CROCKER

Effect of Chloral Hydrate On the Plant Cell

BOTANY
A. M.

1903

"The Effect of Chloral Hydrate on the Plant Cell"

WILLIAM ĆROCKER, A. B. 'oz.

THESIS FOR THE DEGREE OF MASTER OF ARTS

IN THE

GRADUATE SCHOOL

OF THE

UNIVERSITY OF ILLINOIS.
1903.

UNIVERSITY OF ILLINOIS

May 29,

ENTITLED

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE
\square
OF

e

1. General.

From his study of mitosis in the epithelial cells or the salamander, Rabl concluded that chromosomes never lose their individuelity but remain distinct even in the reticulun of the resting nucleus. He thourht that the reticulun is formed by the anastamosing of project-ing bridges of the chromosomes and that these briages are later drawn in and the chromosomes hold their former position in the newly orgenized spireme.

Boveri found in his studies of the abnormalities in the ages of Ascaris that the number of chromosomes that enter into a resitng nucleus is equal to the number that reappear upon the later division of that nucleus. In cases where the two egg chromosomes were in some way senarated each formed a nucleus of one-half the size of a normal nucleus. At the following division each nucleus showed only one chromosome.

For a revien of the literature and a list of references upon the Individuality of chromosomes see Wilson (The Cell in Development and Inheritance, pp. 294-301).

Two facts bxought out in establshing the individuality or cirom mosomes especially concern us in this paper. Any portion or any excess of the number of chromosomes that normally enter into the makeup of a nucleus (if they are in some way isolated), may form a nucleus. The nucleus thus formed varies in size with the number of chromosomes that enter into its constiuction; and the number of chromosomes that 2ppear at the following division is equal to the number that entered

Digitized by the Internet Archive in 2013

into its construction.
Strasburger believes the cytonlam to consiat of a fivrillar active portion, kinoplasm, and an alveolar leas active portion, trophoplasm. The cytoplasm can differentiate an additionai anount of kinoplasm. The kinoplasm gives rise to the fibrillae of the achromatic figure and muscle fibers; constitutes the centrosomes, peripheral cell lay ar (or dermonlast), and the midde piece of spermatozoa; and Iorms the contractije vortion of cilia and fiageila. Kilopiaslo bilmgs about, in the main, the more active or motor processes of the cell, while trophoplasm is concerned mith nutrition. They are distingulshed morphologicaly and by stending reaction: kinoplasm is fibriliar and generally staincu deeply by gentian violet and from haemotorylon; While trophoplasn is alvoelar and colored unt silghty by these stains.

> II. Method of Fxperimentation.

The root tip of Vicia Fabu was used in these experimenta. considerabie time was spent in ascertaining tre concentration of the soIution and the duration of exposure that brought about abnormalities in the cell in greatest abundance, and yet left the cells and the entire root in a condition that they would contime growtr when brought back intc normal surfounaings. A two per cent. solution acting for one hour kilis the root, while a one-aighth per cent. solution acting for twelve hours brings about scarcely any aonormalこties. After considerabie experimenting I found that a one-hale per cent. solution acting for one and one-halp to three and one-half hours prodices nearly all abnormalities appearing in any of the cultures and prodices
and produces then in reiatively great abundance.
The experiments from which the results are recorded were conducted as foliows: The seeds were soaked in water twenty-forr rours, and then planted in moist sam dust. After the roots had attained a length of 5-10 cm . the beans were placed on a screen witl the roots dippling into water, and left for several hours in order that tre roots might adapt themselves to a water medium. At $10: 50$ A. M. five roots mere killed and the otiers transferred tc a one-hair per cent. ciloral hyorate solution where they remained for one and one-half hours. At this time five more were killed and the others transferred to mater to recover from the effects of the narcotic. At the expiration of every successive five hours (up to forty-five hours) five more roots were killed. We have then in each experiment a series of preparations as shown in the following taible:

No. 2 Fixed from water-normal.
No. 2 " imneriately after the action of chloral hydrate.

NO. 3	"	5	-urs	"	"	"	"	"	11
No. 4	"	10	"	"	\#	"	1	"	"
No. 5	"	15	"	"	"	"	"	"	"
No. 6	"	20	"	"	"	"	"	"	"
No. 7	"	25	"	"	"	"	"	"	11
No. 8	\because	30	${ }^{\prime \prime}$	"	"	"	"	"	"
NO. 9	\#	30	"	"	"	"	"	"	*
No. 9	"	35	11	"	*	"	"	*	"
No. 10	*	40	"	"	"	"	"	"	"
N0. 11	"	45	1	"	"	"	"	"	"

The water and the solution mere keyt at 24 C . The roots mere killed in weak chromo-acetic. The safranin gentian-violet orange G combination were used for staintng.

> III. Effects on Cytoplasm.

In many ways the effects of chloral hyarate mpon the cytojpasm and nucleus are so interrelated that the discussion of one alnost necessitates the discussion of the other in the same connection. For convenience and order, however, the effects upon the cytoplasm will be discussed first and those uyon the nucleus later.

In many sets of the preparations, tho not in 211 , peculiar masses appear in the cytoplasm. These masses are more or less spherical and non-granular. They stain $\overline{\text { gith safranin, but far less deeply than }}$ chronatin does. Three sucn masses are shown in the right of Fig. 1 and one in the left. The mass is often surrounded by a ring of varying width mhich stains less deeply than the mass. The outer boundary of this less intensely stained ring is always clearly marked by a line of deeper rea, as is show in Fig. 1 to the right. In the figure the masses as well as the surrounding ring appear granular. Ihey are really homogenous, but could not be so represented with the pen. This abnormality often shows a striking resemblance to the food vacuoles of Infusoria. Perhaps not functionally, but direly in appearance, the mass corresponds to the food particle and the surrounding more lightly stained rimg to the pood vacuole. Frequentiy several concentric rings centered by a mass appear. In such cases the rings are clearly bounded by darkly stained fibriliar lines. Often these bounding lines seem to be the succeeding coils of a spiral in-
stead of a scries of concontric circumferences. These nassea were found in No. 3 but never in Nos. 2 or 4. No. 2 citen shows a coarse granular cytopiasmic structure. The masses, then, seem to form before the roots have been out of the chlorel hydrate fivc hours and to disappear before the roots have been out ten hours.

The cells that show these masses inso show a tendency towards a coarse aiveolar structure which is well iliustrated in Fig. I. It is not infrequent to find the entire cytoplasm of cells shoming this character. Of course in these cases no inasses are present. There is some evidence that leads one to believe that this alveolar structure is directily related in its origin to the masses that apyear in the cytoplasm, and that each alveolus results from the solution or digestion of one of these nasses. If this is the case, each of the several smail alveoli in Fig. I resulted from the dissolution of a relatively small mass, and later a larger alveolus will appear as the result of the dissolution of the large mass at the right. The assumption is supucrted by the fact that only small alveoli appear in No. 3 while much larger ones are present in No. 4, and that the bounding walls of the alveoli reserable the bounding walls of the rings that surround the masses.

If this assumption is right, between the time of Nos. 2 and 3 occur the formation of the masses and the dissolution of the smaller ones forming small alveoli; while between the time of Nos. 3 and 4 the complete dissolution of the larger masses and the formation of larger alveoli. Perhaps far more conciusive evicience of the relation of the masses to the alveolit would be obtained by killing several in-
termediate stages between Nos. 2 and 3 and Nos. 3 and 4. I now have an experiment in progress to test this point.

It rust be mentioned in tris connection that the masses and pecu1iar vacuolization are entirely limited to merismatic tisauc and that they are most abundant in the most rapidiy diviaing cells. Tnis fact precludes any attempt to explain the vacuolization as a result of tre differentiation of cells.

While the origin of the alveolar structure is not certainly estavlisiled the source of the hasses is perhaps yet more doubtful. If they originate from the nucleus one would expect to find some structural evidence of it, but in no case has any such morphological connection Deen found.

Dr. Hottes in his unpublished researches on the root tip of Vicia Fabs found that high temperature (38 C.$)$ causes a great acceleration In the activities of the cell--especially in the growth of the spindle fibers--and a very marked reduction in the size of the nucleoli. If, however, the roots were suddenly transferred to a low temperature and the rate of growth thereby reduced masses appeared in the cytoplasm, fdentical in appearance and staining characters to those found in chloral hydrate. In roots grown under pressure and thereby caused to do considerable work, he again found a great reduction in the size of the nucleolt. When these noots wèe released from pressure masses similar to those described above appeared in the cytopiasm. These researches are very strong evidence in favor of Strasburger's theory that the nucleolus is a food organ, and they indicate strongly that the peculiar masses in the cytoplasm are of nucleolar origin. If

If these masses are of nucleolar origin, the gubst ance must be dissolved, carried out into the cytoplasm and then precipitaten.

It would seem that, if the masses are of nucleolar origin, those cells which slow the masses ought to possess nucleoli that are smaller than the nucleoli of normal cells. Such a relation is difficult to establish for two reasons: tie anount of nucleolar aubstance required to form the masses might be very slipht and the variation in the size of the nucleoli in normal conditions is great. I could detect no reduction in the size of tre nucleoli. This matter might, however, be viewed in quite an!other may. Perhaps growth under high temperature, under pressure, and under normal conditions each has a rate at which the nucleolar substance is used up by the activities of the cell. Perhaps also that, if in the first two cases the roots are Gudienly brought into normal conditions, the activitien of the celis and the rate of using the nucleolar matter are lowered, and the stream of food (less readily reduced in its rate) from the nucleolus is caused to precipitate instead of being used up by the activities of the cell. Cells of roots grown in normal conditions may likewise show a reduction in their activities and a precipitation of the nucleolar food material by being subjected to the intluence of chloral hydrate, a narcotic. Such a supposition, homevcr, has very meager experimental proof at present. After these masses have been produced in a greater variety of ways we can eliminate the unlike conditions and select the like and essential conditions with far greater certainty.

These masses are probably in no way related to the nebenkern
found in spermatids by Butschii, La Valette, and others, for they certainly do not originate from remains of the shindle. It seems very probable, however, that they are similar in nature to the nebenkern found in the cells of the pancreas of Anaphibia (Mathems, The Changes in Siructure of the Pancreas Cell, dournal of horphology, Vol. 15 Supplement).

As we have seen, there is evidence that this formation of masses in the cytoplasm and its vacuolization are nutritive phenomena; that 1s, effects upon the trophoplasm. There are also two very marked effects of chioral hydrate upon the kinoplasmic elent of the cytoplasm. They are the tendency to bring about a lack of coordination in the action of the spindie fibers and finally the destruction of the spindle.

It is evident that these effects wiil be shown only by those cells that are influenced by chloral hydrate when they are in division. Fig. 2, which is dram from a slide of preparation No. 5, material killed fifteen hours after the action of chloral hyarate, ghows both these effects. This cell was probabiy in division when the material was in the solution of chloral hydrate (the evidence for this will be brought out later). One-half the daughter chromosomes have been thrown to one pole in the customary way and are organizing a regular nucleus. The other half of the daughter chromosomes have been thrown to the other pole, but in two groups connected by a bridge of one or two circomosoines; and they are organizing a very irregular nucleus consisting of two larger portions connected by a narrow bridge. The material of the spindle is very evident between the
two organizing nuclei: but the individual fibers are entirely broken un. At this stage the spindle would ordinarily bave gone far towards the construction of the cell mall; but here the apindie is so badly injured that it is dovotfui whetier the cell wall will be congtmuctera at all, and certainly not in the ordinary :ray. Hig. 3 shows another cell from preparation No. 5. The spindle here has begun the formaticn cf the cell wall, but a central bridge of chronatin conrlects the two organizing nuclei. This centrel brioge of cnromatin probabiy resulted from the destruction of spindle fibers at the time they had drawn the last two chromosomes only part way to the poles. Fig. 4 shows a similar condition excenting that the wall formation has not progressed so far and the bridge of chromatin is at one side instead of central. Fig. 5 shows two masses or chromatin oryarieing nuclei, the remains of the disorganized spinole, but no sign of a cell wall. It is probable that this celi would later have contained two resting nuclei as is the case in Fig. 6. Fig. 8 represents thrce almost equal organizing nuciei in the sane cell without any sigh of a cell wall forming to separate them. This drawing was taken from preparation No. 7, material killed trenty-five hours after the action of chloral nydrate. It seems to represent a marked case of the broken coordination of the spindle fibers and the final destruction of the spindie. provably this cell would later have shown timee resting nucle1.

Figures 2 and 8, then, show both the breaking of the coordination in the action of the spindle fibers and the finel destruction of the spindie; while the other figures mentioned above show oniy some other
injury to or the destruction of the spindle. In many of the preparations there are mitotic figures in which the coordination is clearly broken while the spindle still seens to be in good condition. Fig. 7 from preparation No. 7, naterial killeu twenty-five hours aiter the action of chloral hydrate, is a striking example of this. Here the chromosomes have been thrown in three directions and a typical tripolar figure formed. The poles are of unequal size: the lower one seems to be one pole of a regular bipolar figure, while the other tro poles seem to have originated from the division of the chromosomes that would normally have formed the other pole. Such tripolar tripolar figures were not of very frequent occurence in the preparations-not more than a dozen were ever found in a single silde.

These figures were not found in material killed intlediately after the action of chloral hydrate, but first appeared in material killed fifteen hours later and were most abundant in material killed trentyfive hours later.

It seems pecuilar that the chromatin masses or Fig. F, which is from material killed tmenty-five hours after the action of chloral hydrate, have not yet begun to construct nuclei: while the chromatin masses of Figures 2-5, killed fifteen hours after the action of chloral hydrate, have progressed for in the organization of nuclei. Three explanations For the apparent slowness of the chronatin in the tripolar figures may be suggested. These cells moy have begun division some time after the roots were transferred from chloral hydrate to water, and theceby may have been influenced in its division by a concentration of chloral hydrate much below one-half per cent. due to
its diffusion thru the water. In this case we must assume that the 10π percentages broke the coordination of the spindle fibers without otherwise seriously injuring the spindie. If this supposition is true lower percentages of chlor il hyrdrate ought to produce tripolar figures with the spindles in good condition. A series of experinents With 10π percentages acting for different durations of time produced no sucin effects; hence this supposition seens invalid. It may be that cells as represented in Fig. ? were in division when the roots mere in chloral hydrate, but that the chromatin was exceptionally slow about organizing nuclei. It is peculiar, however, that a cell so sturdy in one resuect-as is indicated by the condition of the spinale-is so siow in its functioning in another. It might again be supposed that the cytoplasm retained the effect of the chloral hydrate and that this retained effect was sufficient to destroy the coordination of the spindle fiberz without otherwise seriously injuring the spindie. This supposition seems to agree best with the data. Often when the figure is bipolar the chromosomes are distributed very unequally to the two poles. This is probably the explanation of the marked difference in the size of the two nuclei in eack of the cella of F1g. 9.

Hertwig, Galiotil, and others have producei asymuetrical mitosis by the use of poisins and other chemicel substances (quinine, chioral, nicotine, etc.). Klebs, Hausemann and Caliotti have demonstrated its frequent occurrence in abnormal growths, such as cancers and tumors. Galiotiti produced asymetrical figures in the epithelium of the salanamer uy the use of cocaine, antevyrin, and quinine. In all
these cases of asymatry both bipolar figures with poles of unequal size and multipolar figures were found along with a greater nuriber of symmetrical figures.

Lustig and Galiotit noticed that the unequal distribution of the chromatin is always accompanied by inequality of the centrosomes, Which in turn produce unequal amphiasters. They concluded from this that the unequal division of the centrosome is probably the cause of the unequal distribution of the chromatin. Winson believes that the tripolar figure is formed by one of the two centrosomes dividing and thereby forming three amphiasters instead of two and that quacripolar figures are fomad by botin centrosomes dividing and forming four amphiasters. Whatever value this explanation may have for cells that posess centrosomes, it certainly can not hold for forms in which there is no evidence of the existence of centrosomes, as is the case in Vicie.

For a review and list or the literature on asymetrical and pathological mitosis see Wilson (The cell in Development and Inheritance, pp. 97-99).
IV. Effects on the Nucleus.

It is evident that the two effects upon the kinoplash which were just discussed bring out peculiar modifications of the nucleus and naturally lead up to the discussion of the effects on the latter. Before discussing the effects upon the nuclers, however, we must review an article recentiy published by Waldemar V. Wasielemski (Theoritische und Experinentalle Beitrage zur Kemtniss der Araitosis, Jahroúcher f. wiss. Botan., Bd. XXXVIII, Heft 3, pp. 377-420) in which he claims to
have produced anitosis in tile root tip of Vicia Faisa by the use of chlorel hydrate. At the time his paper appeared I had almost completed my researches and had arrived at essentially my present conclusions so far as the features discussed by Waslelewski are concerned. After a rather extended review of the historical and theoretical features of the knowledge of amitosis he takes uik the discussion of his researches. He mentions that he started out in his experiments Witin vesy definite aims; first to find a means of producing, in abur.dance and with certainty, amitosis in the embryonic tissue of flowering plants (root tip of Vicia Fabe); then to study the behavior of the nucleus and cytoplasm in this process.

Following the suggestion of Nathansohn's work on Spirogyra (Physiologische Untersuchungen über amitotische Kerntheinung, Juhrb. f. wiss. Botan. Bd. 35) he sought to accomplish his ains oy the use of ether, but after considerable variation in the concentration of the solution and duration of exposure he was unsuccessful. Still believing that the results of Nathansonn were due to narcotic action, he tumied to chlorals ald here met with success. After considerable experinenting he round that a one-hair per cent. chioral hydrate solution acting for one hour produced abundant amiotic divisions, if the roots were then washed in flowing mater for one hour and afterwards grown in sawdust for twenty-four hours.

He says that the first sigm of omytosis is the doubling of the nucleolus. He describes this doubling as taking place in a typicai manner: the nucleolus becomes considerably elongated, is later restricted at the equator, and finally cut into two daughter nucleoli.

Before the division of the nucleus 18 completed the daughter imeleoll often begin a second division. In only one case did he find the second division taking place simultaneously with the first. By what he took to be an unbiased count he found that 22.9 per cent. of the cells in the tip of a normplly grown root showed double nucleoli: While 25.9 per cent. of the celis of roots exposed to one-half per. cent. chloral hydrate for one hour and then put in flowing water for one hour showed double nucleoli. He describes the doubling of the nucleolus as half completing the amitotic division of the nucleus.

Aside from the douvitng of the nucleoius and a sliggit elongetion of the nucleus an amitotically dividing nucleus is not at first unlike an ordinary resting nucleus. After these two inttiative steps the reticulun begins to divice, generally into two equal parts, tho sometimes into parts of very different size. In this comection he nanes and describes two sorts of direct nuclear division. One he terms diaspase (distraction) of the nucleus. This, he points out, ± 3 found in saccharomycetes and Valonia and begins, after the division of the nucleolus, with the nuclear substance traveling to opposite
 nuclei by the gradual narrowing of the restricted boundary. He emphasizes the fact that the nucleolus and nuclear reticulum are active in this process, while the nuclear membrane is comparatively inactive. He terms the other sort of direct division diatmese (diasection) of the nucleus and cites as an example the internocal cells of chara. He characterizes it as being marked by great activity or the nucleolus and the nuclear membrane, which cuts the nucleus in two, and compara-
tive inactivity of tine mucleas xeticulun. In the dimect aivision of Spirogyra Nathansohn noticed that the nucleus is divided by a deevening restriction that extends entirely around it. In his researches Wasielewski observed that the restriction is a half ring. He describes it as a modification of diatmese of the mucleus and thints it the only form of direct division existing in his preparations. He mentions the difficulty of explaining why the nucleolus and nuclear membrane, which are normally inactive during division, becone very active under the influence of chloral hydrate; while the nuclear reticulum, normaliy active in division, become inactive under the same influence.

Schmitz and Fairchild described a peculiar sort of mitosis in Valonia. The nucleolus dissolves; and chromosomes are formed but they do not split longituainaliy. The nuclear substance, enclosed in the sac-like nuclear memorane, now moves towaras owrosite noles and forms a dumb-bell-shaped mass mhich finally separates into daughter nuclei. Wasielewski tems this hemimitosis. Beginning with a sort of division that shows great activity of the macleolus and nuciear mernorene but inactivity of the nuclear reticuiun, he believes we can pass step by step to $\&$ sort of division that shows inactivity of the nucleolus and muclear membrane but great activity of the nuclear reticulum. He mentions the stages: diatmese, diaspase, hemimitosis, mitosis. He claims to finc forms which resemble the peculiar mitosis in Valonia and which are intemmediate between his diatmese and mitosis.

He noticed that amitotically dividing celis are very slow about building their walls. Considerable time elapses between the completed
division of the nucleus and the beginning of the cell wall. This he believes explains the existence in the preporations of many binuclear celis such as seen in Fig. 9. Indeed the wall formation is often delayed so long that the two nuclei begin a second division (mitotic, however, now) without any sign of a wall separating them (see Fig.10). He describes this as daughter division beginning before the mother division has completed itself, and believes that the delayed wall will finally be built. If this wall were not built the inner poles of the two mitotic figures in Fig. 10 would form a binuclear celi. This would reappear after every successive division and persist thruout. He found no binuclear callz in material killed fitty-five hours after the action of chloral inydrate.

The cell wall, he found, is cenerally built between the tmo nuclei. Occasionaliy, however, it is started at the same side of both nuclei, but in such cases is never completed. In older cells which do not contain sufficient cytopiasn to fill tie entire lumen of a cell, a bridge of cytoplasm stretches entirely across the cell between the nuciei. The wall is built alcng this bridge of cytoplasm: sometimes at one border of the brdige; somotimes centrally thru its mass. Often the muclei are near the place of wall construction, tho not aiways; and the wail is often piaced in a cleft of the cytoplasn, tho frequently not. He notes that the wall begins on one border of the cell and bullds across as agrowing half ring; and puts great stress upon the fact that it resembles the method in lowly organized plants where the wall begins as a ring on the entire periphery and continues its growth by aditions to the inner edge of this ring.

Botr emitosis and this peculiar wall lomation he believes to be atavic characters brought on by the influence of the narcotic. He thinks: the narcotic pushes the cell back mvriads of generations in a few minutea; effacea those characters latest acquired, sucis as mitosis; and bxings into appearance the prinitive ones. He compares this to the effect of an anasthetic on man. Under its influence those characters latest acquired, such as consciousness, fade away first; but the deeper-founded constitutional characters are the last to succumb.

He then asks the question: can a nucleus that has divided amitotically later divide mitotically? and answexs it in the affirmative. After working out two almost metaphysical reasons for this answer, he then gives what he considem conclusive evidence. The amitotically divicei nuciei can, he velieves, be distinguished fron those of mitotic formation by the delay in building the wall. He finds the nuclei, which are thus distinguished as of amitotic origin, later dividing mitoticaliy (see Fig. 20). He was in no case able to totainy suppress mitotic division and have present only anitosis.

In his cultures he used one-half or three-fourths per cent. solution, acting for one sour. His list of cultures are:

No. I killed immediately aftex the action of chloral hydrate.

No. 2	"		ur	"	"	"	"	"	"
No. 3	"	3	\#	"	"	"	"	"	"
NO. 4	"	7	17	"	*	"	*	"	"
No. 5	"	25	*	"	"	"	"	"	"
No. 6	"	31	"	*	"	"	"	"	"

No. 7 kllied 48 hours after the action of chloral hydrate. NO. 8 " 55 " " " " "

He found amitosis (diatmese) first appearing in No. 4; most abundant in No. 5; and last present in No. 7. The abundance of anitcals, he notes, forms a very remlar curve with the maximum in material Killed twenty-four hours after the action of chlorsi hydrete.

While he found bimuclean cells in abundence he in no case found cells containing more than two nuclei.

There is one other point brought out in his paper, which we must mention, before beginning a discussion of the articie. He noticed many nuclei of very irregular form (see figures 11 and 12). These nuclei as well as the cells that contain them are much larger than the surrounding ones. Often, too, there are three or forr nucleoly in each nucleus. He was unable to give the significance of the large size of the nucleus and cell or of the numerous nucleoli. He believes, however, thet in part, at least, the irregularities of the nucleus are due to amoeboid movements. He mentions this tendency towards amoeboid movements as another effect of chloral hydrate upon the mucleus.

Nearly all abnormalities of the mucleus mentioned in wasielewski's article were found in preparations similarly treated; but there mere many forms found in mine which he makes do nention of and whics lead me to quite a different interpretation of stmactures he explains as amitotic. Many of these structures appear in preparations corresponding to which he has none, for example, material killed fifteen hours aiter the action of chloral hydrate.

In my original cultures I had only three preparations: material killed immedtately after the action of chloral hydrate, material killed five hours latex, and material killerl twenty-four hours later. In material killed twenty-four hours after the action of chloral hydrate I was struck by the abundance of forms resembing Fig. 13-Waslelewski's typical diatmese of the nucleus. I at first interpreted these as amitosis, but sought to make this sure by finding the gene sis and fate of the forms. To this end I began conducting iny experiments as sinown in tise table given early in this paper. I found in material killed five and ten hours after the action of chloral hydrate many forms like Fig. 14, and in material killed fifteen hours after this action numerous forms like Figures 3, 4 and 5. It is evident that when the chromatin mass of Fig. 24 organizes a resting mucleus, this nucleus will show a considerable indentation on one side not unlike that shown by the reating nucleus of Fig. 13. The same is true of the chromatin mass of Fig. 4 which is already well started with the nuclear formation. Again ifind, occasionaliy in preparations killed twenty-five hours after the action of chloral hydrate and frequently in prenarations kilied twenty hours arter this action, forms like Fig. 16. This is clearly one of the nuclei Which Wasielewski describes as dividing amitotically (by diatmese) in the spireme stage of mitotic division. When ccmpared with the nuclei of the small cell of Fig. 18 or the mononuclear celi of Fig. 17 , we see that the nuclei of Figures 13 and 16 are or about double size.

These facts susgest, at least, an explanation--differing radicalIy from Wasielemski's both as to origin and fate of the structures-
for nuciear forms ilke ing. i3. The spindle of Pig. 14 was ruourbiy In the act of pulling the chromosomes to the poles when affected by the chloral hydrate. The narcotic broke up the coordination of the soindle fibers and the simultaneous movenent of the chromnomes to the poles, and finaliy lead to the destruction of the spindie. As a rosuit of the broken coordination and final destruction of the suindie a lateral bridge of chromatin connects the two larger masses that have been dram to the poles. Such forms as rig. 23 , then, do not result directly from the effect of chloral hydrate upon the nucleus but indirectly fron the efrects of chlorial hyarate unon the kinoplasmic element (spindle) of the cytoplasm. These elfects we have discussed In the early part of the paper. It is evident that the number of chromosomes entering into the constmation of sucin nuclei as that of Fig. 13 is the mumber that would normally construct two nuclei. in accordance with the features of the individuality of chromosomes discussed in the early part of this paper these nuclei are about double the size of normal nuclei. For convenience tiey will be termed giant nuclei.

My ureparations lead ne to beileve that binuclear celis, also, originate from the destruction of the spindie. In preparations killed five and t en hours after the action of chloral hydrate many cells are found in which the chromatin masses are thrown to opoosite poles with the disorganized spindle mass between them, but no sign of a cell mall. In preparations kilied fifteen hours after the action of cillorai hydrate many forms like fig. 5 appear. In these the chromatin masses have already begun the organization of nuclei. Here, toc, the aisor-
ganized spindle mass is still prosert. In Fig. 6, material killed twenty-five hours after the action of chloral nydrate, the reating nuclei are formed and the spindle has almost entirely disappeared. Fig. 10, material killed thirty-five sours after the action of chloral hydrate, shows the two nuclei of a binuclear cell in division. Very often such bimuclear cells show the woll partly built as is the case in the cells of Fig. 9. These, I beileve, are identicai With the partly built walls recortco by Wasielemski, but of course he could not interpret them as being built by the spindle and yet maintain the amitotic origin of the two miclei. My preparations have led me to believe, however, that all partiaily buiit malls that Wasielewski reports are built by the spindle in the ordinary way before its destruction, and that they are never completed. Wasielewski fails to see the comection of these nartially built walls with the spindle, because he takez only end products, that is, obsenvez the forms after the resting nuclei are fully organized and the remnants of the suindle have disappeared. In Fig. 3 we find that, altho the chromosomes were not all pulled apart, the wall had progressed far in its construction before the spindle was destroyed. Here, toc, contrary to Wasielewsil's idea, the cell wali is first constructed in the central part of the cell. I found a number of binuclear cells already in mitotic division which showed the cell wall between them only partially built. Wasielemski has little if any evidence that such a wall will ever be entirely built and he has still less evidence that his "incomplete mother division" will ever be completed by the building of the lacking wall. Contrary to his observations, I found binuclear
cells in the old specialized tissue of the root in material lilled sixty-five hours after the action of chlors hydrate. This indicates that his "incompletemothen division" has not yet been completed. It is my velief that bimuciear celis originate from tie destruction of the spindle before the wall is even yartly constructed.
(It must be stated in this connection that neculiar wall formations, not at all to be comectad witr these just discussed, are found in many of my preparations. I am at present mable to explain their signiricance. I have material in preparation to ciear this point.)

My preparations indicate again that Wasielewski's large irregular nuclei (Figures 11 and 12) are produced by the broken coordination of the spindie fibers and the rinal destruction of the spindie. In such cases only a few of the chromosones are throw out from the mother aster in 2 scattered manner, when the destruction of the spindle occurs. Since such nuclei contain the chrowosomes that ordinarily form two nuciei they are doubie normal size. If the spindie is destroyed before any chromosomes have been drawn from the mother aster a regu10r giant nuclei will be formed. I believe the Iarge nucleus of fig. 18 has orlfinated thus.

Wasielewski mentions that he failed to produce similar ebnormalties of the nucleus by the use or ether. Dr. Hottes 111 lis unpublished researches reports similar forms produced by a ten per cent. ether sølution.

Contrary to Waslelewski's results I found rany trinuclear and a very few quadrinuclear cells (Figures 8 and 17). We have already ex-
plained that these originate by the spindle fibers throwing tre chromosomes in three or four different directions, forming as many distinct grouns of chromatin. The average size of such nuclei is, too, It must be noted, approximately inversely as the mumber. This agrees With the features of the individuality of chromosomes already aiscussed. Notice that the inclei of the large cell of fig. I' average about half the size of normal nuclei.

Wasielerski has emphasized the doubling of the nucleoli as evidence of amitosis. Such a relation ishard to establish, because of the great $v a r i a t i o n i n t h i s ~ r e s p e c t ~ e v e n ~ i n ~ n o m a l ~ m a t e r i a l . ~ I ~ c o n-~$ nect the frammentation of the micleoli with nutritive processes (agreeing witin Strasburgex's theory of the function of the maleolus), rather than \quad ith division.

Nathansonn, in an articie alreany cited, ciains to have produced amitosis in Spirogyra. His arguments are ably answered in an article by Häcker (Mitosen in Gefolge amitosenähnlicher Vorgänge, Anatomischer Anzeiger 1 Jamar 1000 Bd XVII), and by forthcoming works of Dr . Hottes. Hacker terns the distorted mitosis which we nave aescribed as pseudoamitosis and maintains thet it ias no other meaning than a distortion of the karyokenetic process by interference with ita delicate machinery.

> V. Hethods Used by Wasielewski.

Sone very serious faults may be urged against Wasielemsk's method of research--Iuuits whicn undouvtediy go far in leading him to misinterpret these abnormalities of the nucleus.

1. He startea out with the intention of bringing about a certain
reault--amitosis. Under the influence of this aim anything that had the appearance of amitosis seemed to be interpreted as such without a scrutinizing test to see if it could be interpreted otrervise.
2. He tock, alnost entlrely, end products-material kilied trentyfour hours after the action of chloral hyarate.
3. He failed to make preparations that would show the genesis of these end products-material killed fifteen hours after the action of chloral hydrate.
4. Finaliy he ignored or puiled to see romas that would cieariy show the fate of these products (especially his diatmese of the nu-cleus)-spireme stages as shown in Figures 16 and 20.
VI. Weakness of the Hypothesis of Anitosis.

The hypothesis--that these abnomalities of the nuclens are due to amitosis-shows some very weak points:

1. It assumes a thing which Wasielemski acknowledged is peculiar and which, it seers, is highly improbable: "Wie es kommt, dass die Chloraivenendiung bei einem Tneil des Kernes, der Gerüst, eine inactivirende, Iünnende Wirkung hat (indem die hier sonst eintretenden Substanzsonderungen und-verschiebungen unterbleiben), bei anderen Theilen dagegen (Nucleolus und Kemmembran) eine activirende, er"egende Wirkung (indem wir hier sonst nicht auftretende Bewecung sich vollziehen schen), wissen wir nicht."
2. It gives $n 0$ expiamation for forms like those shown in Figures $2,3,4,5,7,8$, and 14.
3. It again breaks down in the presence of forms like figures 16 and 20.
4. It is an attempt, in short, to explain, in a very aarot way and In a way disagreeing with many of the facts available, a matter that can we explaineù mucr more simply and in a way according with all facts at hand.

VII. Conclusions.

1. Chloral isrirate brings about the demosition of certain nasses In the cytoplasm.
2. These masses may be of nucleolar origin and they may be caused by the chloral hydrate lowering the cytoplamic activities without greatly reducing the food current from the nucleolus.
3. The chloral hydrate breaks up the coordination in the action of the spindle fibers and finglly destroys the spindie.
4. Many abnormal nuclear structures--nolynuclear cells, irregular giant nuclei, regular giant nuclei, and nuclei mhich Wasielewski describes as dividing by diatmese-result from the effects mentioned in (3).
5. The retained effects of the chioral hyarate often break up the coordination of the spindle fibers without destroying the windle, thereby producing tripolar figures with the spindie in good condition.

