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INTRODUCTION

A common goal in multivariate morphological studies is to compare the

shapes of the organisms under study. On an intuitive level the distinction

between size and shape is obvious. Most people could agree with the dictionary
definitions of shape as the relative position of all points composing the outline

or external surface of an object and size as the space an object occupies. But

these two concepts can be difficult to separate in multivariate analyses of mor-

phological data (Sneath & Sokal, 1973). The data sets from these analyses nor-

mally consist of linear measurements on a series of morphological characters

such as skull length, tooth row, etc. These measurements are affected by both

the shape and the size of an organism. The goal of shape analysis is to separate
these two parts of the measurements so that shape comparisons can be made
between organisms of different sizes.

This paper tests the effectiveness of several techniques that have been devel-

oped for shape analysis, investigates how they work, and shows why some
methods fail, using an experimental approach similar to those followed by Moss

(1968, 1971), Crovello (1969), Manischewitz (1973), Minkoff (1965), and Rohlf

(1972). I am defining effectiveness as the ability to classify objects of the same

shape as similar, regardless of the size of the objects (Moss, 1968; Mosimann,

1970). This is in contrast to other kinds of shape analyses which have the goal of

documenting and quantifying consistent changes of shape with increasing size

(Gould, 1966; Sweet, 1980; for a discussion of this sort of analysis in conjunction
with allometric growth, or documenting the morphological distinctiveness of

predetermined groups of organisms, see Albrecht, 1980).

The first problem in testing different methods of shape analysis is that the

relationships of shape among real objects are unknown and can only be inferred

(Corruccini, 1973); therefore, no criteria exist to evaluate methods of analyzing

shape. To produce objects of known shape relationships, I first measured 11

morphological characters on eight species of canids. Then I made artificial oper-
ational taxonomic units (OTUs) with known shape relationships by scalar mul-

tiplication of the data from two canids, kit fox and wolf. For example, all 11

measurements of the wolf were multiplied by a constant of 0.53 to produce an

iso-OTU about the size of a kit fox. On paper at least, I have produced two
canids of different size but of the same shape. Similar scalar multiplications
were performed to produce a mid-sized wolf, a wolf-size kit fox, and a mid-

sized kit fox. Of course, isometric enlargement of OTUs is rare or nonexistent in

real biological data, but my procedure has the strength that the shape re-

lationships within the iso-wolves and the iso-kit foxes are known.
Several methods of shape analysis were applied to the canid data set, such as

sizeout, correlation, ratio distance, regression analysis, and log-sizeout. My
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research indicates that the best results are obtained from ratio distance, log-

sizeout, and correlation of log-transformed data. The following section presents
the description of each method and analysis of its strengths and weaknesses.

METHODS OF DATA TRANSFORMATION

In general, neither the means nor the variances of characters are equal.

Clearly, total head and body length measurements will have a larger mean, and

probably a higher standard deviation, than a measurement taken on the molar

tooth row. This produces a problem: characters with large means and/or vari-

ances contribute more to the determination of shape coefficients between OTUs
than do characters with small means and/or variances (Sneath & Sokal, 1973). A

priori there is no reason to weight these characters differently. A 10% change in

molar tooth row is not necessarily less important than a 10% change in head and

body length. However, because head and body length has a greater absolute

measurement, it will tend to affect the shape coefficients more. Some methods

must be found to equalize the effect of variables before a shape analysis is done.

Two methods of data transformation are discussed here. One method is stan-

dardization (Sneath & Sokal, 1973). The standardized score of a character can be

given as: Score =
(x

-
x)/Sx, where x is the mean of that character for the or-

ganisms included in the study and s* its standard deviation. Thus, the stan-

dardized score is equivalent to the z-value used in statistics. After standardiza-

tion, the means of all characters are 0.0 and the standard deviations 1.0. Vari-

ables then contribute equally to the analysis. Because of the subtraction of the

mean and division by the standard deviation, the standardized score of a mea-

surement is, in part, dependent on the other objects included in the study. The

same organism could receive very different scores for a character in two

analyses which contained different sets of organisms.
Some of the problems produced by standardization have already received

attention. Hudson et al. (1966) and Sneath & Sokal (1973) pointed out that

measurements with small variances may be heavily affected by simple mea-

surement error. The magnification of these errors to equal status with the other

characters through standardization would be a mistake. Also, Rohlf & Sokal

(1965), Rohlf (1962), and Underwood (1969) found that standardization normally
reduces the average correlation coefficient between OTUs. Finally, Sneath &
Sokal (1973) note that standardization reduces the atypicality of aberrant OTUs.
Manischewitz (1973) tested standardization with several other methods of

transformation and found it to be the most reliable method. However, as I will

discuss below, other problems also affect the use of standardization in correla-

tion analysis. These problems are so severe that the standardization of data in

correlation analysis is impossible.
There are other methods available for transforming data; one of the most

promising is log transformation. Logarithmic transformation has long been

associated with normalizing the curve shape of right skewed data; however, as

pointed out by Moriarty (1977) and Lewontin (1966), the effects of logarithmic
transformation go beyond normalization. Perhaps most important is the prop-

erty that, in log-transformed data, the standard deviation of a variable is pro-

portional to the coefficient of variation (CV) of the untransformed variable.

Thus, after transformation, each variable will tend to contribute to the analysis
in proportion to its CV. Because the mean of a variable may, in part, determine
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its relative contribution to the analysis, the mean of the transformed data can be

subtracted from the log-transformed data. Other properties of log-transformed
data are discussed in the section on log-sizeout shape analysis.

METHODS OF SHAPE ANALYSIS
SlZEOUT

In morphometry data there is normally a high intercharacter correlation with

size; lar*ge animals tend to have large tails, skulls, feet, etc. Thus, when viewing
a character correlation matrix from morphometric data, one usually notices a

great many high positive values, especially between size-related characters. In a

principal components analysis (PCA), the first principal component is defined

as that vector in hyperspace which explains the maximum possible variation of

the data. Thus, if most or all characters are highly size dependent, the first

principal component will be highly correlated with size (Jolicoeur & Mosimann,
1960; Jolicoeur, 1963). This is a general phenomenon and has been observed

repeatedly with morphometric data (Sneath & Sokal, 1973). Of course, it is not a

rule, because size may be less important in some data matrices (i.e., the first

principal component may not be highly correlated with size).

Once it is determined that the first principal component is a size factor, the

effect of this axis can be removed mathematically from a data set (Rohlf et al.,

1971). Figure 1 may help the reader to visualize this process. Two characters are

measured on a series of canids, and a principal components analysis is per-

formed on the data. As can be seen in the figure, the first principal component is

highly size related. If this axis is eliminated, only the second principal compo-
nent is left, and distances between OTUs on this second vector represent "size-

out" distances. Multivariate analyses use more than two characters, but the

method remains the same: the first principal component is removed and dis-

tances are calculated between OTUs based on all the remaining components.
These sizeout distances can be interpreted as indicators of shape similarity; i.e.,

the smaller the sizeout distance between OTUs the greater the shape similarity.

Sizeout analysis depends on the first principal component being the size

factor, but exactly what does this mean? The first principal component is a

composite of all the original variables, and those characters which are size

related are generally more important in determining the first principal compo-
nent. An example of these loadings is given in Table 1. Notice that, although all

loadings are high, indicating that the first principal component is highly size

related, all characters are not equally high. The smallest loading is for cranial

width; this means that, for this group of animals, cranial width is least related to

the linear "size factor" (the first principal component). An important point to

remember is that the loadings of these characters are determined by the shapes
of the animals included in the study. With another group of animals of different

shapes, cranial width might be more highly correlated with the first principal

component.
The loadings for skull length and cranial width are 0.983 and 0.913, re-

spectively. A graph can be made by plotting these two numbers against one

another to define the sizeout vector for these two character axes (fig. 1). As

already discussed, it is the collapsing of this first size factor that results in

sizeout. Also plotted in Figure 1 are the OTUs on which the PCA was per-

formed.

In Figure 1 the iso-OTUs are connected to obtain an iso-wolf and an iso-kit



Skull Length

Fig. 1. Mechanism of the sizeout analysis for a two-variable case. Notice that the

iso-wolf vector (marked iso-wolf) is parallel to the first principal component (PCA 1), but

the iso-kit fox vector (iso-kit) is not. This leads to the incorrect shape relationships found

among the iso-kit foxes.

Table 1. The loadings of the morphological characters on the first principal component
obtained by a PCA on the canid data set.

Skull length
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fox line. Because the data have been standardized, all the kit foxes and wolves

no longer lie on a straight line. For the purpose of this example, I have con-

nected the largest and smallest iso-OTUs. The wolf line is more similar in slope

to the sizeout vector than is the kit fox vector; because of the mathematics of

sizeout analysis, the more similar the slope of an iso-OTU vector is to the

sizeout vector, the more perfectly the analyses will remove the effect of size

from data. This can be seen graphically if one imagines the collapse of the

sizeout vector to the origin, leaving only the second principal component. All

three wolves, because of the nearly parallel nature of the iso-wolf vector, col-

lapse to nearly one point on the second vector; however, this is not true for the

iso-kit foxes. This is only a two-dimensional example, but when all 11 charac-

ters are considered, the sizeout procedure is still less effective for the kit foxes

than for the wolves. In fact, the distance between the largest and smallest iso-kit

foxes is in the upper 46% of all distances in the sizeout distance matrix (table 2).

This magnitude of error indicates that sizeout can produce significant changes
in results. Iso-enlargements do not exist in real studies, but the problem re-

mains. Sizeout cannot remove the effect of size from all groups equally, and the

ability of sizeout to function properly will tend to decrease as animals of more
diverse shapes are included in the analysis. In this example, the shape re-

lationships of the iso-wolves were correctly calculated, whereas incorrect an-

swers were obtained for the iso-kit foxes. In another study, which included

more canids, the sizeout analysis also failed on wolves. Evidently, the first

principal component was shifted and no longer parallel to the iso-wolf vector in

the second analysis.

Correlation

Shape analysis using correlation (Michener & Sokal, 1957) involves calculat-

ing the inter-OTU product-moment correlation coefficient for all possible pairs
of OTUs in a study. This coefficient is calculated by the formula:

X (X,,
-

X,)(X, 2
- X2)

h.2
=

2 (x„
-

X,)
2E (X, 2

- X 2)

2

where Xj., is the measurement of the ith character on the first OTU, X, is the

mean of all measurements on OTU,, and r,.j is the product-moment correlation

coefficient between OTU, and OTU>.
A scattergram (fig. 2) can give a graphical representation of this correlation for

a pair of OTUs (dog and wolf). A high positive correlation between two OTUs
may indicate great similarity in shape, whereas low values mean little similarity

(Rohlf & Sokal, 1965).

One of the problems already pointed out by Rohlf & Sokal (1965) with the use

of correlation analysis is that OTUs may be highly correlated (r
=

1.0) and not be

of similar shape. Their example illustrates this point: the measurements 1-2-3

on object 1 would correlate perfectly with the measurements 1-2-3 on object 2 or

2-4-6 on object 3, and this is consistent with our ideas on shape relationship;

however, object 4 with the measurements 101-102-103 would also be perfectly

correlated with OTU 1, even though these two OTUs are not the same shape.

Although this problem has been noted, its real impact in an analysis is difficult

to determine.
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Fig. 2. The morphological measurements of two OTUs, wolf and dog, are plotted

against one another to form this scattergram. The data have not been standardized;

therefore, the correlation coefficient is high (r
= 0.993). Standardization reduces the

r-value to 0.375.

The importance of a character in determining r is strongly affected by the

mean value of the characters; for this reason, some data transformation is

needed. The two methods discussed here are standardization and log transfor-

mation.

Standardization

Tables 2 and 3 give the results of correlation analysis of two separate stan-

dardized data sets, both of which include the iso-wolves and iso-kit foxes. It is

clear from these tables that the results of these correlation analyses, which

should be based on shape alone, give inconsistent results with known re-

lationships of the iso-OTUs. The differences in results indicate two things: (1)

size is evidently important in determining product-moment correlation

coefficient because, in every case within an analysis, iso-OTUs which are more
similar in size have larger r-values than do iso-OTUs of very different sizes
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(Moss, 1968); and (2) the results of correlation analysis are not consistent from

run to run.

There are a variety of reasons for these failures (also see Minkoff, 1965, for

discussion of correlation analysis and allometric growth). One of the most im-

portant reasons has to do with standardization process. The iso-kit foxes illus-

trate how this problem arises. The small kit fox is the smallest canid in the

study; thus, its skull length and dentary thickness are both relatively small.

When the large kit fox data set was created, its skull length, by definition,

became equal to that of the largest canid, the wolf. However, the dentary thick-

ness of a jaw of a wolf is proportionally much greater than that of a kit fox due to

allometric growth. Therefore, even though the skull of the large iso-kit fox is as

large as that of the real wolf, its dentary is much thinner. When the data are

standardized, the small kit fox receives very small scores for both skull length
and dentary thickness (—1.1078 and —1.132, respectively). In contrast, the large

kit fox receives a large score for skull length (1.678), but only a slightly higher
than average score (0.588) for its dentary thickness (as compared with 2.269 for

the wolf)- When looking at only these two traits, the small kit fox has stan-

dardized scores which indicate that its skull length and jaw thickness are

equally small (the ratio of jaw thickness to skull length is 1.05). This is in sharp
contrast to the large kit fox whose scores indicate a large skull length but much
smaller jaw thickness than would have been predicted from the scores of the

small kit fox (the ratio for the large kit fox is 0.348). This difference and others

reduce the correlation between the small and large kit fox from the expected
value of 1.0 to 0.553 (table 1).

The result just cited is from a data set where most of the animals were fox-

like. In a second data set where more wolf-like OTUs were added, the normal

mid- to large-sized animals had a much thicker dentary than before; the mean

dentary thickness shifted from 19.3 mm in the first run to 22.2 mm in the second

analysis. The result is that the large kit fox looks all the more peculiar after

standardization in the second run. This time the scores of the small kit fox were
skull length, —1.315; and dentary thickness, —1.371 (the ratio is 1.04). The
scores of the large kit fox were skull length, 1.460; and dentary thickness, 0.203

(a ratio of 0.139). Clearly, according to the standardized scores, these two iso-

OTUs, at least for this trait, appear to have different shapes.

Log Transformation

The results of the correlation analysis on log-transformed data are shown in

Table 3. These results are consistent with the known shape relationships of the

iso-OTUs.

Ratios

Distance in standardized ratio space has a unique property as compared with

that in the previous methods in that ratios are shape characters (Simpson et al.,

1960; Corruccini, 1975). The axes in hyperspace are now shape axes instead of

simple raw data axes, and any change along an axis now represents an actual

change in shape. Because ratios formed with size-related characters as de-

nominators are shape measures, there is no need for a method to remove the

effect of size further. It is true that a ratio may be highly correlated with linear
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size, and this is often related to allometric growth patterns. For instance, large

canids generally have relatively narrow crania as compared with small canids.

Therefore, a negative correlation exists between the ratio of cranial width/skull

length and some measure of size such as skull length or head and body length.

This relationship should not be confused with the size correlation discussed

under sizeout analysis. The correlation between the cranial width/skull length

ratio and size represents the allometric change of shape with size, whereas the

positive linear correlation between cranial width and skull length represents the

degree of maintenance of shape with increasing size.

As with sizeout analysis, distances computed in ratio space measure the

similarity in shape of OTUs; small distances indicate high shape similarities.

Standardization, which had such a detrimental effect on correlation, does not

adversely affect distance in ratio space. The results of ratio analysis on the

iso-OTUs are entirely consistent with our understanding of their true shape

relationships (table 4). The only effect standardization has is to assess dif-

ferences in shape relative to the total difference present in the data matrix.

Thus, if two OTUs vary greatly on the ratio axis on which other OTUs do not,

these two OTUs would be more distant than if the other OTUs that were in-

cluded in the analysis varied greatly on this axis as well. This may not be a

problem as long as one remembers that distance in ratio space after stan-

dardization is relative. In many cases relative shape distances are sufficient;

however, if some absolute measure is needed, then standardization cannot be

used.

It should be noted here that Atchley et al. (1976) have recently strongly ques-
tioned the use of ratios. Their article was equally vigorously rebutted by Hills

(1978), Dodson (1978), and Albrecht (1978); but see Atchley (1978) and Atchley &
Anderson (1978). At this point it is certainly safe to say that ratios are con-

troversial. My own view from reading all the papers concerned is that reason-

able, thoughtful use of ratios may still be a powerful tool.

Regression-Residual Analysis

Several methods are combined under this topic. All involve using the data to

generate a vector that is size related and then removing the effect of that vector

on the data set. Methods that can be used here are regression, reduced major

axis, and partial correlation. This technique is similar to sizeout, except that

now one variable is specified as the size factor. The general idea is to regress

this variable against all other variables. The residuals from this analysis indicate

the relative size of each variable. This method suffers from the same problem as

sizeout. The slope and intercept of the regression lines are affected by the OTUs
included in the study. As in the sizeout example, the iso-wolves and iso-foxes

are not affected equally by this analysis (table 4). Once again the iso-wolves are

more effectively characterized than the iso-kit foxes.

This kind of analysis, often in conjunction with log transformation, can be

useful in removing the effects of allometric growth from data. In such cases, the

effect of consistent changes in shape can be removed. However, care should be

used to know exactly what is being removed from an analysis. At the extreme, a

researcher has used this approach (partial correlation) to remove the effect of

size from chromosome number and color pattern.
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LoG-SlZEOUT

The log-sizeout method is similar to the sizeout and regression-residual
methods in that the effect of a size vector is removed from the data matrix. The

difference in the log-sizeout method is that the size vector is not determined by
the data matrix. This is possible because, after a data matrix is log transformed,

all the iso-OTU lines have equal slopes in hyperspace. A simple bivariate plot

can illustrate this. In Figure 1, skull length and cranial width are plotted. Notice

once again the two iso-OTU lines are of different slopes. Because of the dif-

ference in slope, no single vector can remove the effect of size from both of these

groups. However, when the data are log transformed, both iso-OTU lines now
have a slope of 1, with different intercepts (fig. 3). Log-sizeout removes the

effect of size by removing the effect of a vector with slope 1 in all dimensions
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Fig. 3. Once the data set has been log transformed, all iso-OTU vectors are parallel and

have slope 1.00. Compare this situation with standardized data plotted in Figure 1.
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related to size and zero slope for variables that are not size related. The effect of

this vector can be removed from the distance matrix by the equation:

D,,,^,,,, , 2
= VD,OK ,. a

2 -
(NX,,,, ,

- NX
UlR 2y

where N is equal to the number of size-related variables, X|„K ,
is the mean of the

log-transformed size variables, and D|„B 1.2 is the euclidean distance between

two OTUs in log-transformed space. The quantity NX|OK ,
is equal to the loca-

tion of an object, on the size vector. This location is one definition for size. The

equation can be read as the distance from object 1 to object 2 in log-transformed

hyperspace minus their difference in size, which leaves only the shape dif-

ferences to affect distance.

Analysis of the canid data indicates that all iso-OTUs are correctly classified

(table 5).

CONGRUENCE OF TECHNIQUES

Another way of comparing methods of shape analysis is to see how similarly

the methods assess shape relations among a group of OTUs. One way to do this

is to correlate the similarity (or dissimilarity) matrices of all the techniques.
Several of these scattergrams are shown in Figure 4a-h, and Table 6 contains all

the "cophenetic" correlation coefficients between methods. Not surprisingly, in

view of the evidence already presented, the correlation between methods is not

always particularly high. As an example, two methods mentioned as pos-
sibilities by Sneath & Sokal (1973), sizeout and correlation, are correlated with

an r-value of only 0.623 (fig. 4a). To get an overview of the relationships of the

methods, I constructed a phenogram based on the correlations (fig. 5). The most

striking point of this phenogram is that techniques using similar methods give
similar results.

The sizeout and regression methods are similar mathematically in their way
of removing a size vector. Consistent with that fact is that the shape re-

lationships generated by these two methods are most similar to one another.

Likewise with the correlation of standardized data and log-transformed data,

the mathematics are most similar and the results are more similar to one another

than to the other methods. The log-sizeout method is harder to classify mathe-

matically. On one hand it can be visualized as the removal of a size vector of

slope 1 in all size-related dimensions, much the same as sizeout. On the other

hand it resembles the ratio technique, as it entails the subtraction of logarithms

(a process closely related to division of non-log numbers). The phenogram

Table 6. The congruence of the methods of shape analysis discussed in this report can
be seen, using these inter-method correlation coefficients.
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regular sizeout; notice the wide scatter (r 0.667) between these two methods. Along the
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coefficients on standardized data. As mentioned in the text, the correlation method failed

here, but comparison with graph c shows that correlation was more effective than sizeout

in classifying iso-OTUs. f, Comparison of the correlation coefficients on log-transformed
data with distances in ratio space, g, Comparison of the correlation coefficients on log-
transformed data with the correlation coefficients on standardized data; notice the tight

relationship (r
= 0.924), which indicates the similarity of the two methods, h, Compari-

son of the correlation coefficients on standardized data with distance in sizeout space;
notice the surprisingly low correlation of these two techniques (r

= -0.623).

SIZEOUT

REGRESSION

LOG CORR

STAN CORR

RATIO

LOG SIZEOUT

0. 7 0. 8 0. 9 1.

AVERAGE CORRELATION WITHIN GROUP
Fig. 5. A phenogram of the methods of shape analysis studied in this report was made

based on the inter-method correlations of Table 6. The phenogram shows the methods fall

into three groups, with the groups of correlation of log-transformed data (LOG CORR)
and the correlation of standardized data (STAN CORR) and ratio distances (RATIO) and
distances in log-sizeout space being most similar. Sizeout distances (SIZEOUT) and the

regression method (REGRESSION) are more distantly related.
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indicates that the results of log-sizeout agree most closely with those of ratio

technique and are only distantly related to results of sizeout or regression.

SUMMARY

Six methods of shape analysis were tested, and half of them—sizeout, regres-

sion analysis, and correlation of standardized data—failed to classify iso-OTUs

correctly. Three others—correlation of log-transformed data, log-sizeout, and
ratio distance—all passed my test equally well. Even among the successful tests,

however, there are considerable differences in the estimated shape re-

lationships. Based on the data presented here, it is not possible to distinguish if

one of the three methods is more successful than the others, or if differences in

results represent different views of shape, internally consistent and equally
valid.

Having said this, I will state that my own slight preference is for the log-

sizeout methods. Correlation, even with log transformation, suffers from some

conceptual problems mentioned above. Ratios, which on the surface appear the

most satisfactory of shape indices, have been attacked as producing spurious
correlations (Atchley et al., 1976).

I believe that studies such as this one are necessary for critical judgment of

methods of shape analysis. Using iso-OTUs has proved partially successful in

giving insights into how these methods work, and sometimes fail to work.

More studies, perhaps with more sophisticated artificial OTU shape re-

lationships, are needed to continue this work.
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