA                                                                                                                                                                  | L OBSE                                                                                                                                                                       | RVATI                                                        | IONS                                      |                                                                                                                              |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BIOLOG                                                                               | GICAL OBSER                                                                             | VATIO:                   | NS                   |                        |
|------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------|----------------------|------------------------|
|                  | Age of         |                                                                                                                               | y<br>ter                |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |                                                                                                                                                                              |                                                              | Mg.—at                                    | om m.ª                                                                                                                       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |                                                                                         | TI                       | ME                   | Remarks                |
| Station          | moon<br>(days) | Depth<br>(metres)                                                                                                             | Depth by<br>thermometer | Temp.<br>°C.                                                                                                                           | s .                                                                                                                                                                                                                                                                                                                                                                                                                                          | σt                                                                                                                                                                      | pH                                                                                                                                                                           | I,                                                           | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>Na                                                                                                                | Si | O <sub>2</sub><br>c.c.<br>litre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gear                                                                                 | Depth<br>(metres)                                                                       | From                     | То                   | Kemarks                |
| <b>860</b> cont. | 21             | 20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>590<br>790<br>990<br>1490<br>1980<br>2480<br>2970             | 2964                    | 0.61<br>0.61<br>0.61<br>0.61<br>0.60<br>- 0.30<br>0.10<br>1.50<br>1.96<br>2.06<br>2.13<br>2.04<br>1.89<br>1.45<br>1.01<br>0.70<br>0.45 | 33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>34.13<br>34.13<br>34.52<br>34.61<br>34.67<br>34.72<br>34.75<br>34.76<br>34.77<br>34.77<br>34.77<br>34.76<br>34.77                                                                                                                                                                   | 27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.25<br>27.41<br>27.54<br>27.61<br>27.67<br>27.72<br>27.77<br>27.81<br>27.84<br>27.85<br>27.86<br>27.85                   | 8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.00<br>7.99<br>7.91<br>7.99<br>7.92<br>7.92<br>7.92<br>7.95<br>7.98<br>8.00<br>8.10                                                 | 2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05 |                                           |                                                                                                                              |    | $\begin{array}{c} 7 \cdot 2 + \\ - \\ 7 \cdot 2 + \\ - \\ 7 \cdot 2 2 \\ - \\ 7 \cdot 2 0 \\ 6 \cdot 0 1 \\ + \cdot 5 7 \\ 3 \cdot 8 8 \\ 3 \cdot 7 + \\ 3 \cdot 9 8 \\ + \cdot 0 7 \\ + \cdot 2 0 \\ 4 \cdot 4 1 \\ + \cdot 5 5 \\ + \cdot 4 9 \\ + \cdot 1 7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                       | 500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>119-0<br>300-100                       | <br>2349<br>2349         | 2330<br>0009<br>0020 | KT<br>DGP              |
| 861              | 22             | 0<br>10<br>20<br>30<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500<br>2000                       |                         | 0.72<br>0.72<br>0.72<br>0.72<br>0.72<br>0.72<br>0.72<br>0.72                                                                           | 34.04<br>34.04<br>34.04<br>34.04<br>34.04<br>34.04<br>34.04<br>34.04<br>34.04<br>34.04<br>34.04<br>34.60<br>34.60<br>34.68<br>34.72<br>34.75<br>34.75<br>34.75<br>34.72<br>34.75<br>34.75<br>34.72<br>34.75<br>34.75<br>34.75<br>34.72<br>34.76<br>34.60<br>34.60<br>34.60<br>34.60<br>34.60<br>34.72<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.76<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.76 | 27:31<br>27:31<br>27:31<br>27:31<br>27:31<br>27:31<br>27:31<br>27:31<br>27:54<br>27:54<br>27:54<br>27:77<br>27:78<br>27:78<br>27:82<br>27:84<br>27:83<br>27:84<br>27:84 | 8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.08<br>7.96<br>7.92<br>7.91<br>7.92<br>7.93<br>7.98<br>8.08<br>8.08<br>8.09<br>8.09                                         | 2·22<br>2·22<br>2·22<br>2·22<br>2·22<br>2·22<br>2·22<br>2·2  |                                           | 0.42<br>0.42<br>0.45<br>0.46<br>0.46<br>0.44<br>0.43<br>0.29<br>0.07<br>0.05<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 |    | 7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.03<br>-7.04<br>-7.04<br>-7.02<br>-7.02<br>-7.04<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7.02<br>-7 | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                       | 1000-750<br>750-550<br>250-0<br>250-100<br>100-50<br>50-0<br>100-0<br>100-0<br>254-110  | 2005<br>                 | 2315<br>0039<br>0049 | KT<br>DGP              |
| 862              | 23             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500<br>2000<br>2500<br>3000 |                         | 1.80<br>1.81<br>1.81<br>1.81<br>1.81<br>1.81<br>1.81<br>1.81                                                                           | $\begin{array}{c} 33.88\\ 33.88\\ 33.88\\ 33.88\\ 33.88\\ 33.88\\ 33.88\\ 33.88\\ 33.88\\ 33.88\\ 33.89\\ 34.03\\ 34.34\\ 34.60\\ 34.65\\ 34.60\\ 34.65\\ 34.69\\ 34.72\\ 34.75\\ 34.77\\ 34.70\\ 34.69\\ 34.68\end{array}$                                                                                                                                                                                                                  | 27·70<br>27·75<br>27·79<br>27·83<br>27·83<br>27·84<br>27·84                                                                                                             | 8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.08<br>8.04<br>7.93<br>7.91<br>7.91<br>7.91<br>7.96<br>8.02<br>8.02<br>8.02<br>7.98<br>8.01<br>8.08<br>8.04<br>8.04<br>8.14 | 2·53<br>2·53                                                 |                                           | 0.35<br>0.36<br>0.34<br>0.35<br>0.36<br>0.34<br>0.34<br>0.33<br>0.30<br>0.04<br>0.02<br>0.06                                 |    | $\begin{array}{c} 7.00 \\ - \\ 7.02 \\ - \\ - \\ 7.03 \\ - \\ 6.98 \\ - \\ 6.53 \\ + .74 \\ + .18 \\ + .03 \\ + .03 \\ + .03 \\ + .03 \\ + .03 \\ + .38 \\ + .50 \\ + .43 \\ + .62 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,, | 1000-750<br>750-300<br>750-250<br>250-100<br>100-50<br>50-0<br>100-0<br>102-0<br>220-98 | 2015<br><br>2313<br>2313 |                      | – 6 hours<br>KT<br>DGP |
| 863              | 2.4            | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100                                                                            | —                       | 1.97<br>1.97<br>1.97<br>1.98<br>1.95<br>1.61<br>1.59<br>1.28<br>1.09                                                                   | 34.00                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.08<br>27.08<br>27.09<br>27.09<br>27.14<br>27.14<br>27.14                                                                                                             | 8.12<br>8.12<br>8.12<br>8.08<br>8.03                                                                                                                                         | 2·30<br>2·30<br>2·32<br>2·32<br>2·32<br>2·41<br>2·45<br>2·57 |                                           | 0.41<br>0.39<br>0.40<br>0.41<br>0.40<br>0.38<br>0.38<br>0.29<br>0.19                                                         |    | 7.03<br>7.06<br><br>7.02<br><br>6.84<br><br>5.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N 50 V<br>N 70 V<br><br><br><br>N 70 B<br>N 100 B                                    | 100-0<br>1000-750<br>750-500<br>250-100<br>100-50<br>50-0                               | 2009                     | 2217                 | КТ                     |

|                              |                                                    |                     |                      | Sounding             | WIN                | D                | SEA           |             |                 | neter<br>bars)            | Air Ter     | n <b>p.</b> °C. |                                                               |
|------------------------------|----------------------------------------------------|---------------------|----------------------|----------------------|--------------------|------------------|---------------|-------------|-----------------|---------------------------|-------------|-----------------|---------------------------------------------------------------|
| Station                      | Position                                           | Date                | Hour                 | Sounding<br>(metres) | Direction          | Force<br>(knots) | Direction     | Force       | Weather         | Rarometer<br>(millibars)  | Dry<br>bulb | Wet<br>bulb     | Remarks                                                       |
| <b>86</b> 3<br><i>cont</i> . | 54° 15·3′ S, 88° 22·4′ E                           | 1932<br>29-30<br>iv |                      |                      |                    |                  |               |             |                 |                           |             |                 |                                                               |
| 864                          | 53° 11·7′ S, 93° 10·6′ E                           | 30 iv               | 2000                 | 4475*                | NW                 | 40-45            | NW×W          | 6           | orq             | 975.7                     | 5-1         | 4.2             | heavy WNW swell                                               |
|                              | 52° 48·4′ S, 94° 56′ E<br>51° 22·6′ S, 96° 26·4′ E | I V<br>I V          | 0615<br>2000<br>0000 |                      | W<br>NW<br>NW      | 25<br>18<br>35   | W<br>NW<br>NW | 6<br>4<br>6 | o<br>orq<br>orq | 994·8<br>1003·3<br>1002·7 | 4.9         | 4.5             | mod. WNW swell<br>mod. conf. NW swell<br>heavy conf. NW swell |
| 867                          | 49° 25.5' S, 98° 21.8' E                           | 2 V                 | 2000<br>0000         | 3519*                | sw<br>$W \times s$ | 24<br>24         | SW<br>W×S     | 55          | orq<br>o        | 1000.7                    | 3-2<br>3-5  | 3.1<br>3.0      | heavy conf. NW swell<br>heavy conf. NW swell                  |

|                             |                |                                                                                                                                                                                                                                                                                            |                             |                                                                                                                                      | HYDRC                                                                                                                                                                                                                | LOGICA                                                                                                                                                                                                               | L OBSE                                                                                                                                                               | ERVATI                                                                                                       | IONS                                                                               |                                                                                                                            |    |                                                                                                                                                                         | BIOLO                                                                                | GICAL OBSER                                                                      | RVATIO:              | NS                   |                                                                        |
|-----------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------|----------------------|------------------------------------------------------------------------|
|                             | Age of         |                                                                                                                                                                                                                                                                                            | εL                          |                                                                                                                                      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                      |                                                                                                                                                                      |                                                                                                              | Mg.—at                                                                             | om m.³                                                                                                                     | -  |                                                                                                                                                                         |                                                                                      |                                                                                  | 'I'I                 | ME                   |                                                                        |
| Station                     | moon<br>(days) | Depth<br>(metres)                                                                                                                                                                                                                                                                          | Depth by<br>thermometer     | Temp.<br>°C.                                                                                                                         | S °/                                                                                                                                                                                                                 | σt                                                                                                                                                                                                                   | pН                                                                                                                                                                   | P                                                                                                            | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ \text{N}_2 \end{array}$ | Nitrite<br>N2                                                                                                              | Si | O <sub>2</sub><br>c.c.<br>htre                                                                                                                                          | Gear                                                                                 | Depth<br>(metres)                                                                | From                 | То                   | Remarks                                                                |
| <b>863</b><br><i>cont</i> . | 24             | 150<br>200<br>390<br>590<br>790<br>990<br>1480<br>1970<br>2460<br>2960<br>3450<br>3940                                                                                                                                                                                                     | <br><br><br>3934            | 1:48<br>1:92<br>1:98<br>1:89<br>1:91<br>1:90<br>1:31<br>1:09<br>0:78<br>0:26<br>0:08<br>0:08<br>-0:03                                | 34·25<br>34·41<br>34·50<br>34·58<br>34·68<br>34·70<br>34·74<br>34·71<br>34·70<br>34·68<br>34·67<br>34·67<br>34·67                                                                                                    | 27:43<br>27:53<br>27:59<br>27:67<br>27:75<br>27:76<br>27:80<br>27:82<br>27:82<br>27:83<br>27:83<br>27:85<br>27:86                                                                                                    | 7.94<br>7.93<br>7.91<br>7.98<br>8.04<br>8.03<br>7.99<br>8.04<br>8.00<br>8.04<br>8.00<br>8.06<br>8.06<br>8.12                                                         | 3.00<br>2.68<br>2.85<br>2.85<br>2.51<br>2.45<br>2.45<br>2.49<br>2.49<br>2.49<br>2.49<br>2.49<br>2.51<br>2.57 |                                                                                    | 0.07<br>0.00<br>0.00<br>0.00<br>0.00<br>                                                                                   |    | 4.99<br>4.41<br>4.15<br>4.06<br>4.12<br>4.19<br>4.28<br>4.44<br>4.51<br>4.58<br>4.69<br>4.91<br>4.79                                                                    | N 70 B<br>N 100 B                                                                    | 200-82                                                                           | 0127                 | 0159                 | DGP                                                                    |
| 864                         | 25             | <ul> <li>c</li> <li>10</li> <li>20</li> <li>30</li> <li>40</li> <li>50</li> <li>60</li> <li>80</li> <li>150</li> <li>200</li> <li>300</li> <li>600</li> <li>800</li> <li>1000</li> <li>1490</li> <li>1490</li> <li>2490</li> <li>2490</li> <li>2490</li> <li>3480</li> <li>3980</li> </ul> | <br><br><br><br><br>3973    | 2.56<br>2.56<br>2.56<br>2.56<br>2.56<br>2.56<br>2.56<br>2.56                                                                         | 33.81<br>33.81<br>33.81<br>33.81<br>33.81<br>33.81<br>33.81<br>33.81<br>33.81<br>33.86<br>33.99<br>34.19<br>34.43<br>34.59<br>34.43<br>34.59<br>34.69<br>34.75<br>34.77<br>34.76<br>34.76<br>34.76<br>34.68<br>34.68 | 27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.03<br>27.21<br>27.44<br>27.62<br>27.71<br>27.74<br>27.75<br>27.82<br>27.83<br>27.83<br>27.85<br>27.85<br>27.85<br>27.85<br>27.86<br>27.87 | 8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.12<br>8.12<br>8.01<br>7.92<br>7.96<br>7.98<br>8.03<br>8.03<br>8.03<br>8.05<br>8.04<br>8.10<br>8.05<br>8.15                 | 1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90                                                 |                                                                                    | 0·37         0·39         0·37         0·41         0·38         0·36         0·37         0·44         0·38         0·300 |    | 6.99<br>7.00<br>7.02<br>6.99<br>7.02<br>6.72<br>6.72<br>6.72<br>6.72<br>6.73<br>4.86<br>4.36<br>4.36<br>4.31<br>4.45<br>4.45<br>4.45<br>4.45<br>4.45<br>4.45<br>4.75    | N 100 B                                                                              | 116-0                                                                            | 0620                 | 0640                 | KT. Temperature                                                        |
| 865                         | 25             | 0                                                                                                                                                                                                                                                                                          |                             | 2.60                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                      |                                                                                                                                                                      |                                                                                                              |                                                                                    |                                                                                                                            |    |                                                                                                                                                                         | N 100 B<br>N 100 B<br>N 100 B                                                        | 116-0<br>250-0<br>290-150                                                        | 0620<br>0620<br>0711 | 0640<br>0700<br>0741 | from thermograph<br>Depth estimated<br>DGP, Closing depth<br>estimated |
| 866                         | 26             | 0<br>10<br>20<br>30<br>40<br>50<br>150<br>200<br>300<br>400<br>590<br>790<br>990<br>1390<br>1860<br>2320<br>2780                                                                                                                                                                           | <br><br><br>993<br><br>2782 | 3.60<br>3.60<br>3.60<br>3.60<br>3.60<br>3.55<br>3.55<br>3.55<br>2.90<br>2.30<br>2.76<br>2.53<br>2.44<br>2.17<br>1.88<br>1.39<br>1.04 | 33.83<br>33.83<br>33.83<br>33.83<br>33.83<br>33.83<br>33.83<br>33.84<br>33.84<br>33.84<br>33.84<br>33.92<br>34.17<br>34.20<br>34.26<br>34.44<br>34.54<br>34.54<br>34.64<br>34.75<br>34.75<br>34.75<br>34.77<br>34.77 | 26.92<br>26.92<br>26.92<br>26.92<br>26.92<br>26.93<br>26.93<br>26.93<br>27.00<br>27.20<br>27.28<br>27.38<br>27.49<br>27.59<br>27.67<br>27.78<br>27.81<br>27.83<br>27.85                                              | 8.13<br>8.13<br>8.13<br>8.13<br>8.13<br>8.13<br>8.13<br>8.12<br>8.12<br>8.12<br>8.08<br>8.03<br>7.99<br>7.96<br>8.08<br>8.02<br>8.07<br>8.04<br>8.05<br>8.05<br>8.10 | 2.09<br>2.09<br>2.09<br>2.09<br>2.09<br>2.09<br>2.09<br>2.09                                                 |                                                                                    | 0·34<br>0·34<br>0·36<br>0·36<br>0·35<br>0·35<br>0·35<br>0·35<br>0·34<br>0·26<br>0·00<br>                                   |    | $\begin{array}{c} 6.89 \\ \\ 6.90 \\ \\ 6.90 \\ \\ 6.89 \\ \\ 6.88 \\ 6.67 \\ 5.78 \\ 5.39 \\ 5.07 \\ 4.07 \\ 3.94 \\ 3.79 \\ 4.24 \\ 4.51 \\ 4.61 \\ 4.47 \end{array}$ | N 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,, | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0<br>} 98-0<br>} 284-110 |                      | 2349<br>0354<br>0404 | ∤KT. Tears in both<br>  nets<br>DGP                                    |
| 867                         | 27             | 0<br>10<br>20<br>30                                                                                                                                                                                                                                                                        |                             | 5·36<br>5·36<br>5·36<br>5·36                                                                                                         | 33.85<br>33.85<br>33.85<br>33.85<br>33.85                                                                                                                                                                            | 26·74<br>26·74<br>26·74<br>26·74                                                                                                                                                                                     | 8∙09<br>8∙09<br>8∙09<br>8∙09                                                                                                                                         | 1.98<br>1.98<br>1.98<br>1.98                                                                                 |                                                                                    | 0·35<br>0·38<br>0·38<br>0·36                                                                                               |    | 6·67<br><br>6·71<br>                                                                                                                                                    | N 70 V                                                                               | 1000-750<br>750-500<br>500-250<br>250-100                                        | 2020                 |                      | –7 hours                                                               |

863-867

|                  |                           |               |              | Sounding             | WIN          | D                | SEA          |        |            | leter<br>bars)           | Air Ter      | np. ° C.    |                                                      |
|------------------|---------------------------|---------------|--------------|----------------------|--------------|------------------|--------------|--------|------------|--------------------------|--------------|-------------|------------------------------------------------------|
| Station          | Position                  | Date          | Hour         | Sounding<br>(metres) | Direction    | Force<br>(knots) | Direction    | Force  | Weather    | Barometer<br>(millibars) | Drv<br>bulb  | Wet<br>bulb | Remarks                                              |
| <b>867</b> cont. | 49° 25.5′ S, 98° 21.8′ E  | 1932<br>2-3 V |              |                      |              |                  |              |        |            |                          |              |             |                                                      |
|                  | 46° 55.4′ S, 100° 45.6′ E | 3 V           | 2000         | 3686*                | SSW          | 17               | SSW          | 3      | bc         | 1000.1                   | 4.4          | 2.3         | mod. conf. W and<br>SW swell                         |
| 869              | 43° 56.5′ S, 103° 24.3′ E | 4 v           | 2000         | 3772*                | WNW<br>WNW   | 25-35<br>26      | WNW<br>WNW   | 6<br>6 | orq<br>opq | 1004.3                   | 1            |             | heavy conf. WNW<br>swell<br>heavy conf. WNW<br>swell |
| 870              | 41° 41.7′ S, 105° 16′ E   | 5 V           | 2000<br>0000 | 4115*                | NW×W<br>NW×W | 30<br>22–27      | NW×W<br>NW×W | 6<br>6 | orq<br>orq | 1009-1                   | 11·8<br>11·8 | 11.1        | heavy WNW swell<br>heavy WNW swell                   |

|              |                |                                                                                                                                            |                         |                                                                                                                                                                                                                                                    | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Logica                                                                                                                                                                                                                                                                                                                                                                        | L OBSI                                                                                                               | RVAT                                                                                                                                 | 1023                                    |                                                                                                              |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BIOLOG                                                               | GICAL OBSER                                                                             | VATION               | ss                           |                                     |
|--------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------|------------------------------|-------------------------------------|
|              | Age of         |                                                                                                                                            | er.                     |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                      |                                                                                                                                      | Mg.—at                                  | om m.3                                                                                                       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |                                                                                         | TE                   | VIE .                        |                                     |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                                                          | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                                                        | S "ren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | σl                                                                                                                                                                                                                                                                                                                                                                            | р <b>I</b> Н                                                                                                         | Р                                                                                                                                    | $\frac{\pi}{Nitrate}$ $\frac{\pi}{N_2}$ | Nitrite<br>N                                                                                                 | Si | O <sub>2</sub><br>c.c.<br>htre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gear                                                                 | Depth<br>(metres)                                                                       | From                 | To                           | Remarks                             |
| 867<br>cont. | 27             | 40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>1000<br>1500<br>2500<br>3000                                             |                         | 5.36<br>5.36<br>5.33<br>5.32<br>4.18<br>5.60<br>3.81<br>3.59<br>3.01<br>2.73<br>2.48<br>2.31<br>2.01<br>1.55<br>1.04                                                                                                                               | 33.85<br>33.85<br>33.85<br>33.85<br>33.85<br>33.85<br>33.86<br>34.19<br>34.12<br>34.23<br>34.42<br>34.42<br>34.42<br>34.45<br>34.75<br>34.71<br>34.74<br>34.76<br>34.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.74<br>26.74<br>26.74<br>26.75<br>26.75<br>26.75<br>26.88<br>26.99<br>27.13<br>27.24<br>27.37<br>27.50<br>27.60<br>27.74<br>27.79<br>27.83<br>27.83                                                                                                                                                                                                                         | 8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.04<br>8.02<br>7.95<br>7.91<br>7.95<br>7.91<br>7.92<br>8.03<br>8.03<br>8.08 | 1.98<br>1.98<br>1.98<br>1.98<br>2.11<br>2.19<br>2.45<br>2.60<br>2.89<br>2.91<br>2.91<br>2.91<br>2.68<br>2.68<br>2.68<br>2.62<br>2.68 |                                         | 0·36<br>0·36<br>0·37<br>0·39<br>0·33<br>0·00<br>0·00                                                         |    | 6.69<br>6.68<br>6.66<br>6.60<br>5.71<br>5.79<br>5.79<br>4.69<br>4.13<br>3.97<br>4.13<br>4.35<br>4.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N 70 V<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 70 B | 100-50<br>50-0<br>100-0<br>139-0<br>330-150<br>100-0                                    | 2313<br>2313<br>2358 | 2235<br>2333<br>2343<br>0018 | KT. <b>N 70 B</b> torn<br>DGP<br>KT |
| 868          | 27             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>290<br>390<br>580<br>780<br>970<br>1460<br>1950<br>2430<br>2920                      | 2919                    | $\begin{array}{c} 6.61\\ 6.61\\ 6.56\\ 6.43\\ 6.32\\ 6.21\\ 6.10\\ 5.91\\ 5.91\\ 5.93\\ 5.41\\ 4.62\\ 4.21\\ 3.20\\ 2.97\\ 2.73\\ 2.39\\ 2.15\\ 1.65\\ 1.32\end{array}$                                                                            | 33.88<br>33.88<br>33.87<br>33.86<br>33.85<br>33.85<br>33.85<br>33.85<br>33.85<br>34.01<br>34.18<br>34.18<br>34.18<br>34.27<br>34.39<br>34.49<br>34.68<br>34.75<br>34.75<br>34.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.62<br>26.62<br>26.61<br>26.61<br>26.63<br>26.64<br>26.65<br>26.68<br>26.86<br>27.09<br>27.14<br>27.43<br>27.43<br>27.52<br>27.71<br>27.79<br>27.83<br>27.83                                                                                                                                                                                                                | 8.08<br>8.08<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09                                                         | 1.63<br>1.65<br>1.73<br>1.73<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77                                                         | -                                       | 0.41<br>0.42<br>0.41<br>0.40<br>0.39<br>0.38<br>0.37<br>0.10<br>0.00<br>0.00<br>0.00                         |    | $\begin{array}{c} 6.57\\ -\\ 6.59\\ -\\ 6.62\\ -\\ 6.62\\ -\\ 6.62\\ 6.25\\ 5.81\\ 5.74\\ 5.56\\ 4.93\\ 4.23\\ 4.19\\ 3.98\\ 4.31\\ 4.42\\ 4.44\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N 70 V<br><br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B             | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0<br>98-0<br>240-100            | 2008<br>             | 2150<br>2257<br>2308         | – 8 hours<br>KT<br>DGP              |
| 869          | 29             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>290<br>390<br>490<br>590<br>780<br>970<br>140<br>1950<br>2480<br>2970<br>3460 |                         | $\begin{array}{c} 10.64\\ 10.64\\ 10.64\\ 10.64\\ 10.64\\ 10.64\\ 10.64\\ 10.64\\ 10.64\\ 10.64\\ 10.64\\ 9.89\\ 9.80\\ 9.73\\ 9.30\\ 9.30\\ 9.30\\ 9.30\\ 9.30\\ 9.30\\ 9.30\\ 9.30\\ 2.54\\ 2.54\\ 2.54\\ 2.54\\ 2.54\\ 1.73\\ 1.41 \end{array}$ | 34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.74<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.75<br>34.73<br>34.73<br>34.73<br>34.75<br>34.73<br>34.73<br>34.75<br>34.73<br>34.73<br>34.75<br>34.73<br>34.73<br>34.73<br>34.75<br>34.73<br>34.73<br>34.73<br>34.75<br>34.73<br>34.75<br>34.73<br>34.75<br>34.73<br>34.73<br>34.75<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>3 | $\begin{array}{c} 26\cdot 58\\ 26\cdot 58\\ 26\cdot 58\\ 26\cdot 58\\ 26\cdot 58\\ 26\cdot 58\\ 26\cdot 58\\ 26\cdot 58\\ 26\cdot 58\\ 26\cdot 58\\ 26\cdot 58\\ 26\cdot 58\\ 26\cdot 58\\ 26\cdot 88\\ 26\cdot 88\\ 26\cdot 88\\ 26\cdot 90\\ 26\cdot 90\\ 26\cdot 96\\ 27\cdot 14\\ 27\cdot 47\\ 27\cdot 65\\ 27\cdot 76\\ 27\cdot 82\\ 27\cdot 82\\ 27\cdot 82\end{array}$ | 8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11                                                         | 1.27<br>1.27<br>1.27<br>1.27<br>1.27<br>1.27<br>1.27<br>1.27                                                                         |                                         | 0.29<br>0.28<br>0.29<br>0.28<br>0.26<br>0.26<br>0.28<br>0.26<br>0.28<br>0.26<br>0.28<br>0.26<br>0.00<br>0.00 |    | 5.94<br>5.96<br>5.95<br>5.95<br>5.95<br>5.93<br>5.705<br>5.725<br>5.825<br>5.672<br>5.825<br>5.693<br>5.725<br>5.825<br>5.694<br>5.725<br>5.825<br>5.694<br>5.725<br>5.825<br>5.672<br>5.825<br>5.672<br>5.825<br>5.672<br>5.825<br>5.672<br>5.725<br>5.825<br>5.672<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>5.725<br>4.786<br>4.205<br>4.257<br>4.577 |                                                                      | 1000-740<br>750-510<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>68-0<br>240-120 | <br>0030<br>0030     | 2150<br>0050                 | DGP. Deep nets<br>fishing near sur- |
| 870          | 0              | 0<br>10<br>20<br>30<br>40<br>50                                                                                                            |                         | 10.64<br>10.64<br>10.64<br>10.64<br>10.64<br>10.64                                                                                                                                                                                                 | 34·50<br>34·50<br>34·50<br>34·50<br>34·50<br>34·50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.47<br>26.47<br>26.47<br>26.47<br>26.47<br>26.47                                                                                                                                                                                                                                                                                                                            | 8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>8.12                                                                 | 1·37<br>1·37<br>1·37<br>1·37<br>1·37<br>1·37                                                                                         |                                         | 0.31<br>0.30<br>0.29<br>0.29<br>0.30<br>0.30                                                                 |    | 5·92<br>5·93<br>5·94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N 70 V<br>,,<br>,,<br>,,<br>,,                                       | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0                             | 2025                 |                              |                                     |

867-870

|              |                           |               |      | Sounding             | WIN              | D                | SEA              |       |          | ieter<br>aars)           | Air Ter                              | np. ° C.    |                                              |
|--------------|---------------------------|---------------|------|----------------------|------------------|------------------|------------------|-------|----------|--------------------------|--------------------------------------|-------------|----------------------------------------------|
| Station      | Position                  | Date          | Hour | Sounding<br>(metres) | Direction        | Force<br>(knots) | Direction        | Force | Weather  | Barometer<br>(millibars) | Dry<br>bulb                          | Wet<br>bulb | Remarks                                      |
| 870<br>cont. | 41° 41.7′ S, 105° 16′ E   | 1932<br>5-6 v |      |                      |                  |                  |                  |       |          |                          |                                      |             |                                              |
|              | 39° 32·1′ S, 107° 06·4′ E | 6 v           | 2000 | 4534*                | NW × N<br>NW × N | 25<br>24–28      | NW × N<br>NW × N | 555   | bc<br>bc | 1017·3<br>1018·6         | 14 <sup>-2</sup><br>14 <sup>-2</sup> | 13.3        | heavy conf. NW swell<br>heavy conf. NW swell |
| 872          | 37° 09·1′ S, 108° 47·2′ E | 7 v           | 2000 | 4059*                | NNW              | 4-6              | NNW              | 3     | bw       | 1025.5                   | 16-2                                 | 16-0        | low WSW swell                                |
| 873          | 34° 1911' S, 110° 21.7' E | S v           | 2000 | 2097*                | NE×E             | 10               | NE × E           | 2     | Ь        | 1023.1                   | 20.3                                 | 19.2        | mod. conf. W swell                           |

| 010-013 | 87 | 70- | -8 | 7 | 3 |
|---------|----|-----|----|---|---|
|---------|----|-----|----|---|---|

|              | [              |                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HYDROI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOGICAI                                                                                                                                                                                                                                | , OBSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RVATI                                                                                                                                                | ONS                                                                                |                                                                                                                                              |    |                                                                                                                                                                             | BIOLOG                                                                               | GICAL OBSER                                                                              | VATIO!                    | NS                   |           |
|--------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------|----------------------|-----------|
|              | Age of         |                                                                                                                                               | y<br>ter                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      | Mg.—at                                                                             | om m.ª                                                                                                                                       |    |                                                                                                                                                                             |                                                                                      |                                                                                          | 'F12                      | ME                   |           |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                                                             | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s °t. "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | σt                                                                                                                                                                                                                                     | Цq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Р                                                                                                                                                    | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ \text{N}_2 \end{array}$ | $\underset{N_{2}}{\text{Nitnte}}$                                                                                                            | Si | Og<br>c.c.<br>litte                                                                                                                                                         | Gear                                                                                 | Depth<br>(metres)                                                                        | From                      | То                   | Remarks   |
| 870<br>cont. | o              | 60<br>80<br>150<br>200<br>300<br>400<br>500<br>590<br>790<br>990<br>1460<br>1890<br>2360<br>2830                                              |                         | 10.64<br>10.64<br>10.64<br>9.80<br>9.33<br>9.10<br>8.90<br>8.66<br>8.44<br>6.65<br>4.23<br>2.83<br>2.53<br>2.20<br>1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34.50<br>34.50<br>34.66<br>34.66<br>34.66<br>34.65<br>34.61<br>34.61<br>34.61<br>34.50<br>34.34<br>34.52<br>34.34<br>34.52<br>34.76<br>34.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26.47<br>26.47<br>26.47<br>26.82<br>26.85<br>26.88<br>26.89<br>26.93<br>27.09<br>27.26<br>27.54<br>27.68<br>27.78<br>27.83                                                                                                             | 8.12<br>8.12<br>8.11<br>8.11<br>8.11<br>8.12<br>8.10<br>8.10<br>8.00<br>8.00<br>8.00<br>8.01<br>8.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1·37<br>1·37<br>1·37<br>1·54<br>1·54<br>1·54<br>1·54<br>1·54<br>1·56<br>1·77<br>2·15<br>2·36<br>2·38<br>2·51<br>2·32<br>2·38                         |                                                                                    | 0.30<br>0.30<br>0.06<br>0.00<br>0.00                                                                                                         |    | 5.93<br>5.91<br>5.65<br>5.71<br>5.66<br>5.68<br>5.21<br>4.56<br>4.52<br>3.80<br>4.15<br>4.36                                                                                | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                     | 100-0<br>95-0<br>250-90                                                                  | 0051                      | 2320<br>0111<br>0123 | KT<br>DGP |
| 871          | I              | 3300<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>190<br>290<br>380<br>570<br>960<br>1430<br>1910<br>2390<br>2870<br>3340<br>3820 |                         | 1·20<br>12·55<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·58<br>12·59<br>12·58<br>12·58<br>12·59<br>12·57<br>10·33<br>9·50<br>8·70<br>8·70<br>12·25<br>1·225<br>1·225<br>1·225<br>1·225<br>1·225<br>1·225<br>1·225<br>1·225<br>1·225<br>1·225<br>1·258<br>1·225<br>1·258<br>1·225<br>1·258<br>1·225<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255<br>1·255 | 34'75<br>34'91<br>34'91<br>34'91<br>34'91<br>34'91<br>34'94<br>34'96<br>34'96<br>34'96<br>34'91<br>34'96<br>34'91<br>34'81<br>34'58<br>34'52<br>34'40<br>34'51<br>34'55<br>34'75<br>34'75<br>34'75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.86<br>26.44<br>26.43<br>26.43<br>26.43<br>26.43<br>26.43<br>26.43<br>26.43<br>26.44<br>26.49<br>26.80<br>26.85<br>26.86<br>26.86<br>26.86<br>26.94<br>27.07<br>27.24<br>27.52<br>27.66<br>27.76<br>27.76<br>27.81<br>27.85<br>27.87 | 8.07<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.13<br>8.13<br>8.13<br>8.10<br>8.13<br>8.10<br>8.13<br>8.13<br>8.13<br>8.10<br>8.13<br>8.10<br>8.13<br>8.13<br>8.10<br>8.13<br>8.10<br>8.13<br>8.10<br>8.13<br>8.10<br>8.10<br>8.13<br>8.10<br>8.10<br>8.13<br>8.10<br>8.10<br>8.13<br>8.10<br>8.10<br>8.13<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.00<br>8.10<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00 | 2:43<br>0:91<br>0:91<br>0:89<br>0:89<br>0:89<br>0:91<br>0:91<br>1:16<br>1:18<br>1:22<br>1:31<br>1:62<br>2:28<br>2:66<br>2:43<br>2:36<br>2:15<br>2:26 |                                                                                    | 0.00<br>0.26<br>0.28<br>0.29<br>0.27<br>0.28<br>0.28<br>0.24<br>0.26<br>0.44<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 |    | 4.45<br>5.67<br>5.68<br>-<br>5.70<br>-<br>5.66<br>-<br>5.59<br>6.12<br>5.60<br>5.61<br>5.61<br>5.36<br>4.45<br>4.45<br>4.45<br>3.75<br>3.71<br>3.91<br>4.20<br>4.07<br>3.98 | N 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B       | 1000-750<br>750-500<br>500-230<br>250-100<br>100-50<br>50-0<br>100-0<br>91-0<br>240-100  | 2100<br>—<br>0152<br>0152 | 0135<br>0212<br>0222 | KT<br>DGP |
| 872          | 2              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>900<br>1400<br>1900<br>2490<br>2980<br>3480   |                         | 16.12<br>16.12<br>16.02<br>15.64<br>15.53<br>15.33<br>15.24<br>15.08<br>13.33<br>12.23<br>10.83<br>10.12<br>9.11<br>7.95<br>5.13<br>3.00<br>2.54<br>2.11<br>1.75<br>1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.61<br>35.60<br>35.60<br>35.54<br>35.43<br>35.44<br>35.44<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>35.43<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>34.75<br>3 | 26.21<br>26.22<br>26.22<br>26.27<br>26.27<br>26.28<br>26.27<br>26.28<br>26.27<br>26.29<br>26.67<br>26.29<br>26.63<br>26.83<br>26.93<br>26.93<br>26.98<br>27.18<br>27.52                                                                | 8.17<br>8.17<br>8.17<br>8.17<br>8.18<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.18<br>8.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.49<br>0.49<br>0.49<br>0.49<br>0.49<br>0.55<br>0.55<br>1.055<br>1.205<br>1.24<br>1.46<br>1.82<br>2.22<br>2.66<br>2.62<br>2.47<br>2.47               |                                                                                    | 0.00<br>0.00<br>0.00<br>0.14<br>0.14<br>0.14<br>0.14<br>0.16<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                         |    | 5.28<br>5.29<br>5.29<br>5.29<br>5.32<br>5.32<br>5.32<br>5.32<br>5.37<br>5.45<br>5.52<br>5.52<br>5.27<br>4.90<br>4.35<br>3.68<br>3.73<br>3.85<br>3.95<br>4.05                | N 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,, | 1000-765<br>750-515<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>128-0<br>300-146 | 2010<br>2258<br>2258      | 2200<br>2318<br>2328 | KT<br>DGP |
| 873          | 3              | 0<br>10<br>20<br>30<br>40                                                                                                                     |                         | 20.52<br>20.52<br>20.33<br>19.35<br>18.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.80<br>35.81<br>35.82<br>35.82<br>35.82<br>35.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25·26<br>25·32<br>25·58                                                                                                                                                                                                                | 8.18<br>8.19<br>8.19<br>8.20<br>8.20<br>8.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0·34<br>0·38<br>0·36<br>0·36<br>0·38                                                                                                                 | -                                                                                  | 0.00<br>0.00<br>0.00                                                                                                                         |    | 4.83<br><br>4.83<br><br>4.90                                                                                                                                                | N 70 V                                                                               | 1000-775<br>750-515<br>500-250<br>250-90<br>100-50                                       | 2015                      |                      |           |

|              |                           |             |      | Sounding             | WIN       | D                | SEA       |       |         | leter<br>oars)           | Air Ter     | np.°C.      |                 |
|--------------|---------------------------|-------------|------|----------------------|-----------|------------------|-----------|-------|---------|--------------------------|-------------|-------------|-----------------|
| Station      | Position                  | Date        | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks         |
| 873<br>cont. | 34° 19·1′ S, 110° 21·7′ E | 1932<br>8 v |      |                      |           |                  |           |       |         |                          |             |             | -               |
| 874          | 32° 15·2′ S, 112° 26·2′ E | 9 v         | 1430 | 4975 <sup>*</sup>    | NNE       | 10               | NNE       | 2-3   | Ь       | 1018.4                   | 22.1        | 20.0        | mod. SSW swell  |
| 875          | 32° 12.8′ S, 113° 48′ E   | 10 V        | 0100 | 4237*                | NE×N      | 11               | NE×N      | 2     | Ь       | 1018-9                   | 22.2        | 18.9        | low conf. swell |
| 876          | 32° 02′ S, 115° 16′ E     | 10 V        | 1232 | 173                  | N         | 18               | N         | 3     | Ь       | 1016-5                   | 24.4        | 16-2        | low N swell     |

|              |                |                                                                                                                                            |                         |                                                                                                                                                                  | HYDRO                                                                                                                                                                                                                                                    | LOGICA                                                                                                                                                | L OBSE                                                                                                                               | RVATI                                                                                                                       | ONS                                                                                |                                                              |    |                                                                                                                                                                                                                                                                                  | BIOLO                                                      | GICAL OBSER                                                                            | WATIO:           | ×s                   |                                      |
|--------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------|----------------------|--------------------------------------|
|              | Age of         |                                                                                                                                            | ct .                    |                                                                                                                                                                  |                                                                                                                                                                                                                                                          |                                                                                                                                                       |                                                                                                                                      |                                                                                                                             | Mg.—at                                                                             | om m."                                                       |    |                                                                                                                                                                                                                                                                                  |                                                            |                                                                                        | TI               | ME                   |                                      |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                                                          | Depth by<br>thermometer | Temp.<br>° C.                                                                                                                                                    | s°,                                                                                                                                                                                                                                                      | σt                                                                                                                                                    | рН                                                                                                                                   | Р                                                                                                                           | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ \text{N}_2 \end{array}$ | Nitrite<br>N2                                                | Si | Og<br>c.c.<br>litre                                                                                                                                                                                                                                                              | Gear                                                       | Depth<br>(metres)                                                                      | From             | То                   | Remarks                              |
| 873<br>cont. | 3              | 50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>590<br>790<br>990                                                                     |                         | 18.63<br>18.63<br>18.43<br>16.50<br>13.22<br>11.74<br>10.20<br>9.43<br>8.48<br>5.71<br>3.98                                                                      | 35 <sup>8</sup> 4<br>35 <sup>8</sup> 3<br>35 <sup>8</sup> 4<br>35 <sup>6</sup> 6<br>35 <sup>3</sup> 4<br>35 <sup>3</sup> 3<br>34 <sup>9</sup> 3<br>34 <sup>7</sup> 8<br>34 <sup>4</sup> 6<br>34 <sup>4</sup> 4<br>34 <sup>4</sup> 4<br>34 <sup>4</sup> 2 | 25.77<br>25.77<br>25.82<br>26.16<br>26.63<br>26.76<br>26.88<br>26.90<br>26.95<br>27.16<br>27.34                                                       | 8.21<br>8.21<br>8.18<br>8.18<br>8.14<br>8.11<br>8.13<br>8.13<br>8.13<br>8.14<br>8.03<br>8.00<br>8.01                                 | 0.44<br>0.36<br>0.36<br>0.51<br>0.61<br>1.22<br>1.24<br>1.62<br>2.41<br>2.79<br>2.83                                        |                                                                                    | 0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00                 |    | +.96<br>5.09<br>5.28<br>5.36<br>5.39<br>5.32<br>5.17<br>4.25<br>3.87<br>3.67                                                                                                                                                                                                     | N 70 V<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 50-0<br>100-0<br>86-0<br>220-100                                                       | <br>2218<br>2218 | 2145<br>2238<br>2248 | KT<br>DGP                            |
| 874          | 4              | 1480<br>1730<br>0<br>10<br>20<br>30<br>40<br>50<br>60                                                                                      |                         | 2·74<br>2·53<br>21·02<br>20·86<br>20·63<br>20·55<br>20·42<br>20·23<br>19·83                                                                                      | 34.63<br>34.69<br>35.82<br>35.82<br>35.83<br>35.86<br>35.89<br>35.91<br>35.91                                                                                                                                                                            | 27.64<br>27.70<br>25.13<br>25.17<br>25.25<br>25.29<br>25.34<br>25.41<br>25.54                                                                         | 8.01<br>8.19<br>8.19<br>8.19<br>8.19<br>8.20<br>8.20<br>8.20<br>8.21                                                                 | 2.98<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19                                                                |                                                                                    | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 |    | $   \begin{array}{r}     3.55 \\     4.79 \\     \\     4.81 \\     \\     4.83 \\     \\     4.87 \\   \end{array} $                                                                                                                                                            | N 50 V<br>N 70 V                                           | 100-0<br>1000-780<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0                   | I 432            | 1600                 |                                      |
|              |                | 80<br>100<br>150<br>200<br>300<br>400<br>500<br>600<br>1000<br>1500<br>2000<br>2500<br>3000<br>3500<br>4000<br>4500                        | 4505                    | 18.84<br>16.02<br>13.52<br>12.32<br>10.81<br>9.70<br>9.07<br>8.56<br>5.47<br>4.02<br>2.90<br>2.57<br>2.00<br>1.69<br>1.40<br>1.27<br>1.13                        | 35.84<br>35.64<br>35.45<br>35.22<br>35.00<br>34.81<br>34.74<br>34.67<br>34.41<br>34.67<br>34.43<br>34.56<br>34.73<br>34.73<br>34.72<br>34.72<br>34.72<br>34.72                                                                                           | 25.72<br>26.25<br>26.65<br>26.72<br>26.83<br>26.93<br>26.93<br>26.95<br>27.17<br>27.59<br>27.67<br>27.78<br>27.80<br>27.81<br>27.81<br>27.82<br>27.83 | 8.17<br>8.20<br>8.17<br>8.15<br>8.11<br>8.12<br>8.12<br>8.14<br>8.03<br>8.02<br>8.00<br>8.01<br>8.03<br>8.08<br>8.08<br>8.08<br>8.17 | 0.19<br>0.57<br>0.67<br>0.86<br>1.05<br>1.33<br>1.48<br>2.51<br>2.76<br>2.51<br>2.76<br>2.57<br>2.55<br>2.53<br>2.51        |                                                                                    | 0.00<br>0.00                                                 |    | 5.43<br>5.15<br>5.31<br>5.38<br>5.31<br>5.13<br>5.13<br>5.17<br>3.58<br>3.32<br>3.35<br>3.66<br>3.83<br>3.95<br>4.09                                                                                                                                                             | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                     | } 91-0<br>} 260-90                                                                     | 1724             | 1744                 | KT<br>DGP                            |
| 875          | 4              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>90<br>140<br>190<br>280<br>370<br>560<br>750<br>940<br>1400<br>1870<br>2340<br>2800<br>3270 |                         | 22.03<br>22.03<br>22.03<br>22.03<br>22.03<br>22.01<br>21.98<br>21.96<br>21.92<br>19.52<br>14.32<br>11.83<br>9.58<br>8.22<br>5.01<br>3.31<br>2.64<br>2.22<br>1.87 | 35:57<br>35:57<br>35:57<br>35:57<br>35:57<br>35:57<br>35:57<br>35:57<br>35:57<br>35:57<br>35:57<br>35:55<br>34:79<br>34:60<br>34:40<br>34:40<br>34:50<br>34:68<br>34:70<br>34:73<br>34:73                                                                | 24.66<br>24.66<br>24.66<br>24.66<br>24.66<br>24.67<br>24.68<br>24.68<br>24.69<br>25.50<br>26.56<br>26.76<br>26.88<br>26.94<br>27.22<br>27.48<br>27.69 | 8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19                                                                         | 0.19<br>0.19<br>0.19<br>0.25<br>0.44<br>0.46<br>0.48<br>0.51<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.7 |                                                                                    | 0.14<br>0.00<br>0.10<br>0.01<br>0.01<br>0.01<br>0.00<br>0.00 |    | 4.60<br>-<br>4.58<br>-<br>4.61<br>-<br>4.60<br>-<br>-<br>4.60<br>-<br>-<br>4.63<br>4.63<br>4.63<br>4.63<br>4.63<br>4.63<br>4.63<br>4.63<br>4.63<br>4.63<br>4.63<br>4.63<br>4.63<br>4.63<br>4.63<br>3.45<br>5.04<br>5.25<br>5.19<br>4.86<br>3.98<br>3.50<br>3.445<br>3.65<br>3.69 |                                                            | 1000-770<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>91-0<br>225-95 | 0110             | 0310<br>0435<br>0445 | KT<br>DGP                            |
| 876          | 4              | 0<br>10<br>20<br>30<br>40<br>50                                                                                                            |                         | 22:44<br>22:44<br>22:43<br>22:43<br>22:43<br>22:41<br>22:27                                                                                                      | 35·48<br>35·48<br>35·48<br>35·48<br>35·48<br>35·48<br>35·50                                                                                                                                                                                              | 24·48<br>24·48<br>24·48                                                                                                                               | 0 0                                                                                                                                  | 0.25<br>0.25<br>0.25                                                                                                        |                                                                                    | 0.00<br>0.00<br>0.00                                         |    | 4·57<br>4·59<br>4·61                                                                                                                                                                                                                                                             | N 70 V<br>,,,<br>N 50 V<br>N 70 B<br>N 100 B               | 100-50<br>50-0<br>100-0<br>} 100-0                                                     | 1238<br>         | 1310                 | Sounding by plank-<br>ton wire<br>KT |

876---879

|                         |                           |              |              | Sounding             | WIN              | D                | SEA              |        |          | leter<br>Jars)           | Air Ter      | np.C.        |                                     |
|-------------------------|---------------------------|--------------|--------------|----------------------|------------------|------------------|------------------|--------|----------|--------------------------|--------------|--------------|-------------------------------------|
| Station                 | Position                  | Date         | Hour         | Sounding<br>(metres) | Direction        | Force<br>(knots) | Direction        | Force  | Weather  | Barometer<br>(millibars) | Dry<br>bulb  | Wet<br>bulb  | Remarks                             |
| <b>876</b> <i>cont.</i> | 32° 02′ S, 115° 16′ E     | 1932<br>10 v |              |                      |                  |                  |                  |        |          |                          |              |              |                                     |
| 877                     | 35° 12·5′ S, 114° 42·5′ E | 17 V         | 2007<br>0000 | 2239*                | S×E<br>SSE       | 18–20<br>18–20   | S×E<br>SSE       | 43     | c<br>bc  | 1022.9                   | 16·1<br>15·8 | 12·0<br>12·3 | mod. SW swell<br>mod. conf. swell   |
| . 878                   | 38° 01′ S, 115° 38.6′ E   | 18 V         | 2000<br>0000 | 4624*                | SE<br>SE         | 4 +              | SE<br>SE         | I<br>I | be<br>be | 1027·9<br>1027·5         | 11.6         | 8.5<br>8.8   | mod. SW swell<br>mod. SW swell      |
| 879                     | 40° 56·7′ S, 116° 46·5′ E | 19 V         | 2000         | 4733*                | NW × W<br>NW × W | 16<br>20         | NW × W<br>NW × W | 333    | 0<br>0   | 1025.4                   | 11.6         | 9.1          | mod. SW×W swell<br>heavy SW×W swell |

| 876— | 8 | 7 | 9 |  |
|------|---|---|---|--|
|------|---|---|---|--|

|              |                 |                                                                                                                                                     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HYDRO                                                                                                                                                                                                         | LOGICA                                                                                                                                                                                                      | L OBSI                                                       | RVATI                        | ONS                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                  | BIOLOG                                                                       | GICAL OBSER                                                                      | WATIO:   | xs                   |             |
|--------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------|----------------------|-------------|
|              | Age of          |                                                                                                                                                     | y<br>ter                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                               |                                                                                                                                                                                                             |                                                              |                              | Mgat                                                                               | om m.³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                  |                                                                              |                                                                                  | TI       | ME                   | Remarks     |
| Station      | nioon<br>(days) | Depth<br>(metres)                                                                                                                                   | Depth by<br>thermometer  | Temp.<br>C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S °,                                                                                                                                                                                                          | σt                                                                                                                                                                                                          | рH                                                           | Р                            | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ \text{N}_2 \end{array}$ | Nitrite<br>N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Si                                                                                                                                                                                                                                                                                                                                                                    | O2<br>c.c.<br>htre                                                                                                                                               | Gear                                                                         | Depth<br>(metres)                                                                | From     | То                   | Actilations |
| 876<br>cont. | 4               | 60<br>80<br>100                                                                                                                                     |                          | 22·23<br>22·23<br>22·15<br>22·05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35.52<br>35.52<br>35.53<br>35.58                                                                                                                                                                              | 24·56<br>24·56<br>24·60<br>24·67                                                                                                                                                                            | 8·18<br>8·17<br>8·19<br>8·18                                 | 0·25<br>0·25<br>0·30<br>0·34 | <br>                                                                               | 0.00<br>0.00<br>0.00<br>0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                       | 4·58<br>4·51<br>4·35                                                                                                                                             |                                                                              |                                                                                  |          |                      |             |
| 877          | 11              | 150<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>90<br>140<br>180<br>280<br>370<br>550<br>740<br>920<br>1390<br>1850                           |                          | 22.05<br>21.05<br>21.05<br>21.04<br>20.83<br>19.65<br>19.07<br>18.84<br>18.35<br>17.82<br>16.40<br>13.31<br>10.88<br>9.22<br>7.70<br>5.04<br>4.22<br>3.18<br>2.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35:58<br>35:62<br>35:62<br>35:64<br>35:74<br>35:77<br>35:81<br>35:77<br>35:81<br>35:77<br>35:74<br>35:57<br>35:40<br>34:99<br>34:59<br>34:79<br>34:54<br>34:41<br>34:57<br>34:70                              | 24:07<br>24:97<br>24:97<br>25:04<br>25:04<br>25:04<br>25:70<br>25:70<br>25:70<br>25:70<br>25:70<br>25:91<br>26:11<br>26:66<br>26:81<br>26:94<br>26:98<br>27:22<br>27:31<br>27:55<br>27:72                   | 8.16<br>8.16<br>8.16<br>8.18<br>8.18<br>8.18<br>8.18<br>8.18 |                              |                                                                                    | 0 32<br>0 00<br>0 00 | 3.4<br>3.4<br>3.4<br>3.4<br>3.4<br>3.4<br>3.4<br>3.4<br>3.4<br>3.4                                                                                                                                                                                                                                                                                                    | +35<br>+81<br>-484<br>-499<br>-504<br>-507<br>5.35<br>5.30<br>5.35<br>5.36<br>4.82<br>4.13<br>3.98<br>3.36<br>3.43                                               | N 70 V<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B       | 750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>102-0<br>250-100     | 2010<br> | 2300<br>0021<br>0031 | KT<br>DGP   |
| 878          | 13              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>590<br>790<br>990<br>1460<br>1950<br>2440<br>2920<br>3410<br>3900 | <br><br><br><br><br><br> | 18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.73<br>18.75<br>18.75<br>19.50<br>1.36<br>1.36<br>1.36<br>1.36<br>1.51<br>1.56 | 35.82<br>35.82<br>35.82<br>35.82<br>35.82<br>35.82<br>35.82<br>35.78<br>35.78<br>35.74<br>35.77<br>35.42<br>35.72<br>35.12<br>34.92<br>34.70<br>34.58<br>34.42<br>34.52<br>34.69<br>34.76<br>34.778<br>34.778 | 25.73<br>25.73<br>25.73<br>25.73<br>25.73<br>25.73<br>25.73<br>25.73<br>25.81<br>25.93<br>26.13<br>26.57<br>26.75<br>26.84<br>26.91<br>26.97<br>27.19<br>27.53<br>27.69<br>27.74<br>27.85<br>27.85<br>27.86 | 8.18<br>8.18<br>8.18<br>8.18<br>8.18<br>8.18<br>8.18<br>8.18 |                              |                                                                                    | 0.022<br>0.022<br>0.022<br>0.023<br>0.24<br>0.022<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.6<br>2.4<br>2.3<br>2.1<br>2.1<br>2.1<br>2.1<br>2.1<br>2.1<br>2.1<br>2.1<br>2.1<br>2.1                                                                                                                                                                                                                                                                               | 5.01<br>-5.02<br>5.03<br>-5.02<br>-5.02<br>-5.01<br>5.19<br>5.29<br>5.46<br>5.52<br>5.06<br>4.77<br>3.95<br>3.72<br>3.78<br>3.67<br>3.95<br>3.67<br>3.95<br>3.82 | N 70 V<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-760<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0<br>} 125-0<br>} 294-80 | 2008<br> | 2240<br>0003<br>0013 | KT<br>DGP   |
| 879          | 14              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>190<br>290<br>390<br>580<br>770<br>970<br>1450<br>1970<br>2460<br>2950                 |                          | 12.06<br>12.06<br>12.06<br>12.06<br>12.06<br>12.06<br>12.05<br>11.48<br>10.56<br>9.86<br>9.30<br>8.94<br>8.94<br>5.24<br>2.96<br>2.54<br>2.54<br>2.54<br>2.19<br>1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34·78<br>34·78<br>34·78<br>34·78<br>34·78<br>34·78<br>34·78<br>34·78<br>34·78<br>34·78<br>34·78<br>34·78<br>34·78<br>34·78<br>34·78<br>34·78<br>34·76<br>34·70<br>34·62<br>34·51<br>34·66<br>34·71<br>34·72   | 26.43<br>26.43<br>26.43<br>26.43<br>26.43<br>26.43<br>26.43<br>26.43<br>26.43<br>26.43<br>26.54<br>26.75<br>26.82<br>26.90<br>26.91<br>26.94<br>27.01<br>27.52<br>27.67<br>27.75                            | 8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19 |                              |                                                                                    | 0.26<br>0.25<br>0.25<br>0.26<br>0.27<br>0.26<br>0.27<br>0.46<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 1 \cdot 0 \\ 1 \cdot 0 \\ 1 \cdot 0 \\ 1 \cdot 0 \\ 1 \cdot 0 \\ 1 \cdot 0 \\ 1 \cdot 0 \\ 1 \cdot 0 \\ 1 \cdot 5 \\ 1 \cdot 7 \\ 5 \cdot 6 \\ 4 \cdot 6 \\ 6 \cdot 7 \\ 6 \cdot 7 \\ 8 \cdot 3 \\ 1 \cdot 2 \\ 2 \cdot 0 \\ 4 \cdot 2 \\ 5 \cdot 0 \\ 4 \cdot 2 \\ 6 \cdot 7 \\ 6 \cdot 7 \\ 6 \cdot 7 \\ 5 \cdot 6 \\ 7 \\ 7 \cdot 5 \end{array}$ | 5.79<br>5.79<br>5.80<br>5.80<br>5.80<br>5.60<br>5.58<br>5.60<br>5.58<br>5.50<br>5.34<br>5.34<br>4.59<br>4.22                                                     | N 70 V<br>,,<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B     | 1000-780<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0<br>86-0<br>200-94      | 2007     | 2235<br>0013<br>0026 | KT<br>DGP   |

|                     |                           |                    |              | Sounding             | WIN        | D                | SEA           |         |         | leter<br>lars)                             | Air Ter              | mp. ° C.   |                               |
|---------------------|---------------------------|--------------------|--------------|----------------------|------------|------------------|---------------|---------|---------|--------------------------------------------|----------------------|------------|-------------------------------|
| Station             | Position                  | Date               | Hour         | Sounding<br>(metres) | Direction  | Force<br>(knots) | Direction     | Force   | Weather | Barometer<br>(millibars)                   | Dry Wet<br>bulb bulb |            | Remarks                       |
| <b>879</b><br>cont. | 40° 56·7′ S, 116° 46·5′ E | 1932<br>19-20<br>V |              |                      |            |                  |               |         |         |                                            |                      |            |                               |
| 880                 | 43° 53·1′ S, 117° 50·8′ E | 20 V               | 2000<br>0000 | 4366*<br>—           | WNW<br>WNW | 15<br>9          | WNW<br>WNW    | 42      | bw<br>c | 1019 <sup>.</sup> 5<br>1020 <sup>.</sup> 1 | 10·3<br>9·2          | 9*5<br>8*9 | heavy W swell<br>mod. W swell |
|                     |                           |                    |              |                      |            |                  |               |         |         |                                            |                      | t          |                               |
|                     |                           |                    |              |                      |            |                  |               |         |         |                                            |                      |            |                               |
|                     |                           |                    |              |                      |            |                  |               |         |         |                                            |                      |            |                               |
|                     |                           |                    |              |                      |            |                  |               |         |         |                                            |                      |            |                               |
| 991                 | 47° 00′ S, 119° 00·3′ E   |                    |              | *                    | NW         | 26               | NIW           |         |         |                                            |                      | 0.6        |                               |
| 001                 | 47 00 5, 119 00'3 E       | 21 V               | 2000         | 4134*                | INW        | 20               | NW            | 5       | ome     | 1013.6                                     | 9.0                  | 8.0        | heavy conf. NW×W<br>swell     |
|                     |                           |                    |              |                      |            |                  |               |         |         |                                            |                      |            |                               |
|                     |                           |                    |              |                      |            |                  |               |         |         |                                            | :                    |            |                               |
|                     |                           |                    |              |                      |            |                  |               |         |         |                                            |                      |            |                               |
|                     |                           |                    |              |                      |            |                  |               |         |         |                                            |                      |            |                               |
| 882                 | 49° 52·9′ S, 120° 28·6′ E | 22 V               | 2000         | 4051*                | SW×W       | 20               | $SW \times W$ | 4 conf. | bcq     | 1013.8                                     | 4.0                  | 2.8        | heavy conf. W swell           |
|                     |                           |                    |              |                      |            |                  |               |         |         |                                            |                      |            |                               |
|                     |                           |                    |              |                      |            |                  |               |         |         |                                            |                      |            |                               |
|                     |                           |                    |              |                      |            |                  |               |         |         |                                            |                      |            |                               |
|                     |                           |                    |              |                      |            |                  |               |         |         |                                            |                      |            |                               |

| 879-8 | 882 |
|-------|-----|
|-------|-----|

| []                   |                          | HYDROLOGICAL OBSERVATIONS                                                                                                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                                                                             |                                                                                                              |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                               | BIOLOG                                                                             | ICAL OBSER                                                                               | s                        |                      |           |
|----------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------|----------------------|-----------|
|                      | Am of                    |                                                                                                                                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | Mg.—at                                                                      | om m.'                                                                                                       |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |                                                                                          | TIM                      | IE                   | 1, 1      |
| Station              | Age of<br>moon<br>(days) | Depth<br>(metres)                                                                                                                    | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathbf{S}^{*\prime}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | σt                                                                                                                                                                                                                                                 | Hq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Р | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ N_2 \end{array}$ | Nitrite<br>N2                                                                                                | 51                                                                                                                                                                                                        | $O_2$<br>c.c.<br>htre                                                                                                                                                                                                                                                                                                                                                                                         | Gear                                                                               | Depth<br>(metres)                                                                        | I rom                    | То                   | Remarks   |
| <b>8</b> 79<br>cont. | 14                       | 3440<br>3930<br>4420                                                                                                                 | <br><br>4417            | 1.53<br>0.96<br>0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34·71<br>34·70<br>34·68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27·80<br>27·83<br>27·82                                                                                                                                                                                                                            | 8·21<br>8·28<br>8·39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                             | 0.00<br>0.00                                                                                                 | 81.0<br>88.9<br>88.9                                                                                                                                                                                      | 4.00<br>4.05<br>3.78                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                                                                                          |                          |                      |           |
| 880                  | 15                       | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1490<br>1990<br>2490<br>2490 |                         | 9.75<br>9.75<br>9.75<br>9.77<br>9.77<br>9.77<br>9.77<br>9.72<br>9.70<br>9.70<br>9.57<br>9.00<br>8.98<br>8.73<br>8.39<br>6.96<br>5.00<br>2.93<br>2.50<br>2.50<br>2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34'41<br>34'41<br>34'41<br>34'42<br>34'42<br>34'42<br>34'42<br>34'42<br>34'42<br>34'42<br>34'52<br>34'63<br>34'64<br>34'61<br>34'61<br>34'61<br>34'45<br>34'38<br>34'51<br>34'67<br>34'71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.55<br>26.55<br>26.55<br>26.55<br>26.55<br>26.55<br>26.55<br>26.56<br>26.56<br>26.67<br>26.85<br>26.88<br>26.93<br>27.01<br>27.21<br>27.52<br>27.69<br>27.75                                                                                     | 8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                                                                             | 0.35<br>0.35<br>0.36<br>0.35<br>0.35<br>0.35<br>0.34<br>0.35<br>0.35<br>0.31<br>0.00<br>0.00<br>0.00<br>0.00 | 3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2<br>3.2                                                                                                                                        | 6.08<br>-<br>6.10<br>-<br>6.09<br>-<br>6.09<br>-<br>5.80<br>5.75<br>5.80<br>5.75<br>5.80<br>5.71<br>5.15<br>4.49<br>4.11<br>3.913<br>3.98<br>3.92                                                                                                                                                                                                                                                             | N 70 V<br>,,<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-800<br>750-500<br>250-0<br>250-100<br>100-50<br>50-0<br>100-0<br>110-0<br>265-90    | 2006                     | 2220<br>0022<br>0032 | KT<br>DGP |
| 881                  | 16                       | 2980<br>3480<br>3980<br>10<br>20<br>30<br>400<br>50<br>60<br>80<br>1000<br>1000<br>1000<br>1000<br>1000<br>2490<br>2980<br>3480      |                         | 1.70         1.00         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.30         8.90         8.50         6.999         4.78         3.63         2.64         2.01         1.53         1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34.61<br>34.61<br>34.49<br>34.34<br>34.34<br>34.56<br>34.70<br>34.74<br>34.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26·79<br>26·86<br>26·91<br>27·03<br>27·20<br>27·33<br>27·59<br>27·72<br>27·79<br>27·79                                                                                                                                                             | 8.17<br>8.31<br>8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                             |                                                                                                              | 92.0<br>92.0<br>92.0<br>5.6<br>5.6<br>5.6<br>5.6<br>5.6<br>5.6<br>5.6<br>5.6<br>5.6<br>5.6                                                                                                                | $\begin{array}{c} 3.95\\ 6.24\\ -\\ 6.29\\ -\\ 6.29\\ -\\ 6.25\\ -\\ 6.27\\ 5.71\\ 5.69\\ 5.72\\ 5.54\\ 4.68\\ 4.62\\ 5.390\\ 3.96\\ 3.96\\ 3.97\\ 4.03\end{array}$                                                                                                                                                                                                                                           |                                                                                    | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>119-0<br>260-100 | 2005<br><br>2231<br>2231 | 2150<br>2251         |           |
| 882                  | 2 17                     |                                                                                                                                      |                         | 5.05 $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ $5.05$ | 33-89<br>33-89<br>33-89<br>33-89<br>33-89<br>33-89<br>33-89<br>33-89<br>33-89<br>33-89<br>34-90<br>34-90<br>34-90<br>34-90<br>34-90<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-91<br>34-914 | 26.81<br>26.81<br>26.81<br>26.81<br>26.81<br>26.81<br>26.81<br>26.81<br>26.81<br>26.81<br>26.81<br>26.81<br>26.81<br>26.81<br>26.81<br>26.81<br>26.81<br>26.81<br>26.81<br>27.02<br>4.27.02<br>4.27.02<br>3.27.42<br>2.27.53<br>2.27.42<br>2.27.53 | 8.10           8.10           8.10           8.10           8.10           8.10           8.10           8.10           8.10           8.10           8.10           8.10           8.10           8.10           8.10           8.10           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00           8.00 |   |                                                                             | 0-35<br>0-36<br>0-36<br>0-36<br>0-36<br>0-36<br>0-36<br>0-36<br>0-36                                         | $\begin{array}{c} 5 & 4^{+1} \\ 5 & 4^{+1} \\ 5 & 4^{+1} \\ 5 & 4^{+1} \\ 5 & 4^{+1} \\ 5 & 4^{+1} \\ 5 & 4^{+1} \\ 5 & 4^{+1} \\ 5 & 4^{+1} \\ 5 & 12^{+0} \\ 5 & 14^{+0} \\ 5 & 14^{+0} \\ \end{array}$ | 6.773<br>6.775<br>6.775<br>6.775<br>6.775<br>6.775<br>6.775<br>6.775<br>6.775<br>6.775<br>6.775<br>6.775<br>6.775<br>6.775<br>6.775<br>6.775<br>7.677<br>7.677<br>7.777<br>7.777<br>7.777<br>7.777<br>7.777<br>7.777<br>7.777<br>7.777<br>7.777<br>7.777<br>7.7777<br>7.7777<br>7.7777<br>7.7777<br>7.7777<br>7.7777<br>7.77777<br>7.77777<br>7.77777<br>7.77777<br>7.77777<br>7.77777<br>7.77777<br>7.777777 | ,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,         | 102-0                                                                                    | 2005                     | 2203<br>8 2338       | KT        |

| Station      | Position                  | Der          |      | Sounding             | WIS           | SD .                       | SE.           | 1               | Weather    | leter<br>Jars)           | Air Te               | mp°C       |                                            |
|--------------|---------------------------|--------------|------|----------------------|---------------|----------------------------|---------------|-----------------|------------|--------------------------|----------------------|------------|--------------------------------------------|
| otation      | FOSITION                  | Date         | Hour | Sounding<br>(metres) | Direction     | Direction Force<br>(knots) |               | Direction Force |            | Barometer<br>(millibars) | Dry Wet<br>bulb bulb |            | Remarks                                    |
| 882<br>cont. | 49° 52.9′ S, 120° 28.6′ E | 1932<br>22 V |      |                      |               |                            |               |                 |            |                          |                      |            |                                            |
| 883          | 52° 54′ S, 122° 03·8′ E   | 23 V         | 2000 | 4148*                | NNE           | 22-27                      | NNE           | 5               | bc         | 1014.6                   | 3.3                  | 1.8        | heavy conf. SSW<br>swell                   |
| 884          | 56° 08·3′ S, 124° 04·8′ E | 24 V         | 2000 | 4781*                | NNE<br>NE × N | 20<br>19                   | NNE<br>NE × N | 4               | orm<br>orm | 989-9<br>980-6           | 3·2<br>3·2           | 3·2<br>3·1 | heavy conf. NWswell<br>heavy conf. NWswell |
| 885          | 58° 50.5′ S, 125° 54.9′ E | 25–26<br>v   | 2000 | 4834*                | W             | 25                         | W             | 5               | c          | 972.0                    | - 0.6                | - 1 • 1    | mod. conf. N swell                         |

|                      |                | HYDROLOGICAL OBSERVATIONS BIOLOGICAL OBSERVATIONS                                        |                         |                                                                                                                      |                                                                                                                                                       |                                                                                                                                                                |                                                                                              |   |                                                           |                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                                                                        |                           |                      |            |
|----------------------|----------------|------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------|----------------------|------------|
|                      | Age of         |                                                                                          | y<br>ter                |                                                                                                                      |                                                                                                                                                       |                                                                                                                                                                |                                                                                              |   | Mgate                                                     | ות וחכ.                                                                                                      |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                                                                        | TI                        | ME                   |            |
| Station              | moon<br>(days) | Depth<br>(metres)                                                                        | Depth by<br>thermometer | Temp.<br>C.                                                                                                          | S°,                                                                                                                                                   | σt                                                                                                                                                             | рĦ                                                                                           | Р | $\frac{\underset{\pm}{Nitrate}}{\underset{N_2}{Nitrate}}$ | Nitrite<br>N <sub>2</sub>                                                                                    | Si                                                                                                           | O <sub>2</sub><br>c.c.<br>htre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gear                                                                         | Depth<br>(metres)                                                                      | From                      | То                   | Remarks    |
| <b>88</b> 2<br>cont. | 17             | 2500<br>3000<br>3500                                                                     |                         | 1.64<br>1.17<br>0.85                                                                                                 | 34 <sup>.</sup> 74<br>34 <sup>.</sup> 71<br>34 <sup>.</sup> 70                                                                                        | 27·82<br>27·83<br>27·84                                                                                                                                        | 8·22<br>8·19<br>8·25                                                                         |   |                                                           | 0.00                                                                                                         | 82·7<br>90·7<br>100·5                                                                                        | 4·12<br>4·06<br>4·15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              |                                                                                        |                           |                      |            |
| 883                  | 18             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300                  |                         | 3.72<br>3.72<br>3.73<br>3.74<br>3.74<br>3.74<br>3.74<br>3.74<br>3.74<br>3.74                                         | 33.86<br>33.86<br>33.86<br>33.86<br>33.86<br>33.86<br>33.86<br>33.86<br>33.86<br>33.86<br>33.86<br>33.86<br>34.00<br>34.07<br>34.20                   | 26.92<br>26.92<br>26.92<br>26.92<br>26.92<br>26.92<br>26.92<br>26.92<br>26.92<br>26.92<br>27.17<br>27.25<br>27.34                                              | 8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10                                 |   |                                                           | 0.42<br>0.42<br>0.44<br>0.43<br>0.42<br>0.42<br>0.42<br>0.42<br>0.42<br>0.42<br>0.42<br>0.41<br>0.00<br>0.00 | 7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6                                           | $ \begin{array}{c} 6.99 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N 70 V<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-738<br>750-500<br>250-250<br>250-100<br>100-50<br>50-0<br>100-0<br>89-0<br>210-90 | 2008<br>                  | 2140<br>2250<br>2302 | KT<br>DGP  |
|                      |                | 300<br>400<br>600<br>800<br>1480<br>1980<br>2470<br>2970<br>3460                         |                         | 2:40<br>2:39<br>2:30<br>2:29<br>2:06<br>1:67<br>1:19<br>0:77<br>0:50                                                 | 34-28<br>34-28<br>34-47<br>34-61<br>34-66<br>34-73<br>34-73<br>34-70<br>34-70<br>34-70                                                                | 27·34<br>27·39<br>27·54<br>27·66<br>27·70<br>27·77<br>27·80<br>27·82<br>27·84<br>27·86                                                                         | 7.95<br>7.95<br>7.96<br>8.00<br>8.02<br>8.02<br>8.02<br>8.15<br>8.27<br>8.27<br>8.27<br>8.29 |   |                                                           | 0.00                                                                                                         | 52.4<br>58.9<br>66.2<br>63.9<br>68.6<br>78.6<br>87.7<br>104.7                                                | 4.64<br>4.06<br>3.97<br>4.05<br>4.36<br>4.29<br>4.25<br>4.15<br>4.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                                                                            |                                                                                        |                           |                      |            |
| 884                  | 19             | 0<br>10<br>20<br>30<br>50<br>60<br>80<br>100<br>150<br>200<br>250<br>300<br>400<br>590   |                         | 1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92                                                         | 33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>33.92<br>34.15<br>34.37<br>34.43<br>34.52<br>34.62 | 27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.12<br>27.16<br>27.41<br>27.51<br>27.55<br>27.61<br>27.69 | 8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11                                 |   |                                                           | 0.46<br>0.45<br>0.45<br>0.45<br>0.46<br>0.46<br>0.45<br>0.44<br>0.45<br>0.44<br>0.39<br>0.00<br>0.00<br>0.00 | 13.7<br>13.7<br>13.7<br>13.7<br>13.7<br>13.7<br>13.7<br>13.7                                                 | $7 \cdot 29 - 7 \cdot 32 - 7 \cdot 28 - 7 \cdot 28 - 7 \cdot 29 - 7 \cdot 29 - 7 \cdot 30 - 7 \cdot 23 - 6 \cdot 12 + 58 + 30 - 4 \cdot 02 - 3 \cdot 94 + 30 - 4 \cdot 02 - 3 \cdot 94 + 30 - 4 \cdot 08 - 3 \cdot 94 - 4 \cdot 08 - 3 \cdot 94 - 4 \cdot 08 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 - 3 \cdot 94 - 3 \cdot 94 - 3 \cdot 94 - 3 - 3 \cdot 94 - 3 - 3 - 3 - 3 - 3 + 3 - 3 - 3 - 3 - 3$ | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B               | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0<br>122-0<br>270-90           | 2012<br>—<br>0016<br>0016 | 2145<br>0036<br>0046 | KT<br>DGP  |
| 885                  | 20             | 790<br>990<br>1490<br>1980<br>2480<br>2970<br>3470<br>3960<br>4460<br>0<br>10            |                         | 2.11<br>2.02<br>1.70<br>1.26<br>0.88<br>0.47<br>0.26<br>0.09<br>0.00<br>1.01<br>1.01                                 | 34.70<br>34.72<br>34.73<br>34.73<br>34.72<br>34.71<br>34.70<br>34.70<br>34.69<br>33.94<br>33.94                                                       | 27.75<br>27.77<br>27.80<br>27.83<br>27.85<br>27.87<br>27.88<br>27.88<br>27.88<br>27.88<br>27.88<br>27.87<br>27.21                                              | 8.02<br>7.96<br>8.07<br>8.04<br>8.04<br>8.13<br>8.19<br>8.25<br>8.30<br>8.10<br>8.10<br>8.10 |   |                                                           |                                                                                                              | 71·1<br>77·0<br>82·0<br>94·3<br>104·7<br>107·7<br>104·7<br>104·7<br>21·6<br>21·6<br>21·2                     | 4·25<br>4·39<br>4·49<br>4·63<br>4·61<br>4·46<br>4·54<br>4·52<br>7·41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N 70 V<br>,,                                                                 | 1000-740<br>750-490<br>500-240                                                         | 2003                      |                      | – 10 hours |
|                      |                | 20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>290<br>390<br>580<br>780<br>970 |                         | 1.01<br>1.01<br>1.01<br>1.01<br>1.02<br>1.02<br>1.02<br>1.03<br>0.87<br>1.61<br>2.00<br>2.11<br>2.22<br>2.14<br>2.02 | 33:94<br>33:94<br>33:94<br>33:94<br>33:94<br>33:94<br>33:94<br>33:94<br>34:14<br>34:45<br>34:51<br>34:64<br>34:71<br>34:74                            | 27·21<br>27·21<br>27·21<br>27·21<br>27·21<br>27·21<br>27·21<br>27·23<br>27·38<br>27·47<br>27·55<br>27·59<br>27·69<br>27·69<br>27·70                            | 8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10                                 |   |                                                           | 0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44                                                 | 21·2<br>21·2<br>21·1<br>20·7<br>21·0<br>20·9<br>21·3<br>42·4<br>51·3<br>61·8<br>65·1<br>67·5<br>70·1<br>71·5 | 7:40<br>7:39<br>7:40<br>7:39<br>6:21<br>4:97<br>4:24<br>4:03<br>3:95<br>4:12<br>4:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                       | 500-240<br>250-100<br>100-50<br>50-0<br>100-0<br>1116-0<br>280-120                     | 2334<br>2334              |                      | KT<br>DGP  |

|                      |                                                        |                    |                      | Sounding                       | WIN                        | D                 | SEA             |             |                   | teter<br>bars)           | Air Temp. ° C  |                |                                                 |  |
|----------------------|--------------------------------------------------------|--------------------|----------------------|--------------------------------|----------------------------|-------------------|-----------------|-------------|-------------------|--------------------------|----------------|----------------|-------------------------------------------------|--|
| Station              | Position                                               | Date               | Hour                 | Sounding<br>(metres)           | Direction Force<br>(knots) |                   | Direction       | Force       | Weather           | Barometer<br>(millibars) | Dry<br>bulb    | Wet<br>bulb    | Remarks                                         |  |
| <b>88</b> 5<br>cont. | 58° 50.5′ S, 125° 54.9′ E                              | 1932<br>25-26<br>V |                      |                                |                            |                   |                 |             |                   |                          |                |                |                                                 |  |
| 886                  | 61° 12·1′ S, 127° 52·9′ E                              | 26 v               | 2000                 | 4464*                          | WSW<br>WSW                 | 25<br>26          | WSW<br>WSW      | 5           | C<br>C            | 984-8<br>991-4           | - 3·3<br>- 2·2 | - 5°0<br>- 3°0 | heavy WSW swell<br>heavy conf. WSW<br>swell     |  |
| 887                  | 63° 41·4′ S, 130° 07′ E                                | 27 V               | 1802<br>2000         | 4000*                          | W×N<br>NW×W                | 18<br>14          | W×N<br>NW×W     | 2 2         | csp<br>bcsp       | 1003.6<br>1006.6         | - 1.6<br>- 1.6 | - 2·1<br>- 2·1 | mod. NW × W swell<br>low NW swell               |  |
|                      | 63° 23·2′ S, 130° 29·7′ E<br>61° 44·6′ S, 131° 38·4′ E |                    | 0637<br>2000<br>0000 | 4098 <b>*</b><br>4645 <b>*</b> | N<br>WNW<br>WNW            | 23<br>26<br>21-26 | N<br>WNW<br>WNW | 5<br>5<br>5 | o<br>csp<br>osprs |                          |                |                | mod. N swell<br>mod. NW swell<br>heavy NW swell |  |

·

|                     |                |                                                                                                                                |                              |                                                                                                                                                                                                                        | HYDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DLOGIC.                                                                                                                                                                                                     | AL OBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ERVAT                                                                        | IONS                                      |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 | BIOLO                                                                                          | GICAL OBSER                                                                                  | NATIO:                               | NS                                   |                                                                                         |
|---------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------|
|                     | Age of         |                                                                                                                                | y<br>ter                     |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              | Mg.—at                                    | om m.º                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                |                                                                                              | TI                                   | ME                                   |                                                                                         |
| Station             | moon<br>(days) | Depth<br>(metres)                                                                                                              | Depth by<br>thermometer      | Temp.<br>C.                                                                                                                                                                                                            | S °'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | σt                                                                                                                                                                                                          | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P                                                                            | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N <sub>2</sub>                                                                                    | Si                                                                                                                                                                                                                                                                                                                                                                                          | O <sub>2</sub><br>c.c.<br>htre                                                                                                                                                                                  | Gear                                                                                           | Depth<br>(metres)                                                                            | From                                 | To                                   | Remarks                                                                                 |
| <b>885</b><br>cont. | 20             | 1460<br>1940<br>2460<br>2950<br>3450<br>3940<br>4430                                                                           | 1942<br>—<br>—<br>4430       | 1.70<br>1.22<br>0.80<br>0.50<br>0.23<br>0.07<br>- 0.07                                                                                                                                                                 | 34.75<br>34.75<br>34.73<br>34.71<br>34.70<br>34.70<br>34.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27·82<br>27·86<br>27·86<br>27·87<br>27·88<br>27·88<br>27·88<br>27·88                                                                                                                                        | 8.05<br>8.04<br>8.01<br>8.11<br>8.22<br>8.25<br>8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |                                           | 0.00                                                                                                         | 75.9<br>86.8<br>98.5<br>101.2<br>104.1<br>107.2<br>107.2                                                                                                                                                                                                                                                                                                                                    | 4.41<br>4.51<br>4.73<br>4.76<br>4.53<br>4.57<br>4.53                                                                                                                                                            |                                                                                                |                                                                                              |                                      |                                      |                                                                                         |
| 886                 | 21             |                                                                                                                                | <br><br><br>1483<br><br>3976 | - 0.42<br>- 0.42<br>- 0.42<br>- 0.41<br>- 0.41<br>- 0.42<br>- 0.42<br>- 0.42<br>- 0.42<br>- 0.42<br>- 0.42<br>- 0.43<br>1.13<br>1.35<br>1.80<br>1.83<br>1.73<br>1.63<br>1.23<br>0.86<br>0.48<br>0.23<br>0.08<br>- 0.07 | 33.97<br>33.97<br>33.97<br>33.97<br>33.97<br>33.97<br>33.97<br>33.97<br>33.97<br>33.97<br>33.98<br>34.40<br>34.47<br>34.64<br>34.468<br>34.70<br>34.76<br>34.76<br>34.75<br>34.74<br>34.77<br>34.77<br>34.77                                                                                                                                                                                                                                                                                                                                                                        | 27:32<br>27:32<br>27:32<br>27:32<br>27:32<br>27:32<br>27:32<br>27:32<br>27:33<br>27:57<br>27:62<br>27:75<br>27:75<br>27:75<br>27:75<br>27:83<br>27:83<br>27:86<br>27:87<br>27:87<br>27:89<br>27:89<br>27:89 | 8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.12<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.28<br>8.26<br>8.29 |                                                                              |                                           | 0.415<br>0.41<br>0.41<br>0.41<br>0.41<br>0.40<br>0.40<br>0.40<br>0.40                                        | 37 <sup>-2</sup><br>37 <sup>-2</sup><br>37 <sup>-2</sup><br>37 <sup>-2</sup><br>37 <sup>-2</sup><br>37 <sup>-6</sup><br>3 <sup>8-0</sup><br>59 <sup>-7</sup><br>65 <sup>-1</sup><br>70 <sup>-1</sup><br>71 <sup>-5</sup><br>7 <sup>2-9</sup><br>7 <sup>4-4</sup><br>7 <sup>4-4</sup><br>8 <sup>8-9</sup><br>9 <sup>8-5</sup><br>10 <sup>1-2</sup><br>10 <sup>4-1</sup><br>10 <sup>4-1</sup> | $\begin{array}{c} 7.55 \\ 7.58 \\ \\ 7.56 \\ \\ 7.55 \\ \\ 7.55 \\ \\ 7.54 \\ 4.96 \\ 4.57 \\ 4.96 \\ 4.57 \\ 4.17 \\ 4.16 \\ 4.09 \\ 4.17 \\ 4.16 \\ 4.09 \\ 4.59 \\ 4.59 \\ 4.54 \\ 4.45 \\ 4.45 \end{array}$ | N 70 V<br><br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                             | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>133-0<br>302-100     | 2006<br><br>2353<br>2353             | 2305<br>0013<br>0023                 | KT<br>DGP                                                                               |
| 887                 | 22             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>100<br>150<br>200<br>390<br>590<br>780<br>980<br>1460<br>1940<br>2430<br>2920<br>3400 | <br><br><br>975<br><br>3395  | -1.65 $-1.65$ $-1.64$ $-1.61$ $-1.60$ $-1.52$ $-1.19$ $0.61$ $1.20$ $1.58$ $1.50$ $1.58$ $1.59$ $1.52$ $1.42$ $1.23$ $0.82$ $0.47$ $0.18$ $-0.03$ $-0.19$                                                              | 33.96<br>33.96<br>33.96<br>33.97<br>33.97<br>34.97<br>34.97<br>34.97<br>34.97<br>34.97<br>34.68<br>34.75<br>34.76<br>34.76<br>34.76<br>34.77<br>34.76<br>34.77<br>34.76<br>34.77<br>34.76<br>34.77<br>34.76<br>34.77<br>34.76<br>34.77<br>34.76<br>34.77<br>34.76<br>34.77<br>34.76<br>34.76<br>34.77<br>34.76<br>34.76<br>34.77<br>34.76<br>34.76<br>34.77<br>34.76<br>34.76<br>34.77<br>34.76<br>34.76<br>34.77<br>34.76<br>34.76<br>34.76<br>34.76<br>34.76<br>34.76<br>34.76<br>34.76<br>34.76<br>34.76<br>34.76<br>34.76<br>34.76<br>34.76<br>34.76<br>34.76<br>34.76<br>34.76 | 27.35<br>27.35<br>27.35<br>27.36<br>27.36<br>27.36<br>27.40<br>27.67<br>27.72<br>27.73<br>27.77<br>27.77<br>27.77<br>27.81<br>27.84<br>27.84<br>27.84<br>27.86<br>27.86<br>27.87<br>27.87<br>27.87<br>27.87 | 8.09<br>8.09<br>8.10<br>8.10<br>8.10<br>8.09<br>7.94<br>7.93<br>7.91<br>7.92<br>7.93<br>7.95<br>8.10<br>8.10<br>8.07<br>8.07<br>8.07<br>8.07<br>8.07<br>8.11<br>8.12<br>8.16<br>8.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |                                           | 0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.38<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 44'5<br>44'5<br>44'5<br>45'1<br>45'1<br>45'1<br>42'5<br>59'6<br>62'6<br>66'0<br>68'4<br>69'7<br>71'1<br>72'4<br>80'3<br>88'0<br>90'1<br>97'2<br>102'6<br>102'6<br>102'6                                                                                                                                                                                                                     | 7.48<br>-7.51<br>7.52<br>-7.29<br>-1.47<br>4.24<br>4.33<br>4.37<br>4.40<br>4.27<br>4.34<br>4.27<br>4.34<br>4.56<br>4.59<br>4.69<br>4.77<br>4.70                                                                 | N 50 V<br>N 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,, | 100-0<br>1000-760<br>750-500<br>250-100<br>100-50<br>50-0<br>86-0<br>235-115<br>120-0<br>0-5 | 1813<br>2119<br>2119<br>2202<br>2213 | 1952<br>2139<br>2149<br>2222<br>2233 | Nets towed through<br>streams of very<br>light pack-ice and<br>brash<br>KT<br>DGP<br>KT |
| 888                 | 22             | 0                                                                                                                              |                              | -0.14                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              |                                           |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                                         | } 98-0<br>} 240-90                                                                           | 0655<br>0655                         | 0715<br>0725                         | KT<br>DGP                                                                               |
| 889                 | 23             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100                                                                             |                              | 0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20                                                                                                                                                           | 33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27·28<br>27·28<br>27·28<br>27·28<br>27·28                                                                                                                                                                   | 8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2·57<br>2·57<br>2·57<br>2·57<br>2·57<br>2·49<br>2·57<br>2·34<br>2·40<br>2·20 |                                           |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                             | 7.54<br>                                                                                                                                                                                                        | N 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,           | 1000-750<br>750-500<br>250-250<br>250-100<br>100-50<br>50-0<br>100-0<br>106-0                | 2010                                 | 2325<br>0057                         | Stray on wire                                                                           |

|                     |                           | -                  |      | Sounding             | WIN                            | D                | SEA       |       |         | neter<br>bars)           | Air Ter     | np. ° C.    |                                         |
|---------------------|---------------------------|--------------------|------|----------------------|--------------------------------|------------------|-----------|-------|---------|--------------------------|-------------|-------------|-----------------------------------------|
| Station             | Position                  | Date               | Hour | Sounding<br>(metres) | Direction                      | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                                 |
| <b>889</b><br>cont. | 61° 44.6′ S, 131° 38.4′ E | 1932<br>28-29<br>V |      |                      |                                |                  |           |       |         |                          |             |             |                                         |
| 890                 | 59° 04.5′ S, 133° 18.5′ E | 29 V               | 2000 | 477 <b>1*</b>        | NNE                            | 6                | NNE       | 2     | 0       | 1013.2                   | - 1·8       | - 2.2       | low swell                               |
| . 891               | 56° 02·9′ S, 135° 10·5′ E | 30 V               | 2000 | 4391*                | $\mathbf{S} \times \mathbf{E}$ | 4                | S×E       | I     | ome     | 1009.3                   | 2.0         | 1.2         | mod. W × S and mod.<br>conf. ENE swells |
| 892                 | 52° 48.5′ S, 137° 00.4′ E | 31 V               | 2000 | 3069*                | ESE                            | 3-4              | ESE       | I     | oe      | 1011.7                   | 4.5         | 3.9         | low conf. and mod.<br>conf. swells      |

|                     |                |                                                                                                                                                  |                             |                                                                                                                                                                                                      | HYDRO                                                                                                                                                                                                                | LOGICA                                                                                                                                                                                             | L OBSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RVATI                                                                                                                                                                        | ONS                                       |                    |    |                                                                                                                                                                                                           | BIOLO                                                                              | GICAL OBSER                                                                                         | WATIO:       | N-3                  |                            |
|---------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------|----------------------|----------------------------|
| a                   | Age of         |                                                                                                                                                  | y<br>iter                   |                                                                                                                                                                                                      |                                                                                                                                                                                                                      |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                              | Mg.—at                                    | om m. <sup>3</sup> |    |                                                                                                                                                                                                           |                                                                                    |                                                                                                     | TI           | ME                   | Remarks                    |
| Station             | moon<br>(days) | Depth<br>(metres)                                                                                                                                | Depth by<br>thermometer     | Temp.<br>C.                                                                                                                                                                                          | S°/cc                                                                                                                                                                                                                | σt                                                                                                                                                                                                 | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Р                                                                                                                                                                            | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N2      | Si | O2<br>c.c<br>htre                                                                                                                                                                                         | Gear                                                                               | Depth<br>(metres)                                                                                   | From         | То                   | Remarks                    |
| 889<br>cont.<br>890 | 23             | 150<br>200<br>300<br>400<br>590<br>790<br>990<br>1480<br>1970<br>2470<br>2470<br>3450<br>3450<br>3950                                            | <br><br><br><br><br><br>    | 0.89<br>1.70<br>2.00<br>2.11<br>2.03<br>1.99<br>1.92<br>1.53<br>1.15<br>0.73<br>0.40<br>0.17<br>0.00<br>0.70                                                                                         | 34·23<br>34·41<br>34·52<br>34·60<br>34·68<br>34·70<br>34·76<br>34·76<br>34·76<br>34·77<br>34·70<br>34·69<br>34·68<br>33·90<br>33·90                                                                                  | 27:46<br>27:54<br>27:61<br>27:66<br>27:74<br>27:76<br>27:80<br>27:83<br>27:84<br>27:86<br>27:86<br>27:86<br>27:87<br>27:87<br>27:20<br>27:20                                                       | 7.97<br>7.89<br>7.93<br>8.03<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.14<br>8.16<br>8.26<br>8.37<br>8.11<br>8.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.49<br>2.60<br>2.64<br>2.72<br>2.72<br>2.72<br>2.60<br>2.49<br>2.60<br>2.49<br>2.60<br>2.45<br>2.47<br>2.57<br>2.28<br>2.28                                                 |                                           |                    |    | 5.63<br>4.49<br>4.01<br>4.01<br>4.00<br>3.99<br>4.21<br>4.33<br>4.47<br>4.39<br>4.46<br>4.38<br>4.19<br>7.47                                                                                              | N 70 B<br>N 100 B                                                                  | 200-00<br>1000-730<br>750-500                                                                       | 0037<br>2005 | 0107                 | DGP                        |
|                     |                | 20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>990<br>1490<br>1990<br>2490<br>2980<br>3480<br>3980<br>4470 |                             | 0.70<br>0.70<br>0.70<br>0.70<br>0.70<br>0.64<br>0.60<br>0.24<br>1.68<br>2.09<br>2.16<br>2.20<br>2.13<br>2.03<br>1.73<br>1.28<br>0.70<br>0.50<br>0.23<br>0.08<br>- 0.11                               | 33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>34:15<br>34:34<br>34:50<br>34:59<br>34:66<br>34:70<br>34:76<br>34:76<br>34:76<br>34:77<br>34:70<br>34:70<br>34:70                            | 27:20<br>27:20<br>27:20<br>27:20<br>27:21<br>27:21<br>27:21<br>27:44<br>27:49<br>27:58<br>27:66<br>27:70<br>27:74<br>27:80<br>27:82<br>27:84<br>27:85<br>27:88<br>27:88                            | 8.11<br>8.11<br>8.11<br>8.10<br>8.10<br>8.10<br>8.02<br>7.93<br>7.89<br>7.91<br>8.01<br>7.95<br>8.06<br>8.06<br>8.02<br>8.02<br>8.18<br>8.23<br>8.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2·28<br>2·28<br>2·28<br>2·24<br>2·24<br>2·15<br>2·45<br>2·45<br>2·45<br>2·45<br>2·45<br>2·45<br>2·49<br>2·51<br>2·49<br>2·51<br>2·49<br>2·51<br>2·49<br>2·51<br>2·49         |                                           |                    |    | 7·48<br>7·50<br>7·50<br>7·57<br>6·76<br>4·78<br>4·14<br>4·02<br>3·99<br>4·17<br>4·30<br>4·50<br>4·50<br>4·52<br>4·67<br>4·61<br>4·43<br>4·60                                                              | ,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                             | 500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>} 08-0<br>} 240-110                                | 2312<br>2312 | 2155<br>2332<br>2341 | KT<br>DGP                  |
| 891                 | 25             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>200<br>300<br>590<br>780<br>980<br>1470<br>1930<br>2410<br>2900<br>3380<br>3860     | <br><br><br>979<br><br>3854 | 3.09<br>3.10<br>3.10<br>3.10<br>3.10<br>3.10<br>3.10<br>3.10<br>3.10<br>3.10<br>3.10<br>3.10<br>3.22<br>1.81<br>1.82<br>2.32<br>2.26<br>2.49<br>2.41<br>2.30<br>2.11<br>1.81<br>1.37<br>0.54<br>0.26 | 33.88<br>33.88<br>33.88<br>33.88<br>33.88<br>33.88<br>33.88<br>33.88<br>33.88<br>33.88<br>33.97<br>34.04<br>34.22<br>34.31<br>34.49<br>34.59<br>34.66<br>34.75<br>34.77<br>34.75<br>34.77<br>34.77<br>34.76<br>34.69 | 27.01<br>27.01<br>27.01<br>27.01<br>27.01<br>27.01<br>27.01<br>27.02<br>27.19<br>27.24<br>27.34<br>27.24<br>27.34<br>27.54<br>27.64<br>27.69<br>27.79<br>27.82<br>27.85<br>27.85<br>27.84<br>27.86 | 8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.11<br>8.11<br>8.04<br>8.05<br>7.96<br>8.04<br>8.09<br>8.04<br>8.09<br>8.04<br>8.09<br>8.10<br>8.09<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.04<br>8.05<br>7.96<br>8.09<br>8.10<br>8.10<br>8.10<br>8.09<br>8.10<br>8.10<br>8.10<br>8.09<br>8.10<br>8.10<br>8.10<br>8.09<br>8.10<br>8.10<br>8.10<br>8.10<br>8.09<br>8.10<br>8.10<br>8.10<br>8.10<br>8.09<br>8.10<br>8.10<br>8.10<br>8.10<br>8.09<br>8.10<br>8.10<br>8.10<br>8.10<br>8.09<br>8.10<br>8.10<br>8.10<br>8.10<br>8.09<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.09<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.09<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.09<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.27<br>8.25 | 2·20<br>2·13<br>2·55<br>2·13<br>2·09<br>2·07<br>2·07<br>2·07<br>2·13<br>2·22<br>2·24<br>2·30<br>2·34<br>2·36<br>2·30<br>2·13<br>2·11<br>2·15<br>2·28<br>2·28<br>2·28<br>2·51 |                                           |                    |    | $\begin{array}{c} 7.04 \\ - \\ 7.07 \\ - \\ 7.05 \\ - \\ 7.07 \\ - \\ 7.06 \\ 6.76 \\ 6.76 \\ 6.38 \\ 5.27 \\ 4.72 \\ 3.76 \\ 3.75 \\ 3.75 \\ 4.05 \\ 4.39 \\ 4.48 \\ 4.27 \\ 4.44 \\ - 4.44 \end{array}$ | N 70 V<br>,,<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-710<br>1000-724<br>750-500<br>250-250<br>250-100<br>100-50<br>50-0<br>100-0<br>121-0<br>260-90 | 2008<br>     | 2245<br>2342<br>2352 | Stray on wire<br>KT<br>DGP |
| 892                 | 26             | 0<br>10<br>20<br>30<br>40<br>50                                                                                                                  |                             | 5.00<br>5.01<br>5.01<br>5.01<br>5.01<br>5.01                                                                                                                                                         | 33.89<br>33.89<br>33.89<br>33.89<br>33.89<br>33.89<br>33.89<br>33.89                                                                                                                                                 | 26.82<br>26.81<br>26.81<br>26.81<br>26.81<br>26.81<br>26.81                                                                                                                                        | 8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>8.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.92<br>1.92<br>1.98<br>1.88<br>1.88<br>1.82                                                                                                                                 |                                           |                    |    | 6.80<br><u>-</u><br>6.81<br><u>-</u><br>6.80<br><u>-</u>                                                                                                                                                  | N 70 V                                                                             | 1000-750<br>750-500<br>250-260<br>250-100<br>100-50<br>50-0                                         | 2002         |                      |                            |

| Station      | Position                  | Date         | Haur         | Sounding<br>(metres) | WIN                          | b                | SEA                          |       |           | neter<br>bars)           | Air Ter     | np. ° C.    |                                            |
|--------------|---------------------------|--------------|--------------|----------------------|------------------------------|------------------|------------------------------|-------|-----------|--------------------------|-------------|-------------|--------------------------------------------|
|              | rosition                  | Date         | Hour         | (metres)             | Direction                    | Force<br>(knots) | Direction                    | Force | Weather   | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                                    |
| 892<br>cont. | 52° 48.5′ S, 137° 00.4′ E | 1932<br>31 V |              |                      |                              |                  |                              |       |           |                          |             |             |                                            |
| 893          | 49° 37·5′ S, 138° 35·3′ E | 1–2 vi       | 2000         | 3244*                | E×S                          | 23-25            | E×S                          | 5     | OC        | 1006.3                   | 6.1         | 6.0         | mod. E × S swell                           |
| 894          | 46° 31·5′ S, 139° 50′ E   | 2 vi         | 2000         | 4448*                | SSE                          | 12               | SSE                          | 4     | opd       | 1002.0                   | 9.0         | 8.7         | mod. conf. SE swell                        |
| 895          | 43° 15·5′ S, 143° 38·4′ E | 3 vi         | 2000<br>0000 | 4740*<br>            | $W \times S$<br>$W \times S$ | 18<br>18         | $W \times S$<br>$W \times S$ | 4     | bcp<br>cp | 1009·0<br>1008·8         | 10.0        | 9°0<br>9'7  | mod. conf. SW swell<br>mod. conf. SW swell |

|                      | -              |                                                                        |                         |                                                                               | HYDRO                                                                                           | LOGICA                                                                                 | L OBSE                                                                       | ERVATI                                                                       | ONS                                                                         |                           |    |                                                                              | BIOLOG                                           | JICAL OBSER                                                                   | NATIO:       | 15                   |           |
|----------------------|----------------|------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------|----|------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------|--------------|----------------------|-----------|
| Station              | Age of<br>moon |                                                                        | oy<br>eter              |                                                                               |                                                                                                 |                                                                                        |                                                                              |                                                                              | Mg.—at                                                                      | om m.3                    |    |                                                                              |                                                  |                                                                               | 143          | MI                   | Renark    |
| station              | (days)         | Depth<br>(metres)                                                      | Depth by<br>thermometer | Temp.<br>°C.                                                                  | S * ,                                                                                           | σt                                                                                     | Ìlq                                                                          | P                                                                            | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ N_2 \end{array}$ | Nitrite<br>N <sub>2</sub> | Si | O <sub>2</sub><br>c.c.<br>litre                                              | Gear                                             | Depth<br>(metres)                                                             | From         | То                   | Remark    |
| <b>89</b> 2<br>cont. | 26             | 60<br>80<br>100<br>150<br>200                                          |                         | 5·01<br>5·00<br>4·89<br>4·58<br>4·13                                          | 33.89<br>33.89<br>33.89<br>34.05<br>34.07                                                       | 26.81<br>26.82<br>26.83<br>26.99<br>27.06                                              | 8-11<br>8-11<br>8-08<br>8-07                                                 | 1.81<br>1.81<br>1.75<br>1.69<br>1.69                                         |                                                                             |                           |    | 6·79<br>                                                                     | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>93-0<br>220-100                                                      | 2245<br>2245 | 2230<br>2305<br>2320 | KT<br>DGP |
|                      |                | 300<br>400<br>590<br>790<br>990<br>1480<br>1980<br>2470                | <br><br>2470            | 4.13<br>3.81<br>2.88<br>2.75<br>2.59<br>2.37<br>2.08<br>1.65                  | 34·19<br>34·25<br>34·29<br>34·43<br>34·52<br>34·68<br>34·74<br>34·77                            | 27·16<br>27·23<br>27·36<br>27·48<br>27·56<br>27·71<br>27·78<br>27·84                   | 8.03<br>8.02<br>8.08<br>7.94<br>8.05<br>8.10<br>8.21<br>8.21                 | 1.96<br>2.19<br>2.26<br>2.43<br>2.40<br>2.32<br>2.15<br>2.13                 |                                                                             |                           |    | 5.53<br>5.14<br>4.76<br>4.20<br>3.97<br>3.83<br>3.97<br>4.11                 |                                                  |                                                                               |              |                      |           |
| 893                  | 27             | 0<br>10<br>20<br>30<br>40<br>50                                        |                         | 7·91<br>7·91<br>7·85<br>7·51<br>7·40                                          | 34.15<br>34.15<br>34.15<br>34.14<br>34.09<br>34.08                                              | 26.65<br>26.65<br>26.65<br>26.65<br>26.65<br>26.65<br>26.66                            | 8.12<br>8.12<br>8.12<br>8.11<br>8.11<br>8.12<br>8.11                         | 1·31<br>1·27<br>1·29<br>1·20<br>1·29<br>1·35                                 |                                                                             |                           |    | 6·34<br>                                                                     | N 70 V                                           | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0                   | 2010         |                      |           |
|                      |                | 60<br>80<br>100<br>150                                                 |                         | 7·41<br>7·22<br>7·35<br>8·09                                                  | 34.09<br>34.06<br>34.07<br>34.37                                                                | 26.66<br>26.67<br>26.66<br>26.79                                                       | 8.11<br>8.10<br>8.00<br>8.00                                                 | 1.41<br>1.41<br>1.31<br>1.29                                                 |                                                                             |                           |    | 6·41<br>6·42<br>5·96<br>5·81                                                 | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 100-0<br>100-0<br>260-100                                                     | 2336<br>2336 |                      | КТ<br>DGP |
|                      |                | 190<br>290<br>380<br>570<br>770<br>960<br>1440<br>1910<br>2390<br>2870 |                         | 7.70<br>7.00<br>6.50<br>5.32<br>3.83<br>3.38<br>2.56<br>2.32<br>2.02<br>1.46  | 34·40<br>34·34<br>34·34<br>34·34<br>34·32<br>34·37<br>34·58<br>34·70<br>34·76<br>34·76          | 26.86<br>26.93<br>26.99<br>27.13<br>27.29<br>27.37<br>27.61<br>27.73<br>27.80<br>27.80 | 8.00<br>8.07<br>8.07<br>8.09<br>8.10<br>7.94<br>8.05<br>8.14<br>8.15<br>8.18 | 1·37<br>1·48<br>1·52<br>1·92<br>2·24<br>2·40<br>2·41<br>2·53<br>2·30<br>2·38 |                                                                             |                           |    | 5.81<br>5.83<br>5.61<br>4.79<br>4.73<br>4.35<br>3.97<br>3.81<br>3.99<br>3.92 |                                                  | 7                                                                             |              |                      |           |
| 894                  | 28             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100                     |                         | 9.70<br>9.70<br>9.70<br>9.70<br>9.70<br>9.70<br>9.70<br>9.70                  | 34·46<br>34·46<br>34·46<br>34·46<br>34·46<br>34·46<br>34·46<br>34·46<br>34·46<br>34·45<br>34·44 | 26.60<br>26.60<br>26.60<br>26.60<br>26.60<br>26.60<br>26.60<br>26.60<br>26.60<br>26.60 | 8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.15<br>8.15<br>8.15         | 0.95<br>0.95<br>0.95<br>0.93<br>0.93<br>0.91<br>0.89<br>0.91<br>0.89         |                                                                             |                           |    | 6.08<br>                                                                     | N 70 V<br><br><br><br>N 50 V<br>N 70 B           | 1000-730<br>750-500<br>500-225<br>250-0<br>250-100<br>100-50<br>50-0<br>100-0 | 2010         | 2210                 |           |
|                      |                | 150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500                 |                         | 9 50<br>8·52<br>8·29<br>7·99<br>7·90<br>8·16<br>6·90<br>5·16<br>2·87          | 34 44<br>34 57<br>34 53<br>34 52<br>34 52<br>34 60<br>34 45<br>34 40<br>34 40<br>34 47          | 26.82<br>26.88<br>26.92<br>26.93<br>26.95<br>27.02<br>27.20<br>27.50                   | 8.11<br>8.11<br>8.11<br>8.11<br>8.20<br>8.13<br>8.09<br>8.01                 | 1.12<br>1.16<br>1.22<br>1.25<br>1.33<br>1.65<br>2.13<br>2.45                 |                                                                             |                           |    | 5.81<br>5.89<br>6.01<br>5.90<br>5.30<br>4.77<br>4.36<br>3.93                 | N 100 B<br>N 70 B<br>N 100 B                     | } 91-0<br>} 235-105                                                           | 2307         | 2327                 | KT<br>DGP |
| 895                  | 29             | 1970<br>2460<br>2960<br>3450<br>3940                                   | 3447<br>                | 2·45<br>2·17<br>1·88<br>1·58<br>1·34                                          | 34.65<br>34.71<br>34.72<br>34.72<br>34.71                                                       | 27.67<br>27.75<br>27.78<br>27.80<br>27.82<br>26.57                                     | 7.96<br>8.12<br>8.20<br>8.28<br>8.28<br>8.28                                 | 2:40<br>2:40<br>2:30<br>2:30<br>2:26                                         |                                                                             |                           |    | 3.83<br>3.68<br>3.63<br>3.58<br>3.80<br>5.87                                 | N 70 V                                           | 1000-735                                                                      | 2008         |                      |           |
| 000                  | 29             | 10<br>20<br>30<br>40<br>50<br>60<br>80<br>100                          |                         | 11.08<br>11.15<br>11.16<br>11.10<br>11.10<br>11.10<br>11.11<br>11.14<br>11.20 | 34.73<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.75<br>34.77<br>34.79          | 20.57<br>26.57<br>26.57<br>26.57<br>26.58<br>26.58<br>26.58<br>26.58<br>26.59<br>26.60 | 8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17<br>8.17                 | 0.70<br>0.68<br>0.63<br>0.68<br>0.65<br>0.68<br>0.65<br>0.65                 |                                                                             |                           |    | 5.88<br>5.85<br>5.85<br>5.85<br>5.85<br>5.85                                 | N 70 V<br>N 50 V<br>N 70 B<br>N 100 B            | 750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>} 80-0            | 2329         | 2150<br>2349         | KT        |

| Cention             | Dentin                                               | Di                  |              | Sounding           | WIN                           | īD               | SEA                           |        |          | net <b>er</b><br>bars)                   | Air Ter     | np. ° C.    | -                                                                  |
|---------------------|------------------------------------------------------|---------------------|--------------|--------------------|-------------------------------|------------------|-------------------------------|--------|----------|------------------------------------------|-------------|-------------|--------------------------------------------------------------------|
| Station             | Position                                             | Date                | Hour         | (metres)           | Direction                     | Force<br>(knots) | Direction                     | Force  | Weather  | Baromet <b>er</b><br>(millibars)         | Dry<br>bulb | Wet<br>bulb | Remarks                                                            |
| <b>895</b><br>cont. | 43° 15.5′ S, 143° 38.4′ E                            | 1932<br>3-4 vi      |              |                    |                               |                  |                               |        |          |                                          |             |             |                                                                    |
|                     | 40° 15·5′ S, 143° 22·7′ E<br>41° 05·9′ S, 148° 56′ E | 4 vi<br>14-15<br>vi |              | 102*<br>2037*      | WSW                           | 25-30            | WSW                           | 3      | cpq      | 1017·1<br>995·2                          | 9.7         |             | mod. SW swell                                                      |
| 898                 | 43° 55.5′ S, 149° 32.2′ E                            | 15 vi               | 2012         | 3051*              | NW                            | 20-25            | NW                            | 4      | Ьср      | 982.2                                    | 10.8        | 8.9         | mod. conf. NW swell                                                |
| 899                 | 47° 18·2′ S, 150° 20·8′ E                            | 16 vi               | 2000<br>0000 | 4264 <b>*</b><br>— | $E \times S$<br>$SE \times E$ | 10<br>19         | $E \times S$<br>$SE \times E$ | 2<br>3 | bc<br>bc | 977 <sup>.</sup> 7<br>978 <sup>.</sup> 9 | 8·4<br>8·4  |             | mod. conf. W×N<br>and NE swells<br>mod. conf. W×N<br>and NE swells |

| 895-8 | 3 | 9 | 9 |
|-------|---|---|---|
|-------|---|---|---|

|                     |                |                                                                |                         |                                                                        | HYDRO                                                                | LOGICA                                                               | L OBSE                                               | RVATI                                                        | ONS                                       |                                      |    |                                                                      | BIOLOG                                     | GICAL OBSER                                                 | VATION            | š8           |              |
|---------------------|----------------|----------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|--------------------------------------|----|----------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------|-------------------|--------------|--------------|
|                     | Age of         |                                                                | ev<br>Ster              |                                                                        |                                                                      |                                                                      |                                                      |                                                              | Mgat                                      | om m.3                               |    |                                                                      |                                            |                                                             | TI.               | ME           | Remarks      |
| Station             | moon<br>(days) | Depth<br>(metres)                                              | Depth by<br>thermometer | Temp.<br>°C.                                                           | S °/                                                                 | σt                                                                   | рН                                                   | Р                                                            | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N2                        | Si | O <sub>2</sub><br>c.c.<br>litre                                      | Gear                                       | Depth<br>(metres)                                           | From              | То           | IVEITIAL KS  |
| <b>895</b><br>cont. | 29             | 150<br>190<br>280<br>370<br>560<br>750                         |                         | 10.54<br>9.56<br>9.51<br>8.43<br>8.16<br>7.19                          | 34·83<br>34·71<br>34·75<br>34·61<br>34·60<br>34·50                   | 26·74<br>26·83<br>26·86<br>26·92<br>26·95<br>27·02                   | 8.13<br>8.14<br>8.10<br>8.09<br>8.11<br>8.11         | 0.80<br>0.86<br>0.87<br>1.12<br>1.29<br>1.67                 |                                           |                                      |    | 5'42<br>5'52<br>5'55<br>5'46<br>5'31<br>4'47                         | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B     | } 200-0<br>} 250-110                                        | 2329<br>0022      | 0000<br>0052 | DGP<br>DGP   |
|                     |                | 930<br>1390<br>1960<br>2450<br>2940<br>3430<br>3920            | 1389<br>                | 5·17<br>2·96<br>2·35<br>2·06<br>1·81<br>1·49<br>1·30                   | 34·45<br>34·53<br>34·69<br>34·75<br>34·75<br>34·75<br>34·75          | 27·24<br>27·54<br>27·71<br>27·79<br>27·81<br>27·84<br>27·84          | 8.08<br>7.97<br>7.96<br>8.09<br>8.19<br>8.18<br>8.25 | 2·13<br>2·43<br>2·38<br>2·40<br>2·30<br>2·30<br>2·43         |                                           |                                      |    | 4.16<br>3.72<br>3.77<br>3.69<br>3.74<br>3.70<br>3.63                 |                                            |                                                             |                   |              |              |
| 896                 | 0              | 0<br>10<br>20<br>30<br>40<br>50                                |                         | 15.32<br>15.33<br>15.33<br>15.33<br>15.33<br>15.33                     | 35·48<br>35·48<br>35·48<br>35·48<br>35·48<br>35·48<br>35·48          | 26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28<br>26.28          | 8.17<br>8.18<br>8.18<br>8.19<br>8.19<br>8.19         | 0·34<br>0·34<br>0·34<br>0·34<br>0·34<br>0·34                 |                                           |                                      |    | 5.19<br><br>5.20<br><br>5.20                                         | N 70 V<br>N 50 V<br>N 70 B<br>N 100 B      | 100-50<br>50-0<br>100-0<br>} 84-0                           | 2007<br>—<br>2036 | 2025<br>2051 | КТ           |
|                     |                | 60<br>80<br>100                                                | -                       | 15·30<br>15·19<br>15·06                                                | 35·48<br>35·46<br>35·46                                              | 26·29<br>26·30<br>26·33                                              | 8.19<br>8.19<br>8.19                                 | 0·32<br>0·34<br>0·30                                         |                                           | -                                    |    | 5·18<br>5·10                                                         | N V                                        |                                                             |                   |              | – 11.5 hours |
| 897                 | 10             | 0<br>10<br>20<br>30<br>40<br>50                                |                         | 13.53<br>13.53<br>13.54<br>13.54<br>13.54<br>13.54<br>13.54            | 35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22          | 26·48<br>26·48<br>26·48<br>26·48<br>26·48<br>26·48<br>26·48          | 8.18<br>8.18<br>8.18<br>8.18<br>8.18<br>8.18<br>8.18 | 0.49<br>0.49<br>0.48<br>0.48<br>0.49<br>0.87                 |                                           |                                      |    | 5.22<br>5.26<br>                                                     | N 70 V                                     | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0 | 2250              |              |              |
|                     | <u>7-</u>      | 60<br>80<br>100                                                | -                       | 13.53<br>13.53<br>13.53                                                | 35·22<br>35·22<br>35·22                                              | 26·48<br>26·48<br>26·48                                              | 8.18<br>8.18<br>8.18                                 | 0·25<br>0·44                                                 | -                                         |                                      |    | 5·57<br>                                                             | N 50 V<br>N 70 B<br>N 100 B                | 100-0                                                       | 0107              | 0050<br>0127 | КТ           |
|                     |                | 150<br>200<br>290<br>390                                       |                         | 12.91<br>12.25<br>10.99<br>9.80                                        | 35·17<br>35·16<br>35·03<br>34·80                                     | 26.82                                                                | 8.13<br>8.12<br>8.11<br>8.12                         | 0·70<br>0·84<br>0·99                                         |                                           |                                      |    | 4·98<br>5·03<br>5·16<br>4·97                                         | N 70 B<br>N 100 B                          | 315-120                                                     | 0107              | 0137         | DGP          |
|                     | 1              | 590<br>590<br>780<br>980<br>1470                               |                         | 8·25<br>7·30<br>5·55<br>3·35                                           |                                                                      | 26·94<br>27·04<br>27·22                                              | 8·22<br>8·16                                         | 1·37<br>1·84                                                 |                                           |                                      | -  | 5.15<br>4.21<br>3.89<br>3.42                                         |                                            |                                                             |                   |              |              |
| 898                 | II             | 0<br>10<br>20<br>30<br>40                                      |                         | 13·28<br>13·29<br>13·30<br>13·30<br>13·30                              | 35·17<br>35·17<br>35·17<br>35·17<br>35·17                            | 26·49<br>26·49<br>26·49<br>26·49<br>26·49<br>26·49                   | 8.16                                                 | 0.63<br>0.63<br>0.63                                         |                                           | 0·36<br>0·33<br>0·33<br>0·33<br>0·33 | -  | $5 \cdot 5^{2}$ $5 \cdot 5^{1}$ $5 \cdot 5^{3}$                      | N 70 V                                     | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50         | 2010              |              |              |
|                     |                | 50<br>60<br>80<br>100<br>150                                   |                         | 13.30<br>13.30<br>13.29<br>13.28<br>12.78                              | 35.17<br>35.17<br>35.17<br>35.17<br>35.17<br>35.25                   | 26·49<br>26·49<br>26·49                                              | 8·16<br>8·16<br>8·16                                 | 0.57<br>0.57<br>0.57                                         |                                           | 0.31<br>0.32<br>0.32<br>0.33<br>0.00 |    | 5.53<br>5.52<br>4.85                                                 | ,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B | 50-0<br>100-0                                               | 2226              |              | KT           |
|                     | - L            | 200<br>290<br>390<br>590<br>780<br>980<br>1470<br>1960<br>2450 |                         | 12.09<br>10.85<br>9.70<br>8.21<br>7.27<br>5.78<br>3.17<br>2.41<br>2.08 | 35.18<br>35.00<br>34.82<br>34.60<br>34.53<br>34.47<br>34.55<br>34.66 | 26·74<br>26·82<br>26·89<br>26·94<br>27·03<br>27·18<br>27·54<br>27·54 | 8.12<br>8.11<br>8.11<br>8.08<br>8.04<br>8.10<br>8.15 | 0.93<br>1.03<br>1.22<br>1.65<br>1.88<br>2.30<br>2.45<br>2.43 |                                           | 0.00<br>                             |    | 5.09<br>5.16<br>5.23<br>5.30<br>4.32<br>4.12<br>3.43<br>3.46<br>3.75 | N 100 B                                    | 310-120                                                     | 2226              | 2250         |              |
| 899                 | 12             | 0<br>10<br>20<br>30<br>40                                      |                         | 10.52<br>10.52<br>10.57<br>10.58<br>10.59                              | 34·73<br>34·74<br>34·74                                              | 26.67<br>26.67<br>26.67                                              | 8·17<br>8·17<br>8·17                                 | 0.86<br>0.86<br>0.89                                         |                                           | 0.48<br>0.48<br>0.47<br>0.48<br>0.48 |    | 5·97<br>5·95<br>5·96                                                 | N 70 V<br>,,<br>,,<br>,,<br>,,             | 1000-750<br>750-515<br>500-260<br>250-100<br>100-50         | 2006              |              |              |

|                     |                                                      |                     |      | Sounding             | WIN                                             | D                 | SEA                  |                 |                      | neter<br>bars)           | Air Ter     | mp. ° C.    |                                                   |
|---------------------|------------------------------------------------------|---------------------|------|----------------------|-------------------------------------------------|-------------------|----------------------|-----------------|----------------------|--------------------------|-------------|-------------|---------------------------------------------------|
| Station             | Position                                             | Date                | Hour | Sounding<br>(metres) | Direction                                       | Force<br>(knots)  | Direction            | Force           | Weather              | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                                           |
| <b>899</b><br>cont. | 47° 18·2′ S, 150° 20·8′ E                            | 1932<br>16-17<br>vi |      |                      |                                                 |                   |                      |                 |                      |                          |             |             |                                                   |
| 900                 | 49° 26.7′ S, 150° 57.6′ E                            | 17 vi               | 2000 | 2489*                | SSW                                             | 26-34             | SSW                  | 6               | bcq                  | 994.7                    | 2.9         | 1.2         | heavy SSW swell                                   |
| 901                 | 51° 27.8′ S, 151° 20.5′ E                            | 18 vi               | 2002 | 4323 <b>*</b>        | SW                                              | 35-40             | SW                   | 6 very<br>conf. | cq                   | 990 <sup>.</sup> 3       | 2.0         | 2.3         | heavy SW swell                                    |
|                     | 52° 23·9′ S, 151° 11·4′ E<br>53° 32′ S, 151° 33·4′ E | 19 vi<br>19 vi      |      | +257*<br>+329*       | $SW \times S$<br>$SW \times W$<br>$SW \times W$ | 25–28<br>26<br>16 | SW×S<br>SW×W<br>SW×W | 6<br>5<br>4     | cq<br>bcqsp<br>bcqsp | 995°2<br>989°6<br>989°6  |             |             | heavy SW swell<br>heavy SW swell<br>mod. SW swell |

| 899-9 | 03 |
|-------|----|
|-------|----|

|                             |                |                                                                                                               |                                  |                                                                                                                                                                                                                                                                                              | HYDRO                                                                                                                                                                                     | LOGICA                                                                                                                                                                           | L OBSE                                                                                                                                               | RVATI                                                                                                                                                        | ONS                                       |                                                                                          |    |                                                                                                              | BIOLO                                                                                | GICAL OBSER                                                                                                 | VATIO:                               | NS                                   |                        |
|-----------------------------|----------------|---------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|------------------------|
| Cent .                      | Age of         |                                                                                                               | y<br>ster                        |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                           |                                                                                                                                                                                  |                                                                                                                                                      |                                                                                                                                                              | Mg.—at                                    | om m.ª                                                                                   |    |                                                                                                              |                                                                                      |                                                                                                             | TI                                   | ME                                   | Remarks                |
| Station                     | moon<br>(days) | Depth<br>(metres)                                                                                             | Depth by<br>thermometer          | Temp.<br>C.                                                                                                                                                                                                                                                                                  | S °.                                                                                                                                                                                      | σt                                                                                                                                                                               | pН                                                                                                                                                   | Р                                                                                                                                                            | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N <sub>2</sub>                                                                | Si | O2<br>c.c.<br>litre                                                                                          | Gear                                                                                 | Depth<br>(metres)                                                                                           | From                                 | То                                   | Archains               |
| <b>899</b><br><i>cont</i> . | 13             | 50<br>60<br>80<br>100<br>150<br>290<br>380<br>570<br>760<br>950<br>1430<br>2380<br>2860<br>3330<br>3810       | <br><br><br><br><br><br><br>3806 | 10.59<br>10.59<br>10.60<br>10.60<br>10.58<br>9.91<br>9.20<br>8.59<br>7.91<br>7.90<br>7.18<br>4.77<br>2.42<br>2.03<br>1.68<br>1.24<br>0.99                                                                                                                                                    | 34.74<br>34.74<br>34.74<br>34.74<br>34.74<br>34.81<br>34.72<br>34.63<br>34.75<br>34.55<br>34.55<br>34.55<br>34.55<br>34.55<br>34.55<br>34.65<br>34.75<br>34.75<br>34.77<br>34.77<br>34.77 | 26.67<br>26.67<br>26.67<br>26.67<br>26.75<br>26.84<br>26.89<br>26.91<br>26.91<br>26.96<br>27.03<br>27.24<br>27.67<br>27.79<br>27.81<br>27.81<br>27.81                            | 8.17<br>8.17<br>8.17<br>8.17<br>8.14<br>8.14<br>8.12<br>8.12<br>8.18<br>8.18<br>8.18<br>8.18<br>8.04<br>8.04<br>8.04<br>8.02<br>8.16<br>8.24<br>8.25 | 0.87<br>0.87<br>0.86<br>0.84<br>0.89<br>1.05<br>1.12<br>1.20<br>1.39<br>1.52<br>1.67<br>2.22<br>2.41<br>2.34<br>2.34<br>2.22                                 |                                           | 0.48<br>0.48<br>0.41<br>0.34<br>0.00<br>0.00<br>                                         |    |                                                                                                              | N 70 V<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                           | 50-0<br>100-0<br>} 117-0<br>} 330-0                                                                         | 0000                                 | 2345<br>0020<br>0030                 | KT<br>DGP              |
| 900                         | 13             | 0<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>590<br>790<br>990<br>1480<br>1970        |                                  | $6 \cdot 92$<br>$6 \cdot 93$<br>$6 \cdot 94$<br>$6 \cdot 94$<br>$6 \cdot 94$<br>$6 \cdot 94$<br>$6 \cdot 94$<br>$6 \cdot 94$<br>$6 \cdot 94$<br>$7 \cdot 41$<br>$7 \cdot 21$<br>$6 \cdot 31$<br>$5 \cdot 85$<br>$5 \cdot 10$<br>$3 \cdot 87$<br>$3 \cdot 24$<br>$2 \cdot 51$<br>$2 \cdot 32$ | 34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.30<br>34.30<br>34.30<br>34.30<br>34.30<br>34.30<br>34.30<br>34.37<br>34.41<br>34.61<br>34.72          | 26.70<br>26.70<br>26.70<br>26.70<br>26.70<br>26.70<br>26.70<br>26.70<br>26.70<br>26.71<br>26.85<br>26.93<br>26.98<br>27.04<br>27.18<br>27.32<br>27.41<br>27.65<br>27.74          | 8.14<br>8.14<br>8.14<br>8.14<br>8.14<br>8.14<br>8.14<br>8.14                                                                                         | 1.44<br>1.41<br>1.43<br>1.43<br>1.44<br>1.48<br>1.50<br>1.46<br>1.46<br>1.44<br>1.54<br>1.54<br>1.54<br>1.65<br>2.03<br>2.15<br>2.30<br>2.26<br>2.26         |                                           | 0.40<br>0.40<br>0.40<br>0.41<br>0.41<br>0.41<br>0.41<br>0.39<br>0.41<br>0.01<br>0.00<br> |    | 6.49<br>6.48<br>                                                                                             | N 70 V<br>,,<br>,,<br>,,<br>N 50 V<br>N 100 B<br>N 100 B<br>N 70 B<br>N 70 B         | 1000-735<br>750-500<br>250-250<br>250-100<br>100-50<br>50-0<br>100-0<br>135-0<br>340-140<br>96-0<br>280-150 | 2003<br>2227<br>2227<br>2321<br>2321 | 2213<br>2247<br>2257<br>2341<br>2351 | KT<br>DGP<br>KT<br>DGP |
| 901                         | 14             | 0<br>10<br>20<br>30<br>40<br>50<br>80<br>100<br>150<br>190<br>280<br>380<br>560<br>750<br>940<br>1400<br>1870 |                                  | 5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96                                                                                                                                                                                                                                 | 33'95<br>33'95<br>33'95<br>33'95<br>33'95<br>33'95<br>33'95<br>33'95<br>33'95<br>33'95<br>33'95<br>33'95<br>33'97<br>34'17<br>34'31<br>34'44<br>34'49<br>34'64<br>34'73                   | 26.75<br>26.75<br>26.75<br>26.75<br>26.75<br>26.75<br>26.75<br>26.75<br>26.75<br>26.75<br>26.81<br>27.04<br>27.04<br>27.10<br>27.24<br>27.35<br>27.48<br>27.52<br>27.67<br>27.76 | 8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>8.12<br>8.12                                                                                         | 1.71<br>1.73<br>1.71<br>1.73<br>1.63<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.62<br>1.75<br>1.79<br>2.11<br>2.32<br>2.32<br>2.32<br>2.36<br>2.28 |                                           | 0.44<br>0.43<br>0.43<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44                             |    | 6.61<br>6.62<br>6.63<br>6.60<br>6.60<br>6.60<br>6.76<br>6.40<br>5.71<br>4.57<br>4.07<br>3.89<br>3.80<br>3.88 |                                                                                      |                                                                                                             |                                      |                                      |                        |
| 902                         | 15             | 0                                                                                                             | —                                | 6.41                                                                                                                                                                                                                                                                                         | 34.55                                                                                                                                                                                     | 26.90                                                                                                                                                                            | 8.10                                                                                                                                                 | -                                                                                                                                                            |                                           | _                                                                                        | —  | -                                                                                                            | N 100 B<br>N 100 B                                                                   | 120-0<br>330-150                                                                                            | 0940<br>0940                         | 1000                                 | KT<br>DGP              |
| 903                         | 15             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80                                                                   |                                  | 4.92<br>4.92<br>4.93<br>4.91<br>4.91<br>4.91<br>4.91<br>4.91<br>4.91<br>4.90                                                                                                                                                                                                                 | 33.86<br>33.86<br>33.86<br>33.86<br>33.86<br>33.86<br>33.86<br>33.86<br>33.86<br>33.87                                                                                                    | 26.79<br>26.79<br>26.79<br>26.80<br>26.80<br>26.80<br>26.80<br>26.80<br>26.81                                                                                                    | 8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11<br>8.11                                                                                         | 1.81<br>1.84<br>1.84<br>1.94<br>1.96<br>1.98<br>1.98<br>1.98                                                                                                 |                                           | 0.46<br>0.46<br>0.46<br>0.46<br>0.46<br>0.46<br>0.46<br>0.46                             |    |                                                                                                              | N 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,, | 1000-750<br>750-500<br>500-250<br>250-100<br>100-0<br>100-50<br>50-0<br>100-0                               | 2015                                 | 2305                                 |                        |

|              |                           |                     |      | Sounding             | WIN       | D                | SEA       |       |         | neter<br>Jars)           | Air Ten     | np.°C.      |                 |
|--------------|---------------------------|---------------------|------|----------------------|-----------|------------------|-----------|-------|---------|--------------------------|-------------|-------------|-----------------|
| Station      | Position                  | Date                | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks         |
| 903<br>cont. | 53° 32′ S, 151° 33:4′ E   | 1932<br>19–20<br>vi |      |                      |           |                  |           |       |         |                          |             |             |                 |
| 904          | 56° 13·1′ S, 152° 15·8′ E | 20 vi               | 2000 | 3790*                | Ε×Ν       | 9                | E×N       | 2     | с       | 984.2                    | - 2.3       | - 2:7       | mod. SW swell   |
| 905          | 59° 11.6′ S, 153° 11.4′ E | 21 Vİ               | 2000 | 3702*                | ESE       | 20-25            | ESE       | 6     | osp     | 990.7                    | - 0.2       | -0.2        | heavy ESE swell |
| 906          | 61° 24·7′ S, 154° 26·2′ E | 22 vi               | 2000 | 3041*                | Е         | 12               |           | 0     | 0       | 1010.1                   | - 6.0       | - 6· 1      | mod. ENE swell  |

| 903 | -906 |
|-----|------|
|     |      |

|              |                | HYDROLOGICAL OBSERVATIONS                                                                                                             |                         |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |                                                                                                                                                                                                                      |                                                                                                                                                                           |                                                                                                                                                                                      |                                           |                                                                                                                           |    |                                                                                                                                                                                                                 | BIOLOGICAL OBSERVATIONS                                                            |                                                                                             |                          |                      |                                            |
|--------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|----------------------|--------------------------------------------|
| 0            | Age of         |                                                                                                                                       | y<br>ter                |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |                                                                                                                                                                                                                      |                                                                                                                                                                           |                                                                                                                                                                                      | Mg.—at                                    | om m. <sup>3</sup>                                                                                                        |    |                                                                                                                                                                                                                 |                                                                                    |                                                                                             | TI                       | ME                   | Remarks                                    |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                                                     | Depth by<br>thermometer | Temp.<br>°C.                                                                                                                                                                                                                                                                                                             | S°/。。                                                                                                                                                                                              | σt                                                                                                                                                                                                                   | pН                                                                                                                                                                        | Р                                                                                                                                                                                    | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N2                                                                                                             | Si | O <sub>2</sub><br>c.c.<br>htre                                                                                                                                                                                  | Gear                                                                               | Depth<br>(metres)                                                                           | From                     | То                   | Rendriks                                   |
| 903<br>cont. | 16             | 100<br>150<br>200<br>290<br>390<br>580<br>780<br>970<br>1460<br>1950<br>2440<br>2930<br>3410<br>3900                                  |                         | 4·90<br>4·10<br>4·11<br>4·26<br>3·70<br>3·00<br>2·79<br>2·57<br>2·29<br>1·99<br>1·65<br>1·12<br>0·85<br>0·73                                                                                                                                                                                                             | 33.96<br>34.05<br>34.12<br>34.23<br>34.30<br>34.35<br>34.46<br>34.52<br>34.70<br>34.75<br>34.76<br>34.75<br>34.76<br>34.77<br>34.71<br>34.71                                                       | 26.89<br>27.04<br>27.10<br>27.17<br>27.28<br>27.40<br>27.49<br>27.56<br>27.73<br>27.83<br>27.83<br>27.83<br>27.84<br>27.85<br>27.86                                                                                  | 8.10<br>8.06<br>8.05<br>8.02<br>7.97<br>8.04<br>8.00<br>8.04<br>8.10<br>8.11<br>8.07<br>8.16<br>8.16<br>8.23                                                              | 1.92<br>1.98<br>2.05<br>2.13<br>2.36<br>2.51<br>2.51<br>2.32<br>2.20<br>2.22<br>2.38<br>2.38<br>2.38                                                                                 |                                           | 0·37<br>0·00<br>0·00<br>0·00<br>                                                                                          |    | $\begin{array}{c} 6.60\\ 6.41\\ 6.09\\ 5.41\\ 5.06\\ 4.36\\ 3.94\\ 3.82\\ 3.82\\ 4.11\\ 4.39\\ 4.17\\ 4.20\\ 4.16\end{array}$                                                                                   | N 100 B<br>N 100 B                                                                 | 131–0<br>370–140                                                                            | 0037                     | 0057                 | KT<br>DGP                                  |
| 904          | 16             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>290<br>390<br>590<br>780<br>980<br>1470<br>1960<br>2450<br>2940<br>3430  |                         | $ \begin{array}{r} 1 \cdot 98 \\ 1 \cdot 98 \\ 2 \cdot 00 \\ 2 \cdot 00 \\ 2 \cdot 00 \\ 2 \cdot 00 \\ 2 \cdot 00 \\ 2 \cdot 00 \\ 1 \cdot 71 \\ 1 \cdot 50 \\ 2 \cdot 01 \\ 2 \cdot 41 \\ 2 \cdot 34 \\ 2 \cdot 19 \\ 2 \cdot 15 \\ 2 \cdot 07 \\ 1 \cdot 74 \\ 1 \cdot 30 \\ 0 \cdot 94 \\ 0 \cdot 50 \\ \end{array} $ | 33.81<br>33.81<br>33.81<br>33.81<br>33.81<br>33.81<br>33.81<br>33.81<br>33.82<br>33.88<br>34.14<br>34.32<br>34.48<br>34.52<br>34.66<br>34.69<br>34.69<br>34.76<br>34.74<br>34.71<br>34.70<br>34.68 | 27.04<br>27.04<br>27.04<br>27.04<br>27.04<br>27.04<br>27.05<br>27.12<br>27.35<br>27.55<br>27.58<br>27.70<br>27.73<br>27.73<br>27.73<br>27.73<br>27.82<br>27.84<br>27.84<br>27.84<br>27.84<br>27.84                   | 8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10                                                                                                              | 2.19<br>2.19<br>2.11<br>2.19<br>2.55<br>2.19<br>1.92<br>2.03<br>2.03<br>2.40<br>2.43<br>2.40<br>2.43<br>2.47<br>2.49<br>2.47<br>2.36<br>2.36<br>2.36<br>2.34<br>2.38<br>2.51<br>2.51 |                                           | 0.41<br>0.41<br>0.41<br>0.41<br>0.43<br>0.43<br>0.43<br>0.43<br>0.43<br>0.43<br>0.43<br>0.43                              |    | 7.19<br>-7.18<br>-7.18<br>-7.18<br>-7.17<br>-7.08<br>5.66<br>4.66<br>4.04<br>3.97<br>3.89<br>4.04<br>4.23<br>4.35<br>4.38<br>4.25<br>4.30<br>4.25                                                               | N 70 V<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B             | 1000-780<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>104-0<br>330-130    | 2005                     | 2133<br>2242<br>2252 | KT<br>DGP                                  |
| 905          | 17             | 0<br>10<br>20<br>30<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>390<br>590<br>790<br>980<br>1470<br>1970<br>2460<br>2950<br>3440 |                         | $\begin{array}{c} - 0.81 \\ - 0.81 \\ - 0.82 \\ - 0.82 \\ - 0.82 \\ - 0.81 \\ - 0.39 \\ 0.91 \\ 1.71 \\ 1.87 \\ 1.89 \\ 1.90 \\ 1.84 \\ 1.71 \\ 1.52 \\ 1.13 \\ 0.70 \\ 0.40 \\ 0.29 \\ 0.26 \end{array}$                                                                                                                | 33.88<br>33.88<br>33.88<br>33.88<br>33.88<br>33.88<br>33.89<br>33.97<br>34.41<br>34.59<br>34.65<br>34.68<br>34.68<br>34.72<br>34.71<br>34.70<br>34.69<br>34.68<br>34.68<br>34.68<br>34.68<br>34.68 | 27·27<br>27·27<br>27·27<br>27·27<br>27·27<br>27·27<br>27·27<br>27·27<br>27·27<br>27·27<br>27·27<br>27·27<br>27·72<br>27·76<br>27·76<br>27·75<br>27·75<br>27·78<br>27·78<br>27·78<br>27·78<br>27·85<br>27·85<br>27·85 | 8.06<br>8.06<br>8.06<br>8.06<br>8.06<br>8.05<br>7.93<br>7.88<br>7.89<br>7.97<br>7.99<br>8.08<br>8.09<br>7.99<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8.09<br>8 | 2·38<br>2·38<br>2·51<br>2·43<br>2·28<br>2·28<br>2·38<br>2·45<br>2·49<br>2·49<br>2·49<br>2·49<br>2·49<br>2·59<br>2·55<br>2·34<br>2·55<br>2·34<br>2·30<br>2·36<br>2·43<br>2·38<br>2·45 |                                           | 0·30         0·31         0·31         0·31         0·31         0·31         0·33         0·27         0·10         0·00 |    | $\begin{array}{c} 7.50 \\ - \\ 7.51 \\ - \\ 7.51 \\ - \\ 7.49 \\ - \\ 4.94 \\ 4.02 \\ 4.01 \\ 4.02 \\ 4.01 \\ 4.06 \\ 4.16 \\ 4.21 \\ 4.06 \\ 4.17 \\ 4.34 \\ 4.52 \\ 4.48 \\ 4.42 \\ 4.50 \\ 4.49 \end{array}$ | N 70 V<br>,,<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-0<br>1000-750<br>750-250<br>250-100<br>100-50<br>50-0<br>100-0<br>} 114-0<br>} 320-138 | 2038<br><br>2323<br>2323 | 2248<br>2343<br>2353 | КТ<br>DGP                                  |
| 906          | 18             | 0<br>10<br>20<br>30<br>40<br>50<br>60                                                                                                 |                         | - 1.80<br>- 1.80<br>- 1.80<br>- 1.80<br>- 1.80<br>- 1.80<br>- 1.80                                                                                                                                                                                                                                                       | 34·14<br>34·14<br>34·14<br>34·14<br>34·14<br>34·14<br>34·14<br>34·14                                                                                                                               | 27.51<br>27.51<br>27.51<br>27.51<br>27.51<br>27.51<br>27.51<br>27.51                                                                                                                                                 | 8.03<br>8.03<br>8.03<br>8.02<br>8.02<br>8.02<br>8.02                                                                                                                      | 2·47<br>2·47<br>2·47<br>2·47<br>2·47<br>2·47<br>2·38<br>2·36                                                                                                                         |                                           | 0.22<br>0.23<br>0.24<br>0.22<br>0.22<br>0.22<br>0.22<br>0.23                                                              |    | 6.89<br><br>6.86<br><br>6.84<br><br>6.88                                                                                                                                                                        | N 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>N 50 V                                     | 1000-760<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0                        | 2010                     | 2200                 | Station worked in a<br>sea of soft new ice |

|              |                                                        |               | (incucs)             |          | WIN             | Б                | SEA       |       |                | heter<br>bars)           | Air Ter     | np. ° C.    |                                                                         |
|--------------|--------------------------------------------------------|---------------|----------------------|----------|-----------------|------------------|-----------|-------|----------------|--------------------------|-------------|-------------|-------------------------------------------------------------------------|
| Station      | Position                                               | Date          | Hour                 | (metres) | Direction       | Force<br>(knots) | Direction | Force | Weather        | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                                                                 |
| 906<br>cont. | 61° 24.7′ S, 154° 26.2′ E                              | 1932<br>22 vi |                      |          |                 |                  |           |       |                |                          |             |             |                                                                         |
|              |                                                        |               |                      |          |                 |                  |           |       |                |                          |             |             |                                                                         |
|              |                                                        |               |                      |          |                 |                  |           |       |                |                          |             |             |                                                                         |
| 907          | 61° 21·5′ S, 153° 59·3′ E                              | 23 vi         | 0936                 | _        | SSE             | 13               |           | o     | o              | 1012.0                   | - 8.6       | - 8.7       | mod. $E \times N$ swell                                                 |
| 908          | 61° 33·3′ S, 154° 19·4′ E                              | 23 vi         | 1234                 |          | SSE             | 10               |           | o     | с              | 1012.2                   | - 10.0      | - 10.0      | mod. ENE swell                                                          |
| 909          | 61 - 36·7' S, 154 - 31·8' E                            | 23 vi         | 1415                 |          | SSE             | 13               |           | o     | 0              | 1011.2                   | - 11.6      | - 11.6      | mod. $\mathbf{E} \times \mathbf{N}$ swell                               |
| 910          | 61° 35.8′ S, 154° 54.2′ E                              | 23 vi         | 1600                 | _        | SE              | 15               | _         | 0     | o              | 1011.1                   | - 11.8      | - 11.8      | mod. ESE swell                                                          |
| 911          | 61° 18·2′ S, 155° 37·1′ E                              | 23 vi         | 2000                 |          | SE×S            | 9                | SE×S      | 2     | o              | 1010.3                   | -9.8        | -9.8        | mod. ENE swell                                                          |
| 912          | 61° 05′ S, 158° 24°5′ E<br>to<br>61° 02′ S, 158° 26′ E | 24 vi         | 1045<br>1200<br>1600 |          | E×S<br>SE<br>SE | 15<br>11<br>13   |           | 0     | o<br>cs<br>bcs | 1005.5                   | - 13.1      | - 13.1      | low conf. NE and<br>NW swells<br>mod. NE × E swell<br>mod. NE × E swell |
|              |                                                        |               |                      |          |                 |                  |           |       |                |                          |             |             |                                                                         |
| 913          | 60° 44·5′ S, 158° 37·3′ E                              | 24 vi         | 2000                 |          | SE              | 14               | SE        | 2     | bc             | 1003.2                   | - 11.7      | - 11.7      | low NE swell                                                            |
| 914          | 60° 20′ S, 158° 52.9′ E                                | 25 vi         | 0000                 |          | SSE             | 10               | SSE       | 2     | bc             | 1002.6                   | - 9.2       | - 10.0      | low NE swell                                                            |
|              |                                                        |               |                      |          |                 |                  |           |       |                |                          |             |             |                                                                         |

| -90 | 6— | 9 | 1 | 4 |
|-----|----|---|---|---|
|     |    |   |   |   |

|              |                |                                                                             |                             |                                                                                                | HYDRO                                                                                                             | LOGICA                                                                                                                     | CAL OBSERVATIONS                                                                     |                                                                                              |                                           |                          |    |                                                                                              | BIOLOG                                                              | ICAL OBSER                                                     | VATIO?               | <s< th=""><th></th></s<> |                                                                                                                                              |
|--------------|----------------|-----------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------|----|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------|----------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | Age of         |                                                                             | v<br>ter                    |                                                                                                |                                                                                                                   |                                                                                                                            |                                                                                      |                                                                                              | Mg.—at                                    | om m. <sup>3</sup>       |    |                                                                                              |                                                                     |                                                                | ЧГ                   | ME                       | D I                                                                                                                                          |
| Station      | moon<br>(days) | Depth<br>(metres)                                                           | Depth by<br>thermometer     | Temp.<br>C.                                                                                    | S °/                                                                                                              | σt                                                                                                                         | рИ                                                                                   | Р                                                                                            | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N2            | Sı | Oj<br>c.c.<br>htre                                                                           | Gear                                                                | Depth<br>(metres)                                              | 1-rom                | Τo                       | Remarks                                                                                                                                      |
| 906<br>cont. | 18             | 80<br>100<br>200<br>300<br>400<br>600<br>770<br>960<br>1440<br>1920<br>2400 | <br><br>597<br><br><br>2396 | - 1.57<br>1.20<br>1.51<br>1.52<br>1.58<br>1.39<br>1.38<br>1.33<br>1.16<br>0.75<br>0.37<br>0.08 | 34.14<br>34.59<br>34.67<br>34.68<br>34.69<br>34.72<br>34.73<br>34.74<br>34.72<br>34.76<br>34.68<br>34.68<br>34.67 | 27.50<br>27.73<br>27.77<br>27.78<br>27.77<br>27.81<br>27.83<br>27.83<br>27.83<br>27.83<br>27.83<br>27.83<br>27.85<br>27.86 | 8.02<br>7.90<br>8.06<br>8.16<br>8.20<br>8.15<br>7.96<br>8.07<br>8.16<br>8.15<br>8.15 | 2.49<br>2.49<br>2.38<br>2.43<br>2.28<br>2.28<br>2.28<br>2.40<br>2.43<br>2.40<br>2.51<br>2.55 |                                           | 0·22<br>0·00<br>0·00<br> |    | 4.40<br>4.21<br>4.16<br>4.07<br>4.03<br>4.18<br>4.18<br>4.44<br>4.39<br>4.32<br>4.36<br>4.44 | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                              | } 100-0<br>} 386-142                                           | 2324<br>2324         | 2344<br>2354             | (KT. Nets closed<br>just below surface<br>to avoid ice. Depth<br>estimated<br>DGP                                                            |
| 907          | 19             | 0                                                                           |                             | - 1.72                                                                                         | 34.16                                                                                                             | 27.51                                                                                                                      | 8.02                                                                                 |                                                                                              |                                           |                          |    | -                                                                                            | N 70 B<br>N 100 B                                                   | } 102-0                                                        | 0959                 | 1019                     | KT. Nets closed<br>just below surface<br>to avoid ice                                                                                        |
|              |                |                                                                             |                             |                                                                                                |                                                                                                                   |                                                                                                                            |                                                                                      |                                                                                              |                                           |                          |    |                                                                                              | N 70 B<br>N 100 B                                                   | } 290-110                                                      | 0959                 | 1029                     | DGP. Station<br>worked in young<br>pancake ice                                                                                               |
| 908          | 19             | 0                                                                           |                             | - 1.72                                                                                         | 34.16                                                                                                             | 27.51                                                                                                                      | 8.01                                                                                 |                                                                                              |                                           |                          |    |                                                                                              | N 70 B<br>N 100 B<br>N 100 H                                        | } 134−0<br>0−5                                                 | 1244<br>1244         | 1 304<br>1 308           | KT. Station<br>worked in young<br>pancake ice<br>Net filled with ice                                                                         |
| 909          | 19             | 0                                                                           |                             | - 1.73                                                                                         | 33.97                                                                                                             | 27.36                                                                                                                      | 8.01                                                                                 | _                                                                                            | -                                         |                          | —  | _                                                                                            | N 70 B<br>N 100 B                                                   | J 165-0                                                        | 1425                 | 1445                     | KT. Station<br>worked in young<br>pancake ice                                                                                                |
| 910          | 19             | 0                                                                           |                             | - 1.74                                                                                         | 33.96                                                                                                             | 27.35                                                                                                                      | 8.01                                                                                 | -                                                                                            |                                           | _                        |    |                                                                                              | N 70 B<br>N 100 B                                                   | 146-0                                                          | 1611                 | 1631                     | KT. Station<br>worked in young<br>pancake ice                                                                                                |
| 911          | 19             | 0                                                                           |                             | -0.28                                                                                          | 34.06                                                                                                             | 27.41                                                                                                                      | 8.06                                                                                 |                                                                                              | -                                         |                          |    |                                                                                              | N 70 B<br>N 100 B                                                   | 106-0                                                          | 2026                 | 2046                     | КТ                                                                                                                                           |
|              |                |                                                                             |                             |                                                                                                |                                                                                                                   |                                                                                                                            |                                                                                      |                                                                                              |                                           |                          |    |                                                                                              | N 70 B<br>N 100 B                                                   | 300-110                                                        | 2026                 | 2057                     | DGP                                                                                                                                          |
| 912          | 20             | 0<br>25                                                                     |                             | -1.78<br>-1.74<br>-1.70                                                                        | 33·82<br>33·90<br>33·96                                                                                           | 27·24<br>27·30<br>27·35                                                                                                    | 8.06<br>8.06<br>8.10                                                                 | 1·75<br>1·79<br>1·81                                                                         |                                           | 0·33<br>0·33<br>0·34     |    | 7·54<br>7·57<br>7·47                                                                         | N 100 B                                                             | 100-0                                                          | 1105                 | 1125                     | Depth estimated<br>DGP. Nets towed                                                                                                           |
|              |                | 50<br>75<br>100                                                             |                             | -0.41                                                                                          | 33.90<br>33.97<br>34.48                                                                                           | 27.32<br>27.32<br>27.61                                                                                                    | 8.08<br>8.06                                                                         | 1.90<br>1.90                                                                                 | -                                         | 0·26                     |    | 6·37<br>3·93                                                                                 | N 70 B<br>N 100 B                                                   | 250-104                                                        | 1105                 | 1146                     | for 11 minutes at<br>104 metres                                                                                                              |
|              |                | 150<br>200                                                                  |                             | 1·72<br>1·94                                                                                   | 34·58<br>34·59                                                                                                    | 27·68<br>27·67                                                                                                             | 7·88<br>8·11                                                                         | 2·13<br>2·13                                                                                 |                                           | 0.00                     | _  | 3·89<br>4·13                                                                                 | N 70 H<br>N 100 H                                                   | 0-10<br>0-5                                                    | }1200                | 1230                     | Nets closed before<br>  heaving                                                                                                              |
|              |                | 300<br>400<br>600<br>800                                                    |                             | 1.93<br>1.90<br>1.95<br>1.85                                                                   |                                                                                                                   | <br>27·77<br>27·76<br>27·77                                                                                                | 8.08?<br>7.94<br>8.17<br>8.14                                                        | 2.03<br>1.98<br>2.03                                                                         |                                           |                          |    |                                                                                              | N 70 H<br>N 100 H<br>N 70 V<br>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0-10<br>0-2<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0 | ) 1240<br>1350       |                          | Nets towed just<br>below surface<br>Vertical nets worked<br>in light ice com-<br>posed of small cir-<br>cular floes packed<br>close together |
|              |                |                                                                             |                             |                                                                                                |                                                                                                                   |                                                                                                                            |                                                                                      |                                                                                              |                                           |                          |    |                                                                                              | N 50 V<br>N 70 H<br>N 100 H                                         | 100-0<br>0-7<br>0-2                                            |                      | 1540<br>1723             | In young pancake<br>ice getting thinner                                                                                                      |
| 913          | 20             | 0                                                                           |                             | - 1.73                                                                                         | 33.96                                                                                                             | 27.35                                                                                                                      | 8.05                                                                                 | -                                                                                            |                                           |                          |    |                                                                                              | N 100 H                                                             | 0-2                                                            | 2026                 | 2046                     | towards end of tow                                                                                                                           |
|              |                |                                                                             |                             |                                                                                                |                                                                                                                   |                                                                                                                            |                                                                                      |                                                                                              |                                           |                          |    |                                                                                              | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                              | } 96-0<br>302-110<br>280-100                                   | 2029<br>2029<br>2135 | 2049<br>2059<br>2205     | KT<br>DGP<br>DGP. Depth esti-<br>mated                                                                                                       |
| 914          | 21             | 0                                                                           | <br>                        | - 0.40                                                                                         | 33.88                                                                                                             | 27.25                                                                                                                      | 8.05                                                                                 |                                                                                              |                                           |                          |    |                                                                                              | N 100 H<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                   | 0-2<br>} 95-0<br>} 288-150                                     | 0014<br>0027<br>0027 | 0034<br>0047<br>0057     | mated<br>KT<br>DGP                                                                                                                           |
|              |                |                                                                             |                             |                                                                                                |                                                                                                                   |                                                                                                                            |                                                                                      |                                                                                              |                                           |                          |    |                                                                                              |                                                                     |                                                                |                      |                          |                                                                                                                                              |

|         |                           |               |      | Sounding             | WIN                            | ïD               | SEA                            | <u> </u> |         | aeter<br>aars)           | Air Ter     | mp. ° C.    |                                          |
|---------|---------------------------|---------------|------|----------------------|--------------------------------|------------------|--------------------------------|----------|---------|--------------------------|-------------|-------------|------------------------------------------|
| Station | Position                  | Date          | Hour | Sounding<br>(metres) | Direction                      | Force<br>(knots) | Direction                      | Force    | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                                  |
| 915     | 59° 48·3′ S, 159° 12·1′ E | 1932<br>25 vi | 0400 |                      | $\mathbf{S} \times \mathbf{W}$ | 9-10             | $\mathbf{S} \times \mathbf{W}$ | 2        | с       | 1000.1                   | - 8.6       | - 8.6       | low E swell                              |
| 916     | 59° 12.7′ S, 159° 33.4′ E | 25 vi         | 0830 |                      | $\mathbf{S} 	imes \mathbf{W}$  | 13               | $\mathbf{S} 	imes \mathbf{W}$  | 3        | os      | 999•8                    | - 7.0       | - 7.2       | low $\mathbf{E} \times \mathbf{S}$ swell |
| 917     | 58° 43'3' S, 159° 51'2' E | 25 vi         | 1225 |                      | SE                             | 12               | SE                             | 3        | с       | 998.1                    | - 5.7       | - 6.1       | mod. $SE \times E$ swell                 |
| 918     | 58° 17·3′ S, 160° 06·6′ E | 25 vi         | 1600 |                      | SE                             | 15               | SE                             | 3        | osp     | 995`4                    | - 2.8       | - 2.9       | mod. SE swell                            |
| 919     | 57° 50.4′ S, 160° 23.1′ E | 25 vi         | 2000 | 34 <sup>8</sup> 4*   | NE×N                           | 13               | NE×N                           | 3        | cpr     | 991.0                    | o·6         | 0.0         | mod. $S \times E$ swell                  |
| 920     | 54° 41·1′ S, 162° 23·1′ E | 26 vi         | 2000 | 4575*                | Calms<br>and Lt<br>airs        | 0-2              |                                | ο        | C       | 1000.3                   | -0.3        | - 2.0       | mod. conf. swell                         |

| 9 | 1 | 5 | -920 |
|---|---|---|------|
|   |   |   |      |

| []      |                | HYDROLOGICAL OBSERVATIONS                                                                                                                     |                         |                                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                                  |                                                                                              |                                                                                                                                                                                      |                                                                             |                                  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BIOLOC                                                       | GICAL OBSER                                                                                     | VATION                   | s                    |                                          |
|---------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------|----------------------|------------------------------------------|
|         | Age of         |                                                                                                                                               | H                       |                                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                                                                  |                                                                                              |                                                                                                                                                                                      | Mg.—at                                                                      | om m.3                           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |                                                                                                 | TIM                      | IE                   |                                          |
| Station | moon<br>(days) | Depth<br>(metres)                                                                                                                             | Depth by<br>thermometer | Temp.<br>°C.                                                                                                                                                                 | S °∕₀₀                                                                                                                                                                           | σt                                                                                                                                                                               | pН                                                                                           | Р                                                                                                                                                                                    | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ N_2 \end{array}$ | $\underset{N_2}{\text{Nitrite}}$ | Si | O2<br>c.c.<br>litre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gear                                                         | Depth<br>(metres)                                                                               | From                     | To                   | Remarks                                  |
| 915     | 21             | o                                                                                                                                             | _                       | -0.40                                                                                                                                                                        | 34.01                                                                                                                                                                            | 27.35                                                                                                                                                                            | 8 <b>.0</b> 8                                                                                | _                                                                                                                                                                                    |                                                                             |                                  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N 100 H<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B            | 0-2<br>} 130-0<br>} 310-110                                                                     | 0428<br>0431<br>0431     | 0458<br>0451<br>0503 | Depth estimated<br>DGP                   |
| 916     | 21             | 0                                                                                                                                             | _                       | 0.01                                                                                                                                                                         | 33.77                                                                                                                                                                            | 27.10                                                                                                                                                                            | 8.02                                                                                         | _                                                                                                                                                                                    |                                                                             | -                                | _  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H            | } 146-0<br>} 358-110<br>0-2                                                                     | 0854<br>0854<br>0853     | 0914<br>0924<br>0955 | KT<br>DGP                                |
| 917     | 21             | 0                                                                                                                                             | -                       | -0.62                                                                                                                                                                        | 33.82                                                                                                                                                                            | 27.21                                                                                                                                                                            | 8.02                                                                                         | _                                                                                                                                                                                    |                                                                             | _                                |    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N 100 H<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B            | 0-2<br>117-0<br>300-110                                                                         | 1242<br>1246<br>1246     | 1302<br>1306<br>1316 | KT<br>DGP                                |
| 918     | 21             | 0                                                                                                                                             | _                       | 0.01                                                                                                                                                                         | 33.82                                                                                                                                                                            | 27.13                                                                                                                                                                            | 8.06                                                                                         |                                                                                                                                                                                      |                                                                             |                                  | _  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H            | ,<br>138-0<br>350-120<br>0-2                                                                    | 1620<br>1620<br>1623     | 1640<br>1650<br>1643 | KT<br>∫DGP. Closing<br>( depth estimated |
| 919     | 21             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>590<br>790<br>990<br>1480<br>1970<br>2470<br>2960                  | <br><br><br><br>2961    | 1.78<br>1.77<br>1.76<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.48<br>1.89<br>2.00<br>1.95<br>2.10<br>2.22<br>2.19<br>2.10<br>1.78<br>1.34<br>0.99<br>0.71 | 33.80<br>33.80<br>33.80<br>33.80<br>33.80<br>33.80<br>33.80<br>33.80<br>33.80<br>33.80<br>34.06<br>34.17<br>34.32<br>34.45<br>34.57<br>34.66<br>34.68<br>34.70<br>34.69<br>34.69 | 27·70<br>27·73<br>27·78<br>27·81<br>27·81                                                                                                                                        | 8.08<br>8.09<br>8.09<br>8.09<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10<br>8.10 | 2·20<br>2·20<br>2·17<br>2·03<br>2·07<br>2·11<br>2·07<br>2·34<br>2·41<br>2·60<br>2·60<br>2·60<br>2·47<br>2·41<br>2·41<br>2·41<br>2·41<br>2·51<br>2·30                                 |                                                                             |                                  |    | $\begin{array}{c} 7^{11} \\ - \\ 7^{11} \\ - \\ 7^{10} \\ - \\ 7^{10} \\ - \\ 7^{13} \\ 6^{03} \\ 5^{19} \\ 4^{52} \\ 4^{03} \\ 3^{3} \\ 3^{3} \\ 3^{3} \\ 3^{3} \\ 4^{04} \\ 4^{15} \\ 4^{10} \\ 4^{10} \\ 4^{10} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^{00} \\ 4^$ |                                                              | 1000-745<br>750-490<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>128-0<br>0-2<br>306-130 | <br>2250<br>2250<br>2250 | 2315                 | Stray on wire<br>""""                    |
| 920     | 22             | 0<br>10<br>20<br>30<br>40<br>60<br>80<br>100<br>150<br>190<br>290<br>380<br>580<br>770<br>960<br>1440<br>1920<br>2410<br>2890<br>3370<br>3850 |                         | 2.91<br>2.95<br>2.95<br>2.95<br>2.94<br>2.94<br>2.92<br>2.93<br>2.93<br>2.93<br>2.52<br>2.82<br>3.01<br>2.60<br>2.59<br>2.31<br>2.20<br>1.99<br>1.62<br>1.29<br>0.99<br>0.86 | 10                                                                                                                                                                               | 26·99<br>26·99<br>26·99<br>26·99<br>26·99<br>26·99<br>26·99<br>26·99<br>26·99<br>27·06<br>27·16<br>27·16<br>27·16<br>27·40<br>27·49<br>27·58<br>27·77<br>27·80<br>27·81<br>27·81 | 8.05<br>8.06<br>8.07<br>7.99<br>8.14<br>8.21<br>8.22                                         | 2.01<br>2.01<br>2.07<br>2.15<br>2.13<br>2.15<br>2.15<br>2.15<br>2.15<br>2.19<br>2.24<br>2.30<br>2.64<br>2.64<br>2.64<br>2.55<br>2.43<br>2.43<br>2.43<br>2.44<br>2.55<br>2.44<br>2.55 |                                                                             |                                  |    | 6.97<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1 220-100                                                                                       | 2004                     | 2248<br>2336         |                                          |

|         |                                                        |               |      | Sounding             | WIN       | D .              | SEA       |              |                 | leter<br>Jars)           | Air Ten     | n <b>p.</b> ° C. |                                                           |
|---------|--------------------------------------------------------|---------------|------|----------------------|-----------|------------------|-----------|--------------|-----------------|--------------------------|-------------|------------------|-----------------------------------------------------------|
| Station | Position                                               | Date          | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force        | Weather         | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb      | Remarks                                                   |
| 921     | 51° 39.4′ S, 163° 52.2′ E                              | 1932<br>27 vi | 2000 | 4292*                | S         | 25-45            | S         | 6–7<br>conf. | bcq             | 1008.8                   | 3.0         | 0.2              | heavy conf. S swell                                       |
|         | 50° 19.6′ S, 163° 49.4′ E<br>47° 11.7′ S, 163° 41.4′ E |               |      | 2050*                | S         | 23               | S         | 5            | C               | 1012.0                   | 3.1         |                  | heavy conf. SW swell                                      |
|         | 47° 11°7° S, 163° 41°4° E<br>44° 17°5′ S, 165° 46°2′ E |               | 1200 | 4574*<br>            | W<br>W×S  | 15<br>16         | W<br>W×S  | 3<br>3<br>3  | cp<br>bcp<br>bc | 1019·4<br>1020·7         | 8.0         | 9.7              | mod. conf. W swell<br>mod. conf. W swell<br>mod. SW swell |

| 92 | l9 | 924 |
|----|----|-----|
|----|----|-----|

| [       |                | HYDROLOGICAL OBSERVATIONS |                         |              |                |                |               |              |               |         |    |                                       | BIOLO              | GICAL OBSER         | NS           |                     |                                    |
|---------|----------------|---------------------------|-------------------------|--------------|----------------|----------------|---------------|--------------|---------------|---------|----|---------------------------------------|--------------------|---------------------|--------------|---------------------|------------------------------------|
|         | Age of         |                           | yter                    |              |                |                |               |              | Mg.—at        | tom m.1 |    |                                       |                    |                     | TI           | ME                  |                                    |
| Station | moon<br>(days) | Depth<br>(metres)         | oth by                  | Temp.        | S .            | at             | pH            |              | Nitrate       | Nitrite |    | 02<br>c.c.                            | Gear               | Depth<br>(metres)   |              |                     | Remarks                            |
|         |                |                           | Depth by<br>thermometer |              |                |                |               | Р            | Nitrite<br>Ni | N:      | Si | litre                                 |                    | (inclic).           | From         | То                  |                                    |
| 921     |                | 0                         |                         |              | 24:26          | 26.83          | 8.00          | 1.39         |               |         |    | 6.21                                  | N 70 V             |                     | 207.5        |                     | Vertical hauls aban-               |
| 521     | 23             | 10                        |                         | 7·74<br>7·74 | 34·36<br>34·36 | 26.83          | 8.09          | 1.40         | _             |         |    | -                                     | ,,                 | 500<br>1000         | 2015         | 2030                | doned owing to                     |
|         |                | 20                        |                         | 7.74         | 34.36          | 26·83<br>26·83 | 8.09<br>8.10  | 1.48         |               |         |    | 6.20                                  | N D                |                     |              |                     | weather                            |
|         |                | 30<br>40                  |                         | 7.75         | 34.36          | 20.83          | 8.10          | 1.56         |               |         |    | 6.21                                  | N 100 B<br>N 100 B | 114-0<br>250-100    | 2145<br>2145 | 2205<br>2206        | Depth estimated<br>Depth estimated |
|         |                | 50                        |                         | 7.74         | 34.36          | 26.83          | 8.10          | 1.33         |               |         |    |                                       |                    | 5                   |              |                     |                                    |
|         |                | 60<br>80                  |                         | 7'74         | 34.36          | 26.83<br>26.83 | 8·10<br>8·10  | 1.35         | _             | -       | _  | 6.10                                  |                    |                     |              |                     |                                    |
|         |                | 100                       |                         | 7.74         | 34.36          | 26.83          | 8.10          | 1.41         |               |         |    | 6.19                                  |                    |                     |              |                     |                                    |
|         |                | 150                       |                         | 7.79         | 34.37          | 26.83<br>26.85 | 8.09<br>8.09  | 1.41         |               |         |    | 6.21                                  |                    |                     |              |                     |                                    |
|         |                | 200<br>300                |                         | 8·o8         | 34.44          | 26.94          | 8.09          | 1·46<br>1·48 |               |         |    | 6.04<br>5.90                          |                    |                     |              |                     |                                    |
|         |                | 400                       | _                       | 7.75         | 34.20          | 26.94          | 8.09          | 1.24         | _             | _       | —  | 5.77                                  |                    |                     |              |                     |                                    |
|         |                | 500<br>1000               |                         | 7·65<br>4·28 | 34·50<br>34·32 | 26·95<br>27·24 | 8·21<br>8·22  | 1.56         |               |         |    | 5 <sup>.24</sup><br>4 <sup>.</sup> 33 |                    |                     |              |                     |                                    |
|         |                |                           |                         |              |                |                |               | - • 9        |               |         |    |                                       |                    |                     |              |                     |                                    |
| 922     | 24             | 0<br>10                   |                         | 8·24<br>8·24 | 34.45          | 26·82<br>26·82 | 8∙o8<br>8∙o8  | 1.24         |               |         |    | 6.05                                  | N 70 B<br>N 100 B  | 121-0               | 0727         | 0747                | КТ                                 |
|         |                | 20                        | _                       | 8.24         | 34.45          | 26.82          | 8.08          | 1.24         |               |         |    | 6.06                                  | N 70 B             | 1                   | 0=6=         |                     | DGP                                |
|         |                | 30                        | —                       | 8.24         | 34.45          | 26.82          | 8.08          | 1.32         |               |         |    | _                                     | N 100 B            | 338-192             | 0727         | 0757                | DGP                                |
|         |                | 40<br>50                  | _                       | 8·24<br>8·24 | 34·45<br>34·45 | 26·82<br>26·82 | 8∙o8<br>8∙o8  | 1.24         |               |         |    | 6.03                                  | N 70 V             | 1000-780<br>750-500 | 0815         |                     |                                    |
|         |                | 60                        | _                       | 8.23         | 34.45          | 26.82          | 8 <b>∙o</b> 8 | 1.31         |               | _       |    | 6.03                                  | **                 | 500-250             |              |                     |                                    |
|         |                | 80                        |                         | 8·20<br>8·20 | 34.45          | 26·83<br>26·83 | 8.08<br>8.09  | 1.25         |               |         |    | 6.04                                  | ,,                 | 250-100             |              |                     |                                    |
|         |                | 100<br>150                |                         | 8.14         | 34·45<br>34·44 | 26.83          | 8.10          | 1·29<br>1·29 |               |         | _  | 6.04                                  | **                 | 100-50<br>50-0      |              |                     |                                    |
|         |                | 200                       | -                       | 8.09         | 34.44          | 26.85          | 8.10          | 1.31         |               |         |    | 6.05                                  | N 50 V             | 100-0               | -            | 1045                |                                    |
|         |                | 300<br>400                |                         | 8·21<br>7·80 | 34·53<br>34·50 | 26·90<br>26·93 | 8∙o9<br>8∙o9  | 1.37         |               |         | _  | 5·61<br>5·71                          |                    |                     |              |                     |                                    |
|         |                | 600                       |                         | 7.61         | 34.51          | 26.93          | 8.20          | 1.24         |               | _       | _  | 4.99                                  |                    |                     |              |                     |                                    |
|         |                | 800                       | _                       | 6.16         | 34.36          | 27.05          | 8.22          | 2.24         | —             |         | _  | 4.24                                  |                    |                     |              |                     |                                    |
|         |                | 1000<br>1500              | _                       | 4·53<br>2·87 | 34·34<br>34·46 | 27·23<br>27·49 | 8.17<br>8.11  | 2.24         |               |         |    | 4·38<br>3·67                          |                    |                     |              |                     |                                    |
| 923     | ~ *            |                           |                         | 8.88         |                | 26.72          | 8.15          | 1.18         |               |         |    | 6.06                                  | N 70 B             | N                   |              |                     |                                    |
| 923     | 25             | 10<br>0                   |                         | 8.88         | 34·44<br>34·44 | 26.72          | 8.15          | 1.50         | _             |         |    | 0.00                                  | N 100 B            | 100-0               | 0618         | 0638                | KT                                 |
|         |                | 20                        | —                       | 8.88         | 34-44          | 26.72          | 8.12          | 1.30         | _             | -       |    | 6.08                                  | N 100 B            | 240-138             | 0618         | <b>0658</b><br>0738 | DGP                                |
|         |                | 30<br>40                  |                         | 8·89<br>8·89 | 34.44          | 26·72<br>26·72 | 8·15<br>8·15  | 1·24<br>1·20 |               |         |    | <u> </u>                              | N 70 B<br>N 70 V   | 460-130<br>1000-790 | 0708         | 0738                | DGF                                |
|         |                | 50                        | _                       | 8.89         | 34.44          | 26.72          | 8.12          | 1.30         |               |         |    |                                       | ,,                 | 750-500             |              |                     |                                    |
|         |                | 60<br>80                  |                         | 8·89<br>8·88 | 34.44          | 26.72          | 8·15<br>8·15  | 1.29         |               | -       |    | 6.07                                  | "                  | 500-250             |              |                     |                                    |
|         |                | 100                       | _                       | 8.88         | 34.44          | 26·72<br>26·72 | 8.15          | 1.27         |               |         |    | 6.08                                  | ••                 | 250–100<br>100–50   |              |                     |                                    |
|         |                | 150                       | —                       | 8.88         | 34.44          | 26.72          | 8.14          | 1.54         | _             | —       |    | 6.06                                  | ,,                 | 50-0                |              |                     |                                    |
|         |                | 200<br>300                |                         | 7:99<br>7:80 | 34°45<br>34°46 | 26·86<br>26·90 | 8.11<br>8.11  | 1.46<br>1.52 |               |         |    | $\frac{5.86}{5.87}$                   | N 50 V             | 100-0               |              | 0918                |                                    |
|         |                | 390                       |                         | 7.91         | 34.23          | 26.94          | 8.09          | 1.28         |               |         |    | 5.57                                  |                    |                     |              |                     |                                    |
|         |                | 490<br>500                |                         | 7·84<br>7·60 | 34·54<br>34·52 | 26·96<br>26·98 | 8·26<br>8·17  | 1.73         |               |         | _  | 5.08                                  |                    |                     |              |                     |                                    |
|         |                | 590<br>790                |                         | 6.07         | 34.52          | 20.98          | 8.02          | 1·71<br>2·13 |               |         | _  | 5.38<br>4.64                          |                    |                     |              |                     |                                    |
|         |                | 980                       | —                       | 4.75         | 34.35          | 27.22          | 8.20          | 2.32         |               | -       |    | 4.02                                  |                    |                     |              |                     |                                    |
|         |                | 1380<br>1470              |                         | 2·09<br>2·93 | 34.44          | 27·46<br>27·49 | 8·15<br>8·02  | 2·32<br>2·38 |               |         | _  | 3.61<br>3.95                          |                    |                     |              |                     |                                    |
|         |                | 1970                      |                         | 2.36         | 34.67          | 27.70          | 7.99          | 2.23         |               | -       |    | 3.84                                  |                    |                     |              |                     |                                    |
|         |                | 2460                      |                         | 1.93         | 34.72          | 27·77<br>27·82 | 8.15<br>8.15  | 2.60         | _             |         |    | 3.74                                  |                    |                     |              |                     |                                    |
|         |                | 2950<br>3440              |                         | 1.32         | 34·73<br>34·72 | 27.82          | 8·15<br>8·19  | 2·55<br>2·51 |               |         |    | 3.96<br>3.88                          |                    |                     |              |                     |                                    |
|         |                | 3930                      | 3925                    | 1.59         | 34.72          | 27.82          | 8.14          | 2.41         |               | -       | _  | 3.89                                  |                    |                     |              |                     |                                    |
| 924     | 26             | 0                         |                         | 11.38        | 34.85          | 26.60          | 8.19          | 0.72         |               | $ $ _   |    | 5.71                                  | N 70 B             | 0=-0                | 0720         | 0740                | КТ                                 |
|         |                | 10                        |                         | 11.38        | 34.85          | 26.60          | 8.19          | 0.72         |               | -       |    |                                       | N 100 B            | 95-0                |              |                     |                                    |
|         |                | 20<br>30                  |                         | 11.38        | 34·85<br>34·85 | 26.60<br>26.60 | 8·19<br>8·19  | 0.20         |               |         |    | 5.72                                  | N 70 B<br>N 100 B  | 220-95              | 0720         | 0750                | DGP                                |
|         |                | 40                        |                         | 11.33        | 34.85          | 26.61          | 8.19          | 0.25         | _             | -       |    | 5.65                                  | N 70 V             | 1000-750            | 0805         |                     |                                    |
|         |                | 50<br>60                  | _                       | 11.33        | 34·85<br>34·85 | 26.61<br>26.61 | S·19<br>S·19  | 0.65<br>0.67 | _             |         | _  | 5.67                                  | · · ·              | 750-500<br>500-250  |              |                     |                                    |
|         |                | 80                        |                         | 11.32        | 34.85          | 26.61          | 8.19          | 0.07         | _             |         | _  | -                                     | 5 1<br>5 1         | 250-100             |              |                     |                                    |
|         |                |                           |                         |              |                |                |               |              |               |         |    |                                       |                    |                     |              |                     |                                    |

|                     |                                                        |               |      | Sounding            | WIN         | Ъ                | SEA         |       |         | léter<br>Jars)          | Air Ten     | np. ° C.    |                                                       |
|---------------------|--------------------------------------------------------|---------------|------|---------------------|-------------|------------------|-------------|-------|---------|-------------------------|-------------|-------------|-------------------------------------------------------|
| Station             | Position                                               | Date          | Hour | (metres)            | Direction   | Force<br>(knots) | Direction   | Force | Weather | Barometer<br>(milhbars) | Dry<br>bulb | Wet<br>bulb | Remarks                                               |
| <b>924</b><br>cont. | 44° 17.5′ S, 165° 46.2′ E                              | 1932<br>30 vi |      |                     |             |                  |             |       |         |                         |             |             |                                                       |
| 925                 | 41° 20.5′ S, 167° 55.5′ E                              | ı vii         | 0728 | 1170*               | wsw         | 16               | wsw         | 3     | bc      | 1021-2                  | 10.3        | 8.9         | mod. WSW swell                                        |
| 926                 | 38° 01·9′ S, 170° 12·8′ E                              | 2 vii         | 0732 | 908*                | wsw         | 19               | WSW         | 3     | Ьс      | 1020.0                  | 12.2        | 10.0        | mod. WSW swell                                        |
|                     | 36° 12·2′ S, 171° 24·1′ E<br>34° 39·2′ S, 172° 25·9′ E |               |      |                     | SSW<br>SW×S | 14               | SSW<br>SW×S | 3     | ср      |                         |             |             | mod. SW swell<br>mod. SW swell                        |
| 929                 | 34° 21′ S, 172° 48′ E to<br>34° 22′ S, 172° 49·8′ E    | 16 viii<br>   | 1055 | 5 <sup>8</sup><br>— | wnw<br>—    | 10               | WNW         | 4     | 0       | 1009.4                  | 13.0        | II.9<br>—   | mod. conf. W swell.<br>Sounding by plank-<br>ton wire |

| 924-9 | 929 | 9 |
|-------|-----|---|
|-------|-----|---|

|              |                |                                                                                                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HYDRO                                                                                                                                                                                                                                                           | LOGICA                                                                                                                                                | L OBSE                                                                                                       | RVATI                                                                                                                                | ONS                                       |                           |    |                                                                                                                      | BIOFOC                                                                       | GICAL OBSER                                                                                                                 | VATION               | 38                           |                                                                              |
|--------------|----------------|-----------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------|----|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|------------------------------------------------------------------------------|
|              | Age of         |                                                                                                     | yter                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                 |                                                                                                                                                       |                                                                                                              |                                                                                                                                      | Mg.—at                                    | om m. <sup>3</sup>        |    |                                                                                                                      | -                                                                            | •                                                                                                                           | 71 I.                | ME                           | Remarks                                                                      |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                   | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S °/on                                                                                                                                                                                                                                                          | σt                                                                                                                                                    | рПq                                                                                                          | Р                                                                                                                                    | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N <sub>2</sub> | Si | O <sub>2</sub><br>c.c.<br>litre                                                                                      | Gear                                                                         | Depth<br>(metres)                                                                                                           | From                 | То                           |                                                                              |
| 924<br>cont. | 26             | 100<br>150<br>200<br>390<br>590<br>790<br>980<br>1470<br>1970<br>2460<br>2950<br>3440<br>3930       | <br><br>957<br><br>3926 | 11.30<br>10.38<br>9.98<br>9.04<br>8.10<br>7.83<br>6.58<br>5.20<br>3.03<br>2.39<br>1.95<br>1.55<br>1.28<br>1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34'86<br>34'86<br>34'82<br>34'74<br>34'65<br>34'58<br>34'51<br>34'46<br>34'56<br>34'56<br>34'68<br>34'74<br>34'74<br>34'74                                                                                                                                      | 26.63<br>26.79<br>26.84<br>26.93<br>27.00<br>26.99<br>27.11<br>27.24<br>27.55<br>27.71<br>27.79<br>27.82<br>27.84<br>27.85                            | 8.19<br>8.14<br>8.08<br>8.08<br>8.08<br>8.10<br>8.11<br>8.03<br>8.11<br>8.03<br>8.14<br>8.20<br>8.20<br>8.21 | 0.67<br>1.08<br>1.14<br>1.46<br>1.60<br>1.81<br>2.13<br>2.36<br>2.79<br>2.81<br>2.74<br>2.74<br>2.62<br>2.62                         |                                           |                           |    | 5.66<br>5.31<br>5.19<br>5.01<br>5.03<br>4.86<br>4.18<br>4.11<br>3.53<br>3.48<br>3.94<br>3.94<br>3.98<br>3.95<br>3.91 | N 70 V<br>N 50 V                                                             | 100-50<br>50-0<br>100-0                                                                                                     |                      | 0935                         |                                                                              |
| 925          | 26             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>590<br>790<br>990 |                         | 12.07<br>12.07<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.08<br>12.09<br>10.040<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40 | 34.93<br>34.93<br>34.93<br>34.93<br>34.93<br>34.93<br>34.93<br>34.93<br>34.93<br>35.08<br>35.01<br>34.92<br>34.77<br>34.63<br>34.55<br>34.43                                                                                                                    | 26.54<br>26.54<br>26.54<br>26.54<br>26.54<br>26.54<br>26.54<br>26.54<br>26.54<br>26.75<br>26.77<br>26.84<br>26.90<br>26.95<br>27.09<br>27.21          | 8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16                                                 | 0.61<br>0.65<br>0.63<br>0.61<br>0.59<br>0.67<br>0.65<br>0.67<br>0.65<br>0.59<br>0.91<br>1.03<br>1.25<br>1.48<br>1.73<br>2.07<br>2.38 |                                           |                           |    | 5.67                                                                                                                 | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 70 V<br><br><br><br><br>N 50 V   | <pre>} 110-0<br/>282-126<br/>1000-750<br/>750-500<br/>500-250<br/>250-100<br/>100-50<br/>50-0<br/>100-0</pre>               | 0743<br>0743<br>0830 | 0803<br>0813<br>1012         | KT<br>DGP                                                                    |
| 926          | 28             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800        |                         | 14.18<br>14.18<br>14.16<br>14.16<br>14.16<br>14.16<br>14.16<br>14.17<br>12.53<br>12.01<br>11.00<br>10.13<br>8.00<br>6.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 35^{\circ}35\\ 35^{\circ}35\\ 35^{\circ}35\\ 35^{\circ}35\\ 35^{\circ}35\\ 35^{\circ}35\\ 35^{\circ}35\\ 35^{\circ}35\\ 35^{\circ}35\\ 35^{\circ}24\\ 35^{\circ}17\\ 35^{\circ}02\\ 34^{\circ}91\\ 34^{\circ}61\\ 34^{\circ}56\\ \end{array}$ | 26·44<br>26·44<br>26·44<br>26·44<br>26·44<br>26·44<br>26·44<br>26·44<br>26·44<br>26·44<br>26·44<br>26·69<br>26·74<br>26·82<br>26·88<br>27·00<br>27·12 | 8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16<br>8.16                                                 | 0.53<br>0.46<br>0.44<br>0.44<br>0.48<br>0.51<br>0.53<br>0.51<br>0.89<br>1.03<br>1.37<br>1.50<br>1.81<br>2.11                         |                                           |                           |    | 5.35<br>5.35<br>5.35<br>5.31<br>5.31<br>5.31<br>5.31<br>4.79<br>4.64<br>4.28<br>4.21<br>4.463<br>3.93                | N 70 B<br>N 100 B<br>N 100 B<br>N 50 V<br>N 70 V<br>''<br>''<br>''<br>N 70 B | <pre>     81-0     198-100     100-0     750-500     500-140     500-250     250-100     100-50     50-0     272-108 </pre> | 0744<br>0744<br>0825 | 0804<br>0814<br>1005<br>1044 | KT<br>DGP<br>DGP                                                             |
| 927          | 29             | 0                                                                                                   | _                       | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                 |                                                                                                                                                       | _                                                                                                            |                                                                                                                                      |                                           |                           |    |                                                                                                                      | N 70 H<br>N 50 H                                                             | 0<br>0                                                                                                                      | 2210<br>2215         | -                            | Wake of ship brightly<br>luminescent. Tem-<br>perature from ther-<br>mograph |
| 928          | 0              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150                                           |                         | 14.92<br>14.92<br>14.92<br>14.91<br>14.90<br>14.84<br>14.82<br>14.41<br>14.03<br>13.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35·39<br>35·39<br>35·39<br>35·39<br>35·39<br>35·39<br>35·38<br>35·38<br>35·32<br>35·28<br>35·22                                                                                                                                                                 | 26·31<br>26·31<br>26·32<br>26·32<br>26·33<br>26·36<br>26·41                                                                                           | 8.14                                                                                                         | 0.61<br>0.63<br>0.65<br>0.59<br>0.57<br>0.57<br>0.72<br>0.82<br>0.97                                                                 |                                           |                           |    | 5.10<br>5.18<br>5.14<br>5.11<br>4.72<br>4.48                                                                         | N 70 V<br>,,<br>N 70 B<br>N 100 B                                            | 100-0<br>150-100<br>100-50<br>50-0<br>119-0                                                                                 | 0838<br><br>0920     | 0907<br>0940                 | KT                                                                           |
| 929          | 14             | 0<br>50<br>0<br>50                                                                                  |                         | 14.81<br>14.73<br>14.91<br>14.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35·41<br>35·41<br>35·42                                                                                                                                                                                                                                         | 26·35<br>26·37<br>26·34                                                                                                                               | -                                                                                                            |                                                                                                                                      |                                           |                           |    |                                                                                                                      | DC<br>OTL<br>N 7-T<br>N 4-T                                                  | 58<br>58-55                                                                                                                 | 1114                 |                              |                                                                              |

|         | D                                                            |                 |              | Sounding              | WIN                             | Þ                | SEA                             |       |         | teter<br>bars)           | Air Ten     | np. ' C.          |                                                                              |
|---------|--------------------------------------------------------------|-----------------|--------------|-----------------------|---------------------------------|------------------|---------------------------------|-------|---------|--------------------------|-------------|-------------------|------------------------------------------------------------------------------|
| Station | Position                                                     | Date            | Hour         | (metres)              | Direction                       | Force<br>(knots) | Direction                       | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb       | Remarks                                                                      |
| 930     | Murimotu Light House<br>bearing N 35° E distant<br>1·8 miles | 1932<br>16 viii | 1640         | 29*                   | $\mathbf{NW} \times \mathbf{W}$ | 19               | $\mathbf{NW} \times \mathbf{W}$ | 3     | bc      | 1008.7                   | I.4°0       | 11.2              | mod. ENE swell                                                               |
| 931     | 34° 14·8′ S, 172° 30′ E to<br>34° 15·3′ S, 172° 28·4′ E      | 17 viii         | 0720         | 95*                   | $\mathrm{SW} \times \mathrm{W}$ | 33               | $\mathrm{SW} \times \mathrm{W}$ | 5     | cpq     | 1013.3                   | 11.8        | 10.5              | heavy SSW swell                                                              |
| 932     | 34° 13′ S, 172° 15.9′ E to<br>34° 12.2′ S, 172° 15′ E        | 17 viii         | 0945         | 185                   | $\mathbf{SW} \times \mathbf{W}$ | 23               | $\mathrm{SW} \times \mathrm{W}$ | 4     | Ьс      | 1014.5                   | 14.3        | 10.0              | mod. ENE swell.<br>Sounding from chart                                       |
| 933     | 34° 13·3′ S, 172° 12′ E to<br>34° 13·2′ S, 172° 12·9′ E      | 17 viii         | 1051         | 260                   | $\mathbf{SW} \times \mathbf{W}$ | 23               | $SW \times W$                   | 5     | bc      | 1014.7                   |             |                   | mod. conf. E swell.<br>Sounding by plank-<br>ton wire                        |
| 934     | 34° 11.6′ S, 172° 10.9′ E<br>to 34°11.4′ S, 172°10.3′ E      | 17 viii         | 1152<br>1345 | 97*<br>92–98          | WSW                             | 24               | wsw                             | 5     | ьсрд    | 1014.9                   | 14.0        | 10·6              | mod. conf. SW swell.<br>Second sounding by<br>plankton wire                  |
| 935     | 34° 11·5′ S, 172° 08·5′ E to<br>34° 11·9′ S, 172° 08·5′ E    | 17 viii         | 1433         | 84*                   | SW                              | 27-28            | $\mathbf{SW}$                   | -4    | bc      | 1015.8                   | 12.8        | 10.0              | mod. SW swell                                                                |
| 936     | 35° 03·5′ S, 172° 58·2′ E<br>to 35° 05·4′ S, 172° 58·7′ E    |                 | 0700         | 42-53<br>50           | S≻ W<br>—                       | 16               | S×W                             | 3     | bc<br>— | 1028.2                   | 13·6<br>—   | 10·8              | heavy WSW swell.<br>First sounding from<br>chart, second by<br>plankton wire |
| 937     | 35° 18.7′ S, 173° 08.2′ E                                    | 18 viii         | 1100         | 4 <sup>8*</sup><br>48 | $S \times W$                    | <u> </u>         | $S \times W$                    | 3     | b<br>   | 1027.8                   | 13·4        | 10.7              |                                                                              |
| 938     | 35° 30.6′ S, 173° 19′ E                                      | 18 viii         | 1 300        | 37                    | $\mathbf{S} \times \mathbf{W}$  | 13               | $\mathbf{S} 	imes \mathbf{W}$   | 2     | bcp     | 1027.8                   | 13.3        | 11.0              | heavy conf. SW swell.<br>Sounding by plank-<br>ton wire                      |
| 939     | 35° 49.6′ S, 173° 27′ E to<br>35° 51.6′ S, 173° 28.9′ E      |                 | 1545<br>—    | 87*<br>87             | wsw<br>—                        | 10               | wsw                             | 2     | bc<br>— | 1028.7                   | 13.0        | 10 <sup>.</sup> 7 | mod. SW swell.<br>Second sounding by<br>plankton wire                        |
| 940     | 38° 24.8′ S, 173° 41′ E                                      | 19 viii         | 1035         | 142*                  | wsw                             | II               | wsw                             | 3     | с       | 1029.4                   | 11.8        | 9'7               | mod. SW $\times$ W swell                                                     |
| 941     | 40° 51·4′S, 174° 48·2′ E to<br>40° 55·8′ S, 174° 46·7′ E     | 20 viii         | 0330         | 122-128*              | ENE                             | ΙI               | ENE                             | 3     | с       | 1025.0                   | 9.7         | 8.6               | mod. conf. swell                                                             |
| 942     | 42° 46·3' S, 176° 14·8' E                                    | 31 viii         | 2000         | 660*                  | S                               | 7-10             | S                               | 3     | b       | 1009.2                   | 11.5        | 9 <sup>.</sup> 0  | mod. conf. NW swell                                                          |
|         |                                                              |                 |              |                       |                                 |                  |                                 |       |         |                          |             |                   |                                                                              |
| 943     | 45° 28·4′ S, 179° 06·4′ E                                    | ı ix            | 1955         | 2552*                 | N                               | 23-25            | N                               | 5     | b       | 1005.7                   | 8.6         | 8·o               | mod. conf. NE and<br>WSW swells                                              |

| 930-9 | 943 |
|-------|-----|
|-------|-----|

|         |                          |                                                                                |                         |                                                                                                                      | HYDRO                                                                                                             |                                                             |      | RVAT                                                                                                 | IONS                                      |                                                                                                               |                                                                    |                                                                                                | BIOLOG                                             | ICAL OBSERV                  | ATION                     | 5                    |                                                        |
|---------|--------------------------|--------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------|---------------------------|----------------------|--------------------------------------------------------|
|         |                          |                                                                                | н                       |                                                                                                                      |                                                                                                                   |                                                             |      |                                                                                                      | Mg.—at                                    | om m. <sup>3</sup>                                                                                            |                                                                    |                                                                                                |                                                    |                              | TIN                       |                      |                                                        |
| Station | Age of<br>moon<br>(days) | Depth<br>(metres)                                                              | Depth by<br>thermometer | Temp.<br>C.                                                                                                          | S°',                                                                                                              | σt                                                          | рН   | Р                                                                                                    | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N <sub>2</sub>                                                                                     | Si                                                                 | $O_2$<br>c.c.<br>htre                                                                          | Gear                                               | Depth<br>(metres)            | From                      | То                   | Remarks                                                |
| 930     | 14                       | 0                                                                              |                         | 14.20                                                                                                                |                                                                                                                   | -                                                           |      |                                                                                                      |                                           |                                                                                                               |                                                                    |                                                                                                | DC                                                 | 20                           | 1640                      | 1730                 | Ship at anchor, tem-<br>perature from ther-<br>mograph |
| 931     | 15                       | 0<br>80                                                                        |                         | 14·64<br>14·64                                                                                                       |                                                                                                                   | 26·37<br>26·37                                              | -    |                                                                                                      |                                           |                                                                                                               |                                                                    | Barran <sup>-</sup>                                                                            | DC                                                 | 95                           | 0759                      | 0800                 |                                                        |
| 932     | 15                       | 0<br>180                                                                       |                         | 14·64<br>13·91                                                                                                       | 35·37<br>35·29                                                                                                    | 26·36<br>26·45                                              |      |                                                                                                      |                                           |                                                                                                               |                                                                    |                                                                                                | DC                                                 | 185                          | 1007                      | 1008                 |                                                        |
| 933     | 15                       | 0<br>260                                                                       |                         | 14·62<br>13·62                                                                                                       | 35·37<br>35·28                                                                                                    | 26·36<br>26·50                                              |      |                                                                                                      |                                           |                                                                                                               |                                                                    |                                                                                                | DC                                                 | 260                          | 1125                      | 1126                 |                                                        |
| 934     | 15                       | 0<br>90<br>0<br>98                                                             |                         | 14·37<br>14·36<br>14·12<br>14·20                                                                                     | 35·35<br>35·35<br>35·37<br>35·39                                                                                  | 26·40<br>26·40<br>26·47<br>26·46                            |      |                                                                                                      |                                           |                                                                                                               |                                                                    |                                                                                                | DC<br>OTL<br>N 4-T<br>DRL                          | 100<br>92-98<br>98           | 1205<br>1232<br>1345      | 1 206<br>1 302       | <b>OTL</b> badly torn                                  |
| 935     | 15                       | _                                                                              | _                       |                                                                                                                      |                                                                                                                   |                                                             |      |                                                                                                      |                                           | -                                                                                                             |                                                                    | -                                                                                              | DRL                                                | 84                           | 1433                      | 1445                 |                                                        |
| 936     | 15                       | 0<br>45<br>0<br>56                                                             |                         | 13.86<br>13.72<br>13.93<br>13.91                                                                                     | 35·30<br>35·29<br>35·30<br>35·30                                                                                  | 26·47<br>26·49<br>26·45<br>26·45                            |      |                                                                                                      |                                           |                                                                                                               |                                                                    |                                                                                                | DC<br>OTL<br>N 7-T<br>N 4-T                        | 50<br>50-57?                 | 0720<br>0800              | 0730<br>0900         |                                                        |
| 937     | 16                       | 0<br>48                                                                        | -                       | 13·72<br>13·62                                                                                                       | 35·20<br>35·29                                                                                                    | 26·42<br>26·51                                              |      |                                                                                                      |                                           |                                                                                                               |                                                                    |                                                                                                | DC                                                 | 48                           | 1115                      |                      |                                                        |
| 938     | 16                       | 0<br>36                                                                        |                         | 13·81<br>14·12                                                                                                       | 34·86<br>35·31                                                                                                    | 26·13<br>26·42                                              |      | _                                                                                                    |                                           |                                                                                                               |                                                                    |                                                                                                | DC                                                 | 37                           | 1313                      |                      |                                                        |
| 939     | 16                       | 0<br>87<br>0<br>85                                                             |                         | 14.61<br>13.91<br>14.24<br>13.85                                                                                     | 35·33<br>35·32<br>35·34<br>35·29                                                                                  | 26·33<br>26·47<br>26·42<br>26·46                            |      |                                                                                                      |                                           |                                                                                                               |                                                                    |                                                                                                | DC<br>OTL<br>N 7-T<br>N 4-T                        | 87<br>87                     | 1558<br>1623              | 1604<br>1723         |                                                        |
| 940     | 17                       | 0                                                                              | -                       | 13.23                                                                                                                | 35.37                                                                                                             | 26.29                                                       |      | _                                                                                                    | _                                         |                                                                                                               |                                                                    | -                                                                                              | N 50 V<br>N 70 B<br>N 100 B                        | 100-0<br>} 122-0             | 1038<br>1055              |                      | КТ                                                     |
| 941     | 18                       | 0<br>150                                                                       |                         | 11.03                                                                                                                | 34·89<br>35·0 <b>5</b>                                                                                            | 26·70<br>26·82                                              |      | -                                                                                                    |                                           |                                                                                                               |                                                                    |                                                                                                | N 50 V<br>N 70 B<br>N 100 B<br>DC<br>DRL           | 100-0<br>128-0<br>128<br>128 | 0341<br>0401<br>0434<br>— | 0421                 | КТ                                                     |
| 942     | 2 28                     | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>500 |                         | 9.12<br>9.17<br>9.17<br>9.17<br>9.17<br>9.17<br>9.17<br>9.17<br>9.06<br>9.01<br>8.86<br>8.39<br>8.50<br>8.29<br>8.11 | 34.61<br>34.61<br>34.61<br>34.61<br>34.61<br>34.61<br>34.60<br>34.50<br>34.50<br>34.56<br>34.49<br>34.55<br>34.55 | 26.81<br>26.82<br>26.81<br>26.83<br>26.83<br>26.87<br>26.91 |      | 0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.95<br>0.93<br>1.01<br>1.22<br>1.41<br>1.41 |                                           | 0.17<br>0.16<br>0.17<br>0.16<br>0.16<br>0.16<br>0.16<br>0.17<br>0.17<br>0.17<br>0.04<br>0.00<br>0.00<br>0.000 | 5.1<br>5.1<br>5.1<br>5.1<br>5.1<br>5.1<br>5.1<br>5.1<br>5.1<br>5.1 | 5.93<br>5.95<br>5.95<br>5.95<br>5.96<br>5.73<br>5.76<br>5.25<br>5.50<br>5.25<br>5.50<br>5.4.86 | ",<br>",<br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B |                              | 2010<br><br>2149<br>2149  | 2127<br>2209<br>2219 |                                                        |
| 943     | 3 1                      | 0<br>10<br>20                                                                  | »  —                    | 7·37<br>7·39<br>7·40                                                                                                 | 34.43                                                                                                             | 26.94                                                       | +  — | 1 · 24<br>1 · 24<br>1 · 25                                                                           | + -                                       | 0·24<br>0·23<br>0·23                                                                                          | 4.6                                                                | ) —                                                                                            | ,,                                                 | 1000-750<br>750-500<br>500-0 | 2005                      |                      |                                                        |

| Station      | Position                                               |              |              | Sounding<br>(metres)   | WIN         | 4D               | SEA                           |        |         | neter<br>Dars)           | Air Tei     | mp. ° C.    |                                                        |
|--------------|--------------------------------------------------------|--------------|--------------|------------------------|-------------|------------------|-------------------------------|--------|---------|--------------------------|-------------|-------------|--------------------------------------------------------|
| Station      | Position                                               | Date         | Hour         | (metres)               | Direction   | Force<br>(knots) | Direction                     | Force  | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                                                |
| 943<br>cont. | 45° 28·4′ S, 179° 06·4′ E                              | 1932<br>1 ix |              |                        |             |                  |                               |        |         |                          |             |             |                                                        |
| 944          | 47° 41.6′ S, 178° 16′ W                                | 2 ix         | 2000         | 4783*                  | SW          | 30-40            | SW                            | 6      | bcpq    | 1002.1                   | 5.9         | 5.3         | heavy conf. SW swell                                   |
|              | 48° 25.6′ S, 177° 24.5′ W<br>49° 24.6′ S, 176° 21.3′ W | 3 ix<br>3 ix | 0932<br>2000 | 5038 <b>*</b><br>2441* | S×W<br>SW×W | 26<br>20         | $S \times W$<br>$SW \times W$ | 5      | c<br>bc | 1007·3<br>1010·4         | 6·0<br>6·6  |             | heavy conf. SW and<br>W swells<br>heavy conf. SW swell |
| 947          | 51° 59·2′ S, 173° 26·9′ W                              | 4 ix         | 2000<br>0000 | 504.4*                 | NW<br>NW×W  | 34<br>34         | NW<br>NW×W                    | 6<br>6 | c<br>o  | 1002·5<br>998·8          | 7·5<br>7·1  | 6·2<br>6·7  | heavy conf. NW swell<br>heavy conf. NW swell           |

| 943-9 | 947 |
|-------|-----|
|-------|-----|

|              |                |                                                                                                                                                       |                                      |                                                                                                                                                                                                                                                                                                                                        | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOGICA                                                                                                                                                                                                               | L OBSI | RVATI                                                                                                                                                                                 | ONS                           |                                                                                          |                                                                                                                                                                     |                                                                                                                                                                                                                                                | BIOLOC                                                           | GICAL OBSER                                                | VATION           | s                    |                              |
|--------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|------------------|----------------------|------------------------------|
|              | Age of         | _                                                                                                                                                     | y<br>ter                             |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                      |        |                                                                                                                                                                                       | Mg.—at                        | om m.3                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                                                                                |                                                                  |                                                            | TD               | JE                   | Remarks                      |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                                                                     | Depth by<br>thermometer              | Temp.<br>C.                                                                                                                                                                                                                                                                                                                            | S°,-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | σt                                                                                                                                                                                                                   | рН     | Р                                                                                                                                                                                     | Nitrate<br>+<br>Nitrite<br>Ng | Nitrite<br>N <sub>2</sub>                                                                | si                                                                                                                                                                  | O2<br>C.C.<br>Iitre                                                                                                                                                                                                                            | Gear                                                             | Depth<br>(metres)                                          | From             | Ъ                    |                              |
| 943<br>cont. | I              | 30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500<br>2000                                                   |                                      | 7.40<br>7.40<br>7.40<br>7.38<br>7.39<br>7.30<br>6.61<br>6.38<br>6.08<br>5.76<br>4.86<br>3.80<br>2.60<br>2.30                                                                                                                                                                                                                           | 34'43<br>34'43<br>34'43<br>34'43<br>34'43<br>34'43<br>34'43<br>34'43<br>34'45<br>34'36<br>34'36<br>34'36<br>34'34<br>34'30<br>34'34<br>34'35<br>34'34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.94<br>26.94<br>26.94<br>26.94<br>26.94<br>26.94<br>26.94<br>26.96<br>26.99<br>27.02<br>27.05<br>27.05<br>27.05<br>27.19<br>27.31<br>27.59<br>27.70                                                                |        | 1.22<br>1.22<br>1.22<br>1.22<br>1.22<br>1.22<br>1.22<br>1.20<br>1.41<br>1.62<br>1.69<br>1.82<br>2.17<br>2.22<br>2.45<br>2.34                                                          |                               | 0.23<br>0.24<br>0.23<br>0.24<br>0.22<br>0.06<br>0.14<br>0.00<br>                         | 5.0<br>5.4<br>6.2<br>5.6<br>5.4<br>5.4<br>5.9<br>5.9<br>7.1<br>7.1<br>11.2<br>19.0<br>25.7<br>42.3<br>52.8                                                          | $\begin{array}{c} - \\ 6 \cdot 33 \\ - \\ 6 \cdot 32 \\ - \\ 6 \cdot 32 \\ 6 \cdot 32 \\ 6 \cdot 32 \\ 6 \cdot 32 \\ 6 \cdot 32 \\ 6 \cdot 33 \\ 5 \cdot 55 \\ 4 \cdot 30 \\ 5 \cdot 55 \\ 4 \cdot 44 \\ 3 \cdot 73 \\ 3 \cdot 65 \end{array}$ | N 70 V<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 250-100<br>100-50<br>50-0<br>100-0<br>128-0<br>356-130     | 2322<br>2322     | 2230<br>2342<br>2352 | KT<br>DGP                    |
| 944          | 2              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>800<br>150<br>190<br>280<br>380<br>570<br>750<br>940<br>1400<br>1880<br>2350<br>2910<br>3390<br>3880<br>4360 | <br><br><br><br><br>2344<br><br>4358 | $\begin{array}{c} 6\cdot 54 \\ 6\cdot 60 \\ 6\cdot 61 \\ 6\cdot 61 \\ 6\cdot 61 \\ 6\cdot 51 \\ 6\cdot 51 \\ 6\cdot 51 \\ 6\cdot 51 \\ 6\cdot 50 \\ 6\cdot 41 \\ 5\cdot 90 \\ 5\cdot 41 \\ 4\cdot 81 \\ 3\cdot 68 \\ 3\cdot 10 \\ 2\cdot 64 \\ 2\cdot 25 \\ 1\cdot 94 \\ 1\cdot 57 \\ 1\cdot 23 \\ 1\cdot 90 \\ 0\cdot 89 \end{array}$ | 34'34<br>34'34<br>34'34<br>34'34<br>34'34<br>34'34<br>34'34<br>34'36<br>34'36<br>34'37<br>34'31<br>34'31<br>34'31<br>34'38<br>34'58<br>34'72<br>34'75<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>34'73<br>3 | 26.98<br>26.98<br>26.98<br>26.98<br>26.98<br>26.98<br>27.00<br>27.00<br>27.01<br>27.03<br>27.04<br>27.04<br>27.17<br>27.29<br>27.17<br>27.29<br>27.41<br>27.61<br>27.75<br>27.80<br>27.82<br>27.84<br>27.85<br>27.86 |        | $\begin{array}{c} 1.60\\ 1.62\\ 1.65\\ 1.79\\ 1.62\\ 1.62\\ 1.46\\ 1.63\\ 1.63\\ 1.63\\ 1.65\\ 1.71\\ 1.92\\ 2.28\\ 2.34\\ 2.53\\ 2.59\\ 2.53\\ 2.34\\ 2.40\\ 2.34\\ 1.75\end{array}$ |                               | 0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.10<br>0.08<br>0.09<br>0.04<br>0.05<br>0.00<br> | $\begin{array}{c} 6.5\\ 6.4\\ 6.4\\ 6.3\\ 6.3\\ 5.6\\ 7.6\\ 6.6\\ 6.6\\ 6.6\\ 9.0\\ 18.2\\ 23.4\\ 34.1\\ 53.6\\ 50.6\\ 52.1\\ 57.8\\ 59.7\\ 66.3\\ 72.9\end{array}$ | 3.77<br>3.80<br>4.26<br>4.03<br>4.12                                                                                                                                                                                                           |                                                                  | 1000-750?<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0 | 2011             | 2202                 | Bad stray on wire            |
| 945          | 3              | 0                                                                                                                                                     | —                                    | 6.00                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                    | -      | _                                                                                                                                                                                     | -                             | -                                                                                        | _                                                                                                                                                                   | -                                                                                                                                                                                                                                              | N 100 B<br>N 100 B                                               |                                                            | 0947<br>0947     |                      |                              |
| 946          | 4              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>190<br>280<br>380<br>560<br>750<br>940<br>1400<br>1870                                   |                                      | $\begin{array}{c} 6.90\\ 6.90\\ 6.90\\ 6.87\\ 6.84\\ 6.80\\ 6.81\\ 6.53\\ 6.53\\ 6.53\\ 5.93\\ 5.93\\ 5.10\\ 3.93\\ 3.28\\ 2.58\\ 2.35\\ \end{array}$                                                                                                                                                                                  | 34'33<br>34'33<br>34'33<br>34'33<br>34'30<br>34'30<br>34'30<br>34'30<br>34'30<br>34'30<br>34'30<br>34'30<br>34'29<br>34'27<br>34'29<br>34'24<br>34'35<br>34'38<br>34'36<br>34'36<br>34'36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.92<br>26.92<br>26.92<br>26.91<br>26.91<br>26.91<br>26.95<br>26.95<br>26.95<br>26.98<br>27.01<br>27.02<br>27.17<br>27.31<br>27.39<br>27.59                                                                         |        | $\begin{array}{c} 1.43\\ 1.39\\ 1.41\\ 1.48\\ 1.41\\ 1.48\\ 1.46\\ 1.54\\ 1.56\\ 1.52\\ 1.66\\ 1.52\\ 1.66\\ 2.15\\ 2.41\\ 2.34\\ 2.64\\ 2.53\end{array}$                             |                               | 0.21<br>0.20<br>0.20<br>0.20<br>0.21<br>0.21<br>0.21<br>0.21                             | 5·2<br>5·2<br>5·2<br>5·2<br>5·2<br>5·4<br>6·7<br>7·0<br>7·0<br>7·0                                                                                                  | $ \begin{array}{c} - \\ 6 \cdot 44 \\ - \\ 6 \cdot 45 \\ - \\ 6 \cdot 40 \\ - \\ 6 \cdot 41 \\ 6 \cdot 35 \\ 6 \cdot 36 \\ 6 \cdot 25 \\ 5 \cdot 64 \\ 4 \cdot 91 \\ 4 \cdot 51 \\ 4 \cdot 59 \\ 3 \cdot 66 \\ \end{array} $                   | "<br>"<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B       | 270-120                                                    | <br>2237<br>2237 | 2150<br>2257         | KT<br>DGP                    |
| 947          | 5              | 0<br>10<br>20<br>30<br>40                                                                                                                             |                                      | 6·93<br>6·94<br>6·94<br>6·94<br>6·94                                                                                                                                                                                                                                                                                                   | 34·35<br>34·35<br>34·35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26·94<br>26·94<br>26·94                                                                                                                                                                                              |        | 1·5(<br>1·4(<br>1·4(<br>1·4(<br>1·4(                                                                                                                                                  |                               | 0°24<br>0°24<br>0°24<br>0°24<br>0°24                                                     | 6·1<br>6·1                                                                                                                                                          | 6.40                                                                                                                                                                                                                                           | 3 <b>1</b><br>3 <b>1</b>                                         | 1000-785<br>750-500<br>500-250<br>250-100<br>100-50        | 2032             |                      | Closing depth esti-<br>mated |

|              |                           |                |              | Sounding             | WIN         | Ð                | SEA         |       |             | leter<br>Dars)           | Air Ter     | п <b>р.</b> ° С. | 1                                  |
|--------------|---------------------------|----------------|--------------|----------------------|-------------|------------------|-------------|-------|-------------|--------------------------|-------------|------------------|------------------------------------|
| Station      | Position                  | Date           | Hour         | Sounding<br>(metres) | Direction   | Force<br>(knots) | Direction   | Force | Weather     | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb      | Remarks                            |
| 947<br>cont. | 51° 59·2′ S, 173° 26·9′ W | 1932<br>4-5 ix |              |                      |             |                  |             |       |             |                          |             |                  |                                    |
| 948          | 54° 24.9′ S, 170° 13′ W   | 5 ix           | 2000<br>0000 | 5083*                | W×S<br>WNW  | 22-25<br>20      | W×S<br>WNW  | 5 4   | bc<br>ope   | 1005·4<br>1007·4         | 4·0<br>4·3  | 3·4<br>4·3       | heavy W×S swell<br>mod. W×S swell  |
| 949          | 56° 49.6' S, 166° 55.9' W | 6 ix           | 2000<br>0000 | 5067*                | WNW<br>NW×W | 30-35<br>31      | WNW<br>NW×W | 6 6   | opd<br>opdq | 1007·9<br>1007·4         | 4·5<br>4·7  | 4·5<br>4·6       | heavy W×N swell<br>heavy W×N swell |
|              |                           |                |              |                      |             |                  |             |       |             |                          |             |                  |                                    |

| 947- | 9 | 4 | 9 |
|------|---|---|---|
|------|---|---|---|

|              | _              |                                                                                                                                                              |                                  |                                                                                                                                                                                      | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOGICA                                                                                                                                                                                                               | OGICAL OBSERVATIONS |                                                                                                                                                                              |                       |                                                                                              |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                               | BIŌLOC                                                                               | JCAL OBSER                                                                               | VS                       |                      |           |
|--------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------|----------------------|-----------|
|              | Age of         |                                                                                                                                                              | Er                               |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                      | -                   |                                                                                                                                                                              | Mg.—at                | om m. <sup>3</sup>                                                                           |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |                                                                                          | тп                       | ME                   | Damest.   |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                                                                            | Depth by<br>thermometer          | Temp.<br>C.                                                                                                                                                                          | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sigma t$                                                                                                                                                                                                           | рIJ                 | Р                                                                                                                                                                            | $\frac{+}{N_1 trate}$ | Nitrite<br>N2                                                                                | Si                                                                                                                                                                                                                     | O2<br>c.c.<br>litre                                                                                                                                                                                                                                                                                                                                                           | Gear                                                                                 | Depth<br>(metres)                                                                        | From                     | То                   | Remarks   |
| 947<br>cont. | 5              | 50<br>60<br>80<br>100<br>150<br>200<br>300                                                                                                                   |                                  | 6·94<br>6·94<br>6·93<br>6·91<br>6·86<br>6·45<br>6·45                                                                                                                                 | 34-35<br>34-35<br>34-35<br>34-35<br>34-35<br>34-34<br>34-29<br>34-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.94<br>26.94<br>26.94<br>26.95<br>26.94<br>26.95<br>26.95<br>26.99                                                                                                                                                 |                     | 1.43<br>1.44<br>1.48<br>1.63<br>1.58<br>1.65<br>1.65                                                                                                                         |                       | 0.24<br>0.25<br>0.26<br>0.26<br>0.24<br>0.04<br>0.04                                         | 5.7<br>5.5<br>5.4<br>5.5<br>5.5<br>5.9<br>7.1                                                                                                                                                                          | 6·38<br>6·30<br>6·36<br>6·19<br>6·15                                                                                                                                                                                                                                                                                                                                          | N 70 V<br>N 50 V<br>N 100 B<br>N 100 B                                               | 50-0<br>100-0<br>117-0<br>310-130                                                        | <sup>2</sup> 345<br>2345 | 2232<br>0005<br>0015 | KT<br>DGP |
|              |                | 390<br>590<br>780<br>980<br>1470<br>1930<br>2410<br>2890<br>3370<br>3850<br>4330                                                                             |                                  | 6.13<br>5.59<br>4.37<br>3.56<br>2.69<br>2.35<br>2.17<br>1.87<br>1.51<br>1.19<br>0.95                                                                                                 | 34·30<br>34·33<br>34·32<br>34·37<br>34·51<br>34·63<br>34·73<br>34·75<br>34·74<br>34·73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.00<br>27.09<br>27.23<br>27.35<br>27.54<br>27.67<br>27.67<br>27.76<br>27.81<br>27.83<br>27.85                                                                                                                      |                     | 1.81<br>2.07<br>2.34<br>2.55<br>2.55<br>2.55<br>2.51<br>2.30<br>2.32<br>2.38<br>1.50                                                                                         |                       | 0.00                                                                                         | 8.6<br>15.2<br>24.8<br>31.9<br>47.0<br>47.7<br>51.7<br>64.4<br>66.7                                                                                                                                                    | 6.19<br>5.05<br>4.65<br>4.21<br>3.60<br>3.73<br>4.01<br>4.16<br>4.07<br>3.99                                                                                                                                                                                                                                                                                                  |                                                                                      |                                                                                          |                          |                      |           |
| 948          | 5              | 0<br>10<br>20<br>30<br>40<br>50<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1490<br>1990<br>2480<br>2970<br>3470<br>3960<br>4460              | <br><br><br><br>1987<br><br><br> | 4'74<br>4'76<br>4'77<br>4'78<br>4'73<br>4'72<br>4'65<br>4'63<br>4'63<br>4'93<br>4'93<br>4'93<br>4'93<br>4'93<br>4'93<br>4'93<br>4'9                                                  | 34'19<br>34'19<br>34'19<br>34'19<br>34'19<br>34'18<br>34'17<br>34'17<br>34'24<br>34'17<br>34'24<br>34'14<br>34'14<br>34'14<br>34'49<br>34'66<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>34'75<br>3 | 27.09<br>27.09<br>27.09<br>27.08<br>27.08<br>27.08<br>27.08<br>27.08<br>27.08<br>27.08<br>27.11<br>27.12<br>27.12<br>27.19<br>27.19<br>27.19<br>27.19<br>27.53<br>27.69<br>27.78<br>27.85<br>27.85<br>27.85<br>27.85 |                     | 1.98<br>1.98<br>1.90<br>1.92<br>1.86<br>1.86<br>1.86<br>1.92<br>1.86<br>2.22<br>2.07<br>2.11<br>2.24<br>2.66<br>2.78<br>2.64<br>2.51<br>2.51<br>2.51<br>2.24<br>2.51<br>1.35 |                       | 0.04<br>0.04<br>0.04<br>0.04<br>0.07<br>0.07<br>0.06<br>0.06<br>0.00<br>0.02<br>0.01<br>0.00 | $\begin{array}{c} 8.5 \\ 8.5 \\ 8.3 \\ 8.3 \\ 8.3 \\ 8.3 \\ 8.4 \\ 8.8 \\ 8.9 \\ 13.6 \\ 9.2 \\ 8.9 \\ 17.0 \\ 28.0 \\ 28.0 \\ -45.6 \\ 1 \\ 56.1 \\ 60.7 \\ 62.8 \\ 70.1 \\ 75.9 \\ 79.2 \\ 79.2 \\ 79.2 \end{array}$ | $\begin{array}{c} 6 \cdot 60 \\ - \\ 6 \cdot 63 \\ - \\ 6 \cdot 63 \\ - \\ 6 \cdot 63 \\ - \\ 6 \cdot 63 \\ - \\ 6 \cdot 63 \\ - \\ 6 \cdot 73 \\ 6 \cdot 80 \\ 5 \cdot 59 \\ 4 \cdot 80 \\ 4 \cdot 15 \\ 3 \cdot 98 \\ 3 \cdot 84 \\ 4 \cdot 15 \\ 3 \cdot 98 \\ 3 \cdot 84 \\ 4 \cdot 13 \\ 4 \cdot 21 \\ 4 \cdot 28 \\ 4 \cdot 13 \\ 4 \cdot 08 \\ 4 \cdot 04 \end{array}$ | N 70 V<br>,,<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B   | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0<br>} 115-0<br>} 310-132        | 2007<br><br>0008<br>0008 | 2144<br>0028<br>0038 | KT<br>DGP |
| 949          | 7              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>290<br>390<br>590<br>780<br>980<br>1470<br>1990<br>2480<br>2480<br>3480<br>3480<br>3970<br>4470 | 1465                             | 3.41<br>3.32<br>3.33<br>3.33<br>3.15<br>3.14<br>3.09<br>2.90<br>2.77<br>2.73<br>2.72<br>2.84<br>3.64<br>2.94<br>2.66<br>2.48<br>2.26<br>1.96<br>1.66<br>1.28<br>1.06<br>0.88<br>0.87 | 34.06<br>34.06<br>34.06<br>34.05<br>34.05<br>34.05<br>34.05<br>34.03<br>34.01<br>34.01<br>34.01<br>34.01<br>34.01<br>34.01<br>34.01<br>34.01<br>34.03<br>34.34<br>34.34<br>34.34<br>34.73<br>34.73<br>34.77<br>34.77<br>34.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27:12<br>27:13<br>27:13<br>27:13<br>27:14<br>27:14<br>27:14<br>27:14<br>27:14<br>27:14<br>27:14<br>27:14<br>27:14<br>27:15<br>27:23<br>27:39<br>27:50<br>27:57<br>27:73<br>27:78<br>27:78<br>27:81<br>27:84<br>27:85 |                     | 2.01<br>2.01<br>2.01<br>2.01<br>2.03<br>2.03<br>2.03<br>2.03<br>2.03<br>2.03<br>2.03<br>2.03                                                                                 |                       | 0.03<br>0.03<br>0.03<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                 | 9.6<br>9.6<br>11.4<br>13.3<br>12.0<br>10.7<br>10.8<br>10.9<br>11.8<br>10.9<br>11.8<br>11.7<br>13.9<br>23.6<br>30.2<br>40.8<br>41.8<br>47.3<br>56.2<br>57.0<br>58.9<br>64.2<br>67.8<br>70.5                             | $\begin{array}{c} 6.89 \\ - \\ 6.87 \\ - \\ 6.91 \\ - \\ 6.95 \\ 6.91 \\ - \\ 6.95 \\ 6.91 \\ 6.88 \\ 6.63 \\ 5.14 \\ 4.51 \\ 4.55 \\ 3.73 \\ 3.67 \\ 4.51 \\ 4.30 \\ 4.30 \\ 4.16 \\ 4.29 \\ 4.07 \end{array}$                                                                                                                                                               | N 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,, | 1000-750<br>750-500<br>250-250<br>250-100<br>100-50<br>50-0<br>100-0<br>117-0<br>320-120 | 2010                     | 2320<br>2354<br>0004 | KT<br>DGP |

|         |                           |                      |              | Sounding             | WIN       | D                | SEA       |       |          | aeter<br>aars)           | Air Ter     | mp. ° C.    |                                   |
|---------|---------------------------|----------------------|--------------|----------------------|-----------|------------------|-----------|-------|----------|--------------------------|-------------|-------------|-----------------------------------|
| Station | Position                  | Date                 | Hour         | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force | Weather  | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                           |
| 950     | 59° 05·3′ S, 163° 46·5′ W | 19 <b>32</b><br>7 ix | 2000<br>0000 | 4844*                | NW<br>NW  | 18<br>18         | NW<br>NW  | 45    | or<br>or | 1002·6<br>996·6          | 2.1<br>1.7  | 1.9<br>1.7  | heavy W×N swell<br>heavy NW swell |
| 951     | 61° 26.3′ S, 160° 02.9′ W | 8 ix                 | 2000         | 3490*                | NW×N      | 15-22            | NW×N      | 4     | osp      | 1003.0                   | -4.5        | -4.6        | mod. conf. WNW<br>swell           |
| 952     | 62° 20·2′ S, 158° 22·1′ W | 9 ix                 | 0837         |                      | wsw       | 19               | WSW       | I     | osp      | 1008.2                   | - 10.0      | - 10.2      | mod. NW×W<br>swell                |
| 953     | 62° 19·5' S, 158° 19·6' W | 9 ix                 | 0952         |                      | wsw       | 19               |           | 0     | osp      | 1008.0                   | - 9.2       | -9.3        | mod. WNW swell                    |
| 954     | 62° 18·2′ S, 158° 16·2′ W | 9 ix                 | 1053         | —                    | WSW       | 16               |           | 0     | 0        | 1007.4                   | - 8.4       | - 8.5       | mod. WNW swell                    |
| 955     | 62° 17·2′ S, 158° 13·2′ W | 9 ix                 | 1 205        | _                    | WNW       | 13               |           | o     | o        | 1005.5                   | - 7.0       | -7.3        | mod. NW × W<br>swell              |
|         |                           |                      |              |                      |           |                  |           |       |          |                          |             |             |                                   |

|         |                |                                                                                                                                                             |                         |                                                                                                                                                                                                               | HYDROI                                                                                                                                                                                                                        | LOGICA                                                                                                                                                                                                                                          | L OBSE | ERVATI                                                                                                                                                       | ONS                              |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                      | BIOLOC                                                             | ICAL OBSER                                                                               | VATION       | s                    |                                                                                              |
|---------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------|----------------------|----------------------------------------------------------------------------------------------|
|         | Age of         |                                                                                                                                                             | Li S                    |                                                                                                                                                                                                               |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 |        |                                                                                                                                                              | Mg.—at                           | om m. <sup>3</sup>                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                              |                                                      |                                                                    |                                                                                          | TIM          | IE                   |                                                                                              |
| Station | moon<br>(days) | Depth<br>(metres)                                                                                                                                           | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                   | S °/                                                                                                                                                                                                                          | σt                                                                                                                                                                                                                                              | рН     | Р                                                                                                                                                            | $Nitrate \\ + \\ Nitrite \\ N_2$ | Nitrite<br>N <sub>2</sub>                                                                                                                                                                                                                                                                                                                 | Si                                                                                                                                                                                           | O2<br>c.c.<br>litre                                  | Gear                                                               | Depth<br>(metres)                                                                        | From         | То                   | Remarks                                                                                      |
| 950     | 8              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>250<br>300<br>390<br>590<br>790<br>990<br>1480<br>1970<br>2490<br>2490<br>3480<br>3980<br>4480 |                         | 0.74<br>0.61<br>0.60<br>0.58<br>0.57<br>0.56<br>0.58<br>0.61<br>0.56<br>0.54<br>1.83<br>2.22<br>2.49<br>2.38<br>2.35<br>2.27<br>2.04<br>1.70<br>1.34<br>1.09<br>0.91<br>0.88                                  | 33.92<br>33.92<br>33.92<br>33.92<br>33.92<br>33.92<br>33.92<br>33.92<br>33.92<br>33.92<br>33.92<br>33.92<br>33.92<br>33.92<br>34.92<br>34.31<br>34.31<br>34.43<br>34.57<br>34.72<br>34.73<br>34.72<br>34.72<br>34.70<br>34.70 | 27·22<br>27·23<br>27·23<br>27·23<br>27·23<br>27·23<br>27·23<br>27·23<br>27·23<br>27·23<br>27·23<br>27·23<br>27·23<br>27·23<br>27·23<br>27·23<br>27·25<br>27·33<br>27·40<br>27·50<br>27·62<br>27·70<br>27·77<br>27·80<br>27·83<br>27·84<br>27·84 |        | 2·40<br>2·34<br>2·38<br>2·38<br>2·38<br>2·38<br>2·38<br>2·38<br>2·38<br>2·38                                                                                 |                                  | 0·22<br>0·22<br>0·22<br>0·22<br>0·22<br>0·22<br>0·22<br>0·23<br>0·23<br>0·23<br>0·00<br>0·00<br>0·00<br>0·00                                                                                                                                                                                                                              | $\begin{array}{c} 13.3\\ 13.3\\ 14.5\\ 15.2\\ 15.2\\ 15.3\\ 15.3\\ 14.9\\ 13.8\\ 14.3\\ 21.5\\ 30.4\\ 35.6\\ 44.2\\ 53.7\\ 56.3\\ 57.3\\ 65.9\\ 72.8\\ 74.3\\ 77.6\\ 77.6\\ 77.6\end{array}$ | 7:38<br>                                             | N 70 V<br><br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0<br>} 102-0<br>} 300-130        | 2015         | 2200<br>2350<br>0000 | + 11 hours<br>KT<br>DGP                                                                      |
| 951     | 8              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>290<br>390<br>590<br>780<br>980<br>1470<br>1950<br>2400                                        |                         | $\begin{array}{c} -1.64\\ -1.64\\ -1.63\\ -1.62\\ -1.62\\ -1.61\\ -1.61\\ -1.61\\ -1.61\\ -1.50\\ 0.17\\ 1.92\\ 2.02\\ 2.24\\ 2.24\\ 2.24\\ 2.24\\ 2.24\\ 2.26\\ 2.07\\ 1.71\\ 1.30\\ 1.00\\ 0.80\end{array}$ | 33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>33.78<br>34.40<br>34.40<br>34.40<br>34.40<br>34.40<br>34.40<br>34.73<br>34.72<br>34.70          | 27.21<br>27.21<br>27.21<br>27.21<br>27.21<br>27.21<br>27.21<br>27.21<br>27.21<br>27.23<br>27.32<br>27.32<br>27.32<br>27.52<br>27.56<br>27.65<br>27.65<br>27.65<br>27.65<br>27.65<br>27.65<br>27.65<br>27.73<br>27.80<br>27.82<br>27.83<br>27.84 |        | 2.49<br>2.49<br>2.49<br>2.57<br>2.57<br>2.57<br>2.53<br>2.68<br>2.74<br>2.97<br>3.06<br>3.27<br>3.23<br>3.12<br>2.97<br>2.89<br>2.97<br>2.89<br>2.97<br>3.06 |                                  | 0·29         0·29         0·29         0·29         0·29         0·29         0·28         0·28         0·28         0·28         0·20         0·20         0·20         0·20         0·20         0·20         0·20         0·20         0·20         0·28         0·28         0·28         0·28         0·00         0·00         0·00 | 23.5<br>23.5<br>23.5<br>23.5<br>23.5<br>23.5<br>23.5<br>23.5                                                                                                                                 | 3.95<br>3.82<br>4.02<br>3.93<br>4.18<br>4.03<br>4.19 |                                                                    | 1000-780<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>117-0<br>340-130 | 2007         | 2137<br>2239<br>2249 | KT<br>DGP                                                                                    |
| 952     | 8              | 2930<br>0                                                                                                                                                   | 2933                    | - 1.66                                                                                                                                                                                                        | 34·70<br>34·10                                                                                                                                                                                                                | 27.46                                                                                                                                                                                                                                           |        | -                                                                                                                                                            |                                  | _                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                            | -                                                    | N 70 B<br>N 100 B                                                  | } 146-0                                                                                  | 0855         | 0915                 | KT. +10 hours.<br>Nets closed just<br>below surface                                          |
|         |                |                                                                                                                                                             |                         |                                                                                                                                                                                                               |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 |        |                                                                                                                                                              |                                  |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                      | N 70 B<br>N 100 B<br>N 100 H                                       | <pre>} 340−110<br/>0−2</pre>                                                             | 0855<br>0857 | 0925<br>0927         | DGP. In fairly open<br>patch among light,<br>loose pack-ice                                  |
| 953     | 9              | 0                                                                                                                                                           | _                       | - 1.68                                                                                                                                                                                                        | 34.08                                                                                                                                                                                                                         | 27.45                                                                                                                                                                                                                                           | -      | -                                                                                                                                                            | _                                | -                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              | -                                                    | N 70 H<br>N 100 H                                                  | 5-10<br>0-5                                                                              | }0957        | 1037                 | { In light loose pack-<br>ice                                                                |
| 954     | 9              | 0                                                                                                                                                           | -                       | - 1.60                                                                                                                                                                                                        | 34.06                                                                                                                                                                                                                         | 27.43                                                                                                                                                                                                                                           | -      | -                                                                                                                                                            | -                                | _                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                      | N 70 H<br>N 100 H                                                  | 0-7<br>0-2                                                                               | }            | 1145                 | In light loose pack-<br>ice dotted with<br>heavy floes                                       |
| 955     | 9              | 0                                                                                                                                                           | <br> <br> <br>          | - 1.20                                                                                                                                                                                                        | 33.98                                                                                                                                                                                                                         | 27.37                                                                                                                                                                                                                                           |        | 84B                                                                                                                                                          |                                  |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                      | N 70 H<br>N 100 H                                                  | 0-7<br>0-2                                                                               | }1210        | 1240                 | In light loose pack-<br>ice dotted with<br>heavy floes. Tem-<br>perature from<br>thermograph |
|         |                |                                                                                                                                                             |                         |                                                                                                                                                                                                               |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 |        |                                                                                                                                                              |                                  |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                      |                                                                    |                                                                                          |              |                      |                                                                                              |

|         |                           |              |      | Sounding             | WIN       | D                | SFA           |       |           | ieter<br>bars)          | Air Terr       | np. C.         |                                  |
|---------|---------------------------|--------------|------|----------------------|-----------|------------------|---------------|-------|-----------|-------------------------|----------------|----------------|----------------------------------|
| Station | Position                  | Date         | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction     | Force | Weather   | Barometer<br>(milhbars) | Ðry<br>bulb    | Wet<br>bulb    | Remarks                          |
| 956     | 62° 12.8′ S, 158° 11′ W   | 1932<br>9 ix | 1340 | 2974*                | W         | 24               | W             | 2     | oq        | 1003.6                  | - 5.05         | - 4.2          | heavy NW×W<br>swell              |
|         |                           |              |      |                      |           |                  |               |       |           |                         |                |                |                                  |
| 957     | 61° 56·3′ S, 155° 49·6′ W | 10 ix        | 1045 |                      | WNW       | 12               | WNW           | 4     | osq       | 96 <b>5</b> ·2          | - 3.9          | 4· I           | heavy WNW swell                  |
| 958     | 61° 53·9′ S, 155° 42·4′ W | 10 ix        | 1145 | _                    | S         | 22               | s             | 4     | 0         | 964·8                   | - 5.3          | - 5.2          | heavy WNW swell                  |
| 959     | 61° 07′ S, 153° 57·2′ W   | 10 ix        | 2010 | 2968*                | SW<br>SSE | 25<br>28         | SW<br>SSE     | 4     | bcs<br>os | 968·4<br>971·9          | - 3.3<br>- 3.3 | - 4.6<br>- 9.3 | heavy WNW swell<br>heavy W swell |
| 960     | 58° 31.4′ S, 150° 02.9′ W | II-I2<br>ix  | 2000 | 2939*                | SW×W      | 22               | $SW \times W$ | 5-6   | csp       | 987.3                   | - 11.2         | - 11.9         | heavy conf. SW<br>swell          |

956-960

|         |                |                                                                                                                             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HYDROL                                                                                                                                                         | ogicai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , OBSE | RVATIO                                                                                                                                                                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                    |                                                                                                      | BIOLOC                                                                               | ICAL OBSER                                                                                | VATION                         | 5                            |                                                              |
|---------|----------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------|------------------------------|--------------------------------------------------------------|
|         | Age of         |                                                                                                                             | Ę,                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                                                                                                                                                                     | Mg.—at                                                                        | om m.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                    |                                                                                                      |                                                                                      |                                                                                           | TIN                            | 1E                           | Remarks                                                      |
| Station | moon<br>(days) | Depth<br>(metres)                                                                                                           | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S' ,                                                                                                                                                           | σt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Нq     | Р                                                                                                                                                                                   | $\begin{array}{c} \text{Nitrate} \\ \text{Nitrate} \\ \text{N}_2 \end{array}$ | Nitrite<br>N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Si                                                                                                                                                                                                                 | O <sub>2</sub><br>c.c.<br>litre                                                                      | Gear                                                                                 | Depth<br>(metres)                                                                         | From                           | То                           | REMARKS                                                      |
| 956     | 9              | 0<br>10                                                                                                                     |                         | – 1·76<br>– 1·76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33.98                                                                                                                                                          | 27·37<br>27·38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 2·41<br>2·38                                                                                                                                                                        |                                                                               | 0·26<br>0·26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33 <sup>.</sup> 4<br>33 <sup>.</sup> 4                                                                                                                                                                             | 7.17                                                                                                 | N 70 B<br>N 100 B                                                                    | 97-0                                                                                      | 1351                           | 1411                         | (KT. Near edge of )<br>  light pack-ice                      |
|         |                | 20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>290<br>390<br>590<br>780<br>980<br>1470<br>1960<br>2450                   |                         | - 1.77  - 1.79  - 1.79  - 1.79  - 1.79  - 1.79  - 1.73  0.11  1.52  1.94  2.02  1.99  1.88  1.75  1.34  0.99  0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33·99<br>34·00<br>34·00                                                                                                                                        | 27.39<br>27.39<br>27.39<br>27.39<br>27.39<br>27.39<br>27.39<br>27.39<br>27.51<br>27.62<br>27.69<br>27.76<br>27.76<br>27.78<br>27.79<br>27.82<br>27.84<br>27.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 2·30<br>2·30<br>2·38<br>2·45<br>2·30<br>2·38<br>2·45<br>2·64<br>2·66<br>2·66<br>2·66<br>2·66<br>2·55<br>2·43<br>2·34<br>2·45<br>2·45<br>2·45<br>2·45<br>2·45<br>2·45<br>2·45<br>2·4 |                                                                               | 0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·26         0·27         0·26         0·27         0·26         0·27         0·27         0·27         0·27         0·27         0·27 <t< td=""><td><math display="block">\begin{array}{c} 33.4\\ 33.4\\ 33.4\\ 33.4\\ 33.4\\ 33.4\\ 33.7\\ 36.7\\ 47.7\\ 52.4\\ 52.4\\ 54.0\\ 55.6\\ 57.3\\ 60.2\\ 65.5\\ 76.5\\ 76.5\end{array}</math></td><td>7·14<br/>7·03<br/>7·03<br/>7·03<br/>5·53<br/>4·14<br/>3·85<br/>3·86<br/>4·16<br/>4·15<br/>4·17<br/>4·17<br/>4·23</td><td>N 70 B<br/>N 100 B<br/>N 70 V<br/><br/><br/><br/><br/>N 50 V</td><td>280-100<br/>1000-760<br/>750-480<br/>500-238<br/>250-96<br/>250-100<br/>100-50<br/>50-0<br/>100-0</td><td>I35I<br/>I440</td><td>1421</td><td>DGP<br/>Stray on wire</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 33.4\\ 33.4\\ 33.4\\ 33.4\\ 33.4\\ 33.4\\ 33.7\\ 36.7\\ 47.7\\ 52.4\\ 52.4\\ 54.0\\ 55.6\\ 57.3\\ 60.2\\ 65.5\\ 76.5\\ 76.5\end{array}$                                                          | 7·14<br>7·03<br>7·03<br>7·03<br>5·53<br>4·14<br>3·85<br>3·86<br>4·16<br>4·15<br>4·17<br>4·17<br>4·23 | N 70 B<br>N 100 B<br>N 70 V<br><br><br><br><br>N 50 V                                | 280-100<br>1000-760<br>750-480<br>500-238<br>250-96<br>250-100<br>100-50<br>50-0<br>100-0 | I35I<br>I440                   | 1421                         | DGP<br>Stray on wire                                         |
| 957     | 10             | 0                                                                                                                           |                         | - 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34.05                                                                                                                                                          | 27.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | -                                                                                                                                                                                   |                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                  | -                                                                                                    | N 70 H<br>N 100 H<br>N 100 H                                                         | 07<br>02<br>05                                                                            | } 1046<br>1046                 |                              | In loose pack-ice                                            |
| 958     | 10             | 0                                                                                                                           |                         | - 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34.11                                                                                                                                                          | 27:47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                                                                                                                                                                                     |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                    |                                                                                                      | N 70 H<br>N 100 H<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H               | 0-7<br>0-2<br>} 100-0<br>} 260-114<br>0-5                                                 | ) 1145<br>1241<br>1241<br>1250 | 1215<br>1301<br>1315<br>1325 | Among scattered<br>  floes<br>KT<br>DGP                      |
| 959     | 10             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>290<br>390<br>590<br>780<br>980<br>1460<br>1950<br>2440 |                         | $ \begin{array}{c} -1.76 \\ -1.75 \\ -1.75 \\ -1.71 \\ -1.71 \\ -1.71 \\ -1.71 \\ -1.71 \\ -1.69 \\ -1.59 \\ 0.15 \\ 1.80 \\ 1.94 \\ 2.04 \\ 1.84 \\ 1.75 \\ 1.55 \\ 1.14 \\ 0.77 \\ 0.63 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34.68<br>34.70<br>34.70<br>34.72<br>34.72<br>34.72<br>34.72<br>34.71                                                                                           | 27.66<br>27.74<br>27.76<br>27.77<br>27.79<br>27.80<br>27.83<br>27.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 2.68<br>2.74<br>2.68<br>2.68<br>2.72<br>2.72<br>2.72<br>2.74<br>2.74<br>2.81<br>2.85<br>2.72<br>2.72<br>2.72<br>2.72<br>2.72<br>2.72<br>2.72<br>2.7                                 |                                                                               | 0.26<br>0.26<br>0.27<br>0.26<br>0.26<br>0.25<br>0.24<br>0.11<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 41 \cdot 2 \\ 40 \cdot 3 \\ 39 \cdot 5 \\ 41 \cdot 7 \\ 41 \cdot 7 \\ 41 \cdot 7 \\ 41 \cdot 7 \\ 42 \cdot 7 \\ 47 \cdot 7 \\ 60 \cdot 2 \\ 0 \\ 61 \cdot 2 \end{array}$                         | 7.07<br>7.05<br>7.09<br>6.91<br>5.30<br>3.91<br>3.98<br>4.03<br>4.10<br>4.21<br>4.22<br>7 4.22       | ,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B                             | 1.240-110                                                                                 | 2017                           | 2350<br>0032<br>0042         | Remainder of ver-<br>tical hauls aban-<br>doned<br>KT<br>DGP |
| 96      | 0 11           | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>300<br>500<br>700                                |                         | - 1·44<br>- 1·42<br>- 1·43<br>- 1·42<br>- 1·43<br>- | 34.09<br>34.09<br>34.09<br>34.09<br>34.09<br>34.09<br>34.09<br>34.09<br>34.09<br>34.09<br>34.34<br>34.34<br>34.34<br>34.34<br>34.34<br>34.59<br>34.64<br>34.70 | 27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:45 |        | 2.9<br>2.9<br>2.6                                                                                                                                                                   |                                                                               | 0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-2.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0.<br>0-0. | $\begin{array}{c} 5 & 36 \\ 5 & 36 \\ 5 & 36 \\ 6 & 36 \\ 6 & 36 \\ 6 & 36 \\ 6 & 36 \\ 6 & 37 \\ 5 & 38 \\ 6 & 48 \\ 0 & 51 \\ 0 & 54 \\ 0 & 55 \\ 0 & 55 \\ 0 & 55 \\ 0 & 55 \\ 0 & 55 \\ 0 & 55 \\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                 | 8 ,,<br>8 ,,<br>9 ,,<br>5 N 50 V<br>2 2 N 70 B<br>6 N 100 B<br>9 N 100 H<br>4 N 70 B | 137-0<br>0-2                                                                              | 2020<br>                       | 0015<br>0057<br>0105         | gear frozen<br>KT                                            |

|              |                           |                     |              | Soundary             | WIN         | D                | SE.           | Ν            |         | leter<br>ars)            | Air Tei     | mp. C.       |                                                     |
|--------------|---------------------------|---------------------|--------------|----------------------|-------------|------------------|---------------|--------------|---------|--------------------------|-------------|--------------|-----------------------------------------------------|
| Station      | Position                  | Date                | Hour         | Sounding<br>(metres) | Direction   | Force<br>(knots) | Direction     | Force        | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb  | Remarks                                             |
| 960<br>cont. | 58° 31.4′ S, 150° 02.9′ W | 1932<br>11-12<br>ix |              |                      |             |                  |               |              |         |                          |             |              |                                                     |
| 961          | 56° 16.4′ S, 146° 22.3′ W | 12 ix               | 2000         | 2968*                | WSW<br>SW×W | 22               | WSW<br>SW × W | 4 conf.<br>5 | o       |                          |             |              | heavy conf. WSW<br>swell<br>heavy conf. SW swell    |
| 962          | 54° 02·8′ S, 142° 25·4′ W | 13 ix               | 2000<br>0000 | 3655*                | SSW<br>SW×S | 19<br>18         | SSW<br>SW×S   | -4<br>-4     | bc<br>c | 1001·8<br>1006·8         | 2·8<br>1·0  | 1·4<br>- 0·8 | heavy conf. SW swell<br>heavy conf. SW × S<br>swell |
| 963          | 52° 01·1′ S, 139° 13·2′ W | 14 ix               | 2000         | 4341*                | W           | 18               | W             | 4            | bc      | 1019-4                   | 5.6         | 4.1          | mod. conf. WSW<br>swell                             |

| [       |                |                   |                         |                | HYDROI                                   | LOGICAI        | , OBSE | RVATI        | ONS                              |                           |              |                    | BIOLOC            | ACAL OBSER         | VATION | .s   |                  |
|---------|----------------|-------------------|-------------------------|----------------|------------------------------------------|----------------|--------|--------------|----------------------------------|---------------------------|--------------|--------------------|-------------------|--------------------|--------|------|------------------|
|         | Age of         |                   | . 5                     |                |                                          |                |        |              | Mg.—ato                          | om m.ª                    |              |                    |                   |                    | TIN    | 1E   | Remarks          |
| Station | moon<br>(days) | Depth<br>(metres) | Depth by<br>thermometer | Temp.<br>C.    | s                                        | σt             | рН     | Р            | $Nitrate \\ + \\ Nitrate \\ N_2$ | Nitrite<br>N <sub>2</sub> | Si           | Oj<br>c.c<br>litre | Gear              | Depth<br>(metres)  | From   | То   | Kemarks          |
| 960     | 11             | 980               |                         | 1.23           | 34.74                                    | 27.81          |        | 2.70         |                                  |                           | 62.2         | 4.12               |                   |                    |        |      | ,                |
| cont.   |                | 1480<br>1970      |                         | 1·27<br>0·86   | 34 <sup>.</sup> 73<br>34 <sup>.</sup> 71 | 27·83<br>27·85 |        | 2.68<br>2.68 |                                  |                           | 72·0<br>83·4 | 4°09<br>3'92       |                   |                    |        |      |                  |
|         |                | 2460              | 2463                    | 0.72           | 34.70                                    | 27.85          |        | 2.01         |                                  | -                         | 87.4         | 3.92               |                   |                    |        |      |                  |
| 961     | 12             | 0                 |                         | 0.42           | 33.99                                    | 27.30          |        | 2.72         |                                  | 0.10                      | 23.5         | 7.03               | N 70 V            | 1000-750           | 2015   |      |                  |
|         |                | 10                |                         | 0.48           | 33.99                                    | 27.29          |        | 2.81         |                                  | 0.10                      | 23·5<br>23·3 | 7.02               | ››<br>››          | 750-500<br>500-250 |        |      |                  |
|         |                | 20<br>30          | _                       | 0.48<br>0.48   | 33.99                                    | 27·29<br>27·29 |        | 2.79         | -                                | 0.10                      | 23.4         | -                  | ,,                | 250-100            |        |      |                  |
|         |                | 40                |                         | 0.48           | 33.99                                    | 27.29          |        | 2.79         |                                  | 0.10                      | 23.4         | 7.03               | • •               | 100-50             |        |      |                  |
|         |                | 50                |                         | 0.48           | 33.99                                    | 27·29<br>27·29 |        | 2.72         |                                  | 0.10                      | 23.3         | 7.00               | N 50 V            | 50-0<br>100-0      | _      | 2146 |                  |
|         | ļ              | 60<br>80          |                         | 0.20<br>0.47   | 33.99                                    | 27.30          |        | 2.72         |                                  | 0.20                      | 23.3         |                    | N 70 B            | 109-0              | 2216   | 2236 | КТ               |
|         |                | 100               |                         | 1.33           | 34.12                                    | 27.34          |        | 2.85         |                                  | 0.03                      | 28.6         | 5·84<br>6·96       | N 100 B<br>N 70 B | 1, .               |        | J    |                  |
|         |                | 150               | _                       | - 0·35         | 34.07                                    | 27·40<br>27·41 |        | 2.81         |                                  | 0.27                      | 31.1         | 6.82               | N 100 B           | 290-0              | 2216   | 2246 | DGP              |
|         |                | 300               |                         | 2.23           | 34.43                                    | 27.52          |        | 3.00         |                                  | 0.00                      | 38.1         | 4.11               | N 70 B            | 325-144            | 2307   | 2337 | DGP              |
|         |                | 390               |                         | 2.30           | 34.20                                    | 27.57          |        | 3.08         |                                  | 0.00                      | 49.2         | 3.91               | N 100 B           |                    |        |      |                  |
|         |                | 590<br>790        |                         | 2·25<br>2·16   | 34 <sup>.61</sup><br>34 <sup>.70</sup>   | 27·66<br>27·74 |        | 3.04         |                                  |                           | 55.4         | 3.91               |                   |                    |        |      |                  |
|         |                | 980               | _                       | 2.07           | 34.71                                    | 27.76          | _      | 2.81         | -                                | -                         | 55.4         | 3.93               |                   |                    |        |      |                  |
|         |                | 1480              |                         | 1.68           | 34.74                                    | 27·81          |        | 2.79         |                                  | -                         | 62.2         | 4.02               |                   |                    | i.     |      |                  |
|         |                | 1970<br>2460      | 2455                    | 0.98           | 34.21                                    | 27.84          |        | 2.79         | -                                | -                         | 72.3         | 4.03               |                   |                    |        |      |                  |
| 962     | 13             | 0                 |                         | 5.03           | 34.18                                    | 27.05          |        | 2.17         |                                  | 0.11                      | 7.5<br>6.5   | 6.20               | N 70 V            | 1000-765           | 2015   |      |                  |
|         |                | 10                |                         | 5.03           | 34·18<br>34·18                           | 27.05          |        | 2.34         | 1                                | 0.13                      | 6.2          |                    | 11                | 500-250            |        |      |                  |
|         |                | 30                | -                       | 5.03           | 34.18                                    | 27.05          |        | 2.13         | -                                | 0.14                      | 8.3          |                    | ,,                | 250-100            |        |      |                  |
|         |                | 40                |                         | 5.03           | 34.18                                    | 27.05          |        | 2.11         | _                                | 0.14                      | 7.4          | 6.49               | ,,,               | 100-50<br>50-5     |        |      |                  |
|         |                | 50                |                         | 5.03           | 34·18<br>34·18                           | 27.05          | _      | 2.13         |                                  | 0.14                      | 7.2          | 6.49               | N 50 V            | 100-0              | -      | 2224 |                  |
|         |                | 80                |                         | 5.03           | 34.18                                    | 27.05          | -      | 2.00         |                                  | 0.14                      | 7.4          | -                  | N 70 B<br>N 100 B | 124-0              | 0027   | 0047 | KT. N 70 B split |
|         |                | 100               | 1                       | 5.02           | 34.18                                    | 27.05          |        | 2.00         |                                  | 0.12                      | 7.5          | 6·49<br>6·50       | N 70 B            | 1 222 202          | 0027   | 0057 | DGP              |
|         |                | 200               |                         | 5.02           | 34.18                                    | 27.05          | -      | 1.92         |                                  | 0.12                      | 7.4          | 6.20               | N 100 B           | 320-100            | 0111   | 0131 | Depth estimated  |
|         |                | 300               |                         | 4.99           | 34.18                                    |                |        | 1.94         |                                  | 0.10                      | 7·6          |                    | N 70 B            | 100-0              | 0111   | 0131 | Depth commuted   |
|         |                | 400               |                         | 3.87           | 34.05                                    |                |        | 2.41         |                                  |                           | 17.4         | 4.68               |                   |                    |        |      |                  |
|         |                | 590               | -                       | 4.13           | 34.27                                    | 27.22          |        | 2.66         | -                                |                           | 19.8         |                    |                   |                    |        |      |                  |
|         |                | 790<br>980        |                         | 3·36<br>2·81   | 34.36                                    | 27.36          |        | 2.91         | -                                |                           | 30.5         | 4.29               |                   |                    |        |      |                  |
|         |                | 1470              |                         |                | 34.62                                    | 27.67          | -      | 2.97         |                                  |                           | 41.3         | 3.39               |                   |                    |        |      |                  |
|         |                | 1980              | -                       | 2.14           | 34.71                                    |                |        | 2.74         |                                  |                           | 52·8         |                    |                   |                    |        |      |                  |
|         |                | 2480<br>2970      |                         | 1.36           |                                          |                |        | 2.72         |                                  |                           | 70.7         |                    |                   |                    |        | l.   |                  |
|         |                | 3470              |                         | 1 0            |                                          |                |        | 2.7-         |                                  |                           | 70.7         | 4.34               |                   |                    |        |      |                  |
| 963     | 3 14           |                   | » —                     | 6.48           | 34.37                                    | 27.02          | ·      | 1.81         |                                  | 0.02                      |              |                    | N 70 V            | 1000-770           | 2010   |      | +9 hours         |
|         | · ·            | 10                |                         | 6.48           | 34.37                                    | 27.02          | -      | 1.90         |                                  | 0.08                      |              |                    | 11                | 750-500            |        |      |                  |
|         |                | 20                |                         | 6·48<br>6·48   |                                          |                |        | 2.03         | 1                                | 0.00                      |              | -                  | ,,                | 250-100            |        |      |                  |
|         |                | 40                |                         | 6.48           | 34.37                                    | 27.02          | -      | 2.0          | 3 -                              | 0.00                      |              |                    | 1                 | 100-50<br>50-0     |        |      |                  |
|         |                | 50                | 1                       | 6·48<br>6·48   |                                          |                | _      | 2.00         |                                  | 0.00                      | 1 1 1        |                    | N 50 V            | 100-0              | _      | 2145 |                  |
|         |                | 80                |                         | 6.40           |                                          |                | —      | 2.0          | 1                                | 0.00                      | 6.4          | +  '               | N 70 B            | 117-0              | 2242   | 2302 | КТ               |
|         |                | 100               | 1                       | 6.46           | 34.37                                    | 27.02          | -      | 2.0          |                                  | 0.00                      |              |                    |                   |                    |        |      | DCD              |
|         |                | 150               |                         | 6·46           |                                          |                |        | 2.00<br>1.8  |                                  | 0.00                      |              | 6.26               | N 100 B           | 320-128            | 2242   | 2312 | DGP              |
|         |                | 300               |                         | 6.43           | 34.37                                    | 27.02          | _      | 1.9          | 2 —                              | 0.06                      | 6.5          |                    |                   |                    |        |      |                  |
|         |                | 400               |                         | 6.34           |                                          |                |        | 2.0          |                                  | 0.01                      | 6.6          |                    |                   |                    |        |      |                  |
|         | ł              | 600<br>800        |                         | 6·03           |                                          |                | _      | 2.3          |                                  |                           | 16.0         | 9 4.94             |                   |                    |        |      |                  |
|         | ļ              | 1000              | >  —                    | 4.26           | 34.34                                    | 1 27.26        |        | 2.2          | I                                |                           | 24.6         | 1                  |                   |                    |        |      |                  |
|         |                | 1500              |                         | 1 2·81<br>2·41 | 1                                        |                |        | 2·9<br>2·6   |                                  |                           | 42·7<br>50·6 |                    |                   |                    |        |      |                  |
|         |                | 2460              |                         | 2.11           |                                          |                |        | 2.6          |                                  |                           | 62.:         |                    |                   |                    |        |      |                  |
|         |                |                   |                         |                |                                          |                |        |              |                                  |                           | <u> </u>     |                    | <u> </u>          |                    |        | 1    |                  |

|              |                                       |               |              | Sounding             | WIN                          | D                | SEA        |        |            | eter<br>ars)                               | Air Ter     | n <b>p. ° C</b> .                    |                                           |
|--------------|---------------------------------------|---------------|--------------|----------------------|------------------------------|------------------|------------|--------|------------|--------------------------------------------|-------------|--------------------------------------|-------------------------------------------|
| Station      | Position                              | Date          | Hour         | Sounding<br>(metres) | Direction                    | Force<br>(knots) | Direction  | Force  | Weather    | Barometer<br>(millibars)                   | Dry<br>bulb | Wet<br>bulb                          | Remarks                                   |
| 963<br>cont. | 52° 01·1′ S, 139 <sup>3</sup> 13·2′ W | 1932<br>14 ix |              |                      |                              |                  |            |        |            |                                            |             |                                      |                                           |
| 964          | 49° 42·1′ S, 135° 33·2′ W             | 15 ix         | 2000<br>0000 | 4734 <b>*</b><br>    | WNW<br>WNW                   | 27<br>28         | WNW<br>WNW | 5<br>5 | bcp<br>opd | 1017 <sup>.</sup> 1<br>1014 <sup>.</sup> 3 | 6∙6<br>6•8  | 5 <sup>.</sup> 7<br>5 <sup>.</sup> 9 | mod. conf. W swell<br>heavy conf. W swell |
|              |                                       |               |              |                      |                              |                  |            |        |            |                                            |             |                                      |                                           |
|              |                                       |               |              |                      |                              |                  |            |        |            |                                            |             |                                      |                                           |
|              |                                       |               |              |                      |                              |                  |            |        |            |                                            |             |                                      |                                           |
|              |                                       |               |              |                      |                              |                  |            |        |            |                                            |             |                                      |                                           |
| 965          | 47° 16.9′ S, 132° 25.1′ W             | 16 ix         | 2000         | 4678*                | SW                           | 25-30            | sw         | 6      | bc         | 1018.3                                     | 6.7         | 6.4                                  | heavy conf. WSW<br>swell                  |
|              |                                       |               |              |                      |                              |                  |            |        |            |                                            |             |                                      |                                           |
|              |                                       |               |              |                      |                              |                  |            |        |            |                                            |             |                                      |                                           |
|              |                                       |               |              |                      |                              |                  |            |        |            |                                            |             |                                      |                                           |
|              |                                       |               |              |                      |                              |                  |            |        |            |                                            |             |                                      |                                           |
| 0.00         |                                       |               |              |                      |                              | 0                |            |        | -          |                                            |             |                                      |                                           |
| 900          | 44° 40·3' S, 129° 27·9' W             | 17–18<br>ix   | 2000         | 5015*                | $\mathbf{W}\times\mathbf{S}$ | 18-22            | wsw        | 4      | ьср        | 1022.2                                     | 7.2         | 5.2                                  | heavy WSW swell                           |
|              |                                       |               |              |                      |                              |                  |            |        |            |                                            |             |                                      |                                           |
|              |                                       |               |              |                      |                              |                  |            |        |            |                                            |             |                                      |                                           |
|              |                                       |               |              |                      |                              |                  |            |        |            |                                            |             |                                      |                                           |

| 963— | 9 | 6 | 6 |
|------|---|---|---|
|------|---|---|---|

|                     |                |                                                                                                                                                                                               |                          |                                                                                                                                                                                                                                                                                                     | HYDRO                                                                                                                                                                                                                                                             | LOGICA                                                                                                                                                                                                                        | L OBSE | ERVATI                                                                                                                                                                                       | ONS                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                | BIOLOG                                                             | GICAL OBSER                                                                              | VATION   | ŝ                    |                                    |
|---------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------|----------------------|------------------------------------|
|                     | Age of         |                                                                                                                                                                                               | er                       |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                               |        |                                                                                                                                                                                              | Mg.—at                                                                             | om m.'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                |                                                                    |                                                                                          | ΤI       | ME                   |                                    |
| Station             | moon<br>(days) | Depth<br>(metres)                                                                                                                                                                             | Depth by<br>thermometer  | Temp.<br>C.                                                                                                                                                                                                                                                                                         | S °/                                                                                                                                                                                                                                                              | σt                                                                                                                                                                                                                            | pH     | Р                                                                                                                                                                                            | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ \text{N}_2 \end{array}$ | $\frac{Nitrite}{N_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Si                                                                                                                                                                                                                                                                                                         | O <sub>2</sub><br>c.c.<br>litre                                                                                                                                                                                | Gear                                                               | Depth<br>(metres)                                                                        | F rom    | To                   | Remarks                            |
| <b>963</b><br>cont. | 14             | 2950<br>3450<br>3940                                                                                                                                                                          | <br>3942                 | 1·85<br>1·38<br>1·32                                                                                                                                                                                                                                                                                | 34·72<br>34·71<br>34·71                                                                                                                                                                                                                                           | 27·78<br>27·82<br>27·82                                                                                                                                                                                                       |        | 2.64<br>2.66<br>2.66                                                                                                                                                                         |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66·6<br>73·0<br>71·6                                                                                                                                                                                                                                                                                       | 3·88<br>3·87<br>3·51                                                                                                                                                                                           |                                                                    |                                                                                          |          |                      |                                    |
| 964                 | 15             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>150<br>200<br>300<br>400<br>600<br>800<br>1500<br>2000<br>2460<br>2950<br>3440                                                                       | <br><br><br><br><br>2003 | $\begin{array}{c} 6\cdot86\\ 6\cdot85\\ 6\cdot83\\ 6\cdot83\\ 6\cdot83\\ 6\cdot83\\ 6\cdot83\\ 6\cdot82\\ 6\cdot82\\ 6\cdot82\\ 6\cdot81\\ 6\cdot83\\ 6\cdot83\\ 6\cdot83\\ 6\cdot83\\ 6\cdot83\\ 6\cdot36\\ 5\cdot50\\ 4\cdot64\\ 2\cdot93\\ 2\cdot43\\ 2\cdot21\\ 1\cdot86\\ 1\cdot52\end{array}$ | 34'42<br>34'42<br>34'42<br>34'42<br>34'42<br>34'42<br>34'42<br>34'42<br>34'42<br>34'42<br>34'42<br>34'43<br>34'43<br>34'33<br>34'33<br>34'33<br>34'33<br>34'33<br>34'45<br>34'66<br>34'70<br>34'71                                                                | 26.99<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.00<br>27.01<br>27.01<br>27.01<br>27.01<br>27.02<br>27.10<br>27.20<br>27.47<br>27.65<br>27.70<br>27.77<br>27.81                            |        | 1·52<br>1·52<br>1·39<br>1·41<br>1·41<br>1·43<br>1·58<br>1·41<br>1·46<br>1·43<br>1·44<br>1·52<br>1·73<br>1·84<br>2·20<br>2·41<br>2·70<br>2·79<br>2·78<br>2·72<br>2·74                         |                                                                                    | 0.21<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.00<br>0.19<br>0.00<br>0.19<br>0.00<br>0.19<br>0.00<br>0.19<br>0.00<br>0.19<br>0.00<br>0.19<br>0.00<br>0.19<br>0.00<br>0.19<br>0.00<br>0.19<br>0.00<br>0.19<br>0.00<br>0.19<br>0.00<br>0.19<br>0.00<br>0.19<br>0.00<br>0.19<br>0.00<br>0.19<br>0.00<br>0.19<br>0.00<br>0.10<br>0.00<br>0.10<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | $7 \cdot 3$ $7 \cdot 3$ $7 \cdot 5$ $7 \cdot 4$ $7 \cdot 0$ $6 \cdot 9$ $7 \cdot 0$ $7 \cdot 0$ $6 \cdot 9$ $7 \cdot 0$ $7 \cdot 0$ $13 \cdot 2$ $21 \cdot 1$ $40 \cdot 8$ $48 \cdot 9$ $52 \cdot 4$ $58 \cdot 2$ $64 \cdot 4$ $66 \cdot 4$                                                                | $6 \cdot 29$<br>                                                                                                                                                                                               | N 70 V<br><br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0<br>110-0<br>250-100            | 2015<br> | 2205<br>2346<br>2356 | KT<br>{DGP. Depth esti-<br>{ mated |
| 965                 | 16             | 3930<br>4420<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1500<br>1000<br>1500<br>1000<br>1500<br>1990<br>2450<br>2930<br>3420<br>3910<br>4400 | -                        | 6.83<br>6.73<br>6.58<br>6.18<br>5.41<br>4.53<br>2.84<br>2.35<br>2.05<br>1.79<br>1.64<br>1.43                                                                                                                                                                                                        | 34.70<br>34.70<br>34.38<br>34.38<br>34.38<br>34.38<br>34.38<br>34.38<br>34.38<br>34.38<br>34.38<br>34.38<br>34.38<br>34.38<br>34.39<br>34.40<br>34.41<br>34.42<br>34.41<br>34.42<br>34.41<br>34.33<br>34.49<br>34.61<br>34.67<br>34.68<br>34.70<br>34.71<br>34.71 | 27.81<br>27.81<br>26.94<br>26.94<br>26.94<br>26.94<br>26.94<br>26.94<br>26.94<br>26.94<br>26.94<br>26.94<br>26.93<br>27.00<br>27.01<br>27.03<br>27.05<br>27.10<br>27.21<br>27.51<br>27.66<br>27.72<br>27.75<br>27.79<br>27.81 |        | 2.72<br>2.72<br>2.72<br>1.35<br>1.69<br>1.31<br>1.46<br>1.50<br>1.46<br>1.41<br>1.35<br>1.60<br>1.67<br>1.44<br>1.62<br>1.67<br>1.67<br>1.86<br>2.24<br>2.76<br>2.72<br>2.72<br>2.72<br>2.72 |                                                                                    | 0·27<br>0·31<br>0·31<br>0·28<br>0·27<br>0·26<br>0·29<br>0·31<br>0·32<br>0·36<br>0·00<br>0·10<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 66.7\\ 62\cdot 2\\ 3\cdot 4\\ 3\cdot 4\\ 3\cdot 5\\ 3\cdot 9\\ 4\cdot 1\\ 4\cdot 2\\ 4\cdot 3\\ 5\cdot 9\\ 5\cdot 7\\ 5\cdot 7\\ 6\cdot 9\\ 8\cdot 4\\ 10\cdot 4\\ 21\cdot 6\\ 43\cdot 5\\ 58\cdot 7\\ 66\cdot 9\\ 72\cdot 4\\ 73\cdot 9\\ 73\cdot 9\\ 73\cdot 9\\ 72\cdot 4\end{array}$ | 6·30<br>5·90<br>5·94<br>5·82<br>5·44<br>4·62<br>4·00<br>3·55<br>3·35<br>3·35<br>3·44<br>3·46<br>3·67                                                                                                           | N 70 B<br>N 100 B                                                  | 1000-780<br>750-500<br>250-250<br>250-100<br>100-50<br>50-0<br>100-0<br>121-0<br>310-132 | 2008     | 2136<br>2302<br>2312 | KT<br>DGP                          |
| 966                 | 17             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>590<br>790                                                                                                         |                          | $\begin{array}{c} 8.50\\ 8.51\\ 8.51\\ 8.51\\ 8.51\\ 8.51\\ 8.51\\ 8.51\\ 8.31\\ 8.19\\ 7.89\\ 7.52\\ 6.92\\ 6.70\\ 6.45\\ 5.69\end{array}$                                                                                                                                                         | 34·31<br>34·31<br>34·39<br>34·39<br>34·39<br>34·37                                                                                                                                                                                                                | 26.70<br>26.77<br>26.82<br>26.97<br>27.00<br>27.02                                                                                                                                                                            |        | 1.14<br>1.12<br>1.16<br>1.10<br>1.03<br>1.06<br>1.03<br>1.06<br>1.16<br>1.16<br>1.16<br>1.24<br>1.56<br>1.67<br>1.79<br>1.96                                                                 |                                                                                    | 0.27<br>0.27<br>0.26<br>0.23<br>0.26<br>0.24<br>0.29<br>0.34<br>0.34<br>0.34<br>0.00<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5·3<br>5·1<br>5·2<br>5·1<br>5·3<br>5·3<br>5·3<br>5·3<br>5·4<br>6·6                                                                                                                                                                                                                                         | $ \begin{array}{c} - \\ 6 \cdot 24 \\ - \\ 6 \cdot 25 \\ - \\ 6 \cdot 23 \\ - \\ 6 \cdot 18 \\ 6 \cdot 12 \\ 6 \cdot 12 \\ 6 \cdot 22 \\ 5 \cdot 78 \\ 5 \cdot 68 \\ 5 \cdot 68 \\ 5 \cdot 68 \\ \end{array} $ | ,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-790<br>750-520<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>102-0<br>250-100 | 2010     | 2255<br>2352<br>0002 | KT<br>Depth estimated              |

|              |                                                      |                     |      | Sounding             | WIN       | D                | SEA       |              |           | ieter<br>ars)            | Air Ter     | np. ° C.    |                                                 |
|--------------|------------------------------------------------------|---------------------|------|----------------------|-----------|------------------|-----------|--------------|-----------|--------------------------|-------------|-------------|-------------------------------------------------|
| Station      | Position                                             | Date                | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force        | Weather   | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                                         |
| 966<br>cont. | 44° 40·3' S, 129° 27·9' W                            | 1932<br>17-18<br>ix |      |                      |           |                  |           |              |           |                          |             |             |                                                 |
| 967          | 41° 03·1′ S, 126° 03·9′ W                            | 19 ix               | 0503 | 4568*                | WNW       | 20-22            | WNW       | -4           | с         | 1017.3                   | 8.4         | 5'3         | heavy conf. W×N<br>swell                        |
|              | 42° 30′ S, 124° 51·7′ W<br>45° 36·1′ S, 122° 09·5′ W | 19 ix<br>20 ix      |      | <br>394 <b>0</b> *   | W         | 23<br>22-40      | W         | 5<br>6 conf. | b<br>bcpq | 1016·9<br>1004·3         | 8·6<br>8·1  |             | heavy conf. W swell<br>heavy conf. WSW<br>swell |
| 970          | 55° 26.7′ S, 115° 00.8′ W                            | 25 ix               | 0915 | 3543*                | Lt airs   | 2                |           | 0            | ο         | 1004-1                   | o·6         | 0.2         | mod. SW×W swell                                 |

| 966- | -970 |
|------|------|
|------|------|

|              |                          |                                                                                                                                                    |                                  | ,                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                           | ODSE | DVATT                                                                                                                                                                | ONS                                       |                                                                                                                                                                                                                                                                                                                 |                                                                                  |                                                                                                                                                                                                                                                                                                                        | GICAL OBSER                                                                  | VATION                                                                                   |              | ]                    |                        |
|--------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------|----------------------|------------------------|
|              |                          |                                                                                                                                                    |                                  |                                                                                                                                                              | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           |      |                                                                                                                                                                      | Mg,—at                                    | 0 77 3                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                                                                                                                                                                                                                                                        |                                                                              |                                                                                          | TE           |                      |                        |
| Station      | Age of<br>moon<br>(days) | Depth<br>(metres)                                                                                                                                  | Depth by<br>thermometer          | Temp.<br>°C.                                                                                                                                                 | <b>S</b> °/ <sub>c</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | σt                                                                                                                                                                                        | pH   | Р                                                                                                                                                                    | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N2                                                                                                                                                                                                                                                                                                   | Si                                                                               | O2<br>c.c.<br>htre                                                                                                                                                                                                                                                                                                     | Gear                                                                         | Depth<br>(metres)                                                                        | From         | То                   | Remarks                |
| 966<br>cont. | 17                       | 990<br>1480<br>1970<br>2460<br>2950<br>3450<br>3940<br>4430                                                                                        |                                  | 4.86<br>2.87<br>2.36<br>1.95<br>1.78<br>1.63<br>1.45<br>1.30                                                                                                 | 34·30<br>34·48<br>34·61<br>34·68<br>34·68<br>34·68<br>34·68<br>34·69<br>34·71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.16<br>27.51<br>27.66<br>27.74<br>27.76<br>27.77<br>27.78<br>27.82                                                                                                                      |      | 2.28<br>2.57<br>2.74<br>2.83<br>2.79<br>2.78<br>2.78<br>2.78<br>2.47                                                                                                 |                                           |                                                                                                                                                                                                                                                                                                                 | 18.9<br>43.9<br>67.5<br>71.5<br>68.8<br>70.1<br>71.5                             | 4·76<br>3·87<br>3·46<br>3·31<br>3·43<br>3·33<br>3·77<br>3·68                                                                                                                                                                                                                                                           |                                                                              |                                                                                          |              |                      |                        |
| 967          | 19                       | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>290<br>390<br>580<br>770<br>970<br>1450<br>1950<br>2440<br>2940<br>3430<br>3930       | <br><br><br><br>1446<br><br>3930 | 9.70<br>9.70<br>9.70<br>9.70<br>9.69<br>9.62<br>9.50<br>8.58<br>7.72<br>6.90<br>6.60<br>6.17<br>5.32<br>4.38<br>2.80<br>2.20<br>1.86<br>1.71<br>1.53<br>1.42 | 34:14<br>34:14<br>34:14<br>34:14<br>34:14<br>34:14<br>34:14<br>34:14<br>34:14<br>34:14<br>34:14<br>34:25<br>34:34<br>34:39<br>34:41<br>34:34<br>34:32<br>34:31<br>34:45<br>34:68<br>34:69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.36<br>26.36<br>26.36<br>26.36<br>26.36<br>26.36<br>26.37<br>26.39<br>26.62<br>26.82<br>26.98<br>27.03<br>27.03<br>27.12<br>27.22<br>27.48<br>27.69<br>27.75<br>27.76<br>27.77<br>27.78 |      | 0.72<br>0.74<br>0.68<br>0.80<br>0.80<br>0.84<br>0.86<br>0.86<br>1.20<br>1.48<br>1.65<br>1.58<br>1.84<br>2.01<br>2.36<br>2.64<br>2.72<br>2.72<br>2.81<br>2.68<br>2.47 |                                           | 0·31         0·32         0·32         0·31         0·32         0·31         0·32         0·31         0·32         0·33         0·35         0·00         0·00         0·00         0·00         0·00         0·00         0·00         0·00                                                                  | 3.4<br>3.4<br>3.4<br>3.4<br>3.4<br>3.4<br>3.4<br>3.4<br>3.4<br>3.4               | $6 \cdot 13$<br>$- 6 \cdot 14$<br>$- 6 \cdot 14$<br>$- 6 \cdot 14$<br>$- 6 \cdot 11$<br>$- 6 \cdot 07$<br>$5 \cdot 58$<br>$5 \cdot 36$<br>$5 \cdot 42$<br>$5 \cdot 57$<br>$5 \cdot 43$<br>$5 \cdot 15$<br>$4 \cdot 60$<br>$3 \cdot 84$<br>$3 \cdot 50$<br>$3 \cdot 40$<br>$3 \cdot 32$<br>$3 \cdot 56$<br>$3 \cdot 64$ | N 70 V<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>110-0<br>306-145 | 0510<br>     | 0642<br>0803<br>0813 | + 8 hours<br>KT<br>DGP |
| 968          | 19                       | 0                                                                                                                                                  |                                  | 9.30                                                                                                                                                         | 34.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26.47                                                                                                                                                                                     |      | -                                                                                                                                                                    |                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                  |                                                                                                                                                                                                                                                                                                                        | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                       | <pre>86-0 250-106</pre>                                                                  | 2016<br>2016 |                      | KT<br>DGP              |
| 969          | 20                       | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>200<br>200<br>200<br>200<br>390<br>590<br>780<br>980<br>1470<br>1950<br>2440<br>2930<br>3420 |                                  | 7.81<br>7.85<br>7.85<br>7.84<br>7.83<br>7.83<br>7.83<br>7.83<br>7.83<br>7.83<br>7.83<br>7.83                                                                 | $\begin{array}{c} 34\cdot 23\\ 34\cdot 23\\ 34\cdot 23\\ 34\cdot 23\\ 34\cdot 23\\ 34\cdot 23\\ 34\cdot 23\\ 34\cdot 24\\ 34\cdot 26\\ 34\cdot 28\\ 34\cdot 30\\ 34\cdot 30\\ 34\cdot 30\\ 34\cdot 40\\ 34\cdot 34\\ 34\cdot 30\\ 34\cdot 40\\ 34\cdot 34\\ 34\cdot 30\\ 34\cdot 40\\ 34\cdot 31\\ 34\cdot 46\\ 34\cdot 61\\ 34\cdot 63\\ 34\cdot 66\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\ 34\cdot 67\\$ | 27.91<br>27.00<br>27.02<br>27.04<br>27.10<br>27.21<br>27.49<br>27.66<br>27.71<br>27.74                                                                                                    |      | 1.24<br>1.29<br>1.29<br>1.18<br>1.20<br>1.18<br>1.20<br>1.31<br>1.35<br>1.56<br>1.65<br>1.63<br>1.88<br>2.17<br>2.38<br>2.91<br>2.95<br>2.95<br>2.95                 |                                           | 0·31         0·30         0·29         0·29         0·29         0·29         0·29         0·29         0·29         0·29         0·29         0·29         0·29         0·29         0·29         0·32         0·20         0·32         0·33         0·00         0·00         0·00         0·00         0·00 | 5.5<br>5.4<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2 |                                                                                                                                                                                                                                                                                                                        |                                                                              | 89-0                                                                                     | 2247<br>2247 | 2307<br>2317         | Depth estimated        |
| 970          | 25                       | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80                                                                                                        |                                  | 3.70<br>3.71<br>3.71<br>3.71<br>3.71<br>3.71<br>3.70<br>3.70<br>3.70<br>3.70<br>3.70                                                                         | 34.06<br>34.06<br>34.06<br>34.06<br>34.06<br>34.06<br>34.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.09<br>27.09<br>27.09<br>27.09<br>27.09<br>27.09<br>27.09<br>27.09                                                                                                                      |      | 1.75<br>1.82<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75<br>1.75                                                                                         |                                           | 0.20<br>0.20<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.20<br>0.20                                                                                                                                                                                                                                    | 7.8<br>8.c<br>8.c<br>7.9<br>7.9<br>7.9<br>7.9<br>8.c                             | 6.81<br>6.81<br>-<br>6.79<br>-                                                                                                                                                                                                                                                                                         | ,,<br>,,<br>,,<br>N 50 V<br>N 70 B                                           | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0<br>141-0                       | 1000         | 1140                 | 1.111                  |

|                         | Position                  | Date          | Hour | Sounding<br>(metres) | WIND      |                  | SEA                           |       |         | teter<br>Jars)           | Air Temp. ° C. |             |                     |
|-------------------------|---------------------------|---------------|------|----------------------|-----------|------------------|-------------------------------|-------|---------|--------------------------|----------------|-------------|---------------------|
| Station                 |                           |               |      |                      | Direction | Force<br>(knots) | Direction                     | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb    | Wet<br>bulb | Remarks             |
| <b>970</b> <i>cont.</i> | 55° 26·7′ S, 115° 00·8′ W | 1932<br>25 ix |      |                      |           |                  |                               |       |         |                          |                |             |                     |
|                         |                           |               |      |                      |           |                  |                               |       |         |                          |                |             |                     |
|                         |                           |               |      |                      |           |                  |                               |       |         |                          |                |             |                     |
| 971                     | 56° 22·9′ S, 113° 58·5′ W | 25 18         | 2000 |                      | SE        | 8                | Conf.                         | 2     | 0       | 1000.4                   | 0:6            | - 0:5       | mod. conf. SW swell |
|                         | 50 22 9 5, 113 50 5 11    | 25 14         | 2000 |                      |           |                  | com.                          |       |         | 1000 4                   |                | -03         | mod. com. Sw swen   |
| 972                     | 59° 21·8′ S, 109° 59·5′ W | 26 ix         | 2000 | 5349*                | W         | 15-18            | W                             | 4     | csp     | 994·8                    | 0.4            | - 0.1       | mod. SW swell       |
|                         |                           |               |      |                      |           |                  |                               |       |         |                          |                |             |                     |
|                         |                           |               |      |                      |           |                  |                               |       |         |                          |                |             |                     |
|                         |                           |               |      |                      |           |                  |                               |       |         |                          |                |             |                     |
|                         |                           | r.            |      |                      | -         |                  |                               |       |         |                          |                |             |                     |
|                         |                           |               |      |                      |           |                  |                               |       |         |                          |                |             |                     |
|                         |                           |               |      |                      |           |                  |                               |       |         |                          |                |             |                     |
| 973                     | 61° 47·8′ S, 105° 37·1′ W | 27 ix         | 2000 | _                    | W 	imes S | 15               | $\mathbf{W} 	imes \mathbf{S}$ | 3     | с       | 1000.4                   | 0.6            | -0.5        | mod. WSW swell      |
| 974                     | 63° 57' S, 101° 16' W     | 28 ix         |      | 5126*                | WNW       | 22-24            | WNW                           | 4     | с       | 993-2                    | 0.2            | 0.0         | mod. conf. W swell  |
| 011                     | 03 57 5, 101 10 W         | 20 1          | 1400 | 5120"                | ****      | 23-24            | ****                          | +     |         | 993-2                    | 0.2            | 0.0         | mod. com. w swen    |
|                         |                           |               |      |                      |           |                  |                               |       |         |                          |                |             |                     |
|                         |                           |               |      |                      |           |                  |                               |       |         |                          |                |             |                     |
|                         |                           | •             |      |                      |           |                  |                               |       |         |                          |                |             |                     |
|                         |                           |               |      |                      |           |                  |                               |       |         |                          |                |             |                     |
|                         |                           |               |      |                      |           |                  |                               |       |         |                          |                |             |                     |

| 97 | 0- | 9 | 7 | 4 |
|----|----|---|---|---|
|    |    |   |   |   |

|              |                |                                                                                                                                                             |                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ITDROI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JOGICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L OBSE | RVATIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )NS                                                                                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BIOLOC                                                                       | ICAL OBSLR                                                                               | VATION       | .5                   |                                        |
|--------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------|----------------------|----------------------------------------|
|              | Age of         |                                                                                                                                                             | ter                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mg.—at                                                                             | m m.ª                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              |                                                                                          | TIN          | 11.                  | Remarks                                |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                                                                           | Depth by<br>thermometer | Temp.<br>°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8°.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | σt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pН     | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ \text{N}_2 \end{array}$ | Nitrite<br>N <sub>2</sub>                                    | si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O <sub>2</sub><br>c.c.<br>litre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gear                                                                         | Depth<br>(metres)                                                                        | I rom        | To                   | Kenia Ka                               |
| 970<br>cont. | 25             | 150<br>190<br>290<br>390<br>580<br>770<br>970<br>1450<br>1930<br>2420<br>2900                                                                               | 2900                    | 3·70<br>3·47<br>3·28<br>3·13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34.06<br>34.06<br>34.13<br>34.15<br>34.32<br>34.38<br>34.38<br>34.49<br>34.65<br>34.73<br>34.73<br>34.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.09<br>27.09<br>27.16<br>27.21<br>27.35<br>27.45<br>27.54<br>27.54<br>27.78<br>27.78<br>27.81<br>27.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 1.82<br>1.96<br>2.09<br>2.22<br>2.47<br>2.62<br>2.62<br>2.62<br>2.62<br>2.45<br>2.45<br>2.47<br>2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    | 0·20<br>0·20<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00 | $8.1 \\ 8.2 \\ 14.1 \\ 18.5 \\ 26.6 \\ 39.2 \\ 44.6 \\ 53.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67.3 \\ 67$ | 6.78<br>6.79<br>6.03<br>5.55<br>4.68<br>4.41<br>4.07<br>3.85<br>3.88<br>4.00<br>3.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N 70 B<br>N 100 B                                                            | } 380−110                                                                                | 1210         | 1240                 | DGP                                    |
| 971          | 25             | 0                                                                                                                                                           | —                       | 4.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                       | } 117-0<br>} 340-120                                                                     | 2018<br>2018 | 2038<br>2048         | KT<br>DGP                              |
| 972          | 26             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>290<br>390<br>590<br>780<br>970<br>1460<br>1950<br>2440<br>2940<br>3430<br>3930<br>4420 | -                       | $\begin{array}{c} 1.61\\ 1.61\\ 1.61\\ 1.61\\ 1.61\\ 1.61\\ 1.61\\ 1.61\\ 1.60\\ 1.59\\ 1.59\\ 1.98\\ 2.49\\ 2.22\\ 2.20\\ 2.22\\ 2.20\\ 2.13\\ 1.69\\ 1.34\\ 1.10\\ 0.79\\ 0.57\\ 0.42\\ 0.38\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 03$<br>$34 \cdot 72$<br>$34 \cdot 70$<br>$34 \cdot 70$<br>$34 \cdot 70$<br>$34 \cdot 70$ | 27·86<br>27·87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | $\begin{array}{c} 2\cdot 26\\ 2\cdot 26\\ 2\cdot 26\\ 2\cdot 26\\ 2\cdot 26\\ 2\cdot 26\\ 2\cdot 26\\ 2\cdot 26\\ 2\cdot 26\\ 2\cdot 26\\ 2\cdot 26\\ 2\cdot 26\\ 2\cdot 26\\ 2\cdot 26\\ 2\cdot 77\\ 2\cdot 34\\ 2\cdot 62\\ 2\cdot 64\\ 2\cdot 62\\ 2\cdot 64\\ 2\cdot 62\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot 64\\ 2\cdot$ |                                                                                    | 0.00<br>0.08<br>0.08<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07 | 67·2<br>80·3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.07<br>7.07<br>7.06<br>6.24<br>5.12<br>4.48<br>4.04<br>3.92<br>4.15<br>4.12<br>4.30<br>4.16<br>4.45<br>4.16<br>4.45<br>4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N 70 V<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>128-0<br>300-128 | 2005         |                      | KT<br>∫DGP. Lower depth<br>( estimated |
| 973          | 27             | 0                                                                                                                                                           | -                       | 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                    | -                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                       | 1 200 120                                                                                |              | 2036<br>2046         |                                        |
| 974          | 28             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>2000<br>2000<br>2000<br>2000<br>2000<br>1480<br>1980<br>2477<br>2960                                  |                         | $\begin{array}{c} - \circ \cdot 88 \\ - \circ \cdot 88 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ \cdot 89 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - \circ 10 \\ - $ | 34·42<br>34·55<br>34·60<br>34·60<br>34·73<br>34·73<br>34·73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27<br>27:27 | 7      | 2·5<br>2·5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                    | 0·34<br>0·34<br>0·34<br>0·34<br>0·34<br>0·34<br>0·34<br>0·34 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} & - \\ & 7.58 \\ & - \\ & 7.56 \\ & - \\ & 7.56 \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & $ | ,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,   | 314-114                                                                                  |              | 1550<br>1737<br>1745 | KT<br>DGP                              |

| Station      | Decision                  |               |      | Sounding             | W12       | SD.              | SEA       |       |         | neter<br>Dars)           | Air Te              | mp. † C.    | 1               |
|--------------|---------------------------|---------------|------|----------------------|-----------|------------------|-----------|-------|---------|--------------------------|---------------------|-------------|-----------------|
| Station      | Position                  | Date          | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | D <b>ry</b><br>bulb | Wet<br>bulb | Remarks         |
| 974<br>cont. | 63° 57' S, 101° 16' W     | 1932<br>28 ix |      |                      |           |                  |           | 1     |         |                          |                     |             |                 |
| 975          | 61'' 29·9' S, 94° 06·7' W | 29 ix         | 2000 | 5064*                | W×S       | 18-22            | W×S       | 5     | С       | 1008.0                   | -0.9                | - 2.2       | heavy W×S swell |
| 976          | 59° 22′ S, 89° 03·9′ W    | 30 ix         | 2000 | 5211*                | WNW       | 20-24            | WNW       | 4     | O       | 1018.3                   | 2.1                 | <b>○</b> ·6 | heavy W×S swell |
| 977          | 57° 18·2′ S, 84° 29·5′ W  | ΙX            | 2000 | 4802*                | WNW       | 16               | WNW       | 4     | 0       | 1015.5                   | 4.4                 | 2.0         | mod. WNW swell  |

| 9 | 74 | -9 | 7 | 7 |
|---|----|----|---|---|
|---|----|----|---|---|

|              |                |                                                                                                                            |                         |                                                                                                                                                                                              | HYDRO                                                                                                                                                                                                                                                    | LOGICA                                                                                                                                                                                                               | L OBSE | RVATI                                                                                                                                                                                                | ONS                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 |                                                                                                                                                                              | BIOLOG                                                                       | HCAL OBSER                                                                               | VATION   | is                   |                                                     |
|--------------|----------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------|----------------------|-----------------------------------------------------|
| <i>0</i> , 1 | Age of         |                                                                                                                            | yt                      |                                                                                                                                                                                              |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                      |        |                                                                                                                                                                                                      | Mg.—at                               | om ni.'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                 |                                                                                                                                                                              |                                                                              |                                                                                          | 11       | ME                   | Remark:                                             |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                                          | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                  | S                                                                                                                                                                                                                                                        | σt                                                                                                                                                                                                                   | pН     | Р                                                                                                                                                                                                    | Nitrate<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Si                                                                                                                                                                                                                                                              | O <sub>2</sub><br>c.c.<br>litre                                                                                                                                              | Gear                                                                         | Depth<br>(metres)                                                                        | Irom     | Тө                   | Remare.                                             |
| 974<br>cont. | 28             | 3450<br>3950<br>4440<br>4930                                                                                               | <br><br>4927            | 0·64<br>0·44<br>0·38<br>0·31                                                                                                                                                                 | 34·70<br>34·70<br>34·69<br>34·69                                                                                                                                                                                                                         | 27·85<br>27·86<br>27·85<br>27·85                                                                                                                                                                                     |        | 2·47<br>2·57<br>2·57<br>2·59                                                                                                                                                                         |                                      | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79·8<br>79·8<br>81·5<br>81·5                                                                                                                                                                                                                                    | 4.51<br>4.35<br>4.29<br>4.28                                                                                                                                                 |                                                                              |                                                                                          |          |                      |                                                     |
| 975          | 29             | 0<br>10<br>20<br>30<br>40<br>60<br>80<br>100<br>100<br>100<br>1000<br>1400<br>1900<br>2400<br>2900<br>3480<br>3980<br>4480 |                         | 0.43<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41<br>0.41                                                                                                                         | 33.98<br>33.98<br>33.98<br>33.98<br>33.98<br>33.98<br>33.98<br>33.98<br>33.98<br>33.98<br>33.98<br>33.98<br>33.98<br>33.98<br>33.98<br>33.98<br>34.17<br>34.32<br>34.42<br>34.52<br>34.61<br>34.72<br>34.71<br>34.70<br>34.70<br>34.70<br>34.69<br>34.69 | 27·29<br>27·29<br>27·29<br>27·29<br>27·29<br>27·29<br>27·29<br>27·29<br>27·29<br>27·29<br>27·29<br>27·29<br>27·29<br>27·29<br>27·29<br>27·29<br>27·59<br>27·66<br>27·77<br>27·80<br>27·81<br>27·83<br>27·84<br>27·84 |        | 2.07<br>2.28<br>2.11<br>2.20<br>2.20<br>2.15<br>2.11<br>2.22<br>2.07<br>2.07<br>2.28<br>2.43<br>2.43<br>2.43<br>2.43<br>2.43<br>2.43<br>2.40<br>2.30<br>2.11<br>2.15<br>2.24<br>2.28<br>2.28<br>2.28 |                                      | 0·14<br>0·14<br>0·14<br>0·14<br>0·14<br>0·14<br>0·14<br>0·14<br>0·14<br>0·14<br>0·14<br>0·14<br>0·14<br>0·14<br>0·00<br>0·00<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 16.6\\ 16.5\\ 16.5\\ 16.5\\ 16.5\\ 16.6\\ 16.5\\ 16.4\\ 16.1\\ 15.9\\ 15.6\\ 29.2\\ 35.8\\ 39.5\\ 47.5\\ 52.7\\ 59.3\\ 62.2\\ 67.8\\ 73.0\\ 75.9\\ 77.5\\ 79.1\\ \end{array}$                                                                 | 7.27<br>7.25<br>7.25<br>7.25<br>7.27<br>7.27<br>7.27<br>7.27<br>7.27<br>7.27<br>5.71<br>4.74<br>4.15<br>3.93<br>3.94<br>4.08<br>4.20<br>4.25<br>4.38<br>4.21<br>4.32<br>4.16 | N 70 V<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-750<br>750-515<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>117-0<br>290-104 | 2008<br> | 2203<br>2341<br>2352 | Closing depth esti-<br>mated. +6 hours<br>KT<br>DGP |
| 976          | 1              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>800<br>1500<br>2000<br>2500<br>3000<br>2500<br>3500<br>4000<br>4500<br>5000       |                         | 2.69<br>2.70<br>2.70<br>2.70<br>2.69<br>2.60<br>2.53<br>2.32<br>2.10<br>2.10<br>2.10<br>2.10<br>2.10<br>2.70<br>2.50<br>2.39<br>2.18<br>1.86<br>1.52<br>1.25<br>0.98<br>0.66<br>0.48<br>0.47 | 34.05<br>34.05<br>34.05<br>34.24<br>34.32<br>34.43<br>34.52<br>34.68<br>34.73<br>34.72<br>34.71<br>34.70<br>34.70<br>34.70<br>34.70                                                                                                                      | 27.22<br>27.22<br>27.22<br>27.23<br>27.32<br>27.39<br>27.50<br>27.58<br>27.72<br>27.79<br>27.81<br>27.82<br>27.83<br>27.85<br>27.85<br>27.85                                                                         |        | 1.98<br>2.03<br>1.98<br>1.98<br>1.98<br>1.98<br>2.00<br>2.01<br>2.07<br>2.07<br>2.07<br>2.07<br>2.07<br>2.24<br>2.40<br>2.51<br>2.53<br>2.28<br>2.24<br>2.30<br>2.30<br>2.30<br>2.32                 |                                      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.11<br>0.12<br>0.12<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.000000<br>0.0000<br>00 | 11.8<br>11.8<br>11.7<br>12.0<br>11.2<br>11.3<br>11.3<br>11.6<br>11.8<br>11.9<br>12.9<br>22.7<br>35.9<br>41.1<br>51.3<br>56.0                                                                                                                                    |                                                                                                                                                                              | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                       | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>73-0<br>190-84   | 2005     |                      | KT<br>DGP                                           |
| 977          | 2              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>100<br>100<br>200<br>300<br>400                                      |                         | 4.61<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62<br>4.62                                                                                                                         | 34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·23                                                                                                                                                 | 27.13<br>27.13<br>27.13<br>27.13<br>27.13<br>27.13<br>27.13<br>27.13<br>27.14<br>27.14<br>27.14<br>27.15<br>27.18                                                                                                    |        | 1.79<br>1.86<br>1.81<br>1.77<br>1.77<br>1.77<br>1.77<br>1.73<br>1.73<br>1.73<br>1.7                                                                                                                  |                                      | 0.00<br>0.11<br>0.00<br>0.10<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.2<br>9.2<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.2<br>9.2<br>9.2<br>9.2<br>9.1<br>9.1<br>9.2<br>9.2<br>9.2<br>9.1<br>9.1<br>9.1<br>9.2<br>9.2<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.2<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1 | 6·57<br>                                                                                                                                                                     | ","<br>","<br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B                         | 1000-730<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>119-0<br>318-140 | 2010<br> | 2140<br>2309<br>2319 |                                                     |

|                     |                          |             |      | Sounding             | WIP       | ND               | SEA       |       |         | leter<br>Jars)           | Air Te      | mp. ° C.    |                                                                  |
|---------------------|--------------------------|-------------|------|----------------------|-----------|------------------|-----------|-------|---------|--------------------------|-------------|-------------|------------------------------------------------------------------|
| Station             | Position                 | Date        | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                                                          |
| <b>977</b><br>cont. | 57° 18·2' S, 84° 29·5' W | 1932<br>I X |      |                      |           |                  |           |       |         |                          |             |             |                                                                  |
| 978                 | 55° 18·4′ S, 80° 08·1′ W | 2 X         | 2000 | 4803*                | N×E       | 15-20            | N         | 3     | С       | 1014.2                   | 3.9         | 2.4         | mod. conf. S and<br>WNW swells                                   |
| 979                 | 51° 00′ S, 62° 36·3′ W   | 15 x        | 1030 | 171 <b>**</b><br>175 | NW×N      | 19               | NW×N      | 4     | с       | 997°0                    | 7.3         | 5.8         | mod. NW swell.<br>Second sounding<br>taken with plankton<br>wire |
| 980                 | 51° 00.6′ S, 64° 44.1′ W | 15 x        | 2130 | 135*                 | wsw       | 10               | wsw       | 2     | 0       | 1003.3                   | 5.8         | 4.2         | mod. NNW swell                                                   |
| 981                 | 51° 01·1′ S, 66° 58·2′ W | 16 x        | 0840 | 106*                 | wsw       | 22-27            | WSW       | 4     | bc      | 1012.7                   | 9.0         | 5.8         | mod. SW swell                                                    |

|                     |                | HYDROLOGICAL OBSERVATIONS                                                                                                  |                         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                    |    |                                                                                                                                              |                               |                                                              |                                                                                                                                                  | BIOLOGICAL OBSERVATIONS                                                                                                                                                                                                                                             |                                                                      |                                                                                          |                      |                      |                        |
|---------------------|----------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------|----------------------|------------------------|
|                     | Age of         |                                                                                                                            | v<br>ter                |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                    |    |                                                                                                                                              | Mg.—at                        | om m.ª                                                       |                                                                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                      |                                                                                          | TD                   | ME.                  |                        |
| Station             | moon<br>(days) | Depth<br>(metres)                                                                                                          | Depth by<br>thermometer | ° C.                                                                                                                                         | S "/on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | σt                                                                                                                                                                                                 | pH | Р                                                                                                                                            | Nitrate<br>+<br>Nitrite<br>N2 | Nitrite<br>N2                                                | si                                                                                                                                               | O <sub>2</sub><br>c.c.<br>litre                                                                                                                                                                                                                                     | Gear                                                                 | Depth<br>(nietres)                                                                       | From                 | То                   | Remarks                |
| 977<br>cont.<br>978 | 2              | 600<br>800<br>1500<br>2480<br>2970<br>3450<br>3940<br>4420<br>10<br>200<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200 |                         | 3.68<br>3.33<br>3.11<br>2.45<br>2.17<br>1.87<br>1.54<br>1.26<br>0.84<br>0.58<br>4.97<br>4.97<br>4.97<br>4.97<br>4.97<br>4.97<br>4.97<br>4.97 | 34.19<br>34.25<br>34.26<br>34.67<br>34.74<br>34.74<br>34.74<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.71<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>34.72<br>3 | 27·20<br>27·28<br>27·33<br>27·60<br>27·71<br>27·80<br>27·82<br>27·82<br>27·85<br>27·85<br>27·85<br>27·87<br>27·03<br>27·03<br>27·03<br>27·03<br>27·03<br>27·03<br>27·03<br>27·03<br>27·09<br>27·09 |    | 1.82<br>2.26<br>2.45<br>2.47<br>2.32<br>2.36<br>2.57<br>2.41<br>2.41<br>1.71<br>1.69<br>1.65<br>1.63<br>1.69<br>1.62<br>1.62<br>1.65<br>1.73 |                               | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0  | 13.0<br>23.2<br>33.7<br>47.1<br>54.7<br>60.8<br>75.4<br>82.0<br>7.8<br>7.8<br>7.7<br>7.9<br>8.0<br>8.0<br>7.9<br>7.9<br>8.0<br>8.0<br>7.9<br>7.9 | $\begin{array}{c} 6 \cdot 10 \\ 4 \cdot 97 \\ 4 \cdot 34 \\ 3 \cdot 87 \\ 3 \cdot 84 \\ 4 \cdot 05 \\ 4 \cdot 16 \\ 4 \cdot 07 \\ 4 \cdot 13 \\ 4 \cdot 20 \\ 6 \cdot 69 \\ - \\ 6 \cdot 54 \\ 6 \cdot 54 \\ 6 \cdot 54 \\ 6 \cdot 44 \\ 6 \cdot 36 \\ \end{array}$ | N 70 V<br>"<br>"<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>117-0<br>298-108 | 2005<br>2243<br>2243 | 2139<br>2303<br>2313 | + 5 hours<br>KT<br>DGP |
|                     |                | 300<br>400<br>600<br>800<br>1500<br>2000<br>2490<br>2970<br>3460<br>3940<br>4430                                           |                         | 4.90<br>4.88<br>4.58<br>4.12<br>3.68<br>2.62<br>2.21<br>1.96<br>1.80<br>1.47<br>0.99<br>0.71                                                 | 34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·51<br>34·67<br>34·76<br>34·74<br>34·75<br>34·74<br>34·75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.10<br>27.10<br>27.14<br>27.19<br>27.30<br>27.55<br>27.71<br>27.76<br>27.80<br>27.84<br>27.86<br>27.86                                                                                           |    | 1.65<br>1.62<br>1.96<br>2.20<br>2.41<br>2.74<br>2.74<br>2.70<br>2.59<br>2.59<br>2.59<br>2.59                                                 |                               | 0.04<br>0.03<br>0.04<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 8.0<br>8.0<br>10.5<br>14.8<br>29.1<br>47.7<br>59.1<br>67.6<br>67.6<br>68.9<br>80.9<br>82.7                                                       | 6.45<br>6.39<br>5.91<br>5.46<br>4.71<br>3.78<br>3.35<br>3.55<br>3.91<br>3.86<br>4.07<br>4.16                                                                                                                                                                        | CPR                                                                  |                                                                                          | 2324                 |                      |                        |
| 979                 | 15             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>135<br>170                                                           |                         | 5.58<br>5.56<br>5.54<br>5.52<br>5.50<br>5.40<br>5.18<br>5.14<br>5.02<br>5.02                                                                 | 33.65<br>33.65<br>33.65<br>33.65<br>33.65<br>33.65<br>33.65<br>33.65<br>33.66<br>33.60<br>33.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.56<br>26.57<br>26.57<br>26.57<br>26.58<br>26.58<br>26.61                                                                                                                                        |    |                                                                                                                                              |                               |                                                              |                                                                                                                                                  | $ \begin{array}{c} 7.04 \\ - \\ 7.08 \\ - \\ 7.06 \\ - \\ 7.04 \\ 6.72 \\ 6.33 \\ 6.32 \\ \end{array} $                                                                                                                                                             | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B                            | 160-100<br>100-50<br>50-0<br>100-0<br>} 117-0                                            | 11035                | 1105                 | + 3 hours<br>KT        |
| 980                 | 16             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>138                                                                  |                         | 5.10<br>5.09<br>5.04<br>5.08<br>5.08<br>5.08<br>4.80<br>4.81<br>4.80<br>4.80<br>4.80                                                         | 33·27<br>33·27<br>33·28<br>33·28<br>33·28<br>33·28<br>33·28<br>33·28<br>33·28<br>33·29<br>33·30<br>33·30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26·33<br>26·33<br>26·33<br>26·36<br>26·37<br>26·37                                                                                                                                                 |    |                                                                                                                                              |                               |                                                              |                                                                                                                                                  | 7:29<br>7:20<br>7:20<br>6:82<br>6:77<br>6:77                                                                                                                                                                                                                        | N 70 V<br>N 50 V<br>N 70 B<br>N 100 B                                | 100-50<br>50-0<br>100-0<br>} 104-0                                                       | 2135<br>—<br>2206    | 2200<br>2223         | КТ                     |
| 981                 | 16             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100                                                                         |                         | 5.80<br>5.80<br>5.80<br>5.80<br>5.80<br>5.80<br>5.80<br>5.80                                                                                 | 33·28<br>33·28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26·24<br>26·24<br>26·24<br>26·24<br>26·24<br>26·24<br>26·24<br>26·24                                                                                                                               |    |                                                                                                                                              |                               |                                                              |                                                                                                                                                  | 6.66<br>                                                                                                                                                                                                                                                            | N 70 V<br>N 50 V<br>N 70 B<br>N 100 B                                | 100-50<br>50-0<br>100-0<br>} 80-0                                                        | 0843<br>             | 0900<br>0936         | КТ                     |

|         |                                                                             |                    |      | Sounding              | WIN       | D                | SEA       |       |         | neter<br>Dars)           | Air Ter     | np. ° C.    |                     |
|---------|-----------------------------------------------------------------------------|--------------------|------|-----------------------|-----------|------------------|-----------|-------|---------|--------------------------|-------------|-------------|---------------------|
| Station | Position                                                                    | Date               | Hour | Sounding<br>(metres)  | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks             |
| 982     | Isla Capitana Aracena<br>(Sholl Bay and Port<br>Soffia) Cockburn<br>Channel | 1932<br>18-21<br>X | Var. |                       |           |                  |           |       |         |                          |             |             |                     |
| 983     | 55° 10' S, 76° 04.7' W                                                      | 23 x               | 2000 | 4134*                 | W         | 36               | W         | 6     | bcq     | 1002.4                   | 3.9         | 2.0         | heavy conf. W swell |
| 984     | 55° 14.4′ S, 77° 48.6′ W                                                    | 24 x               | 0830 | <b>4</b> 387 <b>*</b> | WSW       | 16               | wsw       | 4     | bcq     | 1010.3                   | 3.6         | 1.7         | heavy W×S swell     |
| 985     | 55° 20°2′ S, 79° 24°5′ W                                                    | 24 x               | 2000 | 3952*                 | W         | 30               | W.        | 5     | C       | 1011.3                   | 4.4         | 2.0         | heavy conf. W swell |

| 982- | 9 | 8 | 5 |
|------|---|---|---|
|------|---|---|---|

|         |                          |                                                                                                                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOGICA                                                                                                                                                                                             | L OBSE | RVATI | ONS                                       |                           |    |                                                                                                                                                       | BIOLOC                                                                               | ICAL OBSER                                                                              | VATION               | 5                    |                                                                  |
|---------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------------------------------------------|---------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------|----------------------|------------------------------------------------------------------|
|         |                          |                                                                                                                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                    |        |       | Mg.—at                                    | om m. <sup>3</sup>        |    |                                                                                                                                                       |                                                                                      |                                                                                         | TE                   |                      |                                                                  |
| Station | Age of<br>moon<br>(days) | Depth<br>(metres)                                                                                                              | Depth by<br>thermometer      | Temp.<br>° C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S°/₀₀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | σt                                                                                                                                                                                                 | pН     | Р     | Nitrate<br>H<br>Nitrate<br>N <sub>2</sub> | Nitrite<br>N <sub>2</sub> | Si | O <sub>2</sub><br>c.c.<br>litre                                                                                                                       | Gear                                                                                 | Depth<br>(metres)                                                                       | From                 | Τo                   | Remarks                                                          |
| 982     |                          | O                                                                                                                              |                              | 7.5-6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                    |        |       |                                           |                           |    |                                                                                                                                                       | NS<br>Sh. coll.                                                                      | _                                                                                       | 1700                 |                      | 18. x. 1932<br>Shore collecting,<br>Sholl Bay and<br>Port Soffia |
| 983     | 24                       | 0<br>10<br>20<br>30<br>40<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>790<br>900<br>1480<br>2470<br>2950<br>3440<br>3930 | <br><br><br>1490<br><br>3929 | 5.91<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.92<br>5.24<br>5.00<br>4.90<br>4.62<br>4.08<br>3.31<br>2.56<br>2.19<br>1.94<br>1.779<br>1.45<br>0.94 | 33.97<br>33.97<br>33.97<br>33.97<br>33.97<br>33.97<br>33.96<br>34.07<br>34.13<br>34.20<br>34.23<br>34.23<br>34.23<br>34.23<br>34.23<br>34.23<br>34.23<br>34.25<br>34.65<br>34.65<br>34.65<br>34.65<br>34.72<br>34.74<br>34.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.78<br>26.78<br>26.77<br>26.77<br>26.77<br>26.77<br>26.78<br>26.93<br>26.99<br>27.06<br>27.10<br>27.11<br>27.13<br>27.17<br>27.37<br>27.57<br>27.57<br>27.72<br>27.78<br>27.78<br>27.83<br>27.85 |        |       |                                           |                           |    | 6.67<br>6.68<br>6.70<br>6.57<br>6.53<br>6.33<br>6.29<br>6.24<br>6.14<br>5.59<br>4.38<br>3.47<br>3.30<br>3.46<br>3.57<br>4.03<br>4.14                  | N 100 B<br>N 100 B                                                                   | 121-0<br>300-80                                                                         | 2250                 | 2310<br>2320         | KT<br>DGP                                                        |
| 984     | 24                       | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>390<br>590<br>980<br>1480<br>1970<br>2460<br>2950   |                              | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>4.87<br>4.80<br>4.75<br>4.75<br>4.74<br>4.75<br>4.75<br>4.75<br>4.75<br>4.75<br>4.71<br>2.71<br>2.71<br>2.71<br>1.99<br>1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>3 | 27.06<br>27.06<br>27.06<br>27.06<br>27.06<br>27.06<br>27.06<br>27.06<br>27.06<br>27.06                                                                                                             |        |       |                                           |                           |    | $\begin{array}{c} 6.72 \\ \\ 6.70 \\ \\ 6.71 \\ \\ 6.68 \\ 6.45 \\ 6.45 \\ 6.45 \\ 6.45 \\ 6.45 \\ 6.45 \\ 6.354 \\ 3.31 \\ 3.34 \\ 3.69 \end{array}$ | N 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,, | 1000-750<br>750-500<br>250-250<br>250-100<br>100-50<br>50-0<br>100-0<br>99-0<br>240-100 |                      | 1040<br>1125<br>1135 | KT<br>(DGP. Closing<br>( depth estimated                         |
| 985     | 25                       | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>800<br>990<br>1480<br>1960            |                              | 4.96<br>4.96<br>4.97<br>4.97<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.96<br>4.93<br>4.93<br>4.93<br>4.92<br>4.73<br>4.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.20<br>34.22<br>34.23<br>34.25<br>34.23<br>34.22<br>34.23<br>34.22<br>34.23<br>34.24<br>34.24<br>34.25<br>34.23<br>34.25<br>34.23<br>34.24<br>34.24<br>34.25<br>34.24<br>34.25<br>34.25<br>34.23<br>34.25<br>34.24<br>34.25<br>34.24<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.25<br>34.35<br>34.35<br>34.35<br>34.35<br>34.35<br>34.35<br>34.35<br>3 | 27.07<br>27.07<br>27.06<br>27.06<br>27.07<br>27.07<br>27.07<br>27.07<br>27.07<br>27.07<br>27.08<br>27.10<br>27.11<br>27.12<br>27.14<br>27.12                                                       |        |       |                                           |                           |    |                                                                                                                                                       | N 70 B<br>N 100 B                                                                    | 100-0<br>} 113-0<br>} 290-110                                                           | 2015<br>2209<br>2209 | 2229                 | Thear it you bucket                                              |

|                     |                          |              |      | Sounding             | WIN         | D                | SEA       | 1       |         | teter<br>bars)           | Air Te           | mp. <sup>-</sup> C. |                      |
|---------------------|--------------------------|--------------|------|----------------------|-------------|------------------|-----------|---------|---------|--------------------------|------------------|---------------------|----------------------|
| Station             | Position                 | Date         | Hour | Sounding<br>(metres) | Direction   | Force<br>(knots) | Direction | Force   | Weather | Barometer<br>(millibars) | Dry<br>bulb      | Wet<br>bulb         | Remarks              |
| <b>985</b><br>cont. | 55° 20°2′ S, 79° 24°5′ W | 1932<br>24 X |      |                      |             |                  |           |         |         |                          |                  |                     |                      |
| 986                 | 56° 28.9' S, 79° 28.2' W | 25 X         | 0830 | 4837*                | WNW         | 30-40            | WNW       | 6 conf. | oq      | 1001.4                   | 4 <sup>.</sup> 5 | 4.3                 | heavy conf. W swell  |
|                     | •                        |              | 1    |                      |             |                  |           |         |         |                          |                  |                     |                      |
|                     |                          |              |      |                      |             |                  |           |         |         |                          |                  |                     |                      |
|                     |                          |              |      |                      |             |                  |           |         |         |                          |                  |                     |                      |
|                     |                          |              |      |                      |             |                  |           |         |         |                          |                  |                     |                      |
| 987                 | 58° 23.8' S, 79° 28.9' W | 26 x         | 0845 | 4937 <sup>*</sup>    | WSW         | 23               | wsw       | 5       | o       | 996-2                    | 1.7              | 0.2                 | heavy SW swell       |
|                     |                          |              |      |                      |             |                  |           |         |         |                          |                  |                     |                      |
|                     |                          |              |      |                      |             |                  |           |         |         |                          |                  |                     |                      |
|                     |                          |              |      |                      |             |                  |           |         |         |                          |                  |                     |                      |
| 000                 |                          |              |      |                      |             |                  |           |         |         |                          |                  |                     |                      |
| 988                 | 59° 19' S, 79° 39.8' W   | 26 x         | 2000 | <b>5</b> 087*        | NW          | 3                | NW        | I       | с       | 991.3                    | 2'4              | 1.0                 | heavy conf. SW swell |
|                     |                          |              |      |                      |             |                  |           |         |         |                          |                  |                     |                      |
|                     |                          |              |      |                      |             |                  |           |         |         |                          |                  |                     |                      |
|                     |                          |              |      |                      |             |                  |           |         |         |                          |                  |                     |                      |
|                     |                          |              |      |                      |             |                  |           |         |         |                          |                  |                     |                      |
| 989                 | 60° 38.6′ S, 79° 50.1′ W | 27           | 0800 |                      | N1337 - 337 |                  | N1337 337 |         |         | - 0                      |                  |                     |                      |
| 000                 | 55 360 5,79 50°F W       | 27 X         | 0830 | 5036*                | NW×W        | 14               | NW×W      | 3       | orm     | 984.1                    | 3.9              | 3.9                 | mod. conf. W swell   |

| 985-9 | 8 | 9 |
|-------|---|---|
|-------|---|---|

|                     |                          |                                                                 |                         |                                                                      | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LOGICA                                                                                                                                                                                                                                       | L. OBSF                                                | RVATI | ONS                                       |               |    |                                                                              | BIOLOG                       | ICAL OBSERV                                                          | ATION                | s                    |                                                               |
|---------------------|--------------------------|-----------------------------------------------------------------|-------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------|-------------------------------------------|---------------|----|------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------|----------------------|----------------------|---------------------------------------------------------------|
|                     |                          | ī                                                               | <u> </u>                |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                              |                                                        |       | Mg.—at                                    | om m.3        |    |                                                                              |                              |                                                                      | TIN                  | IE.                  |                                                               |
| Station             | Age of<br>moon<br>(days) | Depth<br>(metres)                                               | Depth by<br>thermometer | Temp.<br>°C.                                                         | S ''no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sigma t$                                                                                                                                                                                                                                   | рН                                                     | Р     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N2 | Si | O <sub>2</sub><br>c.c.<br>htre                                               | Gear                         | Depth<br>(metres)                                                    | 1 rom                | То                   | Remarks                                                       |
| <b>985</b><br>cont. | 25                       | 2450<br>2940<br>3430                                            | <br>                    | 2·04<br>1·74<br>1·35                                                 | 34·71<br>34·73<br>34·73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27·77<br>27·80<br>27·83                                                                                                                                                                                                                      |                                                        |       |                                           |               |    | 3.80<br>3.89<br>3.98                                                         |                              |                                                                      |                      |                      |                                                               |
| 986                 | 25                       | 0<br>10<br>20<br>30<br>40                                       |                         | 4·89<br>4·90<br>4·91<br>4·91<br>4·91                                 | 34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.10<br>27.10<br>27.10<br>27.10<br>27.10                                                                                                                                                                                                    |                                                        |       |                                           |               |    | 6.51<br>                                                                     | >><br>>><br>>><br>>>         | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0          | 0840                 |                      | Closing depth<br>doubtful                                     |
|                     |                          | 50<br>60<br>80<br>100<br>150<br>190                             |                         | 4.91<br>4.91<br>4.91<br>4.89<br>4.85<br>4.81<br>4.73                 | 34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.10<br>27.10<br>27.10<br>27.10<br>27.10<br>27.10<br>27.11<br>27.11                                                                                                                                                                         |                                                        |       |                                           |               |    | $ \begin{array}{c} 6.53 \\ - \\ 6.52 \\ 6.49 \\ 6.55 \\ 6.29 \end{array} $   | N 50 V<br>N 100 B<br>N 100 B | 100-0<br>102-0<br>244-114                                            | <br>1100             | 1040<br>1120<br>1130 | KT. Net torn in<br>coarse mesh near<br>throttling band<br>DGP |
|                     |                          | 290<br>390<br>580<br>770<br>970<br>1450<br>1930<br>2420<br>2900 | <br><br><br>2900        | 4 73<br>4·50<br>4·15<br>3·73<br>3·32<br>2·61<br>2·25<br>1·97<br>1·63 | 34 23<br>34·22<br>34·21<br>34·24<br>34·30<br>34·53<br>34·64<br>34·72<br>34·72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.13<br>27.16<br>27.24<br>27.32<br>27.57<br>27.69                                                                                                                                                                                           |                                                        |       |                                           |               |    | 6.44<br>6.31<br>5.21<br>4.62<br>3.74<br>3.60<br>3.98<br>3.89                 |                              |                                                                      |                      |                      |                                                               |
| 987                 | 26                       | 0<br>10<br>20<br>30<br>40<br>50                                 |                         | 3.90<br>3.90<br>3.90<br>3.90<br>3.90<br>3.90                         | 34·21<br>34·21<br>34·21<br>34·21<br>34·21<br>34·21<br>34·21<br>34·21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27·19<br>27·19                                                                                                                                                                                                                               |                                                        |       |                                           |               |    | 6·78<br>6·78<br>6·77<br>6·77<br>6·76                                         | ,,<br>,,<br>,,<br>N 50 V     | 1000-750<br>750-500<br>250-250<br>250-100<br>100-50<br>50-0<br>100-0 | 0847                 | 1035                 | КТ                                                            |
|                     |                          | 80<br>100<br>150<br>200<br>300<br>400<br>590<br>790<br>990      |                         | 3.90<br>3.90<br>3.90<br>3.90<br>3.34<br>3.11<br>3.16<br>2.70         | 34·21<br>34·21<br>34·21<br>34·21<br>34·21<br>34·19<br>34·18<br>34·28<br>34·28<br>34·36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27.19<br>27.19<br>27.19<br>27.19<br>27.19<br>27.19<br>27.24<br>27.25<br>27.25<br>27.32<br>27.32                                                                                                                                              |                                                        |       |                                           |               |    | $ \begin{array}{c}$                                                          |                              | 108–0<br>296–96                                                      | 1130                 | -                    |                                                               |
| 988                 | 3 27                     | 10<br>20<br>30<br>40                                            |                         | 3.89<br>3.89<br>3.89<br>3.86<br>3.86<br>3.87                         | 34·21<br>34·21<br>34·21<br>34·21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27·19<br>27·19<br>27·19<br>27·19<br>1 27·19                                                                                                                                                                                                  |                                                        |       |                                           |               |    | 6·78<br>6·78<br>6·78                                                         | N 70 B<br>N 100 B<br>N 70 B  | 100-0<br>} 88-0<br>} 224-74                                          | 2103<br>2240<br>2240 | 2300                 | КТ                                                            |
|                     |                          | 50<br>60<br>80<br>100<br>150<br>290<br>390<br>590<br>780        |                         | 3.00                                                                 | $\begin{array}{c} 34 \cdot 2 \\ 34 \cdot 2 \\ 34 \cdot 2 \\ 34 \cdot 2 \\ 34 \cdot 2 \\ 34 \cdot 2 \\ 34 \cdot 2 \\ 34 \cdot 2 \\ 34 \cdot 1 \\ 33 \cdot 2 \\ 34 \cdot 1 \\ 34 \cdot 2 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot 3 \\ 34 \cdot $ | $\begin{array}{c} 1 & 27 \cdot 10 \\ 0 & 27 \cdot 10 \\ 0 & 27 \cdot 10 \\ 0 & 27 \cdot 10 \\ 0 & 27 \cdot 10 \\ 0 & 27 \cdot 10 \\ 0 & 27 \cdot 20 \\ 7 & 27 \cdot 20 \\ 0 & 27 \cdot 20 \\ 0 & 27 \cdot 20 \\ 5 & 27 \cdot 40 \end{array}$ |                                                        |       |                                           |               |    | 6.75<br>6.75<br>6.75<br>6.75<br>6.55<br>6.55<br>6.53<br>5.44<br>4.33<br>4.10 | 7<br>3<br>1<br>4             |                                                                      |                      |                      |                                                               |
| 00                  | 0                        | 986<br>1476<br>2456<br>2946<br>3436<br>3926<br>4416             |                         | 2·33<br>1·76<br>1·38<br>1·05<br>0·75                                 | 3 34.5<br>3 34.7<br>3 34.7<br>3 34.7<br>5 34.7<br>5 34.7<br>5 34.7<br>5 34.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 27.6<br>2 27.7<br>3 27.8<br>2 27.8<br>2 27.8<br>2 27.8<br>2 27.8<br>2 27.8                                                                                                                                                                 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |       |                                           |               |    | - 3.7.<br>3.7.<br>- 4.2.<br>- 4.3<br>- 4.4<br>- 4.4                          | 5<br>9<br>6<br>5<br>5<br>5   | 1000-790                                                             | 0840                 |                      |                                                               |
| 98                  | 9 27                     | 1                                                               | o —<br>o —              |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                              |                                                        | -     |                                           |               | -  |                                                                              | 1                            | 750-520                                                              |                      |                      |                                                               |

| Station      | Position                 | Date         | Hour | Sounding<br>(metres)       | WIN       | ND               | SEA       | Ą       |         | neter<br>Dars)           | Air Tei     | mp. ' C.    |                                |
|--------------|--------------------------|--------------|------|----------------------------|-----------|------------------|-----------|---------|---------|--------------------------|-------------|-------------|--------------------------------|
|              | i osition                | Date         | nour | (metres)                   | Direction | Force<br>(knots) | Direction | Force   | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                        |
| 989<br>cont. | 60° 38·6′ S, 79° 50·1′ W | 1932<br>27 X |      |                            |           |                  |           |         |         |                          |             |             |                                |
| 990          | 61° 56·3′ S, 79° 57′ W   | 27 x         | 2000 | 4 <sup>8</sup> 57 <b>*</b> | NW×N      | 21               | NW×N      | 4       | od      | 974-6                    | 3.3         | 3.3         | mod. NW swell                  |
| 991          | 63° 12.8′ S, 80° 02.7′ W | 28 x         | 0836 | 4745 <sup>*</sup>          | W         | 30-40            | W         | 5 conf. | cq      | 960-2                    | - 0.0       | 1.0         | heavy W × N swell              |
| 992          | 64° 19·2′ S, 80° 06′ W   | 28 x         | 2002 | 4410                       | WNW       | 30-38            | WNW       | 6       | bceq    | 966.7                    | -0.4        | - 0.2       | heavy conf. $W \times N$ swell |

| 98 | 9 | <br>9 | 9 | 2 |
|----|---|-------|---|---|
|    |   |       |   |   |

| (                           |                          |                                                                                                                                       | HYDROLOGICAL OBSERVATIONS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                       |    |   |                                                                             |               |    | (                                                                                                                                                                                     | BIÓLOC                                                         | GICAL OBSER                                                      | VATION               | s                    |                                          |
|-----------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|-----------------------------------------------------------------------------|---------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|----------------------|----------------------|------------------------------------------|
|                             |                          |                                                                                                                                       | 8                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                       |    |   | Mgat                                                                        | om m.º        |    |                                                                                                                                                                                       |                                                                |                                                                  | TD                   | IL                   |                                          |
| Station                     | Age of<br>moon<br>(days) | Depth<br>(metres)                                                                                                                     | Depth by<br>thermometer   | Temp.<br>C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>S</b> °/ <sub>00</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | σt                                                                                                                                                                                                                                                                                                                                                                                                                    | рН | Р | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ N_2 \end{array}$ | Nitrite<br>N2 | Si | O <sub>2</sub><br>c.c.<br>litre                                                                                                                                                       | Gear                                                           | Depth<br>(metres)                                                | I rom                | То                   | Remarks                                  |
| <b>989</b><br><i>cont</i> . | 27                       | 20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>390<br>490<br>590<br>790<br>980<br>1480<br>1970<br>2460               |                           | 3.41<br>3.41<br>3.42<br>3.40<br>3.33<br>3.33<br>3.32<br>3.31<br>3.31<br>3.30<br>2.47<br>2.93<br>2.53<br>2.75<br>2.54<br>2.25<br>1.96<br>1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34.17<br>34.17<br>34.17<br>34.17<br>34.16<br>34.16<br>34.16<br>34.16<br>34.16<br>34.16<br>34.16<br>34.16<br>34.16<br>34.11<br>34.21<br>34.21<br>34.21<br>34.40<br>34.47<br>34.64<br>34.72<br>34.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27·21<br>27·21<br>27·21<br>27·21<br>27·21<br>27·21<br>27·21<br>27·21<br>27·21<br>27·21<br>27·21<br>27·21<br>27·21<br>27·22<br>27·28<br>27·32<br>27·45<br>27·52<br>27·52<br>27·59<br>27·77<br>27·80                                                                                                                                                                                                                    |    |   |                                                                             |               |    | $\begin{array}{c} 6.62 \\ \\ 6.61 \\ \\ 6.63 \\ \\ 6.64 \\ 6.64 \\ 6.63 \\ 6.40 \\ 6.55 \\ 5.34 \\ 5.31 \\ 4.23 \\ 3.96 \\ 3.90 \\ 4.04 \\ 4.14 \end{array}$                          | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>100-0<br>270-98 |                      | 1010<br>1119<br>1129 | KT<br>DGP                                |
| 990                         | 28                       | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1490<br>2490<br>2990<br>3480<br>3980<br>4480 |                           | 3.06<br>3.08<br>3.08<br>3.08<br>3.08<br>3.08<br>3.08<br>3.08<br>3.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27·25<br>27·28<br>27·36<br>27·49<br>27·57<br>27·65<br>27·80<br>27·84<br>27·86<br>27·86                                                                                                                                                                                                                                                                                                                                |    |   |                                                                             |               |    | $\begin{array}{c} 7.15 \\ - \\ 6.80 \\ - \\ 6.81 \\ 6.81 \\ 6.82 \\ 6.81 \\ 6.59 \\ 6.46 \\ 5.51 \\ 4.54 \\ 4.14 \\ 3.85 \\ 3.81 \\ 3.88 \\ 4.36 \\ 4.40 \\ 4.48 \\ 4.52 \end{array}$ |                                                                | 100-0<br>96-0<br>276-100                                         | 2105<br>2229<br>2229 | 2115<br>2249<br>2259 | KT<br>{DGP. Closing<br>{ depth estimated |
| 991                         | 28                       | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>300<br>590<br>790<br>980<br>1480<br>1970<br>2460                  |                           | $\begin{array}{c} - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.39 \\ - 0.3$ | 33.84<br>33.84<br>33.84<br>33.84<br>33.84<br>33.84<br>33.84<br>33.84<br>33.84<br>33.94<br>34.15<br>34.15<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45<br>34.45 | 27:21           27:21           27:21           27:21           27:21           27:21           27:21           27:23           27:25           27:36           27:37           27:50           27:50           27:70           27:50           27:70           27:70           27:70           27:70           27:70           27:70           27:70           27:70           27:70           27:70           27:70 |    |   |                                                                             |               |    | 7:56<br>7:57<br>7:58<br>7:59<br>7:59<br>7:57<br>7:56<br>6:63<br>5:71<br>4:69<br>4:69<br>4:59<br>4:10<br>4:20                                                                          | N 70 V<br>,,<br>,,<br>,,<br>,,<br>N 70 B<br>N 100 B<br>N 100 B |                                                                  |                      | 1013                 | DGP                                      |
| 99:                         | 2 29                     | 0<br>10<br>20<br>30<br>40                                                                                                             |                           | $ \begin{array}{r} -1.52 \\ -1.52 \\ -1.52 \\ -1.52 \\ -1.52 \\ -1.52 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 33·8<br>2 33·8<br>2 33·8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 27·2<br>5 27·2<br>5 27·2                                                                                                                                                                                                                                                                                                                                                                                            |    |   | ·                                                                           |               |    | 7·73                                                                                                                                                                                  | N 100 B                                                        |                                                                  | 2150                 |                      |                                          |

992-995

|              |                                     |              |      | Sounding             | WIN       | D                | SEA       |       |               | neter<br>Dars)           | Air Ter     | np.°C.      |                     |
|--------------|-------------------------------------|--------------|------|----------------------|-----------|------------------|-----------|-------|---------------|--------------------------|-------------|-------------|---------------------|
| Station      | Position                            | Date         | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force | Weather       | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks             |
| 992<br>cont. | 64° 19 <sup>.</sup> 2′ S, 80° 06′ W | 1932<br>28 x |      |                      |           |                  |           |       |               |                          |             |             |                     |
| 993          | 65 - 38·7′ S, 80° 18·6′ W           | 29 X         | 0830 | 4820*                | WNW       | 8                | WNW       | I-2   | csp           | 959 <sup>.</sup> 8       |             | - 1.8       | heavy conf. W swell |
| 994          | 66° 45.7′ S, 80° 19.8′ W            | 29 X         | 2000 | +133 <b>*</b>        | ENE       | 19               | ENE       | 4     | os            | 940.2                    | - 1.6       | - 1.2       | heavy W×N swell     |
| 995          | 67° 06·2′ S, 79° 55·8′ W            | 30 X         | 0320 |                      | N<br>W×S  | 6<br>48          |           |       | o<br>blizzard | 927.7                    | - 2.2       | - 2.8       | mod. NW swell       |

| 992-9 | 9 | 9 | 5 |
|-------|---|---|---|
|-------|---|---|---|

|              |                |                                                                                                                                     |                         |                                                                                                                                                                                                                                                                | HYDROI                                                                                                                                                                                                                                         | LOGICA                                                                                                                                                                                    | L OBSE | RVAT1 | ONS                                                                                |               |    |                                                                                                                                                                                    | BIOLOG                                                                             | ICAL OBSER                                                                      | VATION | 5                            |                |
|--------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------------------------------------------------------------------------------------|---------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------|------------------------------|----------------|
|              | Age of         |                                                                                                                                     | y.<br>ter               |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                           |        |       | Mgat                                                                               | om m.ª        |    |                                                                                                                                                                                    |                                                                                    |                                                                                 | TIN    | IE                           | Remarks        |
| Station      | moon<br>(days) | Depth<br>(metres)                                                                                                                   | Depth by<br>thermometer | Temp.<br>°C.                                                                                                                                                                                                                                                   | S                                                                                                                                                                                                                                              | σι                                                                                                                                                                                        | рH     | Р     | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ \text{N}_2 \end{array}$ | Nitrite<br>N2 | si | O <sub>2</sub><br>c.c.<br>litre                                                                                                                                                    | Gear                                                                               | Depth<br>(metres)                                                               | From   | То                           | Remarks        |
| 992<br>cont. | 29             | 50<br>60<br>80<br>100<br>150<br>200<br>290<br>390<br>580<br>780<br>970<br>1460<br>1930<br>2400<br>2870                              |                         | $ \begin{array}{c} -1.57 \\ -1.56 \\ -1.56 \\ -1.56 \\ -1.12 \\ 1.09 \\ 1.78 \\ 1.98 \\ 2.13 \\ 2.07 \\ 2.02 \\ 1.72 \\ 1.34 \\ 1.06 \\ 0.80 \\ \end{array} $                                                                                                  | 33.85<br>33.85<br>33.85<br>33.96<br>34.22<br>34.39<br>34.47<br>34.57<br>34.65<br>34.65<br>34.69<br>34.71                                                                                                                                       | 27.26<br>27.26<br>27.26<br>27.26<br>27.34<br>27.43<br>27.53<br>27.57<br>27.64<br>27.70<br>27.74<br>27.79<br>27.83<br>27.84                                                                |        |       |                                                                                    |               |    | 7.77<br>7.75<br>7.31<br>5.51<br>4.45<br>4.08<br>3.84<br>3.86<br>3.86<br>4.22<br>4.29<br>4.35<br>4.41                                                                               |                                                                                    |                                                                                 |        |                              |                |
| 993          | 29             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>390<br>590<br>790<br>980<br>1480<br>1970<br>2460         |                         | $\begin{array}{c} -1.86\\ -1.86\\ -1.86\\ -1.87\\ -1.87\\ -1.86\\ -1.86\\ -1.86\\ -1.85\\ 0.45\\ 1.21\\ 1.78\\ 2.00\\ 2.06\\ 1.97\\ 1.85\\ 1.50\\ 1.16\\ 0.91\end{array}$                                                                                      | 33.89<br>33.89<br>33.89<br>33.89<br>33.89<br>33.89<br>33.89<br>33.89<br>33.89<br>33.89<br>33.89<br>34.18<br>34.31<br>34.46<br>34.56<br>34.56<br>34.65<br>34.71<br>34.71<br>34.73<br>34.71<br>34.70                                             | 27·30<br>27·30<br>27·30<br>27·30<br>27·30<br>27·30<br>27·30<br>27·30<br>27·30<br>27·30<br>27·30<br>27·30<br>27·50<br>27·58<br>27·58<br>27·54<br>27·77<br>27·78<br>27·82<br>27·83<br>27·84 |        |       |                                                                                    |               |    | 7.68<br>7.66<br>7.67<br><br>7.62<br><br>7.64<br>5.79<br>4.93<br>4.17<br>3.91<br>3.88<br>3.98<br>4.08<br>4.17<br>4.29<br>4.32                                                       | N 70 V<br>,,<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 1000-780<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0<br>} 76-0<br>} 196-76 | 0834   | 1105<br>1143<br>1153         | KT<br>DGP      |
| 994          | 0              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>290<br>390<br>590<br>790<br>980<br>1470<br>2500<br>3500<br>4000 | <br> <br>  474<br> <br> | $ \begin{array}{c} -1.70 \\ -1.70 \\ -1.70 \\ -1.70 \\ -1.70 \\ -1.70 \\ -1.70 \\ -1.70 \\ -1.69 \\ 0.95 \\ 1.54 \\ 1.91 \\ 1.94 \\ 2.05 \\ 1.95 \\ 1.95 \\ 1.95 \\ 1.95 \\ 1.95 \\ 1.95 \\ 1.95 \\ 1.95 \\ 1.95 \\ 1.95 \\ 0.88 \\ 0.60 \\ 0.42 \end{array} $ | $\begin{array}{c} 33.97\\ 33.97\\ 33.97\\ 33.97\\ 33.97\\ 33.97\\ 33.97\\ 33.97\\ 33.98\\ 34.25\\ 34.39\\ 34.25\\ 34.39\\ 34.48\\ 34.57\\ 34.66\\ 34.70\\ 34.72\\ 34.73\\ 34.73\\ 34.70\\ 34.70\\ 34.70\\ 34.69\\ 34.69\\ 34.69\\ \end{array}$ | 27.36<br>27.36<br>27.36<br>27.36<br>27.36<br>27.37<br>27.47<br>27.47<br>27.54<br>27.59<br>27.65<br>27.72<br>27.76<br>27.78<br>27.82<br>27.84<br>27.84<br>27.84<br>27.85<br>27.85          |        |       |                                                                                    |               |    | $\begin{array}{c} 7.37 \\ - \\ 7.40 \\ - \\ 7.38 \\ - \\ 7.33 \\ 5.34 \\ 4.55 \\ 4.04 \\ 3.93 \\ 3.81 \\ 3.93 \\ 3.94 \\ 4.12 \\ 4.25 \\ 4.31 \\ 4.56 \\ 4.54 \\ 4.51 \end{array}$ | N 70 B<br>N 100 B<br>N 100 H                                                       | 100-0<br>113-0<br>270-90<br>0-5                                                 | 1      | 2120<br>2219<br>2229<br>2225 |                |
| 995          | 5 1            | 0                                                                                                                                   |                         | - 1.80                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                |                                                                                                                                                                                           |        |       |                                                                                    |               |    | _                                                                                                                                                                                  | N 70 B<br>N 70 B                                                                   | 125-0<br>320-120                                                                | 0342   | 0402                         | and badly torn |

|         |                                                      |              |      | Sounding             | WIN                           | D                | SEA                           |        |         | neter<br>Dars)           | Air Ter     | np. ° C.    |                                   |
|---------|------------------------------------------------------|--------------|------|----------------------|-------------------------------|------------------|-------------------------------|--------|---------|--------------------------|-------------|-------------|-----------------------------------|
| Station | Position                                             | Date         | Hour | Sounding<br>(metres) | Direction                     | Force<br>(knots) | Direction                     | Force  | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                           |
| 996     | 66° 53.8' S, 78° 52.6' W                             | 1932<br>30 X | 1630 | 3923*                | $\mathbf{W} 	imes \mathbf{S}$ | 25               | $\mathbf{W} 	imes \mathbf{S}$ | 3      | bc      | 962·0                    | - 7.8       | -8.2        | mod. NW swell                     |
|         | 66° 37·4′ S, 78° 23·6′ W<br>66° 40·7′ S, 75° 13·7′ W | 30 X<br>31 X |      | <br>3282 <b>*</b>    | Lt airs<br>S×W                | 0– I<br>I 0      |                               | 0      | C       |                          |             | i           | heavy NW swell<br>heavy NNW swell |
|         | 65° 55.8′ S, 73° 51.5′ W<br>65° 06.6′ S, 71° 39.7′ W |              |      |                      | W×S<br>WSW                    | 15<br>19         | S×W<br>WSW                    | I<br>4 | o<br>c  |                          |             |             | mod. NW swell<br>mod. W×N swell   |
| 1001    | 64° 53·8′ S, 68° 43·9′ W                             | 1 xi         | 2000 | 2672*                | NE                            | 20               | NE                            | 4      | С       | 971.4                    | - 3.6       | - 4.4       | mod. NE swell                     |

| 99 | 6— | 1 | 0 | 0 | 1 | L |
|----|----|---|---|---|---|---|
|    |    |   |   |   |   |   |

|         |                | 1                                                                                                                     |                          |                                                                                                                                                                                                   | HYDR                                                                                                                                                                             | oLogic                                                                                                                                                                                                               | AL OBS | ERVA | TIONS                                                                       |                           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BIOLO                                                               | GICAL OBSER                                                                                            | VATIO:                                               | NS                           |                                                           |
|---------|----------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|-----------------------------------------------------------------------------|---------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------|-----------------------------------------------------------|
|         | Age of         |                                                                                                                       | t:                       |                                                                                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                                                                                                                      |        |      | Mg.—at                                                                      | om m.3                    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |                                                                                                        | TI                                                   | ME                           |                                                           |
| Station | moon<br>(days) | Depth<br>(metres)                                                                                                     | Depth by<br>thermometer  | Temp.<br>°C.                                                                                                                                                                                      | S °/co                                                                                                                                                                           | σt                                                                                                                                                                                                                   | pH     | Р    | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ N_2 \end{array}$ | Nitrite<br>N <sub>2</sub> | Sī | O2<br>c.c.<br>litre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gear                                                                | Depth<br>(metres)                                                                                      | From                                                 | То                           | Remarks                                                   |
| 996     | I              | 0                                                                                                                     |                          | - 1.20                                                                                                                                                                                            | 34.04                                                                                                                                                                            | 27:41                                                                                                                                                                                                                |        |      |                                                                             |                           |    | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H                   | 100-0<br>  350-90<br>0-5                                                                               | 1646<br>1646<br>1645                                 | 1706<br>1716<br>1720         | Depth estimated<br>DGP                                    |
| 997     | I              | o                                                                                                                     |                          | - 1.72                                                                                                                                                                                            | 34.04                                                                                                                                                                            | 27:41                                                                                                                                                                                                                |        |      |                                                                             |                           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N 100 H<br>N 100 H<br>N 100 H                                       | 0-5<br>0-5<br>0-10                                                                                     | 1735<br>2025<br>2025                                 | 1755<br>2055<br>2055         |                                                           |
| 998     | 2              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>290<br>390<br>580<br>780<br>970<br>1450<br>1940          |                          | $\begin{array}{c} -1.82 \\ -1.80 \\ -1.79 \\ -1.79 \\ -1.79 \\ -1.79 \\ -1.79 \\ -1.79 \\ -1.78 \\ -1.74 \\ -0.99 \\ 0.90 \\ 1.45 \\ 1.68 \\ 1.67 \\ 1.47 \\ 1.38 \\ 1.00 \\ 0.73 \\ \end{array}$ | 33.99<br>33.99<br>33.99<br>33.99<br>33.99<br>33.99<br>33.99<br>33.99<br>34.00<br>34.14<br>34.46<br>34.72<br>34.72<br>34.72<br>34.77<br>34.771<br>34.771                          | 27'39<br>27'39<br>27'39<br>27'39<br>27'39<br>27'39<br>27'39<br>27'39<br>27'38<br>27'38<br>27'48<br>27'66<br>27'73<br>27'74<br>27'79<br>27'81<br>27'81<br>27'82<br>27'84<br>27'84<br>27'86                            |        |      |                                                                             |                           |    | $\begin{array}{c} 6 \cdot 6 4 \\ - \\ 6 \cdot 6 1 \\ - \\ 6 \cdot 6 1 \\ - \\ 6 \cdot 6 4 \\ - \\ 6 \cdot 5 4 \\ - \\ 1 \cdot 5 5 \\ 4 \cdot 5 5 \\ 4 \cdot 5 5 \\ 4 \cdot 0 9 \\ 4 \cdot 0 3 \\ 4 \cdot 2 3 \\ 4 \cdot 3 2 \\ 4 \cdot 3 2 \\ 4 \cdot 3 2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N 70 V<br><br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B<br>N 100 H | 1000-750<br>750-500<br>250-250<br>250-93<br>135-60<br>50-0<br>100-0<br>100-0<br>100-0<br>300-78<br>3-4 |                                                      | 1135<br>1217<br>1227<br>1230 | Station worked in<br>sludge-ice<br>Depth estimated<br>DGP |
| 999     | 2              | 2420<br>0                                                                                                             | 2424                     | 0·50<br>- 1·73                                                                                                                                                                                    | 34·71<br>34·00                                                                                                                                                                   | 27·87<br>27·38                                                                                                                                                                                                       |        |      | _                                                                           |                           |    | 4·36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N 70 B<br>N 100 B<br>N 100 H                                        | ) 151-0<br>0-5                                                                                         | 2207<br>2207                                         | 2227<br>22 <b>3</b> 7        | ∫KT. Station worked<br>1 among light pack-ice             |
| 1000    | 3              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>100<br>150<br>200<br>300<br>400<br>590<br>790<br>990<br>1480<br>1980<br>2470 | <br><br><br><br><br>2468 | $\begin{array}{c} -1.72 \\ -1.72 \\ -1.72 \\ -1.72 \\ -1.72 \\ -1.73 \\ -1.73 \\ -1.73 \\ -0.80 \\ 1.20 \\ 1.81 \\ 1.90 \\ 1.81 \\ 1.89 \\ 1.81 \\ 1.64 \\ 1.25 \\ 0.92 \\ 0.67 \end{array}$      | 33.95<br>33.95<br>33.95<br>33.95<br>33.95<br>33.95<br>33.95<br>33.95<br>33.95<br>34.43<br>34.56<br>34.61<br>34.66<br>34.61<br>34.70<br>34.77<br>34.77<br>34.77<br>34.77<br>34.77 | 27'34<br>27'34<br>27'34<br>27'34<br>27'34<br>27'34<br>27'34<br>27'34<br>27'34<br>27'34<br>27'34<br>27'34<br>27'34<br>27'34<br>27'34<br>27'35<br>27'70<br>27'73<br>27'77<br>27'79<br>27'82<br>27'83<br>27'85<br>27'86 |        |      |                                                                             |                           |    | $7 \cdot 21 \\ -7 \cdot 22 \\ -7 \cdot 21 \\ -7 \cdot 22 \\ -6 \cdot 06 \\ 4 \cdot 51 \\ 3 \cdot 99 \\ 3 \cdot 92 \\ 3 \cdot 92 \\ 3 \cdot 92 \\ 3 \cdot 92 \\ 3 \cdot 99 \\ 3 \cdot 99 \\ 4 \cdot 16 \\ 4 \cdot 30 \\ 4 \cdot 26 \\ 4 \cdot 40 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B      | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>128-0<br>300-110               |                                                      | 1028<br>1128<br>1138         | KT<br>DGP                                                 |
| 1001    | 3              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400                                        |                          | $\begin{array}{c} -1.70\\ -1.71\\ -1.73\\ -1.70\\ -1.70\\ -1.70\\ -1.62\\ -1.58\\ -0.89\\ 1.21\\ 1.72\\ 1.81\\ 1.74\end{array}$                                                                   | 33.94<br>33.94<br>33.94<br>33.94<br>33.94<br>33.94<br>33.94<br>33.94<br>33.94<br>33.94<br>34.94<br>34.54<br>34.64<br>34.67<br>34.70                                              | 27.33<br>27.33<br>27.33<br>27.33<br>27.33<br>27.33<br>27.33<br>27.33<br>27.34<br>27.48<br>27.69<br>27.73<br>27.74<br>27.78                                                                                           |        |      |                                                                             |                           |    | 7.41 - 7.40 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - 7.39 - | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H         | 100-0<br>95-0<br>230-66<br>0-5                                                                         | 2112<br>2143<br>2143<br><b>214</b> 3<br><b>214</b> 7 | 2121<br>2203<br>2213<br>2207 | KT<br>  DGP. Closing<br>  depth estimated                 |

|               |                                                                                                      |              |      | Sounding | WIN       | 1)               | SE.Y      |       |         | teter<br>pars)           | Ан Тег      | np. C.      |                      |
|---------------|------------------------------------------------------------------------------------------------------|--------------|------|----------|-----------|------------------|-----------|-------|---------|--------------------------|-------------|-------------|----------------------|
| Station       | Position                                                                                             | Date         | Hour | (metres) | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks              |
| 1001<br>cont. | 64° 53.8′ S, 68° 43.9′ W                                                                             | 1932<br>1 xi |      |          |           |                  |           |       |         |                          |             |             |                      |
| 1002          | 64° 23:4' S, 65° 44:5' W                                                                             | 2 xi         | 0830 | 355*     | NE-NW     | 7-20             | Conf.     | 3     | besp    | 959-2                    | - 1.8       | - 2.0       | mod. conf. NE swell  |
| 1003          | 63° 40.7′ S, 63° 07.7′ W                                                                             | 2 xi         | 2000 | 304*     | NNW       | 6                | NNW       | 2     | O       | 964.1                    | -1.4        | - 1.8       | heavy conf. NW swell |
| 1004          | 63° 02·2′ S, 60° 25·5′ W<br>(3·48 miles S 47½° E of<br>Ravn Rock, Neptune's<br>Bellows, Deception I) | 5 xi         | 1145 | 523*     | wsw       | 24               | WSW       | 4     | bv      | 985-6                    | - 2.9       | -4.0        | mod. WSW swell       |
| 1005          | 63° 09′ S, 60° 11′ W                                                                                 | 5 xi         | 1450 | 629*     | wsw       | 25-30            | wsw       | 4     | bc      | 985.2                    | - 2.8       | -4.1        | mod. WSW swell       |
| 1006          | 63° 16·7′ S, 60° 06·5′ W                                                                             | 5 xi         | 1800 | 832*     | wsw       | 23               | WSW       | +     | ьс      | 985-3                    | - 2.7       | - 3.8       | mod. WSW swell       |

| 1001 - | 1 | 006 |
|--------|---|-----|
|--------|---|-----|

|                              |                |                                                                                       |                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HYDRO                                                                                                                                        | LOGICA                                                                                                                                                | L OBSE | RVATI | IONS                                 |                           |      |                                                                      | BIOLOC                                                          | GICAL OBSER                                                                | VALON    |                              |           |
|------------------------------|----------------|---------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|--------------------------------------|---------------------------|------|----------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|----------|------------------------------|-----------|
| Cr. dan                      | Age of         |                                                                                       | y<br>ster               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                       |        |       | Mgat                                 | om m.1                    |      |                                                                      |                                                                 |                                                                            |          | ub.                          | D         |
| Station                      | moon<br>(days) | Depth<br>(metres)                                                                     | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s                                                                                                                                            | σt                                                                                                                                                    | ۲ł     | Р     | Nitrate<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N <sub>2</sub> | 1 مر | O <sub>2</sub><br>c.c.<br>htre                                       | Gear                                                            | Depth<br>(metres)                                                          | From     | To                           | Remarks   |
| <b>1001</b><br><i>cont</i> . | 3              | 600<br>790<br>990<br>1490<br>1980<br>2480                                             | 2475                    | 1.62<br>1.42<br>1.26<br>0.81<br>0.50<br>0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34·73<br>34·74<br>34·74<br>34·71<br>34·70<br>34·69                                                                                           | 27·81<br>27·83<br>27·84<br>27·85<br>27·86<br>27·85                                                                                                    |        |       |                                      |                           |      | 4.15<br>4.21<br>4.18<br>4.46<br>4.50<br>4.51                         |                                                                 |                                                                            |          |                              |           |
| 1002                         | 4              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>350        |                         | - 1.68<br>- 1.69<br>- 1.69<br>- 1.69<br>- 1.69<br>- 1.69<br>- 1.69<br>- 1.68<br>- 1.19<br>- 0.39<br>0.42<br>1.01<br>1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.14<br>34.34<br>34.48<br>34.66<br>34.66                            | 27:41<br>27:41<br>27:41<br>27:41<br>27:41<br>27:41<br>27:41<br>27:41<br>27:49<br>27:62<br>27:69<br>27:79<br>27:79                                     |        |       |                                      |                           |      | 7·29<br>7·31<br>7·30<br>7·31<br>6·28<br>5·54<br>4·72<br>4·30<br>4·28 | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B<br>N 100 H | 340-250<br>250-100<br>100-50<br>50-0<br>100-0<br>} 86-0<br>} 230-94<br>0-5 | 0840<br> | 0925<br>1012<br>1022<br>1025 | KT<br>DGP |
| 1003                         | 4              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300               |                         | - I·40<br>- I·40<br>- I·40<br>- I·39<br>- I·38<br>- I·38<br>- I·38<br>- I·33<br>- I·17<br>- 0·83<br>- 0·29<br>0·57<br>- I·15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34'14<br>34'14<br>34'14<br>34'14<br>34'14<br>34'14<br>34'14<br>34'14<br>34'14<br>34'20<br>34'29<br>34'29<br>34'42<br>34'55<br>34'66          | 27.50<br>27.50<br>27.50<br>27.50<br>27.50<br>27.50<br>27.50<br>27.50<br>27.53<br>27.59<br>27.67<br>27.74<br>27.74                                     |        |       |                                      |                           |      | 7·32<br>7·31<br>7·29<br>7·25<br>6·37<br>5·67<br>4·86<br>4·46         | N 50 V<br>N 70 B<br>N 100 B                                     | 100-0                                                                      | 2008     | 2013                         | КТ        |
| 1004                         | 7              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>500 |                         | $\begin{array}{c} - \circ \cdot 21 \\ - \circ \cdot 39 \\ - \circ \cdot 53 \\ - \circ \cdot 53 \\ - \circ \cdot 53 \\ - \circ \cdot 81 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 51 \\ - \circ \cdot 88 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ \cdot 90 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ - \circ 00 \\ -$ | 34·32<br>34·32<br>34·32<br>34·32<br>34·31<br>34·31<br>34·31<br>34·31<br>34·31<br>34·39<br>34·49<br>34·57<br>34·61<br>34·61                   | 27.59<br>27.60<br>27.61<br>27.61<br>27.61<br>27.61<br>27.61<br>27.61<br>27.61<br>27.61<br>27.67<br>27.71<br>27.76<br>27.70<br>27.78<br>27.80<br>27.80 |        |       |                                      |                           |      | 6.97<br>                                                             | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B            | 450-250<br>250-0<br>250-100<br>100-50<br>50-0<br>100-0<br>123-0            |          | 1240<br>1319<br>1329         | КТ<br>DGP |
| 1005                         | 7              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>500 |                         | $\begin{array}{c} -0.81 \\ -0.92 \\ -1.07 \\ -1.17 \\ -1.21 \\ -1.28 \\ -1.31 \\ -1.25 \\ -1.11 \\ -1.25 \\ -1.11 \\ -1.21 \\ -1.21 \\ -1.28 \\ -1.31 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34'32<br>34'32<br>34'32<br>34'32<br>34'32<br>34'32<br>34'32<br>34'32<br>34'32<br>34'33<br>34'36<br>34'42<br>34'45<br>34'52<br>34'54<br>34'57 | 27.62<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.63<br>27.66<br>27.70<br>27.73<br>27.79<br>27.81<br>27.84                            |        |       |                                      |                           |      | 7·31<br>                                                             | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B  | 500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>109-0<br>300-100          | 1503<br> | 1545<br>1635<br>1645         | КТ<br>DGP |
| 1006                         | 7              | 0<br>10<br>20                                                                         |                         | -0.35<br>-0.54<br>-0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34·39<br>34·39<br>34·39                                                                                                                      | 27.66<br>27.67<br>27.67                                                                                                                               |        |       | -                                    |                           |      | 6.91<br>6.88                                                         | N 70 V                                                          | 750-500<br>500-270<br>250-100                                              | 1806     |                              |           |

|                           |                                                      |              |      | Sounding             | WIN                                                                         | D                | SEA                                                                       |       |         | neter<br>Dars)           | Air Tei     | mp. ° C.    |                                   |
|---------------------------|------------------------------------------------------|--------------|------|----------------------|-----------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------|-------|---------|--------------------------|-------------|-------------|-----------------------------------|
| Station                   | Position                                             | Date         | Hour | Sounding<br>(metres) | Direction                                                                   | Force<br>(knots) | Direction                                                                 | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                           |
| <b>1006</b> <i>cont</i> . | 63° 16.7' S, 60° 06.5' W                             | 1932<br>5 xi |      |                      |                                                                             |                  |                                                                           |       |         |                          |             |             |                                   |
|                           | 63° 25' S, 59° 57' W                                 | 5 xi         | 2125 | 152*                 | $W \times N$                                                                | 18               | W 	imes N                                                                 | 4     | 0       | 98 <b>3</b> .8           | - 2.3       | - 3.3       | mod. conf. W swell                |
|                           | 63° 06·5′ S, 59° 05·8′ W<br>62° 55·9′ S, 58° 00·3′ W |              | 0140 |                      | WNW<br>NW×W                                                                 | 15               | WNW<br>NW×W                                                               | 3     | 0       |                          |             |             | low W swell<br>low NW × W swell   |
|                           | 62° 46·6′ S, 56° 58·1′ W<br>62° 40·4′ S, 56° 19·5′ W |              | 0924 | 240*<br>196 <b>*</b> | $\mathbf{N} \times \mathbf{W}$<br>$\mathbf{N} \mathbf{W} \times \mathbf{W}$ | 19<br>20         | $\mathbf{N} 	imes \mathbf{W}$<br>$\mathbf{N} \mathbf{W} 	imes \mathbf{W}$ | 4     | os      |                          |             |             | mod. conf. swell<br>low NNW swell |
| 1012                      | 62° 20.4′ S, 56° 19.5′ W                             | 6 xi         | 1530 | 670 <b>*</b>         | W                                                                           | 12               | W                                                                         | 4     | C .     |                          |             |             | low W swell                       |
| 1013                      | 61° 57.5′ S, 56° 20.1′ W                             | 6 xi         | 2000 | 1960*                | WNW                                                                         | 14               | WNW                                                                       | 3     | bc      | 979 <sup>.</sup> 2       | - 1.0       | - I`4       | low conf. NW swell                |

| 1006 - 1 | 0 | 1 | 3 |
|----------|---|---|---|
|----------|---|---|---|

| Ţ                        |                |                                                                                       |                         |                                                                                                                                                       | HYDROL                                                                                                                                       | OGICAI                                                                                                            | L OBSE | RVATI | ONS                                                                         | ·                         |    |                                                                                              | BIOLOG                                                                      | ICAL OBSER                                                               | VATION                       | 5                            |                                                                        |
|--------------------------|----------------|---------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------|-------|-----------------------------------------------------------------------------|---------------------------|----|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------------------------------------------------|
|                          | Age of         |                                                                                       | 5                       |                                                                                                                                                       |                                                                                                                                              |                                                                                                                   |        |       | Mg.—at                                                                      | om m.ª                    |    |                                                                                              |                                                                             |                                                                          | TIN                          | IE I                         |                                                                        |
| Station                  | moon<br>(days) | Depth<br>(metres)                                                                     | Depth by<br>thermometer | Temp.<br>- C.                                                                                                                                         | S°′                                                                                                                                          | σt                                                                                                                | рН     | P     | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ N_2 \end{array}$ | Nitrite<br>N <sub>7</sub> | si | O <sub>2</sub><br>c.c.<br>htre                                                               | Gear                                                                        | Depth<br>(metres)                                                        | From                         | То                           | Remarks                                                                |
| <b>1006</b> <i>cont.</i> | 7              | 30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>500<br>700           |                         | - 0.91<br>- 1.01<br>- 1.05<br>- 1.11<br>- 1.11<br>- 1.11<br>- 1.11<br>- 1.14<br>- 1.20<br>- 1.27                                                      | 34·39<br>34·39<br>34·39<br>34·39<br>34·42<br>34·42                                                                                           | 27.68<br>27.68<br>27.69<br>27.69<br>27.70<br>27.75<br>27.75<br>27.78<br>27.78<br>27.78<br>27.83<br>27.84          |        |       |                                                                             |                           |    | 6.84<br>6.79<br>6.43<br>6.33<br>6.17<br>6.11<br>6.02<br>6.08                                 | N 70 V<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H | 100-50<br>50-0<br>100-0<br>115-0<br>320-152<br>0-5                       | 1940<br>1940<br>1934         | 1913<br>2000<br>2010<br>2004 | KT<br>DGP                                                              |
| 1007                     | 7              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150                             |                         | - 1.08<br>- 1.09<br>- 1.09<br>- 1.09<br>- 1.09<br>- 1.09<br>- 1.09<br>- 1.09<br>- 1.09<br>- 1.11                                                      | 34·41<br>34·41<br>34·41<br>34·41<br>34·41<br>34·41<br>34·41<br>34·41<br>34·41<br>34·41<br>34·41                                              | 27·70<br>27·70<br>27·70<br>27·70<br>27·70<br>27·70<br>27·70<br>27·70<br>27·70<br>27·70<br>27·70                   |        |       |                                                                             |                           |    | 6.88<br>                                                                                     | N 50 V<br>N 70 V<br>N 100 H<br>N 70 B<br>N 100 B                            | 100-0<br>100-50<br>50-0<br>0-5                                           | 2130<br><br>2200<br>2212     | 2147<br>2230<br>2232         | KT. Both nets<br>fished for some<br>minutes at 30 m.<br>on the way out |
| 1008                     | 7              | 0                                                                                     |                         | - 1.32                                                                                                                                                | _                                                                                                                                            |                                                                                                                   |        |       |                                                                             | -                         |    |                                                                                              | N 70 B<br>N 100 B<br>N 100 H                                                | ) 110-0<br>0-5                                                           | 0155<br>0156                 | 0215<br>0226                 | KT. Temperature<br>from thermograph                                    |
| 1009                     |                | 0                                                                                     |                         | - 0.82                                                                                                                                                | 34.22                                                                                                                                        | 27.78                                                                                                             |        |       |                                                                             |                           |    |                                                                                              | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H<br>N 70 B                 | <pre>155−0 300−120 0−2</pre>                                             | 0545<br>0545<br>0540         | 0605<br>0615<br>0625         | ∫DGP. Depths esti-<br>) mated                                          |
| 1010                     | 8              | 0                                                                                     |                         | - 1.32                                                                                                                                                | 34.23                                                                                                                                        | 27.81                                                                                                             |        |       |                                                                             |                           |    |                                                                                              | N 100 B<br>N 100 H                                                          | ) 126–0<br>0–5                                                           | 0935<br>0933                 | 0955<br>1000                 | КТ                                                                     |
| 1011                     | 8              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150                             |                         | - 1.44<br>- 1.47<br>- 1.49<br>- 1.49<br>- 1.48<br>- 1.48<br>- 1.48<br>- 1.48<br>- 1.48<br>- 1.48<br>- 1.48                                            | 34 <sup>.</sup> 52<br>34 <sup>.</sup> 52                                                                                                     | 27.80<br>27.80<br>27.80<br>27.80<br>27.80<br>27.80                                                                |        |       |                                                                             |                           |    | 7·11<br>7·12<br>7·10<br>7·09<br>7·09<br>7·06<br>7·03                                         | N 70 B<br>N 100 B<br>N 70 V<br><br>N 50 V                                   | 0-5<br>100-0<br>150-100<br>100-50<br>50-0<br>100-0                       | 1212<br>1214<br>1250         | 1242<br>1234<br>1315         | Depth estimated                                                        |
| 1012                     | 2 8            | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600 |                         | $ \begin{array}{c} -0.90 \\ -0.90 \\ -0.80 \\ -0.86 \\ -0.70 \\ -0.59 \\ -0.97 \\ -0.97 \\ -1.09 \\ -1.09 \\ -1.05 \\ -1.06 \\ -1.01 \\ \end{array} $ | 34·41<br>34·41<br>34·42<br>34·43<br>34·45<br>34·49<br>34·49<br>34·49<br>34·50<br>34·50<br>34·50<br>34·50<br>34·52<br>34·58<br>34·58<br>34·58 | 27.69<br>27.69<br>27.71<br>27.71<br>27.74<br>27.75<br>27.76<br>27.77<br>27.76<br>27.77<br>27.76<br>27.84<br>27.84 |        |       |                                                                             |                           |    | 6.92<br>6.89<br>6.62<br>5.88<br>6.62<br>5.88<br>6.69<br>6.19<br>6.19<br>5.99<br>5.92<br>5.92 | N 50 V<br>N 100 H<br>N 70 B<br>N 100 B<br>N 100 B<br>N 100 B                | 500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>0-5<br>104-0<br>316-150 | 1533<br>1646<br>1648<br>1648 | 1718                         |                                                                        |
| 101                      | <b>3</b> 8     | 0<br>10<br>20                                                                         | -                       | - 1.08<br>- 1.08                                                                                                                                      | 3 34.32                                                                                                                                      | 27.63                                                                                                             | 3 -    |       |                                                                             |                           |    | 7.18                                                                                         | ,,                                                                          | 1000-750<br>750-500<br>500-250                                           | 2001                         |                              |                                                                        |

|               |                          |              |      | Sounding             | WIN       | :1)              | SE/       | Λ       |             | leter<br>Dars)           | Air Te      | mp.°C.      |                    |
|---------------|--------------------------|--------------|------|----------------------|-----------|------------------|-----------|---------|-------------|--------------------------|-------------|-------------|--------------------|
| Station       | Position                 | Date         | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force   | Weather     | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks            |
| 1013<br>cont. | 61° 57.5′ S, 56° 20.1′ W | 1932<br>6 xi | -    |                      |           |                  |           |         |             |                          |             |             |                    |
|               |                          |              |      |                      |           |                  |           |         |             |                          | •           |             |                    |
|               |                          |              |      |                      |           |                  |           |         |             |                          |             | -           |                    |
|               |                          |              |      |                      |           |                  |           |         |             |                          |             |             |                    |
|               |                          |              |      |                      |           |                  |           |         |             |                          |             |             |                    |
| 1014          | 61° 26·8′ S, 56° 19·7′ W | 7 xi         | 0200 | 543 <b>*</b>         | SE        | 12               | SE        | 2       | о           | 980.1                    | - 2.4       | - 3.3       | mod. NW swell      |
|               |                          |              |      |                      |           |                  |           |         |             |                          |             |             |                    |
|               |                          |              |      |                      |           |                  |           |         |             |                          |             |             |                    |
|               |                          |              |      |                      |           | -                |           |         |             |                          |             |             |                    |
| 1015          | 58° 53·2′ S, 56° 18·6′ W | 7 xi         | 2000 | 3864*                | SE        | 15-20            | SE        | 4 conf. | о           | 98 <b>3</b> ·9           | - 1 · 1     | - 1.6       | mod. conf. swell   |
|               |                          |              |      |                      |           |                  |           |         | 8<br>4<br>1 | a<br>I                   |             |             |                    |
|               |                          |              |      |                      | ľ         |                  |           |         |             |                          |             |             |                    |
|               |                          |              |      |                      |           |                  |           |         |             | Ĩ                        |             |             |                    |
|               |                          |              |      |                      |           |                  |           |         |             |                          |             |             |                    |
|               |                          |              |      |                      |           |                  |           |         |             |                          |             |             |                    |
|               |                          | -            |      |                      |           |                  |           |         |             |                          |             |             |                    |
| 1016          | 57° 19' S, 56° 19'9' W   | 8 xi         | 0835 | 4124*                | S         | II               | S         | 4       | 0           | 996·1                    | - 1.2       | - 2.2       | mod. conf. S swell |
|               |                          |              |      |                      |           |                  |           |         |             |                          |             |             |                    |
|               |                          |              |      |                      |           |                  |           |         |             |                          |             |             |                    |
|               |                          |              |      |                      |           |                  |           |         |             |                          |             |             |                    |
|               |                          |              |      |                      |           |                  |           |         |             |                          |             |             |                    |

|               |                |                   |                         |                  | HYDRO                                    | LOGICA         | L OBSE | RVAT | 023                                                                                |                           |    |                     | BIOLOG                                  | ACAL OBSER         | evario:  | NS - |                 |
|---------------|----------------|-------------------|-------------------------|------------------|------------------------------------------|----------------|--------|------|------------------------------------------------------------------------------------|---------------------------|----|---------------------|-----------------------------------------|--------------------|----------|------|-----------------|
|               | Age of         |                   | y<br>iter               |                  |                                          |                |        |      | Mg.—at                                                                             | om m.'                    |    |                     |                                         |                    | TI       | ME   |                 |
| Station       | moon<br>(days) | Depth<br>(metres) | Depth by<br>thermometer | Temp.<br>C.      | 5 -5                                     | σt             | рН     | ŀ    | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ \text{N}_2 \end{array}$ | Nitrite<br>N <sub>2</sub> | Sı | Og<br>c.c.<br>litre | Gear                                    | Depth<br>(metres)  | From     | То   | Remarks         |
| 1013<br>cont. | 8              | 30<br>40          |                         | - 1.00<br>- 1.00 | 34·32<br>34·32                           | 27.63<br>27.63 |        | _    |                                                                                    |                           |    | 7.18                | N 70 V                                  | 250-0<br>250-100   |          |      |                 |
|               |                | 50                |                         | - 1.00           | 34.32                                    | 27.63          |        |      |                                                                                    |                           |    |                     | • •                                     | 100-50             |          |      |                 |
|               |                | 60<br>80          |                         | -1.10<br>-1.12   | 34.32                                    | 27·63<br>27·63 |        |      |                                                                                    |                           | _  | 7.16                | N 50 V                                  | 50-0<br>100-0      |          | 2155 |                 |
|               |                | 100               |                         | -1.18            | 34.35                                    | 27.66          |        |      |                                                                                    |                           |    | 7.17                | N 70 B                                  | 93-0               | 2210     | 2230 | КТ              |
|               |                | 150               |                         | -0.62            | 34.43                                    | 27·70<br>27·75 |        |      | _                                                                                  |                           |    | 6.01<br>6.02        | N 100 B<br>N 70 B                       | 1 93 0             |          | 30   |                 |
|               |                | 200<br>290        |                         | -0.74<br>-0.72   | 34.48                                    | 27.74          |        |      |                                                                                    |                           |    | 5.90                | N 100 B                                 | 314-140            | 2210     | 2240 | DGP             |
|               |                | 390               |                         | - o·78           | 34.22                                    | 27.78          | —      | -    |                                                                                    |                           |    | 5.82                | N 100 H                                 | 0-5                | 2219     | 2249 |                 |
|               |                | 580<br>780        |                         | - 0.92<br>- 1.03 | 34·56<br>34·58                           | 27·81<br>27·84 |        |      |                                                                                    | _                         | _  | 5.85<br>5.88        |                                         |                    |          |      |                 |
|               |                | 970               |                         | - 1.04           | 34.28                                    | 27.84          |        | -    | _                                                                                  |                           |    | 5.73                |                                         |                    |          |      |                 |
|               |                | 1460              |                         | - 1.12           | 34.28                                    | 27.84          |        |      |                                                                                    |                           | _  | 5.65<br>5.81        |                                         |                    |          |      |                 |
|               |                | 1800              | 1799                    | - 1.54           | 34.28                                    | 27.84          | _      |      |                                                                                    |                           |    | 5.01                |                                         |                    |          |      |                 |
| 1014          | 8              | 0                 |                         | - 1.06           | 34.32                                    | 27.63          |        | -    |                                                                                    | _                         |    | 7.11                | N 70 V                                  | 500-250            | 0205     |      |                 |
|               |                | 10                |                         | - 1.06<br>- 1.05 | 34·32<br>34·32                           | 27·63<br>27·63 | _      | -    |                                                                                    |                           |    | 7.10                | ,,                                      | 250-100<br>100-50  |          |      |                 |
|               |                | 20<br>30          |                         | - 1.02           | 34 34                                    | 27.63          | _      |      | _                                                                                  |                           |    |                     | ,,<br>,,                                | 50-0               |          |      |                 |
|               |                | 40                |                         | - 1.00           | 34.32                                    | 27.63          | —      |      | -                                                                                  | —                         |    | 7.09                | N 50 V                                  | 100-0              |          | 0243 |                 |
|               |                | 50                |                         | -1.02<br>-0.09   | 34.32                                    | 27·63<br>27·62 |        |      | _                                                                                  |                           |    | 7.06                | N 70 B<br>N 100 B                       | 144-0              | 0320     | 0340 | KT              |
|               |                | 60<br>80          |                         | -0.99            | 34.34                                    | 27.64          |        |      |                                                                                    |                           |    | -                   | N 100 H                                 | 0-5                | 0318     | 0348 |                 |
|               |                | 100               |                         | -0.94            | 34.34                                    | 27.64          | -      |      |                                                                                    | -                         | —  | 6.99                |                                         |                    |          |      |                 |
|               |                | 150<br>200        |                         | -0.82<br>-0.24   | 34·37<br>34·43                           | 27·66<br>27·70 |        |      | _                                                                                  | _                         | _  | 6·79<br>6·13        |                                         |                    |          | ĺ    |                 |
|               |                | 300               |                         | -0.54            | 34.52                                    | 27.75          | _      | -    |                                                                                    | -                         |    | 5.29                |                                         |                    |          |      |                 |
|               |                | 400               |                         | -0.14            | 34.53                                    | 27.76          | -      | -    | -                                                                                  | -                         |    | 5.46                |                                         |                    |          |      |                 |
|               |                | 500               |                         | -0.04            | 34.27                                    | 27.78          | -      |      |                                                                                    | -                         |    | 5.42                |                                         |                    |          |      |                 |
| 1015          | 9              | 0                 |                         | -0.41            | 33.96                                    | 27.31          | -      | -    |                                                                                    | -                         |    | 7.65                | N 50 V                                  | 100-0              | 2003     | 2010 |                 |
|               |                | 10                |                         | -0.41            | 33.96                                    | 27.31          |        |      |                                                                                    | _                         |    | 7.67                | N 70 B<br>N 100 B                       | 128-0              | 2210     | 2230 | КТ              |
|               |                | 20<br>30          |                         | -0.41            | 33.96                                    | 27·31<br>27·31 |        |      |                                                                                    |                           |    | -                   | N 70 B                                  |                    | 2210     | 2240 | DGP             |
|               |                | 40                | -                       | -0.49            | 33.96                                    | 27.31          |        |      |                                                                                    |                           |    | 7.65                | N 100 B                                 | 350-120            | 2210     |      | DGF             |
|               |                | 50                |                         | -0.49<br>-0.22   | 33·96                                    | 27·31<br>27·32 | _      |      | _                                                                                  |                           |    | 7.65                | N 100 H                                 | 0-5                | 2212     | 2244 |                 |
|               |                | 60<br>80          |                         | -0.20            | 33.96                                    | 27.32          | 1      |      |                                                                                    |                           |    |                     |                                         |                    |          |      |                 |
|               |                | 100               | -                       | -0.21            | 34.05                                    | 27.38          |        | -    |                                                                                    | -                         | -  | 6.87                |                                         |                    |          |      |                 |
|               |                | 150<br>200        |                         | 0.34<br>1.48     | 34·23<br>34·41                           | 27·49<br>27·56 |        |      | _                                                                                  |                           |    | 5'73<br>4'53        |                                         |                    |          |      |                 |
|               |                | 300               |                         | 1.91             | 34.52                                    | 27.62          |        | -    | -                                                                                  |                           |    | 4.02                |                                         |                    |          |      |                 |
|               |                | 390               |                         | 2.01             | 34.60                                    | 27.67          |        | -    | _                                                                                  |                           | _  | 3.88                |                                         |                    |          |      |                 |
|               |                | 590<br>780        | _                       | 2.01<br>1.89     | 34 <sup>.</sup> 67<br>34 <sup>.</sup> 70 | 27.73          | _      | _    |                                                                                    | _                         |    | 3·85<br>3·93        |                                         |                    |          |      |                 |
|               |                | 980               |                         | 1.71             | 34.73                                    | 27.80          | -      | -    |                                                                                    | -                         | -  | 4.04                |                                         |                    |          |      |                 |
|               |                | 1470              | 1487                    | 1.31             | 34.74                                    |                | _      | -    |                                                                                    |                           | -  | 4·21<br>4·28        |                                         |                    |          |      |                 |
|               |                | 1950<br>2440      |                         | 0.99<br>0.67     | 34 <sup>.</sup> 73<br>34 <sup>.</sup> 71 | 27·85<br>27·86 |        | _    | _                                                                                  | _                         | 1  | 4.06                |                                         |                    |          |      |                 |
|               |                | 2930              |                         | 0.31             | 34.20                                    | 27.87          | -      | -    |                                                                                    |                           |    | 4.52                |                                         |                    |          |      |                 |
|               |                | 3420              | 3421                    | 0.00             | 34.69                                    | 27.87          |        | -    |                                                                                    | -                         | -  | 4.21                |                                         |                    |          |      |                 |
| 1016          | 10             | 0                 |                         | -0.50            | 33.84                                    | 27.20          |        |      |                                                                                    | -                         |    | 7.78                | N 70 V                                  | 1000-750           | 0835     |      |                 |
|               |                | 10                | _                       | -0.53            | 33.84                                    | 27.20          | 1      |      |                                                                                    | _                         |    | 7.81                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 750-500<br>500-250 |          |      |                 |
|               |                | 20<br>30          |                         | -0.26 <br> -0.27 | 33·84<br>33·84                           | 27·20<br>27·20 | _      |      | _                                                                                  |                           |    | -                   | ,,                                      | 250-100            |          |      |                 |
|               |                | 40                |                         | -0.52            | 33.84                                    | 27.20          |        | -    |                                                                                    |                           |    | 7.79                | ,,                                      | 100-50             |          |      |                 |
|               |                | 50                |                         | -0.58            | 33.84                                    |                |        |      |                                                                                    |                           |    | 7.80                | N 50 V                                  | 50-0<br>100-0      | _        | 1023 |                 |
|               |                | 60<br>80          |                         | -0.38            | 33.84                                    | 27·20<br>27·21 | _      | _    | _                                                                                  |                           |    |                     | N 70 B                                  | 113-0              | 1111     | 1131 | КT              |
|               |                | 100               | -                       | -0.30            | 33.93                                    | 27.28          |        | _    | -                                                                                  | 1                         | -  | 7.27                | N 100 B                                 | 1                  |          |      | (DGP. Closing   |
|               |                | 150               | -                       | 0.57             | 34.07                                    |                |        |      |                                                                                    | _                         |    | 6·36<br>5·14        | N 70 B<br>N 100 B                       | 360-130            | IIII     | 1141 | depth estimated |
|               | 1              | 200<br>300        |                         | 1.24             | 34.24                                    |                |        |      |                                                                                    | -                         |    | 4.26                | N 100 H                                 | 0-5                | 1112     | 1142 |                 |
|               |                | 390               | -                       | 2.11             | 34.48                                    | 27.57          |        | -    | -                                                                                  |                           |    | 4.02                |                                         |                    |          |      |                 |
|               |                | 590               | -                       | 2.24             | 34.60                                    | 27.65          | -      | -    |                                                                                    |                           |    | 3.69                |                                         |                    | <u> </u> |      |                 |
|               | <u> </u>       |                   | I                       | 1                | 1                                        | <u> </u>       | 1      |      |                                                                                    |                           |    | - t                 | · · · · · · · · · · · · · · · · · ·     |                    |          |      |                 |

# R.R.S. Discovery II

|               |                          |              |      | Sounding             | WIN       | D                | SEA       |       |         | neter<br>Dars)           | Air Ten     | np.°C.      |                         |
|---------------|--------------------------|--------------|------|----------------------|-----------|------------------|-----------|-------|---------|--------------------------|-------------|-------------|-------------------------|
| Station       | Position                 | Date         | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                 |
| 1016<br>cont. | 57° 19' S, 56° 19'9' W   | 1932<br>8 xi |      |                      |           |                  |           |       |         |                          |             |             |                         |
| 1017          | 56° 00·2′ S, 56° 07·6′ W | 8 xi         | 2000 | 4326*                | N         | 10               | N         | 3     | OS      | 999.3                    | - 0.5       | - 1.5       | mod. conf. S swell      |
| 1018          | 54° 43.9′ S, 55° 55.7′ W | 9 xi         | 0830 | 756*                 | NNW       | 17               | NNW       | 3     | oe      | 988.1                    | 5.8         | 5-3         | mod. conf. WNW<br>swell |
| 1019          | 53° 22.6′ S, 56° 02′ W   | 9 xi         | 2003 | 2796*                | NW×W      | 9                | NW×W      | 2     | csp     | 986·0                    | 6.7         | 6.1         | mod. conf. NW swell     |
|               |                          |              |      |                      |           |                  |           |       |         |                          |             |             |                         |
| 1020          | 52° 03·8′ S, 57° 15·6′ W | 10 xi        | 0833 | 392*                 | W         | 22               | W         | 4     | bc      | 1000.3                   | 6.9         | 6.2         | mod. conf. WSW<br>swell |

|                              |                |                                                                                                                                               |                              |                                                                                                                                                                                      | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DLOGIC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AL OBS | ERVAT | 1085                                                                             |                           |    |                                                                                                                                                       | BIOLO                                                                     | GICAL OBSER                                                                         | <u>87710</u>                 | N 5                          |           |
|------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|----------------------------------------------------------------------------------|---------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------|------------------------------|-----------|
| Section                      | Age of         |                                                                                                                                               | N.<br>eter                   |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |       | Mg.—at                                                                           | om m, <sup>1</sup>        |    |                                                                                                                                                       |                                                                           |                                                                                     | TI                           | ME                           | D. J.     |
| Station                      | moon<br>(days) | Depth<br>(metres)                                                                                                                             | Depth by<br>thermometer      | Temp.<br>C.                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | σt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pН     | P     | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ + \\ N_2 \end{array}$ | Nitrite<br>N <sub>2</sub> | Si | O <u>n</u><br>c.c.<br>htre                                                                                                                            | Gear                                                                      | Depth<br>(metres)                                                                   | From                         | Тө                           | Remarks   |
| <b>1016</b><br><i>cont</i> . | 10             | 780<br>980<br>1470<br>1960<br>2450<br>2940                                                                                                    | <br><br><br>2935             | 2.14<br>2.06<br>1.69<br>1.30<br>0.90<br>0.62                                                                                                                                         | 34.67<br>34.69<br>34.74<br>34.73<br>34.72<br>34.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27·72<br>27·73<br>27·81<br>27·83<br>27·85<br>27·85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |       |                                                                                  |                           |    | 3.66<br>3.63<br>4.02<br>3.88<br>3.95<br>4.15                                                                                                          |                                                                           |                                                                                     |                              |                              |           |
| 1017                         | 10             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>100<br>150<br>200<br>300<br>390<br>590<br>780<br>980<br>1470<br>1920<br>2400<br>2880<br>3360<br>3840 | <br><br><br>1470<br><br>3839 | 0.70<br>0.60<br>0.54<br>0.50<br>0.50<br>0.41<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>1.18<br>1.81<br>2.21<br>2.33<br>2.24<br>1.96<br>1.70<br>1.38<br>1.00<br>0.79<br>0.49         | 33.79<br>33.79<br>33.79<br>33.79<br>33.79<br>33.79<br>33.79<br>33.79<br>33.79<br>33.79<br>33.79<br>33.79<br>33.79<br>33.79<br>34.79<br>34.73<br>34.73<br>34.73<br>34.73<br>34.73<br>34.71<br>34.70<br>34.70<br>34.73<br>34.71<br>34.70<br>34.60                                                                                                                                                                                                                                                                                                                                                                                  | 27:12<br>27:13<br>27:13<br>27:13<br>27:13<br>27:13<br>27:15<br>27:15<br>27:23<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40<br>27:40 |        |       |                                                                                  |                           |    | 7.62<br>-7.61<br>-7.61<br>7.60<br>7.36<br>6.34<br>5.32<br>4.17<br>3.78<br>3.77<br>3.82<br>3.93<br>3.83<br>4.07<br>4.02<br>4.16                        | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H               | 100-0<br>110-0<br>330-150<br>0-5                                                    | 2132<br>2216<br>2216<br>2226 | 2140<br>2236<br>2246<br>2256 | KT<br>DGP |
| 1018                         | II             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>100<br>150<br>200<br>300<br>400<br>600                                                               |                              | 4.97<br>4.97<br>4.97<br>4.97<br>4.97<br>4.97<br>4.97<br>4.97                                                                                                                         | 3+16<br>3+16<br>3+16<br>3+16<br>3+16<br>3+16<br>3+16<br>3+16<br>3+16<br>3+16<br>3+122<br>3+22<br>3+23<br>3+23<br>3+22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.03<br>27.03<br>27.03<br>27.03<br>27.03<br>27.03<br>27.04<br>27.05<br>27.08<br>27.12<br>27.12<br>27.12<br>27.16<br>27.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |                                                                                  |                           |    | $\begin{array}{c} 6.80 \\ - \\ 6.79 \\ - \\ 6.79 \\ - \\ 6.78 \\ - \\ 6.58 \\ 6.43 \\ 6.40 \\ 6.33 \\ 6.04 \end{array}$                               | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H | 700-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>110-0<br>322-156<br>0-5 | 0837<br>                     |                              | KT<br>DGP |
| 1019                         | 11             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>100<br>150<br>200<br>2000<br>2500                                                                    |                              | 5.11<br>5.13<br>5.05<br>5.00<br>4.99<br>4.92<br>4.90<br>4.92<br>4.90<br>4.92<br>4.90<br>4.92<br>4.90<br>4.92<br>4.93<br>3.78<br>3.31<br>3.00<br>2.50<br>2.76<br>2.47<br>2.20<br>1.96 | 3+16<br>3+16<br>3+19<br>3+20<br>3+20<br>3+20<br>3+20<br>3+220<br>3+220<br>3+220<br>3+221<br>3+21<br>3+21<br>3+21<br>3+21<br>3+21<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+20<br>3+22<br>3+21<br>3+21<br>3+21<br>3+20<br>3+32<br>3+32<br>3+32<br>3+32<br>3+54<br>3+57<br>3+75 | 27.02<br>27.02<br>27.05<br>27.06<br>27.06<br>27.07<br>27.07<br>27.12<br>27.16<br>27.18<br>27.20<br>27.25<br>27.28<br>27.31<br>27.39<br>27.59<br>27.71<br>27.59<br>27.71<br>27.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |       |                                                                                  |                           |    | $\begin{array}{c} 6.95 \\ - \\ 6.94 \\ - \\ 6.89 \\ 6.89 \\ 6.81 \\ 6.55 \\ 6.43 \\ 6.35 \\ 5.78 \\ 5.81 \\ 4.48 \\ 3.63 \\ 3.68 \\ 3.58 \end{array}$ | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H               | 100-0<br>119-0<br>320-110<br>0-5                                                    | 2007<br>2143<br>2143<br>2144 | 2014<br>2203<br>2213<br>2214 | KT<br>DGP |
| 1020                         | I 2            | 0<br>10                                                                                                                                       | -                            | 6·43<br>6·42                                                                                                                                                                         | 33·80<br>33·80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26·57<br>26·57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -      |       |                                                                                  | _                         | _  | 6.92                                                                                                                                                  | N 70 V<br>,,                                                              | 250-100<br>100-50                                                                   | 0840                         |                              |           |

|               |                                     |               |      | Sounding             | WIN          | D                | ~I \         |       |         | leter<br>Dars)           | Air Ter     | np. C.      |                     |
|---------------|-------------------------------------|---------------|------|----------------------|--------------|------------------|--------------|-------|---------|--------------------------|-------------|-------------|---------------------|
| Station       | Position                            | Date          | Hour | Sounding<br>(metres) | Direction    | Force<br>(knots) | Direction    | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks             |
| 1020<br>cont. | 52° 03.8′ S, 57° 15.6′ W            | 1932<br>10 xi |      |                      |              |                  |              |       |         |                          |             |             |                     |
| 1021          | 51° 20·1′ S, 55° 20·1′ W            | 13 xi         | 2000 | 1299*                | WNW          | 25               | WNW          | 5     | Ь       | 990·8                    | 7.0         | 6.3         | heavy WNW swell     |
| 1022          | 50° 59 <sup>.</sup> 1′ S, 52° 47′ W | 14 xi         | 0830 | 2068*                | WNW          | 15               | WNW          | 3     | b       | 995.3                    | 6.4         | 5.7         | heavy conf. W swell |
| 1023          | 50° 48.9′ S, 51° 32.9′ W            | 16 xi         | 2000 | 2102*                | $W \times N$ | 19               | $W \times N$ | 4     | b       | 1001.2                   | 6.0         | 4.2         | heavy WSW swell     |
| 1024          | 50° 32·9′ S, 49° 08·9′ W            | 17 xi         | 0830 | 2840                 | NNE          | 10-18            | NNE          | +     | be      | 1002.0                   | 5.4         | 4.6         | mod. conf. SW swell |

|               |                |                   |                         |              | HYDRO          | LOGICA         | L OBSF | RV.VT | 1028                        |                     |    |                    | BIOEC             | GICAL OBSI          | RVATIC | 1    |         |
|---------------|----------------|-------------------|-------------------------|--------------|----------------|----------------|--------|-------|-----------------------------|---------------------|----|--------------------|-------------------|---------------------|--------|------|---------|
| Guiter        | Age of         |                   | y.<br>ter               |              |                |                |        |       | Mg —a                       | tom m. <sup>3</sup> |    |                    |                   |                     | FT     | ML   |         |
| Station       | moon<br>(days) | Depth<br>(metres) | Depth by<br>thermometer | Temp.<br>C.  | S .            | σt             | рН     | P     | Nitrate<br>Nitrite<br>$N_2$ | Nitrite<br>N        | Si | O_<br>c c<br>litre | Селт              | Depth<br>(metres)   | From   | Τo   | Remark- |
| 1020<br>cont. | 12             | 20                |                         | 6·40<br>6·01 | 33·80<br>33·79 | 26·58<br>26·63 |        |       |                             |                     |    | 6.91               | N 70 V<br>N 50 V  | 50-0<br>100-0       |        |      |         |
| 2011.         |                | 30<br>40          |                         | 5.61         | 33.79<br>33.85 | 26.71          |        |       |                             | _                   |    | 6.51               | N 70 B            | 1                   |        | 0907 | 1.7(1)  |
|               |                | 50                | _                       | 5.23         | 33.86          | 26.72          |        | -     |                             | -                   |    | -                  | N 100 B           | 143-0               | 0929   | 0949 | KT      |
|               |                | 60<br>80          |                         | 5.30<br>5.31 | 33·87<br>33·94 | 26·77<br>26·82 |        | -     |                             |                     |    | 6.40               | N 100 H           | 0-5                 | 0927   | 0957 |         |
|               |                | 100               | _                       | 5.22         | 33.94          | 26.85          |        |       |                             |                     |    | 6.59               |                   |                     |        |      |         |
|               |                | 150               |                         | 5.01         | 34.04          | 26.93          |        |       |                             | _                   | —  | 6.54               |                   |                     |        |      |         |
|               |                | 200<br>300        |                         | 4·69<br>4·50 | 34·11<br>34·14 | 27·03<br>27·08 |        | _     | _                           |                     |    | 6·29<br>6·21       |                   |                     |        |      |         |
|               |                | 300               |                         |              | 54.4           | 27 00          |        |       |                             |                     |    |                    |                   |                     |        |      |         |
| 1021          | 15             | 0                 |                         | 5.80         | 34.15          | 26·94          | _      | -     |                             | _                   | —  | 6.89               | N 50 V            | 100-0               | 2005   | 2013 |         |
|               |                | 10<br>20          |                         | 5.79<br>5.78 | 34·15<br>34·15 | 26.94          |        |       |                             |                     |    | 6.00               | N 70 B<br>N 100 B | 120-0               | 2119   | 2139 | KT      |
|               |                | 30                |                         | 5.80         | 34.12          | 26.94          |        |       |                             | _                   |    |                    | N 70 B            |                     |        |      | DGP     |
|               |                | 40                |                         | 5.21         | 34.15          | 26.97          |        |       |                             |                     |    | 6.92               | N 100 B           | 315-150             | 2119   | 2149 | DGP     |
|               |                | 50<br>60          |                         | 5·32<br>5·02 | 34.15          | 26·99<br>27·03 | _      | _     |                             | _                   |    | 6.86               | N 100 H           | 0-5                 | 2125   | 2155 | •       |
| 1             |                | 80                | _                       | 4.62         | 34.15          | 27.03          |        |       |                             |                     |    | 0.00               |                   |                     |        |      |         |
| 1             |                | 100               | —                       | 4.38         | 34.17          | 27.11          | -      | -     | _                           | _                   | -  | 6.55               |                   |                     |        |      |         |
|               |                | 150               | -                       | 4.31         | 34.19          | 27.14          |        |       |                             |                     |    | 6.54               |                   |                     |        |      |         |
| 1             |                | 200<br>300        | _                       | 4·29<br>4·02 | 34·22<br>34·21 | 27.15          | _      |       |                             |                     |    | 6·39<br>6·25       |                   |                     |        |      |         |
|               |                | 400               | -                       | 3.91         | 34.21          | 27.19          |        | —     | -                           | -                   |    | 6.20               |                   |                     |        |      |         |
|               |                | 600               |                         | 3.18         | 34.19          | 27.25          |        |       |                             | _                   |    | 6.03               |                   |                     |        |      |         |
|               |                | 800<br>1000       |                         | 2·77<br>2·78 | 34.23          | 27·32<br>27·39 |        |       | _                           | _                   |    | 5·41<br>4·56       |                   |                     |        |      |         |
|               |                |                   |                         | - 70         | 34 33          | 27 39          |        |       |                             |                     |    | + 30               |                   |                     |        |      |         |
| 1022          | 16             | 0                 | -                       | 5.82         | 34.23          | 26.99          | -      | _     | -                           | -                   | -  | 6.91               | N 70 V            | 1000-720            | 0835   |      |         |
|               |                | 10<br>20          |                         | 5·74<br>5·60 | 34·23<br>34·22 | 27.00          |        |       |                             |                     |    | 6.93               | ,,                | 750-500<br>500-250  |        |      |         |
|               |                | 30                | _                       | 5.20         | 34.21          | 27.01          |        | -     |                             | _                   | -  | -                  | ,,                | 250-100             |        |      |         |
|               |                | 40                | -                       | 5.42         | 34.30          | 27.01          |        |       |                             | -                   |    | 6.91               | ,,                | 100-0               |        |      |         |
|               |                | 50<br>60          |                         | 5·39<br>5·17 | 34.20          | 27.01          |        |       |                             | _                   |    | 6.01               | ,,                | 100-50<br>50-0      |        |      |         |
|               |                | 80                | _                       | 4.19         | 34.20          | 27.15          | _      |       |                             | -                   |    | _                  | N 50 V            | 100-0               | -      | 1020 |         |
|               |                | 100               |                         | 3.94         | 34.30          | 27.18          | -      |       |                             | -                   |    | 6.68               | N 70 B            | } 98-0              | 1034   | 1054 | KT      |
|               |                | 150<br>200        |                         | 3.64         | 34.20          | 27.21          |        |       |                             | _                   | _  | 6·56<br>6·47       |                   | 300-126             | 1034   | 1104 |         |
|               |                | 300               |                         | 3.12         | 34.18          | 27.25          |        |       |                             | _                   |    | 6.37               | N 100 H           | 0-5                 | 1036   |      |         |
|               |                | 400               | -                       | 2.99         | 34.30          | 27.27          |        | -     |                             | -                   | -  | 5.81               |                   |                     |        |      |         |
|               |                | 600<br>800        |                         | 2.65<br>2.63 | 34.28          | 27.37          |        |       |                             |                     | _  | 5.00               |                   |                     |        |      |         |
|               |                | 1000              |                         | 2.43         | 34·42<br>34·51 | 27·47<br>27·56 | _      | _     |                             |                     | _  | 4·13<br>3·73       |                   |                     |        |      |         |
|               |                | 1500              | _                       | 2.14         | 34.67          | 27.72          |        | -     |                             |                     | -  | 3.61               |                   |                     |        |      |         |
| 1023          | 18             |                   | _                       | 5.31         | 34.15          | 27.00          |        |       | _                           |                     |    | 6.91               | N 50 V            | 100-0               | 2005   | 2020 |         |
| 1020          | 10             | 10                |                         | 5.34         | 34.17          | 27.00          | _      |       | _                           | _                   | -  |                    | N 70 B            | 112-0               | 2152   | 2213 | KT      |
|               |                | 20                | -                       | 5.38         | 34.17          | 27.00          | -      | -     | -                           | -                   | -  | 6.93               | N 100 B           | 1112-0              | 2152   | 2213 |         |
|               |                | 30                |                         | 5·38<br>5·22 | 34.17          | 27.00          | _      | _     |                             | _                   | _  | 6.92               | N 70 B<br>N 100 B | 318-130             | 2152   | 2223 | DGP     |
|               |                | 40<br>50          |                         | 5 22         | 34·17<br>34·16 | 27.02          | _      | _     |                             | _                   |    |                    | N 100 H           | 0-5                 | 2157   | 2227 |         |
|               |                | 60                | -                       | 5.02         | 34.12          | 27.03          |        | -     | -                           |                     |    | 6.89               |                   |                     |        |      |         |
|               |                | 80                | _                       | 4.26         | 34.14          | 27.10          |        |       |                             |                     |    | 6.81               |                   |                     |        |      |         |
|               |                | 100               |                         | 4·10<br>3·55 | 34.15          | 27.13          |        |       | _                           | -                   |    | 6.74               |                   |                     |        |      |         |
|               |                | 200               | -                       | 3.22         | 34.15          | 27.22          | —      |       | -                           | -                   | -  | 6.26               |                   |                     |        |      |         |
|               | ļ              | 300               | -                       | 2.92         | 34.14          | 27.24          |        | -     |                             |                     |    | 6·43<br>6·01       |                   |                     |        |      |         |
|               | ł              | 400               |                         | 2.94         | 34.14          | 27.23          | _      |       |                             | _                   | _  | 5.05               |                   |                     |        |      |         |
|               |                | 800               | -                       | 2.29         | 34.42          | 27.33          |        | -     | -                           | -                   |    | 4.24               | 1                 |                     |        |      |         |
|               |                | 1000              | -                       | 2.45         | 34.49          | 27.54          | -      | -     |                             |                     |    | 3.71               |                   |                     |        |      |         |
|               | 1              | 1500<br>2000      |                         | 2·18<br>1·86 | 34·65<br>34·70 | 27.69<br>27.77 |        |       |                             |                     |    | 3.60               |                   |                     | 1      |      |         |
|               | 1              |                   |                         |              |                |                |        |       |                             |                     |    |                    | <b>.</b>          |                     |        |      |         |
| 1024          | 19             | 0                 | -                       | 4.80         | 34.17          |                |        | -     |                             |                     |    | 6.87               | N 70 V            | 1000-750<br>750-500 | 0834   |      |         |
|               |                | 10                | -                       | 4.80         | 34.17          | 27.00          | -      | -     | _                           |                     |    |                    | ,,                | ,30,500             |        |      |         |
| L             |                | . I               | 1                       |              |                |                | L      |       |                             |                     |    | 1                  | <u>.</u>          |                     |        |      |         |

| Station       | Position                 | Date          | Hour  | Sounding<br>(metres) | w1N                           | ар<br>Тр         | SEX                           | <u> </u> |         | neter<br>bars)           | Air Tei     | mp. C.      |                                 |
|---------------|--------------------------|---------------|-------|----------------------|-------------------------------|------------------|-------------------------------|----------|---------|--------------------------|-------------|-------------|---------------------------------|
|               |                          |               | linda | (metres)             | Direction                     | Force<br>(knots) | Direction                     | Force    | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                         |
| 1024<br>cont. | 50° 32·9′ S, 49° 08·9′ W | 1932<br>17 xi |       |                      |                               |                  |                               |          |         |                          |             |             |                                 |
| 1025          | 50° 18·3′ S, 47° 12·4′ W | 17 xi         | 2000  | 2803*                | NNW                           | 16               | NNW                           | 4        | fe      | 992.8                    | 7.3         | 7.2         | mod. conf. SSW and<br>NW swells |
| 1026          | 49° 59.6′ S, 44° 41.3′ W | 18 xi         | 0830  | 2759*                | $W \times N$                  | 12               | W 	imes N                     | 3        | bc      | 997.0                    | 5.7         | 5.0         | mod. conf. swell                |
| 1027          | 51° 19·8′ S, 44° 40·8′ W | 18 xi         | 2000  | 2709*                | $\mathbf{N} 	imes \mathbf{W}$ | 8                | $\mathbf{N} 	imes \mathbf{W}$ | 4        | с       | 988.9                    | 4.3         | 4.1         | mod. conf. N×W<br>swell         |

| 1024- | -1027 |
|-------|-------|
|-------|-------|

|         |                |                   |                         |              | HYDRO          | LOGICA         | L OBSE | RVATI | ONS                           |                    |    |                     | BIOLO             | GICAL OBSE        | RVATIO | 1-   |                 |
|---------|----------------|-------------------|-------------------------|--------------|----------------|----------------|--------|-------|-------------------------------|--------------------|----|---------------------|-------------------|-------------------|--------|------|-----------------|
|         | Age of         |                   | ter                     |              |                |                |        |       | Mg.—at                        | om m. <sup>3</sup> |    |                     |                   |                   |        | НE.  |                 |
| Station | moon<br>(days) | Depth<br>(metres) | Depth by<br>thermometer | Temp.<br>°C. | S°,            | σt             | pН     | Р     | Nitrate<br>+<br>Nitrite<br>Ng | Nitrite<br>N2      | 51 | Og<br>c.c.<br>litre | Gear              | Depth<br>(metres) | I rom  | Τo   | Remarks         |
| 1024    | 19             | 20                |                         | 4.80         | 34.17          | 27.06          |        |       |                               |                    |    | 6.90                | N 70 V            | 500-250           |        |      |                 |
| cont.   |                | 30<br>40          |                         | 4'79<br>4'79 | 34·17<br>34·17 | 27·06<br>27·06 |        |       |                               |                    |    | 6.87                | ,,                | 250-100<br>100-50 |        |      |                 |
|         |                | 50                |                         | 4.73         | 34.17          | 27.07          |        |       |                               |                    | _  | -                   | 3 3               | 50-0              |        |      |                 |
|         |                | 60                |                         | 4.60         | 34.16          | 27.08          |        |       |                               | -                  |    | 6.89                | N 50 V            | 0-001             | —      | 1025 |                 |
|         |                | 80<br>100         | _                       | 4·33<br>3·64 | 34.14          | 27.10          |        |       |                               | _                  |    | 6.81                | N 70 B<br>N 100 B | 89-0              | 1044   | 1104 | KT              |
|         |                | 150               |                         | 2.86         | 34.13          | 27.22          |        |       |                               |                    |    | 6.72                | N 70 B            | 246-120           | 1044   | 1114 | DGP             |
|         | Į              | 200               |                         | 2.71         | 34.13          | 27.23          |        | -     | -                             | -                  |    | 6.59                | N 100 B           | 1 240 120         | 1044   |      |                 |
|         |                | 300<br>400        |                         | 2·31<br>2·04 | 34.12          | 27.27          |        |       | _                             |                    |    | 6·18<br>5·99        |                   |                   |        |      |                 |
|         |                | 600               |                         | 2.40         | 34.30          | 27.40          |        | -     | _                             |                    |    | 4.68                |                   |                   |        |      |                 |
|         |                | 800               |                         | 2.32         | 34.43          | 27.51          | -      |       |                               | -                  |    | 4.01                |                   |                   |        |      |                 |
|         |                | 1000<br>1500      |                         | 2·35<br>2·13 | 34.56          | 27.61          |        |       |                               |                    | _  | 3.81<br>3.57        |                   |                   |        |      |                 |
|         |                | 2000              |                         | 1.84         | 34.00          | 27.78          |        | -     |                               |                    |    | 3.75                |                   |                   |        |      |                 |
|         |                | 2500              |                         | 1.36         | 34.74          | 27.84          |        | -     |                               |                    | -  | 3.96                |                   |                   |        |      |                 |
| 1025    | 19             | 0                 |                         | 5.02         | 34.08          | 26.97          |        |       |                               | -                  | _  | 7.00                | N 50 V            | 100-0             | 2008   | 2015 |                 |
|         | - 7            | 10                |                         | 5.12         | 34.10          | 26.97          |        | -     |                               | -                  |    | -                   | N 70 B            | } 140-0           | 2137   | 2157 | КТ              |
|         | 1              | 20                | -                       | 5.12         | 34.10          | 26.97          |        | _     |                               | _                  |    | 7.03                | N 100 B<br>N 70 B | J                 | 51     |      |                 |
|         |                | 30                |                         | 4·95<br>4·02 | 34.10          | 26·99<br>27·10 |        |       | _                             |                    |    | 7.02                | N 100 B           | 400-160           | 2137   | 2207 | DGP             |
|         |                | 50                |                         | 3.38         | 34.10          | 27.15          |        |       |                               |                    |    |                     | N 100 H           | 0-5               | 2137   | 2207 |                 |
| 1       |                | 60                | -                       | 2.94         | 34.10          | 27.19          |        | -     | -                             | -                  | -  | 7.00                |                   |                   |        |      |                 |
|         |                | 80<br>100         | _                       | 2.66<br>2.38 | 34·10<br>34·08 | 27.22          |        | -     |                               | _                  |    | 7.00                |                   |                   |        |      |                 |
|         |                | 150               |                         | 1.97         | 34.07          | 27.25          |        | _     | -                             | -                  |    | 6.95                |                   |                   |        |      |                 |
|         |                | 200               |                         | 1.20         | 34.07          |                | -      |       | _                             |                    |    | 6·87                |                   |                   |        |      |                 |
|         |                | 300               | _                       | 1·73<br>2·30 | 34.12          | 1              |        |       |                               | _                  |    | 5.36                |                   |                   |        |      |                 |
|         |                | 600               | -                       | 2.47         | 34.44          |                |        | -     |                               |                    |    | 4.18                |                   |                   |        |      |                 |
|         |                | 800               |                         | 2.37         | 34.54          |                |        | -     |                               |                    |    | 3.88                |                   |                   |        |      |                 |
|         |                | 1000<br>1500      |                         | 2·24<br>1·98 | 34.59          |                | _      | _     | _                             | _                  | _  | 3.79                |                   |                   |        |      |                 |
|         |                | 2000              |                         | 1.75         | 34.74          |                | - 1    | - 1   |                               | -                  | -  | 3.95                |                   |                   |        |      |                 |
|         |                | 2500              |                         | 1.18         | 34.74          | 27.85          | -      | -     |                               | _                  | -  | 4.03                |                   |                   |        |      |                 |
| 1026    | 20             | 0                 | _                       | 4.60         | 34.04          |                |        | -     |                               |                    |    | 7.17                | N 70 V            | 1000-710<br>750-0 | 0834   |      |                 |
|         |                | 10<br>20          |                         | 4.62<br>4.62 |                |                |        |       | _                             |                    |    | 7.18                | ,,                | 750-500           |        |      |                 |
|         |                | 30                | _                       | 4.62         | 34.04          |                |        |       |                               | -                  | -  | _                   | ,,                | 500-230           |        |      |                 |
|         |                | 40                | 1 -                     | 4.62         |                |                |        |       |                               |                    |    | 7.14                |                   | 250-100<br>100-50 |        |      |                 |
|         |                | 50<br>60          |                         | 4.64         | 34.05          | 1              |        |       |                               | _                  | _  | 6.95                | ,,                | 50-0              |        |      |                 |
|         |                | 80                | -                       | 3.10         | 34.13          | 27.20          |        | -     | -                             |                    | -  | -                   | N 50 V            | 100-0             |        | 1030 |                 |
|         |                | 100               |                         | 3.01<br>2.68 | 34.13          |                |        | -     | _                             | -                  |    | 6·72<br>6·65        | N 70 B<br>N 100 B | 98-0              | 1047   | 1107 | KT              |
|         |                | 1 50<br>200       |                         | 2.45         | -              |                |        | _     |                               | -                  |    | 6.46                | N 70 B            | 285-130           | 1047   | 1117 | DGP             |
|         |                | 300               | -                       | 1.86         | 34.13          | 27.30          | ·  —   | -     | -                             | -                  |    | 6.24                | N 100 B           | 0-5               | 1049   | 1119 |                 |
|         |                | 400               |                         | 2·40<br>2·46 | 1              |                |        |       | _                             |                    |    | 5·26<br>4·21        | N 100 H           | 0-5               | 1049   | 1    |                 |
|         |                | 800               | _                       | 2.30         | 1 -            |                |        | _     |                               | -                  |    | 3.88                |                   |                   |        |      |                 |
|         |                | 1000              | -                       | 2.26         | 34.61          | 27.67          | ·      | -     |                               |                    | -  | 3.66                |                   |                   |        |      |                 |
|         |                | 1500              |                         | 2.07         |                |                |        |       |                               |                    | _  | 3.93                |                   |                   |        |      |                 |
|         |                | 2000<br>2500      |                         | 2·19<br>1·43 | -              |                |        |       |                               |                    |    | 4.02                |                   |                   |        |      |                 |
| 100     | ,              | -                 |                         |              |                |                |        |       |                               |                    |    | 7.31                | N 50 V            | 100-0             | 2005   | 2013 |                 |
| 1027    | 20             | 0                 |                         | 3.63         | 1              |                |        | _     | _                             |                    | -  |                     | N 70 B            | 100-0             | 2139   | 2159 | Depth estimated |
| 1       |                | 20                | 1                       | 3.21         | 33.96          | 5 27.01        | -      |       |                               |                    | -  | 7.31                | N 100 B           | 1, 100 0          |        |      |                 |
|         |                | 30                |                         | 3.46         |                |                |        |       | _                             | _                  |    | 7.35                | N 70 B<br>N 100 B | 300-125           | 2139   | 2209 | DGP             |
|         |                | 40                |                         | 3.40         |                |                |        | _     | _                             |                    |    |                     | N 100 H           | 0-5               | 2140   | 2210 |                 |
|         |                | 60                | -                       | 2.30         | 33.96          | 5 27.15        | ;  -   |       |                               |                    | -  | 7.40                | CPR               |                   | 2220   |      |                 |
|         |                | 80<br>100         |                         | 0.60         |                |                |        |       | _                             | _                  | _  | 7.45                |                   |                   |        |      |                 |
|         |                |                   |                         | 0.09         | 33.94          |                |        |       |                               |                    |    |                     | <u> </u>          |                   |        | 1    | <u> </u>        |

|                     |                          |               |      | Sounding             | WIN                           | D                | SEA          | L     |         | leter<br>ars)            | Air Te      | in <b>p.</b> C. |                     |
|---------------------|--------------------------|---------------|------|----------------------|-------------------------------|------------------|--------------|-------|---------|--------------------------|-------------|-----------------|---------------------|
| Station             | Position                 | Date          | Hour | Sounding<br>(metres) | Direction                     | Force<br>(knots) | Direction    | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb     | Remarks             |
| <b>1027</b> 5 cont. | 51° 19.8′ S, 44° 40.8′ W | 1932<br>18 xi |      |                      |                               |                  |              |       |         |                          |             |                 |                     |
| 1028 5              | 52° 55·2′ S, 44° 38·2′ W | 19 xi         | 0830 | 2423*                | WNW                           | 16               | WNW          | 4     | 0       | 982·9                    | 3.3         | 2.9             | mod. W swell        |
| 1029 5.             | :4° 20.7′ S, 44° 35.8′ W | 19 xi         | 2000 | 3599*                | $\mathbf{W} 	imes \mathbf{N}$ | 6                | W×N          | 2     | od      | 98o·2                    | 2.4         | 2.3             | mod. conf. W swell  |
| 1030 5              | :5° 43·4′ S, 44° 31·4′ W | 20 Xİ         | 0830 | 3740*                | $\mathbf{S} 	imes \mathbf{W}$ | 20               | $S \times W$ | 4     | O       | 991.4                    | o·6         | -0.2            | mod. conf. SW swell |

|         |                |                   |                         |              | HYDRC          | DLOGIC.        | L OBSI | ERVAT    | IONS                    |              |    |                                 | BIOLOG            | GICAL OBSER        | VATIO? | ss.      |         |
|---------|----------------|-------------------|-------------------------|--------------|----------------|----------------|--------|----------|-------------------------|--------------|----|---------------------------------|-------------------|--------------------|--------|----------|---------|
|         | Age of         |                   | er                      |              |                |                |        |          | Mg.—at                  | om m.ª       |    |                                 |                   |                    | TI     | ME       |         |
| Station | moon<br>(days) | Depth<br>(metres) | Depth by<br>thermometer | Temp.<br>°C. | S°/₀₀          | σt             | рН     | Р        | Nitrate<br>+<br>Nitrite | Nitrite<br>N | Si | O <sub>2</sub><br>c.c.<br>fitre | Gear              | Depth<br>(metres)  | From   | То       | Remarks |
|         |                |                   | the                     |              |                |                |        |          |                         |              |    |                                 |                   |                    |        |          |         |
| 1027    | 20             | 150               | -                       | 0.69         | 34.04          | 27·31<br>27·32 |        |          |                         |              |    | 7:39<br>6:74                    |                   |                    |        |          |         |
| cont.   |                | 200<br>300        |                         | 0.65<br>1.60 | 34·05<br>34·24 | 27.32          |        |          |                         |              |    | 5.38                            |                   |                    |        |          |         |
|         |                | 400               | _                       | 2.05         | 34.36          | 27.48          |        |          | —                       | _            |    | 4.65                            |                   |                    |        |          | -       |
|         |                | 600               |                         | 2.19         | 34.20          | 27.57          |        |          | -                       | —            |    | 3.96                            |                   |                    |        |          |         |
|         |                | 800               |                         | 2.14         | 34.62          | 27.69          |        |          | _                       |              |    | 3.79<br>3.79                    |                   |                    |        |          |         |
|         |                | 1000<br>1500      |                         | 2.00<br>3.10 | 34·64<br>34·65 | 27·70<br>27·70 |        |          | _                       |              |    | 3.44                            |                   |                    |        |          |         |
|         |                | 2000              |                         | 1.48         | 34.5           | 27.83          |        |          | —                       |              |    | 3.81                            |                   |                    |        |          |         |
|         |                | 2500              |                         | 0.92         | 34.73          | 27.85          |        |          | -                       | —            |    | 4.06                            |                   |                    |        |          |         |
| 1028    | 21             | 0                 |                         | 2.40         | 33.99          | 27.16          |        |          | _                       | _            |    | 7.31                            | N 70 V            | 1000-735           | 0835   |          |         |
|         |                | 10                |                         | 2.40         | 33.99          | 27.16          |        | —        |                         |              |    | -                               | ,,                | 750-490            |        |          |         |
|         |                | 20                |                         | 2.38         | 33.99          | 27.16          |        |          |                         |              |    | 7.30                            | ,,                | 500-250<br>250-100 |        |          |         |
|         |                | 30                |                         | 2·33<br>2·29 | 33.99<br>33.99 | 27.17<br>27.17 | _      | _        |                         |              |    | 7.33                            | • •               | 100-50             |        |          |         |
|         |                | 40<br>50          |                         | 2.20         | 33.99          | 27.18          |        |          |                         |              | _  | _                               | ,,                | 5 <b>0</b> -0      |        |          |         |
|         |                | 60                |                         | 2.10         | 33.99          | 27.18          |        |          |                         | -            |    | 7:30                            | N 50 V            | 100-0              | —      | 0953     |         |
|         |                | 80                | —                       | 1.20         | 34.03          | 27.24          |        |          | _                       |              |    | 7:07                            | N 70 B<br>N 100 B | 119-0              | 1015   | 1035     | КТ      |
|         |                | 100               |                         | 1.39         | 34.03          | 27·27<br>27·29 |        |          |                         |              |    | 7.05<br>6.59                    | N 100 B           | )                  |        |          | DOD     |
|         |                | 150<br>200        |                         | 1.20<br>1.43 | 34·08<br>34·09 | 27.30          |        | _        | _                       |              |    | 6.20                            | N 100 B           | 330-135            | 1015   | 1045     | DGP     |
|         |                | 290               |                         | 1.92         | 34.27          | 27.41          |        | -        |                         | —            |    | 5.06                            | N 100 H           | o-5                | 1020   | 1050     |         |
|         |                | 390               |                         | 2.21         | 34.39          | 27.47          | —      |          | _                       | -            |    | 4.34                            |                   |                    |        |          |         |
|         |                | 580               | -                       | 2.21         | 34·52<br>34·60 | 27·59<br>27·66 |        |          |                         |              |    | 3.83<br>3.65                    |                   |                    |        |          |         |
|         |                | 780<br>970        |                         | 2·15<br>2·05 | 34.66          | 27.00          | _      | _        |                         |              |    | 3.74                            |                   |                    |        |          |         |
|         |                | 1460              | _                       | 1.01         | 34.73          | 27.81          | —      |          | 1                       | -            |    | 3.83                            |                   |                    |        |          |         |
|         |                | 1950              | 1952                    | 1.16         | 34.73          | 27.84          |        |          |                         | -            |    | 4.06                            |                   |                    |        |          |         |
| 1029    | 21             | 0                 |                         | 1.44         | 33.91          | 27.16          |        | -        | _                       |              |    | 7.55                            | N 50 V            | 100-0              | 2007   | 2014     |         |
|         |                | 10                |                         | 1.40         | 33.92          | 27.18          |        | -        | -                       | -            |    |                                 | N 70 B            | 100-0              | 2158   | 2218     | КТ      |
|         |                | 20                | _                       | 1.30         | 33.93          | 27.18          |        |          |                         |              |    | 7.60                            | N 100 B<br>N 70 B | 1                  |        |          | DOD     |
|         |                | 30<br>40          |                         | 1·22<br>1·20 | 33.93          | 27.19          | _      |          |                         |              |    | 7.54                            | N 100 B           | 300-150            | 2158   | 2228     | DGP     |
|         |                | 50                |                         | 1.10         | 33.93          | 27.20          |        | -        |                         | -            |    |                                 | N 100 H           | 0-5                | 2158   | 2228     |         |
|         |                | 60                |                         | 0.90         | 33.93          | 27.21          |        | -        |                         |              |    | 7.53                            |                   |                    |        |          |         |
|         |                | 80                |                         | 0.41         | 33.94          |                |        |          |                         |              |    | 7:37                            |                   |                    |        |          |         |
|         |                | 100<br>150        |                         | 1.10<br>0.00 | 33.94          | 27·27<br>27·32 |        |          |                         |              |    | 6.11                            |                   |                    |        |          |         |
|         |                | 200               |                         | 1.22         | 34.20          | 27.38          | _      | -        |                         |              |    | 5.41                            |                   |                    |        |          |         |
|         |                | 300               |                         | 1.90         | 34.37          | 27.50          | -      | -        |                         |              |    | 4.58                            |                   |                    |        |          |         |
|         |                | 400               |                         | 2.00         | 34.43          | 27.54          |        |          |                         |              |    | 4·20<br>3·85                    |                   |                    |        |          |         |
|         |                | 590<br>790        |                         | 2·12<br>2·03 | 34·56<br>34·65 | 27.63          |        |          | _                       |              |    | 3.87                            |                   |                    |        |          |         |
|         |                | 990               |                         | 1.89         | 34.70          | 27.77          |        | -        | -                       |              | —  | 3.89                            |                   |                    |        |          |         |
|         |                | 1480              | —                       | 1.61         | 34.73          | 27.81          | -      |          | -                       |              |    | 3.99                            |                   |                    |        |          |         |
|         |                | 1880              |                         | 1·20<br>0·86 | 34.73          | 27·84<br>27·85 |        |          |                         |              |    | 4.02                            |                   |                    |        |          |         |
|         |                | 2350<br>2820      | 2822                    | 0.63         | 34·72<br>34·71 | 27.86          |        |          |                         |              | -  | 4.26                            |                   |                    |        |          |         |
| 1030    | 22             | 0                 |                         | 1.24         | 33.94          | 27.16          | _      | -        | _                       | -            |    | 7.34                            | N 70 V            | 1000-720           | 0830   |          |         |
|         | 24 I           | 10                |                         | 1.70         | 33.96          |                |        | -        | -                       |              |    |                                 | ,,                | 750-500            |        |          |         |
|         |                | 20                |                         | 1.20         | 33.96          |                | -      |          |                         | -            |    | 7.35                            | ,,<br>,,          | 500-250            |        |          |         |
|         |                | 30                | -                       | 1.68         | 33.96          | 1              |        |          |                         |              |    | 7.35                            | , 1               | 250-100<br>100-50  |        |          |         |
|         | l              | 40<br>50          |                         | 1.63<br>1.60 | 33·96<br>33·97 |                |        | -        |                         |              | -  |                                 | 11                | 50-0               |        |          |         |
|         |                | 60                |                         | 1.20         | 33.97          | 27.20          |        |          |                         | -            | -  | 7.28                            | N 50 V            | 100-0              |        | 1005     |         |
|         |                | 80                | -                       | 1.20         | 34.01          |                | -      |          |                         |              | _  | 7:20                            | N 70 B<br>N 100 B | 126-0              | 1025   | 1045     | КТ      |
|         |                | 100               | _                       | 1.36         | 34·02<br>34·06 |                | _      |          |                         |              |    | 7.20                            | N 70 B            | 1                  | 1000   | TOPE     | DGP     |
|         |                | 150<br>200        | _                       | 0·36<br>1·54 | 34.00          |                |        |          |                         |              |    | 5.47                            | N 100 B           | 340-135            | 1025   | 1056     |         |
|         |                | 300               | -                       | 2.00         | 34.34          | 27.47          | -      | -        |                         |              |    | 4.26                            |                   |                    |        |          |         |
|         |                | 400               |                         | 2.30         | 34.43          |                | -      | -        |                         |              | _  | 4·30<br>3·69                    |                   |                    |        |          |         |
|         |                | 590               |                         | 2.20         | 34.56          |                | _      |          |                         |              | _  | 3.81                            |                   |                    |        |          |         |
|         |                | 790<br>990        |                         | 1.94         | 34.20          |                |        | -        | -                       |              |    | 3.82                            |                   |                    |        |          |         |
|         |                |                   |                         |              |                |                |        | <u> </u> |                         |              |    |                                 | <u> </u>          |                    |        | <u> </u> | <u></u> |

|               |                          |               |      | Sounding             | WIN       | D                | SEA       |       |         | ieter<br>bars)           | Air Ter     | np.°C.      |                    |
|---------------|--------------------------|---------------|------|----------------------|-----------|------------------|-----------|-------|---------|--------------------------|-------------|-------------|--------------------|
| Station       | Position                 | Date          | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks            |
| 1030<br>cont. | 55° 43.4′ S, 44° 31.4′ W | 1932<br>20 Xi |      |                      |           |                  |           |       |         |                          |             |             |                    |
| 1031          | 56° 56.4′ S, 44° 32.3′ W | 20 xi         | 2010 | 3548*                | WSW       | 15               | WSW       | 4     | 0       | 99 <b>5</b> .0           | - 0.5       | - 0.9       | mod. WSW swell     |
|               |                          |               |      |                      |           |                  |           |       |         |                          |             |             |                    |
| 1032          | 58° 29′ S, 44° 34·4′ W   | 21 Xİ         | 0830 | 2890*                | NW        | 10               | NW        | 2     | 0       | 989.2                    | 0.3         | - O. I      | mod. conf. W swell |
| 1033          | 59° 38·2′ S, 44° 30·8′ W | 21 xi         | 2005 | 3062*                | N×E       | 20               | N×E       | 4     | os      | 980.3                    | - 0-6       | - 0.6       | low conf. W swell  |
| 1034          | 60° 57·6′ S, 44° 39·8′ W | 24 xi         | 1138 | 232*                 | ESE       | 17               | ESE       | 4     | og      | 967.5                    | - 0.8       | - 1.1       | mod. conf. S swell |

|               |                |                   |                         |                | HYDRO                                    | LOGICA                                   | L OBSI | RVATI | ONS          |                |    |                        | BIOLOC                                | GICAL OBSERV       | ATION  | .5       |                  |
|---------------|----------------|-------------------|-------------------------|----------------|------------------------------------------|------------------------------------------|--------|-------|--------------|----------------|----|------------------------|---------------------------------------|--------------------|--------|----------|------------------|
|               | Age of         |                   | , L                     |                |                                          |                                          |        |       | Mg.—at       | om m.3         |    |                        |                                       |                    | TI     | JE       |                  |
| Station       | moon<br>(days) | Depth<br>(metres) | Depth by<br>thermometer | Temp.<br>° C,  | S°.                                      | σt                                       | pH     |       | Nitrate      | Nitrite        |    | O <sub>2</sub><br>c.c. | Gear                                  | Depth<br>(metres)  |        |          | Remarks          |
|               |                | (menes)           | Dep                     | С.             |                                          |                                          |        | Р     | Nitrite<br>N | N <sub>2</sub> | Si | litre                  |                                       | (                  | From   | То       |                  |
|               |                |                   |                         |                |                                          |                                          |        |       |              | ·              |    |                        |                                       |                    |        |          |                  |
| 1030<br>cont. | 22             | 1480<br>1970      |                         | 1.00<br>1.12   | 34 <sup>.</sup> 73<br>34 <sup>.</sup> 73 | 27·81<br>27·84                           |        |       |              |                |    | 4.01<br>4.24           |                                       |                    |        |          |                  |
| com.          |                | 2460              |                         | 0.76           | 34.71                                    | 27.86                                    |        |       | _            | -              |    | 4.34                   |                                       |                    |        |          |                  |
|               |                | 2960              | 2958                    | 0.46           | 34.70                                    | 27.86                                    |        |       |              | _              |    | 4'47                   |                                       |                    |        |          |                  |
| 1031          | 22             | 0                 |                         | 0.22           | 34.05                                    | 27.35                                    |        |       |              |                |    | 7·81                   | N 50 V                                | 1 00-0             | 2010   | 2017     |                  |
|               |                | 10                |                         | 0.31           | 34.05                                    | 27.35                                    |        |       |              |                |    |                        | N 70 B<br>N 100 B                     | 140-0              | 2153   | 2213     | KT               |
|               |                | 20<br>7 30        |                         | 0.10<br>0.10   | 34·05<br>34·05                           | 27·35<br>27·35                           |        |       |              |                |    |                        | N 70 B                                | 370-104            | 2153   | 2223     | DGP              |
|               |                | 40                | _                       | 0.11           | 34.05                                    | 27.35                                    |        | -     | -            | -              |    | 7.79                   | N 100 B                               | )                  |        |          |                  |
|               |                | 50<br>60          |                         | 0.01<br>       | 34.05<br>34.05                           | 27·36<br>27·36                           |        |       |              |                |    | 7.66                   | N 100 H                               | 0-5                | 2154   | 2244     |                  |
|               |                | 80                |                         | -0.02          | 34.05                                    | 27.36                                    |        |       |              |                |    |                        |                                       |                    |        |          |                  |
|               |                | 100               |                         | -0.09          | 34.05                                    | 27.37                                    |        |       |              |                |    | 7.60<br>7.03           |                                       |                    |        |          |                  |
|               |                | 150<br>200        |                         | - 0·39<br>0·07 | 34·14<br>34·29                           | 27.46                                    |        | -     |              |                |    | 6.16                   |                                       |                    |        |          |                  |
|               |                | 300               |                         | 0.01           | 34.47                                    | 27.65                                    |        | -     | -            | -              |    | 4.73                   |                                       |                    |        |          |                  |
|               |                | 400<br>600        |                         | 0.46<br>1.22   | 34·48<br>34·65                           | 27·69<br>27·77                           |        | _     |              |                |    | 5·18<br>4·40           |                                       |                    |        |          |                  |
|               |                | 800               | _                       | 1.21           | 34.72                                    | 27.81                                    |        |       | -            |                | _  | 4.51                   |                                       |                    |        |          |                  |
|               |                | 1000              |                         | 1.47           | 34.73                                    | 27·82<br>27·84                           |        |       |              |                |    | 4·19<br>4·20           |                                       |                    |        |          |                  |
|               |                | 1500<br>2000      |                         | 0.92<br>0.26   | 34·71<br>34·70                           | 27.86                                    | _      | _     | _            | _              |    | 4.23                   |                                       |                    |        |          |                  |
|               |                | 2500              |                         | 0.33           | 34.69                                    | 27.85                                    | -      |       | -            | -              |    | 4.24                   | 1                                     |                    |        | 1        |                  |
|               |                | 3000              |                         | 0.11           | 34.68                                    | 27.86                                    |        | -     | -            |                |    | 4.21                   |                                       |                    |        |          |                  |
| 1032          | 23             | 0                 |                         | 0.30           | 34.11                                    | 27.40                                    | -      | -     | -            |                |    | 7.63                   | N 70 V                                | 1000-750           | 0840   |          |                  |
|               |                | 10<br>20          |                         | 0.11           | 34·11<br>34·11                           | 27.40                                    |        |       | _            |                |    | 7.67                   | *2                                    | 750-500<br>500-250 |        |          |                  |
|               |                | 30                | -                       | 0.02           | 34.11                                    | 27.41                                    | -      | -     | -            |                |    | -                      | ,,                                    | 250-100            |        | 1        |                  |
|               |                | 40                |                         | - 0.01         | 34.11                                    | 27.41                                    |        |       |              |                |    | 7.60                   | · · · · · · · · · · · · · · · · · · · | 100-50<br>50-0     |        |          |                  |
|               |                | 50<br>60          |                         | -0.11          | 34.13                                    | 27.43                                    |        |       | _            | -              |    | 7.52                   | N 50 V                                | 100-0              | -      | 1115     |                  |
|               |                | 8 <b>o</b>        |                         | -0.31          | 34.16                                    | 27.47                                    | _      | _     |              |                |    | 6.90                   | N 70 B<br>N 100 B                     | 107-0              | 1158   | 1218     | КТ               |
|               |                | 100<br>150        |                         | -0.38<br>-0.38 | 34.22                                    | 27.51                                    | _      |       |              |                |    | 6.11                   | N 70 B                                | 284-96             | 1158   | 1228     | DGP              |
|               |                | 200               | -                       | 0.08           | 34.46                                    | 27.69                                    |        | -     |              |                |    | 5.44<br>4.86           | N 100 B                               | 0-5                | 1158   | 1229     |                  |
|               |                | 300<br>400        | _                       | 1.10<br>0.00   | 34·56<br>34·65                           | 27 <sup>.</sup> 74<br>27 <sup>.</sup> 77 |        |       |              | _              |    | 4.61                   |                                       |                    |        |          |                  |
|               |                | 600               |                         | 1.04           | 34.20                                    | 27.83                                    | _      | -     | -            |                |    | 4.45                   |                                       |                    |        |          |                  |
|               |                | 800               |                         | I·21<br>I·00   | 34 <sup>.</sup> 74<br>34 <sup>.</sup> 73 | 27·85<br>27·85                           | -      | -     | _            |                | _  | 4.18                   |                                       |                    |        |          |                  |
| 1             |                | 1500              |                         | 0.24           | 34.71                                    | 27.87                                    |        |       | -            |                |    | 4.21                   |                                       |                    |        |          |                  |
|               |                | 2000              |                         | 0.18           | 34·69<br>34·68                           | 27.86                                    |        |       |              |                |    | 4.52                   |                                       |                    |        | 2        |                  |
|               |                | 2500              |                         | 0.01           | 34 00                                    |                                          |        |       |              |                |    |                        |                                       |                    | 1 2007 | 2015     |                  |
| 1033          | 23             | 0                 | -                       | 0.11           | 34.09                                    |                                          |        |       | _            |                |    | 7.71                   | N 50 V<br>N 70 B                      | 100-0              | 2007   |          | КТ               |
|               |                | 10                | -                       | 0.09           | 34.10                                    | 1                                        | 1      |       | -            |                | -  | 7.70                   | N 100 B                               | 113-0              | 2318   | 2330     | DGP. Lower depth |
|               |                | 30                | -                       | 0.02           | 34.11                                    | 27.41                                    | -      |       |              |                | _  | 7.37                   | N 70 B                                | 270-100            | 2318   | 2348     | 1 estimated      |
|               |                | 40                |                         | -0.11          | 34.11                                    |                                          |        |       |              |                | -  |                        | N 100 H                               | 0-5                | 2319   | 2349     |                  |
|               |                | 60                | -                       | - 0.39         | 34.16                                    | 27.46                                    | -      | -     | -            | -              | -  | 7.12                   |                                       |                    |        |          |                  |
|               |                | 80                |                         | 0.08           | 34.18                                    |                                          |        |       | -            | _              |    | 7.03                   |                                       |                    |        |          |                  |
|               |                | 150               | 1                       | 1.66           | 34.49                                    | 27.61                                    |        |       |              | -              | -  | 4.25                   |                                       |                    |        |          |                  |
|               |                | 200               | 1                       | 1.20           |                                          |                                          |        |       |              |                |    | 4.02                   |                                       |                    |        |          |                  |
|               |                | 400               |                         | 1.80           | 34.64                                    | 27.72                                    | - 1    |       | -            |                |    | 4.13                   |                                       |                    |        |          |                  |
|               |                | 600<br>800        |                         | 1.46           | 1 -                                      |                                          |        |       |              | _              |    | 4.19                   |                                       |                    |        |          |                  |
|               |                | 1500              |                         | 0.52           |                                          |                                          |        |       |              |                | -  | 4.36                   |                                       |                    |        |          |                  |
|               |                | 2000              | » —                     | 0.27           | 34.68                                    | 3 27.86                                  |        | -     |              |                |    | 4.50                   |                                       |                    |        |          |                  |
|               |                | 2500              |                         | 0.04           | 34.07                                    | 2/00                                     | ´      |       |              |                | 1  |                        |                                       |                    | 1.1.0  |          |                  |
| 1034          | 26             |                   |                         | - 1.10         |                                          |                                          |        | -     |              |                |    | 7.61                   | N 70 V                                | 200-100            | 1140   |          |                  |
|               |                | 10                | <u></u>                 | - 1.19         | 34.53                                    | 3 27.50                                  |        |       |              |                |    |                        |                                       |                    |        | <u> </u> | <u> </u>         |

|               |                                                      |               |      | Sounding             | WIN           | 1D               | SEA           | 4     |         | neter<br>Dars)           | Air Ter     | np. C.      |                                   |
|---------------|------------------------------------------------------|---------------|------|----------------------|---------------|------------------|---------------|-------|---------|--------------------------|-------------|-------------|-----------------------------------|
| Station       | Position                                             | Date          | Hour | Sounding<br>(metres) | Direction     | Force<br>(knots) | Direction     | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                           |
| 1034<br>cont. | 60° 57·6′ S, 44° 39·8′ W                             | 1932<br>24 xi |      |                      |               |                  |               |       |         |                          |             |             |                                   |
| 1035          | 61° 56·2′ S, 44° 44·2′ W                             | 24 xi         | 2030 | 429*                 | ESE           | 18–20            | ESE           | 3     | 0       | 979'3                    | - 1.6       | - 2.1       | mod. conf. E × N swell            |
| 1036          | 61° 52·3′ S, 42° 23·1′ W                             | 25 xi         | 0820 | 779*                 | $SE \times S$ | 18               | $SE \times S$ | 2     | с       | 98 <del>7</del> -8       | - 3.5       | - 4.0       | mod. conf. NE swell               |
|               | 61° 32·5′ S, 40° 49·8′ W<br>61° 39·4′ S, 40° 00·3′ W |               |      | <br>3410*            | S<br>Lt airs  | 12               | S             | 2     | с<br>0  |                          |             |             | low NE swell<br>low conf. E swell |
|               |                                                      |               |      |                      |               |                  |               |       |         |                          |             |             |                                   |

|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                                                                                                                                                                                                                                                                                                                                                                   | HYDRO                                                                                                                               | LOGICA                                                                                                                                                                                 | J. OBSI | RVAT | 1085                                    |                           |    |                                      | RioLo                                                                     | SICAL OBSER                                                                        | VA1101                       |                              |                                                                                  |
|---------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|-----------------------------------------|---------------------------|----|--------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------|------------------------------|----------------------------------------------------------------------------------|
|               | Age of         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y.<br>eter              |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                     |                                                                                                                                                                                        |         |      | Mg.—at                                  | om m.ª                    |    |                                      |                                                                           |                                                                                    | 11                           | 41                           |                                                                                  |
| Station       | moon<br>(days) | Depth<br>(metres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                                                                                                                                                                                       | S '.,                                                                                                                               | σt                                                                                                                                                                                     | рН      | Р    | $\frac{\text{Nitrate}}{\text{Nitrite}}$ | Nitrite<br>N <sub>2</sub> | Si | O,<br>c.c.<br>litre                  | Gear                                                                      | Depth<br>(metres)                                                                  | 1 rom                        | Το                           | Remark .                                                                         |
| 1034<br>cont. | 26             | 20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | $ \begin{array}{c} -1 \cdot 21 \\ -1 \cdot 21 \\ -1 \cdot 27 \\ -1 \cdot 27 \\ -1 \cdot 30 \\ -1 \cdot 30 \\ -1 \cdot 31 \\ -1 \cdot 32 \\ -1 \cdot 25 \\ -0 \cdot 72 \end{array} $                                                                                                                                                                                               | 34·28<br>34·28<br>34·28<br>34·28<br>34·30<br>34·30<br>34·30<br>34·31<br>34·31                                                       | 27.60<br>27.60<br>27.60<br>27.60<br>27.61<br>27.61<br>27.61<br>27.62<br>27.71                                                                                                          |         |      |                                         |                           |    | 7·59<br>7·53<br>7·46<br>7·11<br>6·05 | N 70 V<br>N 50 V<br>N 70 B<br>N 100 B                                     | 50-0<br>100-0<br>} 165-0                                                           | 1220                         | 1214<br>1240                 | КТ                                                                               |
| 1035          | 26             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | -1.21 $-1.21$ $-1.21$ $-1.21$ $-1.21$ $-1.21$ $-1.21$ $-1.23$ $-1.37$ $-1.43$ $-1.51$ $-1.11$ $-0.51$ $-0.21$                                                                                                                                                                                                                                                                     | 3+31<br>3+31<br>3+31<br>3+31<br>3+31<br>3+31<br>3+31<br>3+31                                                                        | 27.62<br>27.62<br>27.62<br>27.62<br>27.62<br>27.62<br>27.62<br>27.62<br>27.68<br>27.70<br>27.70<br>27.75<br>27.82<br>27.82<br>27.85                                                    |         |      |                                         |                           |    | 7:46<br>                             | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                          | 100-0<br>  100-0<br>  274-116<br>0-5                                               | 2120<br>2219<br>2219<br>2220 | 2127<br>2239<br>2249<br>2250 | Among drift ice<br>KT<br>DGP                                                     |
| 1036          | 27             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | -1.41 $-1.44$ $-1.48$ $-1.49$ $-1.50$ $-1.50$ $-1.53$ $-1.53$ $-1.56$ $-1.24$ $-0.80$ $-0.34$ $-0.11$ $-0.18$ $-0.19$                                                                                                                                                                                                                                                             | 34·29<br>34·30<br>34·30<br>34·30<br>34·30<br>34·30<br>34·30<br>34·30<br>34·35<br>34·37<br>34·44<br>34·54<br>34·65<br>34·65<br>34·65 | 27.61<br>27.62<br>27.62<br>27.62<br>27.62<br>27.62<br>27.62<br>27.62<br>27.62<br>27.63<br>27.68<br>27.73<br>27.80<br>27.85<br>27.84<br>27.85<br>27.85                                  |         |      |                                         |                           |    | 7:74<br>                             | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H | 700-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>90-0<br>258-120<br>0-5 | <br>1012<br>1012<br>1014     | 0955<br>1032<br>1042<br>1044 | Among drift ice.<br>Shipshiftedduring<br>station to avoid ice<br>KT<br>DGP       |
| 1037          | 27             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | - 1.18                                                                                                                                                                                                                                                                                                                                                                            | 34.45                                                                                                                               | 27.70                                                                                                                                                                                  | -       |      |                                         |                           |    |                                      | N 50 V<br>N 70 B<br>N 100 B<br>N 100 H                                    | 100-0<br>148-0<br>0-5                                                              | 1605<br>1623<br>1620         | 1613<br>1643<br>1650         | КТ                                                                               |
| 1038          | 27             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>1500<br>2000<br>1500<br>2000<br>300<br>400<br>600<br>800<br>150<br>200<br>300<br>400<br>50<br>60<br>80<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>100<br>150<br>200<br>300<br>100<br>150<br>200<br>300<br>100<br>150<br>200<br>300<br>100<br>100<br>100<br>100<br>100<br>100<br>1 |                         | $ \begin{array}{c} -1\cdot 31 \\ -1\cdot 21 \\ -1\cdot 21 \\ -1\cdot 21 \\ -1\cdot 22 \\ -1\cdot 22 \\ -1\cdot 21 \\ -1\cdot 21 \\ -1\cdot 21 \\ -1\cdot 21 \\ -1\cdot 41 \\ -0\cdot 82 \\ -0\cdot 24 \\ 0\cdot 09 \\ 0\cdot 25 \\ 0\cdot 40 \\ 0\cdot 25 \\ 0\cdot 40 \\ 0\cdot 33 \\ 0\cdot 23 \\ 0\cdot 23 \\ 0\cdot 23 \\ 0\cdot 19 \\ -0\cdot 19 \\ -0\cdot 54 \end{array} $ | 3+29<br>3+33<br>3+38<br>3+38<br>3+38<br>3+38<br>3+38<br>3+39<br>3+39<br>3+53<br>3+64<br>3+66<br>3+668<br>3+66<br>3+66<br>3+66       | 27.60<br>27.63<br>27.68<br>27.68<br>27.68<br>27.68<br>27.69<br>27.70<br>27.79<br>27.85<br>27.84<br>27.85<br>27.85<br>27.85<br>27.85<br>27.86<br>27.86<br>27.86<br>27.87<br>82<br>27.88 |         |      |                                         |                           |    | 7:54<br>                             | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H               | 100-0<br>151-0<br>375-110<br>0-5                                                   | 2050<br>2227<br>2227<br>2228 | 2100<br>2247<br>2257<br>2258 | KT<br>DGP<br>Station worked in<br>light brash near<br>edge of heavy pack-<br>ice |

|          |                           |               |      | Sounding | WIN          | 1)               | SEA          |       |         | neter<br>Dars)           | Air Tei      | np. C                                 |                |
|----------|---------------------------|---------------|------|----------|--------------|------------------|--------------|-------|---------|--------------------------|--------------|---------------------------------------|----------------|
| Station  | Position                  | Date          | Hour | (metres) | Direction    | Force<br>(knots) | Direction    | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb  | Wet<br>bulb                           | Remarks        |
| 1039     | 61° 29·9′ S, 37 - 14·5′ W | 1932<br>26 xi | 0817 | 3692*    | SW           | 4                | SW           | I     | 0       | 993.9                    | - 3.6        | - 4.2                                 | mod. NNW swell |
|          |                           |               |      |          |              |                  |              |       |         |                          |              |                                       |                |
|          |                           |               |      |          |              |                  |              |       |         |                          |              |                                       |                |
|          |                           |               |      |          |              |                  |              |       |         |                          |              |                                       |                |
|          |                           |               |      |          |              |                  |              |       |         |                          |              |                                       |                |
|          |                           |               |      |          |              |                  |              |       |         |                          |              |                                       |                |
| 1040     | 60° 50°4′ S, 37° 06°3′ W  | 26 xi         | 1600 | _        | WNW          | 9                | WNW          | I     | о       | 996·8                    | - 3.1        | - 3.6                                 | low NW swell   |
|          |                           |               |      |          |              |                  |              |       |         |                          |              |                                       |                |
| 1041     | 60° 31.3' S, 36 19.5' W   | 26 xi         | 2000 | 1737*    | $W \times N$ | 9                | $W \times N$ | I     | csp     | 99 <b>7</b> ·8           | - 2.7        | - 3.5                                 | low NW swell   |
|          |                           |               |      |          |              |                  |              |       |         |                          |              |                                       |                |
|          |                           |               |      |          |              |                  |              |       |         |                          |              |                                       |                |
|          |                           |               |      | :        |              |                  |              |       |         |                          |              |                                       |                |
|          |                           |               |      |          |              |                  |              |       |         |                          |              |                                       |                |
| 1042     | 60° 07·9′ S, 34° 19′ W    | 27 xi         | 0830 | 2055*    | Lt W airs    | 1-3              | W            | 2     | bcz     | 998.7                    | <b>-</b> 0.6 | - 1.4                                 | low NW swell   |
|          |                           |               |      |          | l            |                  |              |       |         |                          |              |                                       |                |
|          |                           |               |      |          |              |                  |              |       |         |                          |              |                                       |                |
|          |                           |               |      |          |              |                  |              |       |         |                          |              |                                       |                |
|          |                           |               |      |          |              |                  |              |       |         |                          |              | e e e e e e e e e e e e e e e e e e e |                |
| 1043     | 60 13.8' S, 33 06.1' W    | 27 xi         | 1600 |          | N            | 20               | Ν            | 3     | 0       | 992·2                    | - o·8        | - 1.4                                 | low NNW swell  |
| <u> </u> |                           |               |      |          |              |                  |              |       |         |                          |              |                                       |                |

|         |                |                                                                                                                                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                       | HYDRO                                                                                                                                                                                                                                                                                                                                                             | LOGICA                                                                                                                                                                                                               | L OBSE | ERVATI | IONS                                      |                       |    |                                                                                                                                                                                    | BIOLO                                                             | GICAL OBSEP                                                                                             | RATIO,                       | 15                           |                                                                                                                   |
|---------|----------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------------------------------------------|-----------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Station | Age of<br>moon |                                                                                                                                       | oy<br>eter              |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                      |        |        | Mg.—ato                                   | mm,ª                  |    |                                                                                                                                                                                    | ٠                                                                 |                                                                                                         | TI                           | MГ                           |                                                                                                                   |
| Station | (days)         | Depth<br>(metres)                                                                                                                     | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                                                                                                                                                                                                           | s.                                                                                                                                                                                                                                                                                                                                                                | σt                                                                                                                                                                                                                   | pH     | Р      | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | $\frac{Nitrite}{N_2}$ | Sı | O2<br>c.c.<br>litre                                                                                                                                                                | Gear                                                              | Depth<br>(metres)                                                                                       | 1 rom                        | Lo                           | Remat}                                                                                                            |
| 1039    | 28             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500<br>2500<br>3000<br>2500<br>3000 |                         | $\begin{array}{c} - \circ \cdot 99 \\ - 1 \cdot 00 \\ - 1 \cdot 01 \\ - 1 \cdot 01 \\ - 1 \cdot 01 \\ - 1 \cdot 30 \\ - 1 \cdot 31 \\ - 1 \cdot 31 \\ - 1 \cdot 31 \\ - 1 \cdot 30 \\ - 0 \cdot 52 \\ - 0 \cdot 90 \\ - 0 \cdot 52 \\ - 0 \cdot 90 \\ - 0 \cdot 11 \\ 0 \cdot 26 \\ 0 \cdot 44 \\ 0 \cdot 42 \\ 0 \cdot 31 \\ 0 \cdot 12 \\ - 0 \cdot 09 \\ - 0 \cdot 28 \\ - 0 \cdot 49 \end{array}$ | $34 \cdot 23$<br>$34 \cdot 23$<br>$34 \cdot 23$<br>$34 \cdot 23$<br>$34 \cdot 23$<br>$34 \cdot 23$<br>$34 \cdot 23$<br>$34 \cdot 23$<br>$34 \cdot 23$<br>$34 \cdot 23$<br>$34 \cdot 23$<br>$34 \cdot 33$<br>$34 \cdot 37$<br>$34 \cdot 38$<br>$34 \cdot 49$<br>$34 \cdot 63$<br>$34 \cdot 65$<br>$34 \cdot 69$<br>$34 \cdot 66$<br>$34 \cdot 66$<br>$34 \cdot 66$ | 27.55<br>27.55<br>27.55<br>27.55<br>27.56<br>27.60<br>27.63<br>27.68<br>27.68<br>27.68<br>27.68<br>27.74<br>27.75<br>27.84<br>27.83<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.86<br>27.87<br>27.87 |        |        |                                           |                       |    | $\begin{array}{c} 7.53 \\ 7.52 \\ - \\ 7.47 \\ - \\ 6.97 \\ - \\ 6.63 \\ 5.67 \\ 5.47 \\ 4.78 \\ 4.52 \\ 4.36 \\ 4.52 \\ 4.30 \\ 4.53 \\ 4.53 \\ 4.59 \\ 4.85 \\ 5.05 \end{array}$ | N 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>, | 1000 760<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>128-0<br>128-0<br>348-96<br>0-5 | 0820<br>1027<br>1027<br>1028 | 0955<br>1047<br>1057<br>1058 | Near edge of a stream<br>of light ice<br>KT<br>DGP                                                                |
| 1040    | 28             | 0                                                                                                                                     |                         | - 1.18                                                                                                                                                                                                                                                                                                                                                                                                | 34.12                                                                                                                                                                                                                                                                                                                                                             | 27.21                                                                                                                                                                                                                |        | _      |                                           |                       |    |                                                                                                                                                                                    | N 50 V<br>N 70 B<br>N 100 B<br>N 100 H                            | 100-0<br> } 137-0<br>0-5                                                                                | 1604<br>1617<br>1614         | 1611<br>1637<br>1644         | KT. Infrequent<br>streams of light ice<br>to be seen                                                              |
| 1041    | 28             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500                                 |                         | $\begin{array}{c} -1.05\\ -1.16\\ -1.22\\ -1.28\\ -1.31\\ -1.33\\ -1.40\\ -1.41\\ -0.91\\ -0.19\\ 0.15\\ 0.22\\ 0.50\\ 0.27\\ 0.27\\ 0.27\\ 0.22\end{array}$                                                                                                                                                                                                                                          | 34.11<br>34.11<br>34.12<br>34.13<br>34.14<br>34.16<br>34.30<br>34.30<br>34.40<br>34.54<br>34.66<br>34.66<br>34.66<br>34.66<br>34.67<br>34.67<br>34.67                                                                                                                                                                                                             | 27·85<br>27·85                                                                                                                                                                                                       |        |        |                                           |                       |    | 7·31<br>7·24<br>7·23<br>7·12<br>6·01<br>5·30<br>4·93<br>4·79<br>4·79<br>4·72<br>4·57<br>4·42<br>4·45                                                                               | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H       | 100-0<br>84-0<br>250-100<br>0-5                                                                         | 2003<br>2110<br>2110<br>2111 | 2010<br>2130<br>2140<br>2141 | KT<br>DGP                                                                                                         |
| 1042    | 29             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>800<br>1000<br>1500                                                      |                         | $\begin{array}{c} -1\cdot 28\\ -1\cdot 41\\ -1\cdot 42\\ -1\cdot 44\\ -1\cdot 49\\ -1\cdot 51\\ -1\cdot 52\\ -1\cdot 46\\ -1\cdot 22\\ -0\cdot 41\\ 0\cdot 06\\ 0\cdot 17\\ 0\cdot 29\\ 0\cdot 27\\ 0\cdot 28\\ 0\cdot 26\\ 0\cdot 10\end{array}$                                                                                                                                                     | $34 \cdot 20$<br>$34 \cdot 21$<br>$34 \cdot 21$<br>$34 \cdot 21$<br>$34 \cdot 21$<br>$34 \cdot 22$<br>$34 \cdot 24$<br>$34 \cdot 39$<br>$34 \cdot 54$<br>$34 \cdot 64$<br>$34 \cdot 66$<br>$34 \cdot 66$<br>$34 \cdot 66$<br>$34 \cdot 66$<br>$34 \cdot 67$<br>$34 \cdot 67$<br>$34 \cdot 67$                                                                     | 27.53<br>27.55<br>27.55<br>27.55<br>27.55<br>27.60<br>27.60<br>27.60<br>27.60<br>27.60<br>27.68<br>27.84<br>27.84<br>27.84<br>27.84<br>27.84<br>27.84<br>27.84<br>27.85<br>27.85                                     |        |        |                                           |                       |    | $\begin{array}{c} 7.15 \\ - \\ 7.11 \\ - \\ 7.10 \\ - \\ 6.85 \\ - \\ 6.23 \\ 5.43 \\ 4.96 \\ 4.76 \\ 4.65 \\ 4.52 \\ 4.48 \\ 4.42 \\ 4.57 \end{array}$                            | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B              | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>82-0<br>250-100                 |                              | 1015<br>1050<br>1100         | About <sup>1</sup> / <sub>2</sub> mile from<br>edge of pack-ice<br>with numbers of<br>included bergs<br>KT<br>DGP |
| 1043    | 29             | 0                                                                                                                                     |                         | - 1.30                                                                                                                                                                                                                                                                                                                                                                                                | 34.09                                                                                                                                                                                                                                                                                                                                                             | 27.44                                                                                                                                                                                                                | _      |        | _                                         |                       |    |                                                                                                                                                                                    | N 50 V<br>N 70 B<br>N 100 B<br>N 100 H                            | 100-0<br>  157-0<br>0-5                                                                                 | 1607<br>1617<br>1615         | 1612<br>1637<br>1645         | КТ                                                                                                                |

|         |                          |               |      | Sounding             | WIN          | D                | SEA       |       |                     | neter<br>Dars)           | Air Ter       | np. <sup>-</sup> C. |                            |
|---------|--------------------------|---------------|------|----------------------|--------------|------------------|-----------|-------|---------------------|--------------------------|---------------|---------------------|----------------------------|
| Station | Position                 | Date          | Hour | Sounding<br>(metres) | Direction    | Force<br>(knots) | Direction | Force | Weathe <del>r</del> | Barometer<br>(millibars) | Dry<br>bulb   | Wet<br>bulb         | Remarks                    |
| 1044    | 60° 00.6′ S, 32 21.6′ W  | 1932<br>27 xi | 2000 | 763*                 | $N \times W$ | 24               | N×W       | 5     | os                  | 984.8                    | -0.6          | - o·8               | mod. NNW swell             |
| 1045    | 58–33′ S, 27° 04·9′ W    | 29 xi         | 0835 | 2827*                | WNW          | 5                | WNW       | I     | с                   | 991.7                    | O.1           | - 1 · 1             | mod. conf. NW × W<br>swell |
| 1046    | 58 08.6′ S, 26° 52.1′ W  | 29 xi         | 1600 | 2879*                | NW×W         | 12               | NW × W    | 3     | ome                 | 988-1                    | - <b>o</b> ·6 | - o•6               | mod. NW swell              |
| 1047    | 57* 26*9' S, 26° 09*3' W | 30 xi         | 0230 | 2313*                | WNW          | 18               | WNW       | 4     | or                  | 985.4                    | 0.0           | 0.0                 | mod. WNW swell             |

|         |                |                                                                               |                         |                                                                                                                                  | HYDRO                                                                                                                      | DOGICA                                                                                                   | L OBSI | ERVAT | IONS                                                                                        |                           |    |                                                                                                       | BIOLO                                                                 | GICAL OBSER                                                                            | (VATIO                               | NS .                                 |                  |
|---------|----------------|-------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------|-------|---------------------------------------------------------------------------------------------|---------------------------|----|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|------------------|
| a. d    | Age of         |                                                                               | y<br>ter                |                                                                                                                                  |                                                                                                                            |                                                                                                          |        |       | Mgat                                                                                        | om m.1                    |    |                                                                                                       |                                                                       |                                                                                        | TI                                   | MF                                   |                  |
| Station | moon<br>(days) | Depth<br>(metres)                                                             | Depth by<br>thermometer | Temp.<br>C.                                                                                                                      | S',                                                                                                                        | σt                                                                                                       | pН     | P     | $\begin{array}{c} \text{Nitrate} \\ \stackrel{+}{\text{Nitrite}} \\ \text{N}_2 \end{array}$ | Nitrite<br>N <sub>2</sub> | Si | O <sub>2</sub><br>c.c.<br>litre                                                                       | Gear                                                                  | Depth<br>(metres)                                                                      | From                                 | То                                   | Remark -         |
| 1044    | 29             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300       |                         | -1.21 $-1.21$ $-1.21$ $-1.22$ $-1.34$ $-1.48$ $-1.59$ $-1.57$ $-1.46$ $-0.82$ $-0.31$ $0.08$                                     | 34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.09<br>34.17<br>34.22<br>34.28<br>34.45<br>34.45<br>34.45<br>34.64 | 27:41<br>27:41<br>27:41<br>27:41<br>27:41<br>27:45<br>27:52<br>27:55<br>27:61<br>27:72<br>27:79<br>27:84 |        |       |                                                                                             |                           |    | 7·82<br>7·84<br>7·82<br>7·03<br>6·53<br>5·74<br>5·15<br>4·80                                          | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H<br>N 70 B | 100-0<br>  117-0<br>296-0<br>296-100<br>0-5<br>225-96                                  | 2011<br>2108<br>2108<br>2110<br>2157 | 2018<br>2128<br>2138<br>2140<br>2227 | KT<br>DGP<br>DGP |
| 1045    | I              | 400<br>600<br>700<br>0<br>10<br>20                                            | 700                     | 0.31<br>0.18<br>0.19<br>- 1.44<br>- 1.54<br>- 1.61<br>- 1.61                                                                     | 34.66<br>34.66<br>34.66<br>34.06<br>34.08<br>34.08<br>34.08                                                                | 27·83<br>27·84<br>27·84<br>27·43<br>27·45<br>27·45<br>27·45                                              |        |       |                                                                                             |                           |    | 4·72<br>4·64<br>4·72<br>7·10<br>                                                                      | N 70 V                                                                | 1000-750<br>750-500<br>500-250                                                         | 0835                                 |                                      |                  |
|         |                | 30<br>40<br>50<br>60<br>80<br>100<br>150<br>200                               |                         | -1.66<br>-1.68<br>-1.71<br>-1.71<br>-1.66<br>-1.62<br>-0.64<br>-0.04                                                             | 34.08<br>34.08<br>34.08<br>34.08<br>34.13<br>34.31<br>34.48<br>34.61                                                       | 27.45<br>27.45<br>27.45<br>27.45<br>27.45<br>27.48<br>27.63<br>27.74<br>27.82                            |        |       |                                                                                             |                           |    | 7 <sup>.</sup> 08<br>7 <sup>.</sup> 04<br>6 <sup>.</sup> 34<br>5 <sup>.</sup> 44<br>4 <sup>.</sup> 94 | ,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                | 250-100<br>100-50<br>50-0<br>100-0<br>} 100-0<br>} 256-110                             | <br>1036<br>1036                     | 1020<br>1056<br>1106                 | KT<br>DGP        |
|         |                | 300<br>400<br>600<br>800<br>1000<br>1500<br>2000<br>2500                      |                         | 0.38<br>0.76<br>0.41<br>0.34<br>0.29<br>0.09<br>-0.06<br>-0.20                                                                   | 34.65<br>34.69<br>34.69<br>34.69<br>34.69<br>34.68<br>34.67<br>34.67<br>34.67                                              | 27·82<br>27·83<br>27·85<br>27·85<br>27·85<br>27·85<br>27·87<br>27·86<br>27·87                            |        |       |                                                                                             |                           |    | 4.66<br>4.63<br>4.46<br>4.46<br>4.44<br>4.50<br>4.63<br>4.76                                          | N 100 H                                                               | 0-5                                                                                    | 1037                                 | F107                                 |                  |
| 1046    | 2              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80                                   |                         | -1.01 -1.20 -1.23 -1.31 -1.34 -1.41 -1.61 -1.41                                                                                  | 34.00<br>34.02<br>34.02<br>34.03<br>34.03<br>34.04<br>34.21<br>34.31                                                       | 27·39<br>27·40<br>27·40<br>27·41<br>27·55<br>27·63                                                       |        |       |                                                                                             |                           |    | 7·57<br>7·59<br>7·53<br>7·53<br>6·78                                                                  | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H           | 100-0<br>119-0<br>330-90<br>0-5                                                        |                                      | 1616<br>1756<br>1806<br>1806         | KT<br>DGP        |
|         |                | 100<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1500<br>2000<br>2500 |                         | - 0.91<br>0.03<br>0.59<br>0.66<br>0.78<br>0.39<br>0.40<br>0.32<br>0.10<br>- 0.09<br>- 0.19                                       | 34:40<br>34:56<br>34:65<br>34:66<br>34:67<br>34:68<br>34:69<br>34:69<br>34:68<br>34:67<br>34:67                            | 27.68<br>27.77<br>27.81<br>27.81<br>27.82<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.86<br>27.87 |        |       |                                                                                             |                           |    | 5.84<br>5.05<br>4.68<br>4.59<br>4.61<br>4.54<br>4.53<br>4.48<br>4.56<br>4.75<br>4.75                  |                                                                       |                                                                                        |                                      |                                      |                  |
| 1047    | 2              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200              |                         | $ \begin{array}{r} -0.93 \\ -1.07 \\ -1.11 \\ -1.15 \\ -1.21 \\ -1.38 \\ -1.51 \\ -1.61 \\ -1.59 \\ -0.79 \\ -0.41 \end{array} $ | 34.07<br>34.10<br>34.10<br>34.10<br>34.12<br>34.15<br>34.19<br>34.26<br>34.26<br>34.26<br>34.25                            | 27:42<br>27:45<br>27:45<br>27:45<br>27:47<br>27:51<br>27:54<br>27:59<br>27:59<br>27:59<br>27:69<br>27:79 |        |       |                                                                                             |                           |    | 7:55<br>7:55<br>7:50<br>                                                                              | N 50 V<br>N 70 V<br><br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B        | 100-0<br>1000-770<br>750-500<br>250-250<br>250-100<br>100-50<br>50-0<br>84-0<br>230-86 | 0242<br>0438<br>0438                 | 0425<br>0458<br>0510                 | KT<br>DGP        |

#### R.R.S. Discovery II

|                      |                          |               |      | Sounding             | WIN       | Ď                | SE.4      | <br>\   |         | aeter<br>bars)           | Air Te      | mp. ° C.    | Remarks                           |
|----------------------|--------------------------|---------------|------|----------------------|-----------|------------------|-----------|---------|---------|--------------------------|-------------|-------------|-----------------------------------|
| Station              | Position                 | Date          | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force   | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb |                                   |
| <b>1047</b><br>cont. | 57° 26.9′ S, 26° 09.3′ W | 1932<br>30 xi |      |                      |           |                  |           |         |         |                          |             |             |                                   |
| 1048                 | 56° 32·2′ S, 27° 21·9′ W | 30 xi         | 1600 | 1515*                | WSW       | 10-15            | WSW       | 4       | С       | 994-9                    | - 0. I      | - o·8       | mod. conf. swell                  |
| 1049                 | 54° 49.7′ S, 29° 35.4′ W | t xii         | 0830 | 7105*                | ESE       | 8                | ESE       | 2       | 0       | 991 <sup>.</sup> 4       | 0.3         | -0.6        | mod. conf. W swell                |
| 1050                 | 53° 46.6′ S, 31° 09.2′ W | ı xii         | 2000 | 4070*                | SSE       | 20               | SSE       | 5 conf. | osp     | 987.9                    | -0.6        | - 1.0       | heavy conf. NNW<br>and ESE swells |

٠

#### 1047-1050

|         |                |              |                        |                  | плрко                                    | LOGICA         | L OBSE | RVATI | ONS           |                              |    |              | BIOLOG            | JICAL OBSER        | VATIO: | 15   |         |
|---------|----------------|--------------|------------------------|------------------|------------------------------------------|----------------|--------|-------|---------------|------------------------------|----|--------------|-------------------|--------------------|--------|------|---------|
|         | Age of         |              | . IJ                   |                  |                                          |                |        |       | Mg.—at        | om m, <sup>3</sup>           |    |              |                   |                    | TL     | ME   |         |
| Station | moon<br>(days) | Depth        | ch by<br>ometo         | Temp.            | s ° .                                    | σt             | pН     |       | Nitrate       |                              |    | O2<br>c.c.   | Gear              | Depth              |        |      | Remarks |
|         |                | (metres)     | Depth by<br>hermometer | ° C.             | ., .                                     | 01             | pri    | Р     | $Nitrite N_2$ | $\frac{\text{Nitrite}}{N_2}$ | Si | litre        | Gear              | (metres)           | From   | То   |         |
|         |                |              |                        |                  |                                          |                |        |       |               |                              |    |              |                   |                    |        |      |         |
| 1047    | 2              | 300          |                        | 0.13             | 34.64                                    | 27.83          | _      |       |               |                              |    | 4.72         | N 100 H           | 0-5                | 0439   | 0511 |         |
| cont.   |                | 400          | -                      | 0.49             | 34.66                                    | 27·82<br>27·83 |        |       |               | _                            |    | 4.62<br>4.48 |                   |                    |        |      |         |
|         |                | 600<br>800   | _                      | 0.31<br>0.31     | 34·66<br>34·66                           | 27.83          |        |       |               | _                            | -  | 4.34         |                   |                    |        |      |         |
|         |                | 1000         |                        | 0.51             | 34.67                                    | 27.85          |        |       |               |                              |    |              |                   |                    |        |      |         |
|         |                | 1500         | -                      | 0.10             | 34.67                                    | 27.85          | _      |       | -             |                              |    | 4.69         |                   |                    |        |      |         |
|         |                | 2000         | _                      | -0.15            | 34.66                                    | 27.86          |        | _     | _             | _                            |    | 4.75         |                   |                    |        |      |         |
| 1048    | 3              | 0            |                        | - o·65           | 34.04                                    | 27.38          |        | -     | -             | —                            |    | 7.21         | N 70 V            | 1000-770           | 1605   |      |         |
|         |                | 10           |                        | - o·69           | 34.04                                    | 27.38          |        | -     | -             | -                            |    | -            | ,,                | 750-500            |        |      |         |
|         |                | 20           | _                      | - 0.71<br>- 0.77 | 34 <sup>.</sup> 04<br>34 <sup>.</sup> 04 | 27·38<br>27·39 | _      |       |               |                              | _  | 7.71         | ,,                | 500–250<br>250–100 |        |      |         |
|         |                | 30<br>40     | _                      | -0.81            | 34.04                                    | 27.39          |        |       | -             |                              |    | 7.68         | ,,<br>,,          | 100-50             |        |      |         |
|         |                | 50           |                        | - o·82           | 34.04                                    | 27.39          | _      |       | -             | _                            |    | -            | ,,                | 50-0               |        |      |         |
|         |                | 60           | -                      | - o·88           | 34.09                                    | 27.43          |        | -     | -             |                              |    | 7.51         | N 50 V<br>N 70 B  | 100-0              | _      | 1735 |         |
|         |                | 80<br>100    |                        | - 0.91<br>- 0.86 | 34.15                                    | 27.49          |        |       |               |                              |    | 6.60         | N 70 B<br>N 100 B | 119-0              | 1547   | 1607 | KT      |
|         |                | 100<br>150   |                        | - 0.80<br>- 0.22 | 34 <sup>.</sup> 23<br>34 <sup>.</sup> 37 | 27·55<br>27·65 |        | —     | _             |                              | _  | 6.08         | N 70 B            | 1                  |        | 161- | DGP     |
|         |                | 200          | _                      | 0.09             | 34.23                                    | 27.75          |        | -     | -             | _                            | -  | 5.12         | N 100 B           | 340-140            | 1547   | 1617 | DOL     |
|         |                | 300          |                        | 0.70             | 34.65                                    | 27.80          | —      | -     |               |                              |    | 4.63         | N 100 H           | 0-5                | 1547   | 1617 |         |
|         |                | 400          | _                      | 0.69             | 34·65<br>34·66                           | 27·80<br>27·82 |        |       |               | _                            |    | 4·57<br>4·51 |                   |                    |        |      |         |
|         |                | 600<br>800   |                        | 0*57<br>0*49     | 34.00<br>34.68                           | 27.84          |        |       |               | -                            | _  | 4.46         |                   |                    |        |      |         |
|         |                | 1000         |                        | 0.40             | 34.69                                    | 27.85          |        |       |               |                              |    | 4.42         |                   |                    |        |      |         |
|         |                | 1400         | -                      | 0.51             | 34.68                                    | 27.86          |        | -     | -             | -                            | -  | 4.41         |                   |                    |        |      |         |
| 1049    | 3              |              |                        | 0.00             | 34.05                                    | 27.36          |        | _     | _             | _                            |    | 7.94         | N 70 V            | 1000-730           | 0835   |      |         |
| 1040    | 3              | 10           |                        | 0.01             | 34.05                                    | 27.36          |        | -     |               | -                            | _  | _            | ,,                | 750-500            |        |      |         |
|         |                | 20           | —                      | - 0.13           | 34.05                                    | 27.37          |        |       | -             | -                            | -  | 7.95         | ,,                | 500-250            | i i    |      |         |
|         |                | 30           |                        | -0.12            | 34.05                                    | 27.37          | _      |       | _             |                              |    | 7.93         | ,,                | 250-100<br>100-50  |        |      |         |
|         |                | 40<br>50     |                        | -0.22<br>-0.29   | 34.05                                    | 27·37<br>27·38 |        |       | _             |                              | -  |              | ,,                | 50-0               |        |      |         |
|         |                | 60           |                        | - 0.34           | 34.06                                    | 27.39          | -      | -     | -             |                              | -  | 7.88         | N 50 V            | 100-0              | -      | 1020 |         |
|         |                | 80           |                        | - 0.69           | 34.02                                    | 27.39          | -      |       | -             |                              | ]  | 7.58         | N 70 B<br>N 100 B | 100-0              | 1042   | 1102 | KT      |
| Ì       |                | 100          | _                      | - 0.99<br>- 0.21 | 34.09                                    | 27.43          |        | _     | _             |                              |    | 6.29         | N 70 B            | 1 6                |        |      | DGP     |
| l       |                | 150<br>200   |                        | 0.00             | 34.48                                    | 27.71          |        |       |               | -                            | -  | 5.28         | N 100 B           | 268-110            | 1042   |      |         |
|         |                | 300          |                        | 0.62             | 34.65                                    | 27.81          |        | -     | -             | -                            |    | 1            | N 100 H           | 0-5                | 1043   | 1113 |         |
| ļ       |                | 400          |                        | 0.67             | 34.67                                    | 27·82<br>27·84 | _      |       |               |                              |    | 4·55<br>4·47 |                   |                    |        |      |         |
|         |                | 600<br>800   |                        | 0.23<br>0.22     | 34.70                                    | 27.84          |        |       |               | -                            |    | 4.44         |                   |                    |        |      |         |
|         |                | 1000         | —                      | 0.42             | 34.70                                    | 27.86          | -      | -     |               |                              |    | 4.25         |                   |                    |        |      |         |
|         |                | 1 500        |                        | 0.33             | 34.69                                    |                |        | -     | -             | -                            | -  | 4.28         |                   |                    |        |      |         |
|         |                | 2000         |                        | 0.02             | 34·68<br>34·67                           | 27.87          | _      |       | _             |                              |    | 4.53         |                   |                    |        |      |         |
|         | 1              | 2500<br>3000 |                        | -0.09<br>-0.20   | 34.67                                    |                |        | _     |               | -                            | -  | 4.83         |                   |                    |        |      |         |
|         |                |              |                        |                  |                                          |                |        |       |               |                              |    |              | N 50 V            | 100-0              | 2008   | 2020 |         |
| 1050    | 4              | 0            |                        | 0.01<br>-0.14    | 34.04                                    |                |        |       | _             |                              | -  | 7.96         | N 100 B           | 103-0              | 2212   |      | KT      |
|         |                | 10           |                        | -0.14<br>-0.21   | 34.04                                    |                |        |       |               | _                            |    | 7.95         | N 70 B            | 205-101            | 2212   | 2242 | DGP     |
| 1       |                | 30           | -                      | -0.51            | 34.04                                    | 27.36          |        |       | -             | -                            | -  |              | N 100 B           | 1                  | 2213   | -    |         |
| 1       | 1              | 40           |                        | - 0.22           | 34.04                                    |                |        |       |               |                              | _  | 7.97         | N 100 H<br>N 70 B | 0-5                | 2213   |      | DGP     |
|         | {              | 50<br>60     |                        | - 0.54<br>- 0.60 | 34.04                                    |                | _      |       |               |                              |    | 7.82         |                   | -                  | 2320   |      |         |
|         |                | 80           |                        | - 1.18           | 34.12                                    | 1              |        |       | 1             |                              |    |              |                   |                    |        |      |         |
|         |                | 100          | -                      | - 1 · 1 5        | 34.50                                    |                | -      | -     |               |                              |    | 6.91         | 1                 |                    |        |      |         |
|         |                | 150          |                        | 0.53             | 34.46                                    |                | _      |       | _             |                              |    | 5.35         |                   |                    |        |      |         |
|         |                | 200<br>300   |                        | 1.20             | 34.59                                    |                | _      |       | _             | -                            | -  | 4.38         |                   |                    |        |      |         |
| 1       |                | 400          | _                      | 1.23             | 34.72                                    | 27.80          |        | -     |               | -                            |    | 4.28         |                   |                    |        |      |         |
|         |                | 600          | -                      | 1.04             |                                          |                |        |       |               | -                            |    | 4.37         |                   |                    |        |      |         |
|         |                | 800<br>1000  | 1016                   | 0·84<br>0·61     |                                          |                |        |       |               | _                            |    | 4.52         |                   |                    |        |      |         |
|         |                | 1480         | 1478                   |                  | 34.69                                    |                |        | -     |               | -                            | -  | 4.36         |                   |                    |        |      |         |
| 1       |                | 1970         |                        | 0.18             | 34.68                                    | 27.86          |        | -     |               | -                            |    | 4.45         |                   |                    |        |      |         |
|         |                | 2470         | -                      | - 0.01           | 34.67                                    |                |        |       |               |                              |    | 4.73         |                   |                    |        | [    |         |
|         |                | 2960         | <u> </u>               | -0.33            | 1                                        | 27·86<br>27·87 |        |       |               | _                            | -  | 5.10         |                   |                    |        |      |         |
| 1       | 1              | 3450         |                        | 1 33             | 1 34 00                                  | 1-101          | . I    |       |               |                              |    |              |                   |                    |        |      |         |

|         | D                        |               |      | Sounding<br>(metres) | WIN       | D                         | SEA       |       |         | neter<br>Dars)           | Air Tei     | np. ' C.    |                                   |
|---------|--------------------------|---------------|------|----------------------|-----------|---------------------------|-----------|-------|---------|--------------------------|-------------|-------------|-----------------------------------|
| Station | Position                 | Date          | Hour | (metres)             | Direction | Fo <b>r</b> ce<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                           |
| 1051    | 52° 49.7′ S, 32° 35.6′ W | 1932<br>2 xii | 0835 | 2825*                | NW×W      | 24                        | NW × W    | 4     | or      | 996·7                    | 1.2         | 1.6         | mod. conf. WNW<br>swell           |
| 1052    | 52° 10.1′ S, 33° 22.2′ W | 2 xii         | 2000 | 1771*                | NW        | 20                        | NW        | 4     | od      | 994.1                    | 2.3         | 2.1         | heavy WNW swell                   |
| 1053    | 51° 09·4′ S, 34° 35·3′ W | 3 xii         | 0800 | 5088*                | W         | 5                         | W         | 2     | od      | 992-2                    | 2.2         | 2.3         | mod. conf. WNW<br>swell           |
| 1054    | 50° 07·8′ S, 35° 48·6′ W | 3 xii         | 1957 | 4908*                | SSE       | 16                        | SSE       | 4     | bc      | 996·1                    | 2.2         | o•6         | heavy conf. W×N<br>and SSE swells |

| 1 | 05 | 1 | -1 | 05 | -1 |
|---|----|---|----|----|----|
|---|----|---|----|----|----|

| Internet         Openete         2         Trape.         8         nt         pt         Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1051         4         0         -         cols         3104         2735         -         -         -         -         7.54         N 70 V         1000-750         0513         -         -         -         -         7.54         N 70 V         1000-750         0513         -         -         -         -         7.54         N 70 V         1000-750         050         -         -         -         -         -         7.58         -         -         -         -         -         -         -         -         -         -         7.58         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e fina   |
| 1051         4         0         -         0         -         -         -         -         -         -         7.54         N 79 V         1000-750         0513         -         -         -         -         7.54         N 79 V         1000-750         0513         -         -         -         7.54         N 79 V         1000-750         0533         -         -         -         7.54         N 79 V         1000-750         0533         -         -         -         7.58         N 50 V         1000-750         050         -         050         -         -         -         7.58         N 50 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (41) 5   |
| 105         -         -         -         -         -         -         -         -         -         -         7.85         .         300         -         -         100-50         300-100         300-100         300-100         300-100         300-100         300-100         300-100         300-100         100-50         .         100-50         .         100-50         .         100-50         .         100-50         .         100-50         .         100-50         .         100-50         .         100-50         .         100-50         .         100-50         .         100-50         .         100-50         .         100-50         .         100-50         .         100-50         .         .         100-50         .         .         100-50         .         .         .         100-50         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 1052         5         0         -         0         -         -         -         -         -         7.85         N         100-56         -         50-6         -         1005         50-6         -         100-56         -         50-6         -         100-56         -         100-56         -         50-6         -         100-56         -         100-56         -         100-56         -         100-56         -         100-56         -         100-56         -         100-56         -         100-56         -         100-56         -         100-56         -         100-56         -         100-57         -         -         -         -         7.85         100-1         1136         1260         1046         1137         1136         1260         100-57         -         -         -         -         433         330-110         1136         1260         1046         1260         1046         1260         1265         106-5         1135         1137-0         1262         1205         1204         1225         106         1265         1205         1204         1244         124         1214         1214         1214         1214         1214 </th <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 1052         5         0         -0.13         31-04         37/37            7.78         N         N         100         5         0.00          100         5         N         00         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 1052         5         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| 1052       5       0      0:23       34'05       27:47         751       N100 B       84-0       10:06       KT         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 1052         5         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         5 mo         B         3 mo         -         10 mo         B         3 mo         1206         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| 1052         5         0         -033         343         2760         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0         -0 <t< th=""><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| 1052         5         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| $1052  \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| 1052         5         0         -         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 1052  5  0  -  1  1  3  3  4  7  3  3  -  -  -  -  -  -  -  -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 1052       5       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 1052         5         0         -         0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| 1052       5       0        100       33.95       27.22          7.64       N 50 V       N 50 V       100-0       2025       2035         30        0.99       33.95       27.22          7.66       N 70 B       33.8-130       2104       2134       DGP         30        0.90       33.95       27.32                 N 100 H       33.8-130       2104       2134       DGP         30        0.90       33.95       27.33           7.66       N 100 H       0-5       2152       2222       2225       2225       2225       2152       2225       2152       2225       2152       2225       2152       2225       2152       2225       2152       2225       2152       2225       2225       2152       2225       2225       2152       2225       2152       2225       2152       2225       2225       2152       2225       2225       2152       2225       2152       2225       2153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 1053  5  0  - 170  3335  2722  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| $1053  \begin{bmatrix} 105 & 0 & -107 & 3339 & 2722 & -1 & -1 & -1 & -1 & -766 \\ 300 & -076 & 3395 & 2723 & -1 & -1 & -1 & -1 & -768 \\ 300 & -079 & 3395 & 2723 & -1 & -1 & -1 & -1 & -768 \\ 50 & -079 & 3395 & 2723 & -1 & -1 & -1 & -768 \\ 50 & -078 & 3395 & 2723 & -1 & -1 & -1 & -768 \\ 80 & -086 & 3395 & 2723 & -1 & -1 & -1 & -7766 \\ 80 & -086 & 3395 & 2723 & -1 & -1 & -1 & -7766 \\ 80 & -029 & 3479 & 2773 & -1 & -1 & -1 & -7766 \\ 100 & -029 & 3479 & 2775 & -1 & -1 & -1 & -783 \\ 200 & -1772 & 3474 & 2754 & -1 & -1 & -1 & -783 \\ 300 & -2200 & 34752 & 2777 & -1 & -1 & -1 & -393 \\ 300 & -2200 & 34752 & 2777 & -1 & -1 & -1 & -393 \\ 300 & -2200 & 3473 & 2777 & -1 & -1 & -1 & -393 \\ 300 & -2200 & 3473 & 2777 & -1 & -1 & -1 & -393 \\ 1480 & 1482 & 127 & 3473 & 2779 & -1 & -1 & -1 & -393 \\ 1480 & 1482 & 127 & 3473 & 2779 & -1 & -1 & -1 & -393 \\ 1480 & 1482 & 127 & 3473 & 2773 & -1 & -1 & -1 & -1 & -393 \\ 30 & -2200 & 3393 & 2713 & -1 & -1 & -1 & -1 & -748 \\ 10 & -2207 & 3394 & 2714 & -1 & -1 & -1 & -1 & -748 \\ 10 & -2207 & 3394 & 2714 & -1 & -1 & -1 & -748 \\ 10 & -2207 & 3394 & 2714 & -1 & -1 & -1 & -748 \\ 10 & -2207 & 3394 & 2714 & -1 & -1 & -1 & -748 \\ 10 & -2207 & 3394 & 2714 & -1 & -1 & -1 & -748 \\ 10 & -2207 & 3394 & 2714 & -1 & -1 & -1 & -748 \\ 10 & -2207 & 3394 & 2714 & -1 & -1 & -1 & -748 \\ 10 & -2207 & 3394 & 2714 & -1 & -1 & -1 & -748 \\ 10 & -2207 & 3394 & 2714 & -1 & -1 & -1 & -748 \\ 10 & -2207 & 3394 & 2714 & -1 & -1 & -1 & -748 \\ 10 & -2207 & 3394 & 2714 & -1 & -1 & -1 & -748 \\ 10 & -200 & 173 & 3411 & 2737 & -1 & -1 & -1 & -748 \\ 10 & -078 & 3199 & 2728 & -1 & -1 & -1 & -748 \\ 10 & -078 & 3199 & 2728 & -1 & -1 & -1 & -748 \\ 1000 & -179 & 3473 & 2776 & -1 & -1 & -1 & -748 \\ 1000 & -179 & 3473 & 2776 & -1 & -1 & -1 & -748 \\ 1000 & -179 & 3473 & 2776 & -1 & -1 & -1 & -748 \\ 1000 & -179 & 3473 & 2776 & -1 & -1 & -1 & -748 \\ 1000 & -179 & 3473 & 2776 & -1 & -1 & -1 & -748 \\ 1000 & -179 & 3473 & 2776 & -1 & -1 & -1 & -748 \\ 1000 & -179 & 3473 & 2776 & -1 & -1 & -1 & -748 \\ 1000 & -179 & 3473 & 2776 & -1 & -1 & -1 & -748 \\ 1000$ |          |
| $1053  \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| 1053       -       0 · 00<br>60       -       0 · 00<br>33 · 95       27 · 23<br>7 · 23       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       766       -       0 · 00<br>8 · 00<br>1 · 00       -       0 · 00<br>3 · 00       -       -       -       -       -       -       -       766       -       -       -       -       766       -       -       -       -       766       -       -       -       -       -       766       -       -       -       -       -       766       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| $1053  \begin{bmatrix} 5 & 0 & - & 0 & 0 & 3 & 3 & 9 & 27 & 2 & - & - & - & - & 7 & 766 \\ 8 & - & 0 & 86 & 33 & 95 & 27 & 23 & - & - & - & - & 7 & 766 \\ 100 & - & 0^{-2}0 & 34 & 04 & 27 & 33 & - & - & - & - & - & 7 & 766 \\ 100 & - & 0^{-2}0 & 34 & 04 & 27 & 33 & - & - & - & - & - & - & 7 & 766 \\ 200 & - & 1^{-7}2 & 34^{+4}1 & 27 & 54 & - & - & - & - & - & - & - & - & 3^{-39} \\ 400 & - & 2^{-2}0 & 34^{+6}2 & 27^{+6}8 & - & - & - & - & - & - & - & 3^{-99} \\ 400 & - & 2^{-2}0 & 34^{+6}2 & 27^{+7}7 & - & - & - & - & - & - & 3^{-99} \\ 400 & - & 2^{-2}0 & 34^{+6}2 & 27^{-7}7 & - & - & - & - & - & - & 3^{-99} \\ 900 & - & 1^{-8}4 & 34^{-7}3 & 27^{-7}7 & - & - & - & - & - & - & 3^{-99} \\ 900 & - & 1^{-8}4 & 34^{-7}3 & 27^{-7}7 & - & - & - & - & - & - & 3^{-99} \\ 1485 & 1482 & 1^{-2}7 & 37^{-9}3 & 27^{-1}13 & - & - & - & - & - & - & - & 3^{-99} \\ 20 & - & 2^{-1}0 & 33^{-93} & 27^{-13} & - & - & - & - & - & - & - & - & 3^{-99} \\ 20 & - & 2^{-1}0 & 33^{-93} & 27^{-13} & - & - & - & - & - & - & - & - & - & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| $ 1053  \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| $ \left  1053 \right  5  \left  \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | etimated |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | annaicu  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| 2960 - 0.24 34.67 27.85 4.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| <b>1054</b> 6 0 - 2.91 33.92 27.06 7.43 N 50 V 100-0 2006 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 20 - 291 3392 2706 N 70 B 1 270 0 2326 2256 DGP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| 10 - 2.88 - 33.92 - 27.60 7.37 N 100 B / 250-100 - 2220 - 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 50 & - & 2 \cdot 85 & 33 \cdot 92 & 27 \cdot 06 & - & - & - & - & - & - & - & N \text{ 100 H} & 0-5 & 2227 & 2257 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| 60 - 2.80 33.93 27.07 7.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 100 - 0.68 34.01 27.29 7.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |

|               |                          |               |      | Sounding<br>(metres) | WIN       | 1D               | SEA       | L     |         | neter<br>Dars)          | Ан Тө       | np. C.      |                         |
|---------------|--------------------------|---------------|------|----------------------|-----------|------------------|-----------|-------|---------|-------------------------|-------------|-------------|-------------------------|
| Station       | Position                 | Date          | Hour | (metres)             | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(milhbars) | Dry<br>bulb | Wet<br>bulb | Remarks                 |
| 1054<br>cont. | 50° 07·8′ S, 35° 48·6′ W | 1932<br>3 xii |      |                      |           |                  |           |       |         |                         |             |             |                         |
| 1055          | 49° 03.2′ S, 37° 16.7′ W | 4 xii         | 0827 | 5376*                | W×N       | 5                | W×N       | 2     | Ь       | 1010.0                  | 3.9         | r∙6         | mod. conf. WSW<br>swell |
| 1056          | 50° 18′ S, 37° 04·5′ W   | 4 xii         | 2000 | 5153*                | NW        | 15–20            | NW        | +     | or      | 1008.2                  | 5.0         | 4.0         | mod. NW swell           |
| 1057          | 51° 55′ S, 36° 51.6′ W   | 5 xii         | 0830 | 3914*                | NW        | 16               | NW        | 3     | Ь       | 1010.5                  | 4.0         | 3.7         | mod. conf. W swell      |

|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                |                                                                                                                                                                                      | HYDRO                                                                                                                                                                                                                                                                               | LOGICA                                                                                                                                                                                                      | L OBSE | RVATI | IONS                                      |                    |    |                                                                                                                                                                          | BIOLOC                                                              | GICAL OBSER                                                                                    | VATION                       | . `                          |                        |
|---------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------------------------------------------|--------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------|
| 0             | Age of         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y<br>ter                         |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                             |        |       | Mg.—at                                    | om m. <sup>3</sup> |    |                                                                                                                                                                          |                                                                     |                                                                                                | .LL.                         | . II·                        |                        |
| Station       | moon<br>(days) | Depth<br>(metres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Depth by<br>thermometer          | Temp.<br>* C.                                                                                                                                                                        | S °                                                                                                                                                                                                                                                                                 | ot                                                                                                                                                                                                          | pН     | Р     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>Ng      | Si | O<br>c.c.<br>litre                                                                                                                                                       | Gear                                                                | Depth<br>(metres)                                                                              | From                         | To                           | Remati.                |
| 1054<br>cont. | 6              | 150<br>200<br>300<br>400<br>590<br>790<br>990<br>1480<br>1980<br>2440<br>2930<br>3420<br>3900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br><br><br>1982<br>2443<br>     | 0.79<br>1.19<br>1.50<br>2.18<br>2.08<br>2.00<br>1.89<br>1.77<br>1.20<br>0.82<br>0.47<br>0.19<br>0.06                                                                                 | 34.10<br>34.19<br>34.37<br>34.53<br>34.64<br>34.66<br>34.71<br>34.66<br>34.73<br>34.72<br>34.70<br>34.69<br>34.68                                                                                                                                                                   | 27·36<br>27·41<br>27·53<br>27·60<br>27·70<br>27·72<br>27·78<br>27·78<br>27·84<br>27·85<br>27·86<br>27·86<br>27·86<br>27·86                                                                                  |        |       |                                           |                    |    | 6.49<br>5.73<br>4.69<br>4.04<br>3.89<br>3.95<br>3.96<br>4.32<br>4.36<br>4.21<br>4.34<br>4.34<br>4.63                                                                     |                                                                     |                                                                                                |                              |                              |                        |
| 1055          | 6              | 4390<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>150<br>200<br>300<br>1500<br>200<br>300<br>1500<br>2000<br>1500<br>2000<br>1500<br>2000<br>300<br>1500<br>2000<br>1500<br>2000<br>1500<br>2000<br>1500<br>2000<br>1500<br>2000<br>1500<br>2000<br>1500<br>2000<br>1500<br>2000<br>1500<br>2000<br>1500<br>2000<br>2000<br>1500<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2 | <br><br><br><br><br>2026<br>2480 | 0.07<br>4.89<br>4.81<br>4.77<br>4.75<br>4.77<br>4.75<br>4.74<br>4.73<br>4.22<br>3.33<br>2.25<br>1.80<br>1.75<br>2.58<br>2.26<br>2.18<br>2.04<br>2.04<br>2.04<br>1.43<br>0.44<br>0.21 | 34.68<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.08<br>34.08<br>34.08<br>34.08<br>34.08<br>34.08<br>34.08<br>34.08<br>34.08<br>34.03<br>34.03<br>34.03<br>34.03<br>34.03<br>34.71<br>34.79<br>34.77<br>34.79<br>34.75<br>34.71<br>34.69<br>34.68 | 27.87<br>26.96<br>26.97<br>26.97<br>26.97<br>26.97<br>26.97<br>27.06<br>27.15<br>27.24<br>27.26<br>27.20<br>27.30<br>27.48<br>27.61<br>27.61<br>27.61<br>27.77<br>27.82<br>27.85<br>27.85<br>27.85<br>27.85 |        |       |                                           |                    |    | 4.52<br>7.00<br>-<br>7.03<br>-<br>7.01<br>-<br>7.00<br>-<br>6.99<br>6.98<br>6.84<br>6.22<br>5.16<br>4.09<br>3.81<br>3.75<br>4.61<br>4.07<br>4.61<br>4.73<br>4.16<br>4.43 | N 70 V<br><br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B<br>N 100 H | 1000-750<br>750-500<br>250-100<br>100-80<br>100-50<br>50-0<br>100-0<br>121-0<br>298-134<br>0-5 | 0835<br>1141<br>1141<br>1142 | 1015<br>1201<br>1211<br>1212 | KT<br>DGP              |
| 1056          | 7              | 3970<br>4460<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>190<br>290<br>380<br>570<br>760<br>950<br>1420<br>1900<br>2370<br>2840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | 0.21<br>0.14<br>4.31<br>4.41<br>4.41<br>4.33<br>4.10<br>3.59<br>3.02<br>2.02<br>1.59<br>2.29<br>2.51<br>2.16<br>2.25<br>2.06<br>1.99<br>1.72<br>1.10<br>0.67                         |                                                                                                                                                                                                                                                                                     | 27.86<br>27.01<br>27.00<br>27.00<br>27.01<br>27.03<br>27.09<br>27.15<br>27.25<br>27.25<br>27.26<br>27.28<br>27.32<br>27.41<br>27.61<br>27.68<br>27.72<br>27.80<br>27.72<br>27.80<br>27.85<br>27.85          |        |       |                                           |                    |    | 4.65<br>7.15<br>-7.77<br>-7.09<br>-7.08<br>6.96<br>6.77<br>6.22<br>4.96<br>4.43<br>4.00<br>3.89<br>3.755<br>4.21<br>4.32<br>4.26<br>4.24                                 | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H         | 100-0<br>100-0<br>340-150<br>0-5                                                               |                              | 2017<br>2159<br>2209<br>2210 | Depth estimated<br>DGP |
| 1057          | 7              | 0<br>10<br>20<br>30<br>40<br>50<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | 1.08<br>0.92<br>0.80<br>0.73<br>0.70<br>0.60<br>0.51                                                                                                                                 | 33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96                                                                                                                                                                                                                         | 27·24<br>27·24<br>27·25<br>27·25<br>27·26                                                                                                                                                                   | -      |       |                                           |                    |    | 7·78<br>7·77<br>7·73<br>7·67                                                                                                                                             | N 70 V<br><br><br><br>N 50 V                                        | 1000-780<br>750-530<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0                           | 0835                         | 1005                         |                        |

|               |                                               |               |      | Soundary             | WIN          | D                         | SEA          |       |         | neter<br>bars)          | Air Ten     | np. ° C.    |                         |
|---------------|-----------------------------------------------|---------------|------|----------------------|--------------|---------------------------|--------------|-------|---------|-------------------------|-------------|-------------|-------------------------|
| Station       | Position                                      | Date          | Hour | Sounding<br>(metres) | Direction    | Fo <b>r</b> ce<br>(knots) | Direction    | Force | Weather | Barometer<br>(mulhbars) | Dry<br>bulb | Wet<br>bulb | Remarks                 |
| 1057<br>cont. | 51 55' S, 36 51.6' W                          | 1932<br>5 xii |      |                      |              |                           |              |       |         |                         |             |             |                         |
|               |                                               |               |      |                      |              |                           |              |       |         |                         |             |             |                         |
|               |                                               |               |      |                      |              |                           |              |       |         |                         |             |             |                         |
|               | 3.0 miles S 60 E of<br>Jason I, South Georgia |               |      |                      | Lt airs      | 0-2                       |              | 0     | Ь       | 983.2                   |             |             | mod. conf. NNW          |
| 1059          | 53 ' 41·2' S, 37° 06·9' W                     | 10 xii        | 1500 | 144*                 | SW           | 20                        | SW           | 3     | bc      | 99 <b>1·2</b>           | 2*2         | 0.2         | mod. conf. W swell      |
| 1060          | 53 23:4' S, 37' 12' W                         | 10 xii        | 1850 | 1262*                | SW×W         | 20                        | SW           | 3     | bc      | 995.4                   | 1.5         | — 0. I      | mod. SW swell           |
| 1061          | 53° 01.5′ S, 37° 15.7′ W                      | 10-11<br>xii  | 2352 | 2776*                | WSW          | 19                        | WSW          | +     | с       | 999 <b>.</b> 0          | 0.8         | - 0.6       | mod. conf. WSW<br>swell |
| 1062          | 52 ' 41·3' S, 37 - 23·1' W                    | tt xii        | 0505 | 1984*                | $W \times S$ | 5                         | $W \times S$ | 2     | be      | 999.4                   | 0.6         | -0.6        | mod. conf. WSW<br>swell |

|               |                |                   |                         |                    | HYDRC                                    | DLOGICA        | L OBSI | ERVAT    | IONS                                                                        |                       |              |                                        | BIOLO              | GICAL OBSER        | NATIO:       | NS             |                  |
|---------------|----------------|-------------------|-------------------------|--------------------|------------------------------------------|----------------|--------|----------|-----------------------------------------------------------------------------|-----------------------|--------------|----------------------------------------|--------------------|--------------------|--------------|----------------|------------------|
| Station       | Age of<br>moon |                   | oy<br>eter              |                    |                                          |                |        |          | Mg.—at                                                                      | .om m.3               |              |                                        |                    |                    | .1.1         | ME             |                  |
| Station       | (days)         | Depth<br>(metres) | Depth by<br>thermometer | Temp.<br>°C.       | S ,                                      | σt             | pН     | Р        | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ N_2 \end{array}$ | $\frac{Nitrite}{N_2}$ | 51           | O <sub>2</sub><br>c.c.<br>htre         | Gear               | Depth<br>(metres)  | From         | To             | Remark ,         |
| 1057<br>cont. | 7              | 08<br>100         |                         | 0·30<br>- 0·24     | 33 <sup>.</sup> 97<br>34 <sup>.</sup> 05 | 27·28<br>27·37 |        |          |                                                                             |                       |              | 7.19                                   | N 70 B<br>N 100 B  | j 91-0             | 1040         | 1109           | КТ               |
|               |                | 150<br>200        |                         | -0.03<br>0.52      | 34.24                                    | 27·52<br>27·58 | _      |          | _                                                                           |                       |              | 5·97<br>5·30                           | N 70 B<br>N 100 B  | 300-148            | 1049         | ET 19          | DGP              |
|               |                | 300               |                         | 1.52               | 34.56                                    | 27.68          |        |          |                                                                             |                       |              | 4.18                                   | N 100 H            | 0-5                | 1051         | 1121           |                  |
|               |                | 400<br>600        | _                       | 2·10<br>1·84       | 34·64<br>34·69                           | 27·70<br>27·75 |        | _        | _                                                                           |                       |              | 3.93                                   |                    |                    |              |                |                  |
|               |                | 800<br>990        | —<br>992                | 1·56<br>1·40       | 34 <sup>.</sup> 70<br>34 <sup>.</sup> 73 | 27·79<br>27·82 |        |          |                                                                             |                       |              | 4.03<br>4.11                           |                    |                    |              |                |                  |
|               |                | 1490              |                         | 1.00               | 34.73                                    | 27.85          |        | _        |                                                                             | _                     |              | 4.26                                   |                    |                    |              | ŀ              |                  |
|               |                | 1980<br>2480      | <br>2481                | 0·58<br>0·35       | 34·70<br>34·70                           | 27·86<br>27·87 |        | _        |                                                                             |                       |              | 4.30                                   |                    |                    |              |                |                  |
|               |                | 2980<br>3470      |                         | 0.12               | 34·69<br>34·68                           | 27·86<br>27·87 | a      |          |                                                                             |                       |              | 4°49<br>4°59                           |                    |                    |              |                |                  |
| 1058          | 12             | 0                 | <u> </u>                | 1.40               | 33.77                                    | 27.05          | _      | _        | _                                                                           | _                     |              |                                        | N 50 V             | 100-0              | 1013         | 1027           | + 1 hour         |
| 1059          | 13             | 0                 |                         | I · I 2            | 33-90                                    | 27.17          |        | _        | _                                                                           | _                     | 15.4         | 7.78                                   | N 50 V             | 100-0              | 1507         |                | Stray on wire    |
|               |                | 10<br>20          |                         | 1·12<br>1·10       | 33·90<br>33·90                           | 27·17<br>27·18 |        |          |                                                                             | _                     | 15.2<br>15.4 | 7.74                                   | N 70 V             | 100-50<br>50-0     |              | 1545           |                  |
|               |                | 30                |                         | 1.00               | 33.90                                    | 27·18<br>27·18 |        |          |                                                                             |                       | 14.0<br>14.0 | 7.62                                   | N 70 B<br>N 100 B  | 135-0              | 1608         | 1625           | КТ               |
|               |                | .40<br>50         | _                       | 0.73               | 33.90<br>33.92                           | 27.22          | _      | _        |                                                                             | _                     | 14.9         |                                        | N 100 H            | 0-5                | 1604         | 1634           |                  |
|               |                | 60<br>80          | _                       | 0.41<br>- 0.11     | 33:95<br>33:98                           | 27·26<br>27·32 |        |          |                                                                             |                       | 15.9<br>20.3 | 7.44                                   |                    |                    |              |                |                  |
|               |                | 100               |                         | 0.39               | 34.05                                    | 27.34          | _      | _        |                                                                             |                       | 22.1         | 6.98                                   |                    |                    |              |                |                  |
| 1060          | 13             | 0                 |                         | 1.12               | 33.95                                    | 27.21          |        |          |                                                                             |                       | 10.1         | 7·80                                   | N 70 V             | 1000-750           | 1855         |                |                  |
|               |                | 10<br>20          |                         | 1.10<br>1.10       | 33 <sup>.</sup> 95<br>33 <sup>.</sup> 95 | 27·22<br>27·22 | _      | _        |                                                                             | _                     | 10.1<br>10.1 | 7.84                                   | **                 | 750-500<br>500-260 |              |                |                  |
|               |                | 30<br>40          | _                       | 1.10<br>1.10       | 33 <sup>.</sup> 95<br>33 <sup>.</sup> 95 | 27·22<br>27·22 |        | _        |                                                                             |                       | 9·1<br>8·0   | 7.81                                   | ,,                 | 250-100<br>100-50  |              |                |                  |
|               |                | 50                |                         | 1.00               | 33.95                                    | 27.22          | -      |          |                                                                             |                       | 8.7          |                                        | , 11<br>, 11       | 50-0               |              |                |                  |
|               |                | 60<br>80          |                         | 1.08<br>1.08       | 33 <sup>.</sup> 95<br>33 <sup>.</sup> 95 | 27·22<br>27·22 |        |          |                                                                             |                       | 8∙8<br>8∙8   | 7.75                                   | N 50 V<br>N 70 B   | 0001               | 2100         | 2035           | КТ               |
|               |                | 90<br>140         |                         | 1.00<br>0.10       | 33 <sup>.</sup> 97<br>34 <sup>.</sup> 30 | 27·29<br>27·50 | _      |          |                                                                             |                       | 16·7<br>32·8 | 7°31<br>5°18                           | N 100 B<br>N 70 B  | 1                  |              |                |                  |
|               |                | 180               | _                       | 1.41               | 34.36                                    | 27.52          | _      |          | _                                                                           |                       | 34.9         | 4.67                                   | N 100 B            | ,                  | 2100         |                | DGP              |
|               |                | 270<br>360        |                         | 1.68<br>1.89       | 34°47<br>34°51                           | 27·59<br>27·61 |        |          |                                                                             |                       | 42·9<br>47·1 | 4.30<br>4.07                           | N 100 H            | 0-5                | 2101         | 2131           |                  |
|               |                | 540<br>720        |                         | 1.92<br>1.80       | 34·64<br>34·70                           | 27·71<br>27·77 |        |          |                                                                             |                       | 50·3<br>58·0 | 3 <sup>.</sup> 74<br>3 <sup>.</sup> 76 |                    |                    |              |                |                  |
|               |                | 900               | 899                     | 1.29               | 34.73                                    | 27.79          | —      |          | _                                                                           | —                     | 58∙o         | 3.85                                   |                    |                    |              |                |                  |
| 1061          | 13             | 0                 | _                       | 1.45               | 33.95                                    | 27.19          | _      |          |                                                                             |                       | 7.5          | 7.67                                   | N 70 V             | 1000-750           | 2358         |                |                  |
|               |                | 10<br>20          |                         | 1.40<br>1.40       | 33 <sup>.</sup> 95<br>33 <sup>.</sup> 95 | 27·20<br>27·20 |        |          |                                                                             |                       | 519<br>611   | <br>7 <sup>.</sup> 64                  | 3 h<br>5 5         | 750-500<br>500-250 |              |                |                  |
|               | i              | 30<br>40          |                         | 1.40<br>1.39       | 33 <sup>.</sup> 95<br>33 <sup>.</sup> 95 | 27·20<br>27·20 |        |          | _                                                                           | _                     | 6·4<br>5·2   | <br>7·63                               | > ><br>> >         | 250-100<br>100-50  |              |                |                  |
|               |                | 50                |                         | 1.33               | 33.95                                    | 27.20          |        | <u> </u> |                                                                             | —                     | 514          |                                        | · · ·              | 50-0               |              | 0150           |                  |
|               |                | 60<br>80          |                         | 0.30               | 33 <sup>.</sup> 94<br>33 <sup>.</sup> 94 | 27·21<br>27·25 |        |          |                                                                             | _                     | 5.6<br>11.0  | 7·70<br>—                              | N 50 V<br>N 70 B   | 100-0              | 0207         | 0227           | КТ               |
|               |                | 100<br>150        |                         | - 0.01<br>0.30     | 33 <sup>.</sup> 99<br>34 <sup>.</sup> 21 | 27·32<br>27·47 | _      |          |                                                                             | _                     | 19.7<br>32.5 | 7 <sup>.</sup> 04<br>5 <sup>.</sup> 88 | N 100 B<br>N 70 B  | ,                  |              |                | Depth estimated  |
|               |                | 200               |                         | 0.90               | 34.31                                    | 27.52          |        |          | —                                                                           |                       | 35.2         | 5.14                                   | N 100 B<br>N 100 H | 250-100            | 0207<br>0208 | 0237<br>0238   | Deptil estimated |
|               |                | 290<br>390        | _                       | 1.61<br>1.83       | 34°47<br>34°57                           | 27·60<br>27·66 |        | _        | _                                                                           | _                     | 41°9<br>47°7 | 4 <sup>.27</sup><br>3.96               | 14 100 IX          | 0-5                | 0400         | ں ر <i>ہ</i> ت |                  |
|               |                | 580<br>780        |                         | 1.01<br>1.81       | 34·65<br>34·66                           | 27·72<br>27·73 |        |          | -                                                                           |                       | 55°5<br>52°4 | 3·89<br>3·91                           |                    |                    |              |                |                  |
|               |                | 970               | _                       | 1.68               | 34.72                                    | 27.79          |        |          |                                                                             |                       | 54°7<br>61·8 | 3.97                                   |                    |                    |              |                |                  |
|               |                | 1460<br>1940      |                         | 1.38<br>0.94       | 34.71<br>34.70                           | 27·82<br>27·83 |        |          |                                                                             |                       | 71.1         | 4·16<br>4·29                           |                    |                    |              |                |                  |
|               |                | 2430              | 2432                    | o·66               | 34.20                                    | 27.85          |        |          |                                                                             |                       | 67.3         | 4.41                                   |                    |                    |              |                |                  |
| 1062          | 13             | 0<br>10           |                         | 1 · 2 I<br>I · 2 I | 33 <sup>.</sup> 94<br>33 <sup>.</sup> 94 | 27·20<br>27·20 |        |          |                                                                             |                       | 8·6<br>8·5   | 7.58                                   | N 70 B<br>N 100 B  | 03-0               | 0525         | °545           | КТ               |
|               |                |                   |                         |                    | 55 97                                    | .,             |        |          |                                                                             |                       |              | 1                                      |                    |                    |              |                |                  |

|               |                           |                |      | Sounding             | WIN       | D                | SEA        |       |         | neter<br>bars)           | Air Ter     | np. ° C.    |                                                       |
|---------------|---------------------------|----------------|------|----------------------|-----------|------------------|------------|-------|---------|--------------------------|-------------|-------------|-------------------------------------------------------|
| Station       | Position                  | Date           | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction  | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                                               |
| 1062<br>cont. | 52 41.3' S, 37' 23.1' W   | 1932<br>11 xii |      |                      |           |                  |            |       |         |                          |             |             |                                                       |
|               |                           |                |      |                      |           |                  |            |       |         |                          |             |             |                                                       |
| 1063          | 53 04·7′ S, 38 08·8′ W    | 11 xii         | 1200 |                      | SW×W      | 15               | SW 	imes W | 3     | ь       | 1001.2                   | 1.3         | 0.1         | mod. conf. swell                                      |
| 1064          | 53° 28.5′ S, 38° 57.6′ W  | 11 xii         | 1700 |                      | SW        | 22               | SW         | 4     | с       | 1002.4                   | I.0         | - o·5       | mod. conf. swell                                      |
| 1065          | 53° 40°5′ S, 39° 41°7′ W  | 11 xii         | 2130 |                      | SW        | 20               | SW         | 4     | osp     | 1003.9                   | 0.2         | - 0.1       | mod. conf. WSW<br>swell                               |
| 1066          | 53′53.6′S, 40° 30.5′W     | 12 xii         | 0150 |                      | SW        | 25               | SW         | 4     | osp     | 1004.3                   | 0.5         | -0.4        | mod. conf. WSW<br>swell                               |
| 1067          | 53° 53.6' S, 40° 05.3' W  | 12 xii         | 0525 | 2082*                | sw        | 26-30            | SW         | 4     | csp     | 1004.6                   | - 0.7       | o·8         | mod. SW swell                                         |
|               |                           |                |      |                      |           |                  |            |       |         |                          |             |             |                                                       |
| 1068          | 53 ' 53·6' S, 39° 33·4' W | 12 XII         | 0916 | 427*<br>350          | SW×W      | 20               | SW×W       | 4     | csp     | 1004.2                   | - o. I      | - o·8       | mod. SW swell.<br>Second sounding by<br>plankton wire |

|               |                |                                                                                                  |                         |                                                                                                                              | HYDRO                                                                                                                                                 | LOGICA                                                                                                                                       | L OBSE | RVA'EI | ONS                      |                           |                                                                                                                                           |                                                                                                                                                                                             | вюго                                                                  | dCAL OBSER                                                                             | VALION                       |                              |                                                  |
|---------------|----------------|--------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------|------------------------------|--------------------------------------------------|
|               | Age of         |                                                                                                  | y<br>ter                |                                                                                                                              |                                                                                                                                                       |                                                                                                                                              |        |        | Mgat                     | om m.3                    |                                                                                                                                           |                                                                                                                                                                                             |                                                                       |                                                                                        | ΤĽ                           | ME                           | Remarks                                          |
| Station       | moon<br>(days) | Depth<br>(metres)                                                                                | Depth by<br>thermometer | Temp.<br>C.                                                                                                                  | <b>S</b> °/,                                                                                                                                          | σt                                                                                                                                           | рН     | р      | Nitrate<br>Nitrite<br>Ng | Nitrite<br>N <sub>2</sub> | Si                                                                                                                                        | Og<br>c.c.<br>litre                                                                                                                                                                         | Gear                                                                  | Depth<br>(nietres)                                                                     | From                         | То                           | Kemarks                                          |
| 1062<br>cont. | 13             | 20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>290<br>390<br>580<br>780<br>970<br>1460 | 1459                    | 1.21<br>1.20<br>1.20<br>1.17<br>0.49<br>0.05<br>0.59<br>1.48<br>1.88<br>1.88<br>1.89<br>1.78<br>1.62<br>1.24                 | 33'94<br>33'94<br>33'94<br>33'94<br>33'95<br>33'96<br>33'97<br>34'22<br>34'38<br>34'55<br>34'58<br>34'58<br>34'58<br>34'68<br>34'72<br>34'73<br>34'73 | 27·20<br>27·20<br>27·20<br>27·21<br>27·26<br>27·30<br>27·46<br>27·54<br>27·54<br>27·65<br>27·67<br>27·75<br>27·79<br>27·81<br>27·83          |        |        |                          |                           | 8.1<br>7.9<br>7.8<br>7.9<br>8.3<br>14.9<br>19.7<br>33.1<br>35.2<br>42.9<br>55.5<br>53.1<br>54.7<br>59.9<br>63.9                           | 7·39<br>7·57<br>7·56<br>7·24<br>5·67<br>4·65<br>3·99<br>3·88<br>3·85<br>3·82<br>3·93<br>4·15                                                                                                | N 70 B<br>N 100 B<br>N 100 H<br>N 50 V<br>N 70 V<br>''                | 240-100<br>0-5<br>100-0<br>1000-700<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0 | 0525<br>0526<br>0613         | 0555<br>0556<br>0810         | DGP                                              |
| 1063          | 14             | O                                                                                                |                         | 1.90                                                                                                                         | 34.04                                                                                                                                                 | 27.23                                                                                                                                        |        |        |                          | _                         |                                                                                                                                           |                                                                                                                                                                                             | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H           | 100-0<br>} 128-0<br>} 334-114<br>0-5                                                   | 1208<br>1231<br>1231<br>1232 | 1215<br>1251<br>1301<br>1302 | KT<br>DGP                                        |
| 1064          | 14             | o                                                                                                | _                       | 1.62                                                                                                                         | 34.02                                                                                                                                                 | 27.26                                                                                                                                        |        | -      | _                        | -                         |                                                                                                                                           |                                                                                                                                                                                             | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H           | 100-0<br>91-0<br>250-0<br>250-92<br>0-5                                                | 1710<br>1733<br>1733<br>1734 | 1720<br>1753<br>1803<br>1804 | KT<br>DGP                                        |
| 1065          | 14             | 0                                                                                                |                         | 1.40                                                                                                                         | 34.02                                                                                                                                                 | 27.28                                                                                                                                        |        |        |                          |                           |                                                                                                                                           |                                                                                                                                                                                             | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H           | 100-0<br>106-0<br>290-80<br>0-5                                                        | 2135<br>2156<br>2156<br>2156 | 2226                         | KT<br>DGP                                        |
| 1066          | 14             | 0<br>300<br>400                                                                                  |                         | 2·20<br>1·90<br>2·12                                                                                                         | <br>34·30<br>34·40                                                                                                                                    | 27·44<br>27·50                                                                                                                               |        |        |                          |                           | 28·7<br>39·2                                                                                                                              | 1                                                                                                                                                                                           | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H<br>N 70 V<br>N 50 V | 94-0<br>276-105<br>0-5<br>?<br>100-0                                                   | 0228<br>0228<br>0229<br>0309 | 0248<br>0258<br>0259<br>0350 | DGP<br>Net touched bottom,<br>bottom sample pre- |
| 1067          | 14             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>190<br>290<br>380<br>570<br>770<br>960     |                         | 1.80<br>1.80<br>1.80<br>1.80<br>1.80<br>1.80<br>1.70<br>1.64<br>1.50<br>0.80<br>1.10<br>1.90<br>2.00<br>2.09<br>2.06<br>1.90 | 34·32<br>34·42<br>34·57<br>34·66<br>34·69                                                                                                             | 27.17<br>27.17<br>27.17<br>27.17<br>27.17<br>27.18<br>27.20<br>27.32<br>27.36<br>27.46<br>27.52<br>27.64<br>27.51<br>27.54<br>27.51<br>27.54 |        |        |                          |                           | 10.7 $10.4$ $10.4$ $10.4$ $10.5$ $10.4$ $10.5$ $10.4$ $10.5$ $10.6$ $12.1$ $16.7$ $21.4$ $33.6$ $41.3$ $52.7$ $56.7$ $62.2$ $62.2$ $62.2$ | $\begin{array}{c} \\ 7 \cdot 33 \\ \\ 7 \cdot 36 \\ 7 \cdot 24 \\ 6 \cdot 77 \\ 6 \cdot 11 \\ 4 \cdot 67 \\ 4 \cdot 25 \\ 3 \cdot 66 \\ 3 \cdot 56 \\ 3 \cdot 56 \\ 3 \cdot 83 \end{array}$ |                                                                       | 1000-770<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0                   |                              | 0708                         | served                                           |
| 1068          | 3 14           | 0<br>10<br>20<br>30                                                                              |                         | 1·32<br>1·32<br>1·31<br>1·30                                                                                                 | 33·94<br>33·94                                                                                                                                        | 27·19<br>27·19                                                                                                                               |        |        |                          |                           | 8.7<br>8.7<br>8.7<br>8.7                                                                                                                  | 7.49                                                                                                                                                                                        | N 70 V                                                                | 100-0<br>250-100<br>100-50<br>50-0                                                     | 0930<br>—                    | 1010                         |                                                  |

|               |                                            |                |      | Sounding             | WIN                            | D                | SEA                            |       |         | neter<br>bars)           | Ли Тег      | mp, ° C,    |                     |
|---------------|--------------------------------------------|----------------|------|----------------------|--------------------------------|------------------|--------------------------------|-------|---------|--------------------------|-------------|-------------|---------------------|
| Station       | Position                                   | Date           | Hour | Sounding<br>(metres) | Direction                      | Force<br>(knots) | Direction                      | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks             |
| 1068<br>cont. | 53 ' 53 6' S, 39° 33 4' W                  | 1932<br>12 xii |      |                      |                                |                  |                                |       |         |                          |             |             |                     |
| 1069          | 53° 56·9′ S, 39° 06·8′ W                   | 12 xii         | 1319 | 195*                 | SW 	imes W                     | 16               | SW×W                           | 4     | bcsp    | 1004-3                   | 1-7         | 0.0         | mod. SW swell       |
| 1070          | 53° 59·3′ S, 38° 34·2′ W                   | 12 xii         | 1635 | 155*                 | $SW \times S$                  | 20               | SW×S                           | 4     | csp     | 1004.6                   | 0.8         | 0.3         | heavy SW swell      |
| 1071          | 54° 17·8′ S, 37° 56·9′ W                   | 12 xii         | 2150 |                      | $SW \times S$                  | 20               | $\mathbf{SW} 	imes \mathbf{S}$ | 4     | csp     | 1005.6                   | 1.1         | 0.1         | mod. SW swell       |
| 1072          | 54° 37.6′ S, 37° 20.5′ W                   | 13 xii         | 0150 |                      | SW                             | 20               | SW                             | 4     | bc      | 1006.2                   | 0.5         | - o·8       | mod. SW swell       |
| 1073          | 54° 59.6′ S, 36° 38.9′ W                   | 13 xii         | 0605 |                      | WSW                            | 22               | WSW                            | 5     | osp     | 1006.0                   | 0.6         | 0.0         | mod. conf. SW swell |
| 1074          | $55^{\circ}$ oi·1′ S, $35^{\circ}$ $45'$ W | 13 xii         | 0959 | -                    | WSW                            | 26               | wsw                            | 5     | с       | 1006.7                   | 0.9         | - 0.3       | mod. SW swell       |
| 1075          | 54° 41·1′ S, 34° 58·1′ W                   | 13 xii         | 1415 | 232*                 | $\mathrm{SW} 	imes \mathrm{W}$ | 16-20            | $\mathbf{SW} 	imes \mathbf{W}$ | -4    | bc      | 1007.4                   | 1.1         | 0.1         | mod. SW swell       |
| 1076          | 54° 24′ S, 34° 07·1′ W                     | 13 xii         | 1858 | 4238*                | SW                             | II               | SW                             | 3     | Ь       | 1008.0                   | 1.4         | 0.0         | mod. SW swell       |
|               |                                            |                |      |                      |                                |                  |                                |       |         |                          |             |             |                     |
|               |                                            |                |      |                      |                                |                  |                                |       |         |                          |             |             |                     |

| 1 | 068- | 1 | 07 | 6 |
|---|------|---|----|---|
|---|------|---|----|---|

|                      |                |                                                                  |                         |                                                                                      | HYDROI                                                                                                   | JOGICA                                                                                                            | L OBSE | RVATI | ONS                                       |               |                                                                                                                    |                                                      | 8101.00                                                | ACAL OB-FR                                                                    | VATION               |                      |         |
|----------------------|----------------|------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------|-------|-------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|----------------------|---------|
|                      | Age of         |                                                                  | y.<br>iter              |                                                                                      | T                                                                                                        | -                                                                                                                 |        |       | Mg.—at                                    | om m.º        |                                                                                                                    |                                                      |                                                        |                                                                               | HN                   | an. – –              | Remarks |
| Station              | moon<br>(days) | Depth<br>(metres)                                                | Depth by<br>thermometer | Temp.<br>°C.                                                                         | S °/no                                                                                                   | σt                                                                                                                | pll    | Р     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>Na | Sı                                                                                                                 | O2<br>c.c.<br>http://                                | Gear                                                   | Depth<br>(metres)                                                             | From                 | То                   |         |
| <b>1068</b><br>cont. | 14             | 40<br>50<br>60                                                   |                         | 1·30<br>1·29<br>1·23                                                                 | 33 <sup>.</sup> 94<br>33 <sup>.</sup> 94<br>33 <sup>.</sup> 94                                           | 27·19<br>27·19<br>27·20                                                                                           |        |       |                                           |               | 9°3<br>9°7<br>8°9                                                                                                  | 7·49<br>                                             | N 70 B<br>N 100 B<br>N 70 B                            | 97-0                                                                          | 1038                 | 1058                 | KT      |
|                      |                | 80<br>100<br>150<br>200<br>300<br>350                            |                         | 0.99<br>0.50<br>0.57<br>0.41<br>1.49<br>1.87                                         | 33.94<br>33.96<br>34.11<br>34.17<br>34.17<br>34.42<br>34.44                                              | 27·21<br>27·26<br>27·38<br>27·44<br>27·56<br>27·56                                                                |        |       |                                           |               | 12·2<br>14·7<br>25·6<br>31·6<br>38·0<br>38·7                                                                       |                                                      | N 100 B<br>N 100 H                                     | 250-120<br>0-5                                                                | 1038                 | 1108                 |         |
| 1069                 | 15             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200 |                         | 1.41<br>1.42<br>1.38<br>1.40<br>1.38<br>1.37<br>1.32<br>1.12<br>1.23<br>0.07<br>0.46 | 33.93<br>33.93<br>33.93<br>33.93<br>33.93<br>33.93<br>33.93<br>33.93<br>33.95<br>33.94<br>34.07<br>34.21 | 27.18<br>27.17<br>27.18<br>27.18<br>27.18<br>27.18<br>27.18<br>27.18<br>27.18<br>27.21<br>27.20<br>27.38<br>27.47 |        |       |                                           |               | $7 \cdot 2 7 \cdot 2 7 \cdot 4 7 \cdot 6 7 \cdot 6 7 \cdot 6 8 \cdot 5 9 \cdot 2 8 \cdot 7 28 \cdot 7 33 \cdot 1 $ | 7.64<br>7.63<br>7.61<br>7.56<br>7.54<br>6.50<br>5.84 | N 70 V<br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 H       | 100-50<br>50-0<br>100-0<br>} 135-0<br>0-5                                     | 1320<br>             | 1343<br>1430<br>1436 | КТ      |
| 1070                 | 15             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150        |                         | 1.60<br>1.59<br>1.59<br>1.56<br>1.52<br>1.20<br>1.15<br>0.80<br>0.38<br>0.09         | 33.95<br>33.95<br>33.95<br>33.95<br>33.95<br>33.95<br>33.96<br>33.96<br>33.96<br>33.96<br>34.05          | 27.18<br>27.18<br>27.18<br>27.18<br>27.19<br>27.21<br>27.22<br>27.25<br>27.25<br>27.27<br>27.36                   |        |       |                                           |               | 6.0<br>7.3<br>7.3<br>5.6<br>5.5<br>9.0<br>9.3<br>13.4<br>20.4<br>27.6                                              | 7.71<br>7.71<br>7.67<br>7.64<br>7.66<br>6.71         | N 50 V<br>N 70 V<br>,,<br>N 70 B<br>N 100 B<br>N 100 H | 100-0<br>100-50<br>50-0<br>123-0<br>0-5                                       | 1640<br>             | 1655<br>1827<br>1833 |         |
| 1071                 | 15             | o                                                                |                         | 1.22                                                                                 | 33.95                                                                                                    | 27.19                                                                                                             |        |       |                                           |               |                                                                                                                    |                                                      | N 50 V<br>N 70 B<br>N 100 B<br>N 100 H                 | 100-0<br>  106-0<br>  0-5                                                     | 2150<br>2210<br>2207 | 2230                 | КТ      |
| 1072                 | 15             | 0                                                                |                         | 1.40                                                                                 | 33.96                                                                                                    | 27.21                                                                                                             | _      | -     |                                           | -             | _                                                                                                                  |                                                      | N 50 V<br>N 70 B<br>N 100 B<br>N 100 H                 |                                                                               | 0200<br>0217<br>0215 | 0237                 | КТ      |
| 1073                 | 15             | 0                                                                |                         | 1.53                                                                                 | 33:95                                                                                                    | 27.21                                                                                                             | _      |       | _                                         |               |                                                                                                                    |                                                      | N 50 V<br>N 70 B<br>N 100 B<br>N 100 H                 |                                                                               | 0610<br>0628<br>0625 | 0648                 | КТ      |
| 1074                 | 15             | 0                                                                | _                       | 1.31                                                                                 | 33.87                                                                                                    | 27.14                                                                                                             | _      |       | -                                         |               | -                                                                                                                  |                                                      | N 50 V<br>N 70 B<br>N 100 B<br>N 100 H                 |                                                                               | 1003<br>1021<br>1018 | 1041                 | КТ      |
| 1075                 | 16             | 0                                                                |                         | 1.15                                                                                 | 33.95                                                                                                    | 27.21                                                                                                             | -      |       |                                           |               | -                                                                                                                  |                                                      | N 50 V<br>N 70 B<br>N 100 B<br>N 100 H                 |                                                                               | 1415<br>1435<br>1433 | 1455                 | КТ      |
| 1076                 | 16             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100               |                         | 1.10<br>1.01<br>0.94<br>0.91<br>0.90<br>0.88<br>0.83<br>0.18<br>- 0.24               | 33.95<br>33.95<br>33.95<br>33.95<br>33.95<br>33.95<br>33.95<br>33.95                                     | 27·22<br>27·23<br>27·23<br>27·23<br>27·23<br>27·23<br>27·23<br>27·23                                              |        |       |                                           |               | 8.4<br>8.3<br>7.2<br>7.8<br>8.4<br>7.4<br>8.6<br>16.2<br>21.9                                                      | 7·68<br>7·67<br>7·66                                 | ,,<br>,,<br>,,<br>N 70 V<br>N 50 V<br>N 70 B           | 1000-750<br>750-500<br>250-250<br>250-100<br>100-50<br>50-0<br>100-0<br>110-0 | 1907<br><br>2134     | 2035                 | 1       |

|                      |                                                                       |                  |      | Sounding             | WIN        | D                | SEA                           |       |           | neter<br>bars)                           | Air Tei     | пр. С.      |                                                                      |
|----------------------|-----------------------------------------------------------------------|------------------|------|----------------------|------------|------------------|-------------------------------|-------|-----------|------------------------------------------|-------------|-------------|----------------------------------------------------------------------|
| Station              | Position                                                              | Date             | Hour | Sounding<br>(metres) | Direction  | Force<br>(knots) | Direction                     | Force | Weather   | Barometer<br>(millibars)                 | Dry<br>bulb | Wet<br>buib | Remarks                                                              |
| <b>1076</b><br>cont. | 54 - 24' S, 34' 07'1' W                                               | 1932<br>13 Xii   |      |                      |            |                  |                               |       |           |                                          |             |             |                                                                      |
| 1077                 | 54 ' 24' S, 34° 44.3' W                                               | 14 xii           | 0013 | 2663*                | SW         | 8                |                               | I     | с         | 1008-9                                   | 0.2         | - o·6       | mod. SSW swell                                                       |
| 1078                 | 54° 24′ S, 35° 22.9′ W                                                | 14 xii           | 0449 | 315*                 | NE         | 10               | NE                            | I     | 0         | 1007.4                                   | 0.0         | 0.0         | mod. conf. S swell                                                   |
| 1079                 | 54° 24' S, 35 54.5' W                                                 | 14 xii           | 0835 | 112*                 | N · W      | 10               | $\mathbf{N} 	imes \mathbf{W}$ | 2     | he        | 1007.6                                   | 1.0         | 0.1         | low conf. swell                                                      |
| 1080                 | 3 miles S 60° E of Jason<br>1, South Georgia                          | 14 xii           | 1140 |                      | Lt airs    | 0-2              |                               | 0     | 0         | 1007.4                                   | 1.4         | 0.0         | low conf. swell                                                      |
| 1081<br>1082         | 3 miles S 60° E of Jason<br>1, South Georgia<br>53 44′ S, 38° 30'9′ W | 27 xii<br>29 xii |      |                      | NW×W<br>NW | 21               | NW×W<br>NW                    | 4     | bc<br>Toe | 977 <sup>.</sup> 9<br>985 <sup>.</sup> 5 |             |             | mod. conf. W swell<br>heavy conf. WSW<br>and mod. conf. NW<br>swells |
|                      |                                                                       |                  |      |                      |            | n<br>F           |                               |       |           |                                          |             |             | 500115                                                               |

| 10 | 7 | 6- | 1 | 0 | 8 | 2 |
|----|---|----|---|---|---|---|
|----|---|----|---|---|---|---|

|                             |                |                                                                                                        |                         |                                                                                                                                      | HYDRO                                                                                                                                                          | LOGICA                                                                                                                                                         | L OBSE | RVATI | ONS                                       |                           |                                                                                                                                       |                                                                                                                                                       | BIOLO                                                                             | JUAL OBSEI                                                                                                   | WATION                       | 1.5                                 |                                                     |
|-----------------------------|----------------|--------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|-----------------------------------------------------|
| Station                     | Age of<br>moon |                                                                                                        | by<br>ieter             |                                                                                                                                      |                                                                                                                                                                |                                                                                                                                                                |        |       | Mg.—at                                    | om m."                    |                                                                                                                                       |                                                                                                                                                       |                                                                                   |                                                                                                              | .115                         | dF.                                 | Rath.                                               |
|                             | (days)         | Depth<br>(metrcs)                                                                                      | Depth by<br>thermometer | Temp.<br>• C                                                                                                                         | SĨ,                                                                                                                                                            | σt                                                                                                                                                             | pil    | ч     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N <sub>2</sub> | si                                                                                                                                    | O,<br>c.c.<br>htre                                                                                                                                    | Gear                                                                              | Depth<br>(metres)                                                                                            | From                         | Lo - 1                              |                                                     |
| <b>1076</b><br><i>cont.</i> | 16             | 150<br>200<br>300<br>590<br>790<br>980<br>1475<br>1970<br>2460<br>2950<br>3440<br>3930                 |                         | 0.66<br>1.43<br>1.86<br>2.20<br>1.88<br>1.71<br>1.68<br>1.23<br>0.82<br>0.61<br>0.38<br>0.23<br>- 0.39                               | 34'21<br>34'35<br>34'48<br>34'56<br>34'65<br>34'65<br>34'69<br>34'71<br>34'73<br>34'72<br>34'71<br>34'70<br>34'69<br>34'67                                     | 27:45<br>27:52<br>27:59<br>27:62<br>27:72<br>27:76<br>27:70<br>27:84<br>27:85<br>27:87<br>27:87<br>27:88<br>27:88                                              |        |       |                                           |                           | 32.4<br>38.0<br>48.7<br>52.0<br>54.2<br>55.8<br>57.5<br>67.8<br>73.0<br>79.1<br>80.8<br>84.4<br>77.5                                  | 5.60<br>4.67<br>4.10<br>3.97<br>3.95<br>4.01<br>3.99<br>4.27<br>4.38<br>4.33<br>4.56<br>4.55<br>5.11                                                  | N 70 B<br>N 100 B<br>N 100 H                                                      | 270-100<br>0-5                                                                                               | 2134<br>2135                 | 2204<br>2205                        | DGP                                                 |
| 1077                        | 16             | 0<br>10<br>20<br>30<br>50<br>60<br>80<br>150<br>190<br>290<br>390<br>590<br>790<br>980<br>1480<br>1970 |                         | 1.10<br>1.05<br>1.00<br>0.96<br>0.92<br>0.91<br>0.70<br>0.47<br>0.38<br>1.48<br>1.97<br>1.91<br>2.02<br>1.93<br>1.78<br>1.39<br>1.00 | 33.93<br>33.93<br>33.93<br>33.93<br>33.93<br>33.93<br>33.93<br>33.94<br>33.95<br>34.08<br>34.29<br>34.46<br>34.51<br>34.65<br>34.68<br>34.71<br>34.73<br>34.72 | 27:20<br>27:20<br>27:20<br>27:21<br>27:21<br>27:21<br>27:23<br>27:26<br>27:37<br>27:46<br>27:56<br>27:56<br>27:61<br>27:71<br>27:74<br>27:79<br>27:82<br>27:82 |        |       |                                           |                           | $\begin{array}{c} 4.9\\ 4.7\\ 4.8\\ 5.2\\ 5.7\\ 7.7\\ 11.3\\ 23.6\\ 38.7\\ 42.2\\ 47.5\\ 52.7\\ 55.8\\ 58.4\\ 66.6\\ 73.0\end{array}$ | $\begin{array}{c} 7.64 \\ - \\ 7.63 \\ - \\ 7.64 \\ - \\ 7.45 \\ 6.43 \\ 4.95 \\ 4.17 \\ 3.98 \\ 3.76 \\ 3.75 \\ 3.89 \\ 4.05 \\ 4.25 \\ \end{array}$ | N 70 V<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H | 1000-790<br>750-500<br>250-250<br>250-100<br>100-50<br>50-0<br>100-0<br>} 82-0<br>} 82-0<br>} 244-100<br>0-5 | 0025<br>0212<br>0212<br>0213 | <b>0200</b><br>0232<br>0242<br>0243 | KT<br>DGP<br>IKT. Nansen Pct-                       |
| 1078                        | 16             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>250                                |                         | 1.47<br>1.37<br>1.35<br>1.24<br>1.12<br>1.04<br>0.87<br>0.58<br>0.37<br>0.36<br>0.63<br>1.08                                         | 33.94<br>33.94<br>33.94<br>33.94<br>33.94<br>33.94<br>33.94<br>33.95<br>33.96<br>34.12<br>34.20<br>34.31                                                       | 27:18<br>27:19<br>27:20<br>27:20<br>27:21<br>27:22<br>27:25<br>27:27<br>27:40<br>27:45<br>27:51                                                                |        |       |                                           |                           | 4.1<br>4.1<br>4.1<br>4.3<br>3.2<br>3.8<br>6.5<br>10.2<br>11.7<br>23.4<br>33.0<br>33.0                                                 | 7.66<br>7.28<br>6.32<br>5.74                                                                                                                          | N 70 B<br>N 100 B<br>N 100 H<br>N 70 V<br>N 50 V                                  | ) 157-0<br>0-5<br>100-50<br>50-0<br>100-0                                                                    | 0500<br>0458<br>0554<br>—    | 0520<br>0528<br>0602                | tersson water hottle<br>touched bottom at<br>250 m. |
| 1079                        | 16             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100                                                     |                         | 1.63<br>1.50<br>1.42<br>1.38<br>1.32<br>1.33<br>1.34<br>1.23<br>0.70                                                                 | 33.69<br>33.69<br>33.73<br>33.77<br>33.77<br>33.80<br>33.80<br>33.83<br>33.83<br>33.93                                                                         | 26.97<br>26.98<br>27.02<br>27.05<br>27.05<br>27.05<br>27.08<br>27.11<br>27.12<br>27.22                                                                         |        |       |                                           |                           | 5.9<br>5.7<br>5.5<br>5.3<br>5.3<br>5.3<br>6.3<br>7.0<br>9.7                                                                           |                                                                                                                                                       | N 70 V<br>.,<br>N 50 V<br>N 70 B<br>N 100 B                                       | 100-50<br>50-0<br>100-0<br>111-0                                                                             | 0840                         | 0900<br>0925                        | КТ                                                  |
| 1080                        | 17             | 0                                                                                                      |                         | 2.12                                                                                                                                 | 33.86                                                                                                                                                          | 27.06                                                                                                                                                          | -      | -     | -                                         |                           |                                                                                                                                       | -                                                                                                                                                     | N 50 V                                                                            | 100-0                                                                                                        | 1140                         | 1147                                |                                                     |
| 1081                        | 0              | 0                                                                                                      | -                       | 2.95                                                                                                                                 | 33.34                                                                                                                                                          | 26.59                                                                                                                                                          | -      | -     | -                                         | -                         |                                                                                                                                       |                                                                                                                                                       | N 50 V                                                                            | 100-0                                                                                                        | 1205                         | 1213                                |                                                     |
| 1082                        | 2              | 0                                                                                                      |                         | 2.41                                                                                                                                 | 33.86                                                                                                                                                          | 27.04                                                                                                                                                          |        |       | -                                         | -                         |                                                                                                                                       |                                                                                                                                                       | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H                                 | 290-120<br>0-5                                                                                               | 2056<br>2056<br>2104         | 2126                                | KT. + 3 hours<br>DGP                                |

|         |                                                                                           | ŕ              |      | sdina                | WIN                           | D                | SEA                            |       |         | eter<br>Jars)            | Air Ter     | np. ' C.    |                                 |
|---------|-------------------------------------------------------------------------------------------|----------------|------|----------------------|-------------------------------|------------------|--------------------------------|-------|---------|--------------------------|-------------|-------------|---------------------------------|
| Station | Position                                                                                  | Date           | Houi | Sounding<br>(metres) | Direction                     | Force<br>(knots) | Direction                      | Force | Weather | Barometer<br>(mullibars) | Dry<br>bulb | Wet<br>bulb | Remarks                         |
| 1083    | 54 37 <sup>.</sup> 5′ S, 40 35 <sup>.</sup> 9′ W                                          | 1932<br>30 xii | 0900 |                      | $W \times N$                  | 24               | W×N                            | 5     | 0       | 964-1                    | 3.8         | 2.7         | heavy W×N swell                 |
| 1084    | 55° 49.3′ S, 41 - 22.4′ W                                                                 | 30 xii         | 2000 | 3449*                | W×S                           | 20               | W×S                            | 5     | υ       | 964.4                    | 2.3         | 1.2         | heavy conf. WSW<br>and W swells |
| 1085    | 57° 00′ S, 41° 53.9′ W                                                                    | 31 xii         | 0900 |                      | SW×W                          | 22-27            | $\mathbf{SW} 	imes \mathbf{W}$ | 6     | oqp     | 964-4                    | 1.0         | - 0.7       | heavy conf. SW swell            |
| 1086    | 57° 58·3′ S, 42° 25·6′ W                                                                  | 31 xii<br>1933 | 2000 | 3181*                | $\mathbf{W} 	imes \mathbf{S}$ | 33               | $W \times S$                   | 6     | osq     | 965.1                    | 0.2         | - o·6       | heavy conf. SW swell            |
| 1087    | 59° 05·6′ S, 43° 02·8′ W                                                                  | 1955<br>I İ    | 0900 |                      | wsw                           | 26               | WSW                            | 5     | osp     | 963 <b>·o</b>            | 0.2         | - o. 3      | heavy conf. WSW<br>swell        |
| 1088    | 60° 12°1′ S, 44 - 29°9′ W                                                                 | 1 i            | 2000 | 5476*                | SE                            | 16               | SE                             | 3     | o       | 967-2                    | 0.3         | 0.0         | heavy conf. W swell             |
|         |                                                                                           |                |      |                      |                               |                  |                                |       |         |                          |             |             |                                 |
|         | Crutchley I and Powell I,<br>South Orkney Is                                              | 3 i            |      | —                    |                               |                  | _                              | -     | -       |                          |             | -           | -                               |
| 1090    | Fredriksen I and Holmen<br>Gras (rocky islet south<br>of Crutchley I), South<br>Orkney Is | 4 i            |      |                      |                               | —                |                                | —     | _       |                          |             | —           | _                               |

| 1083 - 1 | 0 | 9 | 0 |
|----------|---|---|---|
|----------|---|---|---|

|                      |                |                                                                                                                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HYDRO                                                                                                                                                                            | LOGICA                                                                                                                                                                                             | L OBSE | RVATI | ONS                                                                                |               |    |                                                                                                                 | BIOLOG                                                                 | JICAL OBSER                             | VATIO:                               | ss.                   |                                     |
|----------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------------------------------------------------------------------------------------|---------------|----|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|-----------------------|-------------------------------------|
|                      | Age of         |                                                                                                                                         | ct .                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                  |                                                                                                                                                                                                    |        |       | Mg.—at                                                                             | om m.3        |    |                                                                                                                 |                                                                        |                                         | 711                                  | ME                    |                                     |
| Station              | moon<br>(days) | Depth<br>(metres)                                                                                                                       | Depth by<br>thermometer | Temp.<br>°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s '; ,                                                                                                                                                                           | σt                                                                                                                                                                                                 | рП     | Р     | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrate} \\ \text{N}_2 \end{array}$ | Nitrite<br>N2 | Si | O <sub>2</sub><br>C.C.<br>litre                                                                                 | Gear                                                                   | Depth<br>(metres)                       | From                                 | То                    | Remarks                             |
| 1083                 | 3              | 0                                                                                                                                       |                         | 3.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34.02                                                                                                                                                                            | 27.13                                                                                                                                                                                              |        |       |                                                                                    |               |    |                                                                                                                 | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                 | 250-100                                 | 0919<br>0919                         | 0949                  | KT<br>Depth estimated               |
| 1084                 | 3              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>390<br>590<br>780<br>980<br>1470<br>1970<br>2460                           |                         | 1.93<br>1.90<br>1.90<br>1.90<br>1.80<br>1.51<br>0.31<br>0.50<br>1.10<br>2.15<br>2.05<br>1.95<br>1.79<br>1.31<br>0.82<br>0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33.95<br>33.95<br>33.95<br>33.95<br>33.95<br>33.95<br>33.96<br>34.04<br>34.01<br>34.24<br>34.24<br>34.32<br>34.48<br>34.53<br>34.65<br>34.66<br>34.72<br>34.74<br>34.70<br>34.70 | 27.16<br>27.16<br>27.16<br>27.17<br>27.19<br>27.27<br>27.34<br>27.38<br>27.48<br>27.45<br>27.45<br>27.45<br>27.45<br>27.58<br>27.61<br>27.71<br>27.72<br>27.78<br>27.78<br>27.84<br>27.84<br>27.84 |        |       |                                                                                    |               |    | 7.41<br>-7.43<br>-7.43<br>-7.42<br>6.32<br>5.49<br>4.80<br>4.17<br>4.11<br>3.93<br>3.97<br>4.23<br>4.45<br>4.53 | N 100 H<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H | 0-5<br>100-0<br>119-0<br>280-100<br>0-5 | 0917<br>2008<br>2154<br>2154<br>2156 | 2214<br>2224          | KT<br>DGP                           |
| 1085                 | 4              | 296 <b>0</b><br>0                                                                                                                       | 2957                    | 0·29<br>2·26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34·69<br>33·96                                                                                                                                                                   | 27·85<br>27·14                                                                                                                                                                                     |        |       | _                                                                                  |               | _  | 4.70                                                                                                            | N 100 B<br>N 100 B                                                     | 146-0<br>250-125                        | 0918<br>0918                         |                       | KT<br>DGP. Lower depth<br>estimated |
| 1086                 | 4              | 0                                                                                                                                       |                         | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34.53                                                                                                                                                                            | 27.46                                                                                                                                                                                              |        | _     | _                                                                                  | _             | -  |                                                                                                                 | N 100 B<br>N 100 B                                                     | 128–0<br>320–100                        | 2040<br>2040                         | 1                     | KT<br>DGP                           |
| 1087                 | 5              | 0                                                                                                                                       |                         | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34.32                                                                                                                                                                            | 27.54                                                                                                                                                                                              |        |       | -                                                                                  | _             | _  |                                                                                                                 | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                 | } 134-0<br>} 350-110                    | 0924<br>0924                         | 0944<br>09 <b>5</b> 4 | KT<br>DGP                           |
| 1088<br>1089<br>1090 |                | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>590<br>790<br>990<br>1480<br>1980<br>2470<br>2970<br> |                         | 0.40<br>0.36<br>0.19<br>0.18<br>0.17<br>0.15<br>0.58<br>0.073<br>0.10<br>0.73<br>0.58<br>0.29<br>0.38<br>0.18<br>0.03<br>0.09<br>0.38<br>0.03<br>0.09<br>0.20<br>0.18<br>0.17<br>0.15<br>0.29<br>0.38<br>0.18<br>0.19<br>0.18<br>0.17<br>0.15<br>0.17<br>0.15<br>0.17<br>0.15<br>0.17<br>0.15<br>0.17<br>0.15<br>0.17<br>0.15<br>0.17<br>0.15<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10 | 34·24<br>34·25<br>34·30<br>34·30<br>34·30<br>34·30<br>34·30<br>34·34<br>34·47<br>34·55<br>34·63<br>34·67<br>34·68<br>34·66<br>34·65<br>34·65<br>                                 | 27·83<br>27·84<br>27·86<br>27·85<br>27·86                                                                                                                                                          |        |       |                                                                                    |               |    | 7:58<br>                                                                                                        | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H            | 100-0<br>100-0<br>260-120<br>0-5        | 2007<br>2149<br>2149<br>2149         | 2209<br>2219          |                                     |
|                      | ļ              |                                                                                                                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                  |                                                                                                                                                                                                    |        |       |                                                                                    |               |    |                                                                                                                 |                                                                        |                                         |                                      |                       |                                     |

|         |                                                                                  |                      |      | Sounding             | WIN           | D                | SEA           |       |                 | ieter<br>Jars)           | Air Ten     | np.°C.      |                                               |
|---------|----------------------------------------------------------------------------------|----------------------|------|----------------------|---------------|------------------|---------------|-------|-----------------|--------------------------|-------------|-------------|-----------------------------------------------|
| Station | Position                                                                         | Date                 | Hour | Sounding<br>(metres) | Direction     | Force<br>(knots) | Direction     | Force | Weather         | Barometer<br>(milltbars) | Dry<br>bulb | Wet<br>bulb | Remarks                                       |
| 1091    | Governen I, Sandifjord<br>Bay, South Orkney Is                                   | 1933<br>9 i          |      |                      |               |                  |               |       |                 |                          |             |             |                                               |
| 1092    | Signy I, South Orkney Is                                                         | 18 i                 |      |                      |               |                  |               | -     | _               |                          | _           |             | _                                             |
| 1093    | South coast of Coronation<br>I opposite Borge Bay,<br>Signy 1, South Orkney Is   | 19 i                 |      |                      |               | _                |               |       |                 |                          |             |             |                                               |
| 1094    | Inaccessible Is, South<br>Orkney Is                                              | 25 i                 |      |                      |               |                  |               |       | -               |                          | _           | _           | _                                             |
| 1095    | Whitton Bay, Laurie I,<br>South Orkney Is                                        | 26-28<br>i           | -    |                      |               |                  |               | _     | -               |                          |             |             | _                                             |
| 1096    | 61° 02·2′ S, 48° 27·1′ W                                                         | 30 i                 | 2000 | 2833*                | Var.<br>NW-SW | 3                | NW×W          | 3     | o<br>Lt<br>snow | 973.3                    | - 1.3       | - 1.2       | mod. NW $\times$ W swell                      |
| 1098    | 61° 39.9' S, 50° 27.8' W<br>61° 42.8' S, 53° 41.3' W<br>62° 15.5' S, 53° 41.4' W | 31 i<br>1 ii<br>1 ii | 0900 | 324*                 | S<br>S<br>SSW | 20               | S<br>S<br>SSW | 3     | o<br>bv         | 99 <b>0.0</b>            | - 4.1       | -4.6        | mod. WSW swell<br>low conf. swell<br>no swell |
|         |                                                                                  |                      |      |                      |               |                  |               |       |                 |                          |             |             |                                               |

|         |                |                                                                                                                             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HYDRC                                                                                                                                                          | DLOGIC.                                                                                                                                                                                   | L OBSI | ERVAT | IONS                                      |                       |    |                                                                                                                      | BIOLO                                                                               | JICAL OBSER                                                                                        | 677.10.              | NS                           |                                                                                                       |
|---------|----------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------------------------------------------|-----------------------|----|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------|------------------------------|-------------------------------------------------------------------------------------------------------|
| Station | Age of<br>moon |                                                                                                                             | oy<br>eter              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                                                                           |        |       | Mg.—a                                     | tom m. <sup>3</sup>   |    |                                                                                                                      |                                                                                     |                                                                                                    | TI                   | ME                           | Remarks                                                                                               |
| station | (days)         | Depth<br>(metres)                                                                                                           | Depth by<br>thermometer | Temp.<br>°C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S                                                                                                                                                              | σt                                                                                                                                                                                        | pH     | Р     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | $\frac{Nitrite}{N_2}$ | Si | O <sub>2</sub><br>c.c.<br>htre                                                                                       | Gear                                                                                | Depth<br>(metres)                                                                                  | From                 | То                           | KCHIALKS                                                                                              |
| 1091    |                |                                                                                                                             |                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |                                                                                                                                                                                           |        |       |                                           | _                     |    |                                                                                                                      | Sh. coll.                                                                           |                                                                                                    |                      |                              |                                                                                                       |
| 1092    | _              |                                                                                                                             | _                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                              |                                                                                                                                                                                           |        | -     | _                                         | -                     | _  | _                                                                                                                    | Sh. coll.                                                                           |                                                                                                    |                      |                              |                                                                                                       |
| 1093    |                | -                                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                              |                                                                                                                                                                                           | _      |       |                                           |                       |    |                                                                                                                      | Sh. coll.                                                                           |                                                                                                    |                      |                              |                                                                                                       |
| 1094    | _              | -                                                                                                                           | _                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                              | -                                                                                                                                                                                         |        | -     | _                                         |                       |    |                                                                                                                      | Sh. coll.                                                                           |                                                                                                    |                      |                              |                                                                                                       |
| 1095    |                |                                                                                                                             | _                       | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                              | _                                                                                                                                                                                         | _      | -     | -                                         | -                     |    |                                                                                                                      | Sh. coll.                                                                           |                                                                                                    |                      |                              |                                                                                                       |
| 1096    | 5              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>790<br>990<br>1490<br>1980<br>2480 | 2480                    | $\begin{array}{c} 0.59\\ 0.59\\ 0.61\\ 0.61\\ 0.55\\ 0.46\\ 0.43\\ 0.10\\ -0.62\\ -1.01\\ -0.94\\ -0.21\\ 0.13\\ 0.22\\ 0.12\\ -0.18\\ -0.33\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\ -0.50\\$ | 34.19<br>34.19<br>34.19<br>34.19<br>34.21<br>34.36<br>34.41<br>34.44<br>34.48<br>34.50<br>34.63<br>34.66<br>34.66<br>34.66<br>34.66<br>34.66<br>34.66<br>34.66 | 27:45<br>27:45<br>27:45<br>27:45<br>27:45<br>27:47<br>27:59<br>27:64<br>27:71<br>27:76<br>27:76<br>27:76<br>27:76<br>27:76<br>27:84<br>27:84<br>27:85<br>27:85<br>27:85<br>27:85<br>27:86 |        |       |                                           |                       |    | 7.69<br>7.70<br>7.71<br>7.72<br>7.31<br>6.92<br>6.46<br>5.11<br>4.76<br>4.67<br>4.65<br>4.76<br>5.01<br>5.10<br>5.33 | N 70 V<br>,,<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B<br>N 100 H | 1000-740<br>750-500<br>250-250<br>250-100<br>100-50<br>50-0<br>100-0<br>} 98-0<br>} 250-140<br>0-5 | 2005<br>             | 2205<br>2303<br>2313<br>2314 | Bad stray on wire<br>Bad stray on wire<br>Bad stray on wire<br>KT<br>{DGP. Lower depth<br>} estimated |
| 1097    | 5              | 0                                                                                                                           |                         | - 1 • 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33.69                                                                                                                                                          | 27.12                                                                                                                                                                                     |        |       |                                           |                       |    |                                                                                                                      | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H                                   | ) 119-0<br>) 280-124<br>0-5                                                                        |                      | 0951<br>1001<br>1002         | ice                                                                                                   |
| 1098    | 6              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300                                                     |                         | $ \begin{array}{c} -0.46 \\ -0.42 \\ -0.41 \\ -0.38 \\ -0.41 \\ -0.41 \\ -0.51 \\ -0.51 \\ -0.71 \\ -0.26 \\ -0.73 \\ -0.41 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·23<br>34·22<br>34·28<br>34·27<br>34·30<br>34·39                                     | 27.53<br>27.53<br>27.53<br>27.53<br>27.53<br>27.53<br>27.53<br>27.53<br>27.55<br>27.55<br>27.55<br>27.55<br>27.59<br>27.66                                                                |        |       |                                           |                       |    | 7.01<br>6.94<br>6.95<br>6.99<br>6.63<br>6.63<br>6.65<br>6.41<br>6.22                                                 | N 50 V<br>N 70 V<br>,,<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H         | 100-0<br>250-100<br>100-50<br>50-0<br>98-0<br>250-100<br>0-5                                       | 0015<br>             | 0045<br>0145<br>0155<br>0156 | Close to a very large<br>iceberg<br>KT<br>Depth estimated                                             |
| 1099    | 6              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200                                                            |                         | $ \begin{array}{r} -0.77 \\ -1.00 \\ -1.07 \\ -1.23 \\ -1.31 \\ -1.37 \\ -1.41 \\ -1.31 \\ -1.30 \\ -1.19 \\ -1.00 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34·21<br>34·27<br>34·27<br>34·32<br>34·34<br>34·36<br>34·36<br>34·42<br>34·43<br>34·43<br>34·48<br>34·55                                                       | 27.53<br>27.58<br>27.59<br>27.63<br>27.65<br>27.67<br>27.67<br>27.70<br>27.70<br>27.72<br>27.76<br>27.82                                                                                  |        |       |                                           |                       |    | 7·36<br>7·10<br>6·80<br>6·76<br>6·08<br>5·91<br>5·73                                                                 | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 70 V<br><br><br><br><br>N 50 V          | <pre>110-0 250-100 750-500 500-250 250-100 100-50 50-0 100-0</pre>                                 | 0815<br>0815<br>0900 | 0835<br>0845<br>1034         | KT<br>Depth estimated                                                                                 |

|               |                          |              |      | Sounding             | WIN          | D                | SEA          |       |         | neter<br>bars)           | Air Ter     | np, `C.     |                            |
|---------------|--------------------------|--------------|------|----------------------|--------------|------------------|--------------|-------|---------|--------------------------|-------------|-------------|----------------------------|
| Station       | Position                 | Date         | Hour | Sounding<br>(metres) | Direction    | Force<br>(knots) | Direction    | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                    |
| 1099<br>cont. | 62° 15.5′ S, 53° 41.4′ W | 1933<br>1 ii |      |                      |              |                  |              |       |         |                          |             |             |                            |
| 1100          | 62° 07·1′ S, 54° 49·2′ W | ı ii         | 1655 | 728*                 | $W \times N$ | 9–10             | W×N          | I     | с       | 988·9                    | 0.3         | -0.0        | low W swell                |
| 1101          | 61° 50.8′ S, 54° 42.9′ W | I ii         | 2118 | 688*                 | NW×N         | 10               | NW×N         | 3     | om      | 985 <sup>.7</sup>        | 0.6         | 0.0         | no swell                   |
| 1102          | 61° 33.6' S, 54° 39.8' W | 2 ii         | 0258 | 1257*                | W            | 20               | W            | 3     | odrs    | 985.3                    | 1.1         | o·8         | low W swell                |
| 1103          | 61° 09·9′ S, 54° 31·8′ W | 2 ii         | 1020 | 688*                 | W×S          | 15               | $W \times S$ | 3     | or      | 988 <b>·o</b>            | 1.8         | I.I         | mod. conf. SW × W<br>swell |

|                   | ПУD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | INDROLOGICAL                                                                                                                                                                                                                                                                                                                                                  | , OBSERVAT | TONS                                      |               |    |                                                                                                                                       | BIOLOG                                                           | ICAL OBSER                                                                                                 | VATION                           |                              |                       |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------|---------------|----|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|-----------------------|
| 0                 | S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Age       |                                                                                                                                                                                                                                                                                                                                                               |            | Mg.—at                                    | om m.3        |    |                                                                                                                                       |                                                                  |                                                                                                            |                                  | H                            | Recentle              |
| Station           | Depth<br>netres) A the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | mc<br>(da | S , ot                                                                                                                                                                                                                                                                                                                                                        | рН Р       | Nitrate<br>+<br>Nitrite<br>N <sub>3</sub> | Nitrite<br>N2 | Sı | O <sub>2</sub><br>c.c.<br>litre                                                                                                       | Gear                                                             | Depth<br>(metres)                                                                                          | I rom                            | To                           | X(1-3)) -             |
| <b>1099</b> cont. | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 34.63 27.85<br>34.66 27.85<br>34.66 27.86<br>34.66 27.86<br>34.66 27.87                                                                                                                                                                                                                                                                                       |            |                                           |               |    | 5.03<br>4.80<br>4.99<br>5.14                                                                                                          |                                                                  |                                                                                                            |                                  |                              |                       |
| 1100              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 34·03 27·35<br>34·06 27·36<br>34·23 27·48                                                                                                                                                                                                                                                                                                                     |            |                                           |               |    | 7·46<br><br>7·35                                                                                                                      | N 70 B<br>N 100 B<br>N 70 B                                      | 100-0                                                                                                      | 1710                             | 1730<br>1740                 | KT<br>Depth estimated |
|                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 34:28     27:53       34:30     27:54       34:30     27:55       34:32     27:57       34:32     27:57       34:39     27:68       34:47     27:73       34:45     27:74       34:50     27:78       34:56     27:81       34:64     27:86                                                                                                                   |            |                                           |               |    | 7·10<br>6·98<br>6·60<br>6·29<br>6·37<br>6·21<br>5·72<br>5·22                                                                          | N 100 B<br>N 50 V<br>N 70 V<br>''                                | 100-0<br>650-500<br>500-250<br>250-100<br>100-50<br>50-0                                                   | 1755<br>—                        | 1910                         |                       |
| 1101              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                          |            |                                           |               |    | 5.23 $6.94$ $-$ $6.94$ $-$ $6.94$ $-$ $6.68$ $6.48$ $6.48$ $6.48$ $6.67$ $5.90$ $5.69$                                                | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B<br>N 100 H  | 650-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>153-0<br>250-100<br>0-5                        | 2125<br>                         | 2235<br>2321<br>2331<br>2332 | KT<br>Depth estimated |
| 1102              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2         | 34.55         27.80           34.15         27.42           34.16         27.42           34.17         27.43           34.18         27.44           34.20         27.45           34.23         27.49           34.25         27.50           34.27         27.52           34.31         27.57           34.38         27.64           34.46         27.71 |            |                                           |               |    | 7:42<br>                                                                                                                              | N 70 B                                                           | 1000-0<br>1000-0<br>1000-750<br>750-500<br>250-250<br>250-0<br>250-100<br>100-50<br>50-0<br>100-0<br>100-0 |                                  | 0600<br>0640                 | КТ                    |
| 1103              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                          |            |                                           |               |    | 6·24<br>5·94<br>5·73<br>5·85<br>6·10<br>7·44<br>-<br>7·43<br>-<br>7·34<br>-<br>7·34<br>-<br>7·88<br>-<br>6·78<br>6·64<br>6·31<br>5·97 | N 70 V<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>108-0<br>250-100                                          | 0620<br>1020<br><br>1136<br>1136 | 0650<br>1105<br>1156         | Depth estimated       |
| 110               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                          |            |                                           |               |    | 5:73<br>5:85<br>6:10<br>7:44<br><br>7:43<br><br>7:34<br><br>7:08<br><br>6:78<br>6:64<br>6:31                                          | N 70 V<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>108-0                                                     | 1020<br><br>1136                 | 1105                         | KT                    |

|         |                                         |              |              | Sounding          | WIN                              | D                | SEA                                                     |          |          | neter<br>bars)           | Ait Ter     | np. ´ C.    |                                        |
|---------|-----------------------------------------|--------------|--------------|-------------------|----------------------------------|------------------|---------------------------------------------------------|----------|----------|--------------------------|-------------|-------------|----------------------------------------|
| Station | Position                                | Date         | Hour         | (metres)          | Direction                        | Force<br>(knots) | Direction                                               | Force    | Weather  | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                                |
| 1104    | 61° 19' S, 55° 05.8' W                  | 1933<br>2 ii | 1413         | 858*              | WNW                              | 10               | WNW                                                     | 4        | om       | 989.1                    | 2.1         | 1.8         | mod. conf. W swell                     |
|         |                                         |              |              |                   |                                  |                  |                                                         |          |          |                          |             |             |                                        |
|         |                                         |              |              |                   |                                  |                  |                                                         |          |          |                          |             |             |                                        |
|         |                                         |              |              |                   |                                  |                  |                                                         |          |          |                          |             |             |                                        |
|         |                                         |              |              |                   |                                  |                  |                                                         |          |          |                          |             |             |                                        |
| 1105    | 1 mile N 10 W of East<br>Point, Gibbs l | 2 ii<br>3 ii | 2015<br>0505 | <u> </u>          | $\frac{NW \times N}{W \times N}$ | 17<br>20         | $\begin{matrix} NW \times N \\ W \times N \end{matrix}$ | -4<br>-4 | omr<br>o | 990`5<br>988`8           | 1·5<br>3·3  | 1·5<br>3·0  | mod. WNW swell mod. $W \times N$ swell |
|         |                                         |              |              |                   |                                  |                  |                                                         |          |          |                          |             |             |                                        |
|         |                                         |              |              |                   |                                  |                  |                                                         |          |          |                          |             |             | :                                      |
| 1106    | 61° 38'3′ S, 56° 03'6′ W                | 3 ii         | 0855         | 612*              | NW                               | 18-24            | NW                                                      | 4        | cq       | 986·6                    | 2.4         | 2.2         | mod. WNW swell                         |
|         |                                         |              |              |                   |                                  |                  |                                                         |          |          |                          |             |             |                                        |
|         |                                         |              |              |                   |                                  |                  |                                                         |          |          |                          |             |             |                                        |
|         |                                         |              |              |                   |                                  |                  |                                                         |          |          |                          |             |             |                                        |
| 1107    | 61° 49.9′ S, 56° 44.9′ W                | 3 ii         | 1400         | 43 <sup>1</sup> * | W                                | 25               | W                                                       | 4        | b        | 989·3                    | 2.0         | τ.4         | mod. conf. W swell                     |
|         |                                         |              |              |                   |                                  |                  |                                                         |          |          |                          |             |             |                                        |
|         |                                         |              |              |                   |                                  |                  |                                                         |          |          |                          |             |             |                                        |
|         |                                         |              |              |                   |                                  | r<br>A           |                                                         |          |          |                          |             |             |                                        |
| 1100    | (- <sup>2</sup> ( C 0 <sup>2</sup>      |              |              |                   | W N                              |                  | W N                                                     |          | ,        | 0.0                      |             |             |                                        |
| 1108    | 62° 22·3′ S, 58° 30·5′ W                | 4 ii         | 1130         | 1333*             | $W \times N$                     | 24               | $W \times N$                                            | 4        | bc       | 988.7                    | 2.1         | 1.0         | mod. SSW swell                         |
|         |                                         |              |              |                   |                                  |                  |                                                         |          |          | -                        |             |             |                                        |
|         |                                         |              |              |                   |                                  | 8                |                                                         |          |          |                          |             |             |                                        |
|         |                                         |              |              |                   |                                  |                  |                                                         |          |          |                          |             |             |                                        |

|         |                |                                                                                              |                         |                                                                                                                                                        | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LOGICA                                                                                                                                                                                                                                                                                                  | L OBSE                                                 | RVATI | ONS                                                                                |                           |    |                                                                                        | BIOLOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GICAL OBSER                                                                  | VATION            | ~                    |                                                                                                            |
|---------|----------------|----------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------|------------------------------------------------------------------------------------|---------------------------|----|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------|----------------------|------------------------------------------------------------------------------------------------------------|
|         | Age of         |                                                                                              | c.                      |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                         |                                                        |       | Mgat                                                                               | om m.3                    |    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                              | TI                | IL                   | T.                                                                                                         |
| Station | moon<br>(days) | Depth<br>(metres)                                                                            | Depth by<br>thermometer | Temp.<br>°C.                                                                                                                                           | S °/₀,                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | σt                                                                                                                                                                                                                                                                                                      | pHq                                                    | Р     | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrate} \\ \text{N}_2 \end{array}$ | Nitrate<br>N <sub>2</sub> | Si | O2<br>c.e.<br>litre                                                                    | Gear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Depth<br>(metres)                                                            | I rom             | То                   | Renear                                                                                                     |
| 1104    | 8              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800 |                         | $\begin{array}{c} 0.75 \\ 0.70 \\ 0.69 \\ 0.65 \\ 0.65 \\ 0.48 \\ 0.40 \\ 0.12 \\ 0.06 \\ -0.01 \\ -0.03 \\ 0.09 \\ 0.00 \\ 0.06 \\ -0.66 \end{array}$ | 34'0)<br>34'14<br>34'14<br>34'15<br>34'18<br>34'18<br>34'18<br>34'25<br>34'20<br>34'32<br>34'40<br>34'32<br>34'40<br>34'49<br>34'52<br>34'53<br>34'52                                                                                                                                                                                                                                                                                                                               | 27.35<br>27.40<br>27.40<br>27.41<br>27.42<br>27.44<br>27.45<br>27.51<br>27.53<br>27.58<br>27.64<br>27.71<br>27.74<br>27.75<br>27.77                                                                                                                                                                     |                                                        |       |                                                                                    |                           |    | 7·36<br>7·35<br>7·28<br>7·12<br>6·67<br>6·56<br>6·15<br>5·70<br>5·66<br>5·37<br>5·89   | N 50 V<br>N 70 V<br><br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100-0<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>128-0<br>250-100 |                   | 1545<br>1621<br>1631 | KT<br>Depth estimated                                                                                      |
| 1105    | 8              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100                                           |                         | 0.59<br>0.58<br>0.42<br>0.38<br>0.29<br>0.29<br>0.28<br>0.27<br>0.29                                                                                   | 34.22<br>34.22<br>34.23<br>34.25<br>34.27<br>34.31<br>34.31<br>34.31<br>34.31                                                                                                                                                                                                                                                                                                                                                                                                       | 27.46<br>27.46<br>27.49<br>27.50<br>27.52<br>27.55<br>27.56<br>27.56<br>27.56<br>27.55                                                                                                                                                                                                                  | -                                                      |       |                                                                                    |                           |    | 7·14<br>6·97<br>6·76<br>6·53                                                           | N 70 B<br>N 100 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100-50<br>50-0<br>100-0<br>100-0                                             | 2018<br>—<br>0508 | 2036<br>0523         | Ship at anchor for<br>vertical nets and<br>hydrological hauls<br>(KT. Nets towed on<br>l leaving anchorage |
| 1106    | 8              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>100<br>150<br>200<br>300<br>400<br>550              |                         | $\begin{array}{c} 0.70 \\ 0.70 \\ 0.69 \\ 0.69 \\ 0.55 \\ 0.39 \\ 0.11 \\ -0.07 \\ -0.08 \\ 0.01 \\ 0.00 \\ -0.41 \\ -0.45 \\ -0.97 \end{array}$       | 33.97<br>33.98<br>33.99<br>34.08<br>34.15<br>34.18<br>34.26<br>34.34<br>34.43<br>34.45<br>34.51<br>34.51<br>34.52<br>34.54                                                                                                                                                                                                                                                                                                                                                          | 27.28<br>27.28<br>27.36<br>27.43<br>27.46<br>27.53<br>27.60<br>27.60<br>27.67<br>27.68<br>27.75<br>27.75                                                                                                                                                                                                |                                                        |       |                                                                                    |                           |    | 7:59<br>7:59<br>7:51<br>7:31<br>-<br>7:06<br>-<br>6:31<br>5:92<br>5:72<br>5:95<br>6:06 | ,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                            | 0852<br>          | 0943<br>1045<br>1055 | Bad stray on wire<br>,, ,, ,,<br>,, ,, ,,<br>KT<br>Depth estimated                                         |
| 1107    | , 9            | 0<br>10<br>20<br>30<br>40<br>50<br>50<br>50<br>100<br>150<br>200<br>300<br>400               |                         | 0.98<br>0.95<br>0.90<br>0.90<br>0.70<br>0.61<br>0.55<br>0.31<br>0.22<br>0.17<br>0.00<br>-0.12                                                          | 34.07<br>34.08<br>34.15<br>34.15<br>34.17<br>34.20<br>34.20<br>34.20<br>34.21<br>34.20<br>34.31<br>34.32<br>34.41                                                                                                                                                                                                                                                                                                                                                                   | 27:33         27:34         27:34         27:34         27:41         27:42         27:43         27:45         27:45         27:45         27:45         27:45         27:45         27:45         27:45         27:45         27:45         27:45         27:56         27:57         1         27:65 |                                                        |       |                                                                                    |                           |    | 7·50<br>                                                                               | 8<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 1 250 100                                                                    |                   | 1445                 | KT                                                                                                         |
| 1108    | 3 10           | 0<br>20<br>30<br>40<br>50<br>66<br>88<br>100<br>155<br>200<br>30                             |                         |                                                                                                                                                        | 33.79         33.93         34.12         34.14         34.16         34.16         34.16         34.16         34.16         34.16         34.16         34.16         34.18         34.18         34.18         34.22         34.34         34.32         34.32         34.34         34.34         34.34         34.34         34.34         34.34         34.34         34.34         34.34         34.34         34.34         34.34         34.34         34.34         34.34 | $\begin{array}{c} 27^{-1} \\ 27^{-2} \\ 27^{-2} \\ 4 \\ 27^{-4} \\ 27^{-4} \\ 8 \\ 27^{-4} \\ 4 \\ 27^{-5} \\ 4 \\ 27^{-5} \\ 1 \\ 27^{-6} \\ 7 \\ 27^{-6} \\ 2 \\ 27^{-6} \end{array}$                                                                                                                 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |       |                                                                                    |                           |    |                                                                                        | ,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 134 0                                                                      |                   | 1305                 | KT                                                                                                         |

|               |                          |              |      | Sounding             | WI         | ND               | SE.       | 1            |                 | neter<br>bars)           | Air Tei     | mp. C.      |                          |
|---------------|--------------------------|--------------|------|----------------------|------------|------------------|-----------|--------------|-----------------|--------------------------|-------------|-------------|--------------------------|
| Station       | Position                 | Date         | Hour | Sounding<br>(metres) | Direction  | Force<br>(knots) | Direction | Force        | Weather         | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                  |
| 1108<br>cont. | 62 22·3′ S, 58 30·5′ W   | 1933<br>4 ii |      |                      |            |                  |           |              |                 |                          |             |             |                          |
| 1109          | 62 4077 S, 58 0357 W     | 4 ii         | 1613 | 811*                 | W          | 15-18            | W         | 3            | bc              | 987-2                    | 1.0         | 1.1         | mod. conf. W swell       |
| 1110          | 62' 57·5' S, 57° 38·6' W | 4 ii         | 2045 | 222*                 | WNW        | 8                | WNW       | 2            | o<br>Lt<br>snow | 984.2                    | 1.5         | 0.0         | low conf. swell          |
| 1111          | 63° 49·2′ S, 61° 30′ W   | 5 ii         | 1215 | S2S*                 | SSE        | 19               | SSE       | 3-4<br>conf. | oq              | 964-9                    | 1.0         | 0.2         | heavy conf. W×N<br>swell |
| 1112          | 63° 27′ S, 61 – 59·5′ W  | 5 ii         | 1730 | 147*                 | NE A E     | 12               | NE×E      | 4            | OS              | 971-2                    | 0.3         | O* 1        | heavy WNW swell          |
| 1113          | 63 ° 04·5′ S, 62° 15′ W  | 5 ii         | 2145 | 371*                 | SW×W<br>SE | ) 10-14          | SW ^ W    | 2 conf.      | oesp            | 973.7                    | o.2         | 0.0         | heavy conf. WNW<br>swell |

|         |                |                   |                         |                  | HYDRO                                    | LOGICA         | L OBSE | RVATI | ONS                                       |                      |    |                     | BIOFOC                | GICAL OBSER        | VATIO. | xs -         |                                     |
|---------|----------------|-------------------|-------------------------|------------------|------------------------------------------|----------------|--------|-------|-------------------------------------------|----------------------|----|---------------------|-----------------------|--------------------|--------|--------------|-------------------------------------|
| Station | Age of         |                   | y<br>eter               |                  |                                          |                |        |       | Mg.—at                                    | om m. <sup>3</sup>   |    |                     |                       |                    | TI     | ME           | Remarks                             |
| Station | moon<br>(days) | Depth<br>(metres) | Depth by<br>thermometer | Temp.<br>° C.    | S ::                                     | σt             | pHq    | Р     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | $rac{Nitrite}{N_2}$ | Si | O,<br>c.c.<br>litre | Gear                  | Depth<br>(metres)  | From   | То           | i contento                          |
| 1108    | 10             | .400              | _                       | - 0.92           | 34.52                                    | 27.78          |        |       |                                           |                      |    | 6.12                |                       |                    |        |              |                                     |
| cont.   |                | 600<br>800        |                         | - 1.00<br>- 0.98 | 34 <sup>.</sup> 55<br>34 <sup>.</sup> 57 | 27·82<br>27·82 |        |       |                                           |                      |    | 5·95<br>5·81        |                       |                    |        |              |                                     |
|         |                | 990               | 989                     | -1.12            | 34.26                                    | 27.82          | _      |       | _                                         | —                    |    | 6.02                |                       |                    |        |              |                                     |
| 1109    | 10             | 0                 | _                       | 1.00<br>1.01     | 34·15<br>34·16                           | 27·39<br>27·39 |        | _     |                                           | _                    |    | 7.20                | N 70 V                | 750-500<br>500-250 | 1620   |              | Bad stray on wire                   |
|         |                | 10<br>20          | <u> </u>                | 1.00             | 34.16                                    | 27.39          | —      | -     | —                                         | -                    |    | 7.21                | • •                   | 250-100            |        |              | 13 33 11 13                         |
|         |                | 30<br>40          |                         | 0.90<br>0.52     | 34·17<br>34·19                           | 27·41<br>27·45 |        | _     |                                           |                      |    | 7.38                | ,,<br>,,              | 100-50<br>50-0     |        |              |                                     |
|         |                | 50<br>60          |                         | 0.09<br>-0.42    | 34·26<br>34·34                           | 27·53<br>27·62 |        |       |                                           |                      |    | 7.09                | N 50 V<br>N 70 B      | 100-0              | 1802   | 1725<br>1822 | КТ                                  |
|         |                | 80<br>100         |                         | -0.74<br>-0.82   | 34·40<br>34·43                           | 27·68<br>27·71 |        | _     |                                           |                      |    | 6.67                | N 100 B<br>N 70 B     | )                  |        |              | DGP                                 |
|         |                | 150<br>200        |                         | -0.82<br>-0.84   | 34·49<br>34·52                           | 27·75<br>27·78 |        |       | -                                         |                      |    | 6·35<br>6·13        | N 100 B               | 310-120            | 1802   | 1832         | DGr                                 |
|         |                | 290               |                         | - 0·7 I          | 34.27                                    | 27.81          |        |       |                                           | _                    |    | 5·93<br>6·11        |                       |                    |        |              |                                     |
|         |                | 390<br>580        | _                       | -0.98<br>-1.02   | 34·55<br>34·55                           | 27·81<br>27·82 |        | -     | -                                         | -                    |    | 5.92                |                       |                    |        |              |                                     |
|         |                | 730               | 726                     | - 1.10           | 34.29                                    | 27.85          |        | _     |                                           | _                    |    | 5.98                | <b>N</b> T <b>T</b> T |                    |        |              |                                     |
| 1110    | 10             | 0<br>10           |                         | -0.71<br>-0.78   | 34·40<br>34·41                           | 27·67<br>27·69 |        | -     |                                           | _                    |    | 6·85                | N 50 V<br>N 70 V      | 100-0<br>200-100   | 2047   |              |                                     |
|         |                | 20<br>30          |                         | - 0.81<br>- 0.81 | 34·41<br>34·41                           | 27·69<br>27·69 |        | _     |                                           |                      |    | 6.83                | ,,<br>,,              | 100-50<br>50-0     |        | 2120         |                                     |
|         |                | 40                |                         | -0.82<br>-0.83   | 34·41<br>34·42                           | 27·69<br>27·69 |        | _     | —<br>—                                    |                      | -  | 6.82                | N 70 B<br>N 100 B     | 135-0              | 2133   | 2153         | КТ                                  |
|         |                | 50<br>60          | —                       | -0.87            | 34.42                                    | 27.69          |        | -     | -                                         | _                    | _  | 6.77                | N 100 H               | 0-5                | 2126   | 2156         |                                     |
|         |                | 80<br>100         | _                       | - 0.91           | 34·42<br>34·42                           | 27·69<br>27·69 |        | _     |                                           |                      | _  | 6.65                |                       |                    |        |              |                                     |
|         |                | 150<br>200        |                         | - 1.09<br>- 1.30 | 34·43<br>34·47                           | 27.72          |        |       |                                           | _                    | _  | 6·55<br>6·34        |                       |                    |        |              |                                     |
| 1111    | II             | 0                 |                         | 1.28             | 33.95                                    | 27.20          | _      |       | _                                         |                      | -  | 7.11                | N 70 B                | } 104-0            | 1233   | 1253         | (KT. Hole in N 70 B)<br>near bucket |
|         |                | 10<br>20          |                         | 1·28<br>1·29     | 33.96                                    | 27.21          | _      |       |                                           | _                    | _  | 7.06                | N 100 B<br>N 70 B     | 310-100            | 1233   | 1303         | DGP. Closing depth                  |
|         |                | 30<br>40          |                         | I·29<br>I·22     | 34.00<br>34.00                           | 27.24          |        | -     |                                           | _                    |    | 7.08                | N 100 B<br>N 70 V     | 750-500            | 1315   | - 5 - 5      | 1 estimated                         |
|         |                | 50<br>60          |                         | 1·10<br>0·84     | 34·05<br>34·08                           | 27.30          |        | -     | -                                         |                      | -  | 6·71                | ,,                    | 500-250<br>250-100 |        |              |                                     |
|         | 1              | 80                | -                       | 0.30             | 34.51                                    | 27.47          | -      |       |                                           | -                    | _  | 6.06                | ,,                    | 100-50<br>50-0     |        |              |                                     |
|         |                | 100<br>150        |                         | -0.44            | 34·27<br>34·36                           | 27.54          |        | -     | -                                         | -                    | -  | 6·43<br>6·21        | N 50 V                | 100-0              | -      | 1415         |                                     |
|         |                | 200<br>300        | _                       | -0.64<br>-0.81   | 34·41<br>34·43                           | 27.68<br>27.71 |        | _     | -                                         | _                    | _  | 6.46                |                       |                    |        |              |                                     |
|         |                | 390<br>590        | _                       | -0.81<br>-0.66   | 34·52<br>34·53                           | 27·78          |        | _     |                                           |                      |    | 6·21<br>5·95        |                       |                    |        |              |                                     |
|         |                | 740               | 735                     | -0.62            | 34.22                                    | 27.80          | -      | -     |                                           | -                    | -  | 5.83                |                       |                    |        |              |                                     |
| 1112    | II             | 0                 |                         | 1·27<br>1·29     | 34.00                                    | 27.24          | =      |       |                                           |                      |    | 7.26                | N 50 V<br>N 70 V      | 100-0<br>100-50    | 1732   |              |                                     |
|         |                | 20<br>30          |                         | 1·29<br>1·29     | 34.00                                    | 27.24          | -      | _     | _                                         | -                    |    | 7.27                | N 70 B                | 50-0               | 1827   | 1753<br>1842 | КТ                                  |
|         |                | 40                |                         | 1.29             | 34.00                                    | 27.24          | -      | -     |                                           | -                    | -  | 7.25                | N 100 B               | 123-0              | 1027   | 1042         |                                     |
|         |                | 50<br>60          | -                       | 1·29<br>1·29     | 34.00                                    | 27.24          | -      | -     | _                                         | -                    | -  | 7:27                |                       |                    |        |              |                                     |
|         |                | 80<br>100         | _                       | 0.92<br>- 0.68   | 34·08<br>34·26                           | 27.56          |        | -     |                                           | -                    | -  | 6.19                |                       |                    |        |              |                                     |
|         |                | 150               | -                       | 0.51             | 34.39                                    | 27.63          |        |       |                                           | -                    |    | 5.65                |                       | 250-100            | 2145   |              |                                     |
| 1113    | 11             | 0<br>10           |                         | 1.01<br>1.00     | 34·07<br>34·07                           |                | 1      | _     |                                           |                      |    | 7.13                | N 70 V                | 250-100            | 2145   |              |                                     |
|         |                | 20                | _                       | 1.00<br>1.01     | 34·07<br>34·08                           |                |        | -     |                                           |                      | -  | 7.12                | N 50 V                | 50-0<br>100-0      | _      | 2211         |                                     |
|         |                | 40                | -                       | 0.01             |                                          | 27.36          | -      | -     |                                           | _                    |    | 7.02                | N 70 B<br>N 100 B     | 80-0               | 2248   | 2303         | КТ                                  |
|         |                | 60<br>80          | -                       | 0.87<br>0.81     | 34.16                                    | 27.40          | -      | _     | -                                         | -                    | -  | 6.92                |                       | 275-130            | 2248   | 2313         | DGP                                 |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                          |              |      | Sounding             | WIN       | D                | SEA       |       |         | neter<br>Dars)           | Air Ten     | ър. ° С.    |                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|--------------|------|----------------------|-----------|------------------|-----------|-------|---------|--------------------------|-------------|-------------|-----------------------------------|
| $\begin{bmatrix} cont. \\ 1114 \\ 62^{\circ} 51 \cdot 1' \\ S, 62^{\circ} 05 \cdot 4' \\ W \\ 6 \\ ii \\ 0 \\ 100 \\ 706^{*} \\ SSW \\ 14 \\ SSW \\ 4 \\ OS \\ 983 \cdot 7 \\ -0 \cdot 3 \\ -0 \cdot 6 \\ heat \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Station       | Position                 | Date         | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1113<br>cont. | 53° 04·5′ S, 62° 15′ W   | 1933<br>5 ii |      |                      |           |                  |           |       |         |                          |             |             |                                   |
| 1115       60° 39'2'S, 61° 31'9'W       6 ii       200       3638*       W       24       W       4       or       980'3       3'2       3'2       heat         Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview       Interview <td>1114</td> <td>62° 51·1′ S, 62° 05·4′ W</td> <td>6 ii</td> <td>0100</td> <td>706*</td> <td>SSW</td> <td>14</td> <td>SSW</td> <td>4</td> <td>os</td> <td>983·7</td> <td>- 0.3</td> <td>- 0.6</td> <td>heavy WNW swell</td> | 1114          | 62° 51·1′ S, 62° 05·4′ W | 6 ii         | 0100 | 706*                 | SSW       | 14               | SSW       | 4     | os      | 983·7                    | - 0.3       | - 0.6       | heavy WNW swell                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1115          | 60° 39·2′ S, 61° 31·9′ W | 6 ii         | 2000 | 3638 <b>*</b>        | w         | 24               | w         | 4     | or      | 980.3                    | 3.2         | 3.5         | heavy W swell                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                          |              |      |                      |           |                  |           |       |         |                          |             |             | heavy WNW swell<br>heavy SW swell |

1113-1117

|               |                          |                                                                                                                              |                              |                                                                                                                                                                            | HYDR                                                                                                                                                                                                        | OLOGIC,                                                                                                                                                                                                 | AL OBS | ERVAT | IONS                      |           |    |                                                                                                                                                                                                                                                                                                      | BIOLO                                                                                | GICAL OBSER                                                                                         | RVATIO:              | NS                           |           |
|---------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|---------------------------|-----------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------|------------------------------|-----------|
| Station       | Age of<br>moon<br>(days) | Depth<br>(metres)                                                                                                            | Depth by<br>thermometer      | Temp.<br>° C.                                                                                                                                                              | S °/                                                                                                                                                                                                        | σt                                                                                                                                                                                                      | pН     |       | Mg.—at                    | Nitrite   | Si | O <sub>2</sub><br>c.c.<br>htre                                                                                                                                                                                                                                                                       | Gear                                                                                 | Depth<br>(metres)                                                                                   | TI<br>From           | ME<br>To                     | Remarks   |
| 1113<br>cont. | II                       | 100<br>150<br>200<br>300                                                                                                     |                              | 0.75<br>0.38<br>0.30<br>0.39                                                                                                                                               | 34·18<br>34·34<br>34·41<br>34·59                                                                                                                                                                            | 27·43<br>27·58<br>27·63<br>27·78                                                                                                                                                                        |        |       | Nitrite<br>N <sub>2</sub> |           |    | 6.75<br>6.02<br>5.67<br>5.03                                                                                                                                                                                                                                                                         |                                                                                      |                                                                                                     |                      |                              |           |
| 1114          | II                       | 375<br>0<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150                                                                   |                              | - 0.01<br>1.23<br>1.17<br>0.90<br>0.85<br>0.84<br>0.80<br>0.80<br>0.80<br>0.71<br>0.40                                                                                     | 34.61<br>33.97<br>34.00<br>34.02<br>34.07<br>34.07<br>34.07<br>34.07<br>34.07<br>34.07<br>34.14<br>34.24                                                                                                    | 27·82<br>27·23<br>27·25<br>27·29<br>27·33<br>27·33<br>27·33<br>27·34<br>27·34<br>27·34<br>27·40<br>27·50                                                                                                |        |       |                           |           |    | 5·27<br>7·32<br>7·19<br>7·19<br>7·11<br>7·06<br>6·88<br>6·24                                                                                                                                                                                                                                         | N 50 V<br>N 70 V<br>,,<br>,,<br>,,<br>N 70 B<br>N 100 B<br>N 70 B                    | 100-0<br>500-0<br>500-0<br>500-250<br>250-100<br>100-50<br>50-0<br>102-0                            | <b>0115</b>          | 0237<br>0340                 | KT        |
|               |                          | 200<br>300<br>400<br>600                                                                                                     |                              | 0.40<br>0.26<br>0.45<br>0.65<br>0.37                                                                                                                                       | 34·41<br>34·50<br>34·61<br>34·61                                                                                                                                                                            | 27.50<br>27.64<br>27.70<br>27.78<br>27.80                                                                                                                                                               |        |       | <br>                      | <br> <br> |    | 5·50<br>5·10<br>4·77<br>4·94                                                                                                                                                                                                                                                                         | N 100 B                                                                              | } 290-90                                                                                            | 0320                 | 0350                         | DGP       |
| 1115          | 12                       | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>290<br>390<br>580<br>780<br>970<br>1460<br>1950<br>2430<br>2920 |                              | $\begin{array}{c} 1.70\\ 1.70\\ 1.70\\ 1.68\\ 1.62\\ 1.60\\ -0.39\\ -1.13\\ -0.51\\ 0.69\\ 1.57\\ 1.88\\ 2.20\\ 2.01\\ 2.00\\ 1.89\\ 1.50\\ 1.19\\ 0.82\\ 0.56\end{array}$ | 33.81<br>33.81<br>33.81<br>33.81<br>33.81<br>33.90<br>33.91<br>34.00<br>34.19<br>34.34<br>34.44<br>34.58<br>34.63<br>34.70<br>34.71<br>34.71<br>34.71<br>34.70<br>34.70                                     | 27.07<br>27.07<br>27.07<br>27.07<br>27.07<br>27.26<br>27.30<br>27.34<br>27.34<br>27.44<br>27.50<br>27.56<br>27.56<br>27.64<br>27.76<br>27.76<br>27.78<br>27.78<br>1<br>27.81<br>27.82<br>27.84<br>27.84 |        |       |                           |           |    | $\begin{array}{c} 7 \cdot 3^{I} \\ - \\ 7 \cdot 3^{2} \\ - \\ 7 \cdot 3^{2} \\ - \\ 7 \cdot 4^{6} \\ - \\ 6 \cdot 99 \\ 5 \cdot 7^{I} \\ 4 \cdot 69 \\ 5 \cdot 7^{I} \\ 4 \cdot 69 \\ 3 \cdot 98 \\ 4 \cdot 08 \\ 4 \cdot 10 \\ 4 \cdot 21 \\ 4 \cdot 3^{2} \\ 4 \cdot 44 \\ 4 \cdot 56 \end{array}$ | N 70 V<br>,,<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B<br>N 100 H  | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>} 119-0<br>} 315-130<br>0-5 | 2005<br>             | 2155<br>2235<br>2245<br>2245 | KT<br>DGP |
| 1116          | 12                       | o                                                                                                                            | _                            | 2.76                                                                                                                                                                       | 33.75                                                                                                                                                                                                       | 26.93                                                                                                                                                                                                   | _      |       |                           |           |    |                                                                                                                                                                                                                                                                                                      | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                     | 100-0<br>} 110-0<br>} 270-115                                                                       | 0905<br>0926<br>0926 | 0912<br>0946<br>0956         | KT<br>DGP |
| 1117          | 13                       | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>200<br>390<br>590<br>780<br>980<br>1470<br>1950<br>2440<br>2930        | <br><br><br><br><br><br><br> | 4·37<br>4·39<br>4·37<br>4·34<br>4·31<br>4·31<br>4·22<br>3·71<br>3·45<br>3·27<br>2·91<br>2·69<br>2·65<br>3·00<br>2·57<br>2·44<br>2·16<br>1·86<br>1·51<br>1·20               | 33.91<br>33.96<br>33.97<br>33.98<br>33.98<br>33.98<br>33.99<br>34.15<br>34.14<br>34.14<br>34.14<br>34.10<br>34.16<br>34.16<br>34.13<br>34.43<br>34.43<br>34.43<br>34.52<br>34.63<br>34.70<br>34.70<br>34.70 | 26.90<br>26.94<br>26.95<br>26.97<br>26.97<br>26.97<br>27.17<br>27.19<br>27.20<br>27.20<br>27.27<br>27.27<br>27.37<br>27.49<br>27.57<br>27.49<br>27.57<br>27.69<br>27.77<br>27.80<br>27.80<br>27.82      |        |       |                           |           |    | $\begin{array}{c} 6.89 \\ \\ 6.90 \\ \\ 6.89 \\ \\ 6.69 \\ \\ 6.64 \\ 6.56 \\ 6.64 \\ 6.38 \\ 5.80 \\ 4.50 \\ 4.14 \\ 3.85 \\ 3.79 \\ 4.05 \\ 4.16 \\ 4.34 \end{array}$                                                                                                                              | N 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,, | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>119-0<br>320-120            | 2008<br>             | 2219<br>2305<br>2315         | KT<br>DGP |

|         |                                                      |              |              | Sounding             | WIN                             | D                | SEA                             |        |         | neter<br>bars)           | Air Ter              | np. ° C.    |                                             |
|---------|------------------------------------------------------|--------------|--------------|----------------------|---------------------------------|------------------|---------------------------------|--------|---------|--------------------------|----------------------|-------------|---------------------------------------------|
| Station | Position                                             | Date         | Hour         | Sounding<br>(metres) | Direction                       | Force<br>(knots) | Direction                       | Force  | Weather | Barometer<br>(millibars) | D <b>r</b> y<br>bulb | Wet<br>bulb | Remarks                                     |
| 1118    | 56° 22·2′ S, 60° 02·9′ W                             | 1933<br>8 ii | 0900         |                      | $\mathbf{NW} \times \mathbf{N}$ | 23               | $\mathbf{NW} \times \mathbf{N}$ | 5-4    | 0       | 986.5                    | 7· I                 | 6.2         | heavy W swell                               |
| 1119    | 55° 07·9′ S, 59° 18·5′ W                             | 8 ii         | 2000<br>2045 | 3072<br>3109*        | WSW<br>WSW                      | 35-42<br>17-21   | WSW<br>WSW                      | 5<br>5 | cq<br>— | 9 <u>8</u> 3.7           | <u>8·3</u>           | 6.6         | mod. conf. W swell<br>—                     |
|         |                                                      |              |              |                      |                                 |                  |                                 |        |         |                          |                      |             |                                             |
| 1120    | 53° 48·7′ S, 58° 35′ W                               | 9 ii         | 0900         | 681*                 | WNW                             | 20               | WNW                             | 4      | b       | 99 <b>5</b> ·8           | 9.1                  | 7.4         | mod. conf. W <u>N</u> W<br>swell            |
| 1121    | 51° 59·7′ S, 53° 24·2′ W                             | 19 ii        | 2000         | 2078*                | W×S                             | 20-23            | W×S                             | 5      | Ь       | 978.8                    | 6.7                  | 3.9         | heavy conf. WNW<br>swell                    |
|         | 52° 04.6′ S, 50° 54.5′ W<br>52° 12.6′ S, 48° 25.3′ W |              | 0900         |                      | NW<br>NW×W                      | 23-34<br>23      | NW<br>NW×W                      | 5      | оq<br>b | 989·1<br>993·5           |                      |             | heavy WNW swell<br>heavy conf. WNW<br>swell |

#### 1118-1123

|         |                |                                                                                                                             |                                         |                                                                                                                                                                                                                                                     | HYDROI                                                                                                                                                                  | LOGICA                                                                                                                                                                  | l obse | RVATI | ONS                                                                                |                       |    |                                                                                                                                                          | BIOLOG                                                                               | JCAL OBSER                                                                                                          | VATION                            | is                           |                                        |
|---------|----------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------------------------------------------------------------------------------------|-----------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------|----------------------------------------|
|         | Age of         |                                                                                                                             | y<br>ter                                |                                                                                                                                                                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                         |        |       | Mgat                                                                               | om m.3                |    |                                                                                                                                                          |                                                                                      |                                                                                                                     | TL                                | AIE -                        | Remarks                                |
| Station | moon<br>(days) | Depth<br>(metres)                                                                                                           | Depth by<br>thermometer                 | Temp.<br>°C.                                                                                                                                                                                                                                        | S ^/on                                                                                                                                                                  | σt                                                                                                                                                                      | рН     | Р     | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ \text{N}_2 \end{array}$ | $\frac{Nitrite}{N_2}$ | Si | O2<br>c.c.<br>litre                                                                                                                                      | Gear                                                                                 | Depth<br>(metres)                                                                                                   | I rom                             | То                           | Kemarks                                |
| 1118    | 13             | o                                                                                                                           |                                         | 6.33                                                                                                                                                                                                                                                | 34.02                                                                                                                                                                   | 26.78                                                                                                                                                                   |        |       |                                                                                    |                       |    |                                                                                                                                                          | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                     | 100-0<br>  119-0<br>  410-100                                                                                       | 0901<br>0928<br>0928              | 0908<br>0948<br>0958         | KT<br>DGP                              |
| 1119    | 14             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>390<br>590<br>790<br>980<br>1480<br>1970<br>2460 | <br><br><br><br><br><br>980<br><br>2468 | $\begin{array}{c} 6.63\\ 6.63\\ 6.55\\ 6.43\\ 6.25\\ 6.11\\ 5.52\\ 5.23\\ 4.85\\ 4.72\\ 4.30\\ 4.21\\ 3.73\\ 3.48\\ 3.22\\ 2.54\\ 2.26\\ 1.99\end{array}$                                                                                           | 34.16<br>34.16<br>34.16<br>34.16<br>34.16<br>34.16<br>34.17<br>34.17<br>34.17<br>34.23<br>34.20<br>34.19<br>34.21<br>34.21<br>34.21<br>34.25<br>34.52<br>34.65<br>34.70 | 26.83<br>26.83<br>26.84<br>26.86<br>26.86<br>26.88<br>26.90<br>26.98<br>27.01<br>27.06<br>27.12<br>27.14<br>27.15<br>27.21<br>27.23<br>27.29<br>27.57<br>27.69<br>27.76 |        |       |                                                                                    |                       |    | 6.54<br>-6.57<br>6.56<br>-6.53<br>-6.46<br>6.30<br>6.46<br>6.30<br>6.41<br>6.42<br>6.39<br>5.97<br>5.64<br>5.97<br>5.64<br>5.98<br>3.866<br>3.69<br>3.91 | N 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,, | 1000-780<br>760-500<br>700-525<br>500-260<br>250-100<br>100-50<br>50-0<br>100-0<br>100-0<br>100-0<br>330-100<br>0-5 | 2013<br>—<br>2247<br>2247<br>2247 | 2213<br>2307<br>2317<br>2317 | Closing depth<br>doubtful<br>KT<br>DGP |
| 1120    | 15             | 0                                                                                                                           |                                         | 7.10                                                                                                                                                                                                                                                | 34.16                                                                                                                                                                   | 26.77                                                                                                                                                                   |        | -     | -                                                                                  |                       |    | -                                                                                                                                                        | N 50 V<br>N 100 B<br>N 70 B<br>N 100 B                                               | 100-0<br>110-0<br>} 300-110                                                                                         | 0903<br>0928<br>0928              | 0913<br>0948<br>0958         | KT<br>DGP                              |
| 1121    | 25             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>390<br>590<br>790<br>980<br>1470<br>1960         |                                         | $\begin{array}{c} 6\cdot 26\\ 6\cdot 26\\ 6\cdot 26\\ 6\cdot 26\\ 6\cdot 26\\ 6\cdot 21\\ 5\cdot 72\\ 3\cdot 91\\ 3\cdot 28\\ 3\cdot 10\\ 2\cdot 88\\ 2\cdot 38\\ 1\cdot 97\\ 2\cdot 59\\ 2\cdot 64\\ 2\cdot 45\\ 2\cdot 17\\ 1\cdot 83\end{array}$ | 34.08<br>34.08<br>34.08<br>34.08<br>34.08<br>34.08<br>34.10<br>34.13<br>34.15<br>34.16<br>34.16<br>34.15<br>34.26<br>34.41<br>34.51<br>34.64<br>34.71                   | 26·82<br>26·82<br>26·83<br>26·89<br>27·10<br>27·18<br>27·23<br>27·25<br>27·29<br>27·32<br>27·35<br>27·47<br>27·56<br>27·70                                              |        |       |                                                                                    |                       |    | 6.55<br>6.58<br>6.58<br>6.58<br>6.65<br>6.66<br>6.51<br>6.44<br>6.36<br>6.14<br>5.01<br>4.20<br>3.96<br>3.77<br>3.98                                     | N 100 B<br>N 70 B<br>N 100 B<br>N 100 H                                              | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>106-0<br>290-110<br>0-5                              | 2005<br><br>2220<br>2220<br>2221  |                              | DGP                                    |
| 1122    | 25             | 0                                                                                                                           | -                                       | 6.71                                                                                                                                                                                                                                                | 34.14                                                                                                                                                                   | 26.81                                                                                                                                                                   | -      |       | -                                                                                  | -                     |    |                                                                                                                                                          | N 100 B<br>N 70 B<br>N 100 B                                                         | 100-115                                                                                                             | 0928<br>0928                      |                              |                                        |
| 1123    | 26             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400                                              |                                         | 5.10<br>5.20<br>5.20<br>5.20<br>5.20<br>5.20<br>5.20<br>5.20<br>5.2                                                                                                                                                                                 | 34.09<br>34.09<br>34.09<br>34.09<br>34.09<br>34.09<br>34.10<br>34.10<br>34.17<br>34.19<br>34.17<br>34.15                                                                | 26.95<br>26.95<br>26.95<br>26.95<br>26.95<br>26.95<br>26.96<br>27.11<br>27.19<br>27.24<br>27.27<br>27.30                                                                |        |       |                                                                                    |                       |    | 6.68<br><u>-</u><br>6.69<br><u>-</u><br>6.70<br><u>-</u><br>6.70<br><u>-</u><br>6.56<br>6.49<br>6.48<br>6.33<br>6.00                                     | ",<br>N 50 V<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H                              | 250-100                                                                                                             | 2010<br>2312<br>2312<br>2313      | 2258<br>2332<br>2342         |                                        |

|               |                          |               |      | Sounding             | WIN                           | D                | SEA                           |       |         | neter<br>Dars)           | Air Ten     | np. ° C.    |                                 |
|---------------|--------------------------|---------------|------|----------------------|-------------------------------|------------------|-------------------------------|-------|---------|--------------------------|-------------|-------------|---------------------------------|
| Station       | Position                 | Date          | Hour | Sounding<br>(metres) | Direction                     | Force<br>(knots) | Direction                     | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                         |
| 1123<br>cont. | 52° 12.6′ S, 48° 25.3′ W | 1933<br>20 ii |      |                      |                               |                  |                               |       |         |                          |             |             |                                 |
| 1124          | 52° 15·3′ S, 46° 13·4′ W | 21 ii         | 0900 |                      | WNW                           | 18               | WNW                           | 4     | bc      | 1003.4                   | 6.3         | 5.6         | heavy conf. WNW<br>swell        |
| 1125          | 52° 21·5′ S, 43° 34·5′ W | 21 ii         | 2000 | 3340*                | NW                            | 10               | NW                            | 3     | b       | 1005.8                   | 5.3         | 4.9         | heavy conf. NW and<br>SW swells |
|               |                          |               |      |                      |                               |                  |                               |       |         |                          |             |             |                                 |
|               |                          |               |      |                      |                               |                  |                               |       |         |                          |             |             |                                 |
| 1126          | 52° 27·2′ S, 40° 55′ W   | 22 ii         | 0900 |                      | $\mathbf{N} 	imes \mathbf{W}$ | 12               | $\mathbf{N} 	imes \mathbf{W}$ | 3     | Ьс      | 1003.3                   | 5.0         | 4.4         | heavy conf. SW and<br>NW swells |
| 1127          | 52° 43.7′ S, 37° 12.5′ W | 23 ii         | 0405 | 1861*                | Ν                             | 4                | N                             | I     | fe      | 996·2                    | o∙6         | o·6         | mod. W swell                    |
|               |                          |               |      |                      |                               |                  |                               |       |         |                          |             |             |                                 |
|               |                          |               |      |                      |                               |                  |                               |       |         |                          |             |             |                                 |
| 1128          | 53° 04·4′ S, 37° 12·8′ W | 23 ii         | 0926 | 2939*                | ENE                           | 10               | ENE                           | 2     | of      | 995 <sup>-</sup> 4       | 1.9         | 1.9         | mod. conf. W swell              |
|               |                          |               |      |                      |                               |                  |                               |       |         |                          |             |             |                                 |
|               |                          |               |      |                      |                               |                  |                               |       |         |                          |             |             |                                 |

| 1123 - 1128 | 1 | 1 | 23 |  | 1 | 1 | 2 | 8 |
|-------------|---|---|----|--|---|---|---|---|
|-------------|---|---|----|--|---|---|---|---|

|               | T                        |                                                                                                                                     |                         | <u> </u>                                                                                                                                             | HYDROI                                                                                                                                                                                    | .ogical                                                                                                                                                                 | . OBSEI | RVATI | ONS                                       |                           |                                                                    |                                                                                                                                                                              | BIOLOG                                                                                      | ICAL OBSERV                                                                                      | JATION                          | s                            |           |
|---------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------------------------------------------|---------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------|------------------------------|-----------|
|               |                          |                                                                                                                                     |                         |                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                                                                                         | 1       |       | Mgato                                     | om m.3                    | 1                                                                  |                                                                                                                                                                              |                                                                                             |                                                                                                  | TIN                             |                              |           |
| Station       | Age of<br>moon<br>(days) | Depth<br>(metres)                                                                                                                   | Depth by<br>thermometer | Temp.<br>° C.                                                                                                                                        | S °/                                                                                                                                                                                      | σt                                                                                                                                                                      | рН      | Р     | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N <sub>2</sub> | Si                                                                 | O2<br>c.c.<br>litre                                                                                                                                                          | Gear                                                                                        | Depth<br>(metres)                                                                                | From                            | To                           | Remarks   |
| 1123<br>cont. | 26                       | 600<br>800<br>1000<br>1500                                                                                                          |                         | 2·47<br>2·45<br>2·37<br>2·09                                                                                                                         | 34 <sup>.</sup> 17<br>34 <sup>.</sup> 41<br>34 <sup>.</sup> 52<br>34 <sup>.</sup> 69                                                                                                      | 27·29<br>27·48<br>27·58<br>27·73                                                                                                                                        |         |       |                                           | <br><br>                  |                                                                    | 5·96<br>4·34<br>3·95<br>3·82                                                                                                                                                 |                                                                                             |                                                                                                  |                                 |                              |           |
| 1124          | 26                       | 0                                                                                                                                   |                         | 5.44                                                                                                                                                 | 34.03                                                                                                                                                                                     | 26.88                                                                                                                                                                   | _       |       |                                           |                           |                                                                    |                                                                                                                                                                              | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                            | 100-0<br>97-0<br>260-94                                                                          | 0904<br>0928<br>0928            | 0914<br>0948<br>0958         | KT<br>DGP |
| 1125          | 27                       | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>300<br>300<br>390<br>780<br>980<br>1470<br>1960<br>2450<br>2940 |                         | 4·38<br>4·39<br>4·28<br>4·20<br>3·97<br>3·80<br>1·01<br>0·82<br>0·71<br>0·90<br>1·32<br>1·42<br>2·29<br>2·16<br>2·08<br>1·77<br>1·34<br>0·87<br>0·51 | 33.82<br>33.82<br>33.83<br>33.84<br>33.85<br>33.86<br>33.92<br>33.94<br>34.95<br>34.11<br>34.25<br>34.36<br>34.52<br>34.36<br>34.52<br>34.61<br>34.65<br>34.70<br>34.70<br>34.70<br>34.69 | 26.83<br>26.83<br>26.83<br>26.86<br>26.86<br>26.90<br>27.22<br>27.32<br>27.36<br>27.44<br>27.52<br>27.59<br>27.68<br>27.70<br>27.78<br>27.78<br>27.81<br>27.84<br>27.84 |         |       |                                           |                           |                                                                    | $\begin{array}{c} 6.96 \\ - \\ - \\ 6.98 \\ - \\ - \\ 7.00 \\ - \\ 7.18 \\ 6.61 \\ 6.12 \\ 5.23 \\ 4.60 \\ 3.96 \\ 3.89 \\ 3.85 \\ 4.07 \\ 4.27 \\ 4.43 \\ 4.62 \end{array}$ | N 70 V<br>,,<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B<br>N 100 H         | 1000-800<br>750-540<br>500-265<br>250-100<br>100-50<br>50-0<br>100-0<br>97-0<br>} 290-100<br>0-5 | 2004<br>22222<br>22222<br>22223 | 2205<br>2242<br>2252<br>2253 | KT<br>DGP |
| 1126          | 27                       | 0                                                                                                                                   | _                       | 3.97                                                                                                                                                 | 33.91                                                                                                                                                                                     | 26.95                                                                                                                                                                   | _       |       |                                           | -                         | -                                                                  |                                                                                                                                                                              | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                            | 100-0<br>138-0<br>370-110                                                                        | 0909<br>0932<br>0932            | 0916<br>0952<br>1002         | KT<br>DGP |
| 1127          | 28                       | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>590<br>790<br>990                                 |                         | 2.90<br>2.90<br>2.88<br>2.80<br>2.80<br>2.75<br>2.50<br>0.61<br>0.24<br>0.74<br>1.09<br>1.30<br>1.49<br>2.00<br>1.89<br>1.70<br>1.28                 | 34.71                                                                                                                                                                                     | 27.03<br>27.03<br>27.04<br>27.04<br>27.04<br>27.08<br>27.29<br>27.37<br>27.47<br>27.59<br>27.66<br>27.69<br>27.66<br>27.69<br>27.75<br>27.79                            |         |       |                                           |                           |                                                                    | $\begin{array}{c} 7.23 \\ - \\ 7.22 \\ - \\ 7.20 \\ - \\ 7.10 \\ - \\ 6.33 \\ 5.34 \\ 4.85 \\ 4.31 \\ 4.91 \\ 3.95 \\ 4.96 \\ 4.27 \\ 4.27 \end{array}$                      | ,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                                      | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>} 100-0<br>} 260-90      | <b>0410</b>                     |                              |           |
| 1128          | 3 28                     | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>100<br>150<br>200                                                              |                         | 2.95<br>2.92<br>2.84<br>2.82<br>2.81<br>2.78<br>2.70<br>0.99<br>0.57<br>0.14<br>0.11                                                                 | 33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>34.01<br>34.14                                                                                                    | 27.05<br>27.04<br>27.05<br>27.05<br>27.05<br>27.05<br>27.05<br>27.20<br>27.20<br>27.20<br>27.32                                                                         |         |       |                                           |                           | 4.9<br>4.9<br>4.9<br>4.9<br>4.9<br>4.9<br>4.9<br>4.9<br>4.9<br>4.9 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                        | "<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>" | 1 282 100                                                                                        | 0927<br>                        | 1115<br>1147<br>1157         |           |

|               |                                     |               |      | Sounding<br>(metres) | WIN       | D                | SEA       |       |         | neter<br>bars)           | Air Temp. ° C. |             |                     |  |
|---------------|-------------------------------------|---------------|------|----------------------|-----------|------------------|-----------|-------|---------|--------------------------|----------------|-------------|---------------------|--|
| Station       | Position                            | Date          | Hour | (metres)             | Direction | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb    | Wet<br>bulb | Remarks             |  |
| 1128<br>cont. | 53° 04·4′ S, 37° 12·8′ W            | 1933<br>23 ii |      |                      |           |                  |           |       |         |                          |                |             |                     |  |
| 1129          | 53° 25·1′ S, 37° 13·1′ W            | 23 ii         | 1400 | 948*                 | NNE       | 2                | NNE       | 2     | of      | 995.2                    | 3.0            | 2.8         | mod. W swell        |  |
| 1130          | 53° 45′ S, 37° 09 <sup>.</sup> 8′ W | 23 ii         | 1811 | I42*                 | ESE       | 5                | ESE       | I     | fe      | 995.4                    | 0.2            | 0.2         | mod. conf. NW swell |  |
| 1131          | 54° 22·6′ S, 34° 08·4′ W            | 24 ii         | 1324 | 4625*                | Lt airs   | ∞-4              |           | O     | o       | 999 <b>•</b> 8           | 1-1            | 0.3         | low E swell         |  |
| 1132          | 54° 24.4′ S, 34° 43′ W              | 24 ii         | 1843 | 2020*                | WNW       | 15               | WNW       | 3     | om      | 1000.1                   | Ι.Ι            | 1.0         | low conf. E swell   |  |

|               |                |                                                                                                                                      |                                                        |                                                                                                                                                                                | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOGICA                                                                                                                                                                                                      | L OBSE | ERVAT. | IONS                                                                               |                           |                                                                                                                                                                                    |                                                                                                                                                                                         | BIOLOG                                                                       | GICAL OBSER                                                                              | VATION                              | <s< th=""><th></th></s<> |           |
|---------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|-----------|
|               | Age of         |                                                                                                                                      | eter<br>Ster                                           |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |        |        | Mg.—at                                                                             | om m. <sup>3</sup>        |                                                                                                                                                                                    |                                                                                                                                                                                         |                                                                              |                                                                                          | TL                                  | ME                       | Remarks   |
| Station       | moon<br>(days) | Depth<br>(metres)                                                                                                                    | Depth by<br>thermometer                                | Temp.<br>°C.                                                                                                                                                                   | S °/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | at                                                                                                                                                                                                          | pН     | Р      | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ \text{N}_2 \end{array}$ | Nitrite<br>N <sub>2</sub> | Si                                                                                                                                                                                 | O <sub>2</sub><br>c.c.<br>litre                                                                                                                                                         | Gear                                                                         | Depth<br>(metres)                                                                        | From                                | То                       | Remarks   |
| 1128<br>cont. | 28             | 300<br>390<br>590<br>790<br>990<br>1490<br>1980                                                                                      |                                                        | 1·31<br>1·43<br>1·98<br>1·89<br>1·80<br>1·45<br>1·06                                                                                                                           | 34·44<br>34·53<br>34·63<br>34·70<br>34·70<br>34·71<br>34·71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.60<br>27.66<br>27.70<br>27.77<br>27.77<br>27.81<br>27.81                                                                                                                                                 |        |        |                                                                                    |                           | 37·2<br>48·7<br>55·8<br>59·3<br>61·2<br>63·3<br>65·5                                                                                                                               | 4.28<br>4.02<br>3.91<br>3.92<br>4.03<br>4.26<br>4.40                                                                                                                                    |                                                                              |                                                                                          |                                     |                          |           |
| 1129          | 29             | 2480<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150                                                                    | 2476<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>— | 0.87<br>3.39<br>3.10<br>3.00<br>2.98<br>2.91<br>2.90<br>2.72<br>1.21<br>1.02<br>- 0.11                                                                                         | 34.71<br>33.83<br>33.82<br>33.82<br>33.82<br>33.82<br>33.82<br>33.82<br>33.82<br>33.82<br>33.92<br>33.94<br>34.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.85<br>26.95<br>26.96<br>26.97<br>26.97<br>26.98<br>26.98<br>27.00<br>27.19<br>27.21<br>27.21<br>27.38                                                                                                    |        |        |                                                                                    |                           | 74.4                                                                                                                                                                               | 4·45<br>7·64<br>-<br>7·43<br>-<br>7·39<br>-<br>7·37<br>-<br>7·01<br>6·43                                                                                                                | N 70 V<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B | 750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>88-0<br>240-100              | 1402<br>                            | 1458<br>1528<br>1538     | KT<br>DGP |
|               |                | 200<br>290<br>390<br>590<br>780                                                                                                      |                                                        | 0.61<br>1.32<br>1.51<br>2.03<br>1.92                                                                                                                                           | 34·24<br>34·43<br>34·53<br>34·56<br>34·67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27·49<br>27·59<br>27·66<br>27·64<br>27·73                                                                                                                                                                   |        |        |                                                                                    |                           |                                                                                                                                                                                    | 5.34<br>4.26<br>3.98<br>3.88<br>3.90                                                                                                                                                    | N 100 H<br>N 70 V                                                            | 0-5                                                                                      | 1509                                | 1539                     |           |
| 1130          | 29             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100                                                                                   |                                                        | 2·99<br>2·83<br>2·41<br>2·32<br>2·31<br>2·31<br>2·14<br>0·78<br>0·51                                                                                                           | 33.74<br>33.74<br>33.74<br>33.76<br>33.77<br>33.77<br>33.77<br>33.83<br>33.96<br>34.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.90<br>26.92<br>26.95<br>26.98<br>26.98<br>26.98<br>26.98<br>27.05<br>27.25<br>27.25                                                                                                                      |        |        |                                                                                    |                           | 7 <sup>.</sup> 4<br>6 <sup>.</sup> 9<br>7 <sup>.</sup> 0<br>6 <sup>.</sup> 6<br>6 <sup>.</sup> 8<br>6 <sup>.</sup> 9<br>7 <sup>.</sup> 8<br>17 <sup>.</sup> 4<br>19 <sup>.</sup> 5 | $ \begin{array}{c} 7.19 \\ \\ 7.21 \\ \\ 7.10 \\ \\ 7.08 \\ 6.50 \\ \end{array} $                                                                                                       | N 50 V<br>N 70 B<br>N 100 B<br>N 100 H                                       | 100-50<br>50-0<br>100-0<br>} 110-0<br>0-5                                                | 1814<br>                            | 1825<br>1859<br>1905     | КТ        |
| 1131          | O              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>1500<br>2500<br>3000<br>3500<br>4000 | 992<br>                                                | I·72<br>I·72<br>I·63<br>I·55<br>I·47<br>I·34<br>I·20<br>0·81<br>0·19<br>0·00<br>0·64<br>I·30<br>I·31<br>I·90<br>I·74<br>I·58<br>I·08<br>0·57<br>0·37<br>0·20<br>0·01<br>- 0·25 | 33.96<br>3.96<br>3.96<br>3.97<br>3.98<br>3.99<br>3.99<br>3.99<br>3.408<br>34.08<br>34.25<br>34.40<br>34.56<br>34.56<br>34.68<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.68<br>34.70<br>34.68<br>34.70<br>34.68<br>34.70<br>34.68<br>34.70<br>34.68<br>34.70<br>34.70<br>34.70<br>34.68<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70<br>34.70 | 27.18<br>27.19<br>27.21<br>27.22<br>27.24<br>27.25<br>27.30<br>27.38<br>27.52<br>27.60<br>27.60<br>27.69<br>27.74<br>27.75<br>27.78<br>27.79<br>27.83<br>27.79<br>27.83<br>27.86<br>27.86<br>27.86<br>27.86 |        |        |                                                                                    |                           |                                                                                                                                                                                    | $\begin{array}{c} 7.35 \\ - \\ 7.38 \\ - \\ 7.38 \\ - \\ 7.16 \\ - \\ 6.83 \\ 5.62 \\ 4.77 \\ 4.09 \\ 4.04 \\ 3.93 \\ 4.06 \\ 4.10 \\ 4.35 \\ 4.73 \\ 4.82 \\ 4.92 \\ 5.17 \end{array}$ | ,"<br>,"<br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B                           | 1000-800<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>100-0<br>250-106 |                                     |                          | KT<br>DGP |
| 1132          | 0              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80                                                                                          |                                                        | 2·50<br>2·50<br>2·23<br>2·23<br>2·24<br>2·21<br>2·21<br>1·61<br>0·51                                                                                                           | 33.91<br>33.91<br>33.91<br>33.91<br>33.91<br>33.91<br>33.91<br>33.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27·08<br>27·10<br>27·10<br>27·10<br>27·11<br>27·11<br>27·11                                                                                                                                                 |        |        |                                                                                    |                           | 8.6<br>8.8<br>8.6<br>8.7<br>8.8<br>9.1<br>9.2<br>13.0<br>19.2                                                                                                                      | 7.31<br>7.33<br>7.33<br>-7.19<br>7.19                                                                                                                                                   | N 100 B<br>N 70 B<br>N 100 B<br>N 100 H<br>N 70 V<br>,,<br>,,                | 110-0<br>275-110<br>0-5<br>1000-750<br>750-500<br>500-250<br>250-100                     | 1855<br>1855<br>1856<br><b>1941</b> | 1925<br>1926             | DGP       |

i,

|               |                                                                          |               |              | Sounding             | WIN          | D                | SEA              |              |         | neter<br>bars)           | Air Ten     | пр. ° С.    |                                            |
|---------------|--------------------------------------------------------------------------|---------------|--------------|----------------------|--------------|------------------|------------------|--------------|---------|--------------------------|-------------|-------------|--------------------------------------------|
| Station       | Position                                                                 | Date          | Hour         | Sounding<br>(metres) | Direction    | Force<br>(knots) | Direction        | Force        | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                                    |
| 1132<br>cont. | 54° 24.4′ S, 34° 43′ W                                                   | 1933<br>24 ii |              |                      |              | <br>             |                  |              |         |                          |             |             |                                            |
| 1133          | 54° 26·2′ S, 35° 16·6′ W                                                 | 24-25<br>ii   | 2353         | 279*                 | NW           | 16               | NW               | 3            | oe      | 998.7                    | 2.8         | 2.4         | low conf. E swell                          |
| 1134          | 54° 28′ S, 35° 51.6′ W                                                   | 25 ii         | 0325         | 186*                 | S            | 8                | S                | I            | bc      | 997.5                    | 1.9         | 1.2         | low ESE swell                              |
|               | 3 miles S 60° E of Jason I,<br>South Georgia<br>54° 31·2′ S, 35° 08·5′ W |               | 1408         |                      | SE×E<br>SE×S | 22               | SE × E<br>SE × S | 4<br>3       | osp     |                          |             |             | mod. conf. SE swell<br>mod. conf. NE swell |
|               | 55° 08·8′ S, 33° 23·6′ W<br>55° 55·5′ S, 31° 15·6′ W                     |               | 0830<br>2005 | 3905*                | SSE          | 25               | SSE<br>S×E       | 4<br>4 conf. | c       |                          |             |             | mod. conf. E swell<br>mod. conf. SSE swell |
|               |                                                                          |               |              |                      |              |                  |                  |              |         |                          |             |             |                                            |

|               |                |                                                                                                      | HYDROLOGICAL OBSERVATIONS |                                                                                                              |                                                                                                                                                                |                                                                                                          |    |   |                                           |                       |                                                              |                                                                                              |                                                                 | GICAL OBSE                                                                                      | RVATIO                    | NS                           |           |
|---------------|----------------|------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----|---|-------------------------------------------|-----------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------|------------------------------|-----------|
| Station       | Age of<br>moon |                                                                                                      | ov<br>ster                |                                                                                                              |                                                                                                                                                                |                                                                                                          |    |   | Mg.—at                                    | tom m. <sup>3</sup>   |                                                              |                                                                                              |                                                                 |                                                                                                 | TI                        | ME                           | Remarks   |
| Station       | (days)         | Depth<br>(metres)                                                                                    | Depth by<br>thermometer   | Temp.<br>C.                                                                                                  | S°,,                                                                                                                                                           | at                                                                                                       | pН | Р | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | $\frac{Nitrite}{N_2}$ | Si                                                           | O <sub>2</sub><br>c.c.<br>htre                                                               | Gear                                                            | Depth<br>(metres)                                                                               | From                      | То                           |           |
| 1132<br>cont. | 0              | 150<br>190<br>290<br>380<br>570<br>760<br>950<br>1430                                                | <br><br><br>              | 1·21<br>1·60<br>1·73<br>1·92<br>1·75<br>1·89<br>1·71<br>1·19                                                 | 34.18<br>34.29<br>34.43<br>34.52<br>34.61<br>34.70<br>34.70<br>34.70<br>34.71                                                                                  | 27.40<br>27.45<br>27.56<br>27.62<br>27.71<br>27.77<br>27.78<br>27.83                                     |    |   |                                           |                       | 27·7<br>33·9<br>42·2<br>48·7<br>50·6<br>60·3<br>52·0<br>67·8 | 5.54<br>4.94<br>4.35<br>4.04<br>4.09<br>3.90<br>4.13<br>4.45                                 | N 70 V<br>N 50 V                                                | 100-50<br>50-0<br>100-0                                                                         |                           | 2108                         |           |
| 1133          | I              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>250                              |                           | 2·90<br>2·88<br>2·80<br>2·53<br>2·50<br>2·47<br>2·41<br>2·31<br>1·91<br>0·71<br>1·31<br>1·61                 | 33.85<br>33.85<br>33.86<br>33.89<br>33.89<br>33.90<br>33.90<br>33.92<br>33.93<br>34.01<br>34.24<br>34.34                                                       | 27.00<br>27.00<br>27.01<br>27.06<br>27.06<br>27.07<br>27.08<br>27.11<br>27.14<br>27.29<br>27.44<br>27.50 |    |   |                                           |                       |                                                              | 7:24<br>                                                                                     | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 H            | 250-100<br>100-50<br>50-0<br>100-0<br>135-0<br>0-5                                              | 2355<br>                  | 0025<br>0113<br>0119         | КТ        |
| 1134          | 1              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150                                            |                           | 2.92<br>2.90<br>2.80<br>2.82<br>2.83<br>2.83<br>2.84<br>2.68<br>2.60<br>1.91                                 | 33.65<br>33.66<br>33.73<br>33.74<br>33.74<br>33.75<br>33.75<br>33.75<br>33.78<br>33.79<br>33.89                                                                | 26.84<br>26.91<br>26.92<br>26.92<br>26.93<br>26.93<br>26.93<br>26.97<br>26.99<br>27.11                   |    |   |                                           |                       | 7.7<br>7.7<br>7.7<br>7.9<br>7.8<br>8.1<br>8.7<br>8.9<br>13.5 | 7.07<br>                                                                                     | N 70 V<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 H          | 100-50<br>50-0<br>100-0<br>117-0<br>0-5                                                         | 0328<br>—<br>0416<br>0414 | 0353<br>0436<br>0444         | КТ        |
| 1135          | 5              | o                                                                                                    | -                         | 2.96                                                                                                         | 33.69                                                                                                                                                          | 26.87                                                                                                    |    | _ |                                           | _                     |                                                              |                                                                                              | N 50 V                                                          | 100-0                                                                                           | 1410                      | 1420                         | + 1 hour  |
| 1136          | 5              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>1000 |                           | 2·38<br>2·39<br>2·40<br>2·40<br>2·40<br>2·40<br>2·41<br>2·41<br>2·41<br>2·41<br>2·41<br>2·41<br>2·41<br>2·41 | 33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>33.90<br>34.05<br>34.42<br>34.42<br>34.42<br>33.48<br>33.65<br>33.69<br>33.72 |                                                                                                          |    |   |                                           |                       |                                                              | 7.16<br>7.16<br>7.14<br>7.14<br>7.14<br>6.54<br>5.48<br>4.46<br>4.11<br>4.05<br>4.12<br>4.12 | N 50 V<br>N 70 V<br><br>N 70 B<br>N 100 B<br>N 100 B<br>N 100 H | 100-0<br>1000-800<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>102-0<br>290-120<br>0-5 | 2105<br>                  | 2238<br>2313<br>2323<br>2324 | KT<br>DGP |
| 1137          | 6              | 0                                                                                                    |                           | 1.66                                                                                                         | 34.04                                                                                                                                                          | 27.25                                                                                                    |    |   |                                           |                       |                                                              |                                                                                              | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                | 100-0<br>} 110-0<br>} 310-90                                                                    | 0834<br>0858<br>0858      | 0841<br>0918<br>0928         | KT<br>DGP |
| 1138          | 6              | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100                                                   |                           | 1·13<br>1·13<br>1·13<br>1·13<br>1·13<br>1·11<br>1·11<br>0·22<br>-0·43                                        | 34.07<br>34.07<br>34.07<br>34.07<br>34.07<br>34.08<br>34.08<br>34.08<br>34.14<br>34.23                                                                         | 27.31<br>27.31<br>27.31<br>27.31<br>27.31<br>27.32<br>27.32<br>27.32<br>27.43<br>27.53                   |    |   |                                           |                       |                                                              | 7·38<br>7·39<br>7·39<br>7·39<br>7·38<br>6·74                                                 | N 70 V<br><br><br>N 50 V<br>N 70 B<br>N 100 B                   | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>132-0                   | 2008<br><br>2237          | 2145<br>2257                 | KT        |

|               |                                                    |               |      | Sounding             | WIN          | D                | SEA           |       |         | netc <b>r</b><br>bars)   | Air Temp. ° C. |             |                      |
|---------------|----------------------------------------------------|---------------|------|----------------------|--------------|------------------|---------------|-------|---------|--------------------------|----------------|-------------|----------------------|
| Station       | Position                                           | Date          | Hour | Sounding<br>(metres) | Direction    | Force<br>(knots) | Direction     | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb    | Wet<br>bulb | Remarks              |
| 1138<br>cont. | 55° 55 <sup>.</sup> 5′ S, 31° 15 <sup>.</sup> 6′ W | 1933<br>2 iii |      |                      |              |                  |               |       |         |                          |                |             |                      |
|               |                                                    |               |      |                      |              |                  |               |       |         |                          |                |             |                      |
|               |                                                    |               |      |                      |              |                  |               |       |         |                          |                |             |                      |
|               |                                                    |               |      |                      |              |                  |               |       |         |                          |                |             |                      |
| 1139          | 56° 37·9′ S, 29° 19′ W                             | 3 iii         | 0900 |                      | $S \times W$ | 15               | $S \times W$  | 3     | bc      | 986·5                    | - 1.0          | - 2.1       | mod. conf. SE swell  |
| 1140          | 57° 21·1′ S, 27° 09·9′ W                           | 3 iii         | 2000 | 3047*                | SSW          | 16               | SSW           | 4     | bc      | 985.1                    | - 1.5          | - 2.8       | mod. conf. S swell   |
|               |                                                    |               |      |                      |              |                  |               |       |         |                          |                |             |                      |
|               |                                                    |               |      |                      |              |                  |               |       |         |                          |                |             |                      |
|               |                                                    |               |      |                      |              |                  |               |       |         |                          |                |             |                      |
|               |                                                    |               |      |                      |              |                  |               |       |         |                          |                |             |                      |
|               |                                                    |               |      |                      |              |                  |               |       |         |                          |                |             |                      |
| 1141          | 57° 59.8′ S, 24° 43.7′ W                           | 4 iii         | 0900 | —                    | SW×W         | 25               | $SW \times W$ | 4     | o       | 984·o                    | -0.0           | - 1.8       | mod. conf. swell     |
|               |                                                    |               |      |                      |              |                  |               |       |         |                          |                |             |                      |
| 1142          | 58° 44·3′ S, 22° 30·9′ W                           | 4 iii         | 2002 | 4237*                | SW           | 19               | SW            | 4     | csp     | 984.4                    | - <b>o</b> ·6  | - 1.5       | heavy conf. SW swell |
|               |                                                    |               |      |                      |              |                  |               |       |         |                          |                |             |                      |
|               |                                                    |               |      |                      |              |                  |               |       |         |                          |                |             |                      |
|               |                                                    |               |      |                      |              |                  |               |       |         |                          |                |             |                      |
|               |                                                    |               |      |                      |              |                  |               |       |         |                          |                |             |                      |
|               |                                                    |               |      |                      |              |                  |               |       |         |                          |                |             |                      |
|               | l                                                  |               |      |                      |              |                  |               |       |         |                          |                |             |                      |

| 1138 - 1 | 142 | 2 |
|----------|-----|---|
|----------|-----|---|

|               |                |                                                                                                                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HYDROI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOGICA                                                                                                                                                                       | L OBSE | RVATI | ONS                                                       |                           |    |                                                                                                                                                                                      | BIOLO                                                                      | GICAL OBSEI                                                                                     | RVATIO                           | NS                           |           |
|---------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-----------------------------------------------------------|---------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|-----------|
|               | Age of         |                                                                                                                                              | 51                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ]                                                                                                                                                                            |        |       | Mgat                                                      | om m. <sup>3</sup>        |    |                                                                                                                                                                                      |                                                                            |                                                                                                 | TIM                              | IE                           | Remarks   |
| Station       | moon<br>(days) | Depth<br>(metres)                                                                                                                            | Depth by<br>thermometer | Temp.<br>°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S °/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | σt                                                                                                                                                                           | pН     | P     | $\overset{\text{Nitrate}}{\overset{+}{\underset{N_2}{}}}$ | Nitrite<br>N <sub>2</sub> | Si | O<br>c.c.<br>litre                                                                                                                                                                   | Gear                                                                       | Depth<br>(metres)                                                                               | From                             | То                           | Remarks   |
| 1138<br>cont. | 6              | 150<br>200<br>300<br>400<br>600<br>790<br>990<br>1480<br>1970<br>2460<br>2950<br>3440                                                        | <br><br>993<br><br>2952 | $\begin{array}{c} - 0.51 \\ - 0.09 \\ 0.54 \\ 0.73 \\ 0.67 \\ 0.50 \\ 0.29 \\ 0.13 \\ - 0.01 \\ - 0.10 \\ - 0.13 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34'34<br>34'48<br>34'58<br>34'67<br>34'68<br>34'68<br>34'68<br>34'68<br>34'68<br>34'68<br>34'68<br>34'68<br>34'67<br>34'67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27.62<br>27.72<br>27.76<br>27.82<br>27.83<br>27.83<br>27.84<br>27.85<br>27.86<br>27.87<br>27.87<br>27.87                                                                     |        |       |                                                           |                           |    | 6.06<br>5.43<br>4.90<br>4.69<br>4.65<br>4.65<br>4.65<br>4.65<br>4.67<br>4.81<br>4.90<br>4.96<br>5.09                                                                                 | N 70 B<br>N 100 B<br>N 100 H                                               | } 335-100<br>0-5                                                                                | 2237<br>2238                     | 2307<br>2308                 | DGP       |
| 1139          | 7              | o                                                                                                                                            |                         | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.32                                                                                                                                                                        | _      | _     |                                                           |                           |    |                                                                                                                                                                                      | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                           | 100-0<br>} 108-0<br>} 270-120                                                                   | 0902<br>0925<br>0925             | 0912<br>0945<br>0955         | KT<br>DGP |
| 1140          | 7              | 0<br>10<br>20<br>30<br>40<br>50<br>100<br>150<br>200<br>300<br>400<br>590<br>790<br>990<br>1480<br>1980<br>2470                              |                         | $\begin{array}{c} 0.3^{2} \\ 0.3^{1} \\ 0.3^{1} \\ 0.3^{1} \\ 0.3^{1} \\ 0.3^{1} \\ 0.3^{1} \\ 0.3^{1} \\ 0.3^{1} \\ 0.3^{1} \\ 0.3^{1} \\ 0.3^{1} \\ 0.3^{1} \\ 0.3^{1} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\ 0.3^{2} \\$ | 34·68<br>34·68<br>34·67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27·34<br>27·53<br>27·72<br>27·77<br>27·81<br>27·83<br>27·84<br>27·85<br>27·85<br>27·86<br>27·86                                                                              |        |       |                                                           |                           |    | $\begin{array}{c} 7.47 \\ - \\ 7.48 \\ - \\ 7.48 \\ - \\ 7.47 \\ - \\ 7.48 \\ - \\ 6.58 \\ 5.38 \\ 4.96 \\ 4.67 \\ 4.64 \\ 4.66 \\ 4.58 \\ 4.62 \\ 4.78 \\ 4.91 \\ 5.03 \end{array}$ | N 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,          | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>104-0<br>310-110<br>0-5 | 2005<br><br>2202<br>2202<br>2204 | 2145<br>2222<br>2232<br>2234 | KT<br>DGP |
| 1141          | 8              | 0                                                                                                                                            | -                       | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.20                                                                                                                                                                        | ,      | _     | _                                                         | -                         |    | _                                                                                                                                                                                    | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                           | 1 260 100                                                                                       | 0903<br>0921<br>0921             | 0941                         | КТ        |
| 1142          | 2 8            | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>1000<br>1980<br>2480<br>2970<br>3460<br>3960 |                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33:69<br>33:69<br>33:86<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>33:90<br>34:92<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:90<br>34:900 | 27.03<br>27.03<br>27.14<br>27.17<br>27.22<br>27.25<br>27.26<br>27.26<br>27.5<br>27.5<br>27.6<br>27.5<br>27.6<br>27.7<br>27.7<br>27.7<br>27.7<br>27.7<br>27.8<br>27.8<br>27.8 | 3      |       |                                                           |                           |    | $\begin{array}{c} 7.45 \\ - \\ 7.39 \\ - \\ 7.39 \\ - \\ 7.33 \\ 6.53 \\ 5.66 \\ 4.77 \\ 4.57 \\ 4.57 \\ 4.57 \\ 4.56 \\ 4.61 \\ 4.74 \\ 4.90 \\ 5.24 \\ 5.27 \\ 5.27 \end{array}$   | ,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,, | 0-5                                                                                             | 2004                             | 2149<br>2335<br>2344         | КТ        |

|         |                          |                |      | Sounding             | WIN                                                              | D                | SEA                                                              |          |            | leter<br>bars)           | Air Ten     | np. C.      |                                             |
|---------|--------------------------|----------------|------|----------------------|------------------------------------------------------------------|------------------|------------------------------------------------------------------|----------|------------|--------------------------|-------------|-------------|---------------------------------------------|
| Station | Position                 | Date           | Hour | Sounding<br>(metres) | Direction                                                        | Force<br>(knots) | Direction                                                        | Force    | Weather    | Barometer<br>(mullibars) | Dry<br>bulb | Wet<br>bulb | Remarks                                     |
| 1143    | 59° 12°9′ S, 20° 10°1′ W | 1933<br>5 iii  | 0900 |                      | WSW                                                              | 26               | wsw                                                              | 5        | oq         | 987.6                    | -0.6        | — I·7       | heavy conf. swell                           |
| 1144    | 59° 44·5′ S, 17° 30·8′ W | 5 iii          | 2000 | 2938*                | $\mathbf{W} 	imes \mathbf{S}$                                    | 25               | W×S                                                              | 5        | hcq        | 989.3                    | - o·6       | - 1.0       | heavy conf. SW swell                        |
| 1145    | 60° 22·1′ S, 14° 43·0′ W | 6 iii          | 0900 |                      | W 	imes N                                                        | 17               | W 	imes N                                                        | 5        | O          | 995.5                    | 0.0         | - 1-4       | heavy WSW swell                             |
| 1146    | 61° 00·2′ S, 12° 03·8′ W | 6 iii<br>7 iii | 2000 | 4984*                | $\mathbf{E} \times \mathbf{N}$<br>$\mathbf{E} \times \mathbf{N}$ | 20<br>16         | $\mathbf{E} \times \mathbf{N}$<br>$\mathbf{E} \times \mathbf{N}$ | -}<br>-} | oqs<br>oqs |                          |             |             | heavy conf. W×S<br>swell<br>heavy W×S swell |
| 1147    | 61° 497′ S, 08° 099′ W   | 7 iii          | 2004 | 5258*                | N × E                                                            | 16               | N×E                                                              | 3        | oe         | 973.8                    | 0.3         | 0.3         | heavy conf. NNW<br>swell                    |

|         |                |                                                                                                                                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOGIC.                                                                                                                                                                                                                                 | al obsi | LRVAT | IONS                                                                                 |               |    |                                                                                                                                                                                           | BIOLO                                                                     | GICAL OBSER                                                                                                       | VATIO?                       |                              |                                                                                                                |
|---------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|--------------------------------------------------------------------------------------|---------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------|
|         | Age of         |                                                                                                                                                       | y<br>ter                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                        |         |       | Mg.—at                                                                               | om ni.'       |    |                                                                                                                                                                                           |                                                                           |                                                                                                                   | ΊI                           | ME                           |                                                                                                                |
| Station | moon<br>(days) | Depth<br>(metres)                                                                                                                                     | Depth by<br>thermometer  | Temp.<br><sup>+</sup> C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | σt                                                                                                                                                                                                                                     | рĦ      | Р     | $ \begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrate} \\ \text{N}_2 \end{array} $ | Nitrite<br>N2 | 51 | O2<br>c.c.<br>litre                                                                                                                                                                       | Gear                                                                      | Depth<br>(metres)                                                                                                 | from                         | То                           | Remark .                                                                                                       |
| 1143    | 9              | 0                                                                                                                                                     |                          | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.07                                                                                                                                                                                                                                  |         |       |                                                                                      |               |    |                                                                                                                                                                                           | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B                          | 100-0<br>  121-0<br>  330-120                                                                                     | 0903<br>0928<br>0928         | 0914<br>0948<br>0958         | KT<br>DGP                                                                                                      |
| 1144    | 10             | 0<br>10<br>20<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>590<br>790<br>990<br>1480<br>1980<br>2470                                        | <br><br><br><br><br><br> | $\begin{array}{c} 0.36\\ 0.37\\ 0.37\\ 0.37\\ 0.35\\ -0.59\\ -0.99\\ -1.09\\ -1.09\\ -1.09\\ -0.24\\ 0.49\\ 0.81\\ 0.90\\ 0.53\\ 0.49\\ 0.39\\ 0.20\\ -0.02\\ -0.02\\ -0.10\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.63<br>33.63<br>33.63<br>33.63<br>33.63<br>34.13<br>34.16<br>34.23<br>34.43<br>34.43<br>34.45<br>34.68<br>34.68<br>34.68<br>34.68<br>34.68<br>34.68<br>34.68<br>34.68<br>34.68<br>34.68<br>34.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.01<br>27.01<br>27.01<br>27.01<br>27.01<br>27.34<br>27.50<br>27.50<br>27.56<br>27.56<br>27.56<br>27.68<br>27.74<br>27.80<br>27.82<br>27.84<br>27.84<br>27.85<br>27.86<br>27.86<br>27.86<br>27.86                                     |         |       |                                                                                      |               |    | 7.46<br>-7.47<br>-7.45<br>-7.45<br>-7.00<br>-6.56<br>5.54<br>4.92<br>4.61<br>4.57<br>4.57<br>4.55<br>4.62<br>4.80<br>4.95                                                                 | N 70 V<br>.,<br>.,<br>.,<br>N 50 V<br>N 100 B<br>N 100 B                  | 1000-790<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0<br>119-0<br>340-100                                     | 2005<br>2221<br>2221         | 2145<br>2241<br>2251         | KT<br>DGP                                                                                                      |
| 1145    | 10             | 0                                                                                                                                                     |                          | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.51                                                                                                                                                                                                                                  |         | _     |                                                                                      |               |    | _                                                                                                                                                                                         | N 50 V<br>N 100 B<br>N 70 B<br>N 100 B                                    | 100-0<br>104-0<br>} 280-100                                                                                       | 0905<br>0930<br>0930         | 0915<br>0950<br>1000         | KT<br>DGP                                                                                                      |
| 1146    | IO             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>2900<br>390<br>580<br>780<br>970<br>1460<br>1950<br>2390<br>2860<br>3340<br>3810<br>4290 |                          | $\begin{array}{c} - 0.09 \\ - 0.09 \\ - 0.09 \\ - 0.09 \\ - 0.09 \\ - 0.09 \\ - 0.09 \\ - 0.09 \\ - 0.09 \\ - 0.09 \\ - 0.09 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.10 \\ - 0.1$ | 3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+23<br>3+25<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+67<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66<br>3+66 | 27.51<br>27.51<br>27.51<br>27.51<br>27.51<br>27.51<br>27.58<br>27.77<br>27.75<br>27.85<br>27.83<br>27.84<br>27.84<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.87<br>27.88<br>27.88<br>27.88<br>27.88<br>27.88<br>27.88 |         |       |                                                                                      |               |    | 7'43<br>-7'45<br>7'45<br>7'45<br>-7'45<br>7'27<br>-7'27<br>-7'27<br>-7'27<br>4'29<br>4'29<br>4'29<br>4'29<br>4'29<br>4'39<br>4'47<br>4'72<br>4'94<br>5'02<br>5'15<br>5'27<br>5'38<br>5'53 | N 70 V<br>, , ,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 H     | 1000-750<br>750-500<br>500-250<br>250-100<br>100-50<br>50-0<br>100-0<br>104-0<br>104-0<br>104-0<br>200-110<br>0-5 | 2015<br>2344<br>2344<br>2345 | 2205<br>0004<br>0014<br>0015 | KT<br>DGP                                                                                                      |
| 1147    | II             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300                                                                               |                          | - 0.09<br>- 0.09<br>- 0.09<br>- 0.09<br>- 0.09<br>- 0.89<br>- 1.72<br>- 1.28<br>0.90<br>0.90<br>0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.05<br>34.23<br>34.43<br>34.43<br>34.43<br>34.68<br>34.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27·37<br>27·37<br>27·37<br>27·37<br>27·37<br>27·37<br>27·53<br>27·75<br>27·75<br>27·72<br>27·82<br>27·82<br>27·83                                                                                                                      |         |       |                                                                                      |               |    | 7·51<br>7·53<br>7·51<br>7·21<br>6·26<br>4·31<br>4·32<br>4·37                                                                                                                              | N 70 V<br><br>N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H | 1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0<br>1113-0<br>280-120<br>0-5                             | 2010<br>2310<br>2312         | 2140<br>2330<br>2340<br>2342 | GMT. Small hole<br>in <b>N 70 V</b> near<br>bucket discovered<br>after completion of<br>last haul<br>KT<br>DGP |

|                      |                          |               |      | Sounding             | WIN          | D                | SEA       |       |         | neter<br>bars)           | Air Ten     | np.°C.      |                               |
|----------------------|--------------------------|---------------|------|----------------------|--------------|------------------|-----------|-------|---------|--------------------------|-------------|-------------|-------------------------------|
| Station              | Position                 | Date          | Hour | Sounding<br>(metres) | Direction    | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millibars) | Dry<br>bulb | Wet<br>bulb | Remarks                       |
| <b>1147</b><br>cont. | 61° 49.7' S, 08° 09.9' W | 1933<br>7 iii |      |                      |              |                  |           |       |         |                          |             |             |                               |
| 1148                 | 63° 52′ S, 00° 54·9′ W   | 9 iii         | 2000 | 5332*                | WNW          | 6                | WNW       | 2     | csp     | 980.2                    | - 0.7       | - I.o       | mod. conf S and<br>NNE swells |
| 1149                 | 64° 34.4′ S, 01° 42.6′ E | 10 iii        | 0900 |                      | $N \times E$ | 16               | N × E     | 3     | с       | 991.6                    | 0.7         | 0.0         | heavy NNE swell               |
| 1150                 | 65° 21.6′ S, 04° 33.7′ E | 10 iii        | 2002 | 3673*                | NNE          | 15               | NNE       | 3     | osp     | 997:3                    | 0.0         | 0.0         | mod. NNE swell                |
|                      |                          |               |      |                      |              |                  |           |       |         |                          |             |             |                               |
|                      |                          |               |      |                      |              |                  |           |       |         |                          |             |             |                               |
|                      |                          |               |      |                      |              |                  | <u> </u>  |       |         |                          |             |             |                               |

|                                                         | i              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HYDRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOGICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L OBSI | ERVATI | IONS                                                |                           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BIOLO                                                             | GICAL OBSER       | RA 71403 | NS                                           |          |
|---------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-----------------------------------------------------|---------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------|----------|----------------------------------------------|----------|
|                                                         | Age of         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |        | Mg.—at                                              | om m. <sup>i</sup>        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                   | TL       | ME                                           |          |
| Station                                                 | moon<br>(days) | Depth<br>(metres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Depth by<br>thermomet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Temp.<br>C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | σt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | рН     | Р      | $Nitrate + Nitrate N_2$                             | Nitrite<br>N <sub>2</sub> | Si | O <sub>2</sub><br>c.c.<br>htre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gear                                                              | Depth<br>(metres) | From     | То                                           | Ret atl. |
| Station<br>1147<br><i>cont.</i><br>1148<br>1149<br>1150 |                | (metres)         400         600         800         1000         1990         2490         2980         3480         3970         4470         0         10         2080         3480         3970         4470         0         10         20         30         4070         60         800         1000         2070         3060         4400         2070         3460         1090         2490         2970         3460         400         600         800         100         200         100         200         1010         200         1010         200         1010         200         100         100         100         100         100         100 | Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappender Lappen | $\begin{array}{c} 0.53\\ 0.44\\ 0.40\\ 0.30\\ 0.08\\ -0.11\\ -0.24\\ -0.30\\ -0.42\\ -0.47\\ -0.50\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.23\\ 0.25\\ -0.40\\ -1.79\\ -0.50\\ -1.79\\ -0.39\\ 0.41\\ 0.41\\ 0.40\\ 0.35\\ 0.26\\ 0.41\\ -0.39\\ -0.41\\ 0.41\\ 0.41\\ 0.40\\ 0.35\\ 0.26\\ 0.61\\ -0.48\\ 0.40\\ -0.48\\ 0.40\\ -0.48\\ 0.40\\ -0.48\\ 0.40\\ -0.48\\ 0.40\\ -0.48\\ 0.40\\ -0.5\\ 0.55\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.50\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.50\\ 0.55\\ 0.56\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50$ | $\begin{array}{c} 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+67\\ 3+67\\ 3+67\\ 3+66\\ 3+66\\ 3+66\\ 3+66\\ 3+66\\ 3+66\\ 3+66\\ 3+68\\ 3+68\\ 3+68\\ 3+66\\ 3+66\\ 3+66\\ 3+66\\ 3+66\\ 3+66\\ 3+66\\ 3+66\\ 3+66\\ 3+66\\ 3+66\\ 3+66\\ 3+66\\ 3+66\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\ 3+68\\$ | 27.84<br>27.85<br>27.85<br>27.85<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.33<br>27.33<br>27.33<br>27.33<br>27.33<br>27.33<br>27.34<br>27.64<br>27.65<br>27.65<br>27.65<br>27.65<br>27.65<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.84<br>27.84<br>27.84<br>27.84<br>27.84<br>27.84<br>27.84 |        |        | Nitrate<br>Nitrate<br>Nitrate<br>Nitrate<br>Nitrate | Natinite N2               | ×i | $\begin{array}{c} c.c. \\ htre \\ \hline \\ +37 \\ +23 \\ +33 \\ +34 \\ +71 \\ +77 \\ +98 \\ 5.08 \\ 5.10 \\ 5.33 \\ 5.36 \\ 5.41 \\ 7.54 \\ -7.56 \\ 7.55 \\ -7.52 \\ -7.55 \\ -7.55 \\ +38 \\ +28 \\ +24 \\ +357 \\ +693 \\ 5.05 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10 \\ 5.10$ | V 70 V<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>, | Depth<br>(metres) |          | 2140<br>2344<br>2354<br>2355<br>0915<br>0948 |          |
|                                                         |                | 800<br>1000<br>1490<br>1980<br>2480<br>2970<br>3460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 795<br>—<br>—<br>—<br>2969<br>—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.40<br>0.19<br>0.02<br>-0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.69<br>34.69<br>34.68<br>34.67<br>34.67<br>34.67<br>34.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.84<br>27.85<br>27.86<br>27.86<br>27.87<br>27.87<br>27.87<br>27.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |        |                                                     |                           |    | 4 31<br>4 44<br>4 68<br>4 76<br>4 95<br>5 06<br>5 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                   |          |                                              |          |

|         |                                                                                                                                          |                |                                      | Sounding             | WIN                                                            | D                         | SEA                      |                         |                     | neter<br>Dars)           | Air Ten      | np. ° C.     |                                                                                           |
|---------|------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------|----------------------|----------------------------------------------------------------|---------------------------|--------------------------|-------------------------|---------------------|--------------------------|--------------|--------------|-------------------------------------------------------------------------------------------|
| Station | Position                                                                                                                                 | Date           | Hour                                 | Sounding<br>(metres) | Direction                                                      | Fo <b>rce</b><br>(knots)  | Direction                | Force                   | Weather             | Barometer<br>(millibars) | Dry<br>bulb  | Wet<br>bulb  | Remarks                                                                                   |
| 1151    | 66´ 35.5′ S, 06° 30.3′ E                                                                                                                 | 1933<br>11 iii | 0900                                 |                      | Lt airs                                                        | 0—I                       |                          | 0                       | o<br>Lt snow        | 1001.7                   | 0.0          | - 0· I       | low NNE swell                                                                             |
| 1152    | 68 <sup>∓</sup> 03′ S, 08° 03′ E                                                                                                         | 11 iii         | 2004                                 | 3968*                | SW×S                                                           | 7-10                      | $SW \times S$            | 3                       | 0                   | 1005-6                   | - 1.1        | - I · I      | low conf. NE swell                                                                        |
| 1153    | 69° 22′ S, 09° 37 <sup>.</sup> 5′ E                                                                                                      | 12 iii         | 0906                                 |                      | SSE                                                            | 16                        | SSE                      | 3                       | ь                   | 1009.7                   | -7.4         | - 7.7        | mod. conf. NE swell                                                                       |
| 1154    | 69° 20.8′ S, 09° 33.8′ E<br>69° 19.6′ S, 09° 34.1′ E<br>69° 16.1′ S, 09° 29.4′ E<br>69° 15.8′ S, 09° 30.2′ E<br>69° 14.8′ S, 09° 37.3′ E | 12 iii         | 1035<br>1200<br>1600<br>2000<br>2335 |                      | $S \times E$<br>SSE<br>$S \times E$<br>$S \times E$<br>Lt airs | 10<br>12<br>8<br>2<br>1-3 | S×E<br>SSE<br>S×E<br>S×E | 2<br>3<br>I<br>0-I<br>0 | bc<br>bc<br>o<br>bc | 1009.9                   | -5.1<br>-4.9 | -5.6<br>-5.7 | mod. NNE swell<br>mod. NE swell<br>low N × E swell<br>low N × E swell<br>mod. N × E swell |
|         |                                                                                                                                          |                |                                      |                      |                                                                |                           |                          |                         |                     |                          |              |              |                                                                                           |

|         |                |                                                                                                                                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HYDRO                                                                                                                                                                            | LOGICA                                                                                                                                                                  | L OBSI | ERVATI                                                                                                                                               | ONS                                       |                                                                                              |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BIOLO                                                                               | SICAL OBSER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VATIO:                           | 1.5                                                                                  |                                                                                                                 |
|---------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|         | Age of         |                                                                                                                                     | y<br>iter               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                                         |        |                                                                                                                                                      | Mg.—at                                    | om m. <sup>3</sup>                                                                           |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ΊĽ                               | ML.                                                                                  | D I                                                                                                             |
| Station | moon<br>(days) | Depth<br>(metres)                                                                                                                   | Depth by<br>thermometer | Temp.<br>C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                                                                                                                                                                                | at                                                                                                                                                                      | pI (   | р                                                                                                                                                    | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub> | Nitrite<br>N <sub>2</sub>                                                                    | Si                                                                                                                                                   | O <sub>2</sub><br>c.c.<br>litre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gear                                                                                | Depth<br>(nietres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | From                             | £0                                                                                   | Ren. al.                                                                                                        |
| 1151    | 15             | 0                                                                                                                                   |                         | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34.17                                                                                                                                                                            | 27:46                                                                                                                                                                   |        |                                                                                                                                                      |                                           |                                                                                              |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N 50 V<br>N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H                         | 100-0<br>100-0<br>205-110<br>0-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0902<br>0922<br>0922<br>0923     | 0912<br>0942<br>0952<br>0953                                                         | - t hour<br>KT<br>DGP                                                                                           |
| 1152    | 15             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>600<br>800<br>990<br>1480<br>2480<br>2970<br>3460 |                         | $\begin{array}{c} - \circ.76 \\ - \circ.79 \\ - \circ.81 \\ - \circ.81 \\ - \circ.85 \\ - \circ.89 \\ - \circ.99 \\ - 0.99 \\ - 1.29 \\ - 0.87 \\ - 0.87 \\ - 0.81 \\ 1.05 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 \\ - 0.81 $ | 34·28<br>34·29<br>34·29<br>34·30<br>34·31<br>34·31<br>34·32<br>34·36<br>34·50<br>34·61<br>34·68<br>34·70<br>34·68<br>34·70<br>34·68<br>34·68<br>34·68<br>34·68<br>34·67<br>34·67 | 27:59<br>27:59<br>27:59<br>27:60<br>27:61<br>27:62<br>27:62<br>27:66<br>27:76<br>27:80<br>27:82<br>27:83<br>27:83<br>27:83<br>27:83<br>27:84<br>27:85<br>27:87<br>27:88 |        |                                                                                                                                                      |                                           |                                                                                              |                                                                                                                                                      | 7.62<br>-7.53<br>-7.59<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.55<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7 | N 70 V<br>,,<br>,,<br>,,<br>,,<br>N 50 V<br>N 70 B<br>N 100 B<br>N 100 B<br>N 100 H | 1000-300<br>1000-750<br>750-500<br>250-100<br>100-50<br>50-0<br>100-0<br>115-0<br>340-120<br>0-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2005<br><br>2304<br>2304<br>2308 | 2250<br>2324<br>2334<br>2338                                                         | KT<br>DGP<br>(KT. Station                                                                                       |
| 1153    | 16             | -                                                                                                                                   | _                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                |                                                                                                                                                                         |        |                                                                                                                                                      |                                           |                                                                                              |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N 70 B<br>N 100 B<br>N 70 B<br>N 100 B<br>N 100 H                                   | ) 117-0<br>) 365-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0925<br>0925                     | 0945<br>0955<br>0956                                                                 | worked in streams<br>of pancake ice and<br>fragments of light<br>floes<br>DGP                                   |
| 1154    | 16             | 0<br>10<br>20<br>30<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>800<br>1500<br>2500<br>3000                             |                         | $ \begin{array}{c} -1.57\\-1.53\\-1.50\\-1.40\\-1.37\\-1.23\\-1.10\\-1.10\\-1.39\\-1.43\\-0.81\\-0.81\\-0.82\\-0.80\\0.59\\-0.41\\-0.21\\-0.01\\-0.09\\-0.14\end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34'14<br>34'14<br>34'14<br>34'23<br>34'24<br>34'29<br>34'32<br>34'48<br>34'57<br>34'67<br>34'68<br>34'70<br>34'68<br>34'70<br>34'68<br>34'67<br>34'67                            | 27:50<br>27:50<br>27:51<br>27:55<br>27:56<br>27:57<br>27:60<br>27:64<br>27:77<br>27:73<br>27:83<br>27:83<br>27:83<br>27:85<br>27:85<br>27:85<br>27:85<br>27:85          |        | 1.98<br>1.98<br>1.96<br>1.92<br>1.92<br>1.92<br>1.94<br>1.98<br>2.01<br>2.07<br>2.15<br>2.07<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05<br>2.05 | 21:42<br>                                 | 0·24<br>0·25<br>0·25<br>0·25<br>0·24<br>0·24<br>0·24<br>0·21<br>0·19<br>0·00<br>0·00<br>0·00 | 44.7<br>45.7<br>46.9<br>44.7<br>42.2<br>44.7<br>42.7<br>47.5<br>50.0<br>55.0<br>61.2<br>64.3<br>65.5<br>67.8<br>84.4<br>86.3<br>88.3<br>88.3<br>88.3 | 7.66<br>7.60<br>7.51<br>7.33<br>6.86<br>6.16<br>5.17<br>4.58<br>4.44<br>4.46<br>4.54<br>4.64<br>4.54<br>4.64<br>5.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TYFV<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,                     | 0-5<br>250-0<br>500-250<br>750-500<br>1000-750<br>1000-750<br>2000-1500<br>2000-1500<br>200-0<br>200-1500<br>200-0<br>50-0<br>100-50<br>250-100<br>50-260<br>750-520<br>100-770<br>0-5<br>1240-0<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>5<br>0-5<br>10<br>10<br>10<br>5<br>0-5<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 2140                             | 1930<br>1400<br>1400<br>2019<br>2039<br>2130<br>2208<br>2210<br>2249<br>2250<br>2328 | Station worked in<br>thin streams of<br>pancakeice and oc-<br>casional fragments<br>of light floes<br>DGP<br>KT |

# R.R.S. Discovery II

|         |                                                                                                            |                |                              | Sounding  | WIN                                                                               | D                    | SEA                                                                                                                                                 |                  |                    | neter<br>bars)                                               | Air Ten                  | np.°C.      |                                                                      |
|---------|------------------------------------------------------------------------------------------------------------|----------------|------------------------------|-----------|-----------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|--------------------------------------------------------------|--------------------------|-------------|----------------------------------------------------------------------|
| Station | Position                                                                                                   | Date           | Hour                         | (metres)  | Direction                                                                         | Force<br>(knots)     | Direction                                                                                                                                           | Force            | Weather            | Rarometer<br>(millibars)                                     | Dry<br>bulb              | Wet<br>bulb | Remarks                                                              |
| 1155    | 67° 02.6′ S, 12° 13.9′ E                                                                                   | 1933<br>13 iii | 1500                         |           | SW⊁S                                                                              | 16                   | $\mathbf{SW} \times \mathbf{S}$                                                                                                                     | 4                | be                 | 1001.6                                                       | 0.7                      | - 1.2       | low NNW swell                                                        |
| 1156    | 64° 43°3′ S, 14° 41°4′ E<br>64° 42°9′ S, 14° 41°9′ E<br>64° 41°5′ S, 14° 42°3′ E                           | 14 iii         | 0830<br>1200<br>1600         | 4808*<br> | $SW \times S$<br>$SW \times W$<br>$SW \times W$                                   | 10-17<br>15<br>14    | SW×S<br>SW<br>SW≻W                                                                                                                                  | 3<br>3<br>3      | c<br>o<br>o        | 996·7<br>996·3<br>994·5                                      | 0.0                      |             | low S × W swell<br>mod. conf. S and SE<br>swells                     |
|         |                                                                                                            |                |                              |           |                                                                                   |                      |                                                                                                                                                     |                  |                    |                                                              |                          |             |                                                                      |
| 1157    | 61° 51·5′ S, 14° 31·3′ E                                                                                   | 15 iii         | 1100                         | _         | N                                                                                 | 5                    | _                                                                                                                                                   | 0                | 0                  | 990.7                                                        | -0.2                     | - 1.5       | mod. conf. W swell                                                   |
| 1158    | 58° 37.5′ S, 14° 42.7′ E<br>58° 35.2′ S, 14° 42.9′ E<br>58° 35.8′ S, 14° 42.9′ E                           | 16 iii         | 0830<br>1200<br>1600         |           | SSW<br>S×W<br>SSW                                                                 | 18<br>18<br>24       | SSW<br>S×W<br>SSW                                                                                                                                   | 3-4<br>4<br>4    | csp<br>csp<br>o    | 997 <sup>.5</sup><br>999 <sup>.3</sup><br>1000 <sup>.3</sup> | 0.3                      | - 0· 1      | heavy WSW swell<br>heavy WSW swell<br>mod. WSW swell                 |
| 1159    | 55° 48.7′ S, 14° 45.2′ E                                                                                   | 17 iii         | 1106                         |           | WSW                                                                               | 23                   | WSW                                                                                                                                                 | 5                | osp                | 997.1                                                        | 0.6                      | 0. I        | mod. WSW swell                                                       |
| 1160    | 52° 41.5′ S, 14° 30.4′ E<br>52° 43.1′ S, 14° 20.1′ E<br>52° 45.2′ S, 14° 27′ E<br>52° 45.6′ S, 14° 24.7′ E | 18 iii         | 0830<br>1200<br>1600<br>2000 | 2633*<br> | $\begin{array}{c} SW \times W\\ SW \times W\\ WSW\\ WSW\\ W \times N \end{array}$ | 24<br>24<br>17<br>24 | $\begin{array}{c} \mathrm{SW}\times\mathrm{W}\\ \mathrm{SW}\times\mathrm{W}\\ \mathrm{WSW}\\ \mathrm{WSW}\\ \mathrm{W}\times\mathrm{N} \end{array}$ | 6<br>5<br>5<br>5 | o<br>c<br>o<br>ope | 1001·3<br>1002·0<br>998·1<br>998·1                           | 1·1<br>1·1<br>0·6<br>1·3 | 0.1<br>0.0  | heavy SW swell<br>heavy SW swell<br>heavy SW swell<br>heavy SW swell |

.

### 1155-1160

|         |                |                                                                                                                                                                                 |                         | <br>I                                                                                                                                                                                                                                                                                                                                                                                                                                     | HYDROI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ∠OGICAL                                                                                                                                                                                                                                | , OBSEI | RVATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JNS                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BIOLOG                                             | ACAL OBSERV                                                                                  | VATION                       | s                            |                                                                                                                                                                                                         |
|---------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Age of         |                                                                                                                                                                                 | . 5                     |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mg.—ate                                                                                                                                                                                                                                                             | m m. <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                              | TIN                          | 1E                           | Remarks                                                                                                                                                                                                 |
| Station | moon<br>(days) | Depth<br>(metres)                                                                                                                                                               | Depth by<br>thermometer | Temp.<br>° C.                                                                                                                                                                                                                                                                                                                                                                                                                             | S ' <sub>ren</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | σt                                                                                                                                                                                                                                     | pН      | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrite} \\ \text{N}_2 \end{array}$                                                                                                                                                                                  | $\frac{N_1}{N_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Si                                                                                                                                                                                   | O2<br>c.c.<br>htre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gear                                               | Depth<br>(metres)                                                                            | I rom                        | То                           | Kenaiks                                                                                                                                                                                                 |
| 1155    | 17             | 0                                                                                                                                                                               |                         | -0.53                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.45                                                                                                                                                                                                                                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N 100 H<br>TYFB<br>N 70 B<br>N 50 V                | 0-5<br>} 300-0<br>100-0                                                                      | 1525<br>1525<br>1629         | 1555<br>1615<br>1635         | DGP                                                                                                                                                                                                     |
| 1156    | 18             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>300<br>400<br>600<br>770<br>960<br>1440<br>1910<br>2480<br>2870<br>3470<br>3960<br>4460<br>0                       | <br><br><br><br><br>    | $\begin{array}{c} \circ \cdot 69 \\ \circ \cdot 69 \\ \circ \cdot 67 \\ \circ \cdot 49 \\ \circ \cdot 31 \\ -1 \cdot 36 \\ -1 \cdot 50 \\ -0 \cdot 92 \\ \circ \cdot 29 \\ 1 \cdot 01 \\ 1 \cdot 13 \\ 1 \cdot 11 \\ 1 \cdot 11 \\ 1 \cdot 11 \\ 0 \cdot 95 \\ \circ \cdot 79 \\ \circ \cdot 61 \\ \circ \cdot 33 \\ \circ \cdot 08 \\ -0 \cdot 12 \\ -0 \cdot 20 \\ -0 \cdot 21 \\ -0 \cdot 29 \\ -0 \cdot 31 \\ 0 \cdot 89 \end{array}$ | 33.96<br>33.96<br>33.96<br>34.01<br>34.05<br>34.28<br>34.33<br>34.42<br>34.58<br>34.67<br>34.68<br>34.70<br>34.68<br>34.70<br>34.68<br>34.70<br>34.68<br>34.68<br>34.68<br>34.68<br>34.67<br>34.68<br>34.68<br>34.67<br>34.68<br>34.63<br>34.63<br>34.63<br>34.63<br>34.63<br>34.64<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>34.65<br>33.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.25<br>27.25<br>27.25<br>27.30<br>27.34<br>27.61<br>27.64<br>27.69<br>27.77<br>27.80<br>27.80<br>27.80<br>27.82<br>27.83<br>27.84<br>27.83<br>27.84<br>27.85<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87          |         | 1.41<br>1.39<br>1.35<br>1.43<br>1.44<br>1.88<br>1.81<br>2.03<br>2.03<br>2.17<br>2.15<br>2.17<br>2.01<br>2.03<br>2.03<br>2.03<br>2.03<br>1.96<br>1.96<br>1.96<br>1.92<br>1.88<br>1.84<br>1.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 26.77\\ -26.77\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$                                                                                                                                                                             | 0·30<br>0·30<br>0·29<br>0·28<br>0·27<br>0·25<br>0·28<br>0·34<br>0·10<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00<br>0·00 | 26.9<br>27.1<br>28.5<br>28.5<br>29.4<br>44.1<br>52.0<br>56.7<br>59.3<br>61.2<br>63.3<br>67.8<br>70.3<br>73.0<br>79.1<br>82.5<br>82.5<br>80.8<br>82.5<br>88.3<br>88.3<br>88.3<br>86.3 | 7.53<br>7.51<br>7.42<br>6.76<br>4.77<br>4.30<br>4.35<br>4.35<br>4.37<br>4.56<br>4.45<br>4.77<br>4.56<br>4.99<br>5.25<br>5.19<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    | 3100-2000<br>2000-1500<br>1500-1000<br>1000-760<br>750-500<br>250-0<br>100-0<br>0-5<br>280-0 | 0851<br>1215<br>1545<br>1545 | 1515<br>1222<br>1615<br>1635 | DGP<br>Reversing bottles at<br>770, 960, 1440,<br>1910 and 2872<br>metres were on<br>same haul, whilst<br>reversing bottles at<br>2480, 3470, 3960<br>and 4454 metres<br>were on another<br>haul<br>DGP |
| 1158    | 20             | 0                                                                                                                                                                               |                         | 0.61<br>0.61<br>0.61                                                                                                                                                                                                                                                                                                                                                                                                                      | 33·78<br>33·78<br>33·78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27·12<br>27·12<br>27·12                                                                                                                                                                                                                |         | 1.67<br>1.67<br>1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                   | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33.6<br>36.2<br>36.2                                                                                                                                                                 | 7·47<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    | ) 260-0<br>100-0                                                                             | 0841<br>1000                 | 0931                         | DGP                                                                                                                                                                                                     |
|         | -              | 20<br>30<br>40<br>50<br>60<br>80<br>100<br>200<br>300<br>300<br>390<br>490<br>580<br>780<br>970<br>1460<br>1940<br>2430<br>2430<br>3470<br>3470<br>3470<br>3470<br>4460<br>4960 |                         | $\begin{array}{c} \circ.61\\ \circ.60\\ -1.69\\ -1.78\\ -1.78\\ -1.78\\ -1.78\\ -3.9\\ 0.21\\ -0.39\\ 0.21\\ -0.39\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.36\\ -0.41\\ -0.49\\ -0.30\\ -0.36\\ -0.41\\ -0.45\end{array}$                                                                                                                                                                                             | $\begin{array}{c} 33.78\\ 33.79\\ 34.16\\ 34.19\\ 34.22\\ 34.25\\ 34.55\\ 34.66\\ 34.67\\ 34.68\\ 34.68\\ 34.68\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34.66\\ 34$ | 27.12<br>27.13<br>27.51<br>27.55<br>27.56<br>27.58<br>27.79<br>27.84<br>27.84<br>27.84<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.85<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87<br>27.87 |         | 1 50<br>1 54<br>1 56<br>2 05<br>2 05<br>2 07<br>1 92<br>2 15<br>2 24<br>2 24<br>2 24<br>2 24<br>2 24<br>2 21<br>2 215<br>2 05<br>1 90<br>1 92<br>2 05<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96<br>1 96 | $\begin{array}{c} - \\ 27.84 \\ - \\ 32.13 \\ 31.05 \\ 32.84 \\ 34.98 \\ 36.41 \\ - \\ 36.77 \\ - \\ 36.77 \\ - \\ 36.77 \\ - \\ 36.77 \\ - \\ 36.41 \\ - \\ 34.98 \\ - \\ 34.98 \\ - \\ 34.98 \\ - \\ - \\ 34.98 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $ | 0.36           0.36           0.36           0.41           0.41           0.41           0.41           0.41           0.41           0.41           0.41           0.41           0.41           0.41           0.41           0.41           0.41           0.41           0.41           0.41           0.41           0.45           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38·3<br>40·0<br>50·0<br>52·7<br>53·5<br>57·5<br>66·6<br>73·0<br>82·5<br>80·8<br>82·5<br>84·4<br>88·3<br>86·3<br>86·3<br>86·3<br>86·3<br>86·3<br>86·3<br>86·3                         | $ \begin{array}{c}\\ 7.46\\\\ 7.26\\\\ 6.99\\ 5.08\\ 4.47\\ 4.20\\ 4.20\\ 4.20\\ 4.10\\ 4.52\\ 4.10\\ 4.52\\ 5.02\\ 5.02\\ 5.02\\ 5.02\\ 5.02\\ 5.03\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23\\ 5.23$ | <b>TYFV</b> ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | 3000-2000<br>2000-1500<br>1500-1000<br>1000-730<br>750-500<br>500-250<br>250-0               |                              | 1635                         |                                                                                                                                                                                                         |
| 115     | 9 21           | C                                                                                                                                                                               | -                       | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.29                                                                                                                                                                                                                                  | -       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N 50 V<br>TYFB<br>N 70 B                           | 230-0                                                                                        | 1125                         |                              |                                                                                                                                                                                                         |
| 116     | 0 22           | 10<br>20<br>30                                                                                                                                                                  | ⊳  —                    | 1.01<br>1.01<br>1.01                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 27·23<br>5 27·23                                                                                                                                                                                                                     | -       | 1.8<br>1.8<br>1.8<br>1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c c}8 & - \\6 & 28 \cdot 2\end{array}$                                                                                                                                                                                                               | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 40.0<br>40.0                                                                                                                                                                       | $\frac{1}{7.3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 <b>TYFV</b>                                      | 270-0<br>250-0<br>500-250<br>750-500                                                         | 0852                         |                              | DGP                                                                                                                                                                                                     |

|                      |                                                                                                                                |                  |                              | Sounding      | WIN                      | 31)                     | SEA                           |             |                   | heter<br>bars)                       | Air Tei                    | np. C       |                                                                                                      |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------|---------------|--------------------------|-------------------------|-------------------------------|-------------|-------------------|--------------------------------------|----------------------------|-------------|------------------------------------------------------------------------------------------------------|
| Station              | Position                                                                                                                       | Date             | Hour                         | (metris)      | Direction                | Force<br>(knots)        | Direction                     | Force       | Weather           | Barometer<br>(millibars)             | Dry<br>bulb                | Wet<br>bulb | Remarks                                                                                              |
| <b>1160</b><br>cont. | 52 41.5' S, 14 30.4' E<br>52° 43.1' S, 14 20.1' E<br>52° 45.2' S, 14 27' E<br>52° 45.6' S, 14 27' E<br>52° 45.6' S, 14 24.7' E | 1933<br>18 iii   | 0830<br>1200<br>1600<br>2000 |               |                          |                         |                               |             |                   |                                      |                            |             |                                                                                                      |
|                      | 50° 23·1′ S, 13° 55·2′ E<br>46° 47·2′ S, 12° 39·4′ E<br>46° 47·9′ S, 12° 37·5′ E                                               | 19 iii<br>21 iii |                              | <br>4522*<br> | W<br>W<br>W              | 22<br>24<br>24          | W<br>W<br>W                   | 6<br>5<br>5 | ome<br>bc<br>bcpq | 991-6<br>990-0<br>991-2              | 3·1<br>5·7<br>6·1          | 4·1         | heavy conf. WSW<br>swell<br>heavy conf. WNW<br>swell<br>heavy conf. W swell                          |
| 1163                 | 44° 35'9′ S, 11° 35'5′ E                                                                                                       | 22 iii           | 1130                         | _             | W × N                    | 38                      | $\mathbf{W} 	imes \mathbf{N}$ | 7           | bcq               | 1001.9                               | 8.4                        | 6-6         | heavy conf. W swell                                                                                  |
| 1164                 | 41° 45′ S, 10° 07.6′ E                                                                                                         | 23 iii           | 1630                         | 4556          | SW×S                     | 30                      | $\mathbf{SW}\times\mathbf{S}$ | 6           | beq               | 1010.0                               | 7.9                        | 5.2         | heavy conf. W swell                                                                                  |
| 1165                 | 41° 01′ S, 09′ 34·3′ E<br>40° 58·6′ S, 09′ 32·8′ E<br>40° 57·3′ S, 09′ 30·1′ E<br>40′ 54·7′ S, 09′ 25·5′ E                     | 24 iii           | 0607<br>0800<br>1200<br>1600 | 4641*         | WSW<br>W×N<br>NW×W<br>NW | 18<br>15<br>21<br>21-22 | WSW<br>W≻N<br>NW×W<br>NW      | 4<br>4<br>5 | c<br>opr<br>op    | 1018·8<br>1019·1<br>1018·2<br>1016·3 | 9.4<br>9.9<br>10.0<br>12.3 | 7·1<br>9·8  | heavy conf. WSW<br>swell<br>heavy conf. SW swell<br>heavy conf. SW swell<br>heavy conf. WSW<br>swell |

### 1160-1165

|                   |                |                                                                                                                                                     |                         |                                                                                                                                                                      | HYDROI                                                                                                                                                                                             | LOGICA                                                                                                                                       | L OBSE | RVATI                                                                                                                                                                        | ONS                                                                           |                                                                                              |                                                                                                                                                                                                                                                                                                                                           |                                                                                                      | BIOLOC                                                                                        | JICAL OBSER                                                                         | VATION           | 3                    |                                                                         |
|-------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------|----------------------|-------------------------------------------------------------------------|
|                   | Age of         |                                                                                                                                                     | y<br>ter                |                                                                                                                                                                      |                                                                                                                                                                                                    |                                                                                                                                              |        |                                                                                                                                                                              | Mg.—ate                                                                       | om m.º                                                                                       |                                                                                                                                                                                                                                                                                                                                           |                                                                                                      |                                                                                               |                                                                                     | TIN              | IE.                  |                                                                         |
| Station<br>-      | moon<br>(days) | Depth<br>(metres)                                                                                                                                   | Depth by<br>thermometer | Temp.<br>- C.                                                                                                                                                        | S                                                                                                                                                                                                  | σt                                                                                                                                           | рH     | P                                                                                                                                                                            | Nitrate<br>+<br>Nitrite<br>N <sub>2</sub>                                     | Nitrite<br>N <sub>2</sub>                                                                    | 51                                                                                                                                                                                                                                                                                                                                        | O2<br>c.c.<br>litre                                                                                  | Gear                                                                                          | Depth<br>(metres)                                                                   | From             | Τu                   | Remarks                                                                 |
| <b>1160</b> cont. | 22             | 40<br>50<br>60<br>80<br>100<br>150<br>200<br>300<br>400<br>590<br>790<br>990<br>1480<br>1980<br>2470                                                |                         | 1.01<br>1.01<br>1.01<br>0.96<br>0.10<br>0.12<br>1.01<br>1.62<br>1.63<br>1.50<br>1.40<br>1.09<br>0.67<br>0.46<br>0.29                                                 | 33:96<br>33:96<br>33:96<br>33:96<br>34:05<br>34:05<br>34:30<br>34:47<br>34:61<br>34:66<br>34:68<br>34:72<br>34:70<br>34:70<br>34:69<br>34:68                                                       | 27·23<br>27·23<br>27·23<br>27·24<br>27·35<br>27·55<br>27·54<br>27·72<br>27·75<br>27·78<br>27·78<br>27·81<br>27·82<br>27·85<br>27·84<br>27·85 |        | 1.81<br>1.81<br>1.71<br>2.01<br>2.13<br>2.15<br>2.10<br>2.15<br>2.01<br>2.01<br>2.01<br>2.01<br>1.90<br>2.17<br>2.17                                                         | 28.56<br>32.48<br>34.62<br>36.05<br>41.41<br>34.98<br>35.70<br>34.98<br>34.27 | 0.36<br>0.36<br>0.36<br>0.36<br>0.36<br>0.19<br>0.00<br>0.00<br>0.00<br>0.00                 | 43.6<br>43.6<br>43.6<br>43.6<br>48.7<br>60.3<br>62.2<br>65.5<br>67.8<br>73.0<br>75.9<br>79.1<br>86.3<br>88.3<br>88.3                                                                                                                                                                                                                      | 7:36<br>7:39<br>6:54<br>5:47<br>4:58<br>4:14<br>4:18<br>4:23<br>4:34<br>4:41<br>4:52<br>4:59<br>4:65 | TYFV<br>N 50 V                                                                                | 1000-750<br>1500-1000<br>100-0                                                      | 1640             | 2135<br>1651         |                                                                         |
| 1161              | 23             | 0                                                                                                                                                   | _                       | 2.76                                                                                                                                                                 | 33.98                                                                                                                                                                                              | 27.12                                                                                                                                        | _      |                                                                                                                                                                              | -                                                                             | -                                                                                            |                                                                                                                                                                                                                                                                                                                                           |                                                                                                      | N 100 B<br>N 100 B                                                                            | 91-0<br>340-150                                                                     | 1621<br>1621     | 1641<br>1651         | KT<br>DGP                                                               |
| 1162              | 24             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>100<br>150<br>190<br>290<br>390<br>580<br>770<br>970<br>1450<br>1970<br>2460<br>2960<br>3450<br>3940 |                         | 6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>5.61<br>4.58<br>4.18<br>3.70<br>3.24<br>2.70<br>2.55<br>2.52<br>2.53<br>2.39<br>2.01<br>1.55<br>1.07<br>0.83 | 33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>33.96<br>34.14<br>34.14<br>34.15<br>34.18<br>34.23<br>34.46<br>34.68<br>34.77<br>34.77<br>34.77<br>34.77<br>34.70 | 27·83<br>27·84                                                                                                                               |        | 1.39<br>1.27<br>1.37<br>1.44<br>1.25<br>1.22<br>1.18<br>1.29<br>1.35<br>1.41<br>1.63<br>1.63<br>1.63<br>1.82<br>2.11<br>2.19<br>2.09<br>1.88<br>1.60<br>1.84<br>1.92<br>1.96 | 29·63<br>                                                                     | -                                                                                            | $\begin{array}{c} 6 \cdot 0 \\ 5 \cdot 5 \\ 5 \cdot 5 \\ 5 \cdot 5 \\ 7 \cdot 4 \\ 4 \cdot 9 \\ 5 \cdot 0 \\ 5 \cdot 1 \\ 6 \cdot 4 \\ 7 \cdot 6 \\ 9 \cdot 0 \\ 1 \circ 7 \\ 1 3 \cdot 3 \\ 2 2 \cdot 3 \\ 3 8 \cdot 3 \\ 4 \circ 4 \\ 4 4 \cdot 1 \\ 4 6 \cdot 9 \\ 5 2 \cdot 7 \\ 7 \circ 3 \\ 7 5 \cdot 9 \\ 7 9 \cdot 1 \end{array}$ | 4·32<br>4·45<br>4·55                                                                                 |                                                                                               | 280-0<br>250-0<br>500-250<br>750-500<br>100-0                                       | 0635<br>0830<br> | 0725<br>1420<br>1444 | DGP. <b>N 70 B</b> net<br>damaged                                       |
| 1163              | 26             | 0<br>200<br>400<br>590<br>790                                                                                                                       | <u> </u>                | 7.60<br>5.80<br>4.72<br>3.60<br>2.94                                                                                                                                 | 34·13<br>34·23<br>34·23<br>34·20<br>34·24                                                                                                                                                          | 26·99<br>27·12<br>27·21                                                                                                                      |        |                                                                                                                                                                              |                                                                               |                                                                                              |                                                                                                                                                                                                                                                                                                                                           | 5.62<br>6.41<br>5.57<br>5.09                                                                         |                                                                                               |                                                                                     |                  |                      | Weather conditions<br>too bad for nets<br>and further ob-<br>servations |
| 1164              | 27             | 0<br>400<br>600<br>790<br>990<br>1190                                                                                                               |                         | 10.71<br>5.59<br>4.23<br>3.51<br>2.96<br>2.81                                                                                                                        | 34·40<br>34·31<br>34·22<br>34·28<br>34·36<br>34·47                                                                                                                                                 | 27·08<br>27·16<br>27·29<br>27·40                                                                                                             |        |                                                                                                                                                                              |                                                                               |                                                                                              |                                                                                                                                                                                                                                                                                                                                           | 5·42<br>5·34<br>5·03<br>4·51<br>3·98                                                                 |                                                                                               |                                                                                     |                  |                      | Weather conditions<br>too bad for nets                                  |
| 1165              | 28             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>60<br>80<br>100<br>150<br>200<br>290<br>390                                                                |                         | 15:50<br>15:50<br>15:50<br>15:50<br>15:50<br>15:50<br>15:50<br>15:50<br>15:50<br>15:49<br>15:43<br>0.71<br>9:29<br>7.31                                              | 35·23<br>35·23<br>35·23<br>35·23<br>35·23<br>35·23<br>35·23<br>35·23<br>34·47<br>34·81                                                                                                             | 26.05<br>26.05<br>26.05<br>26.05<br>26.05<br>26.05<br>26.05<br>26.05<br>26.06<br>26.07<br>26.61<br>26.95                                     |        | 0.30<br>0.36<br>0.36<br>0.29<br>0.25<br>0.25<br>0.27<br>0.25<br>0.29<br>0.89<br>1.60<br>1.58                                                                                 | 1.43<br>1.78<br>-1.43<br>1.43<br>1.43<br>1.43<br>3.21<br>1.571                | 0.24<br>0.25<br>0.25<br>0.26<br>0.25<br>0.26<br>0.26<br>0.26<br>0.24<br>0.25<br>1.14<br>0.06 | 4.0<br>4.0<br>3.9<br>3.6<br>3.2<br>3.1<br>3.0<br>2.7<br>2.6<br>9.8<br>11.7                                                                                                                                                                                                                                                                | 5·31<br>5·31<br>5·31<br>5·30<br>5·30<br>5·30<br>5·85<br>4·23                                         | N 70 B<br>TYFSV<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,, | 250-0<br>250-0<br>500-250<br>750-500<br>1000-750<br>1500-1000<br>2000-1470<br>100-0 | 1                | 1520                 | DGP                                                                     |

# R.R.S. Discovery II

|                           |                                                                                                            |                |                              | Sounding  | WIN                   | ND               | SEA             |             |         | neter<br>bars)             | Air Tei     | np. ^ C,    |                                                                    |
|---------------------------|------------------------------------------------------------------------------------------------------------|----------------|------------------------------|-----------|-----------------------|------------------|-----------------|-------------|---------|----------------------------|-------------|-------------|--------------------------------------------------------------------|
| Station                   | Position                                                                                                   | Date           | Hour                         | (metres)  | Direction             | Force<br>(knots) | Direction       | Force       | Weather | Barometer<br>(millibars)   | Dry<br>bulb | Wet<br>bulb | Remarks                                                            |
| <b>1165</b> <i>cont</i> . | 41° 01′ S, 09° 34°3′ E<br>40° 58°6′ S, 09° 32°8′ E<br>40° 57°3′ S, 09° 30°1′ E<br>40° 54°7′ S, 09° 25°5′ E | 1933<br>24 iii | 0607<br>0800<br>1200<br>1600 |           |                       |                  |                 |             |         |                            |             |             |                                                                    |
| 1166                      | 38° 32·7′ S, 07° 48·3′ E                                                                                   | 25 iii         | 1 300                        | 5288*     | $W \times S$          | 10               | $W \times S$    | 2           | ce      | 1026.9                     | 14.2        | 13.6        | mod. conf. W×S<br>swell                                            |
| 1167                      | 36° 01·3′ S, 06° 31·5′ E<br>36° 00·5′ S, 06° 34·2′ E<br>36° 00′ S, 06° 31·4′ E                             | 26 iii         | 0834<br>1200<br>1600         | 5290*<br> | W×N<br>Lt airs<br>SSW | 6<br>2-3<br>2    | W×N<br>—<br>SSW | I<br>O<br>I | C<br>C  | 1028.0<br>1027.5<br>1024.9 | 20.3        | 16.8        | low SW×S swell<br>low SW×S swell<br>low conf. SSE and<br>SW swells |
| 1168                      | 34° 08·2′ S, 15° 34·2′ E                                                                                   | 4 iv           | 0900                         | 4128*     | S×E                   | 20-23            | S×E             | 5           | bc      | 1019.0                     | 17-1        | 14.0        | SSE swell                                                          |

.

^

|               |                |                                              |                         |                                                    | HYDRC                                                       | DEOGICA                                                     | AL OBS | ERVATI                                       | 015                                    |                                      |                                              |                                                    | BIOLO                    | GICAL OBSUR                                            | VATION       | 15           | ]              |
|---------------|----------------|----------------------------------------------|-------------------------|----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------|----------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------------|--------------------------|--------------------------------------------------------|--------------|--------------|----------------|
|               | Age of         |                                              | y<br>ter                |                                                    |                                                             |                                                             |        |                                              | Mg at                                  | 001.111.                             |                                              |                                                    |                          |                                                        | TT           | 11           |                |
| Station       | moon<br>(days) | Depth<br>(metres)                            | Depth by<br>thermometer | Temp.<br>C                                         | 8.                                                          | σt                                                          | pН     | P                                            | Nitrate<br>Nitrite<br>N                | Nutrite<br>Ng                        | 51                                           | O,<br>CC<br>htre                                   | Gear                     | Depth<br>(metres)                                      | From         | То           | Remark         |
| 1165<br>cont. | 28             | 580<br>780<br>970                            |                         | 4·85<br>3·74<br>2·90                               | 34°48<br>34°47<br>34°47                                     | 27:30<br>27:41<br>27:49                                     |        | 2.76<br>2.83<br>2.98                         | 33.55                                  | 0.00                                 | 26-2<br>32-4<br>37-6                         | 4·12<br>3·99<br>4·03                               |                          |                                                        |              |              |                |
|               |                | 1460<br>1940<br>2430                         | <br>2+32                | 2·63<br>2·67<br>2·47                               | 34·67<br>34·81<br>34·84                                     | 27·68<br>27·79<br>27·83                                     |        | 2·83<br>2·22<br>2·30                         | 32·48<br><br>27·13                     | 0.00                                 | 43.6<br>40.4<br>36.9                         | 4.00<br>4.20<br>4.80                               |                          |                                                        |              |              |                |
|               |                | 2930<br>3420<br>3910<br>4400<br>Bottom       | <br>+395<br>            | 2·32<br>2·02<br>1·37<br>1·07<br>1·03               | 34·84<br>34·82<br>34·77<br>34·75<br>34·73                   | 27·84<br>27·86<br>27·86<br>27·86<br>27·87<br>27·85          |        | 2.01<br>2.13<br>2.41<br>2.59                 | 23·56<br>28·56                         | 0.00                                 | 39°1<br>45°7<br>61°2<br>63°3                 | 4·89<br>4·87<br>4·41<br>4·52                       |                          |                                                        |              |              |                |
| 1166          | 29             | 0<br>390<br>580<br>770                       |                         | 14·12<br>6·54<br>4·79<br>3·48                      | 34°59<br>34°40<br>34°30<br>—                                | 25·87<br>27·03<br>27·16                                     |        |                                              |                                        |                                      | 12:2<br>7:6                                  | 5.63<br>5.31<br>5.30                               | N 50 V<br>TYFB<br>N 70 B | 100-0<br>  306-0                                       | 1456<br>1523 | 1508<br>1613 | DGP            |
|               |                | 970<br>1160<br>1360<br>1550                  | 1543                    | 3.06<br>2.85<br>2.74<br>2.69                       | 34·27<br>34·40<br>34·49<br>34·58                            | 27·32<br>27·44<br>27·52<br>27·60                            |        |                                              |                                        |                                      | 11-8<br>18-9<br>24-6<br>29-4                 | + 99<br>4 5 1<br>4 18<br>3 96                      |                          |                                                        |              |              |                |
| 1167          | 0              | 0<br>10<br>20<br>30<br>40<br>50              |                         | 19.56<br>19.59<br>19.53<br>19.52<br>19.52<br>19.40 | 35.63<br>35.63<br>35.63<br>35.63<br>35.63<br>35.63<br>35.62 | 25·38<br>25·37<br>25·39<br>25·39<br>25·39<br>25·39<br>25·39 |        | 0.15<br>0.15<br>0.15<br>0.13<br>0.13<br>0.13 | 0.00                                   | 0.00<br>0.00<br>0.00                 | 2·5<br>2·0<br>2·1<br>2·8<br>2·5<br>2·3       | 5.02<br>5.06<br>5.04                               | TYFB<br>N 70 B<br>TYFSV  | 280-0<br>250-0<br>500-250<br>750-300                   | 0849<br>1010 | 0939         | DGP            |
|               |                | 50<br>60<br>80<br>100<br>150<br>200          |                         | 19:22<br>16:72<br>15:91<br>14:42<br>13:02          | 35.62<br>35.44<br>35.39<br>35.26<br>35.03                   | 25.46<br>25.93<br>26.08<br>26.31<br>26.43                   |        | 0·13<br>0·17<br>0·25<br>0·40<br>0·55         | 0.00<br>0.00<br>0.00<br>3.28<br>7.14   | 0.00<br>0.02<br>0.01<br>0.01<br>0.00 | 2.7<br>1.0<br>1.8<br>2.8<br>2.5              | 5.06<br>5.47<br>5.10<br>5.11                       |                          | 1500-0<br>1500-1000<br>2000-1500<br>3000-2000<br>100-0 | 1527         | 1710         |                |
|               |                | 300<br>390<br>590<br>790<br>990<br>1480      |                         | 11.90<br>10.99<br>7.14<br>4.41<br>3.63<br>2.78     | 34.98<br>34.97<br>34.51<br>34.31<br>34.33<br>34.58          | 26.62<br>26.77<br>27.03<br>27.21<br>27.31<br>27.59          |        | 0.67<br>1.03<br>1.79<br>1.96<br>2.19<br>2.40 | -<br>13.56<br>-<br>27.13<br>-<br>29.27 | 0.00<br>                             | 2.0<br>3.7<br>11.0<br>13.5<br>23.3<br>35.8   | 4.80<br>4.88<br>4.60<br>5.03<br>4.57               |                          |                                                        |              |              |                |
|               |                | 1970<br>2470<br>2960<br>3450<br>3950<br>4440 |                         | 2·77<br>2·63<br>2·43<br>2·27<br>1·67<br>1·19       | 34·80<br>34·85<br>34·86<br>34·85<br>34·80<br>34·80<br>34·75 | 27·82<br>27·82<br>27·84<br>27·85<br>27·86<br>27·86          |        | 1.98<br>1.94<br>1.62<br>1.65<br>1.81<br>2.15 | 23·56<br>24·09<br>28·20                |                                      | 29.9<br>28.8<br>29.9<br>33.3<br>46.3<br>52.7 | + + +7<br>+ + 78<br>+ + 70<br>+ 95<br>+ 75<br>+ 56 |                          |                                                        |              |              |                |
| 1168          | 9              | 4440<br>4030<br>0                            | +++3<br>—<br>—          | 1.12<br>17.86<br>17.89                             | 3+75<br>34'74<br>35'43                                      | 27.85<br>25.65<br>25.64                                     |        | 2.03                                         |                                        |                                      | 61·2                                         | + 50<br>+ + + +<br>5 · 20                          | TYFB<br>N 70 B           | 272-0                                                  | 0920         | 1010         | DGP. – 2 hours |
|               |                | 20<br>30<br>40<br>50                         |                         | 17-89<br>17-89<br>17-89<br>17-83                   | 35.43<br>35.43<br>35.43<br>35.43                            | 25.64<br>25.64<br>25.64<br>25.66                            |        |                                              | _                                      |                                      |                                              | 5°23<br>5°20                                       | N 50 V                   | 100-0                                                  | 1020         | 1027         |                |
|               |                | 60<br>80<br>100<br>150<br>200                |                         | 17.03<br>16.53<br>16.62<br>14.20<br>13.16          | 35.44<br>35.44<br>35.46<br>35.23<br>35.13                   | 25.86<br>25.98<br>25.98<br>26.34<br>26.48                   |        |                                              |                                        |                                      | -                                            | 4.64<br>4.60<br>4.00<br>4.83                       |                          |                                                        |              |              |                |
|               |                | 300<br>390<br>590<br>790<br>990              |                         | 11.43<br>9.94<br>5.84<br>4.15<br>3.37              | 35.01<br>34.84<br>34.43<br>34.30<br>34.38                   | 26.73<br>26.86<br>27.15<br>27.23<br>27.38                   |        |                                              |                                        |                                      |                                              | 4.82<br>4.85<br>4.99<br>5.02<br>4.48               |                          |                                                        |              |              |                |
|               |                | 1480<br>1980<br>2470<br>2940                 | 1478<br><br>2468<br>    | 2.73<br>2.73<br>2.48<br>2.29                       | 34·70<br>34·88<br>34·88<br>34·88<br>34·87                   | 27·70<br>27·84<br>27·86<br>27·86                            |        | -                                            | -                                      | -                                    |                                              | +.08<br>+.63<br>+.85<br>5.01                       |                          |                                                        |              |              |                |
|               |                | 3450<br>3950                                 | _                       | 1.11                                               | 34·85<br>34·76                                              | 27·87<br>27·86                                              |        |                                              |                                        |                                      |                                              | +.74<br>+.71                                       |                          |                                                        |              |              |                |

~

|         |                          |              |      | Sounding             | WIN       | D                | SEA       |       |           | leter<br>ars)             | Air Ter     | np. ' C.    |                                                    |
|---------|--------------------------|--------------|------|----------------------|-----------|------------------|-----------|-------|-----------|---------------------------|-------------|-------------|----------------------------------------------------|
| Station | Position                 | Date         | Hour | Sounding<br>(metres) | Direction | Force<br>(knots) | Direction | Force | Weather   | ltaro.neter<br>(milhbars) | Dry<br>bulb | Wet<br>bulb | Remarks                                            |
| 1169    | 33° 59.7′ S, 11° 36.8′ E | 1933<br>5 iv | 0903 | 4967*                | 5<br>5    | 20<br>20         | S<br>S    | 3 4   | ср<br>Ьср | 1017-1                    |             |             | mod. conf. S×W<br>swell<br>mod. conf. S×W<br>swell |
| 1170    | 33° 57.9′ S, 08° 10.6′ E | 6 iv         | 0900 | 5130*                | SE × E    | 16               | SE×E      | 3     | bc        | 1024.4                    | 15.4        | 11.8        | heavy SSW swell                                    |
|         |                          | 7 iv<br>7 iv |      |                      | E<br>ENE  | 12<br>5-7        | E<br>ENE  | 2     | bc<br>cp  |                           |             |             | heavy SSE swell<br>mod. SSE swell                  |

| 1169— | 1 | 1 | 7 | 2 |
|-------|---|---|---|---|
|-------|---|---|---|---|

|         |                |                   |                         | ·                                        | HYDRC                                                     | LOGICA         | L OBSI | ERVAT | IONS                                                                                                            |                           |    |                    | BIOLO            | GICAL OBSEI        | RVATIO:      | XS   |                                          |
|---------|----------------|-------------------|-------------------------|------------------------------------------|-----------------------------------------------------------|----------------|--------|-------|-----------------------------------------------------------------------------------------------------------------|---------------------------|----|--------------------|------------------|--------------------|--------------|------|------------------------------------------|
|         | Age of         |                   | y<br>ter                |                                          |                                                           |                |        |       | Mg.—at                                                                                                          | om m.4                    |    |                    |                  |                    | TE           | ME   |                                          |
| Station | moon<br>(days) | Depth<br>(metres) | Depth by<br>thermometer | Temp.<br>C.                              | s                                                         | σt             | pН     | I,    | $\begin{array}{c} \text{Nitrate} \\ \stackrel{\tau}{\text{Nitrate}} \\ \stackrel{\tau}{\text{N}_2} \end{array}$ | Nitrite<br>N <sub>2</sub> | Si | O2<br>c.c.<br>htre | Gear             | Depth<br>(inetres) | From         | То   | Remarks                                  |
| 1169    | 10             | 0                 |                         | 18.23                                    | 35.54                                                     | 25.65          |        |       |                                                                                                                 |                           |    | 5.02               | TYFB             | 298-0              | 0921         | 1011 | DGP                                      |
|         |                | 10<br>20          |                         | 18.33<br>18.33                           | 35°55<br>35°55                                            | 25·63<br>25·63 |        |       |                                                                                                                 |                           | _  | 5.07               | N 70 B<br>N 50 V | 100-0              | 1030         | 1038 |                                          |
|         |                | 30                |                         | 18·33<br>18·33                           | 35·55<br>35·55                                            | 25·63<br>25·63 |        |       |                                                                                                                 |                           |    | 5.06               |                  |                    |              |      |                                          |
|         |                | 40<br>50          |                         | 18.33                                    | 35.55                                                     | 25.63          |        |       |                                                                                                                 |                           |    |                    |                  |                    |              |      |                                          |
|         |                | 60<br>80          |                         | 18·33<br>18·23                           | 35·55<br>35·54                                            | 25·63<br>25·65 |        |       |                                                                                                                 | _                         |    | 5.02               |                  |                    |              |      |                                          |
|         |                | 100               |                         | 17.53                                    | 35.23                                                     | 25.82          | _      |       |                                                                                                                 | —                         |    | 4.60               |                  |                    |              |      |                                          |
|         |                | 150<br>200        |                         | 16·32<br>14·89                           | 35.46                                                     | 26·05<br>26·29 |        |       |                                                                                                                 |                           |    | 4.55<br>4.57       |                  |                    |              |      |                                          |
|         |                | 300               |                         | 12.89                                    | 35.11                                                     | 26.52          |        |       |                                                                                                                 |                           |    | 4.80               |                  |                    |              |      |                                          |
|         |                | 400<br>600        |                         | 0.00<br>0.00                             | 35.02<br>34.71                                            | 26·70<br>26·92 |        |       |                                                                                                                 |                           |    | 4.90<br>4.76       |                  |                    |              |      | Large stray on                           |
|         |                | 800               |                         | 5.70                                     | 34.20                                                     | 27.21          |        |       |                                                                                                                 | —                         |    | 4.60               |                  |                    |              |      | hydrological wire                        |
|         |                | 1000<br>1500      |                         | 3·96<br>2·83                             | 34·35<br>34·66                                            | 27·30<br>27·65 |        |       |                                                                                                                 |                           |    | 4.57<br>4.03       |                  |                    |              |      | between 600 and<br>2000 metres           |
|         |                | 2000              |                         | 2.84                                     | 34.81                                                     | 27.78          |        | -     |                                                                                                                 |                           |    | 4.61               |                  |                    |              |      |                                          |
|         |                | 2500<br>3000      | _                       | 2·75<br>2·55                             | 34·86<br>34·86                                            | 27·81<br>27·83 |        |       |                                                                                                                 |                           |    | 4'77<br>4'99       |                  |                    |              |      | Very large stray on<br>hydrological wire |
|         |                | 3500              |                         | 2.38                                     | 34.87                                                     | 27.86          |        |       |                                                                                                                 | _                         |    | 5.00               |                  |                    |              |      | between 2500 and                         |
|         |                | 4000<br>4500      |                         | 2.00<br>1.20                             | 34·84<br>34·77                                            | 27·86<br>27·86 |        |       |                                                                                                                 |                           |    | 4:90<br>4:64       |                  |                    |              |      | 4500 metres                              |
|         |                |                   |                         |                                          |                                                           |                |        |       |                                                                                                                 |                           |    |                    | TVED             |                    |              |      | DCD                                      |
| 1170    | ΙI             | 0<br>10           |                         | 19·27<br>19·17                           | $\begin{array}{c} 35 \cdot 66 \\ 35 \cdot 65 \end{array}$ | 25·47<br>25·49 |        | _     |                                                                                                                 |                           |    | 5.02               | TYFB<br>N 50 V   | 310-0<br>100-0     | 0915<br>1020 | 1005 | DGP                                      |
|         |                | 20                |                         | 18.95                                    | 35.65                                                     | 25.55          | —      | -     |                                                                                                                 | —                         |    | 5·11               | 5                |                    |              |      |                                          |
|         |                | 30<br>40          |                         | 18·94<br>18·86                           | 35·65<br>35·64                                            | 25·55<br>25·56 |        | _     | _                                                                                                               |                           |    | 5.09               |                  |                    |              |      |                                          |
|         |                | 50                |                         | 18.85                                    | 35.64                                                     | 25.56          |        |       |                                                                                                                 |                           |    |                    |                  |                    |              |      |                                          |
|         |                | 60<br>80          |                         | 18.83<br>18.58                           | 35·64<br>35·60                                            | 25·57<br>25·60 |        |       | _                                                                                                               | -                         |    | 5.00               |                  |                    |              |      |                                          |
|         |                | 100               |                         | 17.23                                    | 35.21                                                     | 25.87          |        | _     |                                                                                                                 | _                         | —  | 4.64               |                  |                    |              |      |                                          |
|         |                | 150<br>200        | _                       | 15·72<br>14·51                           | 35·44<br>35·28                                            | 26·17<br>26·31 |        | _     | _                                                                                                               |                           |    | 4·75<br>4·86       |                  |                    |              |      |                                          |
|         |                | 300               |                         | 12.58                                    | 35.14                                                     | 26.60          | —      | —     | -                                                                                                               |                           |    | 4.84               |                  |                    |              |      |                                          |
|         |                | -400<br>-600      |                         | 7.64                                     | 34·98<br>34·59                                            | 26.76          |        | _     | _                                                                                                               | _                         |    | 4·89<br>4·50       |                  |                    |              |      |                                          |
|         |                | 800               |                         | 4.22                                     | 34.39                                                     | 27.18          |        |       |                                                                                                                 | —                         |    | 5.12               |                  |                    |              |      |                                          |
|         |                | 990<br>1490       |                         | 3·55<br>2·76                             | 34 41<br>34 64                                            | 27·38<br>27·65 |        | _     |                                                                                                                 |                           |    | 4.60<br>3.90       |                  |                    |              |      |                                          |
|         |                | 1990              | 1989                    | 2.71                                     | 34.81                                                     | 27.79          | -      | _     |                                                                                                                 | —                         |    | 4.55               |                  |                    |              |      |                                          |
|         |                | 2490<br>2980      |                         | 2·57<br>2·39                             | 34·86<br>34·87                                            | 27·83<br>27·86 |        |       |                                                                                                                 |                           |    | 4.87<br>4.92       |                  |                    |              |      |                                          |
|         |                | 3480              |                         | 2.30                                     | 34.86                                                     | 27.86          | —      |       | _                                                                                                               |                           | -  | 4.81               |                  |                    |              |      |                                          |
|         |                | 3980<br>4480      |                         | 1.2                                      | 34.80                                                     | 27·87<br>27·87 |        |       |                                                                                                                 |                           |    | 4·76<br>4·71       |                  |                    |              |      |                                          |
| 1171    |                |                   |                         |                                          | 1                                                         |                |        |       |                                                                                                                 |                           |    | 5.00               | TYFB             |                    |              |      | DGP. Large stray<br>on hydrological      |
| 1171    | 12             | 0<br>001-         |                         | 19.90<br>11.42                           | 35·66<br>35·01                                            | 25.31          | _      |       |                                                                                                                 |                           |    | 4.82               | N 70 B           | 320-0              | 0314         |      | wire, station aban-<br>doned             |
|         |                |                   |                         |                                          |                                                           |                |        |       |                                                                                                                 |                           |    |                    | N 50 V           | 100-0              | 0430         | 0445 | ( conce                                  |
| 1172    | 12             | 0                 |                         | 19.61<br>19.73                           | 35·69<br>35·70                                            | 25.40          |        | -     |                                                                                                                 |                           |    | 2.01               |                  |                    |              |      |                                          |
|         |                | 20                |                         | 1973                                     | 35.70                                                     | 25.38          |        |       |                                                                                                                 |                           |    | 4:99               | 1                |                    |              |      |                                          |
|         |                | 30<br>-40         |                         | 19 <sup>.</sup> 73<br>19 <sup>.</sup> 73 | 35·70<br>35·70                                            | 25·38<br>25·38 |        |       |                                                                                                                 |                           |    | 4.99               |                  |                    |              |      |                                          |
|         |                | 50                | _                       | 19.73                                    | 35.70                                                     | 25.38          |        |       |                                                                                                                 |                           |    |                    |                  |                    |              |      |                                          |
|         |                | 60<br>80          |                         | 19.73<br>18.43                           | 35 <sup>.</sup> 70<br>35 <sup>.</sup> 55                  | 25.38          | -      |       |                                                                                                                 |                           |    | 4.00               |                  |                    |              |      |                                          |
|         | 1              | 100               | -                       | 17.85                                    | 35.53                                                     | 25.74          |        |       |                                                                                                                 |                           |    | 4.28               |                  |                    |              |      |                                          |
|         |                | 150<br>190        | _                       | 16·61<br>14·91                           | 35·46<br>35·35                                            | 25·98<br>26·28 |        |       |                                                                                                                 |                           |    | 4.42               |                  |                    |              |      |                                          |
|         |                | 290               | -                       | 13.10                                    | 35.18                                                     | 26.54          |        | -     |                                                                                                                 |                           |    | 4.67               |                  |                    |              |      |                                          |
|         | ļ              | 380<br>580        |                         | 11·20<br>8·10                            | 34·96<br>34·61                                            | 26.72          |        |       |                                                                                                                 |                           |    | 4·80<br>4·24       |                  |                    |              |      |                                          |
|         |                | 770               |                         | 4.68                                     | 34 01                                                     |                |        |       |                                                                                                                 |                           |    | 4.78               |                  |                    |              |      |                                          |
|         |                |                   | <u> </u>                |                                          |                                                           |                |        |       | _                                                                                                               |                           |    |                    |                  |                    |              |      |                                          |

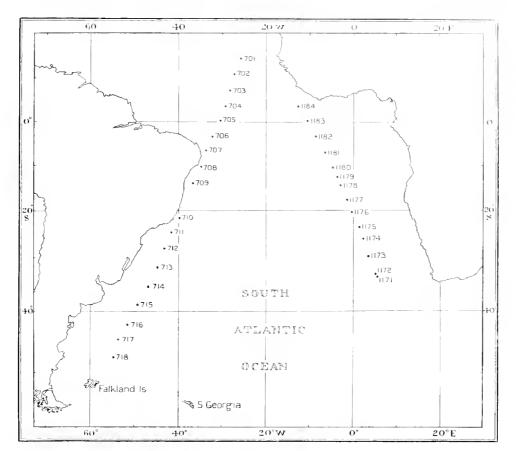
|               |                                                                              |              |                      |                      | WIN                                                              | D                    | SEA                                                              |                   |              | neter<br>Dars)             | Air Ten     | ър. ° С.    |                                                      |
|---------------|------------------------------------------------------------------------------|--------------|----------------------|----------------------|------------------------------------------------------------------|----------------------|------------------------------------------------------------------|-------------------|--------------|----------------------------|-------------|-------------|------------------------------------------------------|
| Station       | Position                                                                     | Date         | Hour                 | Sounding<br>(metres) | Direction                                                        | Force<br>(knots)     | Direction                                                        | Force             | Weather      | Barometer<br>(millibars)   | Dry<br>bulb | Wet<br>bulb | Remarks                                              |
| 1172<br>cont. | 33° 02·4′ S, 05° 15′ E                                                       | 1933<br>7 iv |                      |                      |                                                                  |                      |                                                                  |                   |              |                            |             |             |                                                      |
| 1173          | 29° 39′ S, 03° 37′ E<br>29° 37'1′ S, 03° 35'5′ E<br>29° 37'1′ S, 03° 35'5′ E | 8 iv         | 0839<br>1200<br>1600 | 4880*<br>            | NE<br>NE<br>N×E                                                  | 15<br>11–14<br>10–12 | NE<br>NE<br>N×E                                                  | 3<br>3 conf.<br>3 | o<br>c<br>bc | 1014·1<br>1014·3<br>1010·2 |             | 15.8        | mod. conf. E swell<br>mod. ESE swell<br>mod. E swell |
| 1174          | 25° 59.4′ S, 02° 11.8′ E                                                     | 9 iv         |                      |                      | W                                                                |                      | W                                                                | 2                 | bc           | 1012.2                     | 3210        | 18:0        | low SW×W swell                                       |
| 1174          | 25 594 5, 02 11.8 E                                                          | 9 IV         | 1700                 | 4949*                | w                                                                | 12                   | w                                                                | 3                 | be           | 1012-2                     | 22.0        | 10.9        |                                                      |
| 1175          | 23° 33:4′ S, 01° 14′ E<br>23° 36:4′ S, 01° 12′ E                             | 10 iv        | 1110                 | 5216*                | $\mathbf{S} \times \mathbf{W}$<br>$\mathbf{S} \times \mathbf{E}$ | 14<br>17–20          | $\mathbf{S} \times \mathbf{W}$<br>$\mathbf{S} \times \mathbf{E}$ | 2<br>4 conf.      | bc<br>cqp    | 1019·1<br>1017·5           |             |             | low S×W swell<br>low conf. SW swell                  |
|               |                                                                              |              |                      |                      |                                                                  |                      |                                                                  |                   |              |                            |             |             |                                                      |
| 1176          | 20° 15·3′ S, 00° 15·2′ W                                                     | 11 iv        | 1700                 | 5526*                | SE×E                                                             | 25                   | SE×E                                                             | 5                 | с            | 1017.9                     | 21.6        | 17.8        | heavy conf. SE×E<br>and SW swells                    |

|               |                |                                                                                                                                                      |                              |                                                                                                                                                                                          | HYDRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DLOGICA                                                                                                                                                                                            | L OBS | ERVAT                                                                                                        | IONS                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                    | BIOLO                                             | GICAL OBSER                                                                                      | VATIO            | 18                   |                                                                                                                |
|---------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------|----------------------|----------------------------------------------------------------------------------------------------------------|
| 0             | Age of         |                                                                                                                                                      | y<br>:ter                    |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |       |                                                                                                              | Mg.—at                                                                                                                                           | om m.º                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                    |                                                   |                                                                                                  |                  | ME                   | Remark .                                                                                                       |
| Station       | moon<br>(days) | Depth<br>(metres)                                                                                                                                    | Depth by<br>thermometer      | Temp.<br>°C.                                                                                                                                                                             | S°,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | σt                                                                                                                                                                                                 | pН    | Р                                                                                                            | $\begin{array}{c} \text{Nitrate} \\ + \\ \text{Nitrate} \\ \text{N}_2 \end{array}$                                                               | Nitrite<br>N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Og<br>c.c.<br>htre                                                                                                                                                                 | Gear                                              | Depth<br>(metres)                                                                                | From             | Тө                   | Kemar.                                                                                                         |
| 1172<br>cont. | 12             | 960<br>1440<br>1920<br>2400<br>2880<br>3360<br>3840<br>4320                                                                                          | 1917<br>                     | 3.65<br>2.84<br>2.91<br>2.67<br>2.43<br>2.34<br>2.23<br>1.75                                                                                                                             | 34·38<br>34·65<br>34·86<br>34·86<br>34·88<br>34·88<br>34·88<br>34·88<br>34·84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27·35<br>27·64<br>27·80<br>27·82<br>27·86<br>27·87<br>27·86<br>27·89                                                                                                                               |       |                                                                                                              |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + 47<br>3 · 90<br>4 · 72<br>4 · 88<br>4 · 68<br>4 · 80<br>4 · 81<br>4 · 83                                                                                                         |                                                   |                                                                                                  |                  |                      |                                                                                                                |
| 1173          | 13             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>200<br>290<br>390<br>590<br>780<br>980<br>1460<br>1950<br>2440<br>2930<br>3420<br>3910<br>4390 | <br><br><br><br>2440<br>2926 | 21.04<br>21.11<br>21.11<br>21.11<br>21.11<br>21.11<br>17.63<br>16.01<br>14.63<br>13.22<br>11.81<br>10.08<br>6.37<br>4.07<br>3.55<br>2.96<br>3.03<br>2.67<br>2.44<br>2.33<br>1.83<br>1.15 | 35.62<br>35.62<br>35.62<br>35.62<br>35.62<br>35.62<br>35.62<br>35.44<br>35.40<br>35.20<br>35.10<br>35.20<br>35.10<br>35.20<br>35.10<br>35.20<br>35.10<br>35.20<br>35.10<br>35.20<br>35.10<br>35.20<br>35.44<br>35.40<br>35.20<br>35.44<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40<br>35.40 | 24.97<br>24.95<br>24.95<br>24.95<br>24.95<br>24.95<br>25.72<br>26.07<br>26.29<br>26.45<br>20.66<br>20.82<br>27.11<br>27.40<br>27.60<br>27.80<br>27.87<br>27.88<br>27.87<br>27.87<br>27.87<br>27.86 |       | 0.13<br>0.13<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11                                                 | 0.000<br>0.000<br>0.000<br>0.000<br>2.64<br>3.43<br>7.14<br>17.13<br>28.20<br>-<br>27.49<br>-<br>28.20<br>-<br>31.77<br>-<br>28.20<br>-<br>32.84 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | $\begin{array}{c} 3.7\\ 3.2\\ 2.9\\ 2.7\\ 2.8\\ 3.2\\ 2.9\\ 2.9\\ 2.9\\ 3.6\\ 4.3\\ 4.2\\ 5.5\\ 6.5\\ 10.4\\ 13.2\\ 23.8\\ 29.9\\ 25.8\\ 24.0\\ 27.1\\ 29.4\\ 36.5\\ 50.6\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 4.90 \\ - \\ 4.92 \\ - \\ 4.93 \\ - \\ 5.01 \\ 5.05 \\ 5.09 \\ 4.81 \\ 4.77 \\ 4.56 \\ 4.77 \\ 4.56 \\ 4.77 \\ 4.50 \\ 5.02 \\ 4.92 \\ 4.80 \\ 4.48 \end{array}$ | TYFB<br>N 70 B<br>TYFSV<br><br><br><br><br>N 50 V | 290-0<br>250-0<br>500-250<br>750-500<br>1000-750<br>1500-1000<br>2000-1500<br>3000-2000<br>100-0 | 0853<br>0955<br> | 0943<br>1700<br>1528 | DGP, - I hour                                                                                                  |
| 1174          | 15             | 0<br>390<br>580<br>970<br>1170<br>1360                                                                                                               |                              | 22·41<br>9·20<br>5·84<br>3·35<br>3·35<br>3·23                                                                                                                                            | 35.83<br>34.75<br>34.43<br>34.48<br>34.66<br>34.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24·75<br>26·92<br>27·15<br>27·46<br>27·60<br>27·69                                                                                                                                                 |       |                                                                                                              |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 <sup>.4</sup><br>12 <sup>.3</sup><br>25 <sup>.3</sup><br>23 <sup>.0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                    | N 50 V<br>TYFB<br>N 70 B                          | 100-0<br>310-0                                                                                   | 1740<br>1804     | 1747<br>1854         | GMT<br>DGP                                                                                                     |
|               | 15             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>80<br>150<br>190<br>290<br>390<br>580<br>780<br>970<br>1460<br>1940<br>2430<br>2930<br>3420<br>3910<br>4390 |                              | 22.62<br>22.52<br>22.44<br>22.44<br>21.52<br>20.36<br>17.57<br>16.53<br>14.82<br>12.91<br>11.51<br>9.29<br>5.08<br>4.05<br>3.41<br>3.32<br>2.63<br>2.44<br>2.43<br>2.43<br>2.43<br>2.53  | $\begin{array}{c} 35.97\\ 35.97\\ 35.97\\ 35.99\\ 36.00\\ 35.88\\ 35.72\\ 35.68\\ 35.72\\ 35.68\\ 35.72\\ 35.68\\ 35.72\\ 35.68\\ 35.72\\ 35.68\\ 35.72\\ 35.68\\ 35.72\\ 35.68\\ 35.72\\ 35.68\\ 35.91\\ 34.91\\ 34.91\\ 34.91\\ 34.91\\ 34.91\\ 34.90\\ 34.90\\ 34.90\\ 34.90\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27·87<br>27·89<br>27·89<br>27·89<br>27·88                                                                                                                                                          |       | 0.19<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.23<br>0.30<br>0.30<br>0.30<br>0.30<br>0.30<br>0.30<br>0.30 | 0.00<br>                                                                                                                                         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 3 \cdot 2 \\ 3 \cdot 7 \\ 4 \cdot 7 \\ 5 \cdot 1 \\ 3 \cdot 7 \\ 7 \cdot 2 \\ 3 \cdot 7 \\ 3 \cdot 5 \\ 3 \cdot 5 \\ 3 \cdot 5 \\ 3 \cdot 5 \\ 3 \cdot 5 \\ 3 \cdot 5 \\ 3 \cdot 5 \\ 3 \cdot 5 \\ 3 \cdot 5 \\ 3 \cdot 5 \\ 1 \cdot 7 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 1 \\$ | 4.61<br>4.59<br>4.33<br>4.22<br>3.89<br>3.79<br>4.47<br>4.79<br>5.12<br>5.10<br>4.78                                                                                               | TYFSV<br><br><br><br><br><br><br><br><br>         | 3000-1985<br>2000-1500<br>1500-1000<br>1000-750<br>750-250<br>250-0<br>100-0<br>350-0            | 1115             | 1708<br>1612<br>1830 | Very small trace of<br>nitrite present at<br>So and 100 metres,<br>amount too small<br>to be determined<br>DGP |
| 1176          | 17             | 0<br>200<br>400                                                                                                                                      |                              | 22·82<br>13·32<br>8·56                                                                                                                                                                   | 35.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24·75<br>26·44                                                                                                                                                                                     | -     |                                                                                                              | -                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                    | N 50 V<br>TYFB<br>N 70 B                          | 100-0<br>308-0                                                                                   | 1738<br>1804     | 1745<br>1854         | DGP                                                                                                            |

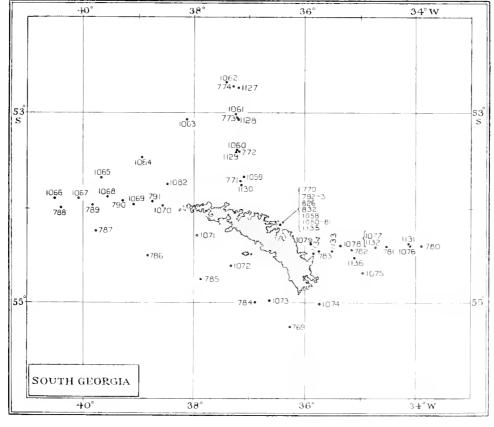
|               |                                                      | _             |                      | Sounding             | WIN                            | Ð                 | SF.A          |       |               | teter<br>bars)             | Air Ten              | np. C       |                                                                      |
|---------------|------------------------------------------------------|---------------|----------------------|----------------------|--------------------------------|-------------------|---------------|-------|---------------|----------------------------|----------------------|-------------|----------------------------------------------------------------------|
| Station       | Position                                             | Date          | Hour                 | Sounding<br>(metres) | Direction                      | Force<br>(knots)  | Direction     | Force | Weather       | Barometer<br>(millibars)   | Dry<br>bulb          | Wet<br>bulb | Remarks                                                              |
| 1176<br>cont. | 20 15·3′ S, 00′ 15·2′ W                              | 1933<br>11 iv |                      |                      |                                |                   |               |       |               |                            |                      |             |                                                                      |
| 1177          | 17° 54.1′ S, 01′ 18.8′ W<br>17° 54.2′ S, 01° 17.9′ W | 12 iv         | 1115<br>1600<br>2000 | 4947*<br>            | ESE<br>ESE<br>ESE              | 18-20<br>20<br>16 | ESE<br>ESE    | 555   | c<br>bc<br>bc | 1016·4<br>1014·1<br>1017·5 | 22.8<br>22.8<br>22.8 | 19.2        | heavy conf. SE swell<br>heavy conf. SE swell<br>heavy conf. SE swell |
| 1178          | 14° 25.9′ S, 02° 51.5′ W                             | 13 iv         | 2000                 | 5278*                | SE 	imes E                     | 21                | $SE \times E$ | 4     | cp            | 1013.6                     | 23.1                 | 20.9        | mod. conf. SE swell                                                  |
| 1179          | 12° 29.8′ S, 03° 41.8′ W                             | 14 iv         | 1135                 | 4199*                | $SE \times E$<br>$SE \times E$ | 18                | SE×E<br>SE×E  | 4     | c             |                            | 23·9<br>24·0         |             | mod. conf. SE×E<br>swell<br>mod. conf. SE×E<br>swell                 |
| 1180          | 10° 30.8′ S, 04° 41.6′ W                             | 15 iv         | 1100                 | 3899*                | SE                             | 16                | SE            | 4     | bc            | 1021.3                     | 25'4                 | 21.2        | mod. SE swell                                                        |

| 1110 1100 | 1 | 1 | 7 | 6— | 1 | 1 | 80 |
|-----------|---|---|---|----|---|---|----|
|-----------|---|---|---|----|---|---|----|

|               |                |                                                                                                                     |                          |                                                                                                                                        | HYDRO                                                                                                                                                                                                                                                                                                                           | LÓGICA                                                                                 | L OBSE | RVATI                                                                                                                                      | <u>ах</u> ъ                                                                          |                                                             |                                                                                                                    |                                                                              | вюцок                                                                               | ACAL OBSER                                                        | VATION | . 5  |                                   |
|---------------|----------------|---------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------|------|-----------------------------------|
|               | Age of         |                                                                                                                     | y<br>ter                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                 |                                                                                        |        |                                                                                                                                            | Mg.—ato                                                                              | om ni,4                                                     | _                                                                                                                  |                                                                              |                                                                                     |                                                                   | 1.1.   | VHI  | D. J. J.                          |
| Station       | moon<br>(days) | Dept <b>h</b><br>(metres)                                                                                           | Depth by<br>thermometer  | Temp.<br>C.                                                                                                                            | S                                                                                                                                                                                                                                                                                                                               | σt                                                                                     | рН     | Р                                                                                                                                          | Nitrate<br>Nitrite<br>Ni                                                             | Nitrato<br>N                                                | 51                                                                                                                 | Og<br>e.e.<br>htre                                                           | Gear                                                                                | Depth<br>(metros)                                                 | Liona  | Чо   | Remails                           |
| 1176<br>cont. | 17             | 600<br>800                                                                                                          |                          | 5°77<br>4°42                                                                                                                           | 34.50<br>34.48                                                                                                                                                                                                                                                                                                                  | 27·20<br>27:35                                                                         |        |                                                                                                                                            |                                                                                      |                                                             | 14°7<br>18•8                                                                                                       | 2·64<br>3·05                                                                 |                                                                                     |                                                                   |        |      |                                   |
|               |                | 1000<br>1200                                                                                                        |                          | 3·79<br>3·56                                                                                                                           | 34°53<br>34°66                                                                                                                                                                                                                                                                                                                  | 27:46<br>27:58                                                                         |        |                                                                                                                                            |                                                                                      |                                                             | 1912<br>2012                                                                                                       | 3°57<br>3'93                                                                 |                                                                                     |                                                                   |        |      |                                   |
| 1177          | 17             | 0<br>10<br>20<br>30<br>40<br>50                                                                                     |                          | 23.33<br>23.33<br>23.33<br>23.33<br>23.05<br>19.11                                                                                     | 36.40<br>36.40<br>36.40<br>36.40<br>36.34<br>35.82                                                                                                                                                                                                                                                                              | 24·92<br>24·92<br>24·92<br>24·92<br>24·96<br>25·64                                     |        | 0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.21                                                                                       | 0.00                                                                                 | 0.00<br>0.00<br>0.00                                        | 2.0<br>2.0<br>3.1<br>3.4<br>10.0<br>3.4                                                                            | 4 <sup>.67</sup><br><br>4 <sup>.67</sup><br><br>4 <sup>.72</sup>             | <b>TYFSV</b>                                                                        | 250-0<br>500-250<br>750-500<br>1000-750<br>1500-1000<br>2000-1500 | 1125   | 2015 |                                   |
|               |                | 60<br>80<br>100<br>150<br>200                                                                                       |                          | 18·43<br>17·73<br>17·10<br>15·12<br>13·62                                                                                              | 35.81<br>35.78<br>35.65<br>35.45<br>35.23                                                                                                                                                                                                                                                                                       | 25·80<br>25·96<br>26·00<br>26·31<br>26·46                                              |        | 0.23<br>0.30<br>0.42<br>0.51<br>0.76                                                                                                       | 0.00<br>1.57<br>3.78<br>7.50<br>15.35                                                | 0.00<br>0.82<br>0.42<br>0.00<br>0.00                        | 3·7<br>3·8<br>3·6<br>4·3<br>5·6                                                                                    | 5 <sup>.27</sup><br>4 <sup>.71</sup><br>4 <sup>.42</sup><br>3 <sup>.96</sup> | N 50 V                                                                              | 100-0                                                             | 1750   | 1800 |                                   |
|               |                | 290<br>390<br>590<br>780<br>980<br>1460                                                                             |                          | 10.22<br>7.93<br>5.23<br>4.22<br>3.78<br>3.49                                                                                          | 34.88<br>34.66<br>34.49<br>34.49<br>34.59<br>34.95                                                                                                                                                                                                                                                                              | 26·84<br>27·04<br>27·26<br>27·37<br>27·51<br>27·82                                     |        | 1.46<br>1.90<br>2.32<br>2.24<br>2.20<br>1.43                                                                                               | 30·70<br>39·98<br>27·13                                                              | 0.00                                                        | 7·1<br>11·3<br>16·2<br>20·5<br>22·0<br>16·5                                                                        | 3.49<br>2.79<br>2.96<br>3.23<br>3.46<br>4.00                                 |                                                                                     |                                                                   | -      |      |                                   |
|               |                | 1950<br>2440<br>2930<br>3420<br>3900<br>4390<br>4680                                                                | 2436<br>—<br>—<br>—<br>— | 3.19<br>2.84<br>2.60<br>2.51<br>2.43<br>2.43<br>2.50                                                                                   | 34.95<br>34.93<br>34.91<br>34.91<br>34.91<br>34.91<br>34.91<br>34.91                                                                                                                                                                                                                                                            | 27.85<br>27.87<br>27.88<br>27.88<br>27.89<br>27.89<br>27.89<br>27.89                   |        | 1·44<br>1·33<br>1·37<br>1·31<br>1·18<br>1·31<br>1·20                                                                                       | $ \begin{array}{c} - \\ 23.92 \\ - \\ 23.92 \\ - \\ 24.99 \\ - \\ - \\ \end{array} $ |                                                             | 17.3<br>21.3<br>23.9<br>24.8<br>21.3<br>24.5<br>25.6                                                               | 4·93<br>5·01<br>4·91<br>4·81<br>4·47<br>4·68<br>4·87                         |                                                                                     |                                                                   |        |      |                                   |
| 1178          | 19             | 0<br>190<br>390<br>580<br>770<br>970<br>1160                                                                        | <br><br>1162             | 24·30<br>11·69<br>8·00<br>5·58<br>4·66<br>4·07<br>3·77                                                                                 | 36.64<br>35.09<br>34.76<br>34.55<br>34.49<br>34.56<br>34.72                                                                                                                                                                                                                                                                     | 24.81<br>26.74<br>27.10<br>27.28<br>27.33<br>27.45<br>27.61                            |        |                                                                                                                                            |                                                                                      |                                                             | 7.0<br>10.5<br>15.0<br>16.4<br>17.6<br>18.6                                                                        |                                                                              | N 50 V<br>TYFB<br>N 70 B                                                            | 100-0<br>} 310-0                                                  | 2020   | 2030 | DGP                               |
| 1179          | 19             | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>100<br>150<br>100<br>150<br>100<br>200<br>390<br>580<br>770<br>970<br>1450 |                          | 25.19<br>25.15<br>25.15<br>25.13<br>24.52<br>20.53<br>16.63<br>14.68<br>11.74<br>10.67<br>9.19<br>8.10<br>6.22<br>4.69<br>4.09<br>3.61 | $36 \cdot 53$<br>$36 \cdot 53$<br>$36 \cdot 53$<br>$36 \cdot 53$<br>$36 \cdot 59$<br>$36 \cdot 46$<br>$36 \cdot 31$<br>$35 \cdot 88$<br>$35 \cdot 61$<br>$35 \cdot 17$<br>$35 \cdot 63$<br>$35 \cdot 17$<br>$35 \cdot 63$<br>$34 \cdot 87$<br>$34 \cdot 75$<br>$34 \cdot 57$<br>$34 \cdot 56$<br>$34 \cdot 58$<br>$34 \cdot 88$ | 25.63<br>26.29<br>26.53<br>26.80<br>26.88<br>27.00<br>27.09<br>27.20<br>27.44<br>27.45 |        | 0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.15<br>0.17<br>0.78<br>1.29<br>2.05<br>2.05<br>2.249<br>2.49<br>2.20<br>2.20<br>1<br>2.43<br>1.05 | 0.29<br>                                                                             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | 3.6<br>3.4<br>3.1<br>3.2<br>3.8<br>3.8<br>5.9<br>7.4<br>7.9<br>8.9<br>11.0<br>10.7<br>14.0<br>17.5<br>19.0<br>16.5 | 4'43<br>                                                                     | TYFSV<br>,,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>,,<br>, | 250-0<br>500-250<br>750-500<br>1500-750<br>2000-1500<br>100-0     | 1605   | 1800 | Small hole in net<br>above bucket |
| 1180          | 20             | 1950<br>2430<br>2920<br>3410<br>3890<br>0<br>40                                                                     | 2917<br>                 | 3.22<br>2.88<br>2.61<br>2.49<br>2.41<br>26.41<br>23.84                                                                                 | 34.92<br>34.92<br>34.91<br>34.91<br>34.91<br>36.33<br>36.41                                                                                                                                                                                                                                                                     | 27·82<br>27·85<br>27·85<br>27·88<br>27·89<br>27·89                                     |        | 1·20<br>1·24<br>1·29<br>1·41<br>0·93<br>0·30<br>0·32                                                                                       | 24.63<br>                                                                            | 0.00                                                        | 17.6<br>21.2<br>22.6<br>24.8<br>3.2<br>8.7                                                                         | 4·93<br>4·98<br>4·96                                                         |                                                                                     |                                                                   |        |      |                                   |
|               |                | 60<br>80<br>100<br>200                                                                                              | -                        | 20·73<br>19·87<br>17·19<br>10·91                                                                                                       | 36·26<br>36·12<br>35·88<br>35·00                                                                                                                                                                                                                                                                                                | 25.54<br>25.67<br>26.15                                                                |        | 0·32<br>0·46<br>0·97<br>2·03                                                                                                               | 0·36<br>7·14<br>14·99                                                                |                                                             | 5.9<br>5.7<br>6.5<br>10.1                                                                                          | 4·73<br>3·21<br>1·42                                                         |                                                                                     |                                                                   |        |      |                                   |


|               |                                                      |               |      | Sandina              | WIN                                                                            | D                | SLA       |       |         | lete <b>r</b><br>bars)   | Air Ter     | np. C.      |               |
|---------------|------------------------------------------------------|---------------|------|----------------------|--------------------------------------------------------------------------------|------------------|-----------|-------|---------|--------------------------|-------------|-------------|---------------|
| Station       | Position                                             | Date          | Hour | Sounding<br>(metres) | Direction                                                                      | Force<br>(knots) | Direction | Force | Weather | Barometer<br>(millilars) | Dry<br>bulb | Wet<br>bulb | Remarks       |
| 1180<br>cont. | 10 - 30 <sup>.</sup> 8′ S, 04 - 41 <sup>.</sup> 6′ W | 1933<br>15 iv |      |                      |                                                                                |                  |           |       |         |                          |             |             |               |
| 1181          | 06 5973′ S, 06 308′ W                                | 16 iv         | 1100 | 4565*                | SE×S                                                                           | 17               | SE × S    | -1    | С       | 1011.8                   | 27.4        | 23.2        | mod. SE swell |
| 1182          | 03' 20'8' S, 08-37'2' W                              | 17 iv         | 1100 | 4312*                | $\mathbf{E} \times \mathbf{S}$ to<br>$\mathbf{S} \mathbf{E} \times \mathbf{S}$ | 8-17             | Conf.     | 3     | с       | 1000.4                   | 27:2        | 25.2        | mod. SE swell |
| 1183          | 00° 07′ N, 10″ 35°7′ W                               | 18 iv         | 1100 | 4294*                | SE×E                                                                           | 10               | SE × E    | 3     | be      | 1009.0                   | 28.6        | 25.0        | mod. SE swell |
| 1184          | 03 46.2′ N, 12° 55.1′ W                              | 19 iv         | 1100 | 4552*                | Calms<br>and<br>Lt airs                                                        | 0-1              |           | o     | ср      | 1011.7                   | 28-8        | 25.7        | mod. SE swell |
|               |                                                      |               |      |                      |                                                                                |                  |           |       |         |                          |             |             |               |

|                      |                |                                                                                       |                         |                                                                                                                    | HYDRO                                                                                                                                  | LOGICA                                                                                                            | l obsi | RVATI                                                                                                | ONS                                                                                                     |                                                              |                                                                                                 |                                                                                              | BIOLO             | GICAL OBSER       | VATIO: | NS . |          |
|----------------------|----------------|---------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------|-------------------|--------|------|----------|
|                      | Age of         |                                                                                       | y<br>ter                |                                                                                                                    |                                                                                                                                        |                                                                                                                   |        |                                                                                                      | Mg.—at                                                                                                  | om m.³                                                       |                                                                                                 |                                                                                              | · · · · · · · · · |                   | T.L.   | ME   |          |
| Station              | moon<br>(days) | Depth<br>(metres)                                                                     | Depth by<br>thermometer | Temp.<br>°C.                                                                                                       | <b>S</b> /                                                                                                                             | σt                                                                                                                | рП     | Р                                                                                                    | Nitrate<br>Nitrite<br>N <sub>2</sub>                                                                    | Nitrite<br>N <sub>2</sub>                                    | Sı                                                                                              | O <sub>2</sub><br>c.c.<br>litre                                                              | Gear              | Depth<br>(metres) | I rom  | То   | Remarks  |
| <b>1180</b><br>cont. | 20             | 390<br>590<br>780<br>980<br>1170                                                      | <br><br><br>1166        | 7·83<br>6·04<br>4·80<br>4·06<br>3·90                                                                               | 34·70<br>34·62<br>34·59<br>34·58<br>34·73                                                                                              | 27·09<br>27·28<br>27·32<br>27·47<br>27·60                                                                         |        | 2·43<br>1·98<br>2·43<br>2·13<br>1·88                                                                 | 37·84<br>37·84<br>37·84<br>34·62<br>32·13                                                               | 0.00                                                         | 11·3<br>12·9<br>15·8<br>17·8<br>17·0                                                            | 1.49<br>1.95<br>2.49<br>3.25<br>3.64                                                         |                   |                   |        |      |          |
| 1181                 | 21             | 0<br>40<br>80<br>100<br>290<br>380<br>570<br>770<br>960<br>1150<br>1340               |                         | 27.41<br>26.19<br>18.12<br>15.10<br>13.51<br>10.62<br>9.49<br>8.50<br>6.04<br>4.57<br>4.12<br>4.06<br>3.99         | 36.11<br>36.17<br>35.74<br>35.51<br>35.35<br>35.01<br>34.88<br>34.79<br>34.57<br>34.49<br>34.58<br>34.75<br>34.88                      | 23:44<br>23:88<br>25:83<br>26:36<br>26:58<br>26:58<br>26:96<br>27:06<br>27:23<br>27:34<br>27:46<br>27:61<br>27:71 |        | 0.10<br>0.11<br>1.08<br>1.46<br>1.48<br>2.01<br>2.17<br>2.53<br>2.32<br>1.81<br>2.20<br>1.20<br>1.43 | 0.00<br>18.92<br>27.13<br>27.84<br>32.48<br>33.91<br>38.91<br>38.91<br>36.41<br>29.98<br>33.20<br>27.84 | 0.00<br>0.22<br>0.22<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 5.1<br>5.0<br>6.6<br>6.9<br>7.4<br>10.3<br>10.8<br>11.0<br>14.0<br>17.1<br>17.8<br>15.3<br>13.8 | 4.26<br>4.49<br>2.78<br>2.35<br>1.75<br>1.60<br>1.38<br>1.81<br>2.94<br>3.23<br>3.62<br>4.33 |                   |                   |        |      |          |
| 1182                 | 22             | 0<br>40<br>60<br>100<br>190<br>290<br>390<br>580<br>780<br>970<br>1170<br>1360        |                         | 28·44<br>27·51<br>17·63<br>15·22<br>14·62<br>13·11<br>10·70<br>8·61<br>5·77<br>4·66<br>4·18<br>4·22<br>4·04        | 35.17<br>35.35<br>35.62<br>35.59<br>35.53<br>35.28<br>35.02<br>34.81<br>34.55<br>34.57<br>34.64<br>34.82<br>34.92                      | 22:41<br>22:84<br>25:86<br>26:39<br>26:49<br>26:60<br>26:87<br>27:06<br>27:25<br>27:39<br>27:51<br>27:65<br>27:74 |        | 0.00<br>0.06<br>1.14<br>1.24<br>1.31<br>1.73<br>1.88<br>2.28<br>2.28<br>2.07<br>2.07<br>1.90<br>1.54 |                                                                                                         | 0.00<br>0.20<br>0.26<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 7.4<br>4.7<br>9.1<br>8.5<br>8.6<br>12.2<br>9.9<br>12.1<br>15.1<br>16.5<br>18.9<br>15.9<br>14.0  | 4.26<br>4.39<br>3.05<br>2.89<br>1.74<br>2.08<br>1.59<br>2.88<br>2.79<br>3.27<br>3.86<br>4.42 |                   |                   |        |      | + I hour |
| 1183                 | 23             | 0.<br>40<br>60<br>80<br>100<br>190<br>290<br>390<br>580<br>780<br>970<br>1170<br>1360 |                         | 28.62<br>25.74<br>22.21<br>19.04<br>16.52<br>13.07<br>9.72<br>7.70<br>6.56<br>4.53<br>4.33<br>4.33<br>4.35<br>4.21 | $\begin{array}{c} 34.57\\ 36.07\\ 36.26\\ 36.09\\ 35.75\\ 35.28\\ 34.91\\ 34.70\\ 34.52\\ 34.56\\ 34.63\\ 34.78\\ 34.92\\ \end{array}$ | 26·22<br>26·61<br>26·95<br>27·11<br>27·12<br>27·40<br>27·48                                                       |        | 0.00<br>0.10<br>0.15<br>0.29<br>0.78<br>1.20<br>2.07<br>2.22<br>2.15<br>1.79<br>2.19<br>1.54<br>1.29 | 0.00<br>2.14<br>5.71<br>11.07<br>18.56<br>33.20<br>33.91<br>35.70<br>34.62<br>35.70<br>32.48<br>27.49   | 0.00<br>0.81<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 3.8<br>3.5<br>3.5<br>4.9<br>4.9<br>7.2<br>10.0<br>11.0<br>15.0<br>15.4<br>16.2<br>15.1<br>11.7  | 4.21<br>4.26<br>3.87<br>3.65<br>3.19<br>1.69<br>2.35<br>2.95<br>3.29<br>3.28<br>3.74<br>4.52 |                   |                   |        |      |          |
| 1184                 | 24             | 0<br>40<br>60<br>80<br>100<br>200<br>390<br>580<br>780<br>970<br>1170<br>1360         |                         | 29.52<br>29.35<br>26.42<br>15.60<br>13.47<br>11.11<br>8.60<br>6.20<br>4.90<br>4.46<br>4.35<br>4.13                 | 34.82<br>35.34<br>35.71<br>35.57<br>35.53<br>35.34<br>35.08<br>34.75<br>34.65<br>34.65<br>34.65<br>34.79<br>34.92                      | 26.83<br>27.01<br>27.27<br>27.36<br>27.48<br>27.60                                                                |        | 0.00<br>0.00<br>1.52<br>1.39<br>1.37<br>2.05<br>2.22<br>1.90<br>2.30<br>1.98<br>1.81<br>1.37         |                                                                                                         | 0.00<br>0.00<br>0.13<br>0.01<br>0.00<br>0.00<br>0.00<br>     | 1.6<br>1.6<br>2.1<br>6.0<br>4.9<br>6.7<br>9.1<br>11.8<br>14.6<br>17.2<br>16.1<br>15.0<br>14.0   | 2.83<br>1.44<br>2.00<br>2.32<br>2.80<br>3.15<br>3.61                                         |                   |                   |        |      |          |

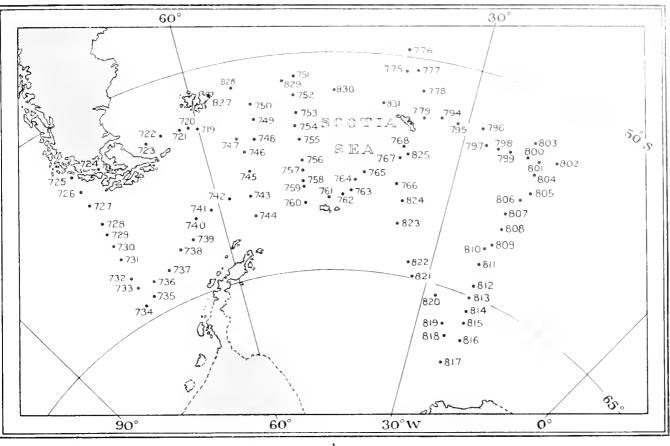

#### SUMMARIZED LIST OF STATIONS

The positions of all stations made by the R.R.S. 'Discovery H' between October 1931 and April 1933 are shown on the charts reproduced in Plates I–IV. The following list indicates on which chart each of the stations is to be found.

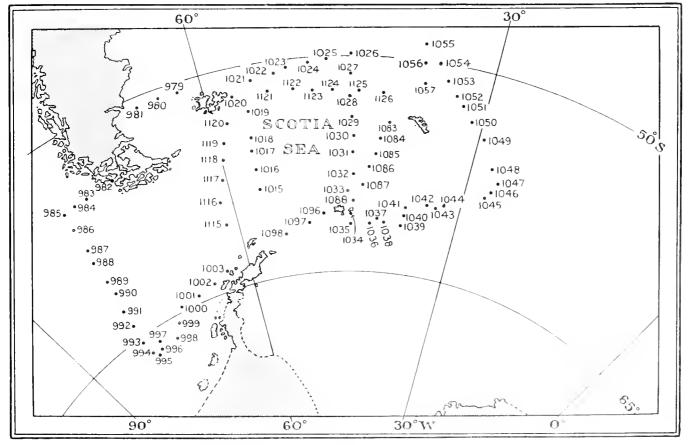
| Station   | Date                 | Place                                                                               | Plate         |
|-----------|----------------------|-------------------------------------------------------------------------------------|---------------|
|           | (b x - 2 xi - 2)     | Cape Verde Islands—Falkland Islands                                                 | I.A.          |
| 701 718   | 16. x. 3. xi. 31     | Falkland Islands—Magellan Strait                                                    | $\Pi \Lambda$ |
| 719 723   | 13. xi.–14. xi. 31   | Magellan Strait                                                                     | H A           |
| 724       | 16. xi. 31           | Western end of Magellan Strait southwards                                           | H A           |
| 725-734   | 17. xi22. xi. 31     | down 75 W                                                                           | ΗA            |
| 735-768   | 22. xi 11. xii. 31   | Scotia Sea                                                                          | I B           |
| 769-774   | 12. xii.–16. xii. 31 | South Georgia                                                                       | НА            |
| 775 779   | 16. xii.–19. xii. 31 | North of South Georgia                                                              |               |
| 780-793   | 19. xii. 31-5. i. 32 | South Georgia                                                                       | H B           |
| 794-825   | 6. i.–28. i. 32      | South Georgia-Weddell Sea-South Georgia                                             | H A           |
| 826       | 8. ii. 32            | South Georgia                                                                       | I B           |
| 827-831   | 17. ii.–20. ii. 32   | Falkland Islands to South Georgia                                                   | H A           |
| 832       | 22. ii. 32           | South Georgia                                                                       | I B           |
| 833-843   | 22. ii4. iii. 32     | South Georgia to Cape Town                                                          | 111           |
| 844 855   | 8. iv20. iv. 32      | Cape Town to ice-edge north of Enderby Land                                         | III           |
| 855-876   | 20. iv10. v. 32      | Ice-edge north of Enderby Land to Fremantle,<br>Western Australia                   | 111           |
| 877-887   | 17. v27. v. 32       | Fremantle, Western Australia to ice-edge north<br>of Wilkes Land                    | III           |
| 887-896   | 27. v4. vi. 32       | Ice-edge north of Wilkes Land to Melbourne,<br>Australia                            | IHI           |
| 897-911   | 14. vi23. vi. 32     | Tasmania to ice-edge north-west of Balleny<br>Islands                               | III           |
| 911-928   | 23. vi. 3. vii. 32   | Ice-edge north-west of Balleny Islands to North<br>Cape, New Zealand                | III           |
| 929-941   | 16. viii20. viii. 32 | New Zealand                                                                         | III (inset)   |
| 942-978   | 31. viii.–2. x. 32   | W-shaped cruise across the Pacific sector                                           | IH            |
| 979 981   | 15. x16. x. 32       | Falkland Islands to Magellan Strait                                                 | H B           |
| 979 982   | 18-21. X. 32         | Magellan Strait                                                                     | ПВ            |
| 983-995   | 23. X. 30. X. 32     | Western exit of Magellan Strait southwards to                                       | H B           |
|           |                      | the ice-edge in Bellingshausen Sea<br>Ice-edge in Bellingshausen Sea to South Shet- | НВ            |
| 995 1003  | 30. x. 2. xi. 32     | land Islands                                                                        |               |
| 1004-1014 | 5. xi 7. xi. 32      | Bransfield Strait                                                                   | HV<br>H B     |
| 1015-1034 | 7. xi 24. xi. 32     | Scotia Sea                                                                          |               |
| 1035-1057 | 24. xi 5. xii. 32    | South Orkney Islands—South Sandwich<br>Islands—South Georgia                        | HB            |
| 1058 1082 | 10. xii. 29. xii. 32 | South Georgia                                                                       | I B           |
| 1083-1088 | 30. xii. 32–1. i. 33 | South Georgia to South Orkney Islands                                               | H B           |
| 1089-1095 | 3. i26 28. i. 33     | South Orkney Islands                                                                | IV (inset)    |
| 1096-1098 | 30. i 1. ii. 33      | South Orkney Islands to South Shetland<br>Islands                                   | HB            |
| 1099-1114 | 1. ii. 6. ii. 33     | Bransfield Strait                                                                   | IV            |
| 1115 1120 | 6. ii. 9. ii. 33     | South Shetland Islands to Falkland Islands                                          | H B           |
| 1121 1126 | 19. ii 22. ii. 33    | Falkland Islands to South Georgia                                                   | H B           |
| 1127 1136 | 23. 11. 1. 111. 33   | South Georgia                                                                       | F B           |
| 1137 1154 | 2. iii 12. iii. 33   | South Georgia to ice-edge near 10 E                                                 | III           |
| 1154-1168 | 12. iii. 4. iv. 33   | Ice-edge near 10 E to Cape Town                                                     | HI            |
| 1168 1170 | 4. iv. 6. iv. 33     | Cape Town westward                                                                  | HI            |
| 1171-1184 | 7. iv.= 19. iv. 33   | Eastern South Atlantic                                                              | I A           |
|           |                      |                                                                                     |               |



А




В


•

.

DISCOVERY REPORTS, VOL. XXI



A



В

•

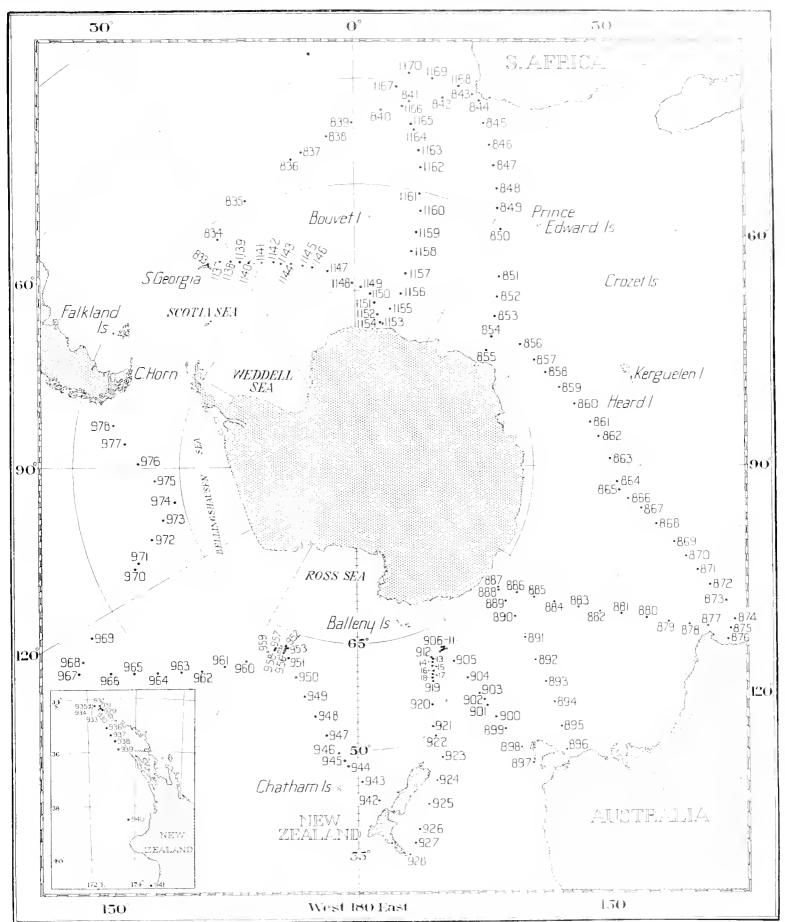
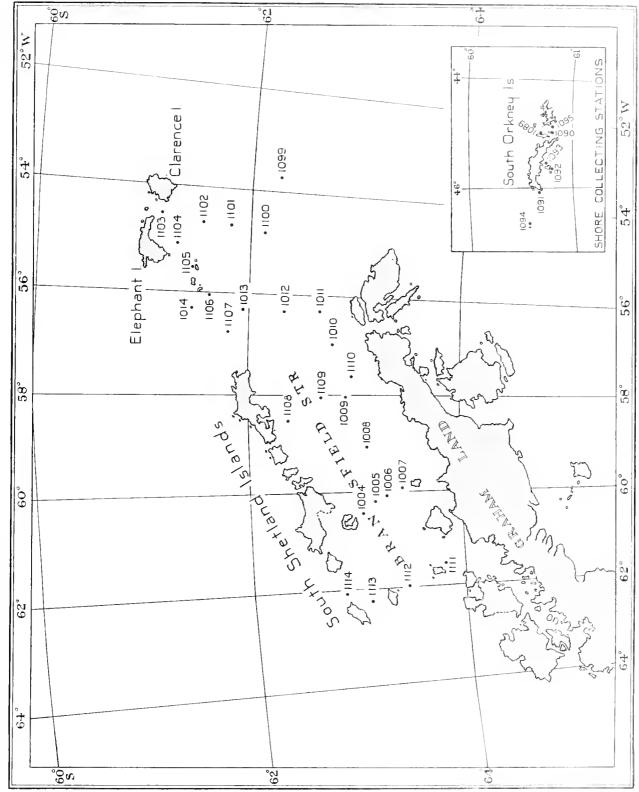






PLATE IV



[Discovery Reports. Vol. XXI, pp. 227–234, Plates V, VI, February 1941]

# A RARE PORPOISE OF THE SOUTH ATLANTIC, PHOCAENA DIOPTRICA (LAHILLE, 1912)

By J. E. HAMILTON, D.Sc.



#### CONTENTS

| External A <sub>I</sub> | opeara | ince | · | • |   |   | • |   |   |        | . page   | 229 |
|-------------------------|--------|------|---|---|---|---|---|---|---|--------|----------|-----|
| Skeleton                |        |      |   |   |   |   |   |   |   |        | •        | 230 |
| Skull                   | •      |      |   |   |   |   |   | • | • | •      | ٠        | 232 |
| References              | •      | •    | • |   |   |   |   |   | • | •      |          | 233 |
| Plates                  |        |      |   |   | • | • |   | • |   | follow | ing page | 234 |

# A RARE PORPOISE OF THE SOUTH ATLANTIC, PHOCAENA DIOPTRICA (LAHILLE, 1912)

#### By J. E. Hamilton, D.Sc.

 $\mathbf{D}_{\text{ECORDS}}$  have been published of three specimens of *Phocaena dioptrica*, all from  $\mathbf{\Lambda}$  the South Atlantic region.

The type was described by Lahille (1912) and was a pregnant and therefore adult female caught near Quilmes on the River Plate. A second female was captured in the Rio Santiago, and the third, a male, was taken at the same place about a year later.

Two more may now be added to the list of known specimens; one, secured by Sir Hubert Wilkins at South Georgia in 1923 during the Quest expedition and the other from the Falkland Islands. The latter was brought to me by a shepherd, G. Butler, who found it on the beach in a practically skeletonized condition. The sex could not be determined and the lower jaw and flippers were missing. The length from the tip of the snout to the notch of the flukes was 185.5 cm. Wilkins's animal was only 135.9 cm.

#### EXTERNAL APPEARANCE

Lahille describes, with photographs, his female and the foetus which it contained. Bruch's paper is illustrated with photographs of both of his animals and there are detailed notes on the Quest specimen to which I have had access by courtesy of Dr Fraser of the British Museum (Natural History).

The colouring of *P. dioptrica* is striking and distinctive. In the adult the back, except for a broad band on each side of the upper jaw, is bright black. On the dorsal keel of the caudal region this colour disappears but reappears on the flukes where it extends over the entire dorsal surface. The remainder of the animal is clear white except that the ventral surface of the flukes has a grey border, and a few dark lines radiate from the caudal notch. A series of fine almost imperceptible grey lines form a faint wavy band extending from the lower jaw to the pectoral fin which is white, with pale grey edges.

A black patch surrounds the eye, and in the type the latter was nearly surrounded by a narrow white line. From this white mark arose the comparison with a spectacled condition which suggested the specific name.

In Bruch's male there seems to have been no spectacle mark and in Wilkins's also, an immature female, it appears to have been absent. My specimen was not in a condition to allow any observations.

The well-grown foetus from Lahille's animal shows colour markings identical with those of the adult except that the dark colour is carried along the dorsal keel of the tail, the mandibulo-pectoral band is very distinct, the white mark over the eye is reduced,

#### DISCOVERY REPORTS

and there is an unpigmented band extending from the blow-hole to the rostrum, a feature absent in the larger animals. There is also a good deal of colour on the ventral surface of the flukes.

Wilkins's specimen is described as having been blue-black above and dirty white below. In it the mandibulo-pectoral band showed clearly, and apparently the tail is as dark or nearly as dark below as above. This animal shows a coloration resembling that of the foctus, and it is reasonable to assert that the pale or uncoloured areas become more extensive with age and that the colours become brighter. It may well be that similar transitions are to be found in other dolphins. This specimen is noted by the collector as "? juv."

The skull of Wilkins's specimen is clearly that of an immature animal. There is a general lack of development and the teeth have scarcely if at all erupted. The Falkland skull is much developed and the teeth stand well up from the gum.

#### SKELETON

There is, unfortunately, no description of the skeleton of any of the three Argentine specimens, so that the following notes are based on Wilkins's immature and my adult specimens. Comparisons have been made with *P. phocaena*, the best known species of the genus, and *P. spinipinnis* as described and figured by Allen (1925).

*Vertebral column.* Cervical vertebrae, 7. Of these the first five are fused and the sixth and seventh are free, whereas in *P. phocaena* only the seventh is free. The whole series is extremely compressed antero-posteriorly and possesses marked bilateral asymmetry.

The neural arch is incomplete in the fifth and seventh vertebrae but complete in the sixth. The neural spine of the atlas is deeply cleft, so that the fifth, sixth and seventh vertebrae are visible in dorsal aspect and it only partly embraces the seventh neural spine. In *P. phocaena* this spine covers the remaining cervical vertebrae to a much greater extent (Plate VI, figs. 1, 2, 3, 4).

Vertebrarterial canals are present in the fifth vertebra, complete on the right side and incomplete on the left.

Dorsal vertebrae, 13. The height of the neural spines increases until the seventh is reached and therefore decreases towards the tail. The first and second spines have sharp ends, whereas those of *P. phocaena* are rounded. The transverse process of the first dorsal vertebra exhibits a slight ridge on the antero-dorsal aspect, and if examination is made of the corresponding region in successive vertebrae this ridge is found to assume a more and more central position until on the twelfth vertebra it forms a well-marked prezygapophysis herein agreeing with *P. phocaena* (but not with *P. spinipinnis*). All the neural spines slope backwards, the greatest inclination being attained by the sixth.

Lumbar vertebrae, 16. The neural spines attain their greatest development at the fifth and sixth lumbar which are about the same size. These spines become more and more erect towards the tail, but there is never the slightest indication of the forward curvature characteristic of *P. phocaena*. In this *P. dioptrica* agrees with *P. spinipinnis*.

The transverse processes have an anterior inclination from the sixth (Plate VI, figs. 7, 8).

Caudal vertebrae, 32. The neural arch ceases to exist after the sixteenth, but the seventeenth has a groove between two small lateral tubercles, a last trace of the arch. The transverse processes are gradually reduced until on the eleventh vertebra there are the merest traces, and even they are absent after this.

| Table I. E | sody m | easuren | ients |
|------------|--------|---------|-------|
|------------|--------|---------|-------|

|                                                                          | Me           | Measurements of the known specimens of <i>P. dioptrica</i><br>in centimetres |            |                   |          |                   |  |  |
|--------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------|------------|-------------------|----------|-------------------|--|--|
|                                                                          | Lahille<br>+ | Bruch                                                                        | Bruch<br>C | Wilkins<br>imm. ‡ | Hamilton | Lahille<br>foetus |  |  |
| 1. Snout to notch of flukes                                              | 186 -        | 186                                                                          | 204        | 135.9             | 185.5    | 48.4              |  |  |
| 2. Shout to spiracle                                                     | 21           |                                                                              |            | 15.24             |          | 7.1               |  |  |
| 3. Spiracle to anterior insertion of dorsal fin                          | n 60         | 60                                                                           | 64         | 49.53             |          | 17.4              |  |  |
| 4. Height of dorsal fin                                                  | 16           | 15                                                                           | 25.5       | 10.16             |          | 2.0               |  |  |
| 5. Length of dorsal fin                                                  | 36           | 36                                                                           | 44.5       | 22.86             |          | 7.1               |  |  |
| 6. Posterior insertion of dorsa<br>fin to caudal notch                   | ıl ⊨ 79      | 79                                                                           | 83         | 48.26             |          | 18.8              |  |  |
| 7. Width of flukes                                                       |              |                                                                              | 47         | 31.75             | 30*      | 8.7               |  |  |
| 8. Anus to caudal notch                                                  | 54.5         | 54.2                                                                         | 59         | 41.9              |          | 14                |  |  |
| <ol><li>Depth of body at anterior in<br/>sertion of dorsal fin</li></ol> | - 43         | 43                                                                           | 35         | 30.48             |          | 9.7               |  |  |
| <ul> <li>Snout to anterior insertion of<br/>flipper</li> </ul>           | of 35        | _                                                                            |            | 25.4              |          | 11.3              |  |  |
|                                                                          |              | Measurements as percentages of total length                                  |            |                   |          |                   |  |  |
|                                                                          | Lahille      | Bruch                                                                        | Bruch      | Wilkins           | Hamilton | Lahille           |  |  |
|                                                                          | ý<br>Ŧ       | Ŧ                                                                            | C ,        | imm. 🤤            |          | foetus            |  |  |
| 1. Snout to notch of flukes                                              | 100          | 100                                                                          | 100        | 100               | 100      | 100               |  |  |
| 2. Snout to spiracle                                                     | 11.50        |                                                                              |            | 11.51             |          | 15                |  |  |
| 3. Spiracle to anterior insertio<br>of dorsal fin                        | n 32·26      | 32.26                                                                        | 31.4       | 36.5              |          | 36                |  |  |
| 4. Height of dorsal fin                                                  | 8.6          | 8.1                                                                          | 12.5       | 7.5               | _        | 6                 |  |  |
| 5. Length of dorsal fin                                                  | 19.35        | 19.35                                                                        | 21.8       | 16.8              |          | 15                |  |  |
| 6. Posterior insertion of dorsa fin to caudal notch                      | al 42.47     | 42.47                                                                        | 40.2       | 35.2              |          | 39                |  |  |
| 7. Width of flukes                                                       |              |                                                                              | 23.0       | 23.4              | 16.2     | 18                |  |  |
| 5 <b>5</b> 7 <b>1</b> 1 7 7 1                                            |              |                                                                              | ò          | Š                 |          | 0                 |  |  |

8. Anus to caudal notch 28.9 30.8 28.9 29.3 29.3 9. Depth of body at anterior in-23.1 23.1 17.2 22.4 20 sertion of dorsal fin 10. Snout to anterior insertion of 18.8 18.7 23 flipper

\* Approximate.

*Ribs.* Thirteen pairs, all remarkable for their stoutness in comparison with *P. phocaeua*. Nine of them are double-headed. The four pairs of floating ribs are progressively and markedly flattened in a manner reminiscent of *Neobalaeua* (Plate V1, figs. 5, 6).

#### DISCOVERY REPORTS

Sternum. This bone is completely fused, an indication of maturity. It is broad anteriorly, having a width of 85.5 mm. but narrows rapidly to 31 mm. and increases again to 35 mm. The posterior margin is abruptly truncated. There are eight pairs of sternal ribs, of which the first three are attached directly to the sternum itself and the fourth to the cartilagenous xiphisternal plate. The remaining four sternal ribs have only a tendinous connexion with the sternum; the last of them is attached to a single-headed rib as in *Lagenorhyuchus*.

Chevron bones, 15. There is, however, a slight doubt as to whether more may not have been present, since loss is easy in more or less decomposed specimens such as mine.

*Teeth.* Many of these are missing from the Falkland skull, there have probably been seventeen on the right and nineteen on the left of the upper jaw, but some of the posterior alveoli are partly obliterated and others may be completely so. In Wilkins's skull the teeth are  $\frac{21}{17}$  on each side. There is a distinct neck at the line of the gum and the tips are rounded and slightly rough. In the adult teeth there are signs of wear and almost every one is curved sharply.

The epiphyses can be easily discerned in the cervical vertebrae and are quite free in the anterior dorsal region. From the tail, fusion has not advanced beyond the posterior side of the nineteenth vertebra.

It is therefore at least possible that this animal could have attained a greater length.

#### SKULL

The general character of the skull is that of the genus, but compared with *P. phocaena* there is a greater width across the preorbital region and the rostrum is more acute. The profile of the supra-occipital rises almost at right angles to the foramen magnum and curves forward rapidly until in the region of the interparietal it forms a triangular and almost flat area on the top of the skull. In the young specimen the rise from the foramen is rather less abrupt, but the flattening at the top is quite obvious. In *P. phocaena* the profile of the supra-occipital rises at about the same angle as that of the immature *P. dioptrica*, but it curves steadily and gently to the interparietal region which is marked by a small bony eminence. This eminence has indeed a flat top, but in the *P. phocaena* it is 9.5 + 4.25 cm. These measurements are made as accurately as possible, having regard to the somewhat vague limits of the areas in question (Plate V, figs. 5, 6).

The descent from the top of the skull to the level of the nasal orifices is very steep in *P. dioptrica*, even in the immature specimen, and in the adult it is practically vertical until the nasal bones are reached, a distance of about 2 cm. The prenasal protruberances of the premaxillae are rather flatter in *P. dioptrica* than in *P. phocaena*.

The dorsal surface of the rostrum of *P. dioptrica* is much more flattened than in *P. phocaena*, so that in the former the rostral parts of the premaxillae are not visible in

lateral view as they are in *P. phocaena*. The upper surface of the rostrum is rather abruptly rounded off in the last two centimetres in *P. dioptrica* (Plate V, figs. 1, 2).

In the ventral aspect the vomer of the adult *P. dioptrica* where applied to the presphenoid has broad lateral and posterior wings with a wide V-shaped depression between them posteriorly. The vomer also takes part in the formation of the posterior edge of the palate in *P. dioptrica* but does not in *P. phocaena* (Plate V, figs. 3, 4). The palato-maxillary suture of the former is deeply concave towards the front instead of

| Table H | . Skull | measurements |
|---------|---------|--------------|
|---------|---------|--------------|

|                                       | Actual. | in cm.   | As percentages of condylobasal length |          |  |
|---------------------------------------|---------|----------|---------------------------------------|----------|--|
|                                       | Wilkins | Hamilton | Wilkins                               | Hamilton |  |
| 1. Condylobasal length                | 24.4    | 28.8     | 100                                   | 100      |  |
| 2. Rostrum, length                    | 9.8     | 12.1     | 40.2                                  | 42       |  |
| 3. Rostrum, width at base             | 6.6     | 8.8      | 27                                    | 30.6     |  |
| 4. Preorbital width                   | 11.1    | 15.2     | 45.2                                  | 53.8     |  |
| 5. Postorbital width                  | 13.1    | 17.0     | 53.7                                  | 59       |  |
| 6. Zygomatic width                    | 13.1    | 16.8     | 53.7                                  | 58.3     |  |
| 7. Parietal width                     | 12.5    | 14.3     | 51.2                                  | 49.7     |  |
| 8. Prenarial width of premaxillae     | 3.8     | 4.2      | ĭ 5·6                                 | 15.6     |  |
| 9. Premaxillar width, at middle point | 2.2     | 3.2      | ý<br>ý                                | 11.1     |  |
| 10. Palate, median length             |         | 16.45    |                                       | 57.1     |  |

The posterior part of the palate of Wilkins's specimen is damaged.

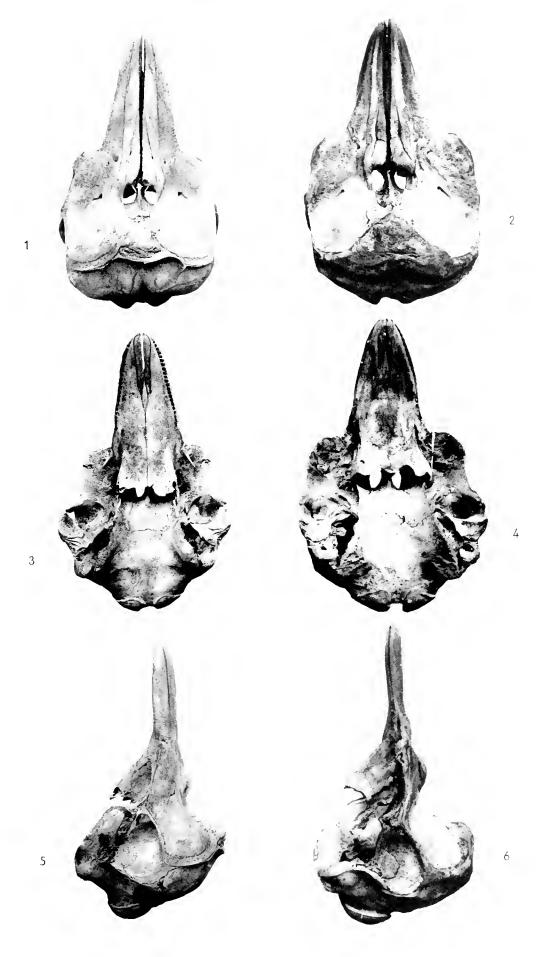
being very shallow as in *P. phocaena*, and in the latter it is much more serrated. The posterior part of the palate is damaged in the immature *P. dioptrica* and the curvature of the maxillo-palatine suture is shallow. In both examples of *P. dioptrica* the maxillary part of the palate is quite definitely convex from side to side and the condition is even more pronounced in the immature specimen. In *P. phocaena* the corresponding part is flattened or even somewhat excavated.

In *P. dioptrica* the zygomatic arches are almost entirely concealed by the frontals, but in *P. phocaena* they are so arched horizontally as to be easily visible from above.

# REFERENCES

ALLEN, G. M., 1925. Burmeister's porpoise (Phocaena spinipinnis). Bull. Mus. Comp. Zool. Harvard, LXVII, no. 5, p. 25.

BRUCH, C., 1916. El macho de Phocaena dioptrica Lah. Physis, Buenos Aires, 11, no. 12.


LAHILLE, F., 1912. Nota pretiminar sobre una neuva espece de marsopa del rio de la Plata. Ann. Mus. Nac., Buenos Aires, XXIII, p. 269.

WILKINS, G. H., 1922. Shackleton-Rowett Expedition, Mammalogical Report. MS. in British Museum (Natural History).

. .

# ΡΙΑΤΕ V

The skull of *P. dioptrica* compared with that of *P. phocaena*. Figs. 1, 3, 5. *P. phocaena*. Dorsal, ventral and lateral views. Figs. 2, 4, 6. *P. dioptrica*. Dorsal, ventral and lateral views.



0\_\_\_\_\_5cm

ž

# PLATE VI

Figs. 1, 3. P. dioptrica. Lateral and dorsal view of cervical vertebrae.

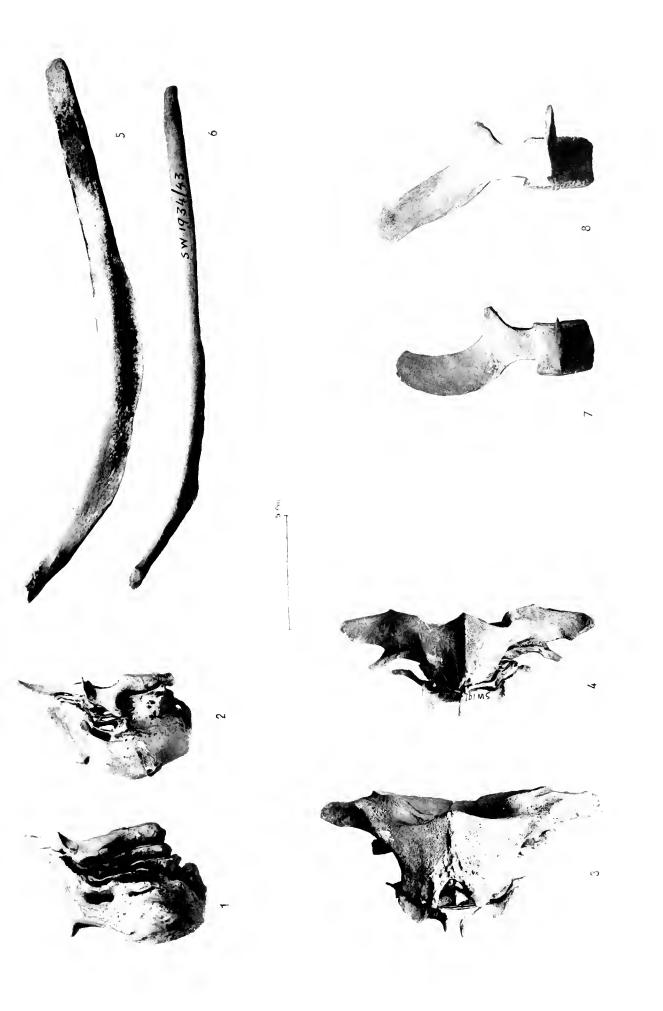

Figs. 2, 4. P. phocaena. Lateral and dorsal view of cervical vertebrae.

Fig. 5. P. dioptrica. Lateral view of rib of last pair.

Fig. 6. P. phocaena. Lateral view of rib of last pair.

Fig. 7. P. phocaena. Lateral view of lumbar vertebra (about XII).

Fig. 8. P. dioptrica. Lateral view of lumbar vertebra (about ? VI).



[Discovery Reports. Vol. XXI, pp. 235–260, Plates VII, VIII, October 1941.]

# THE ECHIURIDAE, SIPUNCULIDAE AND PRIAPULIDAE COLLECTED BY THE SHIPS OF THE DISCOVERY COMMITTEE DURING THE YEARS 1926 TO 1937

Вч

A. C. STEPHEN, D.Sc. The Royal Scottish Museum, Edinburgh . 1

# CONTENTS

| Ι.  | Introduction .       | •      |        |         | •      | •      |       |       | •       | •      | pag    | e 237  |
|-----|----------------------|--------|--------|---------|--------|--------|-------|-------|---------|--------|--------|--------|
| 2.  | Acknowledgements     | з.     |        |         |        | •      |       |       |         | •      |        | 238    |
| 3.  | List of the species  | taker  | ì.     |         |        |        |       | •     |         |        |        | 238    |
| 4.  | List of stations wit | th the | nam    | es of : | specie | es tak | en at | each  |         |        | •      | 238    |
| 5.  | Bipolar distributio  | n.     |        |         |        |        | •     | •     |         |        |        | 243    |
| 6.  | Echiuridae           |        |        |         |        |        |       | •     |         |        |        | 245    |
| 7.  | Sipunculidae:        | A.,    | taroti | o wat   | 0 * 0  |        |       |       |         |        |        | 250    |
|     | (a) Species taken    |        |        |         |        |        |       |       |         |        |        | 250    |
|     | (b) Species taken    | 1n ລວ  | utn A  | aricai  | i wate | ers an | amu   | ne ea | stern . | attant | IC .   | 255    |
| 8.  | Priapulidae .        | •      |        |         | •      | •      | •     | •     | •       |        | •      | 257    |
| 9.  | Literature cited .   |        |        |         |        |        |       |       |         | •      |        | 259    |
| 10. | Plates VII, VIII     |        |        |         |        |        |       | •     | fa      | llowin | ig pag | re 260 |

# THE ECHIURIDAE, SIPUNCULIDAE AND PRIAPULIDAE COLLECTED BY THE SHIPS OF THE DISCOVERY COMMITTEE DURING THE YEARS 1926 TO 1937

By A. C. Stephen, D.Sc. The Royal Scottish Museum, Edinburgh

# INTRODUCTION

The extensive voyages of the Discovery Committee's ships in southern waters during the years 1926-37 have resulted in a considerable and interesting collection of Echiurids, Sipunculids and Priapulids being brought back. In all, sixteen species have been identified in the collections. Of these one is new to science and one is now recognized as being a larval form. The material has come mainly from the Antarctic area, but some of the Sipunculids were secured in the Atlantic on the outward and homeward runs.

The collection possesses several points of interest. Although only one new species is described, several are recorded from the Antarctic, Tristan da Cunha and Ascension for the first time. In other cases the known range of distribution has been considerably extended, thanks to the wide area over which the investigations were conducted.

The Echiurids have supplied the most important records. Until the present collections were made, the known representatives of this group in the Antarctic belonged to three species—namely, *Urechis chilensis* from the coasts of Chile, *Echiurus antarcticus* from South Georgia and *Thalassema verrucosum* from Kerguelen. While the first two species have again been taken in the original localities, there are now three other species to be added. Two of these, *Hamingia arctica* and *Thalassema faex*, are well-known species which have not so far been found in other than northern seas, and the third is *T. antarcticum*, the only new species described.

Most of the species of Sipunculids already recorded from the Antarctic have occurred in the collections, some from new localities. The collections of *Phascolosoma margaritaceum* have shown a considerably greater degree of variation than hitherto described, and the variety *trybomi*, previously recorded only once from the Antarctic, has been taken again. *Physcosoma nigrescens* is now recorded from the islands of Ascension and Tristan da Cunha, as is also *P. scolops* from the first-named island.

The Priapulids are represented by *Priapulus candatus* var. *tuberculato-spinosus* only; this is rather surprising, since both *P. bicaudatus* and *P. horridus* have previously been taken within the area of the investigations and might have been expected to appear in the collections.

The comparative scarcity of many of these animals, or the inability of the standard collecting gear to secure them, is again brought out. In spite of the lengthy period of the Discovery investigations, several species are represented by only a single specimen.

## ACKNOWLEDGEMENTS

I am indebted to the Discovery Committee and to Mr C. C. A. Monro of the British Museum of Natural History for the opportunity of studying the material.

To Professor Dr Sixten Boch I am indebted for the loan of several specimens, named by Théel, for purposes of comparison.

To Mr R. J. Fant, Zoology Department, the University, Edinburgh, I am indebted for the photographs to illustrate this paper.

The collection is deposited in the British Museum (Natural History).

# LIST OF THE SPECIES TAKEN

The following is the list of the species taken:

Echiuridae.

- 1. Echiurus antarcticus Spengel.
- 2. Urechis chilensis Müller.
- 3. Thalassema faex Selenka.
- 4. Thalassema antarcticum sp.nov.
- 5. Hamingia arctica Koren and Danielssen.

Sipunculidae.

(a) Antarctic.

- 6. Phascolosoma anderssoni Théel.
- 7. Phascolosoma margaritaceum Sars.
- 8. Phascolosoma nordenskjöldi Théel.
- 9. Phascolosoma ohlini Théel.
- 10. *Phascolion strombi* (Montagu).
- (b) Eastern Atlantic, etc.
  - 11. Pelagosphaera aloysii Mingazzini. Larval form.
  - 12. Sipunculus nudus Linnaeus.
  - 13. Physcosoma nigrescens Keferstein.
  - 14. Physcosoma scolops Selenka and de Man.
  - 15. Aspidosiphon mülleri Diesing.

#### PRIAPULIDAE.

16. Priapulus candatus Lamarck var. tuberculato-spinosus Baird.

# LIST OF STATIONS WITH THE NAMES OF SPECIES COLLECTED AT EACH

#### R.R.S. 'DISCOVERY'

St. 1. 16. xi. 25. Clarence Bay, Ascension Island,  $7^{\circ}$  55' 15" S, 14° 25' 00" W. Medium rectangular net, 16–27 m., coralline sand and shells.

Physcosoma nigrescens Keferstein; P. scolops Selenka and de Man.

238

St. 2. 17. xi. 25. Clarence Bay, Ascension Island, Catherine's Point and Collyer Point, shore collecting.

Physcosoma nigrescens Keferstein.

- St. 4. 30. i. 26. Tristan da Cunha, 36° 55′ 00″ S, 12° 12′ 00″ W. Large dredge, stones, 40-46 m. *Physcosoma nigrescens* Keferstein.
- St. 6. 1. ii. 26. Tristan da Cunha, 3 miles N 30° E of Settlement. Large dredge, rock, 80-140 m. *Physcosoma nigrescens* Keferstein.

St. 27. 15. iii. 26. West Cumberland Bay, South Georgia, 3.3 miles S 44 E of Jason Light. Large dredge, rock, 110 m.

Phascolosoma margaritaceum Sars; Phascolion strombi (Montagu).

St. 28. 16. iii. 26. West Cumberland Bay, South Georgia, 3.3 miles S 45. W of Jason Light. Conical dredge, 168 m.

Echiurus antarcticus Spengel.

St. 39. 25. iii. 26. East Cumberland Bay, South Georgia, from 8 cables S 81° W of Merton Rock to 1.3 miles N 7° E of Macmahon Rock. Otter trawl, grey mud, 179–235 m.

Phascolosoma ohlini 'Théel.

St. 42. 1. iv. 26. Off the mouth of Cumberland Bay, South Georgia, from 6.3 miles N 89° E of Jason Light to 4 miles N 39° E of Jason Light. Otter trawl, 120–204 m.

Phascolosoma anderssoni Théel; P. ohlini Théel; Phascolion strombi (Montagu).

St. 45. 6. iv. 26. 2.7 miles S 85° E of Jason Light, South Georgia. Grey mud, 238–270 m. *Echinrus antarcticus* Spengel; *Phascolosoma anderssoni* Théel; *P. margaritaceum* Sars.

St. 90. 10. vii. 26. Off Simon's Town, False Bay, South Africa. Basin II.M. Dockyard. 1-2 m. *Physcosoma scolops* Selenka and de Man.

St. 123. 15. xii. 26. Off the mouth of Cumberland Bay, South Georgia. From 4·1 miles N 54° E of Larsen Point to 1·2 miles S 62° W of Merton Rock. Otter trawl, grey mud, 230–250 m. *Phascolosoma anderssoni* Théel; *P. ohlini* Théel.

St. 140. 23. xii. 26. Stromness Harbour to Larsen Point, South Georgia. 54° 02' 00" S, 36° 38' 00" W to 54° 11' 30" S, 36° 29' 00" W. Otter trawl, green mud and stones, 122–136 m. *Echiurus antarcticus* Spengel; *Phascolion strombi* (Montagu).

St. 141. 29. xii. 26. East Cumberland Bay, South Georgia, 200 yards from shore under Mount Duse. Small beam trawl, 17-27 m.

Phascolosoma margaritaceum Sars; Priapulus caudatus Lamarck var. tuberculato-spinosus Baird.

St. 142. 30. xii. 26. East Cumberland Bay, South Georgia. From  $54^{\circ}$  11' 30" S,  $36^{\circ}$  35' 00" W to  $54^{\circ}$  12' 00" S,  $36^{\circ}$  29' 30" W. 88–273 m.

Echiurus antarcticus Spengel.

St. 144. 5. i. 27. Off the mouth of Stromness Harbour, South Georgia. From  $54^{\circ} 04' 00'' \text{ S}$ ,  $36^{\circ} 27' 00'' \text{ W}$  to  $53^{\circ} 58' 00'' \text{ S}$ ,  $36^{\circ} 26' 00'' \text{ W}$ . Coarse silk tow-net touched bottom, green mud and sand, 155-178 m.

Phascolion strombi (Montagu); Priapulus caudatus Lamarck var. tuberculato-spinosus Baird.

St. 148. 9. i. 27. Off Cape Saunders, South Georgia. From  $54^{\circ} 03' 00'' \text{ S}$ , 36'' 39' 00'' W to  $54^{\circ} 05' 00'' \text{ S}$ ,  $36^{\circ} 36' 00'' \text{ W}$ . Grey mud and stones, 132-148 m.

Echiurus antarcticus Spengel.

St. 149. 10. i. 27. Month of East Cumberland Bay, South Georgia, from 1.15 miles N  $76^{1\circ}_{2}$  W to 2.62 miles S 11° W of Merton Rock. Otter trawl, mud, 200–234 m.

Phascolosoma ohlini Théel.

St. 159. 21. i. 27. South Georgia, 53 52' 30" S, 36' 08' 00" W. Large dredge, rock, 160 m. *Phascolosoma ohlini* Théel; *Phascolion strombi* (Montagu).

St. 160. 7. ii. 27. Near Shag Rocks, 53 43' 40" S, 40 57' 00" W. Large dredge, grey mud, stones and rock, 177 m.

Phascolion strombi (Montagu).

St. 167. 20. ii. 27. Off Signy Island, South Orkneys, 60° 50' 30" S, 46° 15' 00" W. Green mud, 244-344 m.

Echiurus antarcticus Spengel; Priapulus caudatus Lamarck var. tuberculato-spinosus Baird.

St. 170. 23. ii. 27. Off Cape Bowles, Clarence Island, 61° 25′ 30″ S, 53° 46′ 00″ W. Large dredge, rock, 342 m.

Phascolion strombi (Montagu).

St. 172. 26. ii. 27. Off Deception Island, South Shetlands, 62° 59' 00" S, 60° 28' 00" W. Large dredge, rock, 525 m.

Thalassema faex Sclenka.

St. 175. 2. iii. 27. Bransfield Strait, South Shetlands,  $63^{\circ}$  17' 20" S,  $59^{\circ}$  48' 15" W. Mud, stones and gravel, 200 m.

Phascolosoma anderssoni Théel; Phascolion strombi (Montagu).

St. 182. 14. iii. 27. Schollaert Channel, Palmer Archipelago,  $64^{\circ}$  21' 00" S,  $62^{\circ}$  58' 00" W. Otter trawl, 278–500 m.

Thalassema antarcticum sp.nov.

St. 187. 18. iii. 27. Neumayer Channel, Palmer Archipelago, 64° 48' 30" S, 63° 31' 30" W. Large dredge, mud, 259 m.

Phascolion strombi (Montagu).

St. 190. 24. iii. 27. Bismarck Strait, Palmer Archipelago, 64° 56' 00" S, 65° 35' 00" W. Rock or stones and mud, 90-130 m.

Echiurus antarcticus Spengel.

St. 195. 30. iii. 27. Admiralty Bay, King George Island, South Shetlands, 62° 07' 00" S, 58° 28' 30" W. Large dredge, mud and stones, 391 m.

Priapulus caudatus Lamarck var. tuberculato-spinosus Baird.

St. 196. 3. iv. 27. Bransfield Strait, South Shetlands,  $62^{\circ}$  17' 30'' S,  $58^{\circ}$  21' 00'' W. Tow-net on bottom, mud, diatom ooze, 720 m.

Phascolosoma ohlini Théel.

St. 279. 10. viii. 27. Off Cape Lopez, French Congo, from 8.5 miles N  $71^{\circ}$  E to 15 miles N  $24^{\circ}$  E of Cape Lopez Light. Net attached to trawl, mud and fine sand, 58-67 m.

Aspidosiphon mülleri Diesing.

St. 283. 14. viii. 27. Off Annobon, Gulf of Guinea, 0.75-1 mile N 12° E of Pyramid Rock, Annobon. Large dredge, 18-30 m.

Physcosoma nigrescens Keferstein; Aspidosiphon mülleri Diesing.

#### R.R.S. 'DISCOVERY II'

St. 1569. 12. iv. 35. Off South-East Africa, 31° 50·3' S, 32° 20·5' E. Young fish trawl, 1200-1300 m.

Larval Sipunculid (Pelagosphaera aloysii Mingazzini).

St. 1645. 17. i. 36. Ross Sea, 77° 43.3' S, 166° 18.2' W. Conical dredge, 475 m. *Phascolosoma anderssoni* Théel; *P. margaritaceum* Sars.

St. 1647. 18. i. 36. Ross Sca, 77° 43.8' S, 171° 31.1' W. Conical dredge, 420 m. *Phascolosoma margaritaceum* Sars.

240

- St. 1651. 22. i. 36. Ross Sea, 77° 04·3' S, 176° 26·1' W. Conical dredge, 594 m. *Phascolosoma anderssoni* Théel; *P. margaritaceum* Sars.
- St. 1653. 23. i. 36. Ross Sea, 74° 55' S, 179 491' E. Conical dredge, 485 m. *Phascolosoma anderssoni* Théel; *P. margaritaceum* Sars.
- St. 1659. 26. i. 36. Ross Sea, 75° 43.9' S, 173° 10.6' E. Conical dredge, 512 m. *Phascolosoma anderssoni* Théel.
- St. 1660. 27. i. 36. Ross Sea, 74° 46·4′ S, 178° 23·4′ E. Otter trawl, 351 m. *Phascolosoma margaritaceum* Sars.
- St. 1873. 13. ii. 36. 61° 20.8' S, 54° 04.2' W. Dredge, 210–180 m. *Priapulus caudatus* Lamarck var. *tuberculato-spinosus* Baird.
- St. 1909. 30. xi. 36. Burdwood Bank, 53 53.2' S, 60° 29.9' W. Conical dredge, 132 m. *Thalassema antarcticum* sp.nov.
- St. 1952. 11. i. 37. Admiralty Bay, King George Island, South Shetlands. Dredge, 367-383 m. *Priapulus caudatus* Lamarck var. *tuberculato-spinosus* Baird.
- St. 1958. 5. ii. 37. South Shetlands, 61° 17.9' S, 52° 50.8' W. Large dredge, 740 m. *Hamingia arctica* Koren and Danielssen.
- St. 1961. 12. ii. 37. South Orkneys, 60° 49.5' S, 45° 27.5' W. Dredge, green mud, 340-360 m. *Priapulus caudatus* Lamarek var. *tuberculato-spinosus* Baird.

#### R.S.S. 'WILLIAM SCORESBY'

St. WS 33. 21. xii. 26. South Georgia,  $54^{\circ} 59' 00''$  S,  $35^{\circ} 24' 00''$  W. Tow-net on bottom, grey mud and stones, 130 m.

Phascolosoma ohlini Théel.

St. WS 62. 19. i. 27. Wilson Harbour, South Georgia, 15-90 m. *Echiurus antarcticus* Spengel.

St. WS 73. 6. iii. 27. Falkland Islands, 51° 01′ 00″ S, 58° 54′ 00″ W. Otter trawl, fine dark sand, 121 m.

Phascolosoma margaritaceum Sars.

St. WS 80. 14. iii. 27. Falkland Islands,  $50^{\circ}$  57' 00" S,  $63^{\circ}$  37' 30" W. Otter trawl, fine dark sand, 152–156 m.

Phascolosoma margaritaceum Sars.

St. WS 84. 24. iii. 27.  $7\frac{1}{2}$  miles S  $9^{\circ}$  W of Sea Lion Island, East Falkland Islands. Otter trawl, coarse sand, shells and stones, 74–75 m.

Phascolosoma margaritaceum Sars.

St WS 85. 25. iii. 27. 8 miles S 66° E of Lively Island, East Falkland Islands,  $52^{\circ}$  09′ 00″ S,  $58^{\circ}$  14′ 00″ W to  $52^{\circ}$  08′ 00″ S,  $58^{\circ}$  09′ 00″ W. Otter trawl, sand and shells, 79 m.

Phascolosoma margaritaceum Sars.

St. WS 89. 7. iv. 27. 9 miles N 21° E of Arenas Point light, Tierra del Fuego. Otter trawl, mud, gravel and stones, 21–23 m.

Phascolosoma margaritaceum Sars.

St. WS 128. 10. vi. 27. West side of Gough Island, inshore, 40° 19' 00" S, 10° 04' 00" W. Large dredge, 90-120 m.

Sipunculus nudus Linnaeus.

St. WS 179. 7. iii. 28. South Georgia, 55° 08′ 00″ S, 35° 20′ 00″ W. Mud, stones and shells, 125 m.

Phascolion strombi (Montagu).

St. WS 212. 30. v. 28. Falkland Islands,  $49^{\circ}$  22' 00" S,  $60^{\circ}$  10' 00" W. Tow-net on bottom, green sand, mud and pebbles, 242-249 m.

Phascolosoma nordenskjöldi Théel.

St. WS 225. 9. vi. 28. Falkland Islands, 50° 20' 00" S, 62° 30' 00" W. Net attached to trawl, green sand, shells and pebbles, 161–162 m.

Phascolosoma nordenskjöldi Théel; P. margaritaceum Sars.

St. WS 236. 6. vii. 28. Falkland Islands,  $45^{\circ}$  55' 00" S, 60° 40' 00" W. Net attached to trawl, dark green sand and mud, 272-300 m.

Phascolosoma nordenskjöldi Théel.

St. WS 237. 7. vii. 28. North of the Falkland Islands,  $45^{\circ}$  00' 00" S, 60° 05' 00" W. Net attached to trawl, coarse brown sand and shells, 150-256 m.

Phascolosoma nordenskjöldi Théel.

St. WS 244. 18. vii. 28. Falkland Islands, 52° 00′ 00″ S, 62° 40′ 00″ W. Net attached to trawl, fine dark sand and mud, 247–253 m.

Phascolosoma anderssoni Théel.

St. WS 246. 19. vii. 28. Falkland Islands,  $52^{\circ} 25' 00''$  S,  $61^{\circ} 00' 00''$  W. Net attached to trawl, coarse green sand and pebbles, 208-267 m.

Phascolosoma nordenskjöldi Théel.

St. WS 248. 20. vii. 28. Falkland Islands, 52° 40′ 00″ S, 58° 30′ 00″ W. Otter trawl, fine green sand, pebbles and shells, 210–242 m.

Phascolosoma margaritaceum Sars.

St. WS 250. 20. vii. 28. Falkland Islands,  $51^{\circ} 45' 00''$  S,  $57^{\circ} 00' 00''$  W. Otter trawl, fine green sand, 251-313 m.

Phascolosoma margaritaceum Sars.

St WS 777. 3. xi. 31. Off Patagonia,  $45^{\circ}$  56' 00" S, 66° 24' 00" W. Otter trawl, green mud and sand, 98–99 m.

Urechis chilensis Müller.

St. WS 783. 5. xii. 31. Falkland Islands, 50° 03' 30" S, 60° 08' 00" W. Conical dredge, rock, mud and sand, 155 m.

Phascolosoma anderssoni Théel.

St WS 788. 13. xii. 31. Off Patagonia,  $45^{\circ}$  05' 00" S,  $65^{\circ}$  00' 00" W. Otter trawl, grey mud and sand, 82-88 m.

Phascolosoma margaritaceum Sars. ? var. hanseni Koren and Danielssen.

St WS 840. 6. xi. 32. Falkland Islands, 53° 52′ 00″ S, 61° 49′ 15″ W. Otter trawl, green-grey sand, 368–463 m.

Phascolosoma ohlini Théel.

#### MARINE BIOLOGICAL STATION

St. MS 27. 29. iv. 25. 1<sup>1</sup> miles SW by W of Merton Rock, East Cumberland Bay, South Georgia. Small dredge, 200 m.

Phascolosoma margaritaceum Sars.

St. MS 68. 2. iii. 26. East Cumberland Bay, South Georgia, 1.7 miles S  $\frac{1}{2}$  E to  $8\frac{1}{2}$  cables SE by E of Sappho Point. Large rectangular net, 220–247 m.

Phascolosoma nordenskjöldi Théel.

St. MS 74. 17. iii. 26. East Cumberland Bay, South Georgia, 1 cable SE by E of Hope Point to 3.1 miles SW of Merton Rock. Small beam trawl, 22-40 m.

Phascolosoma margaritaceum Sars.

242

# ECHIURIDAE, SIPUNCULIDAE AND PRIAPULIDAE

# MISCELLANEOUS COLLECTIONS

18. ii. 27. Port Stanley Harbour, Falkland Islands. Shore collection amongst mussels. *Phascolosoma margaritaceum* Sars. var. *trybomi* Théel.

22. ix. 27. Port Stanley Harbour, Falkland Islands.

Priapulus caudatus Lamarck var. tuberculato-spinosus Baird.

22. xii. 28. South Georgia. Fish trap, stomach of Notothenia rossi, 4-5 m. Priapulus caudatus Lamarck var. tuberculato-spinosus Baird.

1926. Saldanha Bay beach, Cape Province.

Physcosoma scolops Selenka and de Man.

22. ii. 31. Larsen Harbour, South Georgia.

Echiurus antarcticus Spengel. Hand line, stomach of Notothenia rossi, 10-20 m.

# BIPOLAR DISTRIBUTION

The close similarity, amounting in many cases to specific identity, between Arctic and Antarctic species belonging to the Echiuridae, Sipunculidae and Priapulidae is further exemplified in the Discovery collections.

For convenience, the northern limit of the Antarctic and sub-Antarctic fauna may be taken as  $40^{\circ}$  S as has already been done by Fischer (1920, p. 414), with certain exceptions. For example, at Kerguelen and to the south of New Zealand we find some species appearing south of  $40^{\circ}$  S which obviously belong to the warmer waters to the north, and these are not included in the table. In the following list, which includes the species which come strictly under the above heading, localities are added only for those species which have not been mentioned in the text.

The species may be divided into three groups:

(a) Those which are identical with, or regarded as varieties of, Arctic species.

(b) Those which are very closely related to Arctic forms but which are still regarded as specifically distinct.

(c) Those which are not closely related to Arctic species.

Grouped in this way the recorded species are as follows:

ECHIURIDAE.

(a) Thalassema faex Selenka.

- (a) Hamingia arctica Koren and Danielssen.
- (b) Echiurus antarcticus Spengel.
- (c) Urechis chilensis Müller.
- (c) Thalassema verrucosum Studer. Kerguelen. Collin (1901, p. 306), Fischer (1916, p. 17).

(c) Thalassema antarcticum sp.nov.

# SIPUNCULIDAE.

- (a) Phascolosoma margaritaceum Sars.
- (a) Phascolosoma muricaudatum Southern. Bouvet Island. Fischer (1916, p. 15).
- (a) Phascolosoma minutum Keferstein. Falkland Islands. Théel (1911, p. 31).

d XXI

- (a) Phascolosoma eremita Sars var. australe Benham. Commonwealth Bay. Benham (1922, p. 17).
- (a) Phascolosoma intermedium Southern.Commonwealth Bay. Stephen, B.A.N.Z.A.R.E.<sup>1</sup> Rep. (in the Press).
- (a) Phascolion strombi (Montagu).
- (b) Phascolosoma beuhami Stephen. Off Kemp Island; off Adélie Land. Stephen, B.A.N.Z.A.R.E. Rep. (in the Press).
- (c) Phascolosoma anderssoni Théel.
- (c) Phascolosoma charcoti Hérubel. Port Charcot. Hérubel (1908, p. 2).
- (c) Phascolosoma nordenskjöldi Théel.
- (c) Phascolosoma ohlini Théel.
- (c) Phascolosoma pudicum Selenka. Kerguelen. Selenka (1885, p. 11); Stephen, B.A.N.Z.A.R.E. Rep. (in the Press).
- (c) Phascolosoma mawsoni Benham.
   Commonwealth Bay. Benham (1922, p. 13).
   Off Enderby Land: off Kemp Land. Stephen, B.A.N.Z.A.R.E. Rep. (in the Press).
- (c) Phascolion Intense Selenka.
   Southern Indian Ocean. 53° 55′ S, 108° 35′ E; 62° 26′ S, 95° 44′ E. Selenka (1885, p. 16).

Priapulidae.

- (a) Priapulus caudatus Lamarck var. tuberculato-spinosus Baird.
- (a) Priapulus bicaudatus Koren and Danielssen var. australis de Guerne. Patagonia; South Shetlands. De Guerne (1888, p. 13).
- (c) Priapulus horridus Théel.Coast of Uruguay. Théel (1911, p. 24).

Thus of the twenty-three species listed, ten come under category (a) and two under (b); that is, half are either northern species or very closely related to them. While this phenomenon of bipolarity is well known and is seen in other groups of animals, it would appear, when all the records are examined, to be as well shown in these groups as any.

The question of bipolarity has been discussed by several authors and more than one theory put forward to account for the facts. It seems too early as yet to try to theorize, especially in view of the considerable additions made by the B.A.N.Z.A.R.E. and Discovery Expeditions. Also, in spite of the considerable surveys made, several species are represented by only one or two specimens. Intensive work would almost certainly secure many more records which might show a very different picture. One fact, however, seems to stand out and may represent a real condition, namely, that in the Antarctic most of these bipolar species seem to be confined to the South American quadrant.

<sup>1</sup> British, Australian and New Zealand Antarctic Research Expedition.

244

#### ECHIURIDAE

#### Genus Echiurus Pallas

1. Echiurus antarcticus Spengel. Plate VII, fig. 1.

Echiurus antarcticus Spengel, 1912, p. 200.

DISTRIBUTION. South Georgia; Grytviken, Cumberland Bay: Spengel, loc. cit.

OCCURRENCE. South Georgia: St. WS 62. 15–90 m.

Larsen Harbour, 10–20 m. St. 28. 168 m. St. 45. 238–270 m. St. 140. 122–136 m. St. 142. 88–273 m. St. 148. 132–148 m. St. 167. 244–344 m. South Shetlands: St 190. 90–130 m.

Our knowledge of this species rests on the specimens described by Spengel from South Georgia. In the collections there are examples from nine stations, but these, with one exception, are still in close proximity to the original place of capture. The new record comes from St. 190 in the Bismarck Strait, South Shetlands, and this marks a considerable extension in the known range of the species, this station being nearly a thousand miles from South Georgia. It should be stated, however, that this record rests on the presence of a single introvert in the collection, no other portions of the animal being found. This introvert is very similar to that contained in the same tube as the specimen of *Echiurus antarcticus* at St. 167 which, I presume, belonged to this species.

In all, fourteen specimens were taken and these came from nine stations. At seven of these stations only a single specimen was found, but at Wilson Harbour five animals were brought up by the grapnel, and off Signy Island two specimens were secured with net N 4-T.

The species is a fairly deep water one, the range in depth at which it was taken by the Discovery Committee's ships varied from 88 to 344 m., with the single exception of the shallow-water station in Larsen Harbour where the depth was under 20 m.

Spengel, in his description of the species, gives as distinctions between this species and the northern *Echiurus echiurus* Pall.: (1) the arrangement of the papillae on the skin, (2) the shape of the introvert, (3) the number of nephridia.

In *E. echiurus* the small papillae lying between the well-marked rows of large papillae are also arranged in rows. In *E. antarcticus* Spengel states that the small papillae are not arranged in this manner but are scattered. In most of the Discovery specimens the small papillae are not very distinct, but an examination of the animals shows that the small papillae, which at first sight appear to be scattered at random, are really arranged in rows. The rows, however, are very incomplete and gaps of varying width occur.

The second distinction between the two species lies in the form of the introvert. In *E. echiurus* this takes the form of a short stout truncate eylinder, with longitudinal

ribbing on the inner surface. As has already been stated, two introverts were found in the collection, one of which was included in the same tube as a specimen of *E. antarcticus* and the other was in a tube alone. Spengel (1912, p. 200) also found a similar unattached introvert which he assumed belonged to this species. The two introverts in the Discovery collections were very similar. The one from St. 167 measured about 65 mm. in length and about 18 mm. at its broadest part. At the posterior end where it had been attached to the body it was rolled into a small tube for a distance of about 5 mm., thereafter broadening out into a more or less uniform wide flap. At the anterior end it was slightly T-shaped. The colour throughout was cream, except along the edges where it was light brown. The inner surface was practically smooth throughout, except for a slight ribbing along the edges. The introvert found at St. 190 was in all respects similar. It was about 50 mm. in length and about 11 mm. at its greatest breadth.

The third distinction lies in the number of nephridia. In *E. echiurus* there are two pairs and in *E. antarcticus* Spengel suggests that there may be three pairs. The nephridia are evidently easily destroyed and seem to macerate first, and in most cases I was unable to come to a definite decision as to the number of nephridia in the Discovery specimens except in the case of three of the specimens where there seemed definitely to be only two pairs.

Thus, of the three suggested distinctions between the two species given by Spengel only the difference in the shape and structure of the introvert seems to be valid, judging by the Discovery specimens. Spengel had doubts as to whether the two species were really distinct. They are without any doubt very closely related, but the very different structure of the introvert would seem to suggest that in the meantime the two should be kept apart.

In most of the specimens the setae in the two posterior rows were too damaged to make it possible to count them, but fortunately in several of the specimens the rows appeared to be complete, and the counts were as follows: In the five specimens from Larsen Harbour two had seven setae in each row, while the remaining three had seven setae in the inner row and eight in the outer row. In the animals from West Cumberland Bay there were nine setae in the inner row but the outer row was too damaged for counting. In the specimen from East Cumberland Bay there were eight setae in each row. Taking the collection as a whole, there would seem to be, on the average, seven to nine setae in the inner row and seven to eight in the outer row. There would seem to be a good deal of variation, since Spengel (1912, p. 201) gives for his specimens ten setae as the number in the outer row and five in the inner row.

## Genus Urechis Seitz

2. Urechis chilensis (Müller).

Echiurus chilensis Müller, 1852, p. 21. E. farcimen Baird, 1873, p. 97. E. chilensis Müller, Fischer, 1896, p. 6. Urechis chilensis (Müller), Seitz, 1907, p. 323. DISTRIBUTION. Chile: Müller, loc. cit.

Chile: Punta Arenas, Magellan Straits: Baird, Fischer, loc. cit. Chile: coast near Tumbes (I presume this is the town about 20 miles north of Conception), Seitz, loc. cit.

OCCURRENCE. Off Patagonia: St. WS 777. 98-99 m.

One specimen approximately 140 mm. in length was taken off Patagonia. While the species has been recorded on several occasions from the eastern side of the Continent, this is the first record from the Atlantic coast.

The animal had the body wall damaged in places. The papillae on approximately the last 2 cm. of the body were higher than those in the middle. The same was true of the area just behind the introvert. There for a depth of about 1.5 cm. the papillae were higher than in the middle of the body and gave the skin a scaly appearance. There were ten anal bristles, irregularly spaced. The three pairs of segmental organs were all very long and reached to within about 2 cm. of the posterior end of the body. The first two pairs were very much swollen, the largest having a maximum diameter of about 8 mm. The third pair were merely long thin tubes.

# Genus Thalassema Lamarck

The only species belonging to this group so far reported from the Antarctic is *Thalassema verrucosum* described by Studer (1879, p. 124) from Kerguelen. So far as the family itself is concerned, it is mainly a tropical one and few species have been found in the colder seas. The collections of these animals brought back by the 'Discovery' is therefore of special interest, since six individuals belonging to two species hitherto unrecorded in the Antarctic were secured. A further point of interest is that one of these species is a well-known Arctic form. Both the stations at which they were found were from fairly deep water.

# 3. Thalassema faex Selenka. Plate VII, fig. 2.

DISTRIBUTION. Arctic seas off Norway, etc.

OCCURRENCE. South Shetlands: St. 172. 525 m.

Three specimens were secured. Two were complete and the third was fragmentary. All were strongly contracted.

The introvert was small in comparison with the length of the body. In the two complete specimens the bodies were 45 and 20 mm. and the respective introverts 5 and 4 mm. When fully expanded the introvert may be longer. The skin was white with only a few indistinct papillae. The digestive tract was filled with black rock fragments of all sizes from fine grains to fragments about 2 mm. in length. This dark mass showed distinctly through the skin. The longitudinal muscles were continuous. There was only a single pair of nephridia, white in colour, and containing a few large round ova. The specimens seem to correspond closely to the northern species and to be identified with it.

## 4. Thalassema antarcticum sp.nov. Plate VII, figs. 3, 4.

Occurrence. Falkland Islands: St. 1909. 132 m. Palmer Archipelago, Schollaert Channel: St. 182. 278–500 m.

HOLOTYPE. The introvert seemed to be fully expanded and was much longer than the body, which was short and cylindrical. The body measured 27 mm. and the introvert 52 mm. In preservative the introvert was straw-coloured with a darkened thickened edge all round, while the body was grey-brown. In life, however, the colour was more vivid, as the colour note made at the time of capture indicates: 'found embedded in the heart of a dark green clayish rock, only the ribbon-like introvert protruding through a chink in the surface of the rock and waving gently to and fro. Body pale yellow-white, translucent, the viscera showing through. The introvert pale milk-white, translucent, edged with opaque porcelain-white.'

The surface of the introvert was smooth and the thickened edge had indentations at intervals. The tip was not divided but had an indentation similar to those along the sides.

The body was smooth in appearance, and only under magnification were the very small papillae visible. These papillae were very small, elongated, white bodies and were seen only in the middle of the body. The skin at the extremities of the body was somewhat corrugated.

The longitudinal muscles were continuous. There were two yellow ventral setae. These were rectangular in shape in the end portion when seen in full and are only slightly bent at the tip when seen in profile.

There was only one pair of segmental organs and they had no spiral appendages. They were thin white tubes and narrowed at the lower end into a still thinner tube which bore the funnel at its lower end.

Holotype taken at St. 1909. Deposited at the British Museum (Nat. Hist.).

At St. 1909 an introvert similar to that possessed by the type was also taken, and a similar colour note attached to it.

At St. 182 a much larger animal was taken, which seemed to belong to this species. The body measured 67 mm. The introvert measured only 33 mm., this comparative shortness compared with those at St. 1909 being due to contraction. Such a difference due to the state of the animal when preserved has been illustrated by Shipley (1899, pl. xxxiii, figs. 5, 6, p. 338) in the case of *Thalassema neptuni*. The introvert was similar in appearance to the others mentioned. The ventral setae had been lost. The two segmental organs were long thickish tubes, almost three-quarters the length of the body and filled with small ova.

This species differs from others of its genus possessing continuous longitudinal muscles and a single pair of segmental organs, in the lack of papillae on the body and in the long ribbon-like introvert.

#### ECHIURIDAE

#### Genus Hamingia Koren and Danielssen

5. Hamingia arctica Koren and Danielssen. Plate VIII, fig. 1.

DISTRIBUTION. Arctic seas.

OCCURRENCE. St. 1958, South Shetlands. 740 m.

One contracted specimen only was secured. The body measured 28 mm. and the introvert 20 mm. The diameter of the body at the widest part was 13 mm. In alcohol the colour was a uniform dull grey-green, and the body wall in the posterior half was sufficiently thin for the rod-like pellets filling the digestive tract to be seen. In the living state, however, the animal was highly coloured as the colour note made at the time of capture indicates: 'body an extraordinarily vivid grass green, introvert very pale weak-milk white.'

The skin was very tough. The whole animal was contracted and the body was filled with a mass of elongated cylindrical clay pellets of varying size, rounded at the extremities. Owing to the tough nature of the skin and the closely packed mass of clay pellets in the digestive tract, considerable maceration had taken place and the walls of the gut had completely disappeared, as well as some of the other structures. Any comparison of the course and shape of the digestive tract was out of the question.

Two accounts of the appearance and anatomy of this species have been given: the original one by Koren and Danielssen (1881, p. 20) and a later one by Wesenberg-Lund (1934, p. 7).

With regard to the Discovery specimen, the body was smooth as described by Koren and Danielssen, not warty at the extremities as in the specimen described by Wesenberg-Lund. The two prominent cylindrical papillae described by Koren and Danielssen were not seen in the Discovery specimen, as was also the case in Wesenberg-Lund's specimens. Two low hemispherical bulges of the body wall appeared on the anterior ventral side some distance apart on the Discovery specimen about 3 mm. from the base of the introvert. They seemed, however, to be accidental bulges rather than related to the papillae in question. They were at some considerable lateral distance from the openings of the nephridia.

The introvert formed an almost closed tube for most of its length. It was somewhat macerated. The tip was T-shaped and folded. When the tip was unfolded as in the figure, it was seen to be bifid but the arms were comparatively short, much shorter than those figured by Wesenberg-Lund (1934, fig. 1), but this may not be significant since the Antarctic specimen was somewhat macerated and further was more contracted than the specimen figured.

As previously indicated, the digestive tract was completely macerated. The anal trees were also incomplete but seemed quite in keeping with previous descriptions. Two small nephridia were present, opening to the exterior close behind the introvert.

In spite of the great difference in distance between the known areas of distribution, the Arctic and Antarctic specimens seem sufficiently similar for them to be linked under the same species.

# SIPUNCULIDAE

Considerable collections of these animals were secured both in the Antarctic and on the outward and homeward voyages. Since these latter stations are incidental to the Antarctic survey proper and the species secured are tropical ones, the two sets of species are listed separately.

# (a) SPECIES TAKEN IN ANTARCTIC WATERS

# Genus Phascolosoma F. S. Leuckart

```
6. Phascolosoma anderssoni Théel. Plate VIII, fig. 2.
```

Phascolosoma anderssoni Théel, 1911, p. 28.

DISTRIBUTION. South Georgia, Graham Land Region: Théel, loc. cit. 65<sup>+</sup>48' S, 53° 16' E: Stephen, B.A.N.Z.A.R.E. Rep. (in the Press). 66° S, 140° E: Stephen, B.A.N.Z.A.R.E. Rep. (in the Press). 66° 45' S, 62° 03' E: Stephen, B.A.N.Z.A.R.E. Rep. (in the Press). 67° 03' S, 74° 29' E: Stephen, B.A.N.Z.A.R.E. Rep. (in the Press).

OCCURRENCE. Falkland Islands: St. WS 244. 247-253 m.

This species has been recorded by Théel from South Georgia and the Graham Land region. It was also taken by the B.A.N.Z.A.R.E. on the edge of the Antarctic Continent off Adélie Land, etc. The Discovery collections show that it occurs over a much wider area of the Antarctic. In these collections it was not taken in the Graham Land region, although already recorded from there, but was taken at South Georgia. It is now recorded from the Falklands and, more interestingly, from four stations in the Ross Sea.

There is not a great deal to add to Théel's excellent description, but the number of specimens in the Discovery collections enables the description to be elaborated at one or two points. In Théel's specimens the skin was thin, shining and semi-transparent. While this was true of the small specimens in the collection and a number of the large ones taken by the 'Discovery', other large specimens had the skin over the introvert or over the whole body dull and opaque. In some the introvert was stained with brown or black.

Théel has also described the papillae in his specimens as being cylindrical over the body except at the girdle of vesicles, but in all these Discovery specimens as the girdle of vesicles was approached from the anterior end the papillae tended to be more or less swollen at the base and had the general appearance of a narrow cone. In some of the specimens one or two of the papillae were set on isolated vesicles.

#### SIPUNCULIDAE

The portion of the body carrying the girdle of vesicles varied greatly in shape. In some specimens it was of the same diameter as the body but in others was swollen to varying degrees, in the extreme case being almost like a ball, with the viscera showing through the wall. Where this portion was greatly expanded the 'tail' was usually prominent, but in two of the smaller specimens the tail was very inconspicuous and the area with vesicles narrow so that the end of the body looked rounded with the girdle like a cap at the end.

Most of the specimens were not fully expanded but, allowing for this, a comparison of the lengths of the animals is interesting. Most of Théel's specimens from South Georgia were small, but his specimens from Graham Land region he called 'large'; the largest was, however, only 100 mm. in length. While the three specimens taken at the Falklands and South Georgia were small, measuring some 15–45 mm. in length, the specimens from the Ross Sea were almost all large, in most cases greatly exceeding 100 mm. For example, at St. 1645 the largest specimen, fully expanded, measured 250 mm., while two others, not fully expanded, measured 190 and 140 mm. respectively. At Sts. 1651 and 1653 specimens equally large were taken. At St. 1659 the specimens tended to be smaller, being only some 130–140 mm. in length.

The species seems to live in moderately deep water. Théel gave a record from South Georgia of only 75 m. but the Discovery specimens ranged from 120 to 594 m.

# 7. Phascolosoma margaritaceum Sars. Plate VIII, figs. 3, 4.

| Sipunculus margaritaceus Sars (1851, p. 196).                                 |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Phascolosoma capsiforme Baird (1868, p. 83).                                  |  |  |  |  |  |  |  |
| P. antarcticum Michaelsen (1889, p. 3).                                       |  |  |  |  |  |  |  |
| P. fuscum Michaelsen (1889, p. 3).                                            |  |  |  |  |  |  |  |
| P. georgianum Michaelsen (1889, p. 3).                                        |  |  |  |  |  |  |  |
| P. margaritaeeum Sars var. capsiforme Baird, Fischer (1896, p. 3).            |  |  |  |  |  |  |  |
| P. margaritaceum Sars ?, Théel (1911, p. 26).                                 |  |  |  |  |  |  |  |
| P. margaritaceum Sars, Fischer (1920, p. 409).                                |  |  |  |  |  |  |  |
| P. socium Lanchester (1908, p. 1).                                            |  |  |  |  |  |  |  |
| P. antarcticum Hérubel (1908, p. 1).                                          |  |  |  |  |  |  |  |
| P. margaritaceum var. capsiforme Baird, Benham (1922, p. 7).                  |  |  |  |  |  |  |  |
| P. capsiforme Baird, Pratt (1898, p. 16); Shipley (1902, p. 285).             |  |  |  |  |  |  |  |
| DISTRIBUTION. Falkland Islands: Baird, Théel, Pratt.                          |  |  |  |  |  |  |  |
| South Georgia: Michaelsen, Théel.                                             |  |  |  |  |  |  |  |
| Tierra del Fuego: Théel.                                                      |  |  |  |  |  |  |  |
| Graham Region: Théel, Fischer.                                                |  |  |  |  |  |  |  |
| Cape Adare: Shipley.                                                          |  |  |  |  |  |  |  |
| Port Charcot: Hérubel.                                                        |  |  |  |  |  |  |  |
| Commonwealth Bay: Benham.                                                     |  |  |  |  |  |  |  |
| Ross Sea: Lanchester.                                                         |  |  |  |  |  |  |  |
| Occurrence. Off Patagonia: St. WS 89. 21-23 m. One small specimen.            |  |  |  |  |  |  |  |
| St. WS 788. 82-88 m. Five medium-sized and small specimens.                   |  |  |  |  |  |  |  |
| Falkland Islands: St. WS 73. 121 m. Six small and three very small specimens. |  |  |  |  |  |  |  |
| St. WS 80. 152-156 m. One medium-sized specimen.                              |  |  |  |  |  |  |  |
| St. WS 84. 74-75 m. Three medium-sized, two small specimens.                  |  |  |  |  |  |  |  |
| D XXI 3                                                                       |  |  |  |  |  |  |  |
|                                                                               |  |  |  |  |  |  |  |

| Falkland Islands | : St. WS 85. 79 m. One medium-sized specimen.            |
|------------------|----------------------------------------------------------|
|                  | St. WS 225. 161-162 m. One medium-sized specimen.        |
|                  | St. WS 248. 210-242 m. One medium-sized specimen.        |
|                  | St. WS 250. 251-313 m. One medium-sized specimen.        |
| South Georgia:   | St. MS 27. 200 m. Two medium-sized specimens.            |
|                  | St. MS 74. 22–40 m. One small specimen.                  |
|                  | St. 27. 110 m. One very small specimen.                  |
|                  | St. 45. 238-270 m. One medium-sized specimen, one small. |
|                  | St. 141. 17-27 m. Three medium-sized specimens.          |
| Ross Sea:        | St. 1645. 475 m. Four large specimens.                   |
|                  | St. 1647. 420 m. One medium-sized specimen.              |
|                  | St. 1651. 594 m. One small specimen.                     |
|                  | St. 1653. 485 m. One large specimen.                     |
|                  | St. 1660. 351 m. One medium-sized specimen.              |
|                  |                                                          |

This species is one of the commonest and best known Antarctic forms. It appears to be subject to very considerable variation. As the synonymy shows, several varieties and even species have been described which later have been rejected and linked with this species. Variation seems greatest in the very large and, presumably, old individuals and seems to follow the same general trend in both hemispheres. Varieties *hanseni* and *trybomi*, previously described from Arctic waters, have now been taken in the Antarctic and, conversely, the variety *antarcticum*, described from South Georgia, has been recorded by Sato (1939, p. 409) from Japanese waters. The large animals from Sts. 1647, 1653 and 1660 from the Ross Sea do not, at first sight, suggest this species. On the balance of characters, however, it has been considered right to regard them as old individuals of this species, possibly considerably affected by the nature of the habitat.

The specimens from the Ross Sea were mostly very large animals and showed a good deal of variation in the thickness and appearance of the body wall. The animals from Sts. 1647 and 1660 were most alike in appearance. That from St. 1660 was contracted into a short cylinder and the body measured 24 mm. The body wall was thin and transparent so that the closely coiled gut showed through. The specimen from St. 1647 was expanded and measured 125 mm. overall and had the usual pearl grey colour.

The specimen from St. 1653 was peculiar in appearance. It was contracted and measured 150 mm, overall. The anterior part of the body was yellow in colour and very firm in texture. The rest of the animal was dirty grey in colour and the skin was very thin so that the gut was quite visible. The animal had the appearance of having been living in a tube or in very dense clay soil. The animal from St. 1651 was of medium size. As in the preceding specimen, it was yellow anteriorly but the body was firm and uniform throughout. The four specimens from St. 1645 were dissimilar in appearance. Two were pearly grey in appearance and resembled those from St. 1647. The two other animals were dirty grey in colour with a good deal of black deposit on them. The skin was very rough and corky in appearance. All specimens were damaged so that measurements could not be given, but they were all very large. Although so very different in appearance, the specimens scemed all to belong to this species. In most specimens the typical criss-cross markings of the skin were seen. The chief difference noted was that

#### SIPUNCULIDAE

the gut seemed much larger in proportion. In most specimens the body was filled with a large mass of gut filled with fine mud, and the retractors occupied only a very small area in the anterior third, very similar to the proportions of the variety *trybomi*.

? var. hanseni Koren and Danielssen.

The specimens from St. WS 788 were four in number and ranged from 29 to 64 mm. in length, overall. They seemed to approach this variety. The smallest two specimens were fairly typical, but even in them the skin at the two extremities of the body was assuming a corky appearance, and in the second smallest specimen just below the introvert was a small area where the skin was becoming corky in appearance and pitted with pores, like little rounded pits. In the largest specimen a considerable area at each end of the body had a rough corky appearance, and the whole intermediate area of the body had these small pits scattered over it. Internally, however, the specimens differed from the variety in that the bases of the retractors were not divided.

# var. trybomi Théel.

Phascolosoma trybomi Théel, 1905, p. 69.

P. margaritaceum Sars var. trybomi Théel, Fischer, 1924, p. 69; 1925, p. 19.

P. trybomi Théel, Stephen, 1936, p. 166.

P. margaritaceum Sars var. trybomi Théel, Stephen, B.A.N.Z.A.R.E. Rep. (in the Press).

DISTRIBUTION. Arctic seas: Théel, loc. cit.; Stephen, loc. cit.

Antarctic, off Sabrina Land, 64° 28' S, 114° 59' E: Stephen, loc. cit.

Occurrence. Falkland Islands, Port Stanley Harbour, on the shore amongst mussels. 18. ii. 27. One specimen, about 115 mm. in length, was secured.

It was undamaged externally, but was somewhat macerated internally. The gut was in part destroyed so that the coils could not be counted. The specimen corresponded closely to that figured by Théel and also with a specimen in my possession taken in the northern North Sea, but with a small difference in colour. The animal from the Falkland Islands was dirty grey both externally and internally and lacked the mother-ofpearl lustre on the inside of the body well seen in the northern specimens. The Scottish specimen was rose pink both externally and internally. This form has only been recorded on a very few occasions in northern waters, usually from fairly deep water. It is interesting to find it in the Antarctic, although it has already been recorded in the collections made by the B.A.N.Z.A.R.E.

# 8. Phascolosoma nordenskjöldi Théel.

Phascolosoma nordenskjöldi Théel, 1911, p. 30.

DISTRIBUTION. Falkland Islands and South Georgia: Théel, loc. cit.

Kerguelen: Stephen, B.A.N.Z.A.R.E. Rep. (in the Press).

OCCURRENCE. South Georgia: St. MS 68. 220-247 m. 'From root of giant sponge.'

Falkland Islands: St. WS 212. 242–249 m.

St. WS 225. 161–162 m. St. WS 236. 272–300 m. St. WS 237. 150–256 m. St. WS 246. 208–267 m.

This is a small species. The largest specimen described by Théel measured only 9 mm. in length, and the Discovery specimens were mostly about this size. It was first taken at South Georgia and the Falkland Islands and the Discovery specimens came from much the same area, namely, from South Georgia and from an extensive patch lying to the north of the Falkland Islands along the edge of the continental shelf. It has also been found at Kerguelen, having been taken there by the B.A.N.Z.A.R.E. in 1930.

The depths in which it was taken were also considerably in excess of these previously recorded. At the Falkland Islands it was taken in 12 m., at South Georgia in depths ranging from 64 to 195 m., and at Kerguelen in 91 m. The range in depth of the Discovery specimens was 150–300 m.

One of the animals from St. WS 212 had the body full of ova.

| <b>Q</b> . | Phascolosoma    | oblini | Théel  |
|------------|-----------------|--------|--------|
| Q.         | Fliascolosollia | omm    | T HCCL |

Phascolosoma ohlini Théel, 1911, p. 29. P. ohlini Théel, Fischer, 1920, p. 413.

DISTRIBUTION. South Georgia: Théel, loc. cit. North of Astrolabe Island, 63° 9′ S, 58° 17′ W: Théel, loc. cit. Kaiser Wilhelm Land, 66° 2′ S, 89° 38′ E: Fischer, loc. cit.
OCCURRENCE. Falkland Islands: St. WS 840. 368–463 m. One specimen 'from large rock'. South Georgia: St. WS 33. 130 m. One specimen. St. 39. 179–235 m. Three very large specimens, one small. St. 42. 120–204 m. Two medium-sized specimens. St. 123. 230–250 m. One medium-sized specimen, six small. St. 149. 200–234 m. Five small to medium specimens. St. 159. 160 m. One very small specimen.

of ova.

These animals agreed well with Théel's description and no comment need be made except that the tentacles may be more numerous than the original description stated. The species is evidently a fairly widespread one from south of the Falklands to the South Shetlands. The Discovery stations are from considerably deeper water than the previous records.

## Genus Phascolion Théel

#### 10. Phascolion strombi (Mont.)

Phascolion strombi (Mont.) ?, Théel, 1911, p. 31.

DISTRIBUTION. This species is widely distributed in Arctic and northern waters. In the Antarctic it has been recorded from one station, namely, Shag Rocks Bank (between South Georgia and the Falkland Islands), 53° 34′ S, 43° 23′ W. 160 m. Théel, loc. eit.

OCCURRENCF. South Georgia: St. WS 179. 125 m.

St. 27. 110 m. St. 42. 120-204 m. St. 140. 122-136 m. St. 144. 155-178 m. St. 150. 160 m. Near Shag Rocks: St. 160, 177 m. South Shetlands: St. 175, 200 m. St. 187, 259 m. Clarence Island: St. 170, 342 m.

Previously this species was known from only one station in the Antarctic at Shag Rocks Bank as recorded by Théel. In his record he put a question mark after the identification but stated that he could not differentiate his animals from northern ones. Fischer (1920, p. 417) quotes the record without the query, being satisfied that the southern animals were the same as the northern ones. The present specimens agreed with Théel's figures and description, and are regarded as belonging to the species.

Although previously recorded from only one locality it has a much wider area of distribution, since the Discovery specimens came from over a wide area from South Georgia to the South Shetlands. At few points was it common, two or three specimens at each station being the usual catch.

The species usually lives in old shells of gastropods or *Deutalium*, but is often found living free. In these Antarctic collections it was found living free and in shells in about equal proportions, as the following table shows:

St. 27. One large and one small specimen, both living in the same gastropod shell.

St. 42. One large and one small specimen, living in the same gastropod shell.

- St 140. Two specimens, living free.
- St. 144. Three specimens, living free.
- St. 159. Eleven specimens, living free.
- St. 160. Three specimens in gastropod shells.
- St. 170. One specimen in gastropod shell.
- St. 175. Three specimens in gastropod shells, two living free.
- St. 187. One specimen, living free.
- St. 199. One specimen, living free.

# (b) SPECIES TAKEN IN SOUTH AFRICAN WATERS AND IN THE EASTERN ATLANTIC

11. Larval sipuncutid.

Occurrence. Off South-East Africa: St. 1569. 31 50.3' S, 32 20.5' E. 12. iv. 35. 1200–300 m. T.Y.F.B.

Only one specimen, about 5 mm. in diameter, was taken. There were numerous very small indistinct papillae scattered over the skin, and there were thirty-six radiating longitudinal muscle bands. On a dark field the animal, preserved in formol, had a bluish appearance and the skin appeared iridescent.

This form was originally considered to be a distinct, but pelagic aberrant, species of sipunculid and was given the name of *Pelagosphaera aloysii* by Mingazzini (1905, p. 713). More recent investigations by Dawydoff (1930, p. 88) have shown that it is an unidentified larva of some sipunculid. Dawydoff was fortunate in securing over thirty live specimens and was able to follow the metamorphosis until the animals had ceased to be pelagic and were developing an elongated body and an opaque skin.

These latter specimens were taken off the coast of Annam. Other localities in which it has been found are the southern Pacific (between Norfolk Island and new Caledonia) the Gulf of Senegal and the seas around Java and the Moluceas.

#### Genus Sipunculus Linnaeus

12. Sipunculus nudus L.

- DISTRIBUTION. This species is widely distributed in the oceans of the world, being recorded from many parts of the Atlantie, Indian and Pacific oceans.
- OCCURRENCE. St. WS 128, west side Gough Island, inshore, 40° 19' 00" S, 10° 04' 00" W. 10. iv. 27. 90–120 m.

Only one specimen was secured. This consisted of the lustrous, translucent and highly iridescent anterior portion of a medium-sized animal. The internal organs were much damaged. There were thirty-two longitudinal muscle bands. The ventral retractors were attached to the second, third and fourth longitudinal muscle bands, while the dorsal retractors were attached to the ninth, tenth and eleventh muscle bands.

#### Genus Physcosoma Selenka

13. Physcosoma nigrescens Keferstein.

DISTRIBUTION. A widely distributed species occurring in the Indian Ocean, Pacific Ocean and in the Atlantic. In this latter area it has been recorded from the east coast of South America and from the west coast of Africa as far north as the Gulf of Guinea. In the Gulf of Guinea it has been recorded from the Gold Coast, Ilha das Rolas bei Ilha de São Thomé and the Isle of Annobon. It is now recorded for the first time from Ascension and Tristan da Cunha.

| Occurrence. | Ascension: Clarence Bay:     | St. 1. 16–27 m.                                   |
|-------------|------------------------------|---------------------------------------------------|
|             |                              | St. 2. Shore collection 'found in Lithothamnion'. |
|             | Tristan da Cunha:            | St. 4. 40–46 m.                                   |
|             |                              | St. 6. 80–140 m.                                  |
|             | Gulf of Guinea: Off Annobon. | St. 283. 18–30 m.                                 |

At St. 1 the animals were mostly large, the largest, which was not fully expanded, measuring about 55 mm. overall. All were distinctly coloured. In each animal the dorsal side of the introvert was red-brown. In some, single red-brown papillae were scattered over the body showing up in marked contrast to the whitish papillae covering the body. In other specimens the red-brown papillae were gathered into small groups giving the animals the appearance of being spotted. Twenty-five specimens were taken.

At St. 2 the ten specimens were considerably smaller than those at St. 1, the largest measuring only some 20 mm. overall. These animals had also red-brown papillae scattered over the body.

At St. 4 some fifty specimens were taken. All were comparatively small, the largest which was more or less fully expanded, measuring only some 30 mm. overall. At this station the animals were all a dirty grey-white and showed no colouring at all.

At St. 6, from fairly deep water, only one small specimen was secured. It also showed no pigmentation.

#### PRIAPULIDAE

At St. 283 seven small, three intermediate and four large specimens were taken. The large animals were fully expanded, the largest measuring about 125 mm. overall. Some of them resembled those taken at Ascension in having red-brown papillae scattered over the body.

14. Physcosoma scolops Selenka and de Man.

DISTRIBUTION. A cosmopolitan species occurring in many parts of the Indian Ocean, Pacific Ocean and on the southern and western coasts of Africa. Along the coasts of Natal and Cape Province it is one of the commonest intertidal sipunculids, and has been secured at a number of places along these coasts during the recent surveys carried out by the Zoology Department of the University of Cape Town. On the west coast of Africa it has been recorded as far north as the Gulf of Guinea. In this latter area it has been recorded from the Gold Coast, Ilha das Rolas bei Ilha de São Thomé, the Isle of Annobon and the Belgian Congo. The Discovery collections have not greatly extended the known range of distribution on the African coast, but the species is recorded for the first time from Ascension.

OCCURRENCE. Cape Province: Saldanha Bay beach. 1926. False Bay off Simon's Town: St. 90. 1-2 m.

Ascension: Clarence Bay: St. 1. 16–27 m.

The specimens were quite typical and need no description. The species was not found in any abundance, the numbers at the stations being two, two and one respectively.

# Genus Aspidosiphon Diesing

## 15. Aspidosiphon mülleri Diesing.

DISTRIBUTION. This species occurs along the Atlantic coasts of Norway, Britain and France. It is also found in the northern North Sea and in the Mediterranean. On the west coast of Africa it is recorded south to the French Congo. On the east coast of Africa it is known from Suez and Jibouti. Sluiter has also recorded it from the Malay region. In the Gulf of Guinea and neighbourhood it is recorded from Dahomey, southern Nigeria and Kinsembo.

OCCURRENCE. Gulf of Guinea: Off Annobon: St. 283. 18-30 m.

French Congo: Off Cape Lopez: St. 279. 58-67 m.

At St. 283 thirteen specimens were taken, the largest being about 20 mm. overall, while the rest were small.

At St. 279 four small specimens were secured.

# PRIAPULIDAE

The family is a small one, only three species being recognized. Of these, two occur in northern seas, and three in southern and Antarctic waters. Of these latter, two are now considered to be only varieties of the northern species. The southern records are as follows:

Priapulus horridus Théel (1911, p. 24).

Uruguay: 33° S, 51° 10' W. 80 m.

Priapulus bicaudatus Danielssen var. *australis* de Guerne. De Guerne (1888, p. 13). Patagonia: 44–47' S, 65–56' W. 90 m.

South Shetlands: Sound of Navarin. 200 m.

Priapulus caudatus Lamarek var. tuberculato-spinosus Baird.

From many parts of the Antarctic.

Only the last named appeared in the Discovery collections. In addition, Benham (1916) reports that a single specimen was found in the collections made by F.I.S. 'Endeavour', but there was no note of the locality in which it was taken. Although already recorded from the Antarctic seas, no specimen had been found so far north in the southern hemisphere, since the 'Endeavour' did not enter the Antarctic.

#### Genus Priapulus Lamarck

#### 16. Priapulus caudatus Lamarck var. tuberculato-spinosus Baird.

P. tuberculato-spinosus Baird, 1868, p. 106; de Guerne, 1888, p. 9.

P. humanus Lamarck var. antarcticus Michaelsen, 1889, p. 10.

P. caudatus Lamarck var. antarcticus Michaelsen, Fischer, 1896, p. 10.

P. humanus (Lamarck) var. antarcticus Michaelsen, Collin, 1901, p. 299.

P. caudatus Lamarck, Shipley, 1902, p. 284.

P. caudatus Lamarek forma tuberculato-spinosus Baird, Théel, 1911, p. 18.

P. caudatus Lamarck var. antarcticus Michaelsen, Fischer, 1920, p. 419.

P. caudatus var. tuberculato-spinosus Baird, Benham, 1922, p. 6.

P. caudatus Benham, 1932, p. 890.

DISTRIBUTION. Commonwealth Bay, Macquarie Island: Benham (1922).

Falkland Islands: Baird; de Guerne; Théel.

Graham Land Region: Théel.

Island of Navarin, Puerto Toro: Fischer; Michaelsen.

Kerguelen: Collin; Fischer.

New Zealand: Benham (1932).

- Orange Bay: de Guerne.
- Patagonia: Théel.

South Georgia: Fischer; Michaelsen; Théel.

Straits of Magellan: de Guerne.

Tierra del Fuego: Fischer.

Victoria Land, Cape Adare: Shipley.

OCCURRENCE. South Georgia. St. 141. 17–27 m. Two specimens. St. 144. 155–178 m. One specimen. Fish trap, stomach of *Notothenia rossi.* 4–5 m. 22. xii. 28. One specimen. Falkland Islands: Port Stanley, shore collection. One specimen.

South Orkneys: St. 167. 244-344 m. Two specimens.

St. 1961. 340-360 m. Three specimens.

South Shetlands: St. 195. 391 m. One specimen.

St. 1873. 210–180 m. One specimen.

St. 1952. 367-383 m. One specimen.

This species has been very fully described by Théel (1911, p. 18), and there is nothing to add to his description. The varietal name of the species has been subject

258

#### PRIAPULIDAE

to a good deal of alteration, some authors preferring to use Michaelsen's name of *antarcticus*, while others have preferred Baird's name of *tuberculato-spinosus*. While the atter is clumsy, I see no reason why Baird's name should not stand, as it is now recognized that Baird's specimen belongs to this variety, in spite of trivial discrepancies in his description.

This form is widely distributed in the Antarctic seas. It was taken at nine of the Discovery stations, thirteen specimens in all being secured. Of the nine stations only four were in areas from which the species had been previously recorded, and the remaining five, namely, the South Orkneys, South Shetlands, and the area lying between these two groups of islands, are new localities.

The range in depth of the stations was considerable. At Port Stanley it was taken on the shore; at South Georgia from 4 to 178 m., while in the South Shetlands the records all come from depths ranging from 210 to 391 m. The specimens varied considerably in size, but in most cases they were too contorted to allow of any accurate measurements being made. The smallest, only some 5 mm. overall and taken in the beginning of January, came from St. 144, South Georgia. The next smallest specimen, taken in February, was about 11 mm. in length, and came from St. 167, off Signy Island, South Orkneys. The other specimens in order of size were considerably larger and this would suggest that breeding takes place in late summer.

The largest specimens came from the South Shetlands, the body and introvert being between 90 and 100 mm. overall.

As it is usual to see these animals with the natural colours lost in the course of preservation, the following notes made of the colours for five of the specimens when collected may be of interest.

St. 1873. 'Pale in colour, except the introvert, which is brown.'

St. 1952. 'Colour generally a pale dirty yellow-brown; caudal vesicles a dull, but deeper, yellow-brown: teeth dark brown.'

St. 1961. (a) 'Colour throughout a pale dull dirty cream.' (b) 'Colour throughout a pale dirty cream.' (c) 'Colour pale cream.'

In the two last specimens the full colour may not have been developed, since the specimens were comparatively small and may have been fairly young.

# LITERATURE CITED

- BAIRD, W., 1868. Monograph of the species of worms belonging to the subclass Gephyrea. Proc. Zool. Soc. Lond.
- 1873. Description of some new species of Annelida and Gephyrea in the collection of the British Museum. J. Linn. Soc. (Zool.), XI.
- BENHAM, W. B., 1916. Report on the Polychaeta obtained by F.I.S. 'Endeavour' on the coasts of New South Wales, Victoria, Tasmania and South Australia. III. Report on the Gephyrean Priapulus obtained by F.I.S. 'Endeavour' in Australian waters. Fish. Commonw. Australia, IV.
- -- 1922. Gephyrea inermia. Sci. Rep. Aust. Antarctic Exp. 1911-14. Series C, v1, pt. 5.
- ---- 1932. Priapulus caudatus in New Zealand waters. Nature, Lond., cxxx.
- Collin, A., 1901. Die Gephyreen der Deutschen Expedition S.M.S. 'Gazelle'. Arch. Naturgesch., 67. Jahrgang, Beiheft.

- DAWYDOFF, C. N., 1930. Quelques observations sur Pelagosphaera, larve de Sipunculide des côtes d'Annam. Bull. Soc. Zool. Fr. Lv.
- FISCHER, W., 1896. Gephyrea, in Hamburger Magalhaensische Sammelreise, Lief. 1.
- —— 1916. Die Gephyreenausbeute der Deutschen Tiefsee-Expedition, 1898–9. Vorläuf. Mitt., im Zool. Anz. XLVIII, no. 1.
- 1920. Gephyreen der antarktischen und sub-antarktischen Meere. Deutsche Süd-Polar Expedition, xvi. Zoologie, viii.
- 1924. Beitrag zur Kenntnis der Sipunculiden. Ueber die verwandtschaftlichen Beziehungen der Arten Phascolosoma margaritaceum Sars, Phasc. hanseni Dan. und Kor., Phasc. trybomi Théel. Zool. Anz. LVIII.
- 1925. Echiuridae, Sipunculidae, Priapulidae. Tierwelt N.- u. Ostsee. Lief. 1, Teil vid. Leipzig.
- DE GUERNE, J., 1888. Priapulides. Mission scientifique du Cap Horn, 1882-3, vI, Zoologie. Paris.
- Hérubel, M. A., 1908. Géphyriens. Expédition Antarctique Français, 1903-5.
- KOREN, J. and DANIELSSEN, D. C., 1881. Norwegian North Atlantic Expedition, 1876-8, pt. iii.

LANCHESTER, W. F., 1908. Sipunculoidea. National Antarctic Expedition, 1901-4, IV.

- MICHAELSEN, W., 1889. Die Gephyreen von Süd-Georgien nach der Ausbeute der Deutschen Station von 1882-3. Jb. hamburg. wiss. Anst. vi, Hamburg.
- MINGAZZINI, P., 1905. Un Gefireo pelagico: Pelagosphaera aloysii. Atti Accad. Lincei, Ser. 5, XIV.

Müller, M., 1852. Observationes de vermibus quibusdam maritimis. Diss. Berlin.

- PRATT, E. M., 1898. Contribution to our knowledge of the marine fauna of the Falkland Islands. Mem. Manchr Lit. Phil. Soc. XLII, no. 13.
- SARS, M., 1851. Nyt Mag. Natur. vi. Bed.
- SATO, H., 1939. Studies on the Echiuroidea, Sipunculoidea and Priapuloidea of Japan. Sci. Rep. Tôhoku Univ. xIV, no. 4.
- SEITZ, PH., 1907. Der Bau von Echiurus chilensis (Urechis n.g.). Zool. Jb. XXIV, Heft 2, Abt. für Anat. u. Ontogenie.
- SELENKA, E., 1885. Report on the Gephyrea collected by II.M.S. 'Challenger' during the years 1873-76. Rep. Sci. Results of the Voyage of H.M.S. 'Challenger'. Zool., XIII, no. 2.

SHIPLEY, A. E., 1899. Willey's Zoological Results, III.

- ---- 1902. Natural History Collections of the 'Southern Cross'. London.
- SPENGEL, J. W., 1912. Beiträge zur Kenntnis der Gephyreen. IV. Revision der Gattung Echiurus. Zool. Jb. xxxIII, Abt. für Systematik.
- STEPHEN, A. C., 1936. The Echiuridae, Sipunculidae and Priapulidae of Scottish and adjacent waters. Proc. R. Phys. Soc. Edinb. XXII, pt. 4.

— Report on the Sipunculids collected by the B.A.N.Z.A.R. Expedition, 1929–31. (In the Press.)

STUDER, TH., 1879. Vide Collin, 1901.

—— 1879. Thalassema verrucosa sp.nov. Arch. Naturgesch. XLV.

- THÉEL, H., 1905. Northern and Arctic invertebrates in the collection of the Swedish State Museum. 1. Sipunculids. K. svenska Vetensk, Akad. Handl. XXXIX, no. 1.
- 1911. Priapulids and Sipunculids dredged by the Swedish Antarctic Expedition, 1901-3. K. svenska Vetensk. Akad. Handl. XLVII. Uppsala and Stockholm.
- WESENBERG-LUND, 1934. Gephyrcans and Annelids. The Scoresby Sound Committee's second East Greenland Expedition in 1932 to King Christian IX's Land. Medd. Gronland, CIV, no. 14.

260

# PLATE VII

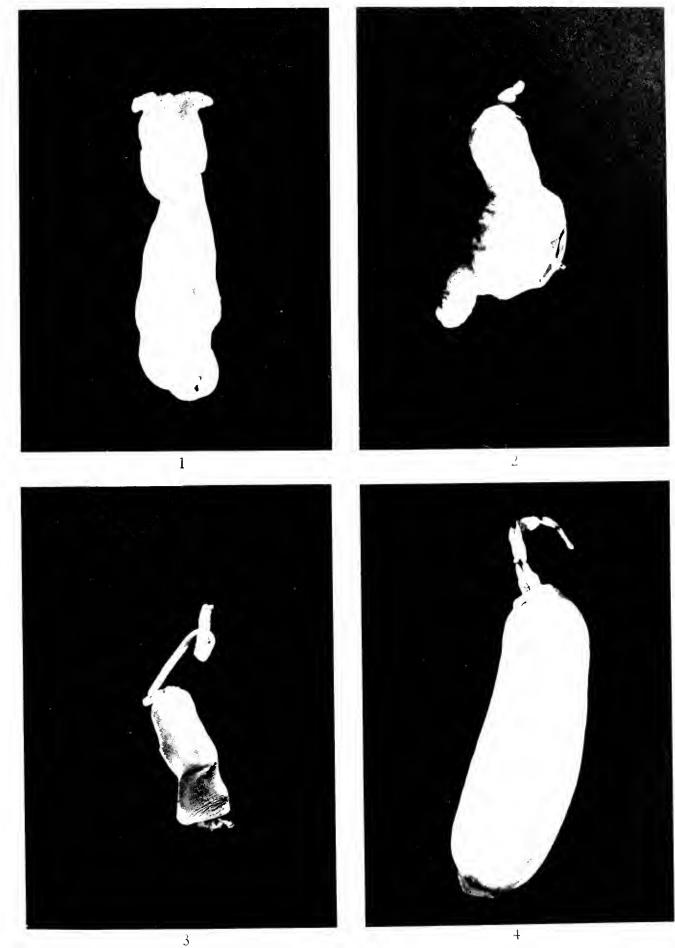
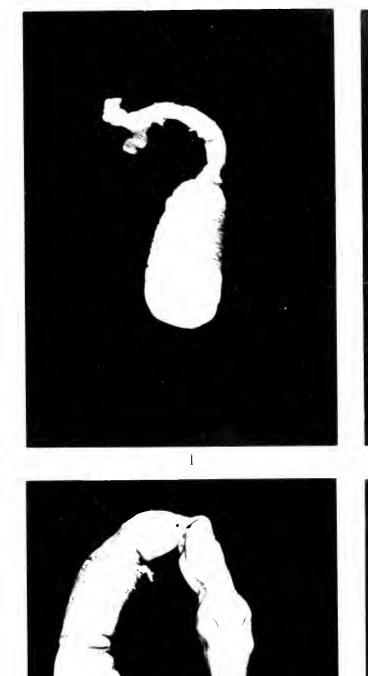

Fig. 1. Echiurus antarcticus Spengel. Introvert. St. 190.  $\times$  1.5 nat. size.

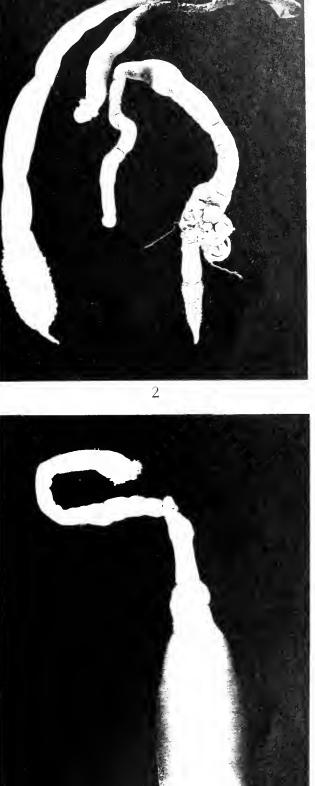
Fig. 2. Thalassema faex Selenka. St. 172. ×2 nat. size.

Fig. 3. Thalassema antarcticum sp.nov. St. 1909.  $\times$  1.5 nat. size.

Fig. 4. Thalassema antarcticum sp.nov. St. 182. / 1.5 nat. size.


DISCOVERY REPORTS VOL. XXI




## PLATE VIII

- Fig. 1. Hamingia arctica Koren and Danielssen. St. 1958.  $\times\,1.5$  nat. size.
- Fig. 2. *Phascolosoma anderssoni* Théel. Varying appearance of the posterior end of the body according to degree of inflation.
- Fig. 3. Phascolosoma margaritaceum Sars. St. 1653.  $\times$  1'5 nat. size.
- Fig. 4. Phascolosoma margaritaceum Sars. St. 1647. × 1.5 nat. size.

DISCOVERY REPORTS VOL. XXI



3



ł

[Discovery Reports. Vol. XXI, pp. 261-356, October, 1942.]

# PHYTOPLANKTON PERIODICITY IN ANTARCTIC SURFACE WATERS

Вч

T. JOHN HART, D.Sc.

# CONTENTS

| fntroduction .         |            |           |         |        | •      |        |        |        | •      | pa <sub>g</sub> | ge 263 |
|------------------------|------------|-----------|---------|--------|--------|--------|--------|--------|--------|-----------------|--------|
| Aims, methods a        | nd termi   | nology    |         |        |        |        |        |        |        |                 | 263    |
| Previous work          |            |           |         |        |        |        |        | •      |        |                 | 269    |
| Discussion of the      | methods    | emplo     | yed in  | n rel  | ation  | to r   | ecent  | adva   | inces  | in              |        |
| phytoplankton          |            |           | •       |        |        |        |        |        |        | •               | 276    |
| Division of the Ant    | arctic zo  | ne into   | bioge   | ograp  | ohical | regio  | ons a  | nd are | eas    | •               | 279    |
| Ecologieal grouping    | g of the i | mporta    | nt phy  | rtopla | ankto  | n spe  | cies   |        |        |                 | 281    |
| Notes on the specie    |            |           |         |        |        |        |        |        |        | •               | 286    |
| Itimeraries of the p   | hytoplan   | kton ob   | oserva  | tions  | duri   | ng th  | e thir | d, fou | irth a | ind             |        |
| fifth commissio        | ons of the | e R.R.S   | 5. 'Dis | scove  | ry II  | · .    |        |        |        |                 | 295    |
| Description of the o   | observati  | ons obt   | ained   |        |        |        |        |        | •      | •               | 307    |
| The Northern R         |            |           |         |        |        | •      |        | •      | •      | •               | 307    |
| The Intermediate       | e Region   | •         | •       |        |        | •      | •      | •      | •      | •               | 311    |
| The Southern Re        | gion .     |           |         | •      | •      | •      | •      | •      | •      | •               | 314    |
| The South Georg        | gia Area   |           | •       |        | •      | •      | •      | •      | •      | •               | 317    |
| The Scotia Sea         |            | •         |         |        | •      | •      | •      |        | •      | •               | 319    |
| Other special are      | as .       | •         | •       | •      | •      | •      | •      | •      | •      | •               | 321    |
| Biological features of | of specia  | l interes | st      |        |        |        |        | •      |        | •               | 322    |
| Distribution with      | n depth c  | of the A  | ntarct  | ie ph  | iytop  | lankto | on     | •      | •      | •               | 322    |
| The colonial hab       |            |           |         |        |        |        |        | •      | •      | •               | 323    |
| Spore formation        | in Antar   | ctic pla  | nkton   | diate  | oms    | •      | •      | •      | •      | •               | 326    |
| The feeding of p       | lankton (  | organist  | ms      |        |        | •      | •      | •      | •      | •               | 327    |
| Discussion .           |            | •         |         | •      | •      | •      | •      | •      | •      | •               | 329    |
| Summary .              |            | •         | •       | •      | •      | •      | •      | •      |        | •               | 340    |
| Acknowledgements       |            |           |         |        |        | •      |        |        |        |                 | 344    |
| References .           |            |           |         |        |        |        |        |        |        |                 | 345    |
| Appendix .             |            |           |         |        |        |        |        |        |        |                 | 348    |
| 1 1                    |            |           |         |        |        |        |        |        |        |                 |        |

# PHYTOPLANKTON PERIODICITY IN ANTARCTIC SURFACE WATERS

## By T. John Hart, D.Sc.

(Text-figs. 1–19)

## INTRODUCTION

## AIMS, METHODS AND TERMINOLOGY

O UR main object in planning the phytoplankton work carried out during the last three commissions of the R.R.S. 'Discovery II' was to gain some knowledge of the broader variations in plant population over the whole of the Antarctic zone of the southern ocean. This great enlargement on the scope of our work during earlier commissions became very necessary with the enormous expansion of modern pelagic whaling during 1928-31, which has since been maintained.

In dealing with such a vast sea area it was obviously essential to adopt methods which could be used at as many stations as possible. Although our general knowledge of Antarctic seas made it certain that relatively uniform conditions for plant growth would be found over great distances, it must be remembered that our previous work had been mainly confined to the complicated areas round South Georgia and in the Falkland sector. Further, our detailed knowledge of the hydrological background (Herdman, 1932; Deacon, 1933, 1937; Clowes, 1934, 1938) was being obtained concurrently with the phytoplankton observations. It was therefore impossible to judge beforehand where a series of observations typical of conditions over a wide area could be obtained. It was only in the last stages of these investigations that such series of repeated observations in one area could be undertaken, and the earlier more widespread work interpreted in the light of the results so obtained. The general plan of campaign, therefore, resolved itself into an attempt to obtain as many observations as possible over the whole zone and to compare these subsequently with repeated series of similar observations in what seemed the most typical oceanic area. This is necessary in order to determine how far the broader differences in quantity and quality of the phytoplankton are to be ascribed to seasonal changes, rather than inherent differences in the conditions from place to place.

In this way I have tried to draw a picture of the main sequence of events in broad outline, for an 'average' year, for several distinct biogeographical regions or areas within the Antarctic zone, and to present it in a form suitable for comparison with other lines of research, such as work on the variations in nutrient materials in the water, and on the zooplankton. It is hoped that this broad survey may serve as a useful basis for more detailed phytoplankton work in the future. In the present circumstances it is

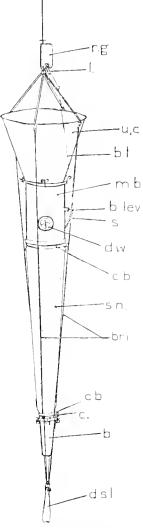
very uncertain when such work will again be possible, so that it seems the more desirable that the data, and a possible interpretation of them, should be published without delay.

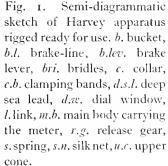
The methods we adopted were: vertical hauls with the Gran International Net from 100 to 0 m.; vertical hauls with a modified form of Harvey's apparatus (Harvey, 1934a) and centrifuging of water samples.

The routine hauls with the Gran Net (N 50 V) of 50 cm. diameter at the mouth, and made of the finest grade of bolting silk, had been fished throughout the previous work of the Discovery investigations. By analysing the catches by the well-known Hensen's methods it was possible to gain some idea of the grosser quantitative changes. The method is very useful for qualitative purposes, as it provides a large amount of material in good condition in a short space of time without the necessity for having a phytoplankton specialist on board to deal with the samples immediately. It was therefore particularly valuable during the pioneer stages of the investigations when we had little knowledge of the general distribution of the phytoplankton, and had a limited staff distributed over two ships and a shore station. It was realized from the first, however, that such hauls can only provide a very rough idea of even the grossest quantitative changes (Hardy, in Hardy and Gunther, 1935, pp. 26, 27, 40; Hart, 1934, pp. 15-17). Therefore, as soon as it became possible to adopt better methods, we fished the Gran Net mainly to ensure an abundant supply of material for subsequent taxonomic work. It may still provide the best means of studying the general distribution of some of the larger and rarer diatoms (Hart, 1937), but apart from such special studies the analytical work has been concentrated on the other two methods.

Harvey's method consists essentially in applying the assimilatory pigment extract colour match, first introduced into marine plankton work by Kreps (Kreps and Verjbinskaya, 1930), to the catch obtained from a measuring net. Harvey (1934 a, p. 762) tells us that Nansen was the first to suggest the use of a measuring net for plankton studies. The co-ordination of the two ideas and the elaboration of a successful working technique are, however, quite new. We found certain structural modifications necessary to suit our own special conditions, but the dimensions, working parts, and silk nets were identical with those of Harvey's own model. Our subsequent treatment of the catches by digestion with 80 % acetone and direct visual comparison of the coloured extract with the nickel sulphate mixture were carried out exactly as described in Harvey's first account of the method (1934 a, pp. 770-1). Quantitative counting was not attempted, but during the third and fourth commissions all the catches were examined microscopically at sea and the dominant species noted. During the fifth commission all the catches were subjected to a more thorough microscopic examination, usually when fresh. A 'qualitative count' was made from a large wet mount prepared from the wellmixed sample, which usually involved the examination of some thirty fields of the microscope, but varied considerably according to the size of the catch. The numbers of the leading forms were then reduced to percentages.

Our modifications of Harvey's original design and method of fishing the apparatus were introduced to increase its strength and reliability, even at the cost of some loss of


264


accuracy, so that numerous observations could be taken in spite of the bad weather normally prevalent in the southern ocean. We had also to consider the fact that the greater working height above water on the larger ship would tend to increase the

surging strain on the gear during heavy rolling. We therefore decided to have the apparatus assembled for vertical upward hauling only, in conjunction with one of our well-tried singletype release gears. This enabled us to substitute a metal upper cone with rigid bridles for the upper canvas cone with throttling band of Harvey's original model (Harvey, 1934*a*, p. 762). The circular body carrying the meter we also had made of heavy brass tube, nickel-plated. The weight of the attachment ring and bucket was taken off the silk net by three wire bridles shackled to lugs on the upper cone, and to a 10 lb. lead below the bucket. Fig. 1 shows the apparatus rigged in this way.

The additional error introduced by the meter spinning during the interval between the net breaking surface and the brake being again applied was found not to exceed  $\pm 3^{\circ/2}$  by trials against stop-watch under the most adverse conditions. This is avoided by Harvey's method of the double release gear and allowing the balanced apparatus to fish both while being lowered and while being hauled up. It was felt, however, that the risk of fouling would be so great in all but the calmest weather that this procedure would prove unsuitable for continuous work in the open sea. With the apparatus rigged in the fashion we finally adopted, we were repeatedly able to make routine observations in winds up to gale force, and rarely obtained markedly discrepant meter readings unless there was a bad stray on the wire, when we found, as Harvey had done before us, that an unexpectedly larger volume of water appeared to pass through the net.

Our meters were made by Messrs R. W. Munro, Ltd., and calibrated by the National Physical Laboratory. Colour standards from Harvey's formula made up in sealed tubes by British Drug Houses were sent out each season, and checked against freshly prepared solutions in shore laboratories when occasion offered. No signs of fading or darkening were observed over the periods for which the standards were in use. It was sometimes found that small southern samples





gave a slightly yellower tint than the original Harvey standards, but medium and larger catches always gave a good match.

Phaeocystis brucei sometimes gave trouble by clogging the filter, until Mr Marr hit

on the expedient of filtering the catch through a no. 2 Whatman paper instead of the usual silk disk. Where it is very abundant this organism causes serious clogging of all fine-meshed nets, which may appear almost as if they had been treated with 'aeroplane dope' after being used in such water. Fortunately such conditions are rare, and are almost entirely confined to what I have termed the intermediate region of the Antarctic zone, for a short period after the rapid recession of the ice-edge about mid-season. The pigment extract from catches where this organism predominated gave a good match with the colour standards. At those few stations where it was really abundant, however, our results are obviously vitiated by the clogging of the net. I believe that under such conditions P, brucei, with its disintegrating gelatinous colonies, would defeat all methods of quantitative estimation, except perhaps some modification of that recently introduced by Riley (1938).

Large Dinoflagellates, which spoil the colour match by the browner colour of their pigments, are fortunately very rare within the Antarctic zone (Hart, 1934, p. 181). It became very evident, however, that there were considerable differences in the quality of the pigments in some of the diatoms themselves though this did not interfere with the colour matches. Thalassiosira spp. were found to need much longer digestion with acetone before all their pigments were dissolved, just as Harvey had found with members of the same genus in the northern hemisphere (1934a, p. 770). This might be due to the physical characters of the living frustules or of the protoplasts rather than any difference of the pigments themselves, but Biddulphia striata, a neritic species, vielded a vast amount of rich green pigment in proportion to its bulk. The extracts sometimes appeared dark 'hookers green' or almost black on the rare occasions when this species predominated in the catches. This peculiarly rich pigment in B. striata was first noted by our assistant, Mr W. F. Fry, who carried out the estimations under the direction of Mr J. W. S. Marr during the fourth commission. I was subsequently able to confirm it on two occasions during the fifth commission; off the Balleney Islands in summer and near South Georgia in the autumn. On suitable dilution, however, these rich extracts gave a very exact match with the tint of the standards.

At many stations during the winter months colour matches could not be obtained, owing to extreme poverty of the phytoplankton and at times to the high proportion of animals in the minute catches. It is extremely unlikely that our picture of the main sequence of events is affected by this, for lack of light alone is almost certainly sufficient to preclude the possibility of any considerable production during this period, by organisms which might be missed by the net.

In general, it may be said that the colour match obtained from mixed catches within the Antarctic zone was very good, and the direct visual comparison probably ample for determining the broader differences in quantity of the standing crop which we desired to study (cf. Harvey, 1934a, pp. 771-3).

Our centrifuge counts were made during the third commission by a modification of the methods employed by Gran (1929, p. 6) and Marshall (1933, p. 112). It took some time to evolve a method that could be used successfully aboard ship, where so much

#### METHODS

depends upon the actual manipulation, and many of the carlier counts have had to be discarded. The method finally adopted, and which gave what seemed to be fairly consistent results, was as follows: A small electric centrifuge carrying four 12.5 c.c. tubes was employed and the samples centrifuged for 5 min. at 2000 r.p.m., the highest speed at which the machine could be run at sea without excessive straining. Longer periods of centrifuging did not lead to appreciable increase in the number of organisms deposited. The supernatant liquid was very carefully drawn off with a special pipette with a recurved tip, similar to the arrangement employed by Marshall (1933, p. 112). We found that this gave very much more consistent results than pouring, as recommended by Nielsen (1933). The liquid remaining in the tip of the tube (about 0.3 c.c.) was then cautiously agitated with a straight pipette to remove the crust of organisms adhering to the glass, and transferred to a cell on a large squared slide. Here it was trapped under a no. 1 cover-glass of the largest rectangular size, and the organisms counted under an ordinary microscope in the usual way, with the aid of a large mechanical stage.

Recentrifuging of the supernatant liquid usually gave about  $10^{\circ}_{\circ}$  of the original count for most species, so to allow for this and loss in manipulation 12 c.c. were reckoned as 10 c.c. in working out the results (cf. Gran, 1929, p. 6).

Series of counts from 0, 5, 10, 20, 50 and 100 m. were obtained from 119 stations, apart from the earlier experimental efforts which had to be discarded. While the work was in progress Nielsen's (1933) severe criticism of the method appeared, from which it seemed that centrifuge results could not even be considered as roughly comparable at different stations. It had long been known, of course, that the method did not approach the ideal of an 'absolute' estimation (Allen, 1919), and in view of the new unfavourable evidence it seemed useless to persevere with it. Unfortunately, the alternative sedimentation method advocated by Nielsen did not lend itself to our immediate purpose, for reasons discussed in the next section of this paper. It is felt, however, that these counts still provide a valuable clue to the probable type of depth distribution of the phytoplankton as a whole, and some evidence regarding organisms which may be missed by the nets. They have accordingly been considered briefly from these points of view, though it is now evident that the full data are not worth publishing.

These centrifuge counts strongly supported the impression gained from the experimental work of Marshall and Orr (1928) that within the Antarctic zone production would be limited to the upper 50 m. or so by the minimum light requirements of the organisms. We had further evidence of this from experimental net hauls, which prompted us to use the 50–0 m. Harvey net haul as our best indication of the relative order of production throughout, though on rare occasions large quantities of diatoms are to be found at lower levels.

The presentation of the results is based on arithmetical means of the observations at mean dates, in several regions or areas within the Antarctic zone. The areas have been chosen according to the degree of uniformity of the conditions, both physical and biological, observed within them, as described on pp. 278–80. It will be realized that

no hard and fast lines can be drawn in nature—some gradual merging of conditions is always evident—but in practice it is essential to draw boundaries somewhere in order to reduce the problems to manageable proportions. It will be realized also that the averages in themselves have no 'absolute' value owing to the observational errors, and the varying numbers of observations available at different times and places. They represent a convenient figure summarizing the existing data, and provided that due note is taken of the number of observations upon which they are based, should not prove liable to misinterpretation. The full data from individual stations have been tabulated in the Appendix.

Results obtained in different seasons have had to be considered together, in most of the areas, and this can obviously lead to serious discrepancies, but the whole region is so vast that it is impossible to make any headway with our main problem without doing so. I believe that our previous work, and our last big series of repeated observations in one area, go far towards enabling us to detect any serious distortion due to this cause.

A few series of hydrological data, derived from the work of our hydrologists, Messrs Herdman, Clowes and Deacon, with their assistant, Mr Saunders, have been considered here. These were selected as fairly illustrative of the type of interrelations that have been suspected from our previous work, and which should be demonstrable on a larger scale when the full hydrological data are published. Incidentally, they provide strong independent proof of the adequacy of our methods for following the grosser changes in phytoplankton population.

In describing hydrological features I have used the terms introduced mainly by Deacon (1933, 1937) and retained the conception of the 'age' of the surface water, previously found so useful in describing changes within the Antarctic zone (Hart, 1934, p. 10), and which has subsequently proved helpful in the consideration of observations in northern waters also (Nielsen, 1937, p. 151).

Differences in phytoplankton population have been expressed so far as possible in the terms advocated by Gran and Braarud (1935, p. 332). I have eschewed the use of the words 'association' and 'succession' as applied in my earlier work on account of their specialized connotation in terrestrial plant ecology. One must agree with these authors on this point, but I venture to suggest that with the rapid increase of specialization in all branches of ecology, there is grave danger that any language will soon be bereft of suitable descriptive terms that one can use in a general sense, without trespassing upon the jargon of this or that branch. The difficulty of describing new phenomena, or known phenomena taking place on a hitherto unrecognized scale, is thereby enormously increased.

The phrases 'main phytoplankton increase' or 'main increase', to describe the period of maximum production, have been used in preference to the 'spring diatom growth', 'diatom flowering' or 'spring increase' of workers in the northern hemisphere. This has been found more convenient because in the southern hemisphere, with its very much lower temperatures in corresponding latitudes, the increase takes place later in the year, so that one would need to speak of an 'early summer' or 'summer increase' in describing the phenomenon in terms of the seasons. As it is obviously completely analogous to the spring increase of the northern hemisphere, I have endeavoured to avoid all possibility of confusion by the use of the expression 'main phytoplankton increase'. The secondary (and usually much lesser) autumnal increase is common to both hemispheres also, but has a corresponding time distribution in both, so that no alteration in terminology is needed. The reversal of the seasons in the southern hemisphere is represented by starting all time scales on 1 July, so that 1 January is to be regarded as midsummer or 'mid-season'.

Owing to the peculiar conditions found within the Antaretic zone, the terms 'oceanic', 'neritic', 'holoplanktonic', etc. are difficult to apply with the precision originally intended by Haeckel (1890), and it has been found necessary to adopt a special grouping system for the ecological characterization of the important species. This is described in detail on pp. 281-5. It will be seen that while a binary system, similar to the classical one evolved by Gran (1902) for the northern hemisphere, could not be applied, his concepts have been followed as closely as possible. The system proposed by Hendey (1937, pp. 226-7) is not very helpful, for he did not attempt to take into consideration the differences in hydrological conditions within the Antarctic zone. With regard to individual species many of his descriptions prove sound, but there are important exceptions due to the limited amount of material he examined. This was doubtless ample for taxonomic purposes, but inadequate for ecological description. A few of my own earlier conclusions (Hart, 1934, pp. 153-74) are subject to the same criticism now that more extensive observations have been obtained. Hendey's taxonoinic work, on the other hand, is of the highest value, and I have endeavoured to bring all our results into line with his revised classification of the Baeillariophyceae.

#### PREVIOUS WORK

Before the Discovery investigations were begun, our knowledge of the Antarctic phytoplankton was derived from accounts of the material brought back by various expeditions which had geographical exploration as their main object, or were engaged upon large-scale oceanographical programmes of which the more southerly cruises formed but a small part. These were: the voyage of H.M.S. 'Challenger', 1873-6 (Castracane, 1886), the 'Belgica' Expedition, 1897-9 (Van Heurck, 1909), the German Deep Sea Expedition, 1898-9 (Karsten, 1905-7), the German South Polar Expedition, 1901-3 (Heiden and Kolbe, 1928), the Scottish National Antarctic Expedition, 1902-4 (Mangin, 1922) and the second French Antarctic Expedition, 1908-10 (Mangin, 1915). All these accounts are mainly concerned with systematic descriptions of the organisms obtained, though Mangin made a noteworthy attempt to determine the relative importance of the various species, and Karsten's included several observations of general biological interest, including numerous abstracts from Schimper's field-notes. More recent and very much more extensive observations have only served to show that this body of work provides ample foundation for our knowledge of the systematics of the 2

species involved. Bearing in mind the scattered and isolated distribution of most of the earlier observations, this fact in itself provides striking evidence of the completely circumpolar distribution of the more important species.

More recent work in the Antarctic zone has been directed mainly at the elucidation of the ecological problems presented by the phytoplankton. Hendey's valuable systematic revision of the Bacillariophyceae is most conveniently considered here, however, on account of its close relation to other observations based on Discovery material and its recent date.

From observations carried out on the Whale Factory 'Vikingen' in the summer season of 1929–30, Gran (1932, pp. 351, 352) concluded that the stabilization of the surface layers was the most important factor favouring the onset of the main phytoplankton increase. It was extremely encouraging to find such close agreement with our own observations from so distinguished an investigator (cf. Hart, 1934, p. 191). On this occasion Gran's observations were not sufficiently numerous to permit of much further discussion in relation to the seasonal cycle.

In considering the observations obtained during the Antarctic part of the Meteor's programme, Hentschel has divided them into west Antarctic and east Antarctic sections. The first of these coincides roughly with the area to which Norwegian whaling investigators give the same name, and which has also been called the Falkland sector. The second refers to the region east of the Scotia arc to the longitude of Cape Town, and south of 50° S lat. Summing up the conditions he observed in the west Antarctic, Hentschel (1936, p. 229) points out that the absolute means for both microplankton and Metazoa were the highest of all the regions investigated during the whole voyage. He also comments on the richness of the region in Antarctic mammals and birds, including large numbers of species dependent on land. Diatoms and Protozoa were the dominant groups of microplankton, Coccosphaeriales falling entirely into the background. An inverse relationship between diatoms and Protozoa, in respect of their local abundance and regional distribution, was observed. This is not readily apparent from our more numerous observations obtained at all seasons of the year. It is, however, perhaps significantly related to our observation of a very distinct inverse relationship in relative (not absolute) abundance between these two groups at different seasons, Protozoa being more important in the scanty winter microplankton. In all other respects Hentschel's generalizations tally perfectly with our observations.

In the 'cast Antarctic', where the Meteor's observations were comparatively few, Hentschel (1936, p. 301) points out its strong resemblance to his west Antarctic region, though total plankton and diatoms were poorer, and the vertebrate fauna shows few species dependent on land. Again the agreement with our findings is complete.

The principal importance of the Meteor results in relation to the present work lies in the evidence they provide concerning nanno-forms which may be missed by our methods. Before embarking on a further consideration of this aspect, it is important to realize that Hentschel has included some stations as Antarctic which we, with more recent hydrological evidence, would regard as sub-Antarctic. He apparently took the  $6 \cdot 0^{\circ}$  C. isotherm as the northern limit of his Antarctic zone, whereas we now know that the highest surface temperatures reached by truly Antarctic surface waters (in the hydrological sense) are of the order of  $3 \cdot 5^{\circ}$  C.

It is also important to remember that several of the small number of Antarctic observations obtained by the Meteor were closer in to the land than the majority of our own, and that the time was just after mid-season. This is just after the diatom maximum in the northern part of the Antarctic zone, at a time when such dinoflagellates as are to be found there will be at their maximum for the year. It may here be mentioned that all available evidence goes to show that the dinoflagellates are essentially a warm-water group of organisms, and that their maximum occurrence in higher latitudes, where the seasonal changes in temperature are considerable, almost invariably coincides with the period of maximum temperature for the region in question.

Considering the Meteor results in respect of those groups for which our sampling methods were known to be inadequate-the Coccosphaeriales and the small dinoflagellates—we must now turn to the detailed figures published in Hentschel's earlier work (1932, pp. 114-23). Taking only those stations which fall within the Antarctic zone as defined in the light of more recent hydrological work, it becomes necessary to omit five stations now considered as sub-Antarctic. From the remaining twenty-seven observations at o or 50 m. Coccosphaeriales were recorded at nine only, five in the west Antarctic and four in the 'east Antarctic' regions. At only two of these stations, one at South Georgia and one near the northern limits of the Antarctic zone in the open South Atlantic, was the group of any real importance numerically. It is interesting to note that the species Pontosphaera huxleyi, long known to be the most important member of the group in northern waters, was alone responsible for these figures. No Coccosphaeriales were recorded at any of the more southerly stations in open water. When the excessively small size of these organisms is taken into account, we may therefore safely say that the Meteor results support our contention that our picture of the main phytoplankton cycle in the Antarctic zone is unlikely to be affected by the inadequacy of our methods for dealing with the members of this group.

All writers on Antarctic phytoplankton have testified to the scarcity of Dinoflagellata in those seas, but the Meteor was the first expedition to use methods capturing the smallest ones in our area. Considered numerically therefore it is not surprising to find the proportion of Dinoflagellata much higher than one was previously inclined to suppose, particularly in view of the time of year at which the observations were obtained. They averaged 15% of the total phytoplankton. Further examination of the Meteor results reveals, however, that more than half  $(56 \cdot 7\%)$  of these were Gymnodinians without chromatophores, and therefore presumably heterotrophic. Moreover, those stations at which the numerical proportion of dinoflagellates to diatoms was high were again very close in to the land. Another point to be borne in mind is that so far as is known the division rate of dinoflagellates is considerably lower than that of diatoms. We may say, therefore, that while minute dinoflagellates missed by our nets may be of slight importance as producers during the post-maximal period for diatoms, it is

unlikely that they are ever sufficiently important to invalidate the broad picture presented by our study based mainly upon those larger autotrophic organisms.

Before leaving the work of the 'Meteor', mention should be made of the work of Peters (1934) on the Ceratia. The agreement between his observations upon *Ceratium fusus* (p. 37, fig. 12) and *C. pentagonum* (pp. 27, 32, fig. 10) and my own (Hart, 1934, pp. 23, 173 etc.; 1937, p. 441) is very close, and I think it may be considered as well established that the latter is the only member of the genus whose normal distribution extends so far south as the Antarctic zone.

The pioneer work on the study of the phytoplankton undertaken as part of the Discovery investigations was carried out by Professor A. C. Hardy. The results, mostly relating to the complicated region of the South Georgia whaling grounds during the season 1926–7, have been described by him in Part II of the very detailed work on the plankton observed in that region published in collaboration with Mr E. R. Gunther (1935). As the observations were mainly confined to one protracted survey, they yielded little direct evidence with regard to the seasonal cycle of the phytoplankton, but the first attack on many important related problems was made on the basis of these results. Hardy's most important findings in relation to the present work are as follows:

On p. 40 he gives strong evidence of the overwhelming predominance of diatoms and the negligible quantity of the larger dinoflagellates in the Antarctic zone. *Halosphaera viridis* (Protococcoideae) was the only autotrophic organism, apart from diatoms, observed in large numbers, and this had an extremely limited distribution (p. 64). A detailed picture of phytoplankton conditions in the South Georgia area at mid-season, when the diatom maximum was probably just beginning to wane, is given; which agrees well with subsequent observations (Hart, 1934, pp. 66, 67). Hardy has also shown very clearly that while the phosphate content of the surface water was never reduced to such an extent that it could be considered as a limiting factor for phytoplankton, there was good general agreement between production and phosphate reduction (pp. 76–87, 285). Further, he found some slight evidence of a small secondary autumnal diatom maximum.

In Part V of the same work Hardy enters into a prolonged and valuable discussion of the relations between zooplankton and phytoplankton, mainly concerned with the development of the hypothesis of animal exclusion. The most important point in relation to the present work lies in Hardy's acknowledgement that the exclusion hypothesis may not hold good for all species of zooplankton, and that the converse of 'exclusion', limitation of the phytoplankton by the grazing of herbivores, is also probably important far south (pp. 310-11). The most important of Antarctic 'key-industry' animals, *Euphausia superba*, is mentioned as probably being an important grazer. The probable importance of the 'grazing down' factor in limiting populations of marine phytoplankton was first clearly recognized in Harvey's (1934b) work in the English Channel. Hardy records Harvey's agreement that the two effects are not necessarily incompatible, each may operate at different times and places.

My own earlier work (Hart, 1934) was mainly confined to a discussion of the phytoplankton conditions round South Georgia, in the Scotia and Bellingshausen Seas, and adjacent coastal areas—the most complicated region in the Antarctic zone. It was shown that here the main diatom increase began in late spring or early summer, the time of incidence falling later in the year as one proceeded pole-wards (p. 183). Stress was laid on the important fact that throughout the whole of the region studied polar influences extend very much farther towards the equator than in the northern hemisphere. An attempt was made to group the species according to their seasonal abundance and to distinguish the phytoplankton communities<sup>1</sup> ('floras') in Antarctic surface waters of differing past history. These findings still hold good for the most part but stand in need of some modification in the light of our more numerous and widespread observations obtained subsequently.

Areas with exceptionally rich phytoplankton were observed off South Georgia, other more or less coastal waters round the southern half of the Scotia Are and in the channels of the Palmer Archipelago; also, to a lesser extent, in Bransfield Strait.

It was shown that the phosphate content of the surface waters was never reduced to such as extent that one could regard it as a factor limiting phytoplankton production (Hart, 1934, p. 184). The hypothesis that silica might prove to be limiting to some extent was put forward on the suggestion of Professor W. H. Pearsall, though at that time no direct observations on silica content were available (p. 185). The major importance of various interrelated physical factors in determining the extent of phytoplankton production was emphasized. Chief among these were the influence of light, the degree of stability of the surface layers, and the effects of pack-ice (pp. 186–93).

Observations in Cumberland Bay, South Georgia (Hart, 1934, Appendix I) showed the phytoplankton to be very scanty, in striking contrast to the rich catches obtained 20–100 miles offshore round that island. The adverse factors responsible for this appeared to be extreme turbulence of the surface layers due to the strong and variable winds, combined with the vast amount of very finely divided inorganic detritus brought down by land drainage (mostly morainic mud). This last must have greatly hindered the penetration of light. The same unfavourable factors have since been found to be responsible for a similar unexpected scareity of phytoplankton in some regions of the northern hemisphere (Bay of Fundy, Gran and Braarud, 1935, p. 322; coastal waters round Iceland, Nielsen, 1935, pp. 42–8).

The great value of Hendey's work (1937) lies in his thorough revision of the systematics of the plankton diatoms. He has cleared up many vexed questions concerning nomenclature and priority with a thoroughness only possible to one with long acquaintance with the extraordinarily voluminous and contradictory literature on the subject. The most helpful features to the plankton worker are his decisions to 'lump'

<sup>1</sup> In some sense the idea of this grouping approximates more closely to that of Gran and Braarud's 'phytoplankton societies' (1935, p. 332). Since the groups varied mainly in the proportions of the same species present, not in specific constitution, and the water masses concerned gradually lose their individuality as they move to the east and north, it seems safer to use the wider term. It is just such differences as these due to the much greater rate of change in the aqueous as distinct from the terrestrial environment, that makes it so hard for the plankton worker to describe his observations in terms with rigidly conventionalized meanings.

certain 'species' together (e.g. all previously described species of *Corethron* as 'phases' of *C. criophilum* Castracane, which is called the 'type phase'). This use of the more general term 'phase' to describe subspecific rankings, previously labelled 'varieties' and 'forms' in rather indiscriminate fashion, wherever a clear sequence of intermediate stages can be shown to exist, seems logical and is very useful in practice. As the first clear acknowledgement by a recognized taxonomic expert of the extreme variability of plankton diatoms, it is particularly encouraging to the unfortunate plankton worker who is continually grappling with problems presented by this exasperating property.

In his notes on the divisions of the flora, Hendey is upon less certain ground, owing mainly to the limited amount of material he examined (1937, pp. 163–99). Two hundred and twenty odd stations distributed over all the regions visited by the Discovery investigations from 1927 to 1935 may well have been ample for systematic revision, but quite obviously preclude the possibility of considering the seasonal variation in any one area, and it is well known that the quality of the phytoplankton varies very considerably with the seasons, except in some tropical seas.

The broad division of the flora into cold- and warm-water species, with a dividing line mainly coincident with the subtropical convergence but otherwise based on unspecified thermal considerations, is too wide to be of any assistance in considering conditions within the Antarctic zone, and ignores the cosmopolitan distribution of some important species. It is chiefly for these reasons that Hendey's table (1937, pp. 226–7) of 'species typical of the cold-water flora' shows some marked differences from my own findings, though the disagreement is far less marked when one considers his distributional notes on individual species.

It is very interesting to note that Hendey has experienced the same difficulty in the precise application of the Haeckellian terms 'oceanic', 'meroplanktonic', etc. (p. 220) that I have already had occasion to mention. This again may cause apparent rather than real differences between our findings. The difficulty arises because we have only circumstantial evidence as to whether the majority of plankton diatoms are meroplanktonic or holoplanktonic, using the words in the strict sense. In the northern hemisphere work on the phytoplankton has been going on so much longer and more intensively that we may safely regard the accumulation of this evidence as sufficient to be conclusive for most species. In the far south it is still necessary to proceed with caution. Conditions are further complicated by pack-ice maintaining a small proportion of meroplanktonic forms in the open ocean at the greatest possible distances from land, which may flourish for a time among the truly oceanic species after the ice has dispersed. Yet again many forms that appear to be truly oceanic still reach their maximum abundance in neritic areas. Hence Hendey's tabulation of some species as both holo- and meroplanktonic, oceanic and neritic, is not so paradoxical as it appears at first sight.

My object in pointing out the following important differences between my findings and those expressed in Hendey's table (pp. 226–7) of 'species typical of the cold-water flora' is to avoid possible misunderstanding in the future. It must be realized that I have the advantage of much more numerous observations, many on material obtained

it is a fastail is mu

subsequently to that available to Hendey, and that limitations of material in my own earlier work have led me into some similar errors.

*Nitzschia seriata* should not, I believe, be regarded as neritic only; many observations of this widespread species from all parts of the ocean in considerable abundance were already available.

*Corethron criophilum* should surely be included among the species typical of Bransfield Strait, where I had already shown it to be a dominant (over  $90^{\circ}_{0}$  of the (net) plankton throughout the year; Hart, 1934, p. 159).

The omission of *Thalassiothrix antarctica* from the table of typical forms is unfortunate, for it is often one of the most important of the larger species in the northern part of the Antarctic zone, and, more rarely, farther south (Hart, 1934, p. 40; Hardy in Hardy and Gunther, 1935, p. 66).

The two most important southern species of Thalassiosira-Th. antarctica and Th. subtilis-are tabulated by Hendey as oceanic, holoplanktonic. We should now regard them as definitely neritic (and ice-edge), as seems true for most members of the genus throughout the world. The probability that they are meroplanktonic is strong. My own earlier remarks on Th. antarctica ('widely distributed...', Hart, 1934, p. 157) were intended to apply to a more restricted area, but may have led Hendey astray here. A similar remark of mine concerning Biddulphia striata (p. 165) may also have been misleading. Hendey tabulates it as holoplanktonic, oceanic and neritic. We should now regard it as meroplanktonic and very definitely neritic, being rare even along the iceedge in the open ocean which some neritic species seem to find an adequate substitute for a coast. Such mistakes as these are due entirely to the localization of most of our earlier work in the complicated Falkland sector. Until even longer oceanographical cruises were undertaken, it was impossible for us to realize how the vast scale of biophysical relationships in the southern ocean leads to neritic influences being felt at much greater distances from land than in the better known waters of the northern hemisphere.

*Chaetoceros atlanticum* is omitted from Hendey's table and is said in his notes to be unimportant far south. It is quite true that it is rare in the extreme south, but in the more northerly parts of the Antarctic zone it is one of the most numerous medium-sized chaetocerids, and, since his 'cold-water flora' apparently includes most of the sub-Antarctic zone as well, it should certainly be included in any table of typical forms.

There are minor points concerning less important species of *Chaetoceros* on which we differ. Thus Hendey tabulated *Ch. castracanei*, *Ch. chunii* and *Ch. schimperianum* as neritic while we now tend to regard them as oceanic. The evidence is not yet conclusive, particularly with regard to the last named.

Finally, Hendey has tabulated all the *Actinocyclus* spp. he examined as neritic, no doubt correctly, but has not considered the smaller members of the genus we have found in our more recent work to be very constant constituents of the oceanic plankton. Though never occurring in great numbers, these are important and certainly 'typical' in winter.

In a note on the effect of environment on form, Hendey (pp. 224–5) records his general impression that conditions in warm seas favour the development of a flora of relatively thin-walled diatoms of small surface : volume ratio, while diatoms in colder waters have stronger frustules and a larger proportion of surface to volume. Such scanty concrete observations as are available (Wimpenny, 1936; Hart, 1937, p. 444) certainly favour the view that this difference in form must be ultimately correlated with environmental influences. The idea raises several problems of the first importance in connexion with the physiology of plankton diatoms.

# DISCUSSION OF THE METHODS EMPLOYED IN RELATION TO RECENT ADVANCES IN PHYTOPLANKTON TECHNIQUE

In recent years the main pioneer methods of studying the phytoplankton, examination of routine vertical hauls with fine silk nets and of centrifuged water samples, have been severely criticized by Nielsen (1933, 1938). Their probable shortcomings had long been realized by their principal protagonists, and had indeed been clearly demonstrated by the classic dilution experiment of E. J. Allen (1919). Nielsen apparently considers them so unreliable that even observations on the broad distributional changes, involving quantitative variations of many hundreds per cent, to which they have previously been regarded as an adequate guide, may prove misleading. The present work has been accomplished by these older methods, or modifications of them, for Nielsen's improvements have little application in long-range work of this type, and we have some evidence that conditions in the Antarctic zone are such that the errors are at a minimum. In view of Nielsen's recent work, however, it is felt that the limitations of our methods should be fully considered.

The whole problem of methods in marine phytoplankton investigations is an exceedingly difficult one. Both Gran (1932, p. 346) and W. E. Allen (1934) point out that it is very necessary that methods be adapted to the scope and aims of the particular investigation. Allen says that while it is important to strive for as high a degree of uniformity of method as possible, a certain degree of elasticity will nearly always prove to be essential. This statement aptly defines in abstract terms the difficulties confronting us in planning our programme. Antarctic surface waters occupy over twelve million square miles. This is over  $6\frac{07}{10}$  of the total surface of the earth, and some  $8\frac{107}{270}$  of the total sea surface. For this reason alone it was essential to obtain the very largest number of observations possible in order to make out even the grosser differences in the distribution, in time and space, of the phytoplankton. Our cruises involve absence from shore laboratories for long periods, and for this reason also it seemed necessary to use methods that could be completed at sea. Hence the attempt to achieve the most useful working compromise between the strongly conflicting desiderata of magnitude and exactitude, resolved itself into the observation of the phytoplankton by the methods already described.

The modified Harvey method has been our main standby for the study of the wider

276

variations in quantity. Its disadvantages are obviously those inseparable from the use of any form of tow-net-loss of nannoplankton forms and small solitary diatoms through the mesh, and a certain degree of clogging where the phytoplankton is very dense. Thus the values obtained will always be minimal. There is considerable evidence that nannoplankton forms and dinoflagellates are never present in such numbers as to be important producers (as compared with the diatoms) in the Antarctic zone. The Meteor results and my own centrifuge counts may be useless for comparative purposes as Nielsen maintains, but would certainly have shown up the presence of a large proportion of nannoplankton forms if it was in any sense a general occurrence. Moreover, the colonial habit is strongly developed in most of the small Antarctic diatoms, though this is not always readily apparent in preserved samples. Even the difficulty due to clogging rarely arises, for the design and dimensions of the Harvey net are such that the proportion of filtering surface to effective aperture is more than three times as great as in an ordinary tow-net (cf. Hardy, 1939, p. 47). During the three commissions some Soo observations within the Antarctic zone have been obtained by this method. When these are grouped regionally and in time sequence as in this paper, the general picture they present agrees so well with the changes in the physical and chemical factors of the environment, studied by entirely independent methods, that it seems certain that they must be roughly comparable to the true value of the standing crop. I should be the first to admit that in warmer seas where nannoplankton forms may predominate, and dinoflagellates are important, the method would be inadequate.

The advantages of Harvey's method for our particular purpose are more readily appreciated if one considers the weak points of other methods available. If one had obtained sedimentation counts from some eight hundred stations (none too many considering the size of the area concerned) the time spent in the actual collecting at sea, which extended, in conjunction with our other work, over more than five years, would have been considerably increased. All the counting would have had to be done in a shore laboratory and, owing to the uneven distribution of phytoplankton with depth, at least six counts from each station would have been needed to give a true picture. Each count takes from two to three hours according to Nielsen (1933), so that the working up of such a volume of material would occupy the whole time of an experienced worker for at least a further five years. From this practical consideration alone it is evident that such refined methods can only be employed to advantage after the general conditions have been made known in broad outline, so that the detailed work can be limited to manageable series of observations where conditions are probably typical of larger areas. A minor drawback of the sedimentation method (Nielsen, 1933, 1935, p. 5), that certain small naked forms must always be lost or become unrecognizable when working with preserved material, need not concern us; but the difficulties he experienced when Chaetoceros spp. were numerous would prove a serious handicap in polar waters.

While census-taking will always remain an essential part of the study of the phytoplankton, it is subject to some general objections inseparable from all purely numerical

estimations, especially if it is desired to correlate phytoplankton data with that obtained from other lines of research. The numbers of different forms convey very little unless the reader has some knowledge of their shapes and sizes. Counts might well prove misleading to a chemist or zoologist who would perhaps be able to show significant correlation between his observations and those on the phytoplankton, if the quantity of the latter were expressed in a different way. This point is the more important when we bear in mind the tremendously wide range of variation in size and shape which can take place within the limits of many single phytoplankton species.

An ideal method should provide comparable figures bearing a direct relation to the total amount of organic matter present as phytoplankton. The concept of the biomass, introduced into marine plankton investigations by Russian workers, almost, but not quite, epitomizes this ideal. Zenkevitch (1931) defines the biomass as 'the quantity of substance in living organisms per unit of surface or volume'. Thus if it were possible to determine this property of the phytoplankton organisms in a unit volume of water, the quantity of inorganic matter in the organisms would be included. This would indeed be necessary and desirable in considering the relation of the phytoplankton to the physical and chemical characteristics of the medium. When we come to consider the possible value of the phytoplankton as food for animals, however, the inclusion of large quantities of an inert substance like silica might well prove misleading. The biomass constitutes the ideal basis for the study of the relation between organism and the physico-chemical factors of the environment, but is not so well suited to the study of biological interrelationships. Moreover, it seems only too obvious that no good routine method of determining this property of the phytoplankton could ever be devised.

Harvey's method, on the other hand, gives figures that may reasonably be supposed to bear some relation to the total organic content of the phytoplankton captured. It is at least probable that there is a relation between total organic matter and the total amount of assimilatory pigments responsible for the production of that matter, and the arbitrary colour units are a measure of total quantity of pigments. Foremost among the advantages of the method, therefore, we may place this approach to the ideal of comparable figures related to the total quantity of organic matter present as phytoplankton. These can easily be appreciated by workers in other fields without detailed knowledge of the constituent species, and are therefore less liable to misinterpretation than figures derived from census-taking methods. The great advance on Krep's method of utilizing the pigment extract from a net haul as a measure of phytoplankton intensity lies in the knowledge of the approximate volume of water from which the catch is filtered.

I would insist that in the detailed study of the phytoplankton itself census-taking is still very necessary, and likely to remain so; but that Harvey's method has given us a powerful new line of approach, the more valuable when other methods can be used to check and supplement the data.

The next advance may be expected from simultaneous use of Nielsen's sedimentation methods, and modifications of Harvey's method such as Riley (1938) and Krey (1939)

have recently employed. For such work to be of value in considering the conditions in large sea areas, it must be preceded by a large-scale survey by cruder methods such as those employed by us. Without this it will be quite impossible to say whether any series of more detailed observations, such as could be carried out within a reasonable period of time, will be typical of conditions over a wider area or not. In the north Atlantic and adjacent waters previous work may already provide a sufficient background; in other regions where the economic significance of the phytoplankton begins to be realized, such as the Antarctic zone and the north Pacific, it does not. Moreover, the precision methods now being elaborated do not lend themselves to the study of fluctuations over wide areas, and it is just such differences as these that one desires to study in attempting to link up plankton ecology with human economy. Gran has said that a single 'absolute' determination of phytoplankton would be about as valuable as a single temperature determination carried to the third decimal place. The new methods have got beyond the stage of being open to this kind of criticism, but still demand an expenditure of time that precludes their use in our attempts to solve some of the most important phytoplankton problems. The sea is wide and man has but a little time to live.

# DIVISION OF THE ANTARCTIC ZONE INTO BIOGEOGRAPHICAL REGIONS AND AREAS

The Antarctic zone may be defined as the sea area covered by Antarctic surface waters, as shown by the work of our hydrologists. Its northern limit may be taken from Deacon's (1937) presentation of the probable average position of the Antarctic convergence—where the Antarctic surface waters sink below the more saline but warmer sub-Antarctic waters to the north. The mean latitude of the Antarctic convergence is 53° S. Thus polar conditions of climate and hydrological environment extend very much farther towards the equator than they do in most parts of the northern hemisphere, and their distribution bears little relation to such purely mathematical entities as the Antarctic circle. In general, the Antarctic surface waters extend some thousand miles to the north of the coast line of the Antarctic continent.

The area covered by Antarctic surface waters is very large—at least 12 million square miles. In considering the conditions of existence of phytoplankton organisms in an area of this size, it is obviously essential to adopt some scheme of subdivision, in order to keep both the descriptions of observations, and discussion of their significance, within reasonable proportions. Ideally, such a scheme should be based on the principal changes in the conditions of existence, in practice a degree of arbitrariness will obviously be unavoidable. In nature conditions will always merge more or less gradually, but in practice boundaries must be drawn somewhere. This difficulty is very apparent in the Antarctic zone where the gradient in water temperature, for example, is very slight.

In the areas south of the three great oceans the latitude of the Antarctic convergence approaches its mean fairly closely. Here a satisfactory division may be made by considering the interaction of two important factors known to exert a profound influence

upon phytoplankton production: light, and the distribution of pack-ice. The duration and intensity of the light will vary more or less directly with the distance one proceeds to the south, so long as the latitude of the convergence remains fairly constant, since it is of extra-terrestrial origin. The distribution of the pack-ice, on the other hand, can be extremely erratic as climatic conditions fluctuate. Our knowledge of it is now sufficient, however, to make the following subdivision, based on the gradient of these two factors, reasonably satisfactory in the open occans.<sup>1</sup> We divide these parts of the Antarctic zone into Northern, Intermediate and Southern Regions.

The *Northern Region* extends 330 sea miles south of the Antarctic convergence, all the way round the world, with the exclusion of the special areas to be described later. It is never covered by continuous pack-ice and only invaded by loose pack- and drift-ice in spring on rare occasions.

The *Intermediate Region* extends from the southern boundary of the Northern Region to the Antarctic circle—an unavoidably arbitrary boundary. It is largely covered by pack-ice in winter and spring, and mainly free during summer and early autumn. Here again it is necessary to exclude the 'special areas'.

The *Southern Region* lies between the Antarctic circle and the Antarctic continent, excluding the immediate coastal areas. It is largely covered by pack-ice throughout the year and free only in summer. New ice frequently forms in March.

To the south-west of South America and south of New Zealand the Antarctic convergence lies far to the south of its mean latitude, and the gradient in the conditions of existence is consequently 'telescoped' so that three clearly defined regions can no longer be distinguished. Hence the need for separate treatment of these 'special areas', *north of the Ross Sea* and the *eastern south Pacific*. These are oceanic, but cannot be divided into Northern and Intermediate Regions on the same basis as those previously described. To the south of them, however, it appears that no serious anomaly is introduced by regarding the Ross Sea and Bellingshausen Sea as comparable with the Southern Region.

To the south and south-east of South America conditions are extremely complicated. These are the only localities where considerable land masses and a sharp rise in the sea floor—the Graham Land Peninsula, the Scotia are with island groups intrude upon the northern part of the Antarctic zone. The complications clearly exert a profound influence upon the phytoplankton development. For present purposes they may be somewhat loosely summarized as neritic influences, and in the light of our observations it is possible to distinguish further 'special areas' based partly on latitude but mainly on 'degree of neritic influences'. Chief among them are the *South Georgia area* and the *Scotia Sea*. To make the scheme of subdivision complete, one would need to consider as special areas the Bransfield Strait, the central portion of the Weddell Sea, and other areas around isolated islands with local neritic conditions. Little of the work considered here falls in these regions however, so that they may be treated under the general heading of 'other special areas'. It may be noted that conditions around

<sup>1</sup> See Mackintosh and Herdman, *Distribution of the Pack-ice in the Southern Ocean*, Discovery Repts., xix, pp. 285–96, plates LXIX-XCV, published since the above was written.

280

Kerguelen Island and over the ridge connecting it with Heard Island may be expected to resemble those observed in the South Georgia area on a smaller scale, but we have no observations there.

The subdivisions described are shown in Fig. 2, and may be tabulated as follows:

#### MAIN REGIONS (OCEANIC)

The Northern Region: between the Antarctic convergence and a line 330 miles south of it, all round the world, excepting the special areas between 30 and  $110^{\circ}$  W, and between  $150^{\circ}$  W and  $170^{\circ}$  E.

The Intermediate Region: between the southern limit of the above and the Antarctic circle all the way round the world with the exception of the same complicated areas.

The Sonthern Region: all seas south of the Antarctic circle, excluding immediate coastal areas.

#### SPECIAL AREAS

*The South Georgia area*: between 52 and 55° S; 33 and 41° W. Neritic influence very strong. *The Scotia Sea*: between the Antarctic convergence and 62° S: 30 and 70° W, excluding the South Georgia area. Neritic influence considerable but less marked.

Other Special areas: where our observations are too few for detailed consideration, namely: (1) The eastern south Pacific between the Antarctic convergence and the Antarctic circle:  $70-110^{\circ}$  W. This is essentially oceanic and is best known. (2) The area north of the Ross Sea between the Antarctic convergence and the Antarctic circle:  $150^{\circ}$  W- $170^{\circ}$  E, oceanic. (3) Central Weddell Sea between the southern limits of the Scotia Sea and the Antarctic circle, oceanic. (4) Bransfield Strait and coastal waters of the Palmer Archipelago, neritic. (5) Other essentially neritic areas, e.g. coastal waters of the Balleney Islands, which could be ranged according to latitude if necessary.

It will be seen that the main idea of this scheme of subdivision is essentially similar to that which I had already suggested to Clowes (1938, p. 8), but with three times as much data it has been possible to improve the original zonation. The definition of the southern region (or zone) in terms of distance from the ice-edge has been abandoned for the arbitrary one, placing its northern limit at the Antarctic circle. This is an improvement in one way because of the difficulty of establishing an 'average summer position' of the ice-edge in the less known sectors, but it is certainly true that the actual extent of the pack-ice is a most important environmental factor in this region. It has also been possible to define the special areas whose existence had indeed been recognized though it was not possible at that time to express that recognition in concrete terms. In all other respects it will be seen that the scheme remains essentially the same as that which Clowes found helpful in considering the distribution of phosphate and silicate in the water. This in itself provides evidence that it has real significance despite the unavoidably arbitrary nature of some of the boundaries.

## ECOLOGICAL GROUPING OF THE IMPORTANT PHYTOPLANKTON SPECIES

In considering the phytoplankton population in such a vast region as the Antarctic zone, it is obviously desirable to adopt some scheme of ecological characterization of the important species. By such means only can the bulk of observational data be clarified

and reduced to manageable proportions. Ideally, such a classification should result in an accurate reflexion of the space/time distribution of various groups of species in response to environmental changes. In practice, it has been recognized from the first that a degree of arbitrary distinction is unavoidable—the degree to which some important species can adapt themselves to environmental change is so enormously varied.

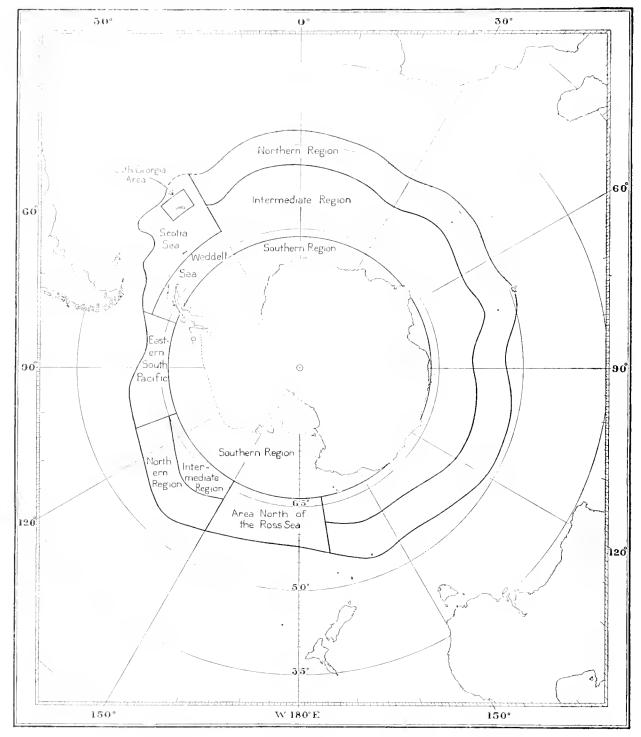



Fig. 2. Division of the Antarctic zone into biogeographical regions and areas.

The classic foundation for such a subdivision of the phytoplankton into mainly ecological, part arbitrary, 'plankton elements' is the binary system introduced by Gran (1902) for the description of conditions observed in the north Atlantic. Using the terms introduced by Haeckel (1890), he divides the phytoplankton species into three main groups:

Oceanic species-entirely holoplanktonic.

Neritic species-mainly meroplanktonic.

Tychopelagic species—essentially bottom forms of littoral waters.

Each of these groups he again divides into *arctic*, *boreal* and *temperate elements*, according to their temperature requirements. It is here that some arbitrary distinctions have to be drawn, owing to the overlapping caused by the variation of temperature with the seasons and the existence of cosmopolitan and other more or less eurythermal species.

In an attempt to arrive at a satisfactory 'division of the flora', Hendey (1937) has attempted to apply essentially similar concepts. His system, however, which is intended to include all southern seas, is not of much help in considering conditions within the Antarctic zone, where the temperature gradient is very slight and the annual range does not normally exceed  $5^{\circ}$  C.

As already noted (p. 269), Hendey experienced difficulty in applying the terms 'oceanic', 'neritic', 'holoplanktonic', etc. in the strict connotation originally intended by Haeckel, which we also have found. It is especially pronounced within the Antarctic zone. The reason is not far to seek. Our evidence as to whether the vast majority of marine plankton diatoms are holoplanktonic or meroplanktonic is entirely circumstantial, and based mainly upon the general distributional data available. The occurrence of resting spores which tend to sink may be regarded as strong evidence that a species should be regarded as neritic, meroplanktonic. The resting spores of comparatively few species are known, however, and it is by no means certain that all must inevitably sink to the bottom. It is conceivable that some might be of such a density that they could be regions they inhabit without sinking to the bottom.

In the northern hemisphere, where much intensive plankton work has been carried out for some seventy years, it is probable that the circumstantial evidence as to whether a given diatom species is holo- or mero-planktonic is usually sufficient to be conclusive. In the Antarctic zone it is not so, and there are two peculiar features of phytoplankton communities in the far south which add to the difficulty of arriving at a clear-cut decision in the matter. First, many undoubtedly holoplanktonic species, to be found at all seasons at the greatest possible distance from land, reach their greatest abundance in regions subject to neritic influence. Secondly, some of the almost certainly meroplanktonic species are able to use pack-ice when they require a solid substratum, and so are able to flourish for a short period in the open ocean at the greatest possible distances from land, for a short period after the pack-ice reaches its northern limit and disperses. The situation is still further complicated by the presence of living diatoms in the packice, which from their general space/time distribution would be classified as holoplanktonic, oceanic species without hesitation, for they are to be found in the open ocean at all seasons. With these considerations in view, it is clear that the Haeckellian terms cannot be applied rigidly.

The term 'oceanic' has accordingly been used to describe all species whose time distribution at great distances from land makes it improbable that they are *necessarily* dependent on the ice in this way. Most are truly holoplanktonic though some have been seen alive in pack-ice.

Instead of 'neritic' one is constrained to use the expression 'neritic/ice-edge', to include with the forms that are not found far from land those almost certainly meroplanktonic ones that seem able to use the ice-edge as a coast, and to flourish in the open ocean for a short time after the dispersal of the pack. There are still a few important species which future work may show to have been wrongly grouped here. Where any doubt still exists full notes are given in the exposition of the scheme which follows. It will be noted that as a general rule it is advisable to use the terms holoplanktonic and meroplanktonic only with some such prefix as 'probably'.

In the attempt to evolve a useful ecological scheme of subdivision, the concept of 'types of planktonic vegetation' as used by Gran and Braarud (1935, p. 332), but applied in a rather more restricted way, has proved helpful. These authors define 'types of planktonic vegetation' as 'phytoplankton populations which have their main occurrence quantitatively during the same season and whose dominant species all belong to one group-diatoms, dinoflagellates....' Since the Antarctic phytoplankton is almost entirely diatomaceous, it is necessary to consider smaller taxonomic units than those implied in Gran and Braarud's definition. Some genera and families lend themselves to this, but some important species when classified on their time distribution will only fall into taxonomically heterogeneous groups. Size distinctions are helpful here, and have an obvious bearing on the food value of the phytoplankton for different zooplankton herbivores. In all it will be seen that a much higher degree of arbitrary distinction than is necessary in northern waters has been found unavoidable. Since our system is only intended to facilitate discussion of the qualitative data described here, the point is of small moment, provided that its basis is clearly understood by the reader. It is hoped, however, that the system will provide useful groundwork if future work renders a more 'natural' regrouping possible.

#### Group I

Fragilariopsis antarctica Nitzschia seriata (? +N. delicatissima) Distephanus speculum Small oceanic pennate diatoms with *Distephanus*. Numerically the most important group at all seasons, except autumn. Most abundant at peak of main increase in areas subject to neritic influence. Greatest relative importance before and just after the maximum.

#### GROUP II

Chaetoceros boreale Ch. criophilum Rhizosolenia spp. Dactyliosolen antarcticus Corethron criophilum Synedra pelagica Thalassiothrix antarctica 'Large diatom species'—the solenoids, large Chaetocerids, and two exceptionally elongated pennate forms. A very heterogeneous, essentially oceanic, group with strong tendency to occur in local concentration of from one to four of the categories mentioned. Abundance doubtless greatest at peak of main increase, and in neritic areas, but relative importance greatest during the post-maximal decrease, and more especially in autumn, in the Northern and Intermediate Regions.

#### GROUP III

Thalassiosira spp. Asteromphalus parvulus Biddulphia striata Eucampia balaustium Chactoceros flexuosum Ch. neglectum Ch. sociale Ch. tortissimum Fragilaria spp. etc. Nitzschia closterium Neritic and ice-edge forms, the majority almost certainly meroplanktonic. Relative importance greatest from beginning to peak of main increase, which is also period of greatest abundance. Decline more rapidly than other groups after main increase. Almost absent from occanic waters at other seasons. Autumnal increase seen in few spp. but only in truly neritic areas.

## Group IV

Chaetoceros atlanticum Ch. castracanei Ch. chunii Ch. curvatum Ch. dichaeta type Ch. dichaeta tenuicornis phase Ch. pendulum Ch. radiculum Ch. schimperianum Oceanic Chaetocerids of medium size. Greatest relative importance from peak of main increase through summer and autumn. Probably most abundant at period of maximum, and in regions subject to neritic influence. Considerable variation in relative importance with latitude on the part of individual members but time distribution very characteristic,

#### Group V

Coscinodiscus spp. (oceanic) Oceanic Discoidae, mostly small. Of considerable importance in the Actinocyclus spp. (oceanic) scanty winter phytoplankton. Almost negligible at other seasons, but Asteromphalus spp. (other doubtless more abundant during main increase. than A. parvulus)

Other categories of microplankton were considered in the qualitative counts but were quite unimportant except in winter. Dinoflagellates were counted but not tabulated, since they were of no numerical importance at a vast majority of the stations studied. *Phaeocystis brucei*, the only Antarctic phytoplankton organism that seems important apart from diatoms, could not be counted and must be considered separately. The holozoic constituents of the net hauls have been tabulated as shown below. As one would expect, they form a negligible proportion of the catches except in winter, when the phytoplankton is so very scanty.

> Holozoic Protozoa Foraminifera *Cymatocyclis* spp. Other Tintinnidae Acanthometridae Challengeridae Other Radiolaria Sticholonche



Copepoda Nauplii Other Crustacea *Limacina* juv. Ova

4

## NOTES ON THE SPECIES

The following notes on the species and categories included in the grouping system are intended to facilitate comparison of the data presented here with previous work. They are arranged in order of the ecological groupings, not taxonomically. Only the most important synonymy is given, and the generic and specific names adopted are those used by Hendey (1937).

## Group I

Fragilariopsis antarctica (Castracane) Hustedt in Schmidt (Hendey, 1937, p. 332)

*Fragilaria autarctica* Castracane (1886); Hardy in Hardy and Gunther, 1935; Hart, 1934.

The most numerous diatom in Antarctic seas, taking the year as a whole, and certainly one of the most important producers despite its small size. Very long curved chains are developed when growth is rapid, which break up in preserved samples. Its abundance in all parts of the Antarctic zone throughout the year makes it seem certain that *F. antarctica* is not necessarily dependent upon a solid substratum at any stage and may therefore be considered as 'oceanic'. It is, however, one of the species most commonly found alive in the pack-ice and hence provides a good illustration of a species which confounds rigid application of the Haeckellian terminology (cf. Hendey, 1937, p. 227, where it is tabulated as both oceanic and neritic, holoplanktonic and meroplanktonic). The strongly silicified frustules are very resistant, and are the most plentiful recognizable remains in the stomachs of herbivorous zooplankton, in diatomaceous oozes and muds, and in the guano of carcinophagous birds.

## Nitzschia seriata Cleve (?+N. delicatissima Cleve).

Among those who have studied Antarctic material in recent years, Hendey, Hardy and myself have not been convinced that N. delicatissima occurs there. Very thin forms are to be found, especially far south among pack-ice, but there appears to me to be a continuous but somewhat irregular gradation in width of the cells from north to south, ranging from typical N. seriata of the largest size downwards. Workers in the northern hemisphere record both species as reaching their greatest abundance near the junction of Atlantic and polar waters, with a tendency for N. seriata to be the more polar of the two (Braarud, 1935, p. 97, and others). I believe that we are almost certainly dealing with phases of one species N. seriata in the far south, but prefer to use the indefinite heading so long as any doubt exists. Since the organisms so described have the same time distribution, the possibility of confusion is unimportant in broad considerations of the phytoplankton population as a whole such as are attempted here. Hendey (1937, p. 352) is probably wrong in regarding this species as neritic. We find it in the open ocean at all seasons, though it is certainly most abundant in neritic areas. It is much more of a summer form than Fragilariopsis, but has been found alive in pack-ice. I would certainly regard it as oceanic in the sense the word is used in this paper. Where it is abundant, the chains of *Nitzschia seriata* are often very long, but break up in preserved samples. A very cosmopolitan species.

# Distephanus speculum (Ehrenberg) Haeckel.

This widely distributed silicoflagellate is very common in the Antarctic zone, whereas *Dictyocha* is scarcely ever found south of the convergence. *Distephanus* was abundant at the same times and places as Group I diatoms with perhaps a stronger tendency to increase in relative importance near the ice-edge. Great variation in form and in size were to be seen where it was abundant. It has been found in pack-ice, but it is not certain that the individuals were alive.

#### Group II

#### Chaetoceros boreale Baily.

Comparatively rare in this material but sometimes occurred in considerable quantity along with *Ch. crioplnium*, with which it may sometimes have been confused in counting the contorted chains in rich mixed samples—oceanic.

### Chaetoceros criophilum Castracane.

This oceanic species often occurs in dense local concentrations, sometimes in company with other large forms such as *Corethron criophilum*. It tends to increase in importance as one proceeds southwards. The long strong bristles contain chloroplastids and are triturated and swallowed by some of the common Calanoids and Euphausians in spite of their formidable spinose armature. There have been occasions late in the season when observations suggested that this species was dying off. The endochrome turned brown and appeared to degenerate, and the water was full of broken spine fragments, apparently sinking. A chemical analysis of some material dried at about 120° F., carried out by Mr W. J. Copenhagen, showed that the fragments contained an extremely small amount of organic matter. Since it is certain that the spines, which may be up to a millimetre in length, must be bitten off before plankton animals can swallow this species, it may be that rapid break-up of faeces after heavy grazing, rather than death from senescence, was responsible for this state of affairs.

# Rhizosolenia spp. (see Hendey, 1937, pp. 309-20 for synonymy).

These are all essentially oceanic forms within the Antarctic zone. *Rh. hebetata* Baily, *semispina* phase, and *Rh. alata* Brightwell, usually in the *gracillima* phase, are important in local concentrations, mainly in the Intermediate and Southern Regions. In early work stouter individuals of the first named were confused with *Rh. styliformis* Brightwell. Among the smaller forms, *Rh. antarctica* Karsten (not treated by Hendey) and *Rh. chunii* Karsten have been seen in extremely long chains when fresh material was examined—up to twenty-eight and forty-one frustules respectively. Some of the larger and rarer species seem very characteristic of the older and warmer Antarctic surface waters. *Rh. bidens* Karsten and *Rh. simplex* Karsten, in particular, seem confined to the Northern Region and northern half of the Intermediate Region. Except for the local

concentrations mentioned above, however, the genus is unimportant numerically. Auxospore formation is more often to be seen among the solenoids than in any other group, and good examples of this phenomenon in *Rh. alata* are particularly common.

Dactyliosolen antarcticus Castracane (Hendey, 1937, pp. 323-4)=D. antarcticus Castracane+D. laevis Karsten+D. flexnosus Mangin in Hart (1934) and Hardy, in Hardy and Gunther (1935).

The forms described as separate species are treated by Hendey as phases of the 'type', an opinion which I had come to as a result of the work in the field during the third commission. In some one or more of these phases, *D. antarcticus* is to be found throughout the Antarctic zone. It is most abundant in the South Georgia (neritic) area at the time of the main increase, but is more important, relative to the total phytoplankton present, in oceanic areas in autumn and winter. It should therefore probably be regarded as an oceanic species. The less strongly silicified *laevis* phase has a more southerly distribution than the type, which is the reverse of what one would expect from the silica content of the water.

Corethron criophilum Castracane (Hendey, 1937, pp. 325-9, shows how all previously recorded species appear to be but phases of the type)- *C. valdiviae* Karsten, 1905; Hardy in Hardy and Gunther, 1935; Hart, 1934.

The most important solenoid diatom of Antarctic surface waters, to be found, mainly in the *hystrix*, type and *inerme* phases described by Hendey, throughout the whole of the Antarctic zone at all seasons in varying numbers. It is most important in neritic areas, where it sometimes forms almost the whole of the phytoplankton (Hart, 1934, pp. 40, 135), but from the wide distribution of most phases it must be regarded as an essentially oceanic species. Living examples have been seen in pack-ice. Like some other members of Group II this species is locally more abundant as one proceeds southwards, in the open ocean.

There is no doubt that Hendey is correct in applying Castracane's name to the species, but it happens that the taxonomic type phase (that first described) does not correspond to the phases most frequently encountered in nature. For this reason I find some parts of Hendey's descriptions, relating to the other phases, somewhat misleading. In my experience the 'average' *Corethron* of the Antarctic zone is intermediate, as regards size and strength of frustule, between Hendey's *hystrix* and type phases. Auxospores developed from the type phase always approximate more to the *hystrix* phase in these respects, and I find the convexity of the valves too variable within each phase to help in drawing even these elastic distinctions. Karsten's 'species' *C. valdiviae* is certainly nearer the 'average' *Corethron* of Antarctic surface waters than the small fragile *C. criophilum* Castracane that constitutes the type. *C. valdiviae* becomes part of the *hystrix* phase in Hendey's system.

Hendey describes the *inerme* phase, which I had previously referred to as the 'spineless chains' of *C. valdiviae*, as having 'robust cells, usually strongly siliceous'. This is true enough in comparison with the type, but the minute, fragile, extremely weakly

#### NOTES ON SPECIES

siliceous type phase populations are certainly a summer form of the far south, where no wholesale change-over to the spineless chains takes place. In general the spineless chains are very much less robust and less strongly siliceous than the *hystrix*/type intermediates from which they appear to develop in late summer farther north. Hendey's statement (p. 329) '...In *some* specimens the bristles are entirely absent' should I think be altered to 'In *most* specimens...' to bring his description of the *inerme* phase into line with our observations.

I had already put forward the view that the change over to spineless chains might be correlated with temporary shortage of silica, which would account for its complete dominance over the *hystrix*/type intermediates in some localities in late summer (Hart, 1934, p. 185). Analyses for silica were not then available, but subsequent work strongly supports the suggestion, though it is possible that the seasonal change in temperature may also be involved. The latter, however, is very slight in the regions with which we are concerned, less than 3° C. between the peak of the main increase and the time of maximum development of the *inerme* phase. It may be mentioned that in fresh material the chains are often extremely long—up to 2 mm.

I have never seen gelatinous colonies of *Corethron* such as Hendey (1937, p. 327) describes, but the exceptionally small and weak far southern type of *Corethron* is often associated with *Phaeocystis* in pack-ice and develops with that organism in adjacent waters. From Hendey's description of the pale-staining mucilaginous groundwork, with deeply staining granules in addition to the *Corethron* cells, it seems probable that he was looking at a mixture of the two distinct organisms. Where it is abundant, *Phaeocystis* jelly always tends to entangle everything else in the samples. That the granules could be microspores appears very doubtful. Gross (1937, p. 39) doubts whether microspores really exist among centricate diatoms. I have seen inclusion bodies similar to those described by Karsten (1905, pp. 108–9, Taf. XIV) as microspores of *Corethron*, and mentioned by Hendey, but always in individuals considerably larger than the small weak ice-edge phase. These bodies might indeed give rise to the latter—they are often nearly as big while still within the mother-cell—but are they really microspores?

It is noteworthy that in a large population of the small weak ice-edge *Corethron* one may at first find no large individuals, but if the stations are closely spaced one soon finds a small proportion of large individuals produced by recent auxospore formation. On occasions the proportion of large individuals was clearly increasing with time, and the auxospore formation could be seen in progress.

It appears to me, therefore, so far as we can say at present, that the real order of events is something like this: Far south minute ('type phase') *Corethron* and *Phaeocystis* subsist together in the pack-ice. Both forms multiply rapidly when liberated in summer, but the *Phaeocystis* soon decreases. Some of the *Corethron* cells, already near the lower size limit for the species, soon begin to form auxospores. From the large cells so developed the small-celled population is maintained—perhaps merely by the well-known progressive diminution through continued division, but quite probably

by production of microspores, for the proportion of large individuals in these far southern populations is never very high. The large individuals would be described as *hystrix* phase, with slighter cell walls than usual, in Hendey's terminology.

A thorough biometric survey of our abundant material of this species would be extremely interesting, but would be far too big a study in itself for inclusion in work upon the phytoplankton as a whole.

# Synedra pelagica Hendey (1937, p. 335)=S. spathulata Schimper; Karsten, 1905; Hardy (Hardy and Gunther, 1935); Hart, 1934; non S. spathulata O'Meara.

Never so abundant as *Thalassiothrix antarctica*, it is of very similar habit but more usually solitary, rarely forming rafts. It is more widely distributed and more definitely oceanic than that species, with which it is easily confused. In general its range is more southerly and it is not found in dense local concentrations.

# Thalassiothrix antarctica Karsten (Hendey, 1937, p. 335) = Th. antarctica Schimper; Karsten, 1905; Hardy (Hardy and Gunther, 1935); Hart, 1934.

The larger individuals of this robust oceanic species are among the longest diatoms known—up to 5 mm. It is particularly abundant at the time of the main increase in the rich mixed plankton of the South Georgia area, but is also to be found throughout the whole of the Antarctic zone. It is commoner in the Northern and Intermediate Regions than farther south and fills even large-meshed plankton nets when abundant. It is frequently colonial, the cells being joined by their truncated ends in rafts, usually in multiples of two up to twenty-four individuals; 'eights' are the most common. Strongly silicified, but the recognizable remains in bottom deposits are mostly fragmentary. Uniformly small and less robust individuals, mostly solitary, have been seen when changes in the *Corethron* population also suggested shortage of silica. Possibly confused with *Thalassiothrix longissima* Cleve and Grunow, at some stations near the northern limit of its range.

# GROUP III

# Thalassiosira spp.

Most of the Antarctic members of this genus may be referred to *Thalassiosira* antarctica Comber and *Th. subtilis* (Ostenfeld) Gran, but *Th. gravida* Cleve also has been recorded from the South Georgia area by Hendey. *Th. antarctica* is very variable and certainly at times confused with the much rarer neritic species *Coscinosira antarctica* Mangin. For descriptions and synonymy of the species of *Thalassiosira* the reader is referred to Hendey (1937, pp. 237-40). In general the genus is strongly neritic but occurs in smaller quantities in the open oceans immediately after the break-up of the pack-ice. The time distribution is very well marked, occurrence of the genus in any quantity being rigidly confined to the early part of the main increase up to the maximum. A majority of the northern members of the genus appear to have a similar time distribution, being referred to by several writers as markedly spring forms. In the far south *Thalassiosira* is most important round South Georgia and in other neritic areas.

#### Asteromphalus parvulus Karsten.

A small species that might perhaps be better placed in Group 1, for it may well be oceanic as Hendey maintains. It is frequently found living in pack-ice, however, and from its time distribution in the plankton fits in well with the neritic/ice-edge group. I have included extremely minute individuals, common along the ice-edge, with this species in the qualitative counts. Some day these may prove to be distinct. This form and the undoubtedly oceanic *A. hookerii* have a much more southerly distribution than other members of the genus.

### Biddulphia striata Karsten.

A strongly neritic species, very rare along the ice-edge in oceanic regions. It is present in enormous numbers in the rich mixed plankton of neritic areas during the main increase and has twice been seen to form very dense local concentrations during the sporadic secondary autumnal increase. The formation of resting spores, more heavily silicified and with punctate valves, was observed during a double crossing of the Scotia Arc near the South Orkney Islands at the end of March 1938, and at South Georgia a week later. These were very irregular in shape, and I think it probable that some of the forms described by Van Heurck, which Mangin united under the name *B. polymorpha* but which Hendey (1937, p. 277) has shown should be referred to as *B. anthropomorpha* Van Heurck, will eventually turn out to be nothing more than resting spores, or 'winter phases', of *B. striata* Karsten.

Eucampia balaustium Castracane, Hendey, 1937, pp. 285-6 – E. balaustium and Moelleria antarctica Castracane (1886, pp. 97-8) – E. antarctica Mangin (1915); Hardy (Hardy and Gunther, 1935); Hart, 1934.

A typical neritic/ice-edge species with the characteristic time distribution of the group, but in neritic areas it persists in some quantity later in the season. Like the others, it is very abundant round South Georgia, in the channels of the Palmer Archipelago, and, still farther south, around the Balleney Islands. The winter (*balaustium* or type) phase is rarely found in chains of more than four frustules, but when the summer (*moelleria*) phase is propagating rapidly extremely long spiral chains are formed which coil up like corkscrews. These soon break up in preserved samples. Intermediates between the two distinct phases are common in short chains of varying lengths and isolated pairs of frustules.

#### Chaetoceros flexuosum Mangin.

A strictly neritic species mainly confined to the more southerly ice-fringed coasts, and encountered at the open ice-edge only late in the year, when it lies far south near the Antarctic continent.

#### Chaetoceros neglectum Karsten.

A typical neritic/ice-edge species in its distribution both in time and space. This form has probably been confused with the smallest phases of *Ch. dichaeta* in the past,

and is therefore not so important as was previously supposed. Most of the South Georgia material I examined was correctly identified as belonging to this species, but I now believe that some of the Bellingshausen and Weddell Sea material should have been referred to minute phases of *Ch. dichaeta* (cf. Hart, 1934, p. 164).

# Chaetoceros sociale Lauder.

Very typical of the group in its space/time distribution, this species is one of the most important ice-edge invaders of truly oceanic habitats. There, however, it never reaches anything like the extraordinary abundance common in truly neritic areas. It was once observed in almost 'pure culture' in Deception Island harbour, to the number of about 25 million cells per litre, estimated by the drop method. The surface waters were visibly discoloured by it on this occasion.

# Chaetoceros tortissimum Gran.

Truly neritic and very local. Abundant at the Palmer Archipelago and at Adelaide Island. Rarely along the ice-edge and only where the ice has receded a long way south.

# Fragilaria spp. etc.

Under this heading I have included those tychopelagic species one normally encounters only in the immediate vicinity of dispersing pack-ice, among which various species of Fragilaria usually predominate, but many other genera are included-rarely, and always in small numbers. If much of our work had been done in littoral waters it would of course have been necessary to give separate heads for such genera as Leptocylindrus also, but this is unnecessary with the material dealt with here. Most important of the ice forms are: Fragilaria curta Van Heurck, F. linearis Castracane and Fragilariopsis sublinearis (Van Heurck) Heiden and Kolbe. Rarer littoral and ice forms that have been included here when necessary are: Cocconeis, Licmophora, Amphiprora, Amphora spp. etc. Round South Georgia Thalassionema nitzschioides Hustedt, a neritic species characteristic of warmer seas, has also been observed since the earlier work was published, and would require separate treatment if we had more inshore samples to consider. It should also be realized that in the material treated here the larger neritic species of Coscinodiscus and other discoid genera were almost absent. Where important they would also demand separate treatment as constituents of Group III.

# Nitzschia closterium (Ehrenberg) Wm. Smith.

This is the most ubiquitous and variable of all neritic diatoms. In the Antarctic zone it is commonest far south, in a very minute phase which in fresh samples can often be seen to form chains of from three to twelve frustules. In the ice itself larger solitary phases are usually to be found. We found *N. closterium* frequently in company with *Phaeocystis* immediately after the ice melted, though it is apparently almost absent from oceanic waters at other times. Lucas has recently described a similar apparent relation with *Phaeocystis* in the North Sea (1940, p. 128). It is partly due, no doubt, to clogging

#### NOTES ON SPECIES

of the filtering apparatus by the *Phaeocystis* jelly, which increases the chances of the minute *Nitzschia closterium* being retained. Our centrifuge samples, however, showed that although present elsewhere when not captured in nets, *N. closterium* was definitely abundant in the same areas as *Phaeocystis*. This cannot be ascribed to more complete sedimentation in the centrifuge tubes due to presence of *Phaeocystis*, because the plankton was rich enough to enable us to work with volumes of water so small that *Phaeocystis* colonies were quite often not included. It seems likely, therefore, that the association is a real one, as Lucas is inclined to believe. Such quantities of *Nitzschia closterium* as have been captured by our net methods, which admittedly are not adequate for such a small frequently solitary species, shows a time distribution typical of our neritic/ice-edge grouping.

#### GROUP IV

# Chaetoceros atlanticum Cleve.

The most important member of the group in the northern region of the Antarctic zone, this cosmopolitan oceanic species shows its greatest absolute abundance in areas subject to neritic influence at the time of the main increase. Its importance relative to the other phytoplankton present, however, is typical of the group, being greatest during the post-maximal decrease and in autumn, in oceanic regions. *Ch. atlanticum* diminishes in importance as one proceeds southwards, but even in the southern region small numbers are to be found from time to time.

# Chaetoceros castracanei Karsten.

To be found in all parts of the Antarctic zone, and its time of maximum relative importance is the same as that of the other oceanic chaetocerids—post-maximal, not earlier as with all the members of the neritic/ice-edge group. *Ch. castracanei* increases in importance as one proceeds southwards.

# Chaetoceros chunii Karsten.

The time distribution of this species shows it to be most important during the postmaximal period in all parts of the Antarctic zone, i.e. long after the ice has receded in the oceanic regions. No doubt its absolute abundance may be greater in neritic areas earlier in the year, but almost all Antarctic plankton diatoms reach their greatest abundance in neritic areas at the time of the main increase, and I am sure no one would proceed to describe them all as neritic species for that reason alone. *Ch. chunii* is widely distributed, rather more important in the northern regions and areas than farther south.

# Chaetoceros curvatum Castracane.

This oceanic, usually solitary species, seems to find its optimum in sub-Antarctic and perhaps sub-tropical waters. It was found, however, in small numbers throughout the year in the Northern and Intermediate Regions of the Antarctic zone. Very rare farther south.

DXXI

#### Chaetoceros dichaeta Ehrenberg.

An oceanic, cosmopolitan species showing great variation in size and form. One of the most important members of the group, especially in autumn, in all parts of the Antarctic zone. It is much more common in the extreme south than *Ch. atlanticum* and tends to alternate with that species in its space/time distribution elsewhere.

#### Chaetoceros dichaeta tenuicornis phase.

I use this term to describe the minute form of *Ch. dichaeta* which is perhaps the most numerous oceanic chaetocerid of the Antarctic zone. The characteristic flexure of the bristles that led Mangin (1915, p. 43) to describe it as *Ch. dichaeta* forma *tennicornis* is a variable character, however, and is not shown by all individuals. The phase usually occurs in short chains of three to six frustules, but longer ones are quite common. It has certainly been confused with *Ch. neglectum* in some previous work, including my own (Hart, 1934) (see note on the latter species in this paper). *Ch. dichaeta tennicornis* phase shows a marked increase in relative importance as one proceeds southwards, and is the most important member of the group in the southern region. It is abundant from the time of the main increase onwards, with maximum relative importance much later than the Group III forms.

#### Chaetoceros pendulum Karsten.

Widely distributed in the Antarctic zone but in very small numbers relative to the rest of the phytoplankton present. I have here treated it as oceanic rather than neritic as Hendey has done, but it reaches its maximum relative importance earlier than other Chaetocerids so that his opinion may be the sounder. If so it should be transferred to Group III, but it occurred in such small proportions in our catches that such a change would not affect the general picture presented.

# Chaetoceros radiculum Castracane.

An oceanic species found in all parts of the Antarctic zone in relatively small numbers. The bulbous swollen bristles of the solitary cells, and of the terminal cells of the short chains, are sometimes recognizable in bottom deposits. A peculiar phase, at first suspected of being a new species, was sometimes seen far south. The cells were broad, very weakly silicified, having a very hyaline appearance and strongly accentuated octagonal outline in girdle view; the bristles short and degenerate, often almost invisible. This phase was only seen in rather long chains which evidently broke up easily, but at length some were found with the swollen terminal bristles so characteristic of the species. *Ch. radienlum* is never a major constituent of the phytoplankton as a whole, but reaches its greatest relative importance in autumn in the Northern and Intermediate Regions.

#### Chaetoceros schimperianum Karsten.

Hendey is possibly right in regarding this species as neritic rather than oceanic—its time distribution in the open oceans is nearer to that of Group III than that of the majority of our Group IV species, but it was so widely distributed that we have regarded it as oceanic. It decreases in relative importance as one proceeds southwards.

#### GROUP V

#### Coscinodiscus spp. (oceanic).

Small numbers of this genus occur in minor quantities in the open oceans throughout the year and are important in the scanty winter phytoplankton of the northern region. The same remarks apply to:

Actinocyclus spp. (oceanic).

#### Asteromphalus spp. (other than A. parvulus).

These are most abundant at the time of the main increase in the Northern Region, but most important in winter. A. hookerii Ehrenberg is numerous much farther south than the others—A. regularis Karsten, A. roperianus Ralfs ex Pritchard, A. brookei Bailey, and other still indeterminate forms.

# ITINERARIES OF THE PHYTOPLANKTON OBSERVATIONS DURING THE THIRD, FOURTH AND FIFTH COMMISSIONS OF THE R.R.S. 'DISCOVERY II'

The positions of the stations at which phytoplankton observations were obtained within the Antarctic zone, during the third commission of the R.R.S. 'Discovery II', are shown in Figs. 3 and 4. On Fig. 3 the boundaries of the biogeographical regions and areas previously described are also shown. The first experiments with the Harvey net were made in sub-Antarctic water on the outward voyage from Tristan da Cunha to South Georgia, so that we were proficient in the use of the new methods by the time the Antarctic convergence was reached a little to the north and east of the South Georgia area. Here we found the main diatom increase near its peak and twelve hauls obtained during 27 November-4 December 1933 yielded very high values. Proceeding south-westwards across the Scotia Sea, and through the western end of Bransfield Strait to  $67^{\circ} 45 \cdot 3'$  S in approximately  $80^{\circ}$  W, much less phytoplankton was encountered. One station off the Palmer Archipelago yielded a fairly rich haul, but on working up the  $80^{\circ}$  W meridian the comparative poverty of the phytoplankton in the eastern South Pacific area, in the middle of December, was very apparent.

We next crossed the convergence about the time of the New Year and proceeded westwards on a zigzag course along the Pacific ice-edge into the area north of the Ross Sea, and up to New Zealand at the end of January 1934. This cruise yielded more evidence of the poverty of the eastern South Pacific, and showed uniformly moderate quantities of phytoplankton in the Southern Region increasing as we proceeded westwards.

On the voyage southward from New Zealand, station work was precluded because of the necessity for speed in making the rendezvous with Admiral Byrd's supply ship, the 'Bear of Oakland', to whom we were transporting an additional medical officer and stores. Observations began again in the last week of February in 72° S in the Ross

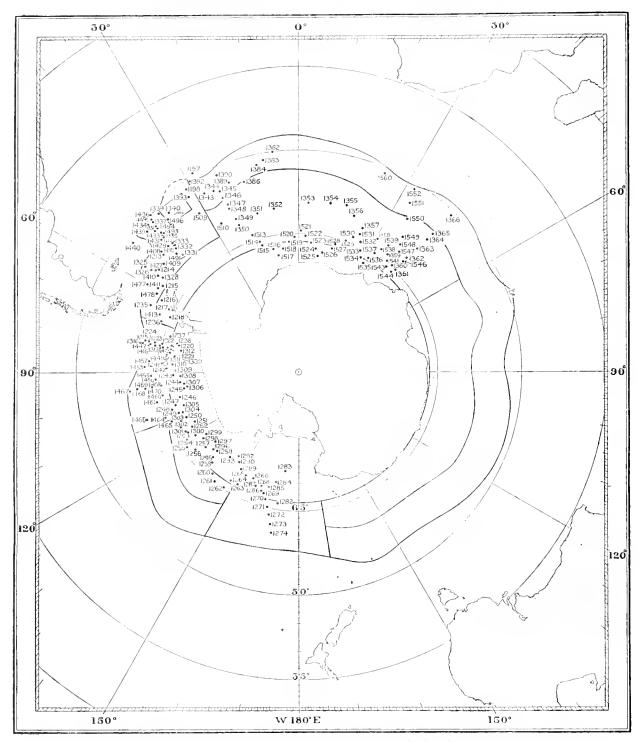



Fig. 3. Positions of observations obtained within the Antarctic zone during the third commission of R.R.S. 'Discovery II', excluding those from the South Georgia area which are plotted separately in Fig. 4.

#### ITINERARY: THIRD COMMISSION

Sea. From there we worked eastwards across the Pacific in a rather higher southern latitude than before, most of the observations being made south of the Antarctic circle. This cruise showed larger quantities of phytoplankton than had been encountered in the Southern Region in January, until the end of the first week of March. In the second week of March there was a distinct falling off, but by that time we were working into the eastern South Pacific area, which subsequent work has shown to be consistently

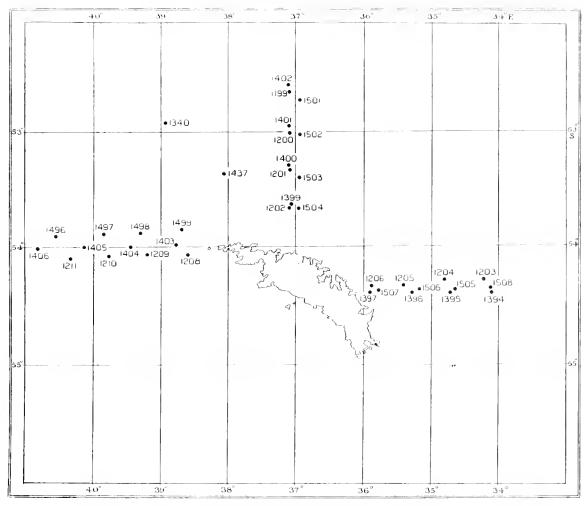



Fig. 4. Positions of the observations obtained in the South Georgia area during the third commission of R.R.S. 'Discovery II'.

poorer in phytoplankton than others. Fig. 5 indicates the order of the quantitative differences observed during this cruise.

Two lines of stations worked in the Scotia Sea early in April showed scanty phytoplankton, though there was a hint of slight secondary autumnal increase at two of them. The long eruise eastwards in the autumn was carried out mainly in the Intermediate Region. At first the phytoplankton was very scanty, but during the first week of May distinct indications of autumnal secondary increase were observed. Thereafter the ship was working in more northerly waters until refitted at Simonstown (South Africa).

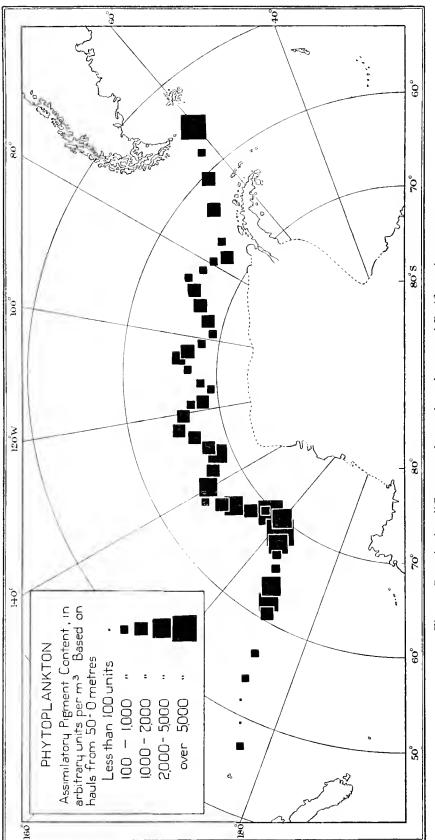



Fig. 5. Quantitative differences observed on the second Pacific cruise, 1934.

We sailed to the south-west again early in August 1934, and obtained good evidence of the negligible quantities of phytoplankton in winter in the Northern Region, on our way to South Georgia. From 25 August to 3 September, in the South Georgia area, the quantities were more than twice as great—still very small. During the following week it was found that in the Scotia Sea the values, though lower than at South Georgia, were double those obtained in corresponding latitudes in the open ocean a fortnight earlier, but in the castern South Pacific they were still negligible.

Between 26 September and 12 October a double series of observations in the Scotia Sea showed that the phytoplankton had increased to three or four times the values observed earlier in September, though still poor when considered in relation to the quantities to be found there later on, during the main increase.

During the first half of November an extended series of observations was made in the eastern South Pacific. The main increase seemed to be in progress from 2 November, when the first estimation exceeding 1000 units of plant pigments per m.<sup>3</sup> was obtained. The values, however, were low even when compared with those for other oceanic regions at this season. Possibly the weather conditions, which were exceptionally bad throughout this cruise, may have been, in part, responsible for this. A uniform poverty of phytoplankton in the eastern South Pacific seems to be the rule at all seasons, however, when we compare the results with those from other areas.

For the next two months the ship was engaged in carrying stores for the British Graham Land Expedition, and in survey work round the South Shetland Islands. No routine phytoplankton observations were made, but interesting observations on the exceptionally dense neritic development at Deception Island and in de Gerlache Strait were possible on two occasions.

At the conclusion of the survey programme a line of stations was worked from the South Orkney Islands northwards across the Scotia Sea, beginning on 23 January 1935. At the two southernmost stations, nearest to the shoal water of the Scotia Arc, a very rich neritic phytoplankton was encountered. Farther north the quantities observed were more moderate. About the beginning of February some moderate hauls were obtained to the north of South Georgia, but east of the more southerly part of that island the phytoplankton was poor.

The work of the third commission was concluded by a long cruise eastward across the Intermediate and Southern Regions of the Antarctic zone, south of the Atlantic and beyond to 43° E, during February and March 1935. Some high values were recorded in both regions up to the third week of February, but the phytoplankton was evidently distributed very irregularly, with considerable evidence of heavy grazing causing local scarcity. During the latter part of this cruise the values in the Intermediate Region fell off indicating post-maximal decrease, while slightly higher values in the Northern Region in March may have indicated the beginnings of the secondary autumnal increase. On leaving Antarctic waters observations were continued northwards through the Mozambique Channel before the ship made her way home through the Red Sea and the Mediterranean.

During the fourth commission the phytoplankton estimations were carried out by our assistant, Mr W. F. Fry, under the supervision of Mr J. W. S. Marr. The positions of the stations considered here are shown in Figs. 6 and 7. Work in the Antarctic zone was begun late in November 1935, on an eastward cruise along the ice-edge south of the Indian Ocean. The observations were arranged along a series of zigzags with the ice-edge as the southern turning point for each leg of the course, as in most of our long range work. Quantities of phytoplankton were very moderate in both Intermediate and Northern Regions, with indications of the beginning of the main increase at the end of November. It may, of course, have been an exceptionally late season, but we have subsequently found indications of similar moderate development in November, followed by a very sudden main increase, in this part of the Northern Region. The average position of the Antarctic convergence is slightly farther south there than it is to the south of the Atlantic. At the same time, the land to the south is somewhat farther north, so that to the south of the Indian Ocean a slight degree of 'telescoping' in the north-south gradient of the conditions may occur. This is probably the cause of the incidence of the main increase being slightly later there, but the difference does not seem to be sufficient to necessitate consideration of this region as a 'special area'.

At the beginning of December it became necessary for the ship to proceed at once to the rescue of Lincoln Elsworth at 'Little America'. This she did after a record passage through the Ross Sea pack, and observations were resumed far south in the Ross Sea at the middle of January 1936. Eighteen stations were worked south of the Antarctic circle, some as far as 78° S. Most of the hauls were very moderate in quantity, as we had already learnt to expect at this time of the year in the Southern Region. Two stations yielded richer catches towards the end of the month. Mr Marr's preliminary qualitative observations indicate that there are probably features peculiar to these most southerly waters known, but quantitatively the results fit in quite normally with those from the Southern Region in general.

On the voyage northwards to Australia very small quantities of phytoplankton were recorded in February in the Intermediate Region, and throughout the month of March when the ship was working in the Northern and Intermediate Regions south of Australia, the quantities observed were also poor. The summer post-maximal decrease is evidently marked in these waters. Observations on the southward run suggested that it may be even more marked in the Intermediate than in the Northern Region.

After crossing the Indian Ocean westwards to South Africa in lower latitudes, observations in the Antarctic zone were resumed at the end of May and continued throughout the first fortnight of June, between o and  $20^{\circ}$  E, where several results from the Intermediate as well as the Northern Region were obtained. In the Intermediate Region some vestiges of the autumnal secondary increase were still apparent—possibly as a result of transport from farther south. To the north minimal winter values only were recorded.

The following season, after refitting at Simonstown, the ship crossed to South Georgia on the usual zigzag type of course, the general direction being south-west.

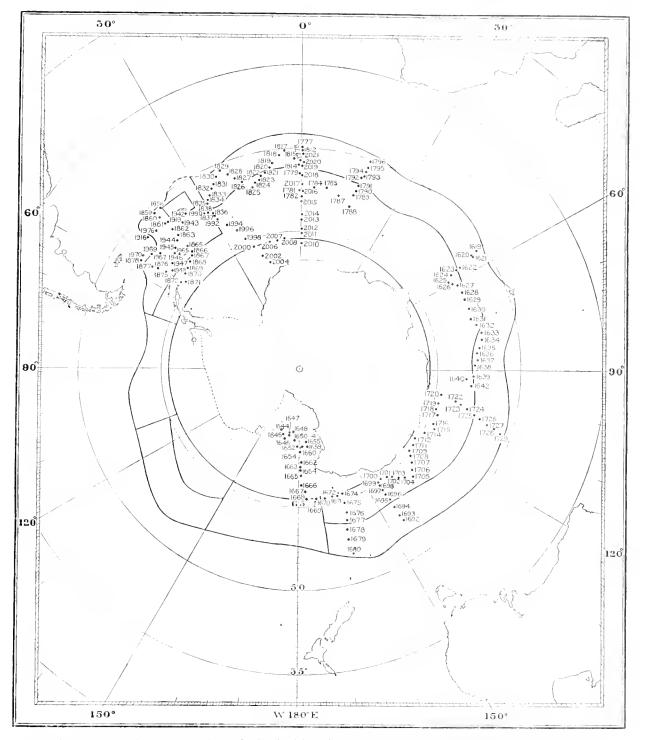



Fig. 6. Positions of the observations obtained within the Antarctic zone during the fourth commission of R.R.S. 'Discovery II', excluding those from the South Georgia area which are shown separately in Fig. 7.

DXXI

Owing to the northerly position of the ice-edge at this time of year (September-October 1936) most of the observations fell in the northern region of the Antarctic zone. They showed the first small increase above the minimal winter values quite clearly.

At South Georgia a considerable plankton survey was undertaken which showed the main increase to be beginning sporadically during the last week of October, when three really high phytoplankton concentrations were observed. During the first fortnight of

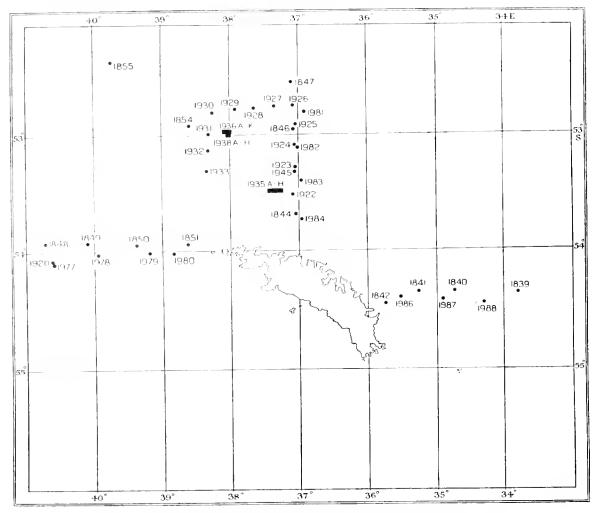



Fig. 7. Positions of observations in the South Georgia area during the fourth commission of R.R.S. 'Discovery 11'.

November observations were obtained suggesting a similar sporadic increase in some parts of the Scotia Sea, but on a smaller scale, as we have learnt to expect. Farther south, in the Weddell Sea, no production on a considerable scale was yet apparent.

After an extensive series of observations in sub-Antarctic waters west of the Falkland Islands, work was continued in the South Georgia area during the first three weeks of December 1936. It appeared that the main increase was at or just past its maximum, and many high values were recorded. In addition to the routine plankton survey three 24 hr. stations were worked in phytoplankton concentrations ranging from the highest

Contraction of the second second

203

to the lowest that could be found, with a view to testing Professor Hardy's animal exclusion hypothesis. The results obtained at these stations appear incidentally to provide valuable proof that our methods are adequate for broad determinations of the order of magnitude of the standing crop, of the type aimed at in this paper.

At the New Year 1936–7 a line of stations was worked south-westwards across the Scotia Sea, showing two fairly high values to the north. For the next six weeks the ship was engaged on hydrographic survey work round the South Shetland Islands. Plankton work was resumed in the middle of February with a line of stations worked northwards across the Scotia Sea to the Falkland Islands. It was evident that the post-maximal falling off was considerable. Early in March extremely varied quantities of phytoplankton were observed round South Georgia, in keeping with our ideas of the irregularity of the autumnal increase.

The work of the fourth commission in the Antarctic zone was concluded by a cruise eastwards to the meridian of Greenwich, mainly in the Intermediate Region, followed by a line of close stations worked due northwards to the Antarctic convergence. The chief result was a clear demonstration of an autumnal secondary increase in the Intermediate Region in the latter half of March 1937.

The phytoplankton observations obtained within the Antarctic zone during the fifth commission of the R.R.S. 'Discovery II' are shown in Figs. 8 and 9. The work falls naturally into two parts: a circumpolar cruise, working on a zigzag course east about from Cape Town, during the summer and autumn of 1937–8, and a long series of repeated observations between o and  $20^{\circ}$  E, starting at mid-winter and continued throughout the whaling season of 1938–9.

Leaving Cape Town in November 1937, we first crossed the Antarctic convergence on the 20th, and until 10 December when we were making our way northwards to Fremantle, all the observations fell within the Northern and Intermediate Regions. At first the quantities of phytoplankton recorded were small, though greater than the minimal winter values. The main increase became apparent rather suddenly, the first estimations exceeding 1000 units of plant pigments were recorded on 27 November in the Northern Region and on 7 December in the Intermediate Region. Prior to this the Intermediate Region was appreciably the poorer of the two.

We sailed from Fremantle before the New Year and next crossed the convergence on 6 January 1938. Our zigzag course took us eastward mainly through the Intermediate Region to the vicinity of the Balleney Islands before we worked north to New Zealand. At the Balleney Islands we encountered an extraordinarily rich neritic phytoplankton, and two stations near by showed that the main increase in the extreme north of the Southern Region had begun by the third week in January. Throughout the main part of this cruise it appeared that the main increase in the Intermediate Region was in progress, but some low values were recorded, and it seemed that grazing might already be causing local poverty. In the Northern Region the post-maximal decrease was clearly apparent at the end of January. Grazing again seemed a possible explanation an extraordinary profusion of salps at this time has repeatedly been observed slightly

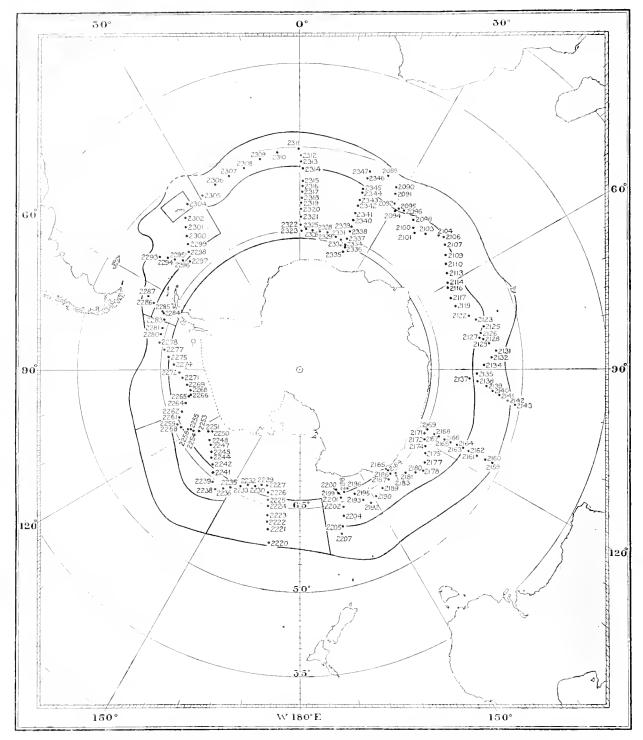



Fig. 8. Positions of the observations obtained within the Antarctic zone during the circumpolar cruise, fifth commission of R.R.S. 'Discovery II'. The observations from the repeated cruises between 0 and  $20^{\circ}$  E are shown separately in Fig. 9.

farther north, and one species at least extends southwards into our Northern Region in abundance.

After leaving New Zealand we made our way southwards through the 'special area' north of the Ross Sea, where the more southerly position of the Antarctic convergence renders the distinction of Northern and Intermediate Regions impossible. Here the phytoplankton in the middle of February was poor—almost certainly post-maximal. Our eastward crossing of the Pacific during the latter half of February and the first week in March was carried out in high latitudes. Most of the stations fell in the Southern Region, where the main increase was evidently proceeding up to the end of February, with slight falling off subsequently. Working northwards through another 'special area', the eastern South Pacific, a moderately rich phytoplankton was observed at the two most northerly Antarctic stations, which may have represented the secondary autumnal increase in this generally poor locality. Throughout the remainder of March 1938, however, when our work lay in the Scotia Sea, it was evident from the very small quantities of phytoplankton observed that the post-maximal decrease was still in force, and that any autumnal secondary increase would probably come later.

The circumpolar cruise was completed by a line of stations from South Georgia eastwards to the meridian of Greenwich, whence observations were continued southwards from the vicinity of the Antarctic convergence to 65°S, and after an eastward zigzag, northwards from 67°S up the 20°E meridian to South Africa. This last portion of the circumpolar cruise occupied the greater part of April 1938, and covered the same area that was worked in detail throughout the following season. The results gave clear indications of the secondary autumnal increase in the Northern Region. In the Intermediate Region the quantities of phytoplankton were small, but slightly greater, on the average, than those recorded in March and on other occasions.

After refitting at Simonstown we again sailed south on 1 July 1938, on the first of seven repeated series of observations between 0 and  $20^{\circ}$  E. On each of these cruises our general procedure was the same. We aimed to reach the Greenwich meridian in about 40° S, worked due south to the ice-edge, then turned to the north and east until we reached the neighbourhood of 10° E, then turned south and east for the ice-edge, and finally northwards in about 20° E. The extent of the north and south legs of this W-shaped course necessarily varied with the influence of the weather and the position of the ice-edge upon our fuel consumption. Throughout the winter and up to December 1938 the ice lay around  $55-56^{\circ}$  S, and it was possible to work north until we had nearly reached the Antarctic convergence again in about 10° E on each of the first five cruises. Later the ice-edge lay some hundreds of miles farther south. In February-March 1939 we reached the edge of the Antarctic continent itself between 0 and  $4^{\circ}$  E, and it became necessary to cut out the middle zigzag altogether. This particular cruise gives a good example of the enormous distances that have to be covered in this type of work. Proceeding from Cape Town to approximately 40° S in 0°, down to the Antarctic continent and back up the 20° E meridian, the ship actually had to steam farther than she did in her crossing of the South Pacific the previous season.

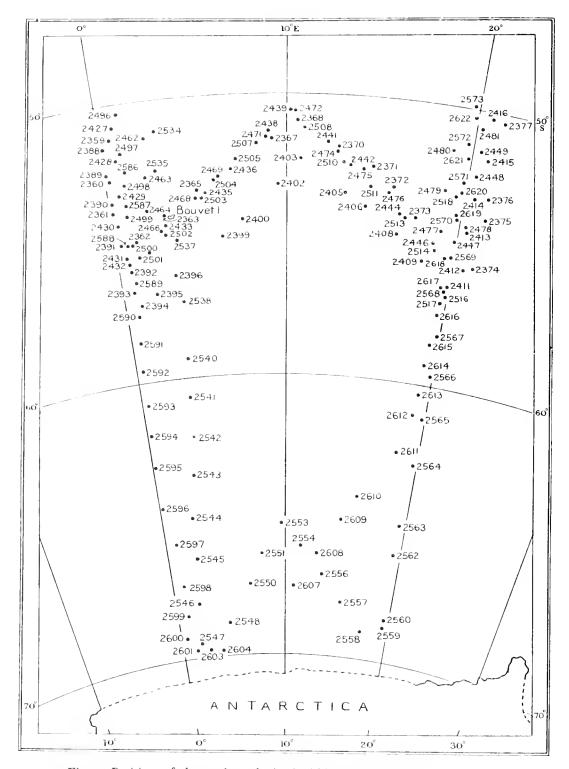



Fig. 9. Positions of observations obtained within the Antarctic zone during the repeated cruises, July 1938–March 1939.

The results of these repeated cruises were very valuable in giving a complete picture of the annual cycle in the Northern Region. The Intermediate and Southern Regions were reached only from January to March 1939, when the results confirmed our previous findings. It also became clear that the abundance of *Phaeocystis*, particularly in the Intermediate Region, was confined to the period immediately after the break-up of the pack-ice. In the Northern Region the quantitative phytoplankton cycle followed a course we expected to find normal from our earlier and more widely dispersed observations, except that the maximum was rather later. Apparently the season 1938–9 was a rather 'late' year, as instanced also by the northerly position of the ice-edge as late as December.

# DESCRIPTION OF THE OBSERVATIONS OBTAINED THE NORTHERN REGION

The seasonal variation in pigment content of the phytoplankton of the Northern Region, as indicated by meaning all our available estimations at mean dates, is shown by the figures in Table 1, and also in graphic form in Fig. 10. It will be noted that the November figure is lower than that for October, and that this is thought to be an anomaly due to the limitations of the data, and not representative of the true state of affairs. The majority of our November figures were derived from the part of the Northern

| Mean date    | No. of<br>observations | Mean units<br>of pigments<br>per m. <sup>3</sup> |
|--------------|------------------------|--------------------------------------------------|
| 16 July      | 16                     | 50                                               |
| 20 August    | 29                     | 60                                               |
| 27 September | 22                     | 120                                              |
| 14 October   | 33                     | 520                                              |
| 20 November  | 24                     | 380                                              |
| 6 December   | 35                     | 1690                                             |
| 15 January   | 12                     | 1210                                             |
| 12 February  | IO                     | 960                                              |
| 19 March     | 22                     | 560                                              |
| 16 April     | 19                     | 840                                              |
| 21 May       | 4                      | 290                                              |
| 9 June       | 8                      | 50                                               |

Table 1

Region lying south of the Indian Ocean, where we have twice observed that the main increase seems to take place rather later and more suddenly than elsewhere (cf. Itinerary). The October figures, on the other hand, were widely distributed. There is little doubt that if more widely distributed observations for November were available, the shape of the graph would approximate to that shown by the pecked line, over the period in question. As already remarked, it does not seem advisable to regard the area south of the Indian Ocean as essentially different from the rest of the Northern Region

on this account alone, for at other seasons the agreement is good. The figures given in Table 2, obtained over the short period covering the main increase in the locality in 2000t

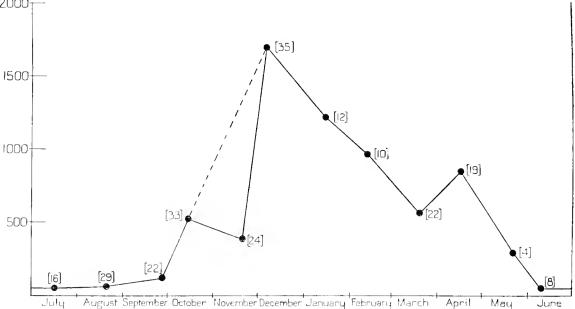



Fig. 10. Northern Region. Annual variation in plant pigments per m.<sup>3</sup>; means of all available observations (50-0 m. hauls) at mean dates. Numbers of observations in brackets. Note anomalous figure for November mentioned in text.

question during the circumpolar cruise in 1937, clearly show how maximal values were observed early in December in spite of the November values being lower than elsewhere.

| r | Г | a | b | le | 2 |
|---|---|---|---|----|---|
|   |   |   |   |    |   |

| Station | Date       | Colour mnits<br>per m. <sup>3</sup> ,<br>50–0 m. hauls | P mg.<br>atoms<br>per m. <sup>3</sup> | Si mg.<br>atoms<br>per m. <sup>3</sup> |
|---------|------------|--------------------------------------------------------|---------------------------------------|----------------------------------------|
| 2089    | 20. xi. 37 | 450                                                    | 2.11                                  | 38.6                                   |
| 2001    | 21. xi.    | 190                                                    | 2.03                                  | 36.6                                   |
| 2093    | 22. xi.    | 130                                                    | 2.00                                  | 33.3                                   |
| 2106    | 27. xi.    | 1170                                                   | 2.05                                  | 28.8                                   |
| 2131    | 5. xii. 37 | 5760                                                   | 1.24                                  | 14.4                                   |
| 2141    | 9. xii.    | 1630                                                   | 1.98                                  | 15.8                                   |
| 2143    | 10. xii.   | 5040                                                   | 1.20                                  | 2.5                                    |

The very close agreement between nutrient salt content of the water and estimated quantities of plant pigments is also clearly shown by this table. It would not be so good over a longer period when the effect of the biological uptake would be masked by regeneration or replacement in varying degrees, but it seems to me that if our Harvey estimations do not reflect the real quantity of phytoplankton production fairly closely, the high degree of correlation with chemical data obtained quite independently by our hydrologists at the critical period would be utterly impossible. The seasonal variation in the quality of the phytoplankton of the Northern Region would seem to be best exemplified by the repeated series of observations carried out between o and 20° E during the season 1938–9, with some work carried out in the same area during the previous autumn. This seems to give a better representation of the sequence than the consideration of material collected in different seasons. Observations in other parts of the northern zone tallied extremely well with this series, however, and it was this that led to the possibility of recognizing the biogeographical zonation used in this paper. It will be realized that it is impracticable to give all the data for the whole of the Northern Region in detail. The figures for the 1938–9 series are given in summarized form in Table 3. This gives the mean percentage at mean dates for each category of microplankton included in the 'qualitative counts' in ordinary type, and the number of stations at which each was observed is given as a fraction of the total number of observations available.

It is readily seen that Group I, oceanic pennate diatoms with *Distephanus speculum*, was important at all times except in autumn, and to a lesser extent during the postmaximal decrease period. *Fragilariopsis autarctica* was most important in the early part of the main increase, but formed a considerable proportion of all microplankton present at all seasons except late autumn. *Nitzschia seriata* was most important at the peak of the main increase and subsequently through late summer and autumn.

The larger diatom species of Group II were most important during late summer and autumn, when large local concentrations of *Chaetoceros criophilum*, *Rhizosolenia alata* and *Rh. hebetata semispina* phase were encountered. *Corethron criophilum*, the most important member of this oceanic group, was present in moderate proportion at all seasons, most important during the early part of the main increase and during the postmaximal decrease.

The position of the neritic and ice-edge forms (Group III) in the qualitative sequence is very clearly brought out by the figures in the table. *Chaetoceros sociale* and *Thalassiosira* spp. were by far the most numerous in this truly oceanic area. With the rest of the group they reached their maximum importance as the ice dispersed—immediately before the peak of the main increase in the season studied. At other times they formed a relatively insignificant proportion of the phytoplankton.

The oceanic Chaetocerids (Group IV) were more evenly distributed throughout the year, mainly owing to the ubiquity of the two leading members of the group in the Northern Region—*Chaetoceros atlanticum* and *Ch. dichaeta*. Even with these, however, the tendency to show maximum relative importance during the post-maximal summer decrease and in autumn, characteristic of the group as a whole, was fairly clear.

The small oceanic Discoidae (Group V) were quite unimportant except in the extremely scanty winter phytoplankton, and the same may be said of the non-holophytic members of the microplankton that were included in the qualitative counts.

The colonial green flagellate *Phaeocystis brucei*, whose numbers cannot be estimated by our methods and which is clearly a first colonist when pack-ice melts and does not long persist thereafter, is naturally of only local importance in the Northern Region,

Table 3. Northern Region. Seasonal variation in relative abundance. Individual categories. Mean percentages and frequency of occurrence at mean dates

| Mean date                                                     | 12 Apr.<br>1938    | 27 Apr.<br>1938    | 16 July<br>1938        | 21 Aug.<br>1938    | 8.<br>8        | 27 Sept.<br>1938      |                                                                    | 30 Oct.<br>1938 | 7 Dec.<br>1938 | 3 ° C          | 16 Jan.<br>1939     | 1 Feb.<br>1939      | 25 Feb.<br>1939 |                 | 13 Mar.<br>1939 |
|---------------------------------------------------------------|--------------------|--------------------|------------------------|--------------------|----------------|-----------------------|--------------------------------------------------------------------|-----------------|----------------|----------------|---------------------|---------------------|-----------------|-----------------|-----------------|
| Fragilariopsis antarctica                                     | 3                  | +'z <b>2</b> .1    | Г                      | 27-8               | 20/20          | 52.7 18/18            | 10                                                                 |                 |                |                | 18.6 3/3            | 25.2 5/5            | ε 0.11          | 4 20.7          | 7 6 6           |
| Nitzschia seriata (? + delicatissima)<br>Distebhanus speculum | 5:3 2/5<br>0:5 2/5 | 2:4 3/4<br>1:3 3/4 | 51/1 1.0<              | 1.I<br>2.I         | 12/20<br>17/20 | 81/f1 2.0<br>81/8 0.1 | 18 3.4<br>18 1.1                                                   | 71/17           | 21 - 13.4<br>  | 12/18          | 31.8 3/3<br>0.2 1/3 | 17.1 3·5<br>1.1 5/5 | 11:7 3          | 7.0<br>+        | 3 0/6<br>4 2/6  |
| Total Group I                                                 | vi v<br>±          | 5.2 3/4            | I                      | 30.6               |                |                       | 18 33.1                                                            | 1/11            |                |                |                     |                     | 54.2 4/         | 4 32.           | 2 6/6           |
| Chaetoceros boreale                                           | 1                  |                    | ı<br>I                 | 1                  |                |                       | I.O                                                                | 2/17            |                | 5/18           | 1.4 3/3             |                     | 2.2 2           | 4<br>0          | 7 2/0           |
| Ch. criophilum                                                | 5.2 4/5            | 50.5 4/4           |                        | +.;<br>;<br>;<br>; | 17/20          | 2.3 15/18             |                                                                    | 16/17           | 3.1            | 7/18           | 4.2 3/3             | 4.5 5/5             | 12.8 4          | ÷ ở             | 2 2.0           |
| Nutzosotenta spp.<br>Dactivliosolen antarcticus               | 40.4 5/5           | 3:13<br>4/4<br>2/3 | 51/FI 1-112            | N -                | 20/20          |                       | 0.7                                                                | 17/17           | 3.2            | 51/51<br>15/18 | 1.9 3/3<br>0.7      | 3.6 5/5             | +               | -<br>-          | 0/0 6.          |
| Corethron criophilum                                          | n n                | 1.5 3/4            |                        | ŝ                  | 20/20          | 8.7 IS/18             | 13.8                                                               |                 |                | 18/18          | 3-6 3/3             | 2.0 5/5<br>5/5      | + + 6.9         | + <del>-</del>  |                 |
| Synedra pelagica                                              |                    | )<br> <br>         |                        |                    | 3/20           |                       |                                                                    |                 | ŝ              | 11/18          | 2.0 2/3             | 0.7 2/5             | 0.8 2/          | 0<br>+          |                 |
| Thalassiothrix antarctica                                     | 0.3 1/5            | +/E I.I            |                        | с.o                | 7/20           |                       |                                                                    | L1/01           | H              | 13/18          | 6.4 3/3             | 2.0 5/5             | 6 I 3/          | 4 3.8           | S 6/6           |
| Total Group II                                                | 62.8 5/5           | t/t 1.99           | 20.8 15/15             | 21.2               | 20/20          | 81/81 0.91            | 2                                                                  | 11/11           | 18.2           | 18/18          | 19.6 3/3            | 14.6 5/5            | 24.3 +          | + 54.4          | 0/0 +           |
| Thalassiosira spp.                                            |                    |                    |                        |                    | 1              | /† £.1                |                                                                    | I               | 1 4.4          | 81,51          | 6-8 2/3             | ı<br>I              | 1               | 1               | 1               |
| Asteromphalus parculus                                        | 5/1 I.O            |                    | 1                      | 0.3                | 7/20           | I.0                   | $\wedge$                                                           |                 |                | 4/18           | 0.2 2/3             | 5/1 1.0             | 6.0             | •               |                 |
| Eucompie kalouctium                                           |                    |                    |                        | 2                  |                | 1.0                   | 1.0 < 21/1                                                         | 2/17            |                | 2/18           |                     |                     |                 |                 | 1               |
| Chastoreros Asvinsium                                         |                    |                    |                        |                    | <b>8</b>       |                       | -  <br>                                                            |                 | -              | -              | 51  <br>0.0         |                     |                 | 5  <br>\<br>+ + |                 |
| Ch. neglectum                                                 | !                  |                    |                        |                    |                | 2 7.0                 | 2/18 1.3                                                           | 5/17            |                | 2/18           | 1                   | 5/2 7.0             | 1               | 1               | ļ               |
| Ch. sociale                                                   | 5/1 S.O            | +/I <b>†.0</b>     | ł                      | i.o                | 1/20           |                       | 2/18 8.6                                                           | -               | 18.2 1         | 16/18          | 2/1 <b>t</b> .0     | 4.6 3/5             | 2.5 1/4         | +               |                 |
| Ch. tortissimum                                               |                    | ]                  | <br>]                  | 1                  | 1              |                       | 1                                                                  | 1               | 1              | 1              |                     | +<br>•              | Ì               | 1               | Ĩ               |
| Fragilaria spp., etc.                                         |                    |                    |                        |                    |                | I                     | 1.0 81/1                                                           | 3/17            |                | 6/18           | 1                   | 1.7 3/5             | 1               | - 0.1           | 2 1/6           |
| Nitzschia closterum                                           |                    |                    |                        | ]                  | 1              |                       | I/18                                                               | 1               | _              | 81/11          |                     | 1.0 2/5             | I I.O           | •               | 0/1 I           |
| Total Group III                                               | 0.8 2/5            | +/I <b>†</b> .0    | 1                      | 9.0                | 9/20           | 2.9 11/18             | I                                                                  | 12/12           | 28.7           | 18/18          | 8.3 2/3             | 8.8 3/5             | 1+ 6.8          | + 0.3           | 3 2/6           |
| Chaetoceros atlanticum                                        | I.8 2/5            | +/+ 6.9            | 6.7 12/15              | 6-5 I              | 19/20          | 6-9 16/18             | _                                                                  | Ŧ               | 3.1            | 13'18          | 2.9 2/3             | 6.3 5/5             | + 9.4           | 4 I I 8-8       | 8 6/6           |
| Ch. castracanei                                               |                    | +/1 S.O            |                        |                    | 5/20           |                       |                                                                    |                 |                | 9/18           | 0.5 1/3             | I.6 3/5             | 1-0 z           | .0<br>+         |                 |
| Ch. chunit                                                    |                    | 3.4 2/4            | 0.5 6/15               |                    | 15/20          |                       |                                                                    | 14/17           | 5.5            | 16/18          | 2.2 2/3             | 10.3 5/5            | 5.7             | 4<br>10<br>14   | 5 0<br>2 2      |
| Ch. dichaeta                                                  | 3.0 2/5            | 4.0<br>4.7<br>4.7  | ~0.1 3/15<br>2.1 10/15 | - ×-               | 07/50          | 0.0 11/10             | 0 1 N                                                              | 11/17           | -<br>1 1       | 61/6<br>81/11  | 0.2 2/3             | 0.4 4/5             | 0.0             |                 | 0/4/0           |
| Ch. d. tenuicornis phase                                      |                    | t/I 6.0            |                        |                    |                | 1.6<br>+/             |                                                                    |                 | . 1.1          | 4/18           | 0.5 1/1             | 6.6 3/5<br>6.6 3/5  | ) <del>1</del>  | ; in            |                 |
| Ch. pendulum                                                  |                    | Ì                  |                        | ]                  | 1              |                       | 1                                                                  | I               | 1.0            | 1/18           | , I                 |                     | - 1             | -               | 1               |
| Ch. radiculum                                                 | 5/1 9.I            |                    | >0.1 I/12              | 0.4                | 7/20           | -                     | 1.3<br>1.3                                                         | -               |                | 12/18          |                     | 5/I I.O             | 1               | ò               | 5 1/6           |
| Ch. schimperianum                                             | 1                  |                    |                        | 1                  | 1              |                       |                                                                    |                 |                | 15/18          | 1.7 I/3             | 1.7 2/5             | ,<br> <br>      |                 |                 |
| Total Group IV                                                | 15.2 4/5           | 23.0 4/4           | 6.4 I3/IS              | 15.5               | 19/20          | 13.8 18/18            | 6.61 81                                                            | L1/L1           | 1 o.61         | 18/18          | 18.1 3/3            | 30.1 5/5            | 12.9 4          | + 38.0          | 0/9 0           |
| Coscinodiscus spp.                                            |                    | 0.2 1/4            | 8.3 15/15              | 8.7                | 20/20          |                       |                                                                    |                 |                | 16/18          |                     | o.6 4/5             | 2<br>2<br>0.3   | 6.0 +           | 9/1 6           |
| Activocycius spp.<br>Acteromotialus spr                       | 0.5 2/5            | 4/2 Q.I            | 7.1 14/15              | 6.4                | 20/20          | 2.1 17/18             | 2 2 2<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1<br>2 1<br>2 | - 12/17         | 0.0            | 81/01          | I.0 3/3             | S/1 1.01            | 0.1             | + ;<br>;<br>;   | 4 3/6<br>2/6    |
| Total Group V                                                 | n oo               | 3.1 4/4            |                        | 6 C                | 20/20          | <b>,</b> 0            |                                                                    | I               | -              | 17/18          | 1.7 3/3             | 0.8 4/5             | 2 0.1           | 9.I +           | 9 ±/6           |
| Foraminifera                                                  | 5/1 2.0            | , ]                |                        | · ×                | 18/20          | 81/21 0.0             |                                                                    |                 | 1.0 <          | 2/18           |                     |                     |                 | 1.0 < T         | 1 1/6           |
| Cymatocyclis spp.                                             | <b>,</b> ,         | 1                  |                        | •                  | 6/20           |                       | ò ò<br>^                                                           |                 |                | 4/18           | E/I I.O             | 1.0                 |                 |                 | 9/1 1           |
| Other Tintinnidae                                             | 0.8 3/5            | 0.8 I/4            | 1.1 11/15              |                    | 20/20          |                       |                                                                    |                 | ~              | 10/I8          | I.I 3/3             |                     | £ 6.0           | +.0<br>+/       | 4 3/6           |
| ae                                                            | 8.0                | T<br>T             |                        |                    | 17/20          | -                     |                                                                    |                 |                | 5/18           | 0.1 I/3             |                     |                 | 9.0 +           |                 |
| Chantengenuae<br>Other Radiolaria                             | > 0.1 1/5          |                    | 5.2 15/15              | 1 1.0 ~            | 19/20          | 81/01 4.0             | 1.0 < 81/0                                                         | 3/17            | I.o  <br>^     | 1/18           | 0.I 1/3             | >0.1 1/5            |                 | 4               | 7 3/0           |
| Sticholonche                                                  | 1<br>              | +/z 0.I            |                        |                    | 2/20           |                       | \                                                                  |                 | 1              |                | 1                   | 1                   | •<br>•          |                 | ;               |
| Total Holozoic Protozoa                                       | 2.1 3/5            | I · 8 2/4          | 12.3 15/15             | 8.0                | 20/20          | 4.3 18/18             | I.I 81                                                             | 13/17           | 1.2.1          | 12/18          | 1.4 3/3             | I.O 3/5             | 1.5 4           | /4 I            | 9/5 6.1         |
| Copepoda                                                      | I.I 2/5            | 0.I I/4            | 4.2 15/15              | 1 1.2              | 19/20          | 0.0 12/18             | I.O 81                                                             | 3/17            | 1.0            | 5/18           | <br>                | 0.3 1/5             | 1 2.0           | 4               | 9/1 2.0         |
| Nauplii                                                       | 2.8 3/5            | 0.2 1/4            | 4.2 15/15              | 4.0                | 19/20          |                       |                                                                    |                 |                | 7/18           | 0.2 2/3             | 0.3 1/5             | 0.3 7           | 4               | 9/2 7.0         |
| Uther Crustacea                                               |                    |                    |                        |                    |                |                       |                                                                    | I               |                | 1              | <br>                | 1                   |                 | <br>            |                 |
| Dva Ova                                                       | 1.0                |                    |                        |                    | <u> </u>       | 1.0                   | 1/18 0.1/1                                                         | - I / I - J     |                |                |                     |                     |                 | [ ]<br>         |                 |
| Total Metazoa                                                 |                    |                    | -                      | 6.9                | 06/01          | -                     |                                                                    |                 | ì              | 0110           | c/c c:0             | -1. y.c             | i<br>(          |                 | 911 110         |
| 1 Utal Mictaeua                                               | 1                  | 4/7 50             | 1                      |                    | 07/61          | - I                   | _                                                                  |                 | 0              | 0/10           | 0 12 213            | SIT 0.0             | с.<br>Л         | - + -           |                 |

which is mainly ice-free throughout the year. It was most frequently observed in December 1938, rarely earlier in the year, our earliest record being in September. We have already had occasion to remark that 1938–9 seems to have been an unusually heavy ice year, and it may well be that the heaviest incidence of *Phaeocystis* in the Northern Region is normally somewhat earlier. *Phaeocystis* has not been observed later in the season than December at any time in the Northern Region. At the time of its maximum importance it was present at only nine out of thirty-two stations and abundant at only three of these.

#### THE INTERMEDIATE REGION

As one would expect, it was not possible to obtain many winter observations in the Intermediate Region, but there is no doubt that the pigment values are minimal at that time. Although it was necessary to consider results from different seasons together, the large number of observations for most months that are available renders the mean figures given in Table 4 and graphically in Fig. 11 fairly conclusive, and there seems

| Mean date   | No. of<br>observations | Mean units of pigments per m. <sup>3</sup> |
|-------------|------------------------|--------------------------------------------|
| 23 August   | I                      | 50                                         |
| 12 October  | 2                      | 50                                         |
| 27 November | 19                     | 150                                        |
| 5 December  | 9                      | 630                                        |
| 18 January  | 50                     | 1380                                       |
| 19 February | 44                     | 1130                                       |
| 14 March    | 60                     | 920                                        |
| 22 April    | 30                     | 310                                        |
| 6 May       | II                     | 470                                        |
| 5 June      | 7                      | 220                                        |

Table 4

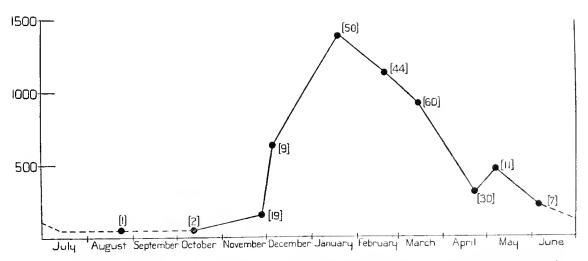



Fig. 11. Intermediate Region. Annual variation in plant pigments per m.<sup>3</sup>, means of all available observations at mean dates. Numbers of observations shown in brackets.

little doubt that the shape of the graph reflects the normal seasonal variation in quantity of standing crop fairly closely. It will be seen that up to the end of November the increase over minimal winter values is but slight. From then until the mid-January maximum the main increase is rapid, followed by gradual falling off through February

|                                                          |                    |                         | _                   |                                  |                               |                              |                                 |
|----------------------------------------------------------|--------------------|-------------------------|---------------------|----------------------------------|-------------------------------|------------------------------|---------------------------------|
| Mean date                                                | 23 Aug.            | 27 Nov.                 | 5 Dec.              | 18 Jan.                          | 24 Feb.                       | 8 Mar.                       | 20 Apr.                         |
| Fragilariopsis antarctica<br>Nitzschia seriata ? + deli- | <u> </u>           | 30'3 10/10<br>17'1 9/10 | 13.4 7.7<br>8.3 0/7 | 24°5 41,45<br>12°7 42 45         | 19.1 11/12<br>13.1 12/12      | 33·6 13/13<br>13·2 13/13     | 24.0 21/23<br>3.5 16/23         |
| catissima                                                |                    |                         |                     |                                  |                               |                              | 0.6 .6/20                       |
| Distephanus speculum                                     | 4.1 1/1            | 0.5 7/10                | 1.9 6/7             | 1.6 41.45                        | 1.9 12/12                     | 0.9 12/13                    | 0.6 16/23<br>28.1 23/23         |
| Total Group I                                            | 14.0 1.1           | 47.9 10/10              | 23.6 7/7            | 38.8 44/45                       | 34.1 12/12                    | 47.7 13/13                   | 1                               |
| Chactoceros boreale<br>Ch. criophilum                    | 10.5 1 1           | 0.4 3 10<br>10.0 10 10  | 13.1 7.7            | 0·I 2/45<br>6·8 35/45            | OI 112<br>21 012              | 3.9 12/13                    | 0.9 6/23                        |
| Rhizosolenia spp.                                        | 0.0 1/1            | 4.3 10/10               | 6·1 7/7             | 4.6 42/45                        | 8.6 11.12                     | 2.7 13/13                    | 3.6 23/23                       |
| Dactyliosolen antarcticus                                | 5.3 1/1            | 0.0 7.10                | 0.5 3 7             | 1.6 33.45                        | 3.9 10/12                     | 4.9 12/13                    | 15.7 23/23                      |
| Corethron criophilum<br>Synedra pelagica                 | 2'I I/I            | 0.3 5:10                | 16·1 7/7<br>0·3 3'7 | 9.3 45/45<br>1.5 34/45           | 4.7 11/12                     | 1·8 11/13<br>0·8 11/13       | 5.8 22/23<br>0.7 8/23           |
| Thalassiothrix antarctica                                | 0.4 1/1            | 2.5 10/10               | 3.7 5/7             | I'I 20/45                        | 1.9 5/12                      | 1.7 11/13                    | 13.6 19/23                      |
| Total Group II                                           | 27.3 1/1           | 29.3 10/10              | 38.8 7/7            | 25.0 45/45                       | 22.8 12/12                    | 15.8 13/13                   | 50.3 23/23                      |
| Thalassiosira spp.                                       |                    | <0.1 1.10               | 0.8 2/7             | 2.0 14:45                        | 0.2 1.12                      | 0.1 1/13                     |                                 |
| Asteromphalus parvulus                                   |                    | < 0. I $$ 1 10          | O'I 2/7             | 0.3 22/45                        | 0.2 10/15                     | 0.3 2.13                     | 0.3 9/23                        |
| Biddulphia striata<br>Eucampia balaustium                |                    |                         | O'I I'7<br>O'I I'7  | 0'I 5.45<br>0'4 9.45             | 0.7 5/12                      |                              |                                 |
| Chaetoceros flexuosum                                    |                    |                         |                     | 0.1 3.45                         |                               |                              | ·                               |
| Ch. neglectum                                            |                    | 9.4 9/10                | I 7 2/7             | 1.0 10.42                        |                               |                              |                                 |
| Ch. sociale<br>Ch. tortissimum                           |                    | 0.5 1/10                | 9.7 3/7             | 3.3 17.45                        | I ·O 2/12                     | 0.5 1,13                     |                                 |
| Fragilaria spp., etc.                                    |                    | <0.1 1/10               | 3.2 4.7             | 4.1 28.45                        | 3.3 5/12                      | I·1 4/13                     | O*I 2/23                        |
| Nitzschia closterium                                     | a                  | I.O 4/10                | 1.7 47              | 2.1 17/45                        | 1.2 2/15                      | I.O 4/13                     |                                 |
| Total Group III                                          |                    | 10.6 0,10               | 17.4 6/7            | 14.3 39'45                       | 7'4 12'12                     | 2.2 2/13                     | 0.4 10/23                       |
| Chactoceros atlanticum                                   | 2.2.1              | 0.8 5/10                | 2.4 4'7             | 4.9 34.45                        | 3.0 11.12                     | 6.9 11'13                    | 4.0 15/23                       |
| Ch. castracanei<br>Ch. chunii                            | I'2 I'I            | 0.3 2/10                | <0.1 1 7<br>1.4 3/7 | I·I 22/45<br>2·I 29/45           | 5.0 12'12<br>2.5 10/12        | 1.8 8 13                     | 0.3 4/23                        |
| Ch. curvatum                                             |                    | 1.4 2/10                | 0.1 1/2             | 0.3 17/45                        | 0.5 3/12                      | 0.5 8/13                     | 0.2 8/23                        |
| Ch. dichaeta                                             | 7:4 тт             | 2.2 7/10                | 3.3 6.7             | 5.8 40/45                        | 3.8 12/12                     | 2.4 13/13                    | 3.6 18/23                       |
| Ch. d. tenuicornis phase<br>Ch. pendulum                 |                    | 1.8 7/10<br>0.1 1/10    | 1.9 2.7<br>0.9 4.7  | 3·8 17/45<br>0·1 7/45            | 0.4 4/12                      | 19.8 10/13                   | 4·I 5/23                        |
| Ch. radiculum                                            |                    |                         |                     | 0.1 0.45                         | 0.1 4/12                      | O'I 2/13                     | 2.9* 8/23                       |
| Ch. schimperianum                                        |                    | I'I 5'10                | 2.9 6/7             | 0.6 23/45                        | 0.5 5 12                      | 0.3 6/13                     |                                 |
| Total Group IV                                           | II.I I/I           | 8.4 10/10               | 12.9 6/2            | 18.8 44'45                       | 31.6 12/12                    | 32.8 13/13                   | 15.0 22/23                      |
| Coscinodiscus spp.                                       | 4.9 1/1            | I*O 9/10<br>O*O 8/10    | I.5 7.7             | 0.4 25/45                        | 0'I 4/12<br>0'5 8/12          | > 0.1 + 4/13<br>> 0.1 + 4/13 | 0.9 19/23                       |
| Actinocyclus spp.<br>Asteromphalus spp.*                 | 8·3 1/1<br>0·8 1/1 | 0.1 2/10                | 0.7 4 7             | 0.2 19/45                        | 0.3 6/12                      | > 0.1 - 4/13<br>> 0.1 - 2/13 | 0.3 14/23                       |
| Total Group V                                            | 14.0 1/1           | 2.0 10/10               | 2.8 7/7             | I·I 30/45                        | 0.9 8,21                      | 0.4 6/13                     | 2.8 23/23                       |
| Foraminifera                                             | 1.6 тт             | 0.7 210                 | 0.6 3/7             | <0·1 5.45                        | <0.1 1/12                     |                              |                                 |
| Cymatocyclis spp.                                        |                    |                         |                     |                                  |                               | <0.1 1/13                    |                                 |
| Other Tintinnidae<br>Acanthometridae                     | 1·2 1'1<br>0·4 1.1 | 0.4 4/10                | 0.3 1/2             | O'I 9.45                         | 0.7 10/12                     | 0·3 7/13<br>0·1 5/13         | 0.1 6/23                        |
| Challengeridae                                           | 8.2 1/1            | <0.1 1110               | 0.2 1/2             | <0·1 3/45                        |                               | O'I 2/13                     | 0.9 17/23                       |
| Other Radiolaria                                         |                    |                         |                     | <0·I 2/45                        | 0.5 4/15                      |                              |                                 |
| Sticholonche<br>Total Holozoic Protozoa                  | 11.1 1/1           | I'2 7'10                | 0'2 1'7             | >0·I I3/45                       | 0.0 10/12                     | <0.1 1/13<br>0.2 10/13       | I·6 21/23                       |
|                                                          |                    |                         | 1.3 3/2             |                                  |                               |                              |                                 |
| Copepoda<br>Nauplii                                      | 8.2 1/1            | 0'1 1'10<br>0'2 2/10    | 0.4 3/7             | <0.1 3/45<br>0.1 10/45           | < 0.1 	 1/2 	 1/2 	 0.1 	 4/2 | < 0.1 	 1/13 < 0.1 	 5/13    | 0.3 7/23                        |
| Other Crustacea                                          |                    |                         |                     |                                  |                               |                              |                                 |
| Limacina juv.<br>Ova                                     |                    | <0.1 1/10               |                     |                                  |                               | Amin                         | <0·I 2/23                       |
| Total Metazoa                                            | 22.2 1/1           | 0'3 2/10                | 0.1 3/7             | $  < 0.1 \ 2/45 \\ 0.2 \ 15/45 $ | 0.5/15                        | <0·1 2/13                    | $< 0.1 \ 1/23$<br>$0.8 \ 13/23$ |
| i otar metazoa                                           | ا/ ا یک یکیند      | 03 2/10                 | C 4 3/7             | 0 2 12/45                        | 0 2 5/12                      | ~ U I 2/13                   | 0.0 13/23                       |

Table 5. Intermediate Region. Seasonal variation in relative abundance. Individualcategories. Mean percentages and frequency of occurrence at mean dates

and March. The secondary minimum in April and slight secondary autumnal increase in May are well marked. It may be noted that the observations early in June indicate that the descent to minimal winter values is less rapid than in the Northern Region, as might be expected from the fact that the whole cycle is centred later in the year.

The qualitative sequence in the Intermediate Region is shown in Table 5. Adequate observations are available only for the period from the beginning of the main increase through the post-maximal decrease period to the autumnal secondary maximum, so that the major trends are not so clearly discernible as elsewhere. The relative importance of Group I forms varies in very much the same way as in the Northern Region, if we remember the later time of incidence of the main increase. While present in fairly high proportions throughout the season, the group was most important in the early part of the main increase, and during the post-maximal decrease. It was least important in autumn. The only marked difference from the conditions observed in the Northern Region was that *Nitzschia seriata* was more important in the earlier stages of the main increase than it had been in that area, though reaching its maximum relative importance in corresponding periods later in summer.

The larger oceanic diatoms of Group II were of considerable importance in the early part of the main increase in the Intermediate Region. *Corethron criophilum* and *Chaetoceros criophilum* were much more prevalent than in the Northern Region at the corresponding period. After the main increase the group as a whole showed a characteristic rise in relative importance during the first part of the post-maximal decrease period. Maximum relative importance of the group was attained in April—during the secondary autumnal increase.

In the Intermediate Region the neritic and ice-edge diatom species were most important up to the peak of the main increase, as we found in the Northern Region. *Chaetoceros sociale* was still one of the most important species, but *Fragilaria* spp. with other more definitely tychopelagic ice forms and *Nitzschia closterium* were present in proportions appreciably greater than those found farther north.

Oceanic Chaetocerids (Group IV) were most important during the post-maximal decrease in late summer. Thus far they showed close agreement with the proportions of the group found in the Northern Region, but were relatively scarcer in autumn. Among individual species the small *tennicornis* phase of *Chaetoceros dichaeta* was more important than in the Northern Region and *Chaetoceros atlanticum* was not so common.

The other categories of microplankton counted were very scarce in the Intermediate Region and showed a slight tendency towards maximum relative importance before the main increase and in autumn as one would expect. They were abundant at the isolated winter observation, and there is little doubt that they would be found to form an important part of the scanty winter plankton, as they do farther north, if it had been possible to obtain more winter observations.

*Phaeocystis* was important in the Intermediate Region in December and January up to the time of the peak of the main increase. In December it was present at five out of seven stations, and dominant at two. In January when observations were much more

numerous it was present at 62% of the stations, and dominant at 16%. In February and March it fell off in quantity so that it did not obviously predominate over the diatoms anywhere, but was still present at more than half the stations. In April (autumn) it was only observed in very small quantity at three out of twenty-seven stations.

# THE SOUTHERN REGION

Except for the three months immediately after midsummer this region is almost inaccessible, and we have only isolated observations in spring and autumn. It may be that wherever Polynas exist in the pack-ice, some production takes place from November onwards, but this can only be a very local effect. From the known climatic and ice conditions it is obvious that large-scale production can only begin when the first large areas of open water are formed in January, and as new ice begins to form in March it follows that the annual production must be crowded into three summer months with no possibility of a secondary autumnal increase. Our observations fully bear this out, the main increase evidently begins very suddenly in January and rises to a high maximum (as the oceanic values go) in February. A few moderately high values have been recorded in the early days of March, but taking that month as a whole the falling off was most marked. The relevant figures are given in Table 6 and are also plotted on the same scale as for the Northern and Intermediate Regions in Fig. 12.

| Mean date   | No. of<br>observations | Mean units of pigments per m. <sup>3</sup> |
|-------------|------------------------|--------------------------------------------|
| 14 November | I                      | 470                                        |
| 13 December | I                      | 230                                        |
| 8 January   | 18                     | 910                                        |
| 25 January  | 33                     | 1020                                       |
| 22 February | 40                     | 2180                                       |
| 5 March     | 35                     | 970                                        |
| 22 April    | I                      | 80                                         |

Table 6

There is nothing exceptional about the qualitative sequence in the Southern Region. The results are summarized in Table 7 and follow a very similar course to those found in the Intermediate Region over the period of the main increase. The most noteworthy differences from the conditions farther north, allowing for the difference in time scale, are: Group I showed maximum relative importance at the maximum (quantitative) period instead of before and after the maximum, and was less important than it is farther north throughout the year. Group II was more important here than in either of the more northerly oceanic regions, especially before and after the maximum. This was almost entirely due to dense local concentrations of *Chaetoceros criophilum* and more especially *Corethron criophilum*, with *Rhizosolenia alata gracillima* phase in lesser amounts. At the single autumn observation *Dactyliosolen antarcticus* was the most

numerous species; it is known to show greatly increased importance in the Intermediate Region also at this time, so that this observation may be quite typical.

Among the neritic and ice-edge diatoms (Group III) the increased importance of *Nitzschia closterium*, *Fragilaria* spp. and the more truly tychopelagic ice forms is even more pronounced than in the Intermediate Region, as one would expect. Of the oceanic Chaetocerids (Group IV) it need only be said that in the Southern Region *Chaetoceros* 

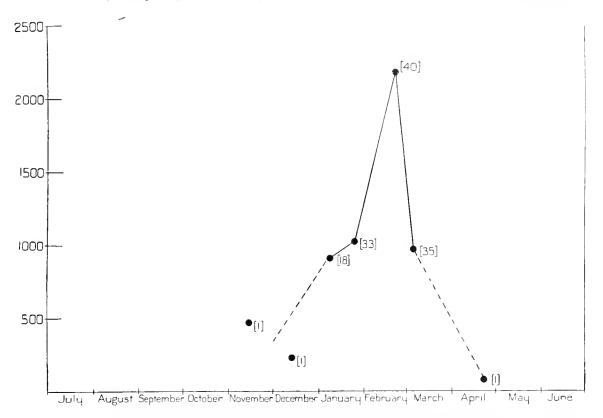



Fig. 12. Southern Region. Seasonal variation in plant pigments per m.<sup>3</sup>, means of all available observations at mean dates. Number of observations shown in brackets.

*dichaeta*, and more particularly the minute *tenuicornis* phase of that species, were by far the most important. The group reached its highest importance during the height of the main increase.

The other categories of microplankton counted were quite insignificant in the Southern Region, but *Phaeocystis brucei* was important, as would be expected. This organism was less frequently dominant over the diatoms and rather more unevenly distributed than it had been in the Intermediate Region, however. It was observed most abundantly in January and February; fairly frequently, but in appreciably smaller quantities, early in March.

| Mean date                                                                                                                                                                                                                                 | 20                                                                                                                                                          | Jan.                                                             | 25                                                                    | Feb.                                                                             | 4 N                                                                                                                                                                                     | Iar.                                                                                | 22 A                                  | pr.                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------|
| Fragilariopsis antarctica<br>Nitzschia scriata ? + delicatissima<br>Distephanus speculum<br>Total Group I                                                                                                                                 | -<br>10·5<br>4·9<br>1·1<br>16·5                                                                                                                             | 8/11<br>7/11<br>5/11                                             | 19.5<br>9.3<br>5.2<br>34.0                                            | 14'14<br>12/14<br>14'14<br>14'14                                                 | 22·4<br>8·0<br>0·7<br>31·1                                                                                                                                                              | 12/17<br>13/17<br>10/17<br>14/17                                                    | 11.8<br>2.0<br>0.2<br>14.0            | 1/1<br>1/1<br>1/1<br>1/1                             |
| Chaetoceros boreale<br>Ch. criophilum<br>Rhizosolenia spp.<br>Dactyliosolen antarcticus<br>Corethron criophilum<br>Synedra pelagica<br>Thalassiothrix antarctica<br>Total Group II                                                        | 0°1<br>19°4<br>5°7<br>0°7<br>29°1<br>0°7<br>0°1<br>55°8                                                                                                     | 1/11<br>11/11<br>11/11<br>4/17<br>11/11<br>7/11<br>3/11<br>11/11 | 0.7<br>3.1<br>0.9<br>2.4<br>1.4<br>1.0<br>0.8                         | 2, 14<br>11/14<br>10/14<br>13/14<br>10/14<br>10/14<br>7/10<br>14/14              | 6.6<br>3.0<br>1.1<br>20.5<br>1.6<br>0.4<br>33.2                                                                                                                                         |                                                                                     | 5.6<br>5.1<br>2.6<br>24.5<br>18.0<br> | 1/1<br>1/1<br>1/1<br>1/1<br>1/1<br>1/1<br>1/1<br>1/1 |
| Thalassiosira spp.<br>Asteromphalus parvulus<br>Biddulphia striata<br>Eucampia balaustium<br>Chaetoceros flexuosum<br>Ch. neglectum<br>Ch. sociale<br>Ch. tortissimum<br>Fragilaria spp., etc.<br>Nitzschia closterium<br>Total Group 111 | $ \begin{array}{c} 2.5 \\ 0.2 \\ 0.3 \\ 1.0 \\ - \\ 4.1 \\ 0.4 \\ - \\ 1.8 \\ 0.6 \\ 16.9 \\ \end{array} $                                                  |                                                                  | 0·2<br>3·5<br>0·8<br>0·3<br>0·3<br>7·8<br>3·7<br>16·6                 | 2/14<br>14/14<br>-<br>0/14<br>-<br>2/14<br>3/14<br>-<br>11/14<br>12/14<br>14/14  | $ \begin{array}{c} 0^{\circ}2\\ \circ^{\circ}2\\ <0^{\circ}1\\ 0^{\circ}2\\ \circ^{\circ}3\\ 0^{\circ}2\\ <0^{\circ}1\\ \hline \hline 6^{\circ}3\\ 1^{\circ}4\\ 8^{\circ}8\end{array} $ | 1/17<br>9/17<br>1/17<br>3/17<br>3'17<br>1/17<br>1/17<br>                            |                                       |                                                      |
| Chaetoceros atlanticum<br>Ch. castracanei<br>Ch. chunii<br>Ch. curvatum<br>Ch. dichaeta<br>Ch. d. tenuicornis phase<br>Ch. pendulum<br>Ch. radiculum<br>Ch. schimperianum<br>Total Group IV                                               | $ \begin{array}{c} 1 \cdot 0 \\ < 0 \cdot 1 \\ 1 \cdot 1 \\ - \\ 4 \cdot 0 \\ 0 \cdot 7 \\ < 0 \cdot 1 \\ 0 \cdot 2 \\ 1 \cdot 4 \\ 8 \cdot 5 \end{array} $ | 3/11<br>1/11<br>5/11<br>7/11<br>2/11<br>2/11<br>1/11<br>4/11     | 0.8<br>4.0<br>1.1<br>0.1<br>6.8<br>22.3<br>0.3<br><0.1<br>0.1<br>35.5 | 9/14<br>11/14<br>8/14<br>3'14<br>13'14<br>10'14<br>7/14<br>3/14<br>4.14<br>13/14 | 1.1<br>1.8<br>2.9<br>< 0.1<br>3.9<br>14.3<br>0.7<br>< 0.1<br>0.3<br>25.0                                                                                                                | 10/17<br>10/17<br>12/17<br>1/17<br>15/17<br>13/17<br>10/17<br>2/17<br>6/17<br>17/17 | 2·0<br>                               | 1/1<br><br>1/1<br>1/1<br><br><br>1/1                 |
| Coscinodiscus spp.<br>Actinocyclus spp.<br>Asteromphalus spp.*<br>Total Group V                                                                                                                                                           | 0.1<br>0.4<br>0.2                                                                                                                                           | 2/11<br>2/11<br>4/11                                             | 0.2<br>0.3<br>0.2<br>1.0                                              | 6/14<br>10/14<br>7/14<br>12/14                                                   | 0·2<br>0·2<br>0·2<br>0·6                                                                                                                                                                | 5'17<br>5'17<br>9/17<br>11/17                                                       | 0·5<br>                               |                                                      |
| Foraminifera<br>Cymatocyclis spp.<br>Other Tintinnidae<br>Acanthometridae<br>Challengeridae<br>Other Radiolaria<br>Sticholonche<br>Total Holozoic Protozoa                                                                                | 0·I<br>                                                                                                                                                     | 2/11<br>                                                         | 1.1<br>                                                               | 1/14<br><br>7/14<br><br>-<br><br><br>8/14                                        |                                                                                                                                                                                         |                                                                                     | 1.2<br>1.5                            |                                                      |
| Copepoda<br>Nauplii<br>Other Crustacea<br><i>Limacina</i> juv.<br>Ova<br>Total Metazoa                                                                                                                                                    | <0.1<br>0.1<br>                                                                                                                                             | 1/11<br>1/11<br>                                                 | 0·1<br>0·4<br>                                                        | 2/14<br>3/14<br>                                                                 | 0.1<br>0.1                                                                                                                                                                              | 1/17<br>2/17<br><br>2/17<br><br>3/17                                                | 0.2<br>0.2<br>                        | 1/1<br>1/1<br>                                       |

Table 7. Southern Region. Seasonal variation in relative abundance. Individualcategories. Mean percentages and frequency of occurrence at mean dates

#### THE SOUTH GEORGIA AREA

This is the area that saw the first development of modern whaling on a large scale. This was due in part to the fact that in the earlier days good harbours and shore bases were essential, but also to the exceptional richness of the plankton. The production of phytoplankton during the main increase is indeed probably as great as that to be found anywhere else in the world.

The earlier observations of Hardy (Hardy and Gunther, 1935) and Hart (1934) give a good idea of the qualitative sequence here. The great difference from the oceanic Northern Region lies, of course, in the immense quantities of neritic species present during the main increase, particularly Chaetoceros sociale, Ch. neglectum, Thalassiosira spp., Biddulphia striata and Eucampia balaustium. Members of the oceanic groups were also more abundant by far than in more truly oceanic areas, though less important in their proportion of the total phytoplankton. During the postmaximal decrease Group II, the larger oceanic diatom species, became predominant, with Corethron criophilum in spineless chains and Thalassiothrix antarctica together forming some 80% of the phytoplankton during January-February 1930. The very detailed description of the qualitative aspect of the South Georgia phytoplankton given in previous work (Hart, 1934, pp. 29-69; Hardy, Hardy and Gunther, 1935, pp. 39-87) has been fully borne out by our subsequent surveys. These have been less extensive, but far more numerous, so that some attempt at a picture of the seasonal variation in quantity can now be drawn. Also observations have been obtained at intervals sufficiently close to permit of theoretical calculations of the crop in terms of the consumption of nutrient salts, which it had been thought would be impossible. Of course, such calculations can only give very approximate minimal values, but they are of great help in comparing conditions with better known ones in the northern hemisphere.

From the observations made subsequently to 1931 the seasonal variation in quantity can be pictured as being reflected in Fig. 13. It will be seen that results from different seasons have had to be considered together in order to get this, but when all our previous work quoted above is taken into account, there is little doubt that the figure represents the main trends in a normal year quite fairly. The observations upon which this figure is based are given in Table 8, with data on nutrient salt content which permits of the somewhat speculative calculations mentioned above. It is important to bear in mind that owing to the quantities of phytoplankton present off South Georgia during the main increase being from five to ten times greater than in the oceanic Northern Region, for instance, it has been necessary to plot these results on a much smaller scale than that uniformly adopted for the three oceanic regions.

It will be seen that the main increase begins suddenly late in October and rises to a high peak about the end of November. There is then a marked post-maximal decrease to a late summer minimum in February, and a secondary autumnal maximum in March before the final descent towards minimal winter values. No doubt the height and precise time of the peak period fluctuate somewhat from year to year, and the secondary 8

autumnal maximum is probably even more variable. Some of our earlier work, and observations in the adjacent waters of the Scotia Sea, suggests that in some years it may take place as late as April or even May, and that sometimes it is hardly apparent at all. Wherever the seasonal cycle has been studied intensively in temperate—polar waters,

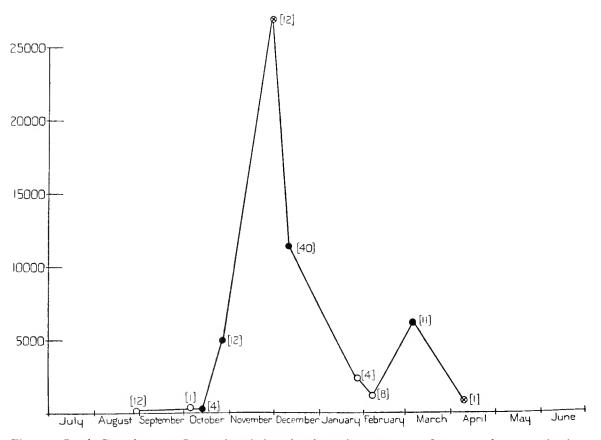



Fig. 13. South Georgia area. Seasonal variations in plant pigments per m.<sup>3</sup>, means of 50–0 m. hauls at mean dates. Numbers of observations shown in brackets. Note scale is necessarily much smaller than that used for oceanic regions and for the Scotia Sea.  $\otimes = 1933-4$ .  $\bigcirc = 1934-5$ .  $\bullet = 1936-7$ .

| Mean date    | Station nos. | No. of<br>obser-<br>vations | Mean units<br>of pigments<br>per m. <sup>3</sup> | Mean P mg.<br>atoms<br>50–0 m. | Mean Si m<br>atoms<br>50–0 m. |
|--------------|--------------|-----------------------------|--------------------------------------------------|--------------------------------|-------------------------------|
| 29. viii. 34 | 1394-1406    | 12                          | 120                                              | 2.30                           | 30.1                          |
| 5. X. 34     | 1437         | 1                           | 380                                              |                                |                               |
| 13. x. 36    | 1839-1842    | 4                           | 230                                              | 2.13                           | 36.8                          |
| 27. x. 36    | 1843-1855    | 12                          | 4,980                                            | 1.84                           | 27.1                          |
| 1. xii. 33   | 1199–1211    | 1.2                         | 26,820                                           | 2.03                           | 11.8                          |
| 11. xii. 36  | 1920-1939    | 40                          | 11,360                                           | 1.01                           | 3.2                           |
| 27. i. 35    | 1496-1499    | 4                           | 2,380                                            | 1.43                           | 16.0                          |
| 6. ii. 35    | 1501-1508    | 4<br>8                      | 1,170                                            | 1.46                           | 11.0                          |
| 6. iii. 37   | 1977-1988    | 11                          | 6,130                                            | 1.37                           | 6.7                           |
| 9. iv. 34    | 1340         | I                           | 780                                              | _                              |                               |

Table 8

the autumnal secondary increase appears to show this irregularity (cp. Harvey *et al.* 1935, p. 439). It would appear to be far more dependent upon prevailing weather conditions than the main increase.

Before leaving the South Georgia area it may be mentioned that in the exceptional spring of 1930–1, when pack-ice actually extended some way to the north-east of the island, *Phaeocystis* was found in moderate quantity in the ice. It has not been observed there on other occasions, but may be expected in small quantities whenever the pack gets so unusually far north. The Chlorophycean *Halosphaera viridis* was recorded by Hardy in enormous numbers, but from three stations only and from subsequent work it would seem to be so local that it can hardly be considered a regular constituent of the phytoplankton.

#### THE SCOTIA SEA

Eighty-nine estimations of pigment content are available from this area; they were obtained in different seasons, but being fairly well distributed over the whole of the productive period appear to give a good idea of the probable seasonal cycle. The relevant figures are given in Table 9, and are also plotted in Fig. 14. It must again be noted that the graph has had to be constructed on a smaller scale than that used for the oceanic Northern Region, but larger than that used for the South Georgia area.

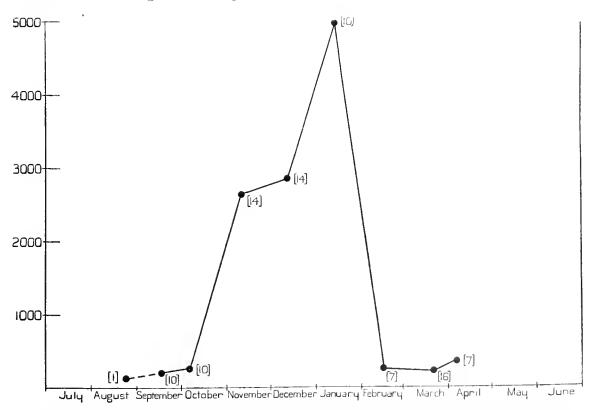



Fig. 14. Scotia Sea. Seasonal variation in plant pigments per m.<sup>3</sup>, means of available observations at mean dates. Numbers of observations in brackets. Note necessarily smaller scale than that used for oceanic regions.

The values are of the order of twice as great as those found in the oceanic Northern Region.

| Mean date    | No. of observations | Mean units of pigments per m. <sup>3</sup> |
|--------------|---------------------|--------------------------------------------|
| July         | Nil                 |                                            |
| 24 August    | I                   | 130                                        |
| 17 September | IO                  | 200                                        |
| 6 October    | 10                  | 260                                        |
| 11 November  | 14                  | 2650                                       |
| 12 December  | 1.4                 | 2860                                       |
| 13 January   | IO                  | 4990                                       |
| 15 February  | 7                   | 260                                        |
| 21 March     | 16                  | 230                                        |
| 6 April      | 7                   | 360                                        |
| May          | Nil                 |                                            |
| June         | Nil                 |                                            |

It will be seen that here the sudden onset of the main increase is well marked, and that the peak period is reached in January, as is to be expected from the fact that the area includes some more southerly waters than the oceanic Northern Region. These observations are not sufficient to show whether the very slight secondary autumnal increase indicated, after the profound post-maximal decrease, is a regular feature. Some of our earlier work (Hart, 1934, p. 76) indicates that it may be quite considerable locally, in some seasons.

Qualitatively, the phytoplankton of the Scotia Sea shows populations intermediate in character between that of the South Georgia area and the more northerly oceanic regions, as one would expect. While the neritic ice-edge Group III diatom species particularly *Thalassiosira* spp. and *Chaetoceros sociale*—are extremely abundant during the main increase, members of the oceanic groups play a larger part than off South Georgia. This applies especially to *Nitzschia seriata* of Group I, the *Rhizosolenia* spp. in Group II and to *Chaetoceros atlanticum* of Group IV. *Phaeocystis brucei* may be locally important where the area is invaded by pack-ice—not later than January as a rule. In the autumn Group IV and *Nitzschia seriata* may be particularly prominent in some seasons and, quite locally, *Biddulphia striata*, almost the only member of Group III to develop in numbers later than the period of the main increase.

The qualitative aspect of the phytoplankton in the Scotia Sca has already been very fully treated in our previous work (Hart, 1934, pp. 69–88). Many of the estimations used in the description of the quantitative cycle described here were obtained during the fourth commission when I was serving elsewhere, so that there has not yet been any opportunity to work them up qualitatively. In view of the considerable amount of evidence already available it did not seem necessary to go further into the qualitative aspect for the purpose of the present report.

#### OTHER SPECIAL AREAS

In the other special areas our data are scanty, so that it is not possible to do more than indicate some of the probabilities that suggest themselves in the light of the more detailed work elsewhere. We have most data in the eastern South Pacific, but unfortunately there are no observations for February, and those in December and January are inadequate. Data for the winter months are also lacking, but there is no doubt that values must then be minimal. The figures, which are given in Table 10, suggest that the main increase takes place in November, and a secondary increase in March, but are too scanty to be conclusive. Certainly one would expect the secondary increase to extend into April, but no observations for that month are available. The marked poverty of the phytoplankton of this area at all times when it has been sampled is probably a constant feature consequent upon the peculiar hydrological conditions.

| Mean date    | No. of observations | Mean units of pigments per m. |
|--------------|---------------------|-------------------------------|
|              |                     |                               |
| 12 September | 2                   | 80                            |
| 30 October   | 5                   | 550                           |
| 7 November   | 20                  | 800                           |
| 15 December  | -4                  | 490                           |
| 4 January    | 5                   | 400                           |
| 9 March      | 8                   | 620                           |

Table 10

| In the area north of the Ross Sea we have only fifteen observations in all. Five                |
|-------------------------------------------------------------------------------------------------|
| centred round 20 January showed an average of 1170 units, and ten centred round                 |
| 13 February averaged only 270 units of pigments per m. <sup>3</sup> From this it may be permis- |
| sible to conclude that the main increase takes place before the end of January as one           |
| would expect, that the post-maximal decrease is well marked, and that the area is not so        |
| poor as the eastern South Pacific.                                                              |

In the Weddell Sea, between the southern boundary of the Scotia Sea and the northern boundary of the Southern Region, we have very few observations. Earlier work indicated that the main increase takes place in January-February (Hart, 1934, pp. 96-108). Five observations carried out from 10 to 12 November 1936 averaged only 90 units of pigments per m.<sup>3</sup>, the highest value recorded being 210 units. From this it seems probable that no considerable production takes place before mid-November. A single observation late in March gave a very low value. It is, therefore, just possible that there is a marked post-maximal decrease here, prior to the autumnal secondary increase with small Chaetocerids dominant described by Lohmann. The conditions in Bransfield Strait and round the Palmer Archipelago have also been very thoroughly investigated in our earlier work (Hart, 1934, pp. 109–36). Very few observations by our present improved methods are available for this area; three in December 1934 yielded fairly high values and two in September very low ones. This merely gives slight confirmation of the conclusion that the main increase takes place in December, which was reached as a result of the earlier work mentioned.

At a single station, 2199, worked on 21 January 1938 close into the Balleney Islands, a value of 57,830 units of pigments was recorded. This is comparable to the highest values recorded in the South Georgia area, and shows that neritic conditions can give rise to intense local concentrations much farther south at the corresponding time of year. This particular concentration was clearly very local, however, for stations worked within some 30 miles were occanic in character, as regards both quantity and quality of the phytoplankton. At St. 2199 neritic species were strongly dominant, the minute *Chaetoceros sociale* was by far the most numerous, but there were also large quantities of *Thalassiosira* spp., *Eucampia balanstium* in summer phase, and the large, richly pigmented *Biddulphia striata*.

# BIOLOGICAL FEATURES OF SPECIAL INTEREST

# DISTRIBUTION WITH DEPTH OF THE ANTARCTIC PHYTOPLANKTON

We have seen that in view of the inaccuracy of the centrifuge method demonstrated by Nielsen, it has not been considered worth while to discuss in detail the results obtained during the third commission. Nevertheless, it is at least probable that, where the quality of the phytoplankton is fairly uniform down to the lowest depths sampled (100 m.), the largest count will indicate the neighbourhood of the maximum density of the population. Selecting these uniform stations we have 117 series of observations scattered throughout the Antarctic zone during the productive period, and it appeared to me that by considering the frequency with which the apparent optimum occurred at different depths, one should obtain an idea of the normal type of distribution with depth not far from the truth.

The frequencies with which maximum numbers of phytoplankton organisms were found at various depths are shown in the following table:

| Depth in m. | Actual no. of stations | No. expressed as o d<br>of total comparable<br>stations |  |
|-------------|------------------------|---------------------------------------------------------|--|
| 0           | 29                     | 24.8                                                    |  |
| 5           | 51                     | 43.6                                                    |  |
| IO          | 13                     | 1.1.1                                                   |  |
| 20          | IO                     | 8.5                                                     |  |
| 50          | 13                     | 11.1                                                    |  |
| 30*         | I *                    | 0.9*                                                    |  |

|      | 1 1           |       |    |   |
|------|---------------|-------|----|---|
| Tal  | hI            | e     | T. | Υ |
| 1 (1 | $\mathcal{O}$ | · · · |    | * |

\* Samples from 30 m. were taken at only a few stations, where a marked thermocline between 20 and 50 m. suggested that depth might prove critical.

### DEPTH DISTRIBUTION: PREVALENCE OF THE COLONIAL HABIT 323

These figures strongly suggest that by far the greater part of the phytoplankton production in the Antarctic zone takes place in the upper 10 m. of the surface layer. This is in striking agreement with what would be expected from the classic oxygen consumption experiments of Marshall and Orr (1928) and others, when we remember that both higher latitude and increased scattering due to rough weather will both tend to reduce penetration of light to a greater extent than in north temperate regions. The importance of the loss of light due to scattering and reflexion at the surface where rough weather prevails was first clearly recognized by Atkins (1926, p. 456) who is responsible for the development of so many of our concepts concerning the growth of phytoplankton in relation to its environment. We may say that in comparison with the conditions studied experimentally in north temperate seas, the euphotic layer is centred higher in the water column. The optimum depth, in the Antarctic zone, would appear to be around 5 m. as a general rule. The effects of systrophe in lessening production above the optimum are evidently less than in north temperate waters, while it is probable that for most species the lower limit of the productive layer, or compensation point, will not be below 35 m., even at the height of the southern summer. Summing up, we may say that the figures provide some concrete evidence that the suggestions put forward in earlier work (Hart, 1934, pp. 189-91) regarding the effects of light and interrelated factors upon the depth distribution of the Antarctic phytoplankton are, in the main, correct.

### THE COLONIAL HABIT IN RELATION TO ENVIRONMENT

It will have been evident from the notes on the individual categories of phytoplankton organisms dealt with that many of the most important forms show a pronounced development of the colonial habit, which is most marked at the height of the main increase. It would seem that the hardening of protoplasmic connexions following fixation in formalin renders the colonies brittle, so that they disintegrate easily, for very much longer chains or larger colonies may be seen in fresh material than in preserved samples.

The phenomenon would appear to be bound up with the rapidity of binary fission when conditions are at their optimum. Many of the 'ribbon-forming' species, notably *Fragilariopsis antarctica* and *Eucampia balaustium moelleria* phase, show it in an extreme degree that involves marked torsion of the chains. The shorter chains common at other seasons are straight, or curved in one plane only. Besides the typical 'ribbon-forming' species, many of the larger Group II diatoms show a similar increase in length of chains, but with few exceptions; this is more marked after the peak of the main increase, when they reach their maximum relative importance.

*Rhizosolenia alata gracillima* phase often forms very long chains far south at the time of the main increase, but these are composed of few extremely elongated frustules. Farther north, at the corresponding period, *Rhizosolenia antarctica* and *Rh. chunii* also form very long chains, but with these species larger numbers of frustules are conjoined. The large pennate diatom *Thalassiothrix antarctica* is usually found in rafts of from four

to twenty-four frustules where it is most abundant, as already described in the notes on the species, and even the typically solitary *Synedra pelagica* may be seen in rafts when it is dividing rapidly. When we remember that the oceanic Chaetocerids of Group IV and the smaller neritic species of that genus are all colonial in habit, it is obvious that the property is general for the majority of the important Antarctic species at the time when conditions are at their optimum.

The minority include the important solenoid diatom *Corethron criophilum*, of Group 11. This species also has the habit of forming chains, but under different environmental conditions which it is possible to study in some detail. In the minute type phase of the far south, and the *hystrix*/type intermediates so characteristic of the main increase in the Northern Region, this species is solitary. As already explained in the notes on the species, the large strongly silicified spinose phase of the Northern Region, and the more northerly special areas, tends to give way to a population of the less strongly silicified, usually spineless, *inerme* phase, which forms very long chains, during the post-maximal decrease and in autumn. This change was almost a total one in the South Georgia area in January-February 1930.

The change over to a largely spineless, thinner walled chain form of Corethron at a definite season provides an opportunity for testing any correlation that may exist between type of Corethron population and differences in the environmental conditions. The fact that the change accompanies the rise to maximum temperature for the year might lead one to conclude that temperature alone, or perhaps temperature with seasonal rhythm inherent in the organisms themselves, is its primary cause. But the change also coincides with maximum depletion of nutrient salts in the medium. Although the depletion of phosphate may be large, it is always present in considerable quantity in the Antarctic zone, and there is little likelihood of its exercising more than a secondary influence. On the other hand, the depletion of silica (directly involved with cell wall thickness, one of the features of the change) may be relatively enormous (Clowes, 1938, p. 112), and Pearsall (1932) has shown that concentrations lower than 500 mg. per m.3 may affect the development of certain fresh-water diatoms. We know that diatom populations can flourish at lower concentrations in the sea, but it is strongly suggestive that the fall to some 300 mg. or less quoted by Clowes occurs at the time at which the maximum change in form of the Corethron population has been observed. In fact, it would seem that temporary shortage of silica is most likely the main cause of this change, as, no doubt, it is connected with the lessening quantity of the phytoplankton as a whole. This suggestion had already been made hypothetically (Hart, 1934, p. 185). No analyses for silica were available at that time, but some of Cooper's (1933, p. 697) observations strongly favoured such a view.

From 1933 onwards silicate analyses were adopted as part of our routine observations, and there is much support for the above hypothesis on general grounds, as Clowes (1938, pp. 111–14) has already shown. In an endeavour to make a more exact test of the possible correlation between silica content and the proportion of the spineless chain form in the *Corethron* population, I have attempted a statistical analysis of the obser-

vations available from forty-five stations in the Northern Region within the one season 1938–9, covered by the repeated cruises between 0 and  $20^{\circ}$  E. It was thought that by limiting period and locality in this way a fairer comparison would be obtained than by using more widely dispersed data. I am largely ignorant of mathematics myself, but Mr G. M. Spooner, of the Plymouth Laboratory, has very kindly checked my use of the methods, taken from Fisher (1930), and informs me that they are applicable to the work in hand.

The first step was to determine the degree of direct correlation assuming a linear regression, between percentage of *Corethron* in spineless phase and silica content, percentage spineless and temperature, and between silica content and temperature, according to the well-known formula

$$r = \frac{S(xy)}{n \cdot \sigma x \cdot \sigma y}.$$

This yielded the correlation coefficients tabulated below. In testing their significance I have used the formula

$$t = \frac{r}{\sqrt{(1-r^2)}} \cdot \sqrt{(n-2)},$$

which Fisher recommends for small samples in preference to use of the standard error, which tends to exaggerate the significance of the correlations obtained, but standard error has also been given:

|                                          | r        | $\sigma_r$ | t     | $\therefore P =$ |
|------------------------------------------|----------|------------|-------|------------------|
| % spineless/silica                       | -0.5739  | ± 0.1011   | 4.282 | less than 0.01   |
| $\frac{0}{20}$ spineless/ $T^{\circ}$ C. | +0.5365  | ± 0·1074   | 4.169 | less than 0.01   |
| Silica/ $T^{\circ}$ C.                   | - 0.7700 | ± 0.0614   | 7.913 | less than 0.01   |

Next applying the formula  $r_{12,3} = \frac{r_{12} - r_{13}r_{23}}{\sqrt{\left[\left(1 - r_{13}^2\right)\left(1 - r_{23}^2\right)\right]}}$  to get the partial correlation between percentage spineless and silica content, eliminating the effect of temperature, we get

r = -0.3007,  $\sigma r = \pm 0.1363$ , t = 2.043, with P between 0.02 and 0.05.

But applying the same formula for the partial correlation between percentage spineless and temperature, eliminating the effect of silica content, we get

 $r = \pm 0.1811$ ,  $\sigma r = \pm 0.1458$ , t = 1.193, whence P lies between 0.2 and 0.3.

This means that this second partial correlation is much less significant in itself, but the main point is to determine how far the difference between the two partial correlations is significant in order to see what justification there is for the view that silica content is the more important of the two factors. From the initial direct correlations it is already probable that both act together to a large extent.

To test the significance of the difference between the two partial correlations the method given by Fisher (1930, p. 168) involving the z transformation has been used, with the following result:

|                         | r              | 2       | n' - 4 | Reciprocal |
|-------------------------|----------------|---------|--------|------------|
| 1st partial correlation | -0.3002        | -0.3103 | 41     | 0.02439    |
| and partial correlation | + 0.1811       | +0.1813 | 41     | 0.02439    |
| Difference o.           | 4934 ± 0·2209. | Sum o∙o | 04878. |            |

d x x i

It will be seen that the difference is slightly greater than twice the standard error, so that one may conclude the difference has some slight significance.

Thus the general conclusion: that while silicate reduction and rise in temperature combine to favour an increased proportion of the spineless-chain form in the *Corethron* population, silicate reduction is the more important of the two factors; appears to be justified.

### SPORE FORMATION IN ANTARCTIC PLANKTON DIATOMS

The recent experimental work of Gross (1937–40) has shown that in the future it will be necessary to make more observations upon spore formation in the endeavour to understand the relations between populations of marine plankton diatoms and their environment. Most important points arise in the consideration of the conditions leading up to auxospore formation and the formation and germination of resting spores. Gross's observations led him to doubt the existence of microspores among centricate diatoms. Among the Antarctic solenoid species Karsten has described probable microspore formation in *Corethron criophilum*, and both Hendey and I have seen stages similar to those described by him, as I have described in earlier sections of this paper. I have also seen a very similar appearance in *Rhizosolenia polydactyla* Castracane (Hart, 1937, p. 436). It will be an important task of the future to prove whether these 'appearances' really are microspores.

In working up large numbers of plankton samples from a general point of view, proper investigation of spore formation is not possible, but some incidental observations of spore formation in the solenoid group, etc., have been included in the notes on the species. As the whole problem deserves separate study in the future, it seems desirable to summarize these observations here.

In preserved material, auxospore formation is most readily seen in the solenoid diatoms. In *Corethron criophilum* it was fairly frequent in the upper water-layers at and just after the period of the main increase, in all regions and areas, usually at stations where the species was abundant. At these stations the process was actually taking place in from 1 to 10% of the population, and very rarely the proportion was higher. Notes on the possibility of microspore formation in this species have already been given.

Of all plankton diatoms *Rhizosolenia aluta* exhibits auxospore formation most frequently. In the Antarctic zone, at some  $10\%'_0$  of the stations worked at all seasons, up to  $50\%'_0$  (rarely more) of the individuals showed this phenomenon. It would appear to be most frequent in late summer, however, as seems true of most other members of the genus, even in the northern hemisphere (cf. Wimpenny, 1936). Other *Rhizosolenia* spp. which have frequently been observed forming auxospores in the Antarctic zone, chiefly in late summer, are *Rh. bidens, Rh. chunii* and *Rh. truncata*.

On one occasion auxospore formation of *Dactyliosolen antarcticus* was observed, as shown in Fig. 15. This evidently represents a stage beyond that shown by Gross (1937, pl. 3, fig. 16) in *Ditylum brightwellii*. The cell wall of the new broad cell formed from

the auxospore was already visible, though still adhering to the two halves of the original narrow cell that gave rise to it by rupture of the connective zone at one side.

Auxospore formation in some *Chaetoceros* spp. has been seen quite frequently but not recorded systematically, for most of the stages are too early to enable one to deter-

mine their numbers with certainty in preserved samples. One good example of the process in *Thalassiosira antarctica*, after mid-season when that species is rapidly decreasing in numbers, has also been observed.

The formation of resting spores has been noted with certainty in a few species, most frequently in *Rhizosolenia alata*, *Rh. simplex* and *Rh. truncata*. In the autumn of 1938 in the Scotia Sea and at South Georgia, most of the population of *Biddulphia striata*, which predominated in the scanty phytoplankton present, was in process of forming resting spores as described in the separate notes on that species.

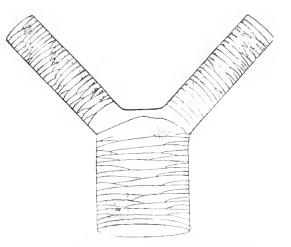



Fig. 15. An auxospore of *Dactyliosolen antarcticus*.  $\times$  500.

It will be noted that so far as these scanty observations go resting-spore formation would seem to follow marked decreases in the numbers of the population as conditions become unfavourable, precisely as one would expect. It is even probable that the socalled type phase, or winter phase, of *Eucampia balaustium*, are the resting spores of the species, which is abundant only in the summer *moelleria* phase.

### THE FEEDING OF PLANKTON ORGANISMS

Some progress has been made with the examination of the stomach contents of *Euphausia superba* and other important plankton animals. The observations were aimed at the determination of 'competitors' and 'enemies' of that most important of Antarctic plankton animals, but have only reached a preliminary stage.

All the *Euphausia superba* examined have contained recognizable diatom remains, and Foraminifera have been the only animals identified with certainty in their stomachs. *Euphausia frigida*, the Copepods *Rhincalanus gigas*, *Calanus acutus* and *C. propinquus*, and the Pteropods *Limacina helicina* and *Cleodora sulcata*, were all found to have been feeding on plankton diatoms. The great difficulty in the proper interpretation of these findings lies in the different degree of silicification of the cell walls of different diatom species. Those identifiable with certainty in the stomachs of plankton organisms are those most strongly silicified—the same that remain recognizable in bottom deposits and in bird guano, such as: *Fragilariopsis*, *Thalassiosira*, other Discoidae, fragments of *Thalassiothrix*, of spines of *Chaetoceros criophilum*, terminal spines of *Rhizosolenia* spp., etc. As I have already pointed out (Hart, 1934, pp. 11, 186) the more typically oceanic, less strongly silicified forms are probably quite as important as food for the planktonic

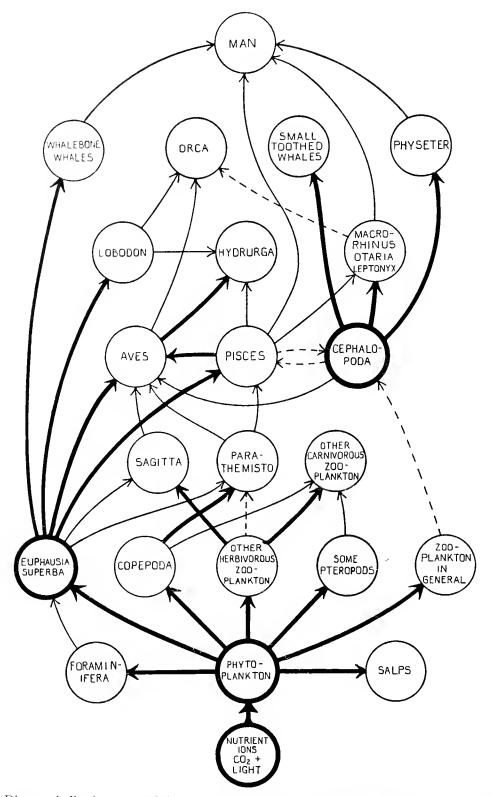



Fig. 16. Diagram indicating some of the more important food relations in Antarctic seas. Heavy arrows indicate that the groups *from* which they point are believed to constitute the main diet of the groups *to* which they point. Pecked arrows indicate uncertain connexions.

herbivores, but are digested too thoroughly to be identified in the stomach contents. The elucidation of the full dietary of *Enphausia superba*, therefore, could only be accomplished by special and prolonged study for which there has not yet been sufficient opportunity.

Large specimens of *Sagitta gazellae* have been seen with entire post-larval *Euphausia superba* in their stomachs, and we have been able to add one or two species of birds and fishes to the long list of those already known to prey upon that unhappy key-industry animal.

With the aid of the numerous records in the literature by naturalists to the earlier expeditions as well as our own, it becomes possible to draw up a tentative food-chain diagram (Fig. 16), illustrating some of the more important links in the Antarctic zone with fair certainty, though future work will no doubt lead to minor modifications and considerable extension of it.

### DISCUSSION

One of the main results of the investigations described in this paper has been the confirmation of several of the generalizations regarding the phytoplankton cycle made as the result of earlier and more restricted work (Hart, 1934). The fact that the time of the main increase falls later in the year as one proceeds southwards is most clearly seen

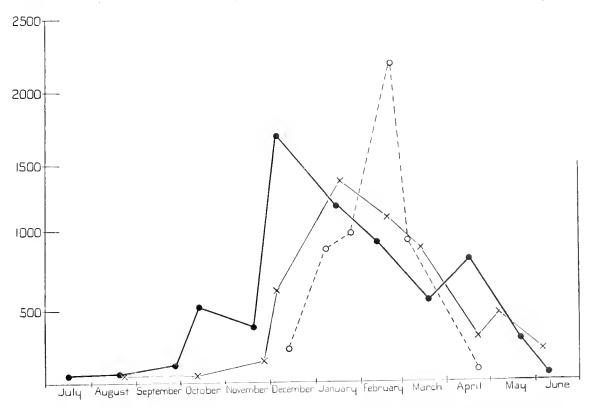



Fig. 17. Seasonal variation in plant pigments per m.<sup>3</sup>, in the three oceanic regions compared, means of 50–0 m. hauls at mean dates. For numbers of observations see Figs. 10–12. Thick line: Northern Region. Thin line: Intermediate Region. Pecked line: Southern Region.

in the three main oceanic regions, as shown in Fig. 17. Another interesting point may be seen on comparing Fig. 10, which shows the cycle in the oceanic Northern Region, with Fig. 13 showing the cycle in the neritic South Georgia area. Apart from the vastly greater richness of the latter it will be seen that the maximum is attained somewhat earlier in the year, in striking agreement with Gran's observations upon offshore and inshore phytoplankton off the coast of Norway.

Our ideas of the extreme richness of phytoplankton production in Antarctic seas were gained when the work was chiefly confined to the Falkland sector. Now that

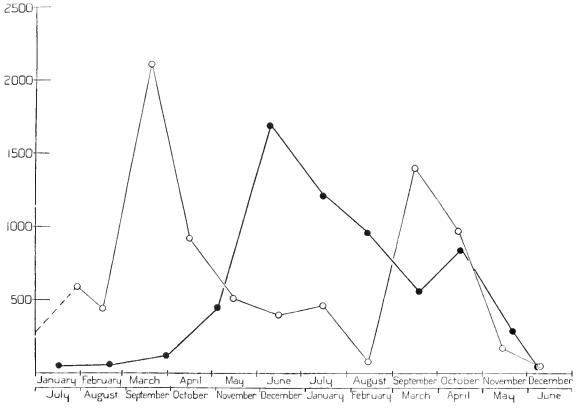



Fig. 18. Seasonal variation in plant pigments per m.<sup>8</sup> in the Northern Region of the Antarctic zone compared with that in the English Channel (monthly figures calculated from Harvey *et al.* 1935, Fig. 1). Thick line: Northern Region. Thin line: English Channel.

larger numbers of observations from more truly oceanic areas are available it is evident that these ideas stand in need of some modification. The effect of land masses in producing conditions suitable for rapid, rich phytoplankton development appears to be very important, as has long been known in the northern hemisphere. In the far south, however, where all biophysical phenomena appear on the grand scale, the beneficial effects of neritic influence appear at much greater distances from land. Only where these influences are felt do the Antarctic seas retain their claim to be amongst the richest in the world.

A comparison of the cycle in the oceanic Northern Region and that in the English Channel (with the appropriate double-time scale) is given in Fig. 18. It will be seen

that the values in the oceanic region are nearly as high as those in the neritic area in the northern hemisphere in nearly corresponding latitudes, thus leaving little doubt of the greater richness of Antarctic surface waters over north temperate seas, which would be expected from their greater nutrient content. Another interesting salt feature clearly brought out by this figure is the relative lateness of the main increase in Antarctic as compared with north temperate seas. Possible reasons for this have already been discussed (Hart, 1934, pp. 189-90).

The great differences in climate and hydrological conditions which account for such a contrast between the two hemispheres, described in the earlier work quoted, are all bound up with the extension of polar conditions so much farther towards the equator in the southern hemisphere. For this reason it may appear that the comparison given in Fig. 18 is obviously too remote to be of direct significance, but I find it very helpful to be able to visualize our results against those obtained by similar methods under conditions which, while vastly different from those obtained in the southern hemisphere, have been studied intensively for half a century.

Some idea of the relative density of standing crop in the several areas with which we have been chiefly concerned may be gained from Fig. 19. This shows the average quantities of plant pigments per 50–0 m. haul over the period of the main increase, and below, on a necessarily smaller scale, the highest individual value recorded in each region or area. For this com-

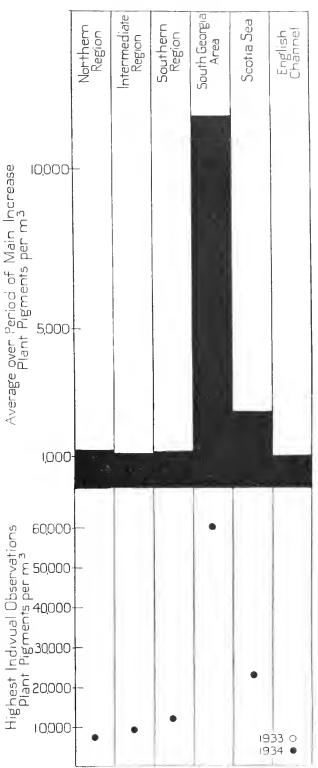



Fig. 19. Comparisons of the average quantities of plant pigments per m.<sup>3</sup>, over the period of the main increase in different areas. The highest individual observations are shown on a smaller scale below.

parison the period of the main increase has been taken as from the date of the first clear increase over the minimal winter values to the first pronounced descent towards the post-maximal decrease. These dates naturally differ in the several areas, and the figures have, therefore, been tabulated below in addition to the diagrammatic representation.

| Region or area                 | Northern                       | Inter-<br>mediate    | Southern             | South<br>Georgia      | Scotia<br>Sea        | English<br>Channeł<br>L 4   |
|--------------------------------|--------------------------------|----------------------|----------------------|-----------------------|----------------------|-----------------------------|
| Period                         | 27 Sept. to<br>1 Feb.<br>19389 | 27 Nov. 10<br>8 Mar. | 20 Jan. to<br>4 Mar. | 13 Oct. to<br>27 Jan. | 6 Oct. to<br>15 Feb. | 1 Mar. to<br>3 July<br>1934 |
| No. of<br>observations         | 61                             | 87                   | 42                   | 72                    | 55                   | 16                          |
| Mean units 'm. <sup>3</sup>    | 1210                           | 1100                 | 1150                 | 11,690                | 2390                 | 1000                        |
| Highest individual observation | 7540                           | 9420                 | 12,050               | 60,040                | 21,040               | 3850                        |

| FT3 - 1 | 1  |     |   |   |
|---------|----|-----|---|---|
| Ta      | D. | le_ | 1 | 2 |

It will be seen that in the three oceanic areas the values are much the same and slightly higher than in the English Channel. In the Southern Region, where the period of the main increase is much shorter (and where there is no secondary autumnal increase), the total production will, of course, be much smaller. Off South Georgia and in the Scotia Sea the much higher values correspond with the relative degree of neritic influence in these two areas.

The seasonal cycles described clearly support the views already put forward (Hart, 1934, p. 193) that the physical factors of the environment play the most important part in determining the course of phytoplankton production within the Antarctic zone. Most important are: light, the degree of stability of the surface layers, and the interrelated effects of pack-ice. These are certainly prime causes in the determination of the time of the onset of the main increase, and the extent and duration of the autumnal secondary increase in the more northerly parts of the Antarctic zone. However, they do not by themselves explain the post-maximal summer decrease in the more northerly Antarctic surface waters, or the vastly greater production in neritic as compared with oceanic areas. Since physical factors alone do not sufficiently account for these features, their probable explanation must be sought among chemical and biological factors.

From earlier work we know that while decrease in phosphate content of the surface waters may augment the post-maximal decrease in phytoplankton, it is extremely unlikely that shortage of this nutrient salt is ever sufficient to account by itself for that decrease (Hart, 1934, p. 184; Clowes, 1938, p. 112). So far as the scantier evidence goes, the same may be said of nitrate. The reduction of silicate, on the other hand, is a very probable cause of the post-maximal decrease in the almost purely diatomaceous phytoplankton with which we are concerned, as has already been suggested hypothe-

tically (Hart, 1934, pp. 185–6). Frequent observation of immense numbers of faecal pellets accompanying a comparatively poor phytoplankton during the post-maximal decrease have been made, mainly in the Northern and Intermediate Regions, in the course of the work at sea. As described in the itinerary these observations suggested that heavy grazing by zooplankton herbivores was in part responsible for the decrease, and is thus probably the most important biological factor influencing production.

With the data available for earlier work it was impossible to use calculations of minimum crop from observed decrease in nutrients because of the lack of repeated observations in one area over short intervals of time. The speed of horizontal movements of the surface layers made it seem improbable that such calculations could ever be usefully attempted (Hart, 1934, pp. 184–5). Since that paper was written numerous repeated series of observations at short time intervals have been obtained which render such calculations possible. They must always remain somewhat speculative, but as the following considerations should show, they support the view that temporary shortage of silica combined with the grazing-down factor, are largely responsible for the postmaximal decrease. This view is also largely supported, on general grounds, by the work of Clowes (1938).

Minimal crop calculations based on observed reduction of nutrient substances in the sea were first made by Moore *et al.* (1914) and Atkins (1926). They are made by simple proportion from the observed reduction and the minimal amounts of the particular substances present in phytoplankton, or, as with  $CO_2$  assimilation, equivalent quantities of carbohydrate. The figures for amounts of the various substances present in the plankton are derived from divers separate investigations quoted by Cooper (1933, pp. 741 et seq.). It has become usual to express the results of such calculations in metric tons wet weight of phytoplankton per km. sq. of sea surface, the depth covered by the investigation being duly taken into account. An example of the method of working is as follows:

At station L 4 in the English Channel, Cooper (1933, p. 743) records a drop of 116 mg./m.<sup>3</sup> in nitrogen content, over the whole water column (72-0 m.) between 4 December 1930 and 10 July 1931. Nitrogen has been found to form 0.5 % of the wet weight of algae. It follows that at least 23,200 mg. or 23.2 gm. per m.<sup>3</sup> of phytoplankton was produced during this period, for the initial figure refers to nitrate + nitrite nitrogen only and takes no account of other less important sources of nitrogen known to be available to the plants. The sum may be continued:

23.2 gm. per m.<sup>3</sup> 
$$\equiv$$
 23.2  $\times$  72  $\times$  1,000,000 gm. per km. sq. on 72 m. depth  
 $\equiv$  23.2  $\times$  72,000 kgm.  
 $\equiv$  1,670.4 metric tons.

Cooper (1933, p. 744) has compared the theoretical minimum production in the English Channel on the basis of the observed reduction of carbon dioxide, phosphate, nitrate and silica; obtaining good agreement by the first three methods, rendered even closer by correction of the phosphate result for salt error (Cooper, 1938, p. 190). The

d XXI

figure works out at around 1650 metric tons wet weight of phytoplankton per sq. km. of sea surface. For silica, the apparent production is very much less, yielding a theoretical crop of some 115 metric tons only—less than one-twelfth of that calculated from consumption of other nutrient materials. It is true, of course, that some phytoplankton organisms do not require silica, but diatoms are definitely the dominant group in the English Channel, so that as Cooper has convincingly shown (1933, pp. 695–7, 744) it is highly probable that owing to a comparatively rapid mechanism of resolution silica takes part several times over in the main diatom increase.

Three series of observations over suitable periods from the northern part of the Antarctic zone have been selected for comparison of the minimum theoretical crop deduced from consumption of phosphorous and of silica, including one from the neritic South Georgia area. The figures, with those from the English Channel for comparison are given in Table 13.

| Locality and depth<br>studied                          | Period                              | P2O5<br>mg./m. <sup>3</sup><br>reduction | Minimum<br>crop<br>metric<br>tons per<br>km./sq. | Period                       | SiO2<br>mg./m. <sup>3</sup><br>reduction | Minimum<br>crop<br>metric<br>tons per<br>km./sq. | Ratio<br>crop calc.<br>from Si/<br>crop calc.<br>from P <sub>2</sub> O <sub>5</sub> |
|--------------------------------------------------------|-------------------------------------|------------------------------------------|--------------------------------------------------|------------------------------|------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------|
| English Channel,<br>72–0 m. (whole<br>column)          | Winter<br>max. to<br>May<br>1931    | _                                        | 1450*                                            | 13. i. 31–<br>18. v. 31      | 208                                      | 115†                                             | 1:12.6<br>or 7.9%                                                                   |
| South Georgia<br>area, 50-0 m.                         | Winter<br>max. to<br>11. xii.<br>36 | 91.8                                     | 3075                                             | 13. x. 36-<br>11. xii.<br>36 | 2020                                     | 775                                              | 1 : 3.96<br>or 25.3%                                                                |
| Northern Region<br>(south of Indian<br>Ocean), 50–0 m. | 20. xi. 37–<br>7. i. 38             | 43.5                                     | 1447                                             | 20. xi. 37–<br>7. i. 38      | 2170                                     | 833                                              | 1:1.74<br>or 57.5%                                                                  |
| Northern Region<br>0–20° E, 50-0 m.                    | 27. ix. 38-<br>16. i. 39            | 54.0                                     | 1809                                             | 30. x. 38–<br>16. i. 39      | 1318                                     | 505                                              | 1:3.58<br>or 27.9%                                                                  |

| Т | a | bl       | le           | I | 2 |
|---|---|----------|--------------|---|---|
|   | u | <u> </u> | <sup>c</sup> |   |   |

\* Cooper, 1938, p. 187. † Cooper, 1933, p. 743.

From the table it is at once apparent that silica is consumed on a very much larger scale in the far south, and that the consumption most nearly parallels the phosphate reduction over the shortest period studied, as one would expect if silica is redissolved and used over again during the same plant cycle. Even over the shortest period, however, calculated production, on the basis of phosphate reduction, is sufficiently greater than that calculated from silicate reduction, to make it practically certain that even here silica must have been used at least twice over.

Factors which would naturally lead to a relatively great 'take out' of silica in our southern areas are: (a) loss of silica to the 50-0 m. layer through rapid sinking of faecal pellets of zooplankton herbivores, accentuated by the considerable diurnal vertical

migrations of the latter; (b) greater individual requirements of certain dominant diatom species, such as the heavily silicified *Fragilariopsis antarctica*; (c) greater silica requirements of the phytoplankton community as a whole—a more purely diatomaceous one than in the English Channel; (d) the possibility of lower temperatures lessening the rate of regeneration of silica. In deep seas (even in the South Georgia area, where the surface layers are under neritic influence, the area with depths less than 200 m. is very small and oceanic depths preponderate) there is also loss through death and sinking of the diatoms themselves to be considered, though this is not likely to be so important over the period of the main increase as later in the year. Lastly, the return of silica should perhaps be regarded as due to replacement rather than to regeneration on the spot—'younger' surface water continually passing into the northern parts of the Antarctic zone from the south. The slower processes of oceanic circulation are thus involved.

It is also to be remarked that in deep waters the effect of the stratification of the upper layers in summer will effectively prevent immediate return from much of the regeneration *in situ*. A complicating factor which must not be lost sight of is that the silicate content of the northward flowing Antarctic surface water will be modified not only by the production of phytoplankton in the Northern Region, but by the extent to which production has proceeded in the higher latitudes through which it has passed, and by the past history of the upwelling deep water that took part in the formation of that surface water, and determined its initial content of nutrient materials.

Speculative calculations on the lines of those made by Harvey et al. (1935, p. 430) have proved interesting and profitable in considering the probable influence of the grazing-down factor as a cause of the post-maximal decrease in the phytoplankton of the more northerly parts of the Antarctic zone. From estimations of the phosphorous content of the phytoplankton these workers were able to show that this was related to the pigment content in the ratio 0.08 mg. P per 1000 units of plant pigments, so that from the observed reduction of phosphate in the sea, the probable minimum crop could be calculated. For the years they studied, 1933 and 1934, the calculated values over the period of the main increase were 85,000 and between 75,000 and 100,000 units per m.3 respectively. In the same two periods the average values of the actual standing crop observed were 2500 and 1800 units per m.3, or only  $2.9\frac{0}{10}$ , and between 1.8 and 2.4% of the theoretical total crops. Harvey et al. have marshalled strong evidence in favour of the view that by far the greater part of this huge loss is due to heavy grazing of the phytoplankton by herbivorous zooplankton. They also sound the warning that though the basic ratio 0.08 mg. P per 1000 units of pigments seems sound it may not be applicable to mixed diatom populations in other localities.

Before embarking on similar calculations for our southern results it is necessary to consider the probability of error in applying this figure, for direct analyses of the Antarctic phytoplankton are lacking. We know that prior to the main increase, in the South Georgia area, the nutrient salt content is very much higher than in the corresponding period in the English Channel, the figures are around 550 mg.  $NO_3(+NO_2)/N$  and 164 mg.  $P_2O_5$  per m.<sup>3</sup> as against E 1 figures around 115 mg.  $NO_3/N$  and 39 mg.<sup>3</sup>  $P_2O_5$  (Cooper, 1933, p. 706, the phosphate figure being corrected for salt error). Recent

laboratory experiments on cultures of Nitzschia closterium by Ketchum (1939) suggest that at the higher concentration of phosphate, the proportionate intake relative to that of nitrate may be higher. This raises the whole question of the ratio of nitrogen to phosphorus present in sea water and in the plankton. Harvey (1928, p. 48) first drew attention to the apparent constancy of this ratio in widely different seas and suggested that in the main the relative requirements of the plankton (as a whole) for the two elements would be found to be in the same proportion. This idea was subsequently elaborated by Redfield (1934) and Cooper (1937). In sea water the general agreement was close, but analyses of plankton gave more variable ratios. Consistent variations in particular sea areas gave rise to Cooper's concept of the 'anomaly of the nitrate-phosphate ratio'. The variable ratios obtained in analyses of plankton are doubtless due to specific differences in the proportions of the two elements required by different classes of organisms-the resultant ratio in the sea water being the summation of the effect of the biological 'take-out' over a given period of the seasonal cycle. It is to be expected, therefore, that the anomaly of the nitrate-phosphate ratio in a given sea area will vary with time according to the seasonal sequence of dominant forms in the phytoplankton, as well as with the rate of regeneration and replacement by circulation of water masses. Where one group of phytoplankton organisms predominates over the whole of a given period-diatoms in Antarctic and boreale waters or (say) Coccolithophores in tropic seas-the anomaly may be found to vary accordingly. Direct evidence of differing requirements of the two elements on the part of phytoplankton organisms of different classes is furnished by some of Pearsall's work in fresh waters (1932).

With these considerations in view, it would appear that if the ratio of nitrate-phosphorus consumed, over the period of the main increase, in the South Georgia area could be shown to be fairly close to that obtained in the English Channel, it would follow that the crop calculated from consumption of the two elements should vary in the same proportions in the two areas, and hence the ratio of phosphorus to units of plant pigments present should be similar in both.

Unfortunately, minimal nitrate figures for South Georgia are not available, but from analyses in closely adjacent waters it seems safe to conclude that the nitrate content there must fall at least to some 300 mg. per m.<sup>3</sup>

The relevant figures are shown in the following table, in which Cooper's (1938) correction for salt error in phosphate analyses has been made which bring down the ideal ratio N : P from 20 : I to 15 : I expressed in mg. atoms, or from 9 : I to 6.7 : I by weight.

|                                        | NO <sub>3</sub><br>consumed<br>mg./m. <sup>3</sup> | P<br>consumed<br>mg./m. <sup>3</sup> | N : P by wt.                           | N : P mg<br>atoms |
|----------------------------------------|----------------------------------------------------|--------------------------------------|----------------------------------------|-------------------|
| English Channel, E 1<br>(Cooper, 1933) | 88                                                 | 15.5                                 | <sup>1</sup> / <sub>2</sub><br>5.7 : 1 | 12.6 : 1          |
| South Georgia area                     | 250                                                | 39                                   | 6-4 : 1                                | 14· <b>1</b> : I  |

From this it would seem that the effects observed in short-period culture experiments by Ketchum do not apply to these mixed diatom populations over longer intervals.

From the ratios obtained we see that in the English Channel the relative consumption of  $NO_3/N$  is less than that at South Georgia, but this is to be expected, for we know that the nitrate content of the southern waters is considerably greater than that in the English Channel, which makes it probable that other forms of available nitrogen are available in greater relative quantity in the English Channel. Additional significance is given to this point by Harvey's recent demonstration that ammonium compounds may be absorbed in preference to nitrate in mixed diatom cultures (Harvey, 1940, p. 119).

Using Cooper's revised ratio (1938, p. 179) of N : P = 15 : 1 mg. atoms or  $6 \cdot 7 : 1$  by weight, and the figure relating phosphorus to plant pigments given by Harvey *et al.*, we get the ratios

0.08 mg. P : 0.536 mg. N : 1000 units of pigments,

and from this the theoretical minimum production in the two areas may be calculated thus, on the basis of observed consumption of the two elements:

E 1: 15.5 mg. P consumed, then from the above total production should be

$$\frac{15.5}{0.08} < 1000 = \text{some 194,000 units per m}^3.$$

88 mg. N consumed, then total production should be

 $\frac{88}{0.536}$  × 1000 = some 164,000 units per m.<sup>3</sup>

South Georgia area: 39.3 mg. P consumed, then as before total production should be

$$\frac{39.3}{0.08} \times 1000 =$$
 some 490,000 units per m.<sup>3</sup>

250 mg. N consumed, then total production should be

$$\frac{250}{0.536}$$
 1000 = some 466,000 units per m.<sup>3</sup>

Bearing in mind the fact that figures from consumption of nitrate will always be too small, because the plants can utilize other sources of nitrogen, it would appear that the agreement is sufficiently close to warrant the assumption that the N : P ratio in the phytoplankton populations of the two areas is much the same.

If the relation 0.08 mg. P per 1000 units of plant pigments may be applied to discussions of crop in the northern part of the Antarctic zone without much risk of error, then we can proceed to consider the observed standing crop as a fraction of the crop calculated from the minimum take out in three southern areas where figures are available over periods suitable for comparison with those studied by Harvey *et al.*, and to discuss the implications of the apparent loss of crop.

Observed reduction of phosphate and observed average standing crop are alone

|                                                 | - 1                |                              |                             |                                               | Col                         | our units p                                    | er m. <sup>3</sup>            | Average                            | Highest                            |
|-------------------------------------------------|--------------------|------------------------------|-----------------------------|-----------------------------------------------|-----------------------------|------------------------------------------------|-------------------------------|------------------------------------|------------------------------------|
| Locality                                        | Year               | Period                       | No. of<br>obser-<br>vations | Re-<br>duction<br>of P<br>mg./m. <sup>3</sup> | Average<br>standing<br>crop | Highest<br>indi-<br>viduał<br>obser-<br>vation | Calculated<br>minimum<br>crop | standing<br>crop<br>C.M.C.<br>as % | observa-<br>tion<br>C.M.C.<br>as % |
| English Channel,<br>E 1                         | 1933               | 16. ii.–28. iii<br>(38 days) | 5                           | 6.75                                          | 2500                        | 6 <b>,</b> 89 <b>0</b>                         | 85,000                        | 2.9                                | 8.1                                |
| English Channel,<br>E 1                         | 1934               | 14. ii.–15. iv.<br>(60 days) | 8                           | 6-8                                           | 1800                        | 3,850                                          | 75,000-<br>100,000            | 1.8-2.4                            | 5.1-3.9                            |
| Northern Region<br>(south of Indian<br>Ocean)   | 1937<br>to<br>1938 | 20. xi.–7. i.<br>(48 days)   | 15                          | 18.86                                         | 1870                        | 6,760                                          | 235,750                       | 0.28                               | 2.87                               |
| Northern Region<br>(south of Atlantic<br>Ocean) | 1938<br>to<br>1939 | 27. ix.–16. i.<br>(80 days)  | 56                          | 23.28                                         | 1110                        | 7,570                                          | 294,750                       | o·38                               | 2.27                               |
| South Georgia<br>area                           | 1936               | 13. x.–11. xii.<br>(58 days) | 66                          | 34.78                                         | 7840                        | 60,040                                         | 434,750                       | 1.8                                | 13.81                              |

Table 14

sufficient to show that there must be a huge loss in our southern localities. From the reasons already given it seems probable that this is mainly due to grazing, as in the English Channel, but it must not be overlooked that actual death and sinking of diatoms may account for some of it—in the far south we are considering only the 50-0 m. layer in deep seas, while in the English Channel it is possible to consider the conditions throughout the whole water column (72.0 m.). The extensive deposition of diatom ooze and diatomaceous mud is not necessarily proof of the sinking of diatoms during the period of the main increase, however. The forms that remain intact or as recognizable fragments in the bottom deposits are precisely those which retain their structure in the stomachs of plankton animals and in bird guano. Less strongly silicified forms, known to be exceedingly numerous in the plankton, are very rarely recognizable in the bottom deposits. It is quite probable that most of the diatom remains in the bottom deposits of deep waters have passed through the stomachs of several animals on their way down. Even the observation that chlorophyll granules are present in some deposits (Neaverson, 1934, p. 299) does not detract from this argument, for it is now known that when the phytoplankton is abundant the zooplankton herbivores tend to feed far in excess of their requirements, and to excrete many diatoms in a very partially digested condition (Harvey et al. 1935, p. 425, confirmed by direct observation in the Antarctic zone). Later in the year actual sinking may be important, but over the period of the main increase, grazing is probably responsible for nearly all the loss of crop in the far south.

To return to the table, we now see that taking the average standing crop/calculated minimum crop as our standard of comparison, it would seem that the relative intensity of grazing must be from three to five times as great in our Northern Region as it is in the English Channel, while in the South Georgia area it is very slightly greater. In actual fact some years have shown a much greater average standing crop at South Georgia during the main increase than 1936. This year was selected for comparison because of the abundance of data during the earlier part of the increase. If it were permissible to include the figures for November-December 1933 the average standing crop value would be increased so that one would deduce a grazing intensity somewhat less than in the English Channel.

These deductions are based on a phosphorus/plant pigment ratio which may be inaccurate for our southern species, though as shown above the error should not be great. Whatever the ratio may be it will not affect the conclusion that grazing intensity is from three to five times greater in the Northern Region (oceanic) than in the South Georgia area (neritic). With regard to the comparison with conditions in the English Channel it is obvious also that if the figure 0.08 mg. P per 1000 units is too high, the greater intensity of grazing down south will be even more marked. A positive correction of  $100^{0}$ , which is not likely to be needed, would still leave us with a greater grazing intensity in the Northern Region than in the English Channel, where the grazing would work out at double that of the South Georgia area.

It seems clear, therefore, that in actual fact the grazing intensity in the Northern Region is of the order of three times that found in the English Channel. In the South Georgia area it is probably somewhat less than in the English Channel. This would, I think, be considered probable by anyone with extensive experience of collecting plankton in the areas concerned, on the grounds of the relative sizes of the zoo- and phytoplankton catches. It would also tend to reconcile the facts that while in the Northern Region we have found some evidence that grazing may be the chief cause of the postmaximal decrease in standing crop, in the South Georgia area, in the dense phytoplankton at the height of the main increase, Professor Hardy finds evidence of the converse effect—animal exclusion.

While temporary shortage of silica and grazing by zooplankton are probably largely responsible for the post-maximal decrease in the more northerly parts of the Antarctic zone, none of the factors so far examined adequately account for the vastly greater richness of the neritic areas as compared with the oceanic regions. We are left with the hypothesis that extremely small amounts of organic compounds, iron, and manganese (cf. Harvey, 1937, 1939) derived from the land, exert a strongly favourable influence on phytoplankton production. The work of Harvey, Cooper and others at the Plymouth Laboratory during the last few years strongly supports such an hypothesis.

One important feature of the work described in this paper which cannot be too strongly emphasized is the great importance of the pack-ice in maintaining the flora within the Antarctic zone and in giving rise to what might be termed pseudo-coastal conditions at vast distances from land, where neritic species maintained by the ice flourish for short periods when the latter disperses. This effect of the ice is even more marked than earlier observations led us to suppose, but cannot be fully demonstrated until there is opportunity for more detailed study of material collected from the ice itself during the last six years.

### SUMMARY

The aim of this work was to provide a picture of the major differences in phytoplankton distribution at different times of the year throughout the whole of the Antarctic zone of the southern ocean. In dealing with such a vast area it is impossible to do more than consider the larger qualitative and quantitative differences at as many stations as practicable, and then to study the changes throughout the year in single areas where conditions seem typical, so that one can distinguish between the effects of the probable seasonal variation and inherent distributional differences.

The principal method employed was estimation of the pigment content of catches from 50 to 0 m. vertical hauls with a net fitted with a meter recording the volume of water filtered. The results are expressed in arbitrary colour units per  $m.^3$  (Harvey, 1934*a*). The relative abundance of the leading forms was determined by counts from the same hauls. Evidence from centrifuged water samples and other sources has also been briefly considered with a full survey of previous work bearing on the problem in hand.

The limitations of our methods are fully discussed in relation to recent advances in phytoplankton technique. Nielsen's sedimentation method has many disadvantages for long-range work of this type. It is shown that loss of nannoplankton forms through the nets is probably less serious in the Antarctic than in any other large sea area.

A division of the Antarctic zone into biogeographical regions or areas, designed to facilitate the presentation of these results and the problems presented by them, is described. It is based mainly on two fundamental environmental considerations, degree of neritic influence, and the northward extent of the Antarctic surface water in the longitudes concerned. The degree to which the Antarctic surface waters extend towards the equator involves corresponding differences in the duration and intensity of the light available for photosynthesis. The division is also in part arbitrary—unavoidably so—for it is obvious that in nature conditions will merge gradually, while in practice it becomes essential to draw boundaries somewhere if the descriptions are to be reduced to manageable proportions.

The divisions are:

The Northern Region: between the Antarctic convergence and a line 330 miles south of it, all round the world with the exceptions of special areas between 30 and 110° W; and  $150^{\circ}$  W and  $170^{\circ}$  E.

The Intermediate Region: between the southern limit of the above and the Antarctic circle, all round the world with the exclusion of the same complicated areas.

The Southern Region: all seas south of the Antarctic circle, excluding immediate coastal areas.

These three regions may be regarded as providing essentially oceanic habitats, apart from the influence of pack-ice.

The special areas include those where neritic influence is strong, or where the Antarctic convergence is situated considerably to the south of its mean latitude ( $53^{\circ}$  S).

This leads to a 'telescoping' of the N–S gradient in the conditions of existence which renders the distinction of three zones as in the typical oceanic regions impracticable. To make the scheme complete one must treat the more oceanic portions of the Weddell Sea, between the Southern Region and the southern limit of the Scotia Sea, as a special area, but we have very few observations there. The special areas have been dealt with as follows:

The South Georgia area: between 52 and 55° S, 33 and 41° W.

The Scotia Sea: between the Antarctic convergence and  $62^{\circ}$  S, 30 and 70 W, excluding the South Georgia area.

Other special areas: where our observations are too few for detailed consideration, the best known being the eastern South Pacific.

The most important phytoplankton species have been grouped on a system which takes into account their general distribution, both seasonal and geographical. The classic concepts of Gran's binary system are difficult to apply, owing mainly to the relatively slight temperature gradient over the whole vast region studied. Other individual environmental features give little help, with the result that while Gran's ideas have been followed as closely as possible the system remains much more arbitrary, and is intended only to facilitate consideration of these results.

A very brief outline of this grouping is as follows:

Group I. Small oceanic pennate diatoms: Fragilariopsis, Nitzschia seriata, etc., with Distephanus.

Group II. Large oceanic diatom species: Solenoids, large Chaetocerids, etc.

Group III. Neritic and ice-edge forms—all diatoms whose restricted distribution warrants this description.

Group IV. Oceanic Chaetocerids-e.g. Chaetoceros atlanticum, Ch. dichaeta.

Group V. Oceanic Discoidae—some small species of *Coscinodiscus*, *Actinocyclus* and large *Asteromphalus* spp.

The observations summarized in the following paragraphs form the factual basis of this grouping.

An itinerary of the phytoplankton observations in the Antarctic zone during the last three commissions (1933-9) of the R.R.S. 'Discovery II' is given. Localities of all the estimations are tabulated in the Appendix.

The observations within each region or area are then described. In the Northern Region there is a slight increase over the minimal winter values in early spring, followed by the rapid main increase in November-December, when the maximum may be reached, though sometimes not achieved until January. The standing crop shows a marked decline in late summer followed by a secondary increase, small and more irregular than the main, during March-April. During May the decline towards the negligible winter values is probably rapid.

The qualitative sequence is marked by the close coincidence of the maximum relative importance of neritic/ice-edge diatoms (Group III) and the onset of the main increase. By the time the maximum is reached they are again becoming relatively scarce, and at

all other seasons form a negligible proportion of the phytoplankton. This evidently shows close correlation with the pack-ice, these mainly meroplanktonic forms flourishing in the open ocean only for a short time after the pack begins to disperse. Small pennate forms (Group I) form the basis of the population in the Northern Region, as in most other parts of the Antarctic zone. Autumn seems to be the only time when they are numerically unimportant. At this time the rather heterogeneous collection of 'large species' in Group II take up the running with Group IV (oceanic Chaetocerids). Group II are also important during the period of post-maximal decrease in late summer. The oceanic Discoidae (Group V), always present in small numbers, reach their greatest relative importance in the scanty winter phytoplankton when the holozoic constituents of the microplankton also become prominent in the small samples obtainable.

In the Intermediate Region no appreciable increase was observed until the end of November, and the maximum appears to be reached about the middle of January. The post-maximal decrease is more gradual and less marked, and a slight autumnal increase appears to take place in May. Thus the whole cycle is later than in the Northern Region, as we expected from earlier less conclusive evidence. The Intermediate Region was relatively richer in the large diatom species (Group II) than the Northern Region. The other outstanding qualitative feature was the dominance of *Phaeocystis brucei* in the period immediately following the break up of the pack. The relative importance of the diatom groups varied with the seasons in very much the same way as in the Northern Region. Neritic/ice-edge forms (Group III) showed the same peak early in the season. The post-maximal preponderance of Group IV (oceanic Chaetocerids) and Group II is even more marked and would almost certainly be found during the slight autumnal increase also, though qualitative data from the May observations are lacking.

In the Southern Region it is impossible to obtain adequate data for all seasons. It is only on rare occasions that our ships have been able to penetrate to it in spring and autumn. The evidence suggests that production must be altogether negligible during winter, but that a small increase in phytoplankton takes place from November onwards wherever there is sufficient open water. The main increase begins in January, when there are always considerable areas free from pack, and rises steadily to a peak late in February. Early in March the diminution is slight but the phytoplankton must decrease very rapidly later in that month as new ice is formed. In this region Group II species are even more important, but not at the height of the main increase. Two of them, Corethron criophilum and Chaetoceros criophilum, are particularly prominent in January and again in March. Our single autumnal observation shows these, together with Dactyliosolen antarcticus and Thalassiothrix antarctica, strongly dominant. Group III is again most important early on, as was Phaeocystis brucei, which is not so all-pervading here as during the early part of the main increase in the Intermediate Region. Oceanic Chaetocerids (Group 1V) were scarce in January but prominent in February and March.

Observations in the South Georgia area show in striking fashion the enormous

fertility of the more northerly Antarctic surface waters when neritic influences are at work. Though results from different seasons have had to be considered together it seems clear that the essential form of the seasonal cycle is similar to that of the oceanic northern zone. The quantitative values recorded are nearly ten times as great, however, and the whole cycle oriented so that the maximum falls somewhat earlier in the year. The same conditions are reflected in a lesser degree in the larger area of the Scotia Sea. Here of course neritic influences are less pronounced, but the quantitative values are still twice as great as in corresponding oceanic latitudes.

The qualitative sequence of the phytoplankton in these two areas has not been considered in detail here, for many observations on it have already been published. The main features are predominance of Group III and, to a lesser extent, Group II during the main increase, the latter increasing in importance later in the year. Members of all groups probably reach their maximum 'absolute' abundance during the main increase of the very rich mixed South Georgia plankton. Under the slightly more oceanic conditions of the Scotia Sea area, predominance of Group III species is much more sporadic, and the relative importance of the small oceanic pennate forms (Group I) is much greater.

The other special areas have not been worked sufficiently to permit of more than suggestions of the probable implications of the scanty data available. In some these are strengthened by a considerable body of previous evidence. The eastern South Pacific is the best known, and it appears that the time cycle here is roughly intermediate between that of the Northern and Intermediate Regions, and the phytoplankton exceptionally scanty.

Incidental observations on biological features of special interest are described. The Antarctic phytoplankton exhibits extreme development of the colonial habit which cannot be fully realized unless fresh samples are examined. A possible correlation between change of form with adoption of the chain-forming habit in *Corethron* with reduction of silicate content of the medium, previously suggested on theoretical grounds, is partly confirmed. Some observations on spore formation are discussed in the light of recent laboratory experiments. Examinations of stomach contents showed that in addition to *Euphausia superba*, other Antarctic Euphausians, some of the most important Calanoids, and some of the more abundant Pteropods, all feed extensively upon diatoms. Moreover, the Calanoids are capable of triturating and swallowing the large spiny diatom species as well as ingesting smaller ones entire.

In discussing the implications of the work as a whole it is seen that in the Antarctic zone neritic influences extend farther from the land than elsewhere, but when truly oceanic observations throughout the year are available, it becomes evident that they are just as important as in other parts of the world. This was not readily apparent from earlier work confined to the complicated Falkland sector. As it seems impossible for phosphate and nitrate to be factors limiting phytoplankton production in any part of the Antarctic zone, the observed differences in distribution both in time and space must be explained on other grounds. The importance of the physical factors, light, stability

of the surface layers, and the (interrelated) effects of pack-ice, which was recognized in earlier work, cannot be doubted. They are certainly prime causes in determining the time of the onset of the main increase, and the extent and duration of the autumnal secondary increase in the more northerly parts of the Antarctic zone. However, they do not by themselves explain the post-maximal summer decrease in the more northerly Antarctic surface waters, or the vastly greater richness of the neritic areas. Now that truly oceanic observations throughout the year are available, it is seen that it is only in the neritic areas that Antarctic seas retain their claim to be the richest in the world. Since the physical factors do not sufficiently account for this, explanation must be sought among chemical and biological factors. Among chemical factors there is now some direct evidence that temporary shortage of silica may be in part responsible for the post-maximal summer decrease in both oceanic and neritic areas. The greater richness of neritic areas remains inexplicable unless we assume that minute quantities of inorganic compounds, as iron or manganese, or of organic compounds derived from the land, exert a strongly favourable influence on diatom growth. We have no direct evidence of this, but the growing body of experimental work by Harvey, Cooper and others favours such an hypothesis.

Among biological factors the effect of the grazing down of the phytoplankton by the herbivorous zooplankton is probably of great importance in the poorer pastures of the open ocean. In neritic areas of exceptionally rich phytoplankton Hardy has shown that the converse effect, 'animal exclusion' may occur, but there is little doubt that the post-maximal summer decrease in diatoms must be accentuated, and to some extent caused directly by grazing. In the Antarctic zone, and all other areas with marked seasonal changes so far investigated, all available evidence shows that the zooplankton reaches its peak at a distinct interval of time after the phytoplankton maximum.

### ACKNOWLEDGEMENTS

It is a great pleasure to record my indebtedness to many kind friends on the staff of the Marine Biological Association at Plymouth, where the work was concluded, by kind permission of the Director, Dr S. W. Kemp, after the outbreak of war. I am fortunate in having been able to discuss phytoplankton problems with Dr H. W. Harvey for several years and am particularly indebted to him for information and demonstration of his methods in 1933 before he had published the account of them. By kind permission of Dr E. J. Allen this enabled us to utilize the method throughout the third commission, two years earlier than would have otherwise been possible. I am particularly indebted to Misses N. G. Sproston and D. R. Dibben, and my wife, for help in preparing the MS. for the press.

My indebtedness to my colleagues on the Discovery Staff will be obvious from the text, and, as with all our work, the able co-operation of the marine staff, and the patience and skill of the seamen in handling the gear under trying conditions, cannot be too highly praised.

### REFERENCES

- ALLEN, E. J., 1919. A contribution to the quantitative study of plankton. Journ. Mar. Biol. Assoc., n.s., XII, no. 1.
- ALLEN, W. E., 1934. The problem of methods in marine plankton investigations. Internat. Rev. d. ges. Hydrobiol. usw. xxx1, 40-65. Leipzig.
- ATKINS, W. R. G., 1926. The phosphate content of sea water in relation to the growth of the algal plankton. Part III. Journ. Mar. Biol. Assoc., n.s., XIV, pp. 447–67.
- ----- 1926. A quantitative consideration of some factors concerned in plant growth in water. Journ. du Cons. Internat. pour l'Expl. de la Mer, 1, pp. 197-226.
- BARKER, II. A., 1935. The culture and the physiology of the marine Dinoflagellates. Arch. f. Mikrobiol., Bd. vi, Heft 2, pp. 157-81.
- BRAARUD, T., 1935. The 'Øst' Expedition to the Denmark Strait, 1929. II. The Phytoplankton and its conditions of growth. Hvabradets Skrifter, Nr. 10, pp. 7–173.
- CASTRACANE, F., 1886. Report on the Diatomaceae collected by H.M.S. 'Challenger' during the years 1873-6. Repts. Challenger Exped., Botany, II, pp. i-iii, 1-178, pls. i-xxx.
- CLOWES, A. J., 1934. Hydrology of the Bransfield Strait. Discovery Rep., 1X, pp. 1-64.
- 1938. Phosphate and silicate in the Southern Ocean. Discovery Rep., XIX, pp. 1-120, pls. i-XXV.
- COOPER, L. H. N., 1933. Chemical constituents of biological importance in the English Channel, November 1930 to January 1932. Parts I and II. Journ. Mar. Biol. Assoc., XVIII, pp. 677–753.
- ---- 1937. On the ratio of nitrogen to phosphorus in the sea. Journ. Mar. Biol. Assoc., XXII, pp. 177-82.

1938. Salt error in determinations of phosphate in sea water. Journ. Mar. Biol. Assoc., XXIII, pp. 171-8.

- DEACON, G. E. R., 1933. A general account of the hydrology of the South Atlantic Ocean. Discovery Rep., VII, pp. 171–238.
- 1937. The hydrology of the Southern Ocean. Discovery Rep., xv, pp. 1-124, pls. i-xliv.
- FISHER, R. A., 1930. Statistical Methods for Research Workers. London.
- GRAN, H. H., 1902. Das Plankton des Norvegischen Nordmeercs von biologischen und hydrographischen Gesichtpunkten behandelt. Report on Norwegian Fish and Marine Investigations, 11, p. 5.
  - ---- 1929. Quantitative plankton investigations carried out during the expedition with the 'Michael Sars', July-Sept., 1924. Rapports et Procés-verbaux des Réunions, Conseil Internat. pour l'Explor. de la Mer, LVI, pp. 1-50.
  - ---- 1932. Phytoplankton. Methods and Problems. Journ. du Conseil, VII, pp. 343-58.
- GRAN, H. H. and BRAARUD, T., 1935. A quantitative study of the phytoplankton in the Bay of Fundy and the Gulf of Maine (including observations on hydrography, chemistry and turbidity). Journ. Biol. Bd. Canada, 1, no. 5, pp. 279–467.
- GROSS, F., 1937. The life history of some marine plankton diatoms. Phil. Trans. Roy. Soc. Lond., Ser. B, no. 548, vol. CCXXVIII, pp. 1-47, pls. 1-4.
- ---- 1940. The development of isolated resting spores into auxospores in Ditylum Brightwelli (West.). Journ. Mar. Biol. Assoc., XXIV, pp. 375–80.
- HAECKEL, E., 1890. Plankton Studien. Wien.

.

- HARDY, A. C. and GUNTHER, E. R., 1935. The plankton of the South Georgia whaling grounds and adjacent waters, 1926-7. Discovery Rep., XI, pp. 1-486.
- HARDY, A. C., 1939. Ecological investigations with the continuous plankton recorder: object, plan and methods. Hull Bull. Mar. Ecol., I, (1), pp. 1–57.
- HART, T. J., 1934. On the phytoplankton of the south-west Atlantic and the Bellingshausen Sea, 1929-31. Discovery Rep., VIII, pp. 1–268.
- 1937. Rhizosolenia curvata Zacharias, an indicator species in the Southern Ocean. Discovery Rep., xv1, pp. 413–46, pl. xiv.
- HARVEY, H. W., 1928. The Biological Chemistry and Physics of Sea Water. pp. 1-194. Cambridge.
- ---- 1934 a. Measurement of phytoplankton population. Journ. Mar. Biol. Assoc., n.s., XIX, pp. 761-73.
- 1934 b. Annual variation of planktonic vegetation, 1933. Journ. Mar. Biol. Assoc., n.s., XIX, pp. 775–92.

HARVEY, H. W., 1937. The supply of iron to diatoms. Journ. Mar. Biol. Assoc., n.s., XXII, pp. 205-19.

- ----- 1939. Substances controlling the growth of a diatom. Journ. Mar. Biol. Assoc., n.s., XXIII, pp. 499-520.
- ----- 1940. Nitrogen and phosphorus required for the growth of phytoplankton. Journ. Mar. Biol. Assoc., n.s., XXIV, pp. 115-23.
- HARVEY, H. W., COOPER, L. H. N., LEBOUR, M. V. and RUSSELL, F. S., 1935. *Plankton production and its control.* Journ. Mar. Biol. Assoc., n.s., xx, pp. 407-41.
- HEIDEN, H. and KOLBE, R. W., 1928. *Die Marinen Diatomeen der Deutschen Südpolar Expedition*, 1901-3. Deutsche Südpolar Exped., viii, Heft v, pp. 450-714.
- HENDEY, N. I., 1937. The plankton diatoms of Southern Seas. Discovery Rep., xv1, pp. 151-364, pls. vi-xiii.
- HENTSCHEL, E., 1932. Die Biologischen Methoden und das Biologische Beobachtungsmaterial der 'Meteor' Expedition. Wiss. Ergeb. Deutschen Atlantischen Expedition 'Meteor', 1925–7, vol. x.
- ---- 1936. Allgemeine Biologie des Südatlantischen Ozeans. Wiss. Ergeb. Deutschen Atlantischen Expedition 'Meteor', 1925-7, vol. XI.
- HERDMAN, H. F. P., 1932. Report on soundings taken during the Discovery Investigations, 1926-32. Discovery Rep., VI, pp. 205-36, pls. xlv-xlvii, charts 1-7.
- KARSTEN, G., 1905. Das Phytoplankton des Antarktischen Meeres nach dem Material der Deutschen Tiefsee Expedition, 1898–9. Wiss. Ergeb. Deutsch. Tiefsee-Exped., Zweiter Band, Zweiter Teil, Lief. 1, pp. 1–136, Taf. i–xix.
- 1906. Das Phytoplankton des Atlantischen Ozeans nach dem Material der Deutschen Tiefsee-Expedition, 1898–9. Wiss. Ergeb. Deutsch. Tiefsee-Exped., Zweiter Band, Zweiter Teil, Lief. 2, pp. 139–219, Taf. xx-xxxiv.
- ---- 1907. Das Indische Phytoplankton. Wiss. Ergeb. Deutsch. Tiefsee-Exped., Zweiter Band, Zweiter Teil, Lief. 3, pp. 223-548, Taf. xxxv-liv.
- KETCHUM, B. II., 1939. The adsorption of phosphate and nitrate by illuminated cultures of Nitzschia closterium. American Journ. Bot., xxvi, pp. 399-407.
- KREPS, E. and VERJBINSKAYA, N., 1930. Seasonal changes in the phosphate and nitrate content and in the hydrogen-ion concentration in the Barents Sea. Journ. du Conseil., v, pp. 327–45.
- KREY, J., 1939. Die Bestimmung des Chlorophylls in Meerwasser-Schöpfproben. Journ. du Conseil, XIV, (2), pp. 201–9.
- LUCAS, C. E., 1940. Ecological investigations with the continuous plankton recorder: The phytoplankton in the southern North Sea, 1932–7. Hull Bull. Mar. Ecol., 1, (3), pp. 73–170, pls. i–lxiv.
- MANGIN, L., 1915. *Phytoplancton de l'Antarctique*. Deuxième Expéd. Antarct. Française commandée par le Dr Jean Charcot, pp. 1–95, pls. i–iii. Paris.
- 1922. *Phytoplancton Antarctique*. Expédition Antarctique de la 'Scotia', 1902–4, Mém. Acad. Sci. Paris, LXVII, pp. 1–134.
- MARSHALL, S. M. and ORR, A. P., 1928. The photosynthesis of diatom cultures in the Sea. Journ. Mar. Biol. Assoc., n.s., xv, pp. 321-60.
- MARSHALL, S. M., 1933. The production of microplankton in the Great Barrier Reef region. Great Barrier Reef Expedition, 1928–9, Sci. Rep., 11, (5), pp. 111–57.
- MOORE, B., PRIDEAUX, E. and HERDMAN, G., 1914. I. Seasonal variations in the reaction of sea-water in relation to the activities of vegetable and animal plankton. 11. The limitations of photosynthesis by algae in sea water. Annual Rep. Lancs. Sea Fisheries Laboratory.
- NEAVERSON, E., 1934. The sea floor deposits. 1. General characters and distribution. Discovery Rep., 1X, pp. 295-350, pls. xvii-xxii.
- NIELSEN, E. S., 1933. Über quantitative Untersuchung von marinen Plankton mit Utermöhls umgekehrten Mikroskop. Journ. du Conseil, VIII, pp. 201–10.
- ---- 1935. The production of phytoplankton at the Faroe Isles, Iceland, East Greenland and the waters around. Medd. Komm. Danmarks Fiskeri og Havundersögelser, Ser. Plankton, Bd. III, Nr. 1.
- ---- 1937. On the relation between the quantity of phytoplankton and zooplankton in the sea. Journ. du Conseil, XII, (1), pp. 147-54.
- 1938. Über die Anwendung von Netzfängen bei quantitativen Phytoplankton untersuchungen. Journ. du Conseil, XIII, (2), pp. 197–205.
- PEARSALL, W. H., 1932. Phytoplankton in the English Lakes. II. The composition of the phytoplankton in relation to dissolved substances. Journ. Ecol., xx, pp. 241–62.

- PETERS, N., 1934. Die Bevölkerung des Südatlantischen Ozeans mit Ceratien. Wiss. Ergeb. Deutsch. Atlant. Exped. 'Meteor', 1925-7, XII, pp. 1-69.
- REDFIELD, A. C., 1934. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. James Johnstone Memorial Volume, Univ. of Liverpool, pp. 176–92.
- RILEY, G. A., 1938. The measurement of phytoplankton. Internat. Rev. d. ges. Hydrobiol. usw., xxxvi, pp. 371-3.
- VAN HEURCK, II., 1909. *Diatomées*. Resultats du Voyage du S.Y. 'Belgica' en 1897-9 sous le commandement de A. de Gerlache de Gomery, Rapports Scientifiques-Botanique, pp. 3-126, pls. i-xiii.
- WIMPENNY, R. S., 1936. The size of diatoms. I. The diameter variation of Rhizosolenia styliformis Brightwell and Rhizosolenia alata Brightwell in particular, and of pelagic marine diatoms in general. Journ. Mar. Biol. Assoc., n.s., XXI, pp. 29–60.
- ZENKEVITCH, L. A., 1931. Fish-food in the Barents Sea (Introduction). Rep. First Session State Oceangr. Inst. Moscow.

.

APPENDIN

# Results obtained by Harvey's Method during the Third, Fourth and Fifth Commissions

of the R.R.S. Discovery II

The region or area within which each observation was made, according to the scheme of geographical subdivision used in this paper, is shown in the last column by one of the following contractions: N = Northern Region, I = Intermediate Region, S = Southern Region, SS = Scotia Sea, SG = South Georgia Area, ESP = Eastern South Doctor, NDS - Area North of the Doce Sea, W = Mid Weddell Sea and Se = Other second Areas. B = Bransfield Strait and Palmer Archinelance

| ď                | Position        |                              | Region           | ,<br>C            | Ļ           | đ                           | Position       | Colour                       | Region        |
|------------------|-----------------|------------------------------|------------------|-------------------|-------------|-----------------------------|----------------|------------------------------|---------------|
|                  | Long.           | units<br>per m. <sup>3</sup> | or area          | Station           | Date        | Lat. S                      | Long.          | units<br>per m. <sup>3</sup> | or area       |
| ,6.15            | 31° 25.6 W      | 15,940                       | s.s.             | 1251              | 8. i 34     |                             | M .6.2+ .+11   | 340                          | x             |
| 0.0+             | 37 06.4 1       | I3,390                       |                  | 1252              | 9. 1        |                             | 116 38-6 W     | I,I50                        | s.            |
| 2                | 37 07.0 1       | 24,530                       | <u>ک</u><br>۲. ۲ | 1253              | 9.1         |                             |                | 000                          | ſ.,           |
| 0.61             | 37°07'4 W       | 25,100                       | 5.0              | 1254              | I O. I      |                             | 120 41 S W     | I,020                        | Π             |
| (1.ot            | 37 ' 07·3' W    | 32,540                       | Ú.               | 1255              | 10.1        | 65°38°0′                    | 123 IO'2' W    | 1,030                        | -             |
| .í.              | 34 I.4.4 W      | 23,000                       | С<br>Х.С         | 1250              | II. I       | 66 50.7'                    | 126 13.5' W    | 680                          | L.            |
| ,i               | 34 48.6' W      | 31,250                       | SC<br>SC         | 1257              | 11.1        | 67 52.4                     | 120 27.5' W    | 880                          | S.            |
| , i j            | 35, 25.2' W     | 28.750                       | Ů<br>S           | 1258              | 12. İ       | 68: 20.0                    | 132 52'I' W    | 2.420                        | S.            |
| , <u>,</u> , , , | 20 52.1 W       | 014.01                       | Ċ                | 0.00              | 1 2. 1      | 67° 26.6                    | 125° 52.7' W   |                              | ſ             |
| i ;              | 11 , c. r.c. 30 |                              | 0<br>. V         | 00/01             |             | 662 11-0                    | 1.20° 00.6' W  | 000                          |               |
| 2                |                 | 001:40                       | ) (              | 1400              |             | 6 TT 00                     |                | 1,540                        |               |
| 0.10             | 39 12-8 W       | 40,200                       | ۔<br>م           | 1201              | 13.I        | 0.00 20                     |                | 01+                          | -             |
| 0.50             | 39' 45'9' W     | 35,960                       | SC<br>X          | 1262              | 14.1        | 66° o3'I                    | I 144 30.3 W   | S20                          | Ţ             |
| 06.2             | 40 18 9 W       | 13,840                       | С<br>У.          | 1263              | 14.1        | 66° 58.3'                   |                | 2.870                        | s.            |
| 0.82             | 11 52.5 M       | 13,640                       | L.L.             | 1264              | 15.1        | 68° ob 8′                   | M 1.07 051     | 1.000                        | S.            |
| , i              |                 | 2 260                        | L.<br>L          | 1265              |             | 60, 07-7                    | 152 11.0 M     | 910                          | I             |
|                  | E2 15.6 W       | 0.00                         | У.<br>Ч          | 1266              | 9           | , 11 , 60<br>1 1. 2         |                | 1 610                        | : J           |
|                  | 11, e.g.        |                              | 1<br>1           | 1901              |             | 60° 101 1                   | + 4 - 6 +      |                              | 3.0           |
| 0,0              |                 | 0000                         | 20               | 1071              | *1.01       |                             |                | 040.1                        | 5.5           |
| c Ì              |                 | +1/30                        | 2 0              | 0071              | 1.01        | 1 2 2 2 1                   | M 0.07 TOT     | 2,000<br>2,000               | c c           |
|                  | M 5.01 to       | 2,070                        | <u>a</u> c       | 1200              | 10.1        | 07, 33.5                    |                | 1,000                        | 6             |
| 1.0              | 07 20'2 M       | 14,300                       | р (              | 1270              | 1.0.1       | 00 20.2                     |                | 510                          |               |
| 45.3             | 77 50.0 11      | 230                          | r.               | 1271              | 1.9.1       | 65_053                      |                | 140                          |               |
| .1.0             | 11 2.10 22      | 600                          | 1<br>7<br>1<br>1 | 1272              | 20.1        | 63 41.3                     | 167 30-3 W     | 1,660                        | £<br>≚<br>∠   |
| 02.7             | 78 01.7 11      | 100                          | Ϋ́,              | 1273              | 20.1        | 62° o8•1'                   |                | 2,000                        | 92<br>22<br>2 |
| (b. I            | 78° ol·6' W     | 000                          | ESP              | 1274              | 21. İ       | , +.1+ .09                  | 166 17-8' W    | 800                          | SžN           |
| 5.I              | 78° ot 1' W     | 200                          | ESP              | 1282              | 20. 11. 34  | 66 05 9                     | 170 32'5' W    | 200                          | NRS           |
| 40.6             | 65° 30'6' W     | 010                          | L<br>L           | 1283              | 23. II      | 72°01'2'                    | 171° 25.7' W   | 170                          | s.            |
| 20.1             | 00 40.0 M       | I, I 00                      | L<br>L           | 1284              | 24. 11      | 69°48·1'                    | 167° 20'7' W   | 2.020                        | S.            |
| ,1.90            | 7.52            | 120                          | ESP              | 1285              | 24. 11      | 68, 45.0                    | 164° 35.8' W   | 810                          | x.            |
| 1.02             | M 0.50 22       | 0×4                          | x                | 1286              | 24. 11+     | $67^{\circ}$ $42.2^{\circ}$ | 162° oš oʻ W   | 60                           | s.            |
| 0.3              | 70 26-7' W      | 071                          | y.               | 1287              | 24. 11+     | 68° 05.2                    |                | 760                          | S,            |
| 20.2             | 27-1,           | 0:::                         | U.S.P            | 2X<br>2<br>2<br>2 | 24.11       | 68' 27.8'                   | , o.9          | I 020                        | S.            |
| r. 0             |                 | 1                            | 1001             | 0.00              |             |                             |                | 1.740                        | 5 5           |
| 6.14             | 105             | 06                           |                  | 6071              | 25.11       | 0.00 60                     | 152, 42.4      | 0001+                        | c :           |
| Ņ,               | 31.3            | 000                          | 1                | 1290              | 20, 11      | 00 45:9                     | W 6.zt 6t1     | 12,050                       | r. 1          |
| 0.0              |                 | 1,210                        | <i>.</i> ,       | 1291              | 26.11       | 70 28.2                     | I+5 55'2' W    | 4,020                        | r.            |
| 36.6             | 94, 22.9 W      | 650                          | x                | I 202             | 27.11       | 71° 25.1'                   | I+3° 34-6' W   | 3,250                        | x             |
| ,†.9I            | 2.60            | 380                          | s.               | 1293              | 27. 11.     | 70° 08·4′                   | 140° 20.0' W   | 4,030                        | x             |
| (0.1.1           | 101 15.1 W      | 530                          | x                | 1204              | 28. ii      | 6.50,09                     | 137° 28-2' W   | 5,030                        | x             |
| 50.2             | Iot 18-2' W     | 820                          | s.               | 1205              | 28. 11      | 68 01.4                     | I 134° 14.8' W | 2.130                        | S             |
| ر ۲. ۲<br>ا      | 22.0            | 760                          | ESP              | 1206              | 1. 111. 2.4 | 60° 00.6'                   | 131° 42.6' W   | 2,020                        | S             |
| ,6.11            | 108° 41'5' W    | 110                          | T.               | 1297              |             | 70, 25.2                    | 120 IST W      | 2,480                        | X             |
|                  | ,               |                              |                  |                   |             |                             |                |                              | r,            |

† Two 24. ii east bound.

\* 17. i. 34 omitted west bound.

### DISCOVERY REPORTS

348

•

| Barion   | or area                      |                                               | Z           | Z            | 23       | 23                 | Z        | Ľ          | 1.7                |                   | n (<br>n ij |                      |              |                      |             | ÷.          | S<br>S<br>S | S,G           | Û.          | SC:         | С<br>У      | 5          | 1. 1<br>1. 1 | r. 0<br>r. 0 | 6 0<br>6 0 | r, y<br>r, y | i a                |                       | $\frac{1}{2}$ |            | T.       | Г. :<br>Г. : | с л<br>с л | r y<br>c y           | T.         | ſ           | T.      | . 'S        | У.<br>У.  | T.<br>T.  | ; <b>h</b><br>)<br><i>f</i> . | 'f.<br>'f.  | - <b>f</b> , -<br>-f, - | 7, 1<br>7, 1 | <i>f</i> , ; |           | Te:       |
|----------|------------------------------|-----------------------------------------------|-------------|--------------|----------|--------------------|----------|------------|--------------------|-------------------|-------------|----------------------|--------------|----------------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|------------|--------------|--------------|------------|--------------|--------------------|-----------------------|---------------|------------|----------|--------------|------------|----------------------|------------|-------------|---------|-------------|-----------|-----------|-------------------------------|-------------|-------------------------|--------------|--------------|-----------|-----------|
| Colour   | per m. <sup>3</sup>          | 0.0                                           | 270         | \<br>0<br>0  | ۸<br>٥   | v<br>0             | √        | 0+         | 0                  | 000               | 021         | 001                  |              | 2.0                  | 0,00        |             | 001         | 200           | 60          | 01          | 0%          | 0 I I      | 110          | 011          | 0+1        | 100          |                    |                       | Į.            | 0<br>××    | 06       | 000          | 001        | 0+2                  |            |             |         |             | 500       | 01        | 350                           | 4 %         | 430                     | 210          | 300          | 001       | 0/7       |
| Position | Long.                        | 44 - 45 - 4<br>- 4 - 5 - 4<br>- 4 - 5 - 5 - 5 |             |              |          | 01.5               |          |            | 9.†I               |                   | 31 54.0 11  |                      |              | 55 1/1 25            |             |             | 37 05'5' W  |               |             | 30 27.4 W   | t.20        | ().yt      | 44 47.2 W    | 51.5<br>20   |            | 55 25.2 11   |                    |                       |               | 78 18-3' W |          |              | 54 30'4 M  |                      | M. 8.00 01 |             |         |             | 5.0       | 13 00'U W |                               |             |                         | SI 50.0 W    | 70 23-0 M    | 70 21-8 W | 79 23°0 W |
| P        | Lat S                        | 56-38-6<br>55-12-8                            |             |              |          |                    |          |            |                    |                   |             |                      |              | 0+ 45.5<br>7.2       | 54 43.5     | 0.01 25     | 52 58-7     | 52 36.3       | 53 59.3     | 53 59 8     | 24 oo.1     |            |              |              |            | 50 203       | 2 T C DD           |                       |               |            | 50 36.3  |              |            | 50.51.0              |            |             |         | 0.00        |           |           |                               | 53 12.5     |                         | 52 10.3      | 62 37.7      | 63 43.8   | 02 03.4   |
|          | Date                         | 11. V. 34<br>12. V                            | 14. V       | 11. viii. 34 | 12, VIII | 13. VIII           | 15. VIII | 18. VIII   | 19. VIII           | 23. VIII          |             | 25. VIII<br>25. VIII |              | 20. VIII<br>26. VIII | 1. IX. 34   | Z           | 2<br>1      | 2. IX         | 2. IN       | 3. ix       | 3. IX       | 3. IX      | 1. IX        | 5. IX        | 0. IX      | X1 - 2       |                    | 10. IX                | 12. IN        | 13, iX     | 26. IX   | 26. IN       |            | 27. IX               | 50. IA     | ł۶          | × 1     | e v<br>di e | <         | - X - T   | н и<br>F ил                   | I O. N      | II. X                   | 12. X        | 20). N       | 2.9. X    | 30, X     |
|          | Station                      | 1364<br>1365                                  | 1366        | 1382         | 1383     | 1384               | 1350     | 1359       | 1390               | 1392              | 1393        | 1305                 | 6651<br>9001 | 1390                 | 1397        | 0011        | IOTI        | 1402          | 1403        | +0+1        | 2011        | qo†1       | 2011         | 2011         | 1409       | 01+1         | 1141               | 21†I                  | SITI          | 9141       | 1425     | 1426         | 1427       | 1420                 | 0211       | 1-21        | 1 1 2 2 | 1427        |           | 1436      | 1437                          | 1+38        | 1430                    | 1+40         | <u>7</u> +7  | 1++S      | 1440      |
| Region   | or area                      | x x                                           | s           | s c          | n c      | v o                | 00       | <u>n 9</u> | nu                 | o u               | s o         | 2 Ø.                 | ESP<br>ESP   | ESP<br>1             | ESP         | S.<br>S     | SS          | $\mathcal{S}$ | 33<br>25    | SS          | S<br>S<br>S | Л с<br>Л с | n u<br>N u   | 0 0<br>0 0   | 6 a<br>6 u | 6 U<br>6 U   | : C<br>: C         | 32                    | Z             | Ζ.         | Z        |              |            |                      | -          | -           |         |             | -         | ( )(      |                               | I           | Ţ                       |              | _,           |           | 1         |
| Colour   | units<br>per m. <sup>3</sup> | 200                                           | 2,850       | 3,820        | 3,040    | 200                | 1,920    | 1,700      | 020<br>1           | 1,400             |             |                      | >>>          | 280                  | 200         | 001         | 80          | 20            | 0           |             | 20          | 0<br>~~    | 1,150        | 120          | 06         | 100          |                    | 021                   | 210           | 014        | 50       | 9            | 00         |                      | , vo       |             |         | 0           | 280       | 270       | 001                           | -28         | 200                     | 60           | 10           | 1,430     | 050       |
| Position | Long.                        | 120° 57'2' W<br>117' 41'5' W                  |             | 111 50°0' W  |          | N 0.22 201         |          | 11 1.2 56  | 91 50°9 W          | 262.5 11          | 82          | vi c                 |              | W 277 6/             | 79° 06·3′ W | 56° 00'4' W | ir          | 55° 10-3' W   | 55° 03-2' W | 44° 23.9′ W | 44 24.8' W  | 0          |              |              |            | M 0.60 tt    |                    | 27, 26.2/ W           | . –           | 0          | 2        |              | 22 IS 2 W  | M 6.11 22            |            | OS 00:4     |         | 10, 30 L E  | 10 28-3 E |           | 24, 12.2                      | 30' I5-6' E |                         |              | 3 E.g1 ++    | 44 15.9 E | 44 27'9 L |
| P        | Lat. S                       | 67° 53'7′<br>67° 06'9′                        | ,6.0° 20.0' | ,8-to _29    | 07 47.3  | 08 22.0<br>60 22.0 | 0.01 60  | 0.00 60    | 00 33'I<br>67 15:0 | 0.5+ /0<br>(12:0) | 64: 18:87   | 68° 18'0'            | 66° 02.1'    | , 2-12 TG            | 62.55.1     | 55 56.4     | 57° 26.6′   | 58 48.5       | ,0.21,00    | 60 11.5     | 58 39-1     | 57, 35'2   | 55, 54.3     | 5+ 37.0      | 25.500     | 52 251       | 51 34 1<br>52 56.6 | ,0, <del>1</del> ,2,2 | 23° ±6-3′     | 54 21.6    | 55° 24'9 | 50 28.7      | 57, 40.3   | 00 13'4<br>61 10'5'4 | 60 18-6    | 60° 00' 10' | 50 25.7 | 50" 00.0'   | 58° 43''  | 60 12 8'  | 61 23.7'                      | 62 36.4     | 63 45'2                 | 64. 27.0     | 0+22.40      | 2.24 10   | 0.11 65   |
| ¢        | Date                         | 3. iii. 34<br>3. iii                          | + III +     | +            |          | 5.<br>1.5          |          | (,<br>(,   | E:E                | 0. III<br>0. III  | 11 o        | 10. III              | 11. 11       | 11.11                | I 2. III    | 28. iii     | 29. iii     | 29. iii       |             | + iv. 34    | 5.1V        | 2. IV      | 0. IV        | 2.3          |            | × .2         | 0. iv              | 22. IV                | 22. iv        | 23. iv     | 23. iv   | 24. 1V       | NI .52     | 26. iv               | 27. iv     | 28. IV      | 30. IV  | TL .V. 1    | : 5       | 3. V      | +                             | 5. V        | 6. V                    | 2-1          | 0. V         | 0. V      | 10. 1     |
|          | Diation<br>Diation           | 1300<br>1301                                  | 1302        | 1303         | 1304     | 1305               | 1300     | 150/       | 1300               | 2001              | 1311        | 1312                 | 1212         | 1121                 | 1315        | 1325        | 1326        | 1327          | 1328        | 1331        | 1332        | 1335       | 1334         | 1555         | 2000       | 133/         | OT2 I              | 1343                  | 1344          | 1345       | 1346     | 1347         | 1340       | 1350                 | 1221       | 1352        | 1353    | 1351        | 1351      | 1356      | 1357                          | 1358        |                         | 1300         | 1301         | 1302      | 5,'2 ±    |

Appendix (continued)

L

APPENDIX

| Region   | or area                      | s          |                      | ,          | -      | x.     | x.        | x      | x      | x                     | _            | - ,         | ,          |           |           | - 7        | r, 9    | 5 H                                                                                              |                            |            | I                     |             | <b>,</b>                               |                      |                      |            | _           | 4 )=4    | Ι         | Z;                                                                                                                                                                        | 27                    | 4        | 4          | Z         | Z                       | Z        | Z.;                  | ζ-      |           | -                   | -                    | 1              | I           |           | -         | -        |
|----------|------------------------------|------------|----------------------|------------|--------|--------|-----------|--------|--------|-----------------------|--------------|-------------|------------|-----------|-----------|------------|---------|--------------------------------------------------------------------------------------------------|----------------------------|------------|-----------------------|-------------|----------------------------------------|----------------------|----------------------|------------|-------------|----------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|------------|-----------|-------------------------|----------|----------------------|---------|-----------|---------------------|----------------------|----------------|-------------|-----------|-----------|----------|
| Colour   | units<br>per m. <sup>3</sup> | 0          | 2,000                | 2,390      | 100    | 2,470  | 780       | 1,410  | 7,810  | 1,200                 | 2.450        | 0.420       | 7,820      | I,280     | 000       | 3,310      | 000     | 007                                                                                              |                            | 1.180      | 220                   | 280         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 730                  | 50                   | 001        |             | 2.22     | 270       | 1,500                                                                                                                                                                     | 1,100                 | 010      | 100        | 220       | 200                     | 200      | 150                  | 110     |           | 99                  | 510                  | 140            | 240         | 260       | ++        | 02       |
| Position | Long.                        | 3 40°0′ W  | 20.3                 | 11:8       | 6.20   | 28.2   |           | 34-8′  | 32.2   |                       | ÷.           |             |            |           | 25 46'2 E |            |         | 30 341 E                                                                                         |                            |            | 2<br>2<br>4<br>2<br>4 | 37 28.5 E   | 17.71                                  | 27.7                 |                      | 02.1       | nà<br>V c   |          |           | 35 48-8'E                                                                                                                                                                 | 33 53°0 E             |          |            |           | 56 32°0 E               |          |                      |         |           | 59 10 5 E           |                      |                | 66 53°0′E   | 9 57.4    | 73 11-1 1 | 2.77 2   |
| Pos      | Lat. S                       | L .        | 65 28.8              |            |        |        | 67° 41.3′ | 0      | 0      | -                     | , 2. IO . 94 | 64 54-7     | 63 55'5    |           |           | 65 24.3    |         | 0.01 20                                                                                          | 61 23.6                    |            | 62 02'I               | 63 03.5     |                                        |                      |                      |            | 0.60.6      | 60, 53.4 | 50° 14'3  | 56° 19.2'                                                                                                                                                                 |                       |          | 6.00 15    | ¢1 22.07  | 52 + + : ;<br>2 + + : ; | 52 53'5' | 55 36.8              | 56 37.3 | 58 02.2   | 50 51 0<br>58° 37:3 | 50 77 22.0°          | 57, 49.5       | 57: 45.3    | 57 38.4   | 6.91 22   | 11 0 1 L |
|          | Date                         | 15. ii. 35 | II                   | 16. ii     | 17. ii | 17. ii | 18. ii    | 18. 11 | Iq. ii | 10.11                 | 20. 11       | 20. 11      | 21.11      | 21.11     | 22.11     | 22. 11     | 23.11   | 23.11                                                                                            | 24.11                      | 11.47      | 1.25                  | 26. ii      | 26. ii                                 | 27. ii               | 28.11                | =:         | 1. 111. 35  |          | 2. III    | 3. iii                                                                                                                                                                    | ::::+                 |          | 3. IV. 35  | 22 12 15  | łz                      |          |                      |         |           | 25. XI              |                      |                |             |           |           |          |
|          | Station                      | 1510       | 1520                 | 1521       | 1522   | 1523   | 1224      | 1525   | 1326   | 1527                  | 1528         | 1529        | 1530       | 1531      | 1532      | 1533       | 1534    | 1535                                                                                             | 1530                       | 1537       | 1520                  | 0151        | 1451                                   | 1543                 | 1544                 | 15+5       | 1540        | 1247     | 0121      | 0551                                                                                                                                                                      | 1551                  | 1552     | 1560       | 1610      | 1019                    | 1621     | 1622                 | 1623    | 1624      | 1025                | 1040                 | 1628           | 1629        | 1630      | 1631      | - 6-1-   |
| Region   | or area                      | ESP        | ESP                  | ESP        | ESP    | ESP    | ESP       | ESP    | ESP    | ESP                   | ESP          | ESP         | ESP        | ESP       | ESP       | ESP        | ESP     | E<br>S<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | 1<br>1<br>1<br>1<br>1<br>1 | LOD<br>LOD | 5 o                   | ESP         | ESP                                    | $\frac{x}{s}$        | s<br>S               | 5.0<br>5.0 | n<br>n<br>n | ភប<br>ភប | 35        | C<br>S<br>S                                                                                                                                                               | S,G                   | С<br>С   | 5 C<br>X 7 | 50        |                         | U<br>v.  | S.<br>C              | С<br>У. | 50<br>X ( | 50<br>20            | 3 –                  |                |             | -         | x         | 0        |
| Colour   | units<br>per m. <sup>3</sup> | 70         | 170                  | 950        | 160    | 1.110  | 054       | 011    |        | 002                   | 1,420        | 650         | 1,110      | 1,020     | 1,560     | 670        | 890     | 320                                                                                              | 200                        | 020        | 000                   | 011         | 1,110                                  | 0++                  | 1,320                | 21,040     | 13,000      | 4,070    | 1.280     | 010                                                                                                                                                                       | 3.710                 | 4,870    | 720        | 4,330     |                         | 1 100    | 920                  | 120     | 150       | 200                 | 0.00                 |                | 1.510       | 140       | 016       | 0.       |
| Position | Long.                        |            | 84 02.3 W            |            |        |        | 01 25.0 W |        |        | $00^{\circ}$ 12.1 $W$ |              | 104 IS'8' W | 106 of I W |           |           | 107_00.5 W |         | 95° 57-3′ W                                                                                      | 05 52't W                  | 10 2 to 20 | $87^{\circ}$ 35.0 W   | 80° 40'2' W | 80° 28.3' W                            | \$<br>20<br>20<br>20 | $61^{\circ}$ 20.9' W | 43 36.4 W  | 43 48 5 W   |          | 44 05 0 W | 40° 28.0' W                                                                                                                                                               | $39^{\circ} + 9.6' W$ | 16.5     |            | 30 57.9 W | 30, 505, W              | , n      | ( <del>)</del> +     | 12.7    | 47.5<br>4 | 34° 08.6′ W         | 01                   | - <u>·</u> · · | 16° 17-2' W | ,         | ,+. I     | 111      |
| Pc       | Lat. S                       | 66° م۲۰۲   | 5.00 Ty              |            |        |        | 62, 53, 5 | - C -  | 61 to  | 65,00.5               | 61,02.2      | 62 01.3     | 63° 50'0'  | 64° 56.5' | 65 38 8'  | 61° 32.7′  | 59 28 3 | 60 46.5                                                                                          | 62 18.9                    | 63 23.9    | 244 to                | 62,17-5     | () + ()<br>() + ()                     | 58, 27-6             | 61 14.8              | 50° 15'7'  | 57° 56.2′   | 54, 54.4 | 53 30.0   | 0, 1, 0<br>0, 1, 0<br>0, 1, 0<br>1, 1, 0<br>1, 1, 0<br>1, 1, 0<br>1, 1, 0<br>1, 1, 0<br>1, 1, 0<br>1, 1, 0<br>1, 1, 0<br>1, 1, 0<br>1, 1, 0<br>1, 1, 0<br>1, 1, 0<br>1, 0 | 2.42                  | 53°54'1' | 53 53 5    | 52, 43.7  | 53, 03.0                | × +1 %   | 21.0<br>21.0<br>21.0 | 54°22.4 | 54° 22.6′ | 54, 22.6            | 50 22.1<br>-0° 26.0' | 59, 50 9       | 65, 02.6    | 66° 14.7′ | 67° 22°0' | 1 00     |
|          | Date                         |            | 50 - 5- 5-<br>21 - X | 21. X1 2.1 | ž i p  |        |           | 4 's   | 3. XI  | + -                   |              | 2.2         |            |           |           | 9. xi      |         |                                                                                                  | 12. XI                     |            | 13. XI                | 14. XI      |                                        | 10. M                | 5. XII 31            | 23. i. 35  | ŗ           | 24.1     | 1.2.1     | 26/24                                                                                                                                                                     | 1 - 1-4               | 27. i    | 27.1       | 5. 11. 35 | =::                     |          |                      |         | 7. ii     | 8. II<br>II         | <u>а</u> -п          | 10.11          | 1.5.1       | 13.11     | 11, 11    |          |
|          | Station                      | 0          | 10.11                | - C        | 1041   | 2011   | +5+1      | 00t1   | 1450   | 1450                  | 1400         | 1041        | 1462       | F9F1      | 1941      | 1466       | 1467    | 1468                                                                                             | 1469                       | 1470       | 1471                  |             |                                        | 1177                 |                      |            | 1492        | 1493     | +6+1      | 407 I                                                                                                                                                                     | 2011                  | 1498     | 0641       | 1501      | 1502                    | 505      | 1001                 | 1506    | 1507      | 1508                | 1500                 | 1510           | 2121        | 1212      | 9121      |          |

350

### DISCOVERY REPORTS

| Region   | or area                       | -                                     | .,_                     |                                                                                                  | -           | 1                          | 1            | I           |                 |                      |             |                         | _ ,_       | <b>_</b> , , | _            | -                         | -            |              | _            |              | I            | Z            | Z            | Z            | Z             | Z            | Z             | Z            | Z            |              | <b></b> , | ,            | ,           |             | _          | - 2          | 22         | 22                                      | .Z                 | Z                                             | Z                                       | Z                                       | Z          | Z           | Z          | Z         | Ζ,           | 27        | 27           | 27           |              |
|----------|-------------------------------|---------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------|-------------|----------------------------|--------------|-------------|-----------------|----------------------|-------------|-------------------------|------------|--------------|--------------|---------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|--------------|-----------|--------------|-------------|-------------|------------|--------------|------------|-----------------------------------------|--------------------|-----------------------------------------------|-----------------------------------------|-----------------------------------------|------------|-------------|------------|-----------|--------------|-----------|--------------|--------------|--------------|
| Colour   | units<br>per ni. <sup>3</sup> | 000                                   | 065                     | 380                                                                                              | 230         | 320                        | 130          | So          | 00              |                      | 2           | of /                    | ç,         | 20           | 110          | 20                        | <del>9</del> | 120          | 260          | 270          | 190          | 200          | 061          | 140          | 100           | IIO          | 90            | 20           | 00           | 170          | 190       | 60           | 150         | 005         | 300        | 50           | 8          | 0,0                                     | 000                | 0                                             | 0,1                                     | 0                                       | 0          | 50          | 30         | 30        | 30           | 00 G      | 000          | ofi          | 5            |
| Position | Long.                         | Tors read                             | 1 0 10 001<br>1 22 22 1 | 131° 56°0' E                                                                                     | 129°24 7'E  | 127° 31.8' E               | 127° 02.4' E | 17          | -               | 0                    | 110 34.9 12 |                         |            |              |              | 106° 33'3' E              | Io4°03.4′E   | 100 11.1 E   | 102 0311 E   | 102 48·6' E  | IO3 41.3 E   | 104 52.6'E   | o –          |              | 107 02 0'E    |              |               | 00° 01.0' W  | 00° 04.0′ W  | 00° 19-8' W  | 00 01.5 E | 04 29'2' E   | 08, 41.6, E | × 11        | 1 0.10 LI  | 0            | 1, 24.0 1  | 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 18. 12-27          | IS, 24-7, E                                   | 18: 40-7' E                             |                                         | 00 04 S' E | 00° 21.3′ E | 00° 20 ñ W |           |              |           | 05 35-5 11   |              | 00 35.7 11   |
|          | Lat. S                        |                                       | 61, 20.8                | 0                                                                                                |             | ,0.0,<br>97, 10.0          | 0            | 65° 10°5'   | 65 25.7         | / C= CO              |             | 0                       | 03 15.4    |              | 63 42.7      | $64^{\circ}22.6^{\prime}$ | 64 15.5      | 63 50.1      | 61-14-7      | 60, 00.7     | 58 51.6      | 57'17.4      | 56, 00.0     | 54°32.2      | 53° 14.9'     | 51°48.2′     | 40° 58.9′     | 52° 14.7'    | 54°34.8′     | 57 41.8      | n -       | 57' 07:3     | 56 53.0     |             |            | t.11 22      | 50 251     | 5,00,00<br>1,00,1                       | 54 F F C F         | 52 35.8                                       | 51, 20.6                                | 2.11.05                                 | 50 20 8    | 52 28.0     | 52,40.2    | 51° 55.0′ | 21 04.0      | 5         | , 1          | 52 20.5      | 52 52.1      |
|          | Date                          | 7 0.                                  |                         | 10.111                                                                                           |             | 20, 111                    | 20. 111      | 21. 11      |                 |                      | 22. 111     | 23. 111                 | 23. 111    | 24.111       | 24.111       | 25. iii                   | 25. 111      | 26. iii      | 28. 111      | 28. iii      | 29. 111      | 29. iii      | 30. 111      | 30. 111      | 31. 111       | 31. iii      | 29. V. 36     | 30. 1.       | I. vi. 36    |              | 3. vi     | + ~!         | 5. 11       | 6. 11       | 1          |              |            | 5                                       |                    |                                               |                                         | 11. VI                                  | 26. ix. 36 |             | 28. iX     | 28. ix    | 29. IN       | 29. IN    | ĸ            | I. X. 30     | I.X          |
|          | Station                       |                                       | + 10/1                  | 1706                                                                                             | 1707        | 1708                       | 1700         | 1711        | C111            | 1                    | 1/13        | +1/1                    | 171Ş       | 1716         | 1717         | 1718                      | 6141         | 1720         | 1722         | 1723         | 1724         | 1725         | 1726         | 1727         | 1728          | 1729         | 1777          | 1778         | 1779         | 1781         | 1782      | 1784         | 1785        | 1787        | 1788       | 1789         | 06/1       | 1621                                    | 1702               | 1704                                          | 1705                                    | 1706                                    | 1812       | 1813        | 1814       | 1815      | 1816         | 1817      | 1818         | 1819         | 1820         |
| Davion   | or area                       |                                       | 17                      | Z                                                                                                | Z           | Z                          | Z            |             |                 | - 'J                 | n n         | nc                      | n          | n            | s            | x                         | x            | s            | n            | x            | s            | x            | s            | s            | s             | s            | x             | ſ.           | NRS          | NRS          |           |              | -           | +           | _, ,       |              |            | - 2                                     | 22                 | :2                                            | z                                       | ; Z                                     | Z          | ; <b></b>   | -          | -         | -            |           | ,            | -            | -            |
| Colour   | units<br>per m.³              |                                       |                         | 12/2                                                                                             | 210         | 820                        | 350          | 250         | n C<br>n I<br>I | 0,0                  | 020         | 027<br>+                | 20         | 0+1          | 160          | 170                       | 310          | 960          | 150          | 770          | 1,860        | 3,040        | 100          | 560          | 530           | 190          | 200           | 110          | 160          | 370          | 60        | <del>9</del> | 80          | 9           | 0          | 470          | 110        | 1,340                                   | 0.0                | 5,00                                          | 100                                     | 023                                     | 2 10       | 400         | 210        | 00 I      | 10           | 130       | о<br>У,      | 0<br>17,     | 220          |
| Position | Long.                         |                                       | 30, 201 E               | 1<br>2<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1 | 86° 24.7' E | 88° 25.6' E                | 02°06-2′E    | 02° 21·7′ E | 50° 50° F       | 10 6t 66             | 104 10.3 W  | 100 <sup>-</sup> 13·2 W | 102 17.1 W | 1.18         | 174° 24.0' W | 176° 26 1' W              | 178° 35.5' W | 170° 49.1' E | 176° 50-4' E | I73° 54.0' E | 173° IO.6' E | 178° 23'4' E | 177° 40.6' E | 178° 42'3' E | 178° 27' I' E | 178° 30.6' E | 1,78° 16·1′ E | 176° 26.4' E | 176° 03.8' E | 172° 23.0' E |           | 164° 44.6' E | I61°57·1'E  | 160 53 6′ E | 161 00.4 E | 161° 05'3' E | 101 47.5 E | 102 30.0 E                              | 103 00.0 E         | 1 1 2 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 |            | 0           | 0          |           | 145° 48'8' E |           | 141° 33-8' E | I 39° 54°0 E | 137° 50°0' E |
| d        | Lat. S                        | · · · · · · · · · · · · · · · · · · · |                         | 51, 53.4                                                                                         | 57° 58.1    | ,0,1,0<br>2,0,1,0<br>2,0,0 | ×8° 35'0     | 50° 50'2'   | 00°00°<br>20°0° | 00 00 00<br>00 00 00 | 70 24.0     | 77 43.3                 | 77 04.2    | 77 43.8      | 78° 18•0′    | 77° 04·3'                 | 75° 56.2'    | 74° 55°0     | 75° 43.6′    | 76° 35.9′    | 75°43'9′     | 24°46-4      | 72° ₹7.4     | 72 05.4      | 71° 29.8'     | 70° 27.1'    | 68° 47.0'     | 67° 44.9′    | 66° o2·5'    | ,04.0)<br>99 | 65° 59'4  | 66° 00'I     | 66 13.2     | 66° o3·2′   | 64 29.5    | 62 34.9      | 01 05.2    | 59 303                                  | 200 001<br>200 001 | 50 40 4                                       | 50 of 6                                 | 50 CI O                                 | 60°.46.0   | 62 18.2     | 63° 10.5'  | 64 23.3   | 64° 59'5'    | 65° 11.0' | 64° 53.6′    | 64 201       | 63 25 0      |
|          | Date                          | 1.1                                   | 29. XI. 35              | 30. M                                                                                            | J. VII. 25  |                            | in c         |             |                 | 3. 111               | 10.1.30     | 17. !                   | 17.1       | 18. I        | 18. i        | 22. İ                     | 23.1         | 23.1         | 25.1         | 25.1         | 26. i        |              | 28.1         | 29. I        | 30. 1         | 30.1         | 31. 1         | 31.1         | 1. ii. 36    | т. ії        | 2. ii     | 2.11         | 3.11        | :=:<br>;;   | 5.11       | 6. II        | 0.11       |                                         |                    | 11 11 36                                      | 11 30                                   | 12 111                                  | 12 11      | 11.11       | 14.11      | 15.111    | 15. iii      | 16. 111   | 16           | 17. m        |              |
|          | Station                       |                                       | 1034                    | 1035                                                                                             | 1627        | 1628                       | 1620         | 1610        | 1040            | 7401                 | ++01        | 1045                    | 1040       | 1647         | 1648         | 1651                      | 1652         | 1653         | 1654         | 1655         | 1650         | 1660         | 1662         | 1663         | 1664          | 1665         | 1666          | 1667         | 1668         | 1669         | 1670      | 1671         | 1672        | 1674        | 1675       | 1676         | 2291       | 1073                                    | 10/01              | 1000                                          | 1092                                    | 160.1                                   | 1601       | 1606        | 1697       | 1698      |              | 00/1 2.2  |              | 1702         | 1703         |

Appendix (continued)

\_\_\_\_\_

APPENDIX

351

| IT Region |                              | 0<br>X      |          |           |         |            |         |                                             |               |         |           |                |           |           |                 |           | _          |                      |            |            |                                  |                | 0<br>0<br>0<br>0<br>0   |                |                                                                                        |                    | _                 | 420<br>200            |                                 | sio SG                         |                     |                      |                                  |                |              |               | 90<br>S.G. |                       |                |                |                                  | JS Sec       | _      |
|-----------|------------------------------|-------------|----------|-----------|---------|------------|---------|---------------------------------------------|---------------|---------|-----------|----------------|-----------|-----------|-----------------|-----------|------------|----------------------|------------|------------|----------------------------------|----------------|-------------------------|----------------|----------------------------------------------------------------------------------------|--------------------|-------------------|-----------------------|---------------------------------|--------------------------------|---------------------|----------------------|----------------------------------|----------------|--------------|---------------|------------|-----------------------|----------------|----------------|----------------------------------|--------------|--------|
| Colour    | per m. <sup>3</sup>          | 0           | 000      | 007       |         |            | 077     |                                             | 01.200        | 0000.01 | 11,340    |                | 1210      | 15,500    | 8,21            | 2,400     | 3,170      | 0,0                  | 2,300      | 0/1/       | 00'010                           | 21,700         | 53,500                  | 1.000          | 20,150                                                                                 |                    | ž                 | <del>4</del> č        | 1 N                             | 'w,                            |                     |                      | - 10                             | C              | у с          | 2,870         |            | 1,540                 | N C            | 0.1            |                                  | _            |        |
| Position  | Long.                        | 8.11        |          |           | - 4 - 6 |            |         | 1 + 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | Jason 15. Luc |         | 10        | , 9.20<br>03.6 | 1.70      | 1.12      | 38.0′           |           | 15.2       | 16.3                 | 38 17 3 W  |            |                                  |                | 37 19.5 W               |                | 3- 35.3' W (noon)                                                                      |                    | 38° o3.7 W (noon) |                       |                                 |                                |                     | 38° 00'4 W (m'night) | 17 50.8' W (0800)                |                | - 8° 0015' W | 3             |            | 38° 00.5' W (approx.) |                |                |                                  |              |        |
| Pe        | Lat. S                       |             | 56 15.7  |           |         |            |         | 0.20                                        | 11(1)         | 20.00   |           |                | 0.00 20   |           | 52 46.9         |           | 52. 48.7   |                      | 53 04.6    |            |                                  |                | 53° 31-8′               |                | r                                                                                      | 22 24 0            | 52 57.5           |                       |                                 |                                |                     | 52 58.0              | د2° د8.8'                        |                | 0            | 52 59.5       |            | 52°59.3′              |                |                |                                  | •            |        |
|           | Date                         | 14. XI. 30  | IS. XI   | 2. Mi. 36 | 3. XII  | 3. XII     |         | 4. NII                                      |               |         |           | 9. MI          | d. MI     | o vii     | o. xii          | 10. XII   | IO. NII    | IO. NII              | IO. XII    | HN.        | 10. XII (1013)<br>10. XII (1020) | 10. XII (2115) | (11fo) III (11          | 11. XII (0656) | 11. XII (1005)                                                                         | (\$1\$1) IIX . I I | 14. Xii (0845)    | 14. XII (1246)        | 14. XII (1520)                  | 14. MI (1/50)<br>14. MI (2022) | 14. XII (2242)      | 15. XII (0114)       | 15. XII (0350)<br>15. XII (0607) | 15. xii (0827) |              | 10001) IIX 01 |            |                       | 17. XII (0400) | 17. XII (0700) | 17. XII (1900)<br>17. XII (1420) |              |        |
|           | Station                      | 1877        | 1878     | 1016      | Ziói    | SICI       | 0101    | 1920                                        | 1921          | 1422    | 1923      | 1024           | 5201      | 10701     | 1028            | 1020      | 1930       | 1691                 | 1932       | 1933       | 1935 A                           | 1035 0         | 1035 E                  | 1035 F         | 1935 G                                                                                 | 1935 11            | 1936 A            | 1936 B                | 1436 C                          | 1930 U                         | 1936 F              | 1936 G               | 1936 H                           | 1936 K         |              | 1938 A        | 1936 C     | 1938 D                | 1938 E         | 1938 F         | 1930 C                           |              |        |
| Doctor    | OF ATCA                      | z           | Z        | 7.)       | 2.3     | 7.         | 7.7     | 73                                          | 7.7           | 7.7     | 27        | 7.7            | ~         | 17        | .7              | 2         | -          |                      | У.<br>Ц    | S.         | 3 C<br>2 C                       | ) ()<br>() ()  | b<br>C<br>C<br>C<br>C   | SG             | С<br>С<br>С<br>С<br>С                                                                  | しい                 | 5 C<br>1. T       | 0<br>0<br>2<br>2<br>2 | $\mathcal{O}^{S}_{\mathcal{O}}$ | 00<br>X 0                      | 50                  | р<br>С<br>С<br>С     | с.<br>С                          | х с<br>х с     | កប<br>ភូប    | s os<br>S os  | ss         | \$<br>\$<br>\$        | 25             | : ::           | 1                                | 11           |        |
| Colour    | units<br>per m. <sup>3</sup> | 011         | 0(;      | 120       | 510     | 120        | 02      | 170                                         | 120           | 320     | 110       | 0.51           | 170       | 001       |                 | 0.0       | 0          | 0                    | 30         | 50         | 01/10                            | 001            | 071                     | 140            | 11,760                                                                                 | 9,610              | 20,400            | 001                   | 9,670                           | 0                              | 380                 | 7,070                | 410                              | 10,150         | 0.00         | 330           | 0          | 4                     | 0+             | <u>9</u>       | 210                              | 02           | -      |
| Position  | Long.                        | 11, 5.16.01 |          |           |         | M. 1.++ +1 | 1.0.2   |                                             | 2.14          |         | 23 30 S W |                |           | 27 29.7 W | 20 502 11       | 11,999 0c |            |                      | 30 42.5' W | 33 50 6' W | 3+ 40-1 M                        | 35 10.0 11     | 35 45°5 W               | 37 of 67 W     | 37 o5 1' W                                                                             | 37, 06-5, 11       | 37 07-0, 11       | 10 41.3 W             | 30° 22-8' W                     | 38-38.6' W                     | 300 dist. 2.7 miles | 30.301 W             | 43° 06'2' W                      | 42 56.8' W     | 42, 40.3 W   | 42 40'I W     | 42 37.4 W  | 42° 38 1′ W           | 43 561 W       | 45 45 0 11     | M 0.72 03                        | 52° 57.5' W  |        |
| P         | Lat. S                       |             | 55 504   | × × × × × | 55 20.0 | 75 42.8    | 54 24.5 | 53 25.0                                     | 52' 21'7'     | 51 25'4 | 52 16-1   | 53 11.2        | \$1.15 22 | 54. 37.3  | 55 23'1         | 222 43.4  | 55 40.5    | 0 1 - 20<br>- 1 - 20 | 0.01       | 54°22.6'   | 54 20.0                          | 24, 20.0       | 54 27.0<br>Issee 12 1 + | 53, 42.7       | 53<br>53<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 52, 56.9           | 52°32.8′          | 53 50.0               | 25 501                          | 23.58.01                       | Jason Is. Lt.       | 52 3512              | 51 27.1                          | 52 42.0        | 24, 06.6     | 55 35.5       | 5/ 103     | 61 o3.0               | 61 37-6        | 62°08-6′       | 62 37'3                          | , F. FO , FY |        |
|           | Date                         |             | 2. N. 30 | 4 X.      |         | N, N       | 6. X    | 6. x                                        | 1. N          | 7. N    | 8. x      | 8. x           | 0, X      | 9. X      | 10, X           | IO. X     | 10. N      | X . 11               | 14.1       | 12. X      | 14. X                            | 14. X          | 14. N                   |                | 20, N                                                                                  | 20. X              | 21. X             | 22. X                 | 22. N<br>22 V                   | N N N                          | ×                   | 3. xi. 36            | 6- N.N.                          | 6. xi          | 7. xi        | 1×0           | 0, N       | 9. XI                 | 10. NI         | IO, NI         | II. XI                           |              | 14. 31 |
|           | Station                      | 4           | 1821     | 1822      | 1824    | 1824       | 1826    | 1827                                        | 1828          | 1820    | 1830      | 1831           | 1832      | 1833      | 83 <del>4</del> | 1835 A    | 232<br>232 | 1030                 | 1037       | 1820       | 1840                             | 1841           | 1842                    | 10+3           | 1845                                                                                   | 1846               | 1847              | 1848                  | 0+21                            | 1851                           | 1852                | 1854                 | 1850                             | 1860           | r 861        | 1862          | 1865       | 1866<br>1866          | 1867           | 1868           | 1809                             | 2/01         | 1/01   |

352

### DISCOVERY REPORTS

| Region   | or area                      | ZZ                      | 47          | 47          | 47          | 2-        | );          | 7.        | Z                  | Π           | Ţ          | -          | _       | Z              | Z             |                            | ,                                       | ~ 1         |              |           | , ,                 | ).<br>)                                   |            | _,                            |                             | ;                                  | 13               | 13      | 1.        | 4           |             | .7          |             | Z           |            | Z         | Z                             | Z       | Z       | Z           | Z          | 23         | Z       | 7.3        | 1.           | Z.          |                                                      |            |                                        |            |
|----------|------------------------------|-------------------------|-------------|-------------|-------------|-----------|-------------|-----------|--------------------|-------------|------------|------------|---------|----------------|---------------|----------------------------|-----------------------------------------|-------------|--------------|-----------|---------------------|-------------------------------------------|------------|-------------------------------|-----------------------------|------------------------------------|------------------|---------|-----------|-------------|-------------|-------------|-------------|-------------|------------|-----------|-------------------------------|---------|---------|-------------|------------|------------|---------|------------|--------------|-------------|------------------------------------------------------|------------|----------------------------------------|------------|
| Colour   | units<br>per m. <sup>3</sup> | +20                     |             | 190         | 170         | 130       | 0,1         | 0         | 160                | 170         | 017        | 250        | 011     | 022            | 000           | 2/1/1                      | 0.1                                     | 0           | 100          | 9         | 100                 | 60                                        | 50<br>- 10 | 60                            | 0                           | I 10                               | 170              | 1,020   | 1,720     | 1,300       | 1,900       | 00/10       | 1.020       | 1.820       | 4,440      | 4,140     | 2,150                         | 1.750   | 1,630   | 6,760       | 5,040      | 300        | 240     | 100        | 660          | 180         | 001                                                  | I,290      | 1.070                                  | 3,000      |
| Position | Long.                        | 24° 58.6′ E             | 20 10.0     | 20 52 4 10  | 29 IO + E   | 20 47'4 E | 31 25 2 E   | 32°02'3'E | $33^{\circ}31.9$ E | 37° 33°1′ E | 30° 15 1 E | TO SECO    |         |                |               |                            | 1 / 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 52 20'2 E   | 54 30-0 E    | 57 10°5 E | 59 36°3 E           | 61 o3·3 E                                 | 65 20°2 E  | 68 o5·1 E                     |                             |                                    | 76°37'4' E       |         | 70 38 8 E |             | 82 2377 E   | 04 403 E    |             |             | 92 50 6 E  |           |                               |         |         | 98' 10-7' E | 90' 19'I E | 115 40.0 E |         | 115 51'5'E |              | 115 46.6' E | 115 4377 E                                           | 115 38°1 E | 115 351 J                              | 115 30 3 E |
| Pc       | Lat. S                       | 51,49.1                 | 52 50.0     | 54, 11.3,   | 24, 40.4    |           | 56 56.9     | 56 IO'5   | ,1.10_9\$          |             |            | 24-22      |         | + + + 000      | 25, 101       |                            | 55 30.0                                 | 50 41.7     |              | 58 22.9   |                     | 59 38.7                                   | 1.20.09    |                               | 58° 12.9′                   | t-1                                |                  |         |           | 56 56.5     |             |             | 22 4/1      | 1 60 1 6    |            |           |                               | 12.0    |         |             |            | 51 34.8    |         |            |              |             |                                                      | 59 57.2    | ~                                      | 62 19.6    |
|          | Date                         | 20. xi. 37              | 21. NI      | 21. NI      | 22. NI      | 22. NI    | 23. XI      | 24. XI    |                    |             |            |            |         |                |               |                            | 28. NI                                  | 28. XI      | 29. XI       | 20. Ni    | 30. XI              | 30. XI                                    | 1. NII. 37 | IIX                           | 2. XII                      |                                    |                  | 4. XII  | 4. XII    | 4. XII      | 5. XII      | 5• XII      |             | 0 × NI      |            |           |                               | Q. XII  | 0. 711  | 10. XII     | TO. XII    | 6. i. 38   | ·       | 7. ]       | 1.1          |             | 8.1                                                  | 9. i       | 9. i                                   | 10, 1      |
|          | Station                      | 2089                    | 2090        | 2091        | 2092        | 2093      | 2004        | 2005      | 1002               | 8000        | 0607       | 100        | 71017   | 2103           | 2104          | 2100                       | 2107                                    | 2109        | 2110         | 2113      | 2114                | 2116                                      | 2117       | 2119                          | 2122                        | 2123                               | 2125             | 2126    | 2127      | 2128        | 2129        | 2131        | 2132        | 2134        | 2135       | 213/      | 41.50<br>0.51<br>0.01<br>0.01 | 2110    | 2111    | 2112        | 2112       | 2150       | 2100    | 2161       | 2162         | 2163        | 2164                                                 | 2165       | 2160                                   | 2167       |
| -        | Kegion<br>or area            | ss                      | Г)<br>Г     | 5)<br>D     | ss          | S<br>S    | S.<br>S.    | L.<br>L.  | U.<br>U.           | 10          | 2 U<br>2 U | 0 0<br>0 0 |         | Г. Т.<br>Г. Т. | ן<br>גר<br>גר | $\hat{\boldsymbol{y}}_{i}$ | ů<br>X                                  | с<br>Х      | С<br>У.      | С<br>С    | С<br>С              | 0<br>S                                    | SG         | С<br>Ул                       | С<br>С                      | 0<br>S                             | 0°S              | ss<br>s | <b>, </b> | -           | -           |             |             | nc          | n          | -         | -                             | ÷۷      | - i     |             | a )        |            |         |            | ( )          | Z           | z                                                    | Z          | Z                                      | Z          |
| Colour   | units<br>per m. <sup>3</sup> | 2,240                   | 1,080       | 300         | 120         | 60        | 60          | C u<br>L  |                    |             |            | 0/         | 20      | 340            | 2,260         | 60                         | 820                                     | 80          | 35,400       | 60        | 8.170               | 16.560                                    | 2.700      | 2.350                         | 07                          | 8                                  | 0                | 0       | 0<br>1    | 9.510       | 4,950       | +90         | 0+6         | 120         | 50         | 1,350     | 3,120                         | 0/+++   | 06      | 1000        |            | 01614      | 2000    | 180        | 008.1        | OUT C       | 20                                                   | 0          | 01                                     | 110        |
| Position | Long.                        | 43 <sup>°</sup> 45'2' W | 45° 53'5' W | 48° 26.6' W | 50° 32.2' W | VI 0.01   | 16° 30'7' W |           |                    | - 0         | 0.0<br>17  | 20.0       | 04.5    | 50.4           | 58.6          | s<br>s                     | 10.2                                    | 20° 56 7' W | W ,2.1.2 .02 |           | , e. e.<br>e. e. e. |                                           | n'u<br>coc |                               | ν,<br>1<br>2<br>2<br>2<br>2 |                                    |                  |         | 20° 07' 1 | 26° 40'4' W | 24° 32.0' W | 22° 46.6′ W | 20° 54 1′ W | 17, 55.2, W | 15°25'3) W | 13 23.3 W | 10 12.3 W                     | 42.0    | 1.65    |             |            | 00 34.7 E  | 100     |            |              | 00 00 L     |                                                      |            |                                        | ,          |
| Pe       | Lat. S                       | 570 4315                | 58. 22.0    | 50 00.2     | 50° 50'7'   | 60° 40'4' | , u. u.     |           | + /0 /0/           | 2, 20 05    | 57, 20.2   | 50 IO.7    | 55 03.0 | 52 58 4        | 53° 23.6′     | 53°401'                    | ,0.90.75                                | 54 02.8     | 2.70 2.5     |           |                     | , u t d t d t d t d t d t d t d t d t d t | 22° 0 0    | ) + + )<br>, + + )<br>, + + ) | 55 + 55 C                   | 0+ 0 + 0<br>7 - 0 - 1<br>7 - 0 - 1 | 2,96.6<br>2,96.6 | 5+ 40 5 | 5, 10'E'  | 14 0° 14 0' | 62 32.5     | 64° 16° 1   | ,+.00,999   | 68 19.0     | 06, 49 I   | 66° 16-7  | 6.60 99                       | 5.00 00 | 07 14.3 | 05 14.3     | 6+ 31.9    | 02 43'3    | 01 40'S | 29, 45, 0  | 6.54.75      | 50 34 3     | 2+ 20.00<br>+ 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- | + C+ CC    |                                        | 1.21 2.2   |
|          | Date                         | 2. i. 37                | 2           |             | •••         |           | .::<br>; :  | 10.11.61  | 10.11              | 10.11       | 17. 11     | 17.11      | 18. ii  | I. III. 37     | Ш             | 2. 111                     | 3. 111                                  |             |              |           |                     |                                           |            |                               |                             |                                    |                  |         |           |             | 12.111      | 117.11      | 15.111      | 16. iii     | 17.111     | 119.111   | 10. 111                       | 20. 111 | 21. 111 | 22. 111     | 22. 111    | 23.111     | 23.111  |            | 122.<br>122. | 20. III     | 20. 111                                              | 111.77     | ······································ | 28. H      |
|          | Station                      | 1044                    | 1015        | 9T01        | 1           | /+61      | -941        | 661       | 1900               | 7961        | 1968       | 1969       | 1970    | 1974           | 1075          | 1076                       | 1077                                    | 240F        | 0/67         | 6/61      | 1,000               | 1961                                      | 1902       | 1903                          | 1994                        | 1950                               | 2001             | 1900    | 1990      | 7661        | 1006        | 2001        | 2000        | 2002        | 2004       | 2006      | 2007                          | 2008    | 2010    | 201I        | 2012       | 2013       | 2014    | 2015       | 2010         | 2017        | 2010                                                 | 50102      | 0707                                   | 1707       |

Appendix (continued)

APPEND1X

| Region   | ог агеа                      | хx                       | x     | x        | x         | S                  | v.           | x      | 1     | _          | x           | x          | s        | v.      | ſ,      | s.          | s     | x                                                   | s.        | S          | ESP                  | ESP    | ESP      | ESP      | ESP         | У. 1.<br>Г. 1. | n c<br>N c | n a        | 0 0<br>0 0 | 0 0<br>6 0 |            | ŝ                                              | s<br>S     |                    | S<br>S    | L<br>L    | x<br>x  | X (<br>X (  | ກ (<br>ກ ( | С.<br>Л. Ч  |         |                     | -7        | 27          | Z         | Z            | 4          |
|----------|------------------------------|--------------------------|-------|----------|-----------|--------------------|--------------|--------|-------|------------|-------------|------------|----------|---------|---------|-------------|-------|-----------------------------------------------------|-----------|------------|----------------------|--------|----------|----------|-------------|----------------|------------|------------|------------|------------|------------|------------------------------------------------|------------|--------------------|-----------|-----------|---------|-------------|------------|-------------|---------|---------------------|-----------|-------------|-----------|--------------|------------|
| Colour   | umits<br>per m. <sup>3</sup> | 3,770                    | 1,580 | 2,100    | 930       | 2,090              | 1,730        | 3.460  | 2,040 | 100        | 0+1         | 1,240      | 920      | 1,170   | 910     | 340         | 01    | 100                                                 | 670       | 360        | 120                  | 06     | 20       | 2,000    | 1,280       | 500            | 1,120      | 1,870      | 530        |            | / /        | 001 V                                          | 160        | < 100              | < 100     | < 100     | 001 ~   | 001 >       | 100        | 001<br>V    | 00I V   | 010.1               | 001.5     |             | 001       | 100          | `          |
| Position | Long.                        | 130 24.7 W<br>128 08.0 W |       |          |           |                    | M , t.or 611 |        |       |            | 111 40.0' W | 100 15.2 M | 0        | 39.3    |         | 100 56.4' W | 25    | , 9.4.5<br>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 03.7      |            | 84° 58.4° W          |        |          |          | 73 18·5 W   |                | 67 27'5 W  | 00 57'9 W  | ~          | 04 12.1 W  | ч х<br>р   | 49 47 0 18 18 18 18 18 18 18 18 18 18 18 18 18 |            | 05.3               | 15.6      | +.0+      | 1.+5    | 38° 13-5' W | 42.0       | +<br>+<br>+ |         | +                   | 10 47.9 1 |             | 4 ) H     |              |            |
| Pc       | Lat. S                       | 68° 59°9′<br>69° 26°6′   | i.    | 0        | 68° 30'1' | 67 55.5            | 0            |        |       | 65,57.0    | 66 50 8'    | 67 38-7    | 68, 40.6 | 69 38.2 | 69 53.7 | 1.11 04     |       | 68" = 2.4                                           | 68, 17.8, |            | 66 24 9              |        |          | 1.1      |             | 63 57-6        | 63 33.8    | 63 2011    | 61, 18.9   | 50 +3.2    | 57, 34.9   | 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        | 61 22.7    | 62° 21.2'          | ,9.60 °1. | 50° 52-6′ | 58 33.0 | 27° 14.0    | 55 56.3    | 54 03 9     | 54 I3.0 | 53 32. <del>1</del> | 52 54.2   | 52° 14.4    | 51 32.1   | 2.30<br>2.30 |            |
|          | Date                         | 24. ii. 38<br>25. ii     | 25.11 | 26. ii   | 26. ii    | 27. ii             | 27. ii       | 28. ii | :=    | 1, 111, 38 | Ξ           | 2. iii     | 2. 111   |         |         |             |       |                                                     |           | н с<br>Ш с |                      | 7. 111 | 8. iii   |          | 9. iii      | 9. 111         | 10.111     | 10, 111    | 11.111     | 12. 111    | 22. 11     | 75. III                                        | 2.4.111    | 25. III            | 25. m     | 26. 111   | 26. iii | 27. iii     |            | 4. iv. 38   | 5.1V    | 0.1V                | 1.0       | 2.11        | 9. 17     |              |            |
|          | Station                      | 2247                     | 0122  | 2251     |           | 22.22              | 2225         | 2256   | 2258  | 2250       | 2261        | 2262       | 2264     | 2265    | 2266    | 2268        | 2260  | 1044                                                | 1/47      | 11-11-     | 1111                 | 2277   | 2278     | 2280     | 2281        | 2283           | 2284       | 2285       | 2286       | 1212       | 2203       | +672                                           | 2200       | 2207               | 2298      | 2209      | 2300    | 2301        | 2302       | 2304        | 2305    | 2300                | 2307      | 2305        | 2309      | 2102         | 2311       |
| Recion   | or area                      |                          |       |          |           |                    | Ţ            | Ţ      |       | -          | I           | Ţ          | I        | -       |         | <u>جر</u> ب |       |                                                     |           |            | × x                  | Ţ      | Sp.      | x        | I           | Ι              | I          | Z;         | Z          | Z          | NAN<br>NDC |                                                |            | SZZ.               | NRS       | x         | s       | s           | x          | s           | NRS     |                     |           |             |           |              | -          |
| Colour   | units<br>per m. <sup>3</sup> | 5.420                    | 01.1  |          | 011.0     | 027.1              | 001          | 220    | 250   | 230        | 630         | 3,000      | 1.460    | 870     | 120     | 200         | 2 0 0 | 1000                                                | 1./00     | 061.0      | 5.660<br>5.660       | 2.220  | \$7.830  | 3,270    | 1,580       | 6,600          | 2,270      | 330        | 430        | 040        | 120        | 120                                            |            | 1 30               | 20        | 480       | 1,150   | 011         | 1,050      | 3.460       | 280     | 5.10                | 040       | 730         | 015,1     |              | 550        |
| Position | Long.                        | 115°26.8'E               |       | 110/00/D |           | 124 05.7'E         |              |        |       |            | 127 27-4 E  |            |          |         |         |             |       |                                                     |           |            |                      |        |          |          | 162 	17.6 E |                |            | 164°07.6′E | -          | -          | 1.0        |                                                | 107 40 2 M |                    |           |           | 11-2    | .,9.61      | 47.3       | 155 17-1' W | 43.7    | 34.0                | 11.2      | 144, 204, W | 9.19<br>0 | ,            | 137 05.5 W |
| Po       | Lat. S                       | 63 29 I (                |       |          |           | 03 33 3<br>62 51 3 |              |        |       |            | 03 ±00      | 0          | - C -    |         | C       |             |       | 1.75 20                                             |           |            | 05 33'3<br>66° cc·6' |        | 66- 25-2 | 6.5 00.6 | ,1-ST 29    | 64 07.9        | 62° 31.4′  | ,1.6t_oy   | 59, 26.0   | 58° 30.0   | 58, 38.8   | 00 501                                         | 02 11.9    | 63 51 4<br>64 51.2 | 65, 50.2  | 67 19.6   | 68 25.0 | 68° 09'3'   | 67° 34'2'  | 67° 10.1'   | 66 22.0 |                     |           |             | 64 31.8   |              |            |
|          | Date                         | 10. i. 38                | 11.1  | 1.1.     | 12.1      | 12.1               |              |        | 14.1  | + 1        |             |            |          | 10.1    | 10.1    | 17.1        | 17.1  | 1%1                                                 | 18.1      | 1.0.1      | 19.1                 | 1.07   | - · · ·  | 1.12     | 22.1        | 23.1           | 23.1       | 24.1       | 24/25.     | 25.1       | 13. 11. 38 | 14. !!                                         | 15. II<br> | 10.11              | 1.7.1     | 17. 11    | :=      | 18.11       | 10. 11     | 19. ji      | 20. 11  | 20, 11              | 21.11     | 21.11       | 22.11     | 22.11        | <br>23. 11 |
|          | Station                      | 2168                     |       |          |           |                    |              |        |       |            |             |            |          |         |         |             |       |                                                     |           |            |                      |        |          |          |             |                |            |            |            |            |            |                                                | 2222       | 5777               | 11000     | 2226      | 2227    | 2220        | 2230       | 2232        | 2233    | 2235                | 2236      | 2238        | 2239      | 2241         | 2272       |

354

### DISCOVERY REPORTS

| Region   | or area                      | 2.7          | z                    | Z                         | Z            | <u></u>     | Z        | Z         | Z                | 2        | 2                    | 25          | 2-          | - 5         | 27         | 27          | 2           | -         | 23        | 27         | 1.7       | 1.7       | 17        | 27         | 27                                   | 47          | .7        | .7        |                         | 2       | Z                 | Z         | 7.          | Z        | Z.7         | .7        | 17       |           |                   | 27       |             | 1       |           |                   | Z                | .7           |                    | . Z.               |
|----------|------------------------------|--------------|----------------------|---------------------------|--------------|-------------|----------|-----------|------------------|----------|----------------------|-------------|-------------|-------------|------------|-------------|-------------|-----------|-----------|------------|-----------|-----------|-----------|------------|--------------------------------------|-------------|-----------|-----------|-------------------------|---------|-------------------|-----------|-------------|----------|-------------|-----------|----------|-----------|-------------------|----------|-------------|---------|-----------|-------------------|------------------|--------------|--------------------|--------------------|
|          |                              |              |                      |                           |              |             |          |           |                  |          |                      |             |             |             |            |             |             |           |           | _          | _         |           |           |            |                                      |             |           | _         |                         |         |                   |           |             |          |             |           |          |           |                   |          |             |         |           |                   |                  |              |                    |                    |
| Colour   | units<br>per m. <sup>3</sup> | 20           |                      | V                         | 0.50<br>0.50 | ∧<br>0      | ۸<br>0   | 0,        | V<br>N<br>N<br>N | v.<br>∧  | \[   \lefter 50   \] | V<br>V      | °,<br>∨     | V<br>V      | °<br>V     | 0.00        | 00          | 06        | 120       | ٥<br>٥     | ο<br>ν    | 20        | 00        | 00 (       | 0<br>V<br>V                          | 5.00        |           | 100       |                         |         | 001               | 8         | So          | 0 I I    | 200         | 120       | V        | 0001      | 0.01              | 0+1      | 0.00        | 4,000   |           |                   | ) ()<br>/ 1<br>/ |              |                    | 180                |
| Position | Long.                        | 00 31.5 E    | 00°52'2 E            | o1° 59'5' E               | o3°o7.9′E    | 06° 31·3′ E |          |           | IO ++.I E        |          | +                    |             | 17_53°2/E   |             |            |             |             |           | 20 43.7 E | <u>~</u>   | 00_35.8 E | ~ ~       |           | 00 25.5 E  |                                      | ~           | 02 10.4 E |           | 2 4.74 00<br>1 4.944 00 | 0       | 12°22'S'E         |           | 18, 21.0' F | ~ .      |             | ġ,        |          | 0         |                   |          |             |         | 1 2.10 00 | 00 200 10         |                  | 0            | 1 00 11<br>1 00 11 | 18-35 CE           |
| P        | Lat. S                       | 55, 59.7     | 50 +t 5<br>51° 18.5° | 56° 48.9′                 | 56° 17.7'    | 54° 47'1'   | 54 29.3  | 53 15.3   | 52 16.4          | 53 23.3  | 53 53.4              | 54 52.4     | 55 31.5     | 56 25.0     | 55 41.9    | 54°25.7     | 53 11.6/    | t.tt 15   | 50 I5'5   | 50_+8.7    | S1 S77    | 53 15.8   | 54 14.1   | 55, 26.2   | rrj.                                 | 54, 24'4    | 53 19.3   | 52 37 0   | 51 25'2                 | 0       | 1 01 10<br>100 00 |           |             | ,0.0+ +5 |             | 51 34.7   | 51, 19.2 | 52 41.8   | en'               | 55, 10.0 | +           | (r)     | 52.52.0   | r~, '             | + 1              |              | - 12               | 1.01 55            |
| 0        | Date                         | 17. viii. 38 |                      |                           | 19. viii     | 19. viii    | 20. VIII | 20. VIII  | 21. VIII         | 21. VIII | 22, VIII             | 22. viii    | 23. viii    | 23. viii    | 24. VIII   | 25. VIII    | 25. viii    | 26. viii  | 26. viii  | 23. ix. 38 | 23. iX    | 24. ix    | 24. IX    | 25. IN     | 25. IX                               | 26. IX      | 2h, 1X    | 27. IX    | N1 . 12                 | 20. IX  | 20.12             | 20. IN    | 20, IX      | т. х. 38 | 2. X        | 2. N      | 26. A    | 26. X     | 27. N             | 12. N    | 25. N       | 23. N   | 20. X     | 29. X             | 30, X            | 30. X        | 31. X              | 31. X<br>1. XI. 28 |
|          | Station                      | 2392         | 2595                 | 2305                      | 2396         | 2399        | 2400     | 2402      | 2403             | 2405     | 2406                 | 2408        | 2409        | 2411        | 2412       | 2413        | +1+2        | 2415      | 2416      | 1242       | 2428      | 2429      | 2430      | 2431       | 2+32                                 | 2+33        | 2435      | 2+30      | 2430                    | 2439    | 1++2              | -++       | 5416        | 2447     | 2448        | 2449      | 2462     | 2463      | 5464              | 2465     | 2406        | 2468    | 2469      | 1/12              | 2472             | 5474         | 2475               | 2470               |
| Derion   | or area                      | 7.7          | <b>-</b> ,           |                           |              | I           | I        | I         | I                | I        | I                    | I           | _           | -           | -          | _           | I           | x         | Ι         |            | -         | 1         | ,         | <b>_</b> , | -                                    | ;           | 7.7       | Z         | 27                      | 47      | .7                | .7        | Z           | Z        | Z           | Z         | Z        | Z         | Z                 | Z        | Z           | Z       | 23        | 73                | 27               | 27           | 27                 | .7.                |
| Colour   | units<br>per m. <sup>3</sup> | 80           | 3,020                | 1.830                     | 240          | 010,1       | 00I V    | 001 >     | 001 >            | < 100    | 220                  | 011         | 80          | 280         | 270        | 100         | 120         | 80        | 110       | 05         | 130       | 110       | 180       | 60         | 012                                  | 320         | 1,140     | 950       | 2,250                   | 060     | 0<br>V<br>V       | / /       |             | V        | V           | ۲.<br>۱۲. | 0<br>v   | ۸<br>م    | 0<br>20<br>0<br>0 | ک<br>ان  | v<br>v<br>v |         | 02<br>V   | \<br>0.00<br>0.00 | 0<br>10<br>V     | 0<br>V       | 0<br>V<br>V        | 0<br>V V           |
| Position | Long.                        | 00 48.6 E    | 0                    | or of 6 E                 |              |             | ~        | 00 37.5 E | 0                |          | 03° 14'8' E          | o6° 19-8' E | og° o5·7′ E | 12° 12-2' E | 15°55'3' E | 18° ô§·8′ E | 20° 11·2' E | 20 24 5 E |           |            | 20 01'2'E | 0         | 19 45 9 E | 19 40.5 E  | 19 <sup>°</sup> 33 <sup>.</sup> 9′ E | 19] 32-9' E | · ·       |           | 19, 20.3, E             |         | 00 2572 E         | 00 11 3 E | 01 10-3 E   |          | 04° 50'5' E | <u>.</u>  |          | 12′42·8′E |                   |          |             |         | 17        | 21°15°0 E         | 21, 22°2, E      |              | 00 04.5 E          | 00 II 5 E          |
| Pc       | Lat. S                       | 53°,41.6′    | 50 07.9              | 5, 55<br>5, 55<br>5, 07:1 | 58° 58'1'    | 60 01.3     | 61, 10.6 | 62, 21.5  |                  | , to 24  | 64 30.2              | 64° 45'2'   | 64° 51'2'   | 64° 57.6'   | 65° 13°0'  | 65 25.3     | 66° o4'3'   | 67 10.6   | 66° 21.4′ | 64 50.7    | 63. 41.7  | 62° 43°1′ | 61 35.4   | 60° 10.7   | 58 53.9                              | 57° 28.9'   | 26_18·4   | 55° 05' I | 53 35.5                 | 52,15.0 | 21, 11, 12        | 9.02 22   | 53 50 0     | .9.11 TS | 53 23'4     | 51 33.1   | 50 59.2  | 51° 47.9  | 52 303            | 23 IO.U  | 54 I3.0     | 55 41.8 | 53°54.0   | 53 07.6           | 50 10-8          | 51 32.2      | 52, 35.3           | 53 37.0            |
|          | Date                         | 13. iv. 38   | 14.17                | 14-17                     | VI .21       | 16. iv      | T6. iv   | 17. 1V    | 17.11            | 18. iv   | 18. iv               | 10. iv      | 19. 1V      | 20. IV      | 20. iv     | 21. IV      | 21. IV      | 22. iv    | 22. iV    | 23. IV     | 23. iv    | 24. IV    | 24. iv    | 25. iv     | 25. IV                               | 26. iv      | 26. iv    | 27. iv    | 21.12                   | : .:    | 10. 11. 38        |           | 11. 11.     | 13. VII  | 13. vii     | it, vii   | 15. VII  | 15. vii   | 1 16. vii         | 16, vii  | 17. vii     | 19. VII | 20. 111   | 20. 111           |                  | 15. VIII. 38 | 15. VIII           | 16. VIII           |
|          | Station                      | 2314         | 2315                 | 2310                      | 2218         | 2310        | 0220     | 2321      | 2000             | 1212     | 2325                 | 2326        | 2728        | 2320        | 2331       | 2112        | 2334        | 2335      | 2336      | 2337       | 2338      | 2339      | 2340      | 2341       | 2342                                 | 2343        | 2344      | 2345      | 2346                    | 2347    | 2359              | 2300      | 1062        | 2262     | 2365        | 2367      | 2368     | 2370      | 2371              | 2372     | 2373        | 2374    | 2375      | 2376              | 2377             | 2388         | 2389               | 2390               |

Appendix (continued)

APPENDIX

| 337 |
|-----|
|-----|

| Region   | or area                     |             |                                                                           |      |                                        | _       | I         | Z         | 7.4     | 1.7       | 27                                      | .Z.       |         | Z        | Z       |           |        |           |              |            | H       | - U                 | s v          | : v       | s     | x o   | c v        | ; <b>-</b> | -                 | -         | _ ,_      |                          |          | П         | _           | -7                   | 2.7                | Z          | Z           |
|----------|-----------------------------|-------------|---------------------------------------------------------------------------|------|----------------------------------------|---------|-----------|-----------|---------|-----------|-----------------------------------------|-----------|---------|----------|---------|-----------|--------|-----------|--------------|------------|---------|---------------------|--------------|-----------|-------|-------|------------|------------|-------------------|-----------|-----------|--------------------------|----------|-----------|-------------|----------------------|--------------------|------------|-------------|
| Colour   | per m. <sup>3</sup>         | 1,800       | 3,010                                                                     |      | 087.1                                  | 051     | 1,840     | 4.140     | 2,540   | 3,050     | 1 300                                   | 020       | 012     | 180      | 400     | 120       | 0+1    | 130       | 011          | 1,210      | 2,980   | 1,010               |              | 620       | 1,000 | 1,030 | 1,010      | 000        | 1,100             | 06+       | I,100     | 0,00                     | 011      | 020       | 3.490       | 000'+                | 0.1.1              | 010        | ک<br>0      |
| Position | Long.                       | 1.          | 10 10'5 E                                                                 |      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |         | 10 43.4 E |           | i - 1   | 10 34.4 E | 19 39 1 L                               |           |         |          |         | 00 +0.1 E |        | 00 23.0 E |              | 00 00 8' E |         | 00 40.3 E           |              | 00 24'2 E |       |       | 03, 3477 E |            |                   | 15 3855 E |           | 19 01 + E                |          | 0.51      | _           | 54.3                 | 19,27.6 E          |            | 19° 42 6' E |
| Pos      | Lat. S                      | 66° 05'3'   | 05, 00.5<br>62, 51-2,                                                     |      | 59 37.4                                | 58 12.0 | 56 40'2'  | 55 21.1   |         | 22 +3.4   |                                         |           | 53 50.5 |          | 50 24.4 |           |        | 59, 30.7  |              |            |         | 05 53'3<br>67 17.6' |              |           |       | ÷.    | 64.60      | 0          |                   | 64 11.3   | - C       | 01 10 3<br>60, 24-2      | , T-1 05 | 58° 25.9' | 57 23.9     | 50 29.0              | 55 21.9            | 52,57.1    | 51°445      |
| Ş        | Date                        | 28. i. 39   | 20.1                                                                      | 20.1 | 30.1                                   | 30. 1   | 31.1      | 31.1      | 1.11.39 |           | 1:2                                     | 24.11     | 25. II  | 13 Y. 11 | 26.11   | 20. II    | 27. II | 28.1      | 28. 11       | 1. iii. 39 | I. III  |                     |              | H H       |       |       | i i i      | 7. iii     |                   |           | 9. II     |                          | 10.111   |           |             |                      | 12. III<br>12. III |            | 14. iii     |
|          | Station                     | 2562        | 2505                                                                      | 2565 | 2566                                   | 2567    | 2568      | 2569      | 2570    | 2571      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2586      | 2587    | 2588     | 2589    | 2590      | 2591   | 2592      | 2594         | 2595       | 2596    | 2597                | 0657<br>2600 | 2600      | 2601  | 2003  | 1002       | 2608       | 2600              | 2010      | 2011      | 2012                     | 2614     | 2615      | 2616        | 2017                 | 2010               | 2620       | 2621        |
| Region   | or area                     | ZZ          | .7                                                                        | Z    | Z                                      | Z       | Z         | Z.7       | 27      | 27        | .Z                                      | ζZ        | Z       | Z        | Z       | Z7        | 17     | ZZ.       | , <b>-</b> - | _          | Z       | 27                  | 22           | Z         |       |       |            |            | ,                 | - 0       | c u       | : v                      | x        | I         | , <b></b> , | - c                  | c u                | s          | s           |
| Colour   | umts<br>per m. <sup>3</sup> | 100         | - 0<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2 | 780  | 120                                    | 000     | 1,260     | 4.030     | 7,570   | 2,610     | 5.0/0                                   | 1.070     | +30     | 270      | 200     | 4,000     | 1,300  | 210       | 180          | 460        | 1,540   | 500                 | 5,200        | 270       | 080   | 100   | 051.1      | ofy        | 071               | 0%1       |           | 011                      | 130      | 580       | 017         | 610                  |                    | 140        | 130         |
| Position | Long.                       | 20' 16'4' E |                                                                           |      |                                        |         |           | 00 46 6 E |         | 01 237/ E |                                         | 05 51 0 E | -       |          |         |           |        | 10 35 4 E |              |            |         | 19 3274 E           |              | o3 31.2 E |       |       |            |            |                   |           | 1 + 00 70 |                          |          |           |             |                      | 13 01 3 E          | 17 06.6' E | 19, 10'5' E |
| đ        | Lat. S                      | 54, 17.3,   |                                                                           |      |                                        |         |           |           |         |           |                                         |           |         |          |         |           |        |           |              |            |         |                     |              |           |       |       | ~          | 63 24.7    | $64^{\circ} 59.3$ |           |           | -                        | 67 27.8' | 0         | -           | 00, 05.2<br>6- 0.5.2 |                    |            | 68, 49.7    |
| ſ        | Date                        | 2. xi. 38   | 2. Ni                                                                     | X.   | ž. xii. 38                             | NIL     | 3. XII    | + XII     | + XI    | 5. MI     | 6. xii                                  |           |         |          |         |           | 9. MI  | 10. XII   | IO, XII      | 11. XII    | 12. XII | 16 i 20             | 16.1         | 17. i     | 18.1  | 1.0.1 | 20.1       | 20.1       | 21.1              | 21.1      |           | 21.1                     | 23.1     | 24.1      | 24.1        | 25.1                 | 26.1               | 26. i      | 27. i       |
| ·.       | Station                     | 2478        | 2480                                                                      | 2481 | 2496                                   | 2497    | 2498      | 2490      | 2500    | 1057      | 202                                     | 2504      | 2505    | 2507     | 2508    | 2510      | 114    | 2514      | 2516         | 2517       | 2518    | 2519                | 25.24        | 2537      | 2538  | 2540  | 2542       | 2543       | 2544              | 2545      | 01010     | 101<br>101<br>101<br>101 | 2550     | 2551      | 2553        | 2554                 | 2557               | 2558       | 2559        |

Issued by the Discovery Committee, Colonial Office, London on behalf of the Government of the Dependencies of the Falkland Islands

Vol. XXI, pp. i-vi

# TITLE-PAGE AND LIST OF CONTENTS



## CAMBRIDGE AT THE UNIVERSITY PRESS

1942

Price ninepence net

.

CAMBRIDGE UNIVERSITY PRESS LONDON: BENTLEY HOUSE NEW YORK, TORONTO, BOMBAY CALCUTTA, MADRAS: MACMILLAN

All rights reserved

. . . ·.

PRINTED IN GREAT BRITAIN BY WALTER AT THE CAMBRIDGE UNIVERSITY PRESS .

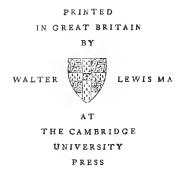
Vol. XXI, pp. 1–226, plates I–IV

Issued by the Discovery Committee, Colonial Office, London on behalf of the Government of the Dependencies of the Falkland Islands

## STATION LIST 1931–1933

## CAMBRIDGE AT THE UNIVERSITY PRESS


1941


Price thirty-three shillings net

#### CAMBRIDGE UNIVERSITY PRESS LONDON: BENTLEY HOUSE NEW YORK, TORONTO, BOMBAY

CALCUTTA, MADRAS: MACMILLAN TOKYO: MARUZEN COMPANY LTD

All rights reserved





.

P

Vol. XXI, pp. 227–234, plates V, VI

Issued by the Discovery Committee, Colonial Office, London on behalf of the Government of the Dependencies of the Falkland Islands

## A RARE PORPOISE OF THE SOUTH ATLANTIC, PHOCAENA DIOPTRICA (LAHILLE, 1912)

by

J. E. Hamilton, D.Sc.

### CAMBRIDGE AT THE UNIVERSITY PRESS

### 1941

Price two shillings net

#### LONDON

÷

Cambridge University Press BENTLEY HOUSE, N.W. I

NEW YORK · TORONTO BOMBAY · CALCUTTA • MADRAS Macmillan

токуо

Maruzen Company Ltd

All rights reserved

PRINTED IN GREAT ERITAIN BY WALTER AT THE CAMBRIDGE UNIVERSITY PRESS

Vol. XXI, pp. 235-260, plates VII, VIII

Issued by the Discovery Committee, Colonial Office, London on behalf of the Government of the Dependencies of the Falkland Islands

## THE ECHIURIDAE, SIPUNCULIDAE AND PRIAPULIDAE COLLECTED BY THE SHIPS OF THE DISCOVERY COMMITTEE DURING THE YEARS 1926 to 1937

by

A. C. Stephen, D.Sc. The Royal Scottish Museum, Edinburgh

## CAMBRIDGE AT THE UNIVERSITY PRESS

### 1941

Price four shillings and sixpence net

#### LONDON

Cambridge University Press BENTLEY HOUSE, N.W. I

NEW YORK • TORONTO BOMBAY • CALCUTTA • MADRAS Macmillan

> токуо Maruzen Company Ltd

> > All rights reserved



PRINTED IN GREAT BRITAIN ΒY LEWIS MA WALTER ΑT THE CAMBRIDGE UNIVERSITY PRESS

٠

.

~

.

Vol. XXI, pp. 261–356

Issued by the Discovery Committee, Colonial Office, London on behalf of the Government of the Dependencies of the Falkland Islands

## PHYTOPLANKTON PERIODICITY IN ANTARCTIC SURFACE WATERS

by

T. John Hart, D.Sc.

## CAMBRIDGE AT THE UNIVERSITY PRESS

### 1942

Price thirteen shillings and sixpence net

### CAMBRIDGE UNIVERSITY PRESS LONDON: BENTLEY HOUSE

•

.

NEW YORK, TORONTO, BOMBAY CALCUTTA, MADRAS: MACMILLAN

All rights reserved

-

• • Ŧ .

PRINTED IN GREAT BRITAIN BY WALTER AT THE CAMERIDGE

1.59

٠

,

UNIVERSITY PRESS

.

,

÷ '

='i ⊀ .



, v

