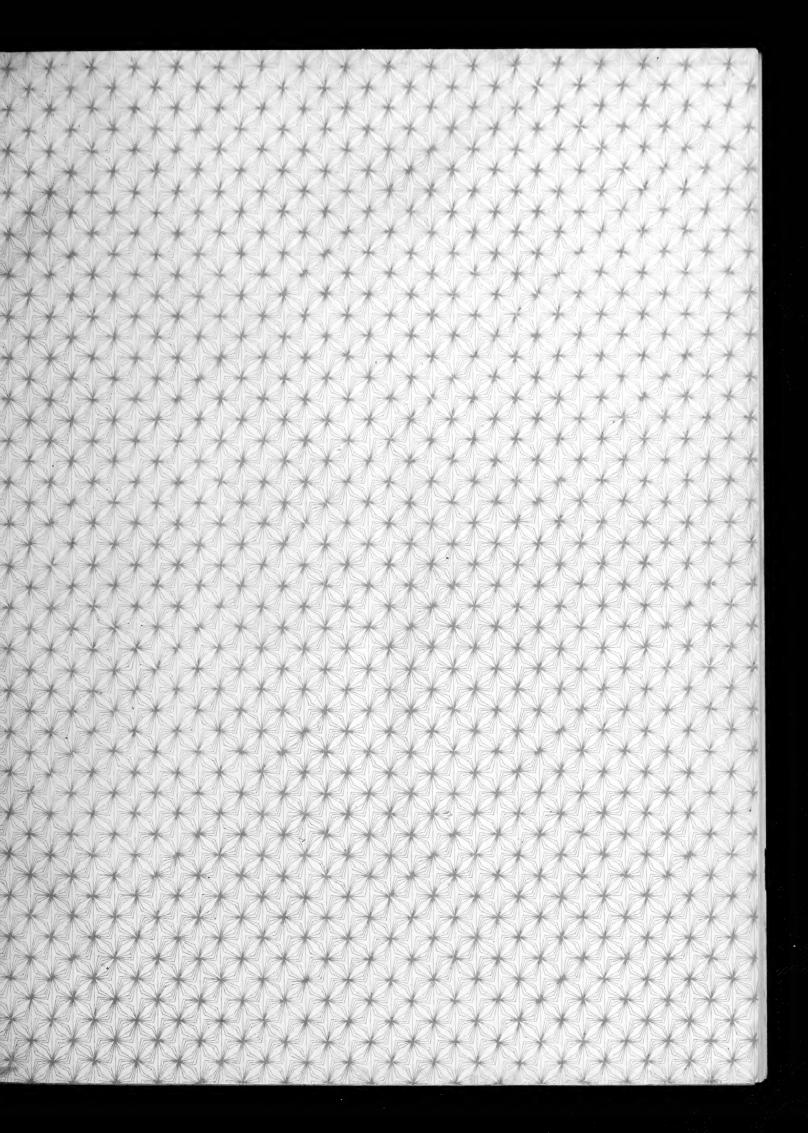
MERRILL

The Effect of Fertility on the Transpiration of the Oat Plant

UNIVERSITY OF ILLINOIS LIBRARY

Class 1908 Book M55


Volume

12/14-

My 08-15M

No.

e á

THE EFFECT OF FERTILITY ON THE TRANSPIRATION OF THE OAT PLANT

BY

AMOS NEWLOVE MERRILL, B.S. (AGR. COLLEGE OF UTAH '96)

THESIS

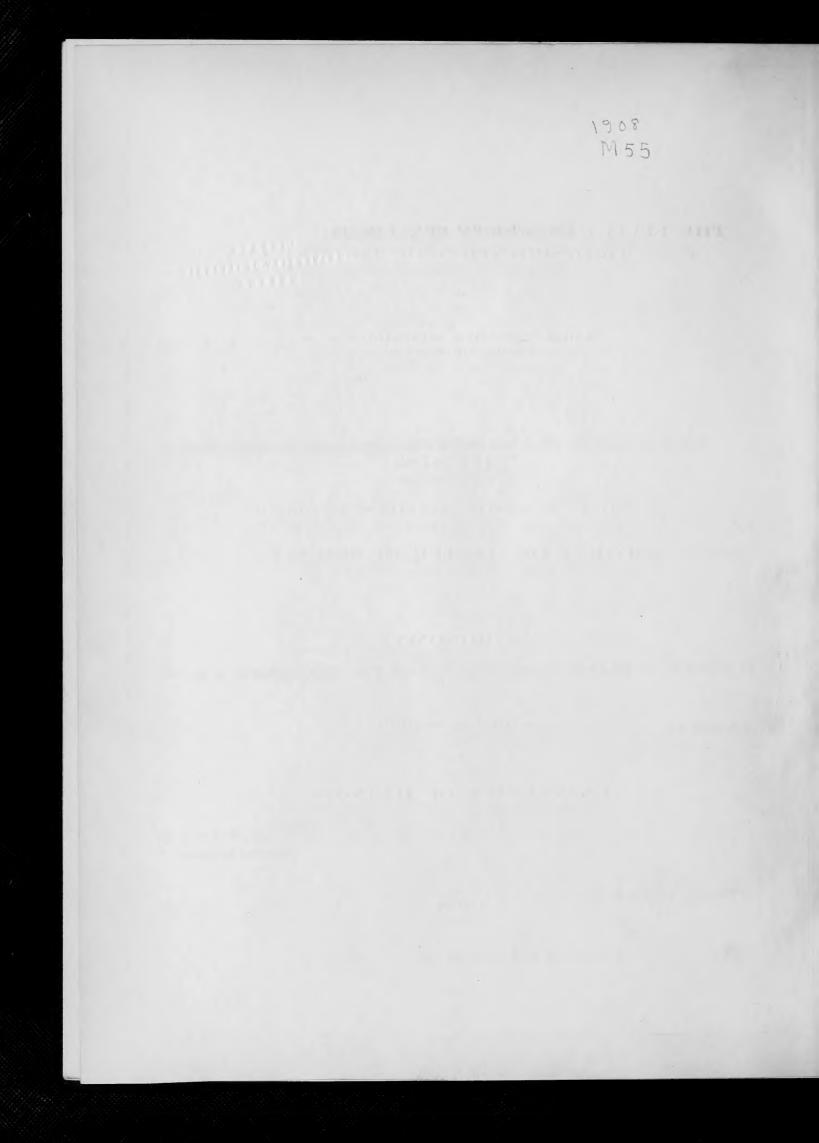
of the requirements

SUBMITTED IN PARTIAL FULFILLMENT FOR THE

DEGREE OF MASTER OF SCIENCE

IN

AGRONOMY


IN THE

GRADUATE SCHOOL

OF THE

UNIVERSITY OF ILLINOIS

1

00-

DINUTING

1908 MSS

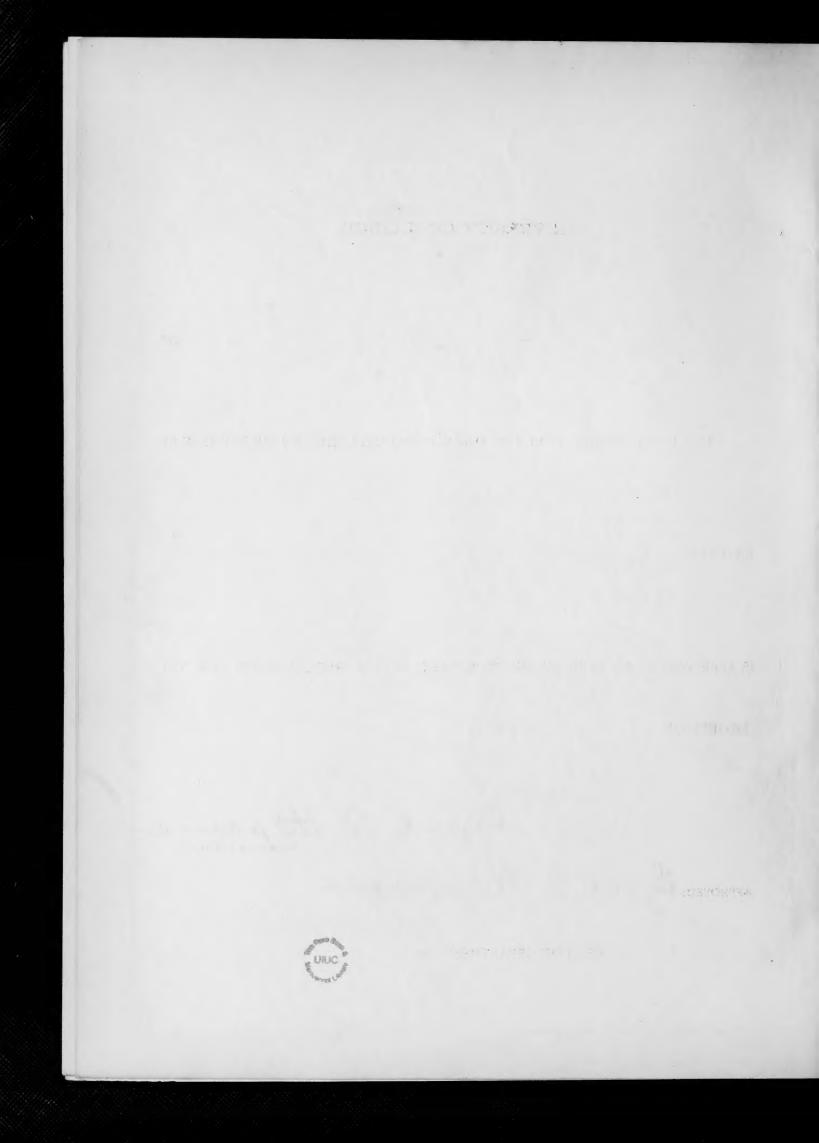
UNIVERSITY OF ILLINOIS

June 1, 190 8

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Amos Newlove Merrill

ENTITLED The Effect of Fertility on the Transpiration of the


Oat Plant.

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE

DEGREE OF Master of Science

APPROVED: Cyril G. Hopkins Instructor in Charge.

HEAD OF DEPARTMENT OF Agronomy

Table of Contents.

Part I

Part 1	Deee
Introduction	Page
Escape of Water from Soils	1
Influence of Fertilizers on the Evaporation of Water from the Soil	2
Influence of Soil Humidity on the Rate of Evaporation	6
Effect of Fertilizers on Transpiration	n 6
Influence of Soil Moisture on the Transpiration of Plants	18
Influence of Soil Moisture on Yield	20
Summary	24

Part II

Introduction	25
History of the Soil	25
Analysis of the Soil	28
Fertilizers Used	30
General Plan	32
Seeding	35
Results of the Experiment	38
Conclusions	50
Literature Cited	53
Appendix	56
Explanation of Plates	57
Plates	58
Explanation of Tables	73
Tables	74

Part I

REVIEW OF LITERATURE

The Effect of Soil Fertility

on the

Transpiration of the Oat Plant.

Introduction.

In the arid and semi-arid regions of America, effort is being made to find out ways and means of conserving in the soils of the tillable areas the largest possible amount of water that falls in the form of rain and snow.

The experimentation described and discussed in this thesis was undertaken with the intention of collecting additional data that would be of value in the solution of this problem.

The writer is indebted to Dr. Cyril G. Hopkins, under whose direction the work was carried on, for the many helpful suggestions he has given, and to others who, in minor ways, assisted in working out the experiment.

Escape of Water from Soils.

All water that finds its way to a soil that is producing crops leaves that soil in three ways, namely, by drainage, by evaporation from the surface of the soil, and by transpiration of the plants. It is very evident that the greater part of this water must escape from the soil if a water-logged condition is to be avoided. It is equally important, however, that the time, rate, and manner of escape should, so far spossible, be under control.

-1-

Influence of Fertilizers On the Evaporation of Water from the Soil.

W. H. Beal of the United States Department of Agriculture says: "The belief is common that the moisture conditions of soils may be materially modified by the use of appropriate fertilizers, more especially the application of common salt. It is claimed that, by the use of such substances, the power of the soil to collect and retain moisture can be increased to such an extent as to make this means of controlling the water supply of the soil of practical utility."

J. T. Willard³⁹ of the Kansas Experiment Station applied in pot experiments potassium chloride, super-phosphate, potassium sulphate, sodium chloride, magnesium chloride, kainite, and carnallite at the rate of 904 pounds per acre, lime at the rate of 12 bushels per acre, and barnyard manure at the rate of 28 tons per acre; and in plot experiments kainite, magnesium chloride, super-phosphate, potassium chloride, sodium chloride, plaster of paris, potassium sulphate, potassium nitrate, sodium nitrate, and ammonium sulphate at the rate of 500 pounds per acre; lime and unleached ashes at the rate of 2000 pounds per acre, leaf mold and barnyard manure at the rate of 40,000 pounds per acre.

The evaporation from the pots was ascertained by weighing daily for 100 days, and in the plot experiment, by sampling twice a week from October 19 to November 2. In consideration of the data obtained the author concludes that "Experiments with soil in pots, tried under the most rigid conditions available, showed that the rate of evaporation of water from soils is not sensibly affected by the addition to the soil of relatively large amounts of the substances ordinarily used as fertilizers, nor by certain others. Experiments with outdoor

-2-

plots, where both evaporation and drainage came into play, showed no decided effect from the fertilizers, except with the plots to which unleached ashes were applied, which lost water more rapidly than any of the others."

Wollny, a German investigator, from a number of years' experiments with the various kinds of salts used by the Kansas station, concluded that the application of the soluble salts increased the water supply of the soil and lessoned the amount of water transpired by the plants, but in his opinion, the plants received no benefit from the increase of soil moisture as the salts stimulated the growth and a corresponding demand for water which in some cases, at least, is more than the soil actually gains. He suggests, also, that in dry seasons the soil water may become so concentrated by evaporation as to partially or completely prevent the taking up of water by the roots of the plants. It appears, therefore, that the benefits which, on theoretical grounds, would be expected from the saving of the moisture are not, as a rule, realized in practice.

M. Mäercker placed in vegetative pots soil already rich in potassium salts. Before growing his plants, more potassium salts were added. The pots were now placed in the greenhouse and the plants allowed to develop. From his experiment, he concluded that the beneficial effects of these fertilizers, under such conditions, was without doubt, due to the conservation of meisture in the soil, and that the action was not only confined to the soil, but extended to the plant as well. As it becomes rich in salts, it is less subject to the loss of water by transpiration.

Von Seelhorst, in 1900, confirmed the resultsof the majority of those who have investigated this question. He found that pots which were not treated with fertilizers lost water more rapidly than those

-3-

which were treated, and that potassium and nitrogen fertilizers had a more retarding effect upon evaporation than phosphorus. Indeed, the effect of phosphorus fertilizer is very little. Under field conditions, nitrogen caused the plants to make a rank growth and, as a result, the soil was left in a more exhausted condition than when nitrogen was not applied. When potassium and phosphorus were added this effect was not noticed. To this conclusion Hollring and Kravkov add the weight of their investigations.

In this connection, however, it will be well to bear in mind that while nitrogenous manures accelerate the development of the parts above ground, at the same time, according to E. Gain,⁴, it stimulates the development of roots as well and thus enables the plants to draw water from the subsoil; and also the conclusion that King⁷ of Wisconsin drew from his experiments. He found that the capillary movement of moisture upward was 22.84 per cent greater under the influence of .08 per cent of potassium nitrate than it was under the influence of distilled water.

The writer just cited, about 1892, began to investigate the effect of barnyard manure on the water in the soil. He found that heavy applications of barnyard manure disturbed, for a few months, the upward flow of capillary water and allowed the surface soil to become dryer than when manure was not added. From several years'experiments, however, he found that the manure had but little effect on the amount of water retained in the first six feet of soil; but the amount in the first three feet was 34.41 tons per acre, or 1.09 per cent greater than was found in soils not manured.

From the fact that the manure had the effect of concentrating the moisture in the first three feet of soil lead to the belief that, possibly, the evaporation from the manuredscil would be greater. To test this, he sank two cylinders 18 inches in diameter and 42

-4-

inches deep into the soil of the field plots and in each of these he placed about 600 pounds of soil. These were treated in every respect the same, save that in one just 6 inches from the surface a one-inch layer of manure was placed and 5 inches of soil placed on it. At the end of 105 days by actual weight he found that the manured cylinder of soil had lost by evaporation 4.98 pounds per square foot more than the unmanured cylinder. This amounted to 108.5 tons per acre. Yet, in spite of this loss, the manured soil produced a far larger amount of corn than the unmanured, and at harvest time was only a fraction of one per cent dryer.

In another experiment the wetting of the surface of sand with leachings from barnyard manure decreased the rate at which water was lifted 16 inches, and evaporated from the surface 49.65 per cent.

M. Whitney of the Maryland Experiment Station offers this explanation in accounting for the effect of fertilizers on soil moisture:

"There is little doubt that the surface tension of soil moisture is very low, much lower than that of pure water. Salt and kainite, on the other hand, increases the surface tension of water very considerably and raises it far above that of the soil extract. This probably explains the fact which has been often commented on, that an application of salt or kainite tends to keep the soil more moist. By increasing the surface tension of soil moisture they increase the power the soil has of drawing water up from below in a dry season. Ammonia and urine lower the surface tension of water considerably of soil extract, and far below that below that of pure water. This, probably, also explains another common observation that the injudicious use of excessive quantities of organic matter is liable to 'burn out' a soil in a dry season, because, by reducing the surface tension, water can less rapidly be drawn up from below."

-5-

Influence of Soil Humidity on the Rate of Evaporation.

From the data obtained in extended field investigations under a system of irrigation where the amount of water applied to the plots was accurately measured, Dr. Widtsoe of the Utah Station formulated the following law:

"The rate of loss of water from soils varies directly with the initial per cent of moisture in the soil."

Dr. Livingston of the Carnegie Institute, in his studies on the water relations of the desert plants, had occasion to investigate this same subject. The following table is taken from data published by him.

Percent of Soil Moisture.	Loss in Grams.
10	6.95
20	12.62
30	17.69
40	19.58

In connection with the total loss of water by evaporation, he determined, also, the rate of evaporation at the beginning and at the end of his experiment. The soil with a 10 percent moisture content lost water very fast at the beginning but at the end of the experiment the evaporation was very little. The soil with the 20 pér cent of moisture was quite uniform but grew gradually feebler, while the soils with the 30 and 40 per cents of moisture lost almost the same at the end of the experiment as at the beginning.

Effect of Fertilizers on Transpiration.

Those who have worked on this question have grown plants, either in distilled water to which known quantities of plant food elements have been added, or in a soil substratum which had been fertilized with weighed quantities of the fertilizers to be tested. In some in-

stances, sterile sand has been used and in others poor soil.

In 1894 R. Heinrich⁶ carried on some investigations to test the transpiration of the oat plant in water culture, the solution containing varying amounts of plant food elements. The solution was formed according to the following formula:

4 H₂ KPOg + CaCl₂ + 5 Ca (NO_3) + 2 Mg SO₄ + 2 Fe [#] His results are shown in the following table:

Strength of Sol.% Total dry matter Amt. of H2O for l g.dry

		substance
3	134	515
1	74	550
15	44	684
.25	28	688
.1	18	629

With the exception of the .l percent solution, it will be observed that as the concentration increased, the amount of water transpiredfor the production of one gram of dry substance decreased.

In the same article, the author points out that the amount of transpiration of the oat plant varies, not only with the concentration of the nutrient media, but with the humidity of the atmosphere as well. Thus in a constantly humid atmosphere the oat plant transpired 102 grams of water for each gram of dry substance while in a dry atmosphere, the water required was 618 grams.

In 1899 A. Pagnoul²¹ of France conducted transpiration experiments to determine the effect of fertilizers on the rate of transpiration. He divided his pots into two series, one containing poor clay without fertilizers, and the other rich calcareous soil fertilized with nitrate of potassium and dried blood. The water content of the pots was kept constant and the same. From March 30 to June 21 fescue grass was grown. On May 2, 27, and June 21 the grass was cut, dried, and weighed with the following results:

-7-

Probably the chloride.

Water transpired for one gram dry substance

	Poor Soil	Good Soil
First period 33 days	1190	55 5
Second period 26 days	1053	581
Third period 27 days	1084	585

The analysis of the plant showed that for each gram of nitrogen stored 46 killograms of water were transpired from the plants in the poor soil while only one killogram[#] was required for the production of one gram of nitrogen when the plants were grown in the good soil.

Deherain obtained similar results, but in a different way, and with different plants. For his experiment he put into each of five pots 60 killograms of exhausted soil. These pots were kept out of doors and irrigated as required with rain water. The amount that drained through was collected, measured, and analyzed. The difference between this amount and the amount applied was supposed to represent the amount that passed through the plants. He considered that the amount which evaporated from the soil could be neglected without affecting very seriously his results, so no check pots were kept. Raygras^{##} was grown the first year and clover the second year of the experiment.

The difference seems to be too great.
Arrhenaterum elatius.

-8-

The following table gives a summary of his results:

Ra	V	Er.	r	a	S	
----	---	-----	---	---	---	--

1890 Treat-	Pot No.	Wat.added 4/7 to 9/7	Drainage 4/7 to 9/7		Per pot	Per na.	101 : 5.
ment		C . C .	C • C •	C . C .	g.	kg.	drv sub. c.c.
Manure	1	37770	9400	28370	45	2700	630
Poor	2	37770	11140	26630	39	2340	683
soil							
Art.fert	. 3	37770	10650	27120	102	6120	266
Manure leach.	4	37770	9900	27870	64	3840	436
Manure leach.& art.fert	5	37770	8580	29190	65	3900	449
1891					Clove	r	
Manure	l	37770	9068	28702	89	5340	322
Poor soil	2	37770	8140	29630	65	3900	456
Art.fert	. 3	37770	9050	28720	72	4320	399
Art.fert	. 4	37770	12410	25360	99	5940	256
Manure leach.& art.fert	5	37770	11920	25850	95	5700	272

From the table just given we find first, that, with one exception, the plants grown in the pots to which fertilizers were added used considerably less water than the check pot. The exception occurs the first year in pot No.l. This probably is due to the fact that the manure did not become thoroughly incorporated with the soil for some time and thus its influence was not felt until the second year. Second, the various fertilizers exerted a very different influence on the amount of water used by the plants. Third, there was considerable difference in the amount of water used by the grass and the clover in the production of one gram of dry substance.

-9-

Deherain's[#] conclusion from his own experiment was to the effect that the plantsin the fertilized soil required less water for the production of one gram of dry substance than the plants growing in the unfertilized soil, the amounts being, for the fertilized soil, 250 to 300 grams and the unfertilized soil 450 to 600 grams for every gram of dry matter produced.

The results obtained by King (8) of Wisconsin substantiate, in general, the statement made concerning the amounts of water required by different crops.

The following table gives the results he obtained from a number of trials with various crops:

Crops	No. of trials	Lbs. water for 1 lb. dry sub.
Dent corn	4	309.84
Red clover	3	452.80
Barley	3	392.89
Oats	5	557.34
Peas	1	477.37
Potatoes	2	422.70

Three years later the same author published data, giving the results of his experiments for a number of years, both in the field and in the plant house. The following is a table of his results:

	Crops	No. of	trials	Water	req.per T. dry acre inches##	sub.
Corn	in field		8		-2.433	
 Corn	in plant	house	44 ~		2.386	
Oats	in field		8		5.011	

#Die Verdunstungs grosse pro g.Trockensubstanz sank also mit der Ertragshohe und dem Bodenreichtum. Wahrend die Pflanzen im armen Boden 450-600 gr. Wasser zur Erzengung von 1 g.Trockensubstanz verdunsten mussen, genugen im nahrstoffreichen Boden 250 zo 300 g." ## An acre inch is water enough to cover one acre one inch deep and is equal to 3,630 cu.ft. and weighs 103.39 tons.

Crops No. of tr	ials	Water req. per T. dry sub. acre inches
Oats in plant house	12	4.535
Clover in field	24	5.345
Clover in plant house	22	5.005
Potatoes# in field	6	4.283
Potatoes in plant house		2.618

In 1850 J. B. Lawes (14) of the Rothamsted Station of England performed an experiment in which he tested the amount of water required by different plants taken from the two orders, Gramineae, on the one hand, andLeguminoseae, on the other. These plants were transplanted into pots containing both manured and unmanured soil and grown under extremely artificial conditions. The following table gives a summary of his results:

Soil treatment	Crops	G. water for 1 g. dry sub.
Unmanured	Wheat Barley Beans Peas Clover	248 258 209 259 220
Manured with MineralManures	Wheat Barley Beans Peas Clover	222 256 219 211 229

The results obtained by Lawes do not agree with those obtained by Deherain, King, and others which I shall give in another connection. In explanation, it should be said, that the wheat and barley, especially, did not yield readily to the transplanting and were sickly throughout the experiment. It is very probable, also, that the extremely artificial conditions under which the plants were placed had something to do with the results obtained.

Potatoes did not develop normally and thus the difference.

-11-

In 1895 M. Mäercker (17) tested the influence of crude potassium saltsupon the amount of water required by plants grown on the soil which contained these salts in varying proportion. His experiments were conducted in pots. The pots were divided into two series, according to the amount of water given them. To the one, 60 percent of the water holding capacity of the soil was added, to the other, 27 per cent. The plant used in this experiment was white mustard. The following table gives a summary of the results:

Salts	Amount added. lbs. per acre.	Comparative amount of wate required	
		60%	27%
None	None	100	100
Kainite	890	90.5	77.1
Kainite	1780	88.4	38.2
Carnallite	1780	91.9	68.9
Sodium chlori	de 1780	61.2	55

From the above data it appears that the addition of the salts of both potassium and sodium decreases the transpiration of the plants growing under its influence, especially when the soil moisture is low. These results are in harmony with the conclusions of Sachs,(28) published in 1880. He says: "More than twenty years ago I further confirmed the remarkable fact, already in part noticed by Senebier, that the transpiration from leaves (of plants) may also be altered by the presence of material dissolved in the water which the roots take up."

F. H. King (7) of the Wisconsin Experiment Station, while testing the effect of applications of barnyard manure on the moisture of the soil, observed that, while the manured soil produced a much larger crop than the unmanured, it contained almost as much moisture at harvesting time. He concluded, therefore, "That the difference in yield was so great as to demand either that it takes less water to

-12-

produce a pound of dry matter on manured than on unmanured ground, or else the manured soil has the power of supplying water to the corn which the unmanuredsoil has not."

In 1896 M. R. Schröeder, Jr., (24) a Russian, published the results of his investigations on the development and transpiration of barley under the influence of different degrees of humidity and of fertility of soil. Since some of the details of the experiment resemble so closely my own, I give, in full, the French resume' together with the English translation:

"Development and Transpiration of Barley

Under the Influence of the Difference in Humidity and Different Nutritive Capacity of the Substratum."#

The author compares the effect which manifests itself under the influence of change in the humidity of the substratum with the corresponding effect of change in the concentration of the nutritive solution.

"Developpement et transpiration de l'orge sous l'influence de differente humidite', et de differente capacite' nutritive du substratum." "Resume' de l'article de M.R.Schröeder. L'auteur compare l'effet qui se manifeste sous l'influence du changement dans l'humiditi du substratum avec l'effect correspondant au changement dans la concentration de la solution nutritive.

-13-

The experimentswere made upon barley which was raised in glass vessels filled with sterile sand.

The humidity of the sand contained in these vessels was a s follows: 1st series 80%; 2nd series 40%; and 3d series 20% of the capacity of the sand for water.

The nutritive mixture was prepared after the formula of Dr. Hellriegel (6.20 gr. KH₂ PO; 1.71 gr. KCl; 2.19 gr. Mg SO₄ $7H_2O$; 29.90 gr. Ca (NO₃)₂).

The concentration of the nutritive mixture in the vessels was: lst series .6%, .4%, .3%, .2%, .1%; 2nd series .6%, .4%, .3%, .2%; 3rd series 1.2%, .8%, .6%, .4%, .2%. These tests established the following results:

The development of the adventive stems was more pronounced as the rate of the salts was more elevated for the same degree of humidity, and for the same quantity of salts the duration of the vegetative

Les experiences furent faites sur de l'orge que l'on avait elevée dans des vases en verre, remplis de sable sterile.

L'humidite du sable, contenu dans ces vases, etait telle: I iere serie 80% II serie 40% et III 20% de la capacite du sable pour l'eau.

Le melange nutritif etait prepare d'apris le Dr. Hellreigel (6.20 gr. KH₂ PO₄; 1.71 gr. KCl; 2, 19 gr. Mg SO₄ 7H₂O; 29.90 gr. Ca $(NO_3)_{\gamma}$).

La concetration du melange nutritif était dans ces vases: dans la I ière série 6 0/00, 4 0/00, 3 0/00, 2 0/00, 1 0/00; II serie 6 0/00, 4 0/00, 3 0/00, 2 0/00; III série 12 0/00, 8 0/00, 6 0/00, 4 0/00, 2 0/00.

Ces expériences permirent d'établir les consequences suivantes. La developpement des tiges adventives etait d'autant plus pro-

-14-

period was prolonged according as the plant had more water at its disposal. The duration of the vegetative period was more prolonged as the quantity of salts contained in the soil was increased.

In regard to the dimensions of the plant it was always observed that the greatest length of the stems, of the blades, and of the heads corresponding to the maximum of humidity and to the concentration of salts in the soil. But the produce of the entire plant and of each of its parts we find each time by the harvest an increase in dry matter following the augmentation of the humidity and of the nutritive capacity of the soil.

As to the relative value of the harvest considered by all parts of the plant we find that in the condition corresponding to the highest degree of humidity and to the greatest nutritive capacity of the medium we gather twice the quantity of straw and grain that we do in the contrary conditions.

nonce que le taux des sels etait plus élevé pour un même degré d'humidite: et pour la même quantité des sels, la duree de la période végitative était d'autant plus longue que la plante avait plus d'eau à sa disposition. La durée de la période de vegetation etait d'autant plus longue que la quantite des sels, contenu dans le sol, etait plus éleveé.

Quant aux dimensions des plantes on remarquait toujurs que la plus grande longueur de la tige, du limbe et des épis correspondavent au maximus d'humidity et de concentration des sels, dans la sol.

Par rapport à la plante entiere et chacune de ses parties on constate chaque fois pour la récolte en matieres seches, un surcroit, suivant l'augmentation de l'humidite et de la capacité nutritive du milieu.

Quant à la valeur relative de la recolte, rapportée à chaque

-15-

The development of the root system increased with the diminution of the humidity and of the nutritive capacity of the medium in which it was developed. The development of the stems as well as the leaves increased according to the increase of the nutritive capacity of the medium.

The general quantity of water transpired by barley was increased, as was the humidity and the nutritive capacity of the substratum.

The quantity of water evaporated compared with a unit of dry matter varies insensibly after change in the concentration of the medium. It gained as the latter increased up to a certain limit (.4%) and then decreased. The rate of water evaporated corresponds directly with the quantity contained in the soil.

** ** ** ** ** ** ** **

partie de la plante, on constate que dans la condition correspondant au plus haut degre' d' humidité et à la plus grande capacite nutritive du milien, on recoltait deux fois plus de paille et de grain que dans des conditions contraires.

Le developpement du systeme radiculaire augmente aver la diminution de l'humidite et de la capacité nutritive du milieu dans lequel il fait son évolution.

Le developpement des tiges airisi que des feuilles, saccroit suivant l'augmentation de la capacite nutritive du milieu.

La quantite générale de l'eau transpiree par l'orge etait d'autant plus elevée, que l'etaient l'humidite et la capacite nutritive du substratum.

La quantite d'eau evaporeé, comparée à l'unite en matiere seche, variait insensiblement suivant le changement de la concentration du milieu: elle séleve quand celle ci augmente jusqu'a une certain limite (4 0/00), et ensuite elle retombe. Le taux d'eau évaporée est en rapport immédiate avec la quantite contenue dans le sol.

-16-

The average amount of water dispensed by the bard-by for the formation of one gram dry matter was 475 grams.

The average amount of water transpired in 24 hours by a leaf surface of 100 cm. was 72 grams, while from the same surface of water it was for the same period 16.7 grams.

In comparing these data with the preceding figures (475 gr. H_2O for 1 gr. dry matter) the author concludes that the barley forms upon an average .015 grams of dry matter in 24 hours for 100 cm. of leaf surface, so that 100 grams of leaf tissue (having a surface of 200 square cm.) furnishes an average of 300 mgs. of dry matter in 24 hours."

Translated by Dr. T. J. Burrill.

La moyenne de l'eau depensee par l'orge pour former un gramme de matiere seche etait-475 gr.

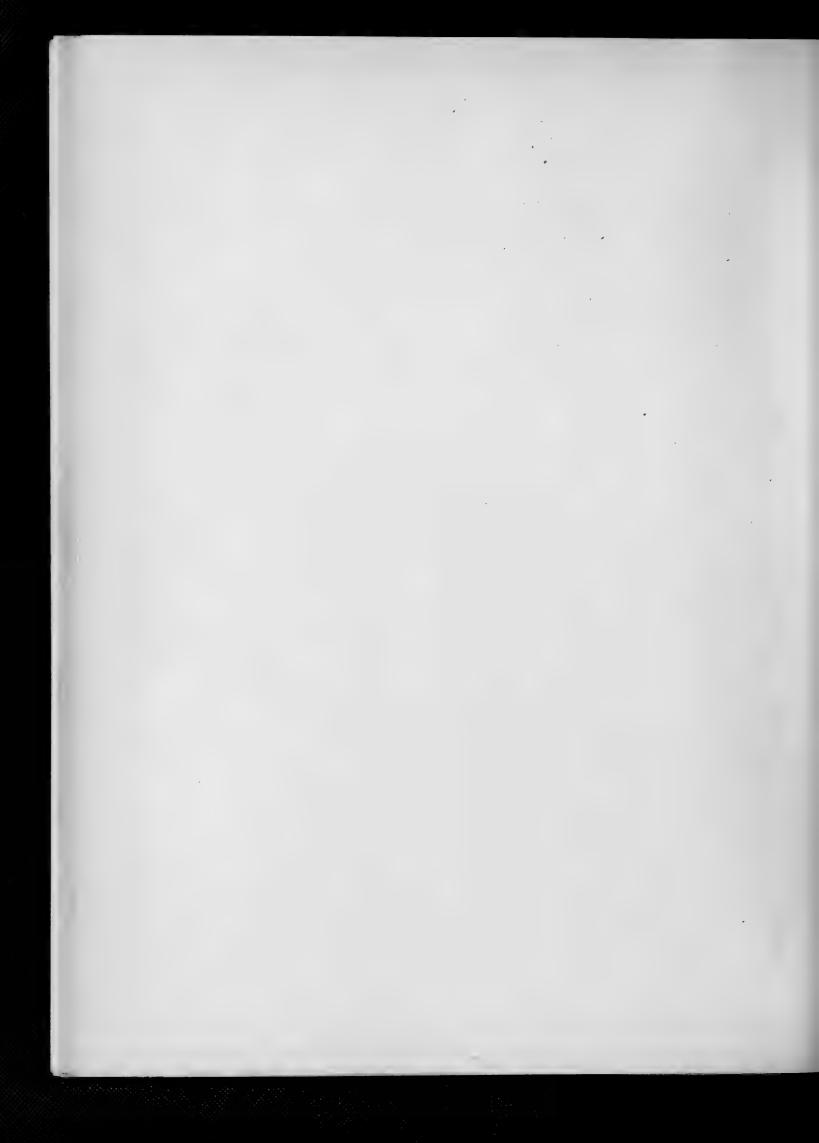
La moyenne de l'eau transpirée en 24 houres par une surface de 100[#]c.c. recouverte de feuilles etait-72 gr. tandis que pour une surface libre recouverte d'eau, elle êtait pendant la même période^{*} 16.7 gr. c.c.

En comparant ces dounces avec les chiffres precedents (475 gr. H O pour l gr.de matieres seche) l'auteur conclut que l'orge forme en moyenne par 24 heures 0.015 gr. de matieres seches sur 100 c.c.[#] de surface foliaire, de soute que 100 gr.c.c.de tissu foliaire (avec une surface de 200 \Box c.c.[#], fournit en moyenne 30 mmgr.de matieres seches en 24 hours."

It is c.m. in the original Russian.

-17-

Influence of Soil Moisture On the Transpiration of Plants.


There is a very close relationship between the amount of water taken in by the roots of a plant and the amount transpired through the leaves. Within certain limits the plants, by opening or closing the stomata of the leaves, can regulate the transpiration stream. If, however, water is withheld from a soil which is supporting plants there comes a time, sooner or later, when the water content of the soil becomes so low that the plants are unable to gather enough to supply their needs, and as a consequence the plants wilt. Sachs (11) found that the tobacco plant (Nicotiana tabacum) behaved very differently when grown on various typesof soil with a low moisture content. When grown in humus soil, wilting occurred when the water content was at 12.3 per cent; but in loam the wilting did not occur till the water was reduced to 8 per cent, nor in sand till the reduction was as low as 1.5 per cent. Liebenberg (11) showed, however, that the power the soils possess of withholding their water from the plants does not depend upon their absorbing power.

The power of the plant to gather water from a substratum of low humidity depends upon their adaptation. The wilting point, according to Livingston, (13) varies between 5.5 and 13.7 per cent. Those plants which do not wilt until the soil is reduced to 5.5 per cent#of its moisture content are especially suited, structurally, for xerophytic conditions, while those that wilt at 13.7 per cent of the moisture content of the soil are mesophytes.

Hales (2) observed that the transpiration of the sunflower was greatest in wet earth. Some few years (1879) later Reister (2) and Bohm (2) found that as the water content of the soil diminished the

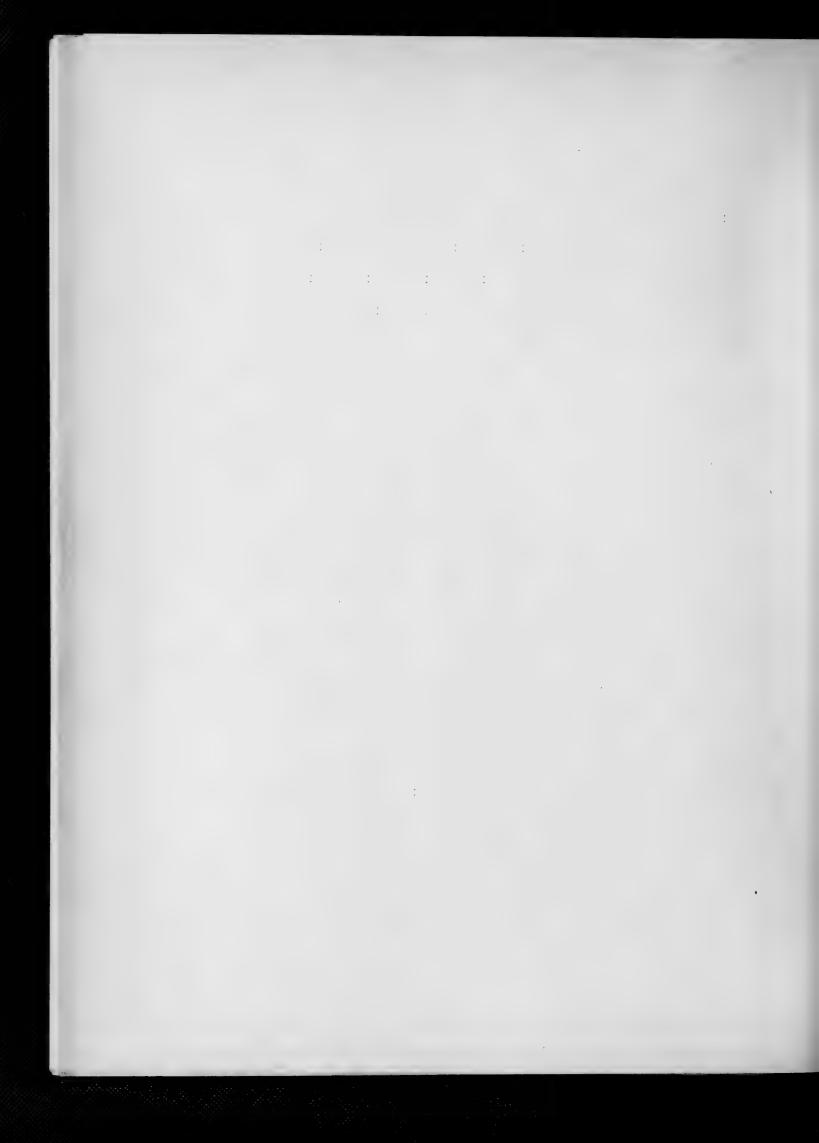
Per cent of wet volume.

-18-

transpiration of the plants growing upon it diminished also.

Hartig (2) grew oat plants from the middle of April to the middle of August under such conditions that the evaporation from the soil was controlled. The following table gives a summary of his results:

Per cent of water 80-60: 60-40: 40-30: 30-20: 20-10 Total Transpiration g. 7394: 5556: 5715: 3191: 642 Amt.of water for l g. dry sub.538: 457: 444: 414: 405


From the above table it is seen that the transpiration increased with the increase of the water content of the soil; and that the production of dry substance, in proportion to the water evaporated, increased, in every case, as the water content of the soil decreased.

From the data obtained from experiments with ligenous plants Sorauer (2) reached the same conclusions as Hartig but adds further that the per cent of nutrient material is higher in plants grown with a scanty supply of moisture.

Widtsoe(34) of the Utah Station, under a system of irrigation, in which known quantities of water could be applied, collected data that agrees with that collected by Hartig and Sorauer. He also gives the following table which shows the relation existing between the amount of water in the soil and that found in the growing plant. He grew wheat under field conditions and made frequent moisture determinations with the following results:

Date	Water in plant	Water in soil 0-12 in.
June 25th June 26th July 1st July 3rd July 9th July 11th July 12th July 13th July 19th July 30th	77.23 77.81 74.39 74.87 72.61 71.63 69.30 69.08 67.24 56.22	$ \begin{array}{r} 10.06 \\ 20.05 \\ 15.22 \\ 13.32 \\ 18.18 \\ 17.46 \\ 20.12 \\ 18.54 \\ 20.46 \\ 16.02 \\ \end{array} $

-19-

From the above table it is seen that when the per cent of water in the soil varies between 10 and 20 per cent the per cent of water in the plant, for any given period of growth, is practically constant and independent of the per cent of water in the soil.

The table is interesting, also, in that we get from it a confirmation of the generally accepted belief that the per cent of water in the plant becomes smaller as the plant approaches maturity.

Influence of Soil Moisture on Yield.

It often occurs that desert soils which are very rich in plant food elements produce but little or no vegetation, owing to the limited amount of moisture they contain, while, on the other hand, soils very poor in plant food elements can be made far more productive, for a time at least, by a copious supply of water.

Livingston (12) has shown that the amount of water which passes through the plant during a period of active growth is a safe criterion in judging the amount of growth the plant is making. Whatever this factor may be for ordinary soils, it is greatly modified by the addition of fertilizers.

A certain amount of water is absolutely essential for plant growth. The whole of this amount, in the case of the higher plants, is taken in through the rootsfrom the substratum in which the plant is growing.

The amount retained by a soil for any length of time depends upon the physical texture and chemical composition of the soil. According to E. Gain (4) this amount is not constant but fluctuates, ordinarily, between 25 and 35 per cent in the surface soil in place, "although the coefficient determined in the laboratory gives about 50 per cent." These numbers are given in terms of weight.

-20-

Concerning the capacity of a soil for "ater, Gain, (4) on the authority of Wollny, gives the following: "(1) A compact soil loses more water by evaporation than a loose one, because the capillary spaces are smaller in diameter and more easily conduct to the surface the water in the deeper layers. On this account the surface of a compact soil remains moist longer than a loose one. (2) A compact soil has a greater capacity for water than a loose one, although it is less permeable. The capillary spaces are smaller, the number of water pores are increased, and the penetration of water into the subsoil is hindered. (3) A compact soil offers more water for the plant than a loose one."

It thus appears that the amount of water in a soil is controlled to a very great extent, by soil treatment. The amount a soil will produce is very largely determined by the amount and form of the plant food present and the water content, water acting not only as a solvent of the essential elements, but as a vehicle for the food elements intended for the roots of the plants. That fertilizers are far more effective when an ample supply of water is present was pointed out by E. Gain, (4) and borne out by the investigations of others.

Hellriegel is quoted by Whitney (31) as agreeing in the main with the following table given by Wollny (4) which is intended to show the optimum water content for the production of crops. Representing by 100 the quantity of water necessary for a complete saturation of the soil he finds that the production of dry matter in barley varies with the different water content of the soil as follows:

Moisture in Soil.

Yield in dry material.

Per cent	Grain g.	Straw
• 80	8.77	9.47
60	9.96	11.
40	10.51	9.64

-21-

Per cent	Grain g.	Straw
30	9.73	8.70
20	7.75	5.50
10	.72	1.80
5	.00	.12

This table shows that while the optimum moisture content for maximum yield of grain is 40 per cent, for straw it is 60 per cent. That the maximum yield of both grain and straw is not obtained with the same moisture content is nowhere better shown than in a system of farming where irrigation is depended upon to furnish the most of the water required by the plants.

A given moisture content may be either, the average for the season, or a constant humidity. If the above experiment were repeated under the two conditions, as regards moisture, just stated, it is very likely that the results would not agree. If the water content were to be the average, short periods of drouth could be followed by copious watering which would result, if conducted wisely, very beneficially to the plant. The other case admits of no such fluctuations in the water content.

Then, too, according to Mac Dougal, (19) there is in the plant's life what are known as critical periods. In the case of grains, one of these periods occurs just as the heads are filling. Too humid conditions at this time results in adecrease in the amount of grain produced, while the amount of straw produced would not be so affected.

Previous soil treatment may influence very greatly any data that may be collected on this question. For example, Lawes and Gilbert (15) found that the effect of fertilizers on yields in dry and normal seasons were as follows:

-22-

Fertilizer used	ι.	Yield of hay per 1870 dry season. .76 cm. of water.	Average 14 yrs.	Deficit
No fertilizer.		Kg. 725	Kg. 2771	Kg. 2046
Mineral fertilizer. No nitrates. Mineral fertilizer soda.	Nitrate of	3625	6527	2902
	MICIGUE UI	7000	7250	250

This table shows that if pot culture or plot culture experiments were carried on with soils rich in nitrates the optimum yield may be at a lower per cent of humidity than Hellriegel found, or, on the other hand, if very low in fertility, higher than he found. There is in volume 13, page 631, of the Experiment Station Record an abstract of an article published in 1900 by Prianishnikov, in which the author gives the results of his experiments in which he tested the influence of soil moisture on the growth of plants. The following quotation is taken from this abstract:

"It is usually accepted, that with an increase of moisture in the soil, the yield of straw increases while the yield of grain diminishes. This is contradicted by the author's experiments with wheat during two years in which there was a steady rise in percentage of grain with an increase in the amount of water in the soil."

The author found, however, that the amount of nitrogen in the seed decreased as the humidity of the soil increased, which is in general agreement with the results obtained by Lawes and Gilbert, (14) Von Seelhorst, (26) Mayer, Widtspe (34) and others.

-23-

Summary.

If a water-logged condition is to be avoided, the greater part of the water that finds its way to a soil must leave it.

Soluble salts increase the power of the soil to retain moisture while barnyard manure decreases it slightly, but causes a translocation and a concentration of moisture in the first three feet of the soil.

"The rate of loss of water from soils varies directly with the initial per cent of moisture in the soil."

Plants use less water for the production of a given amount of dry substance when growing in media. in which there is an abundant supply of available plant food than when the contrary condition is present.

Different crops of the different orders or of the same order of plants use very different amounts of water for the production of a given amount of dry substance when grown under the same conditions.

Plants grown in a relatively humid substratum transpire more freely than plants grown on a relatively dry substratum and use a larger amount of water for the production of a given amount of dry substance, but are poorer in the amount of nitrogen they contain.

Within certain limits, the amount of water in the growing plant is independent of the amount in the soil.

The amount of water in the soil varies with the amount reaching it and with previous soil treatment the variation, ordinarily, being between 25 and 35 per cent by weight in the first foot.

The optimum moisture content of the soil for the maximum grain yield is not the same as for straw, and depends upon the chemical composition of the soil, as also does the minimum for the production of either.

-24-

Part II

EXPERIMENTATION

EXPERIMENTATION.

Introduction.

As has already been pointed out, in testing the effect of fertility on the transpiration of plants, one may employ either distilled water, sterile sand or other sterile media to which have been added known amounts of the fertilizers; or one may use exhausted soil, the history of which is known and the composition of which has been determined by chemical and physical analysis. The soil used in this experiment, while not what may be called an exhausted soil, was of low futility for the type.

The time of year in which the experiment was conducted made the use of the green house imperative in order that the proper light and heat relations might be secured. There is no reason to suppose, however, that the comparative results would be materially changed under field conditions where the moisture is under control. The experiments of King of Wisconsin⁹ show that when plants are grown the same time of year in the green house and in the field the amount of water required for the production of one gram of dry substance differs but little.

History of the Soil.

The soil used in this experiment was a brown silt loam, a type that is very common in the corn belt region. It was obtained from between plots 770 and 771 from the South Farm of the University of Illinois. These two plots are separated by a strip 8 1/4 feet wide. Plot 771 has received treatment but plot 770 together with the strip has received no treatment, save cultivation. Previous to the year 1903, at which time the station began its work upon it, the land had

-25-

been under a system of tenant farming and cropped principally to corn and cats. The following table gives the yield of plot 770 from 1903 to 1907 inclusive:

Year

Yield

	Corn bu.	Stover T.
1903 1904 1905 1906 1907 Average	$ \begin{array}{r} 34.2 \\ 35.6 \\ 44.3 \\ 53.2 \\ 52.1 \\ 43.8 \\ \end{array} $	1.33 1.50 1.21 9 1.70 1.43

It is assumed that the soil taken from the strip differed but little from that of plot 770, the history of which has just been given.

The soil was taken from the field the sixth day of November, 1907, in the following manner: Beginning at a place a few yards from the west side of the division, a strip of soil, averaging about one foot in width and about three inches deep, was taken and placed into a four-gallon jar. When the jar was full, the contents were emptied here and there into the box of a wagon which was driven alongside, care being taken to mix the soil at this handling. When sufficient soil had been emptied into the wagon box, it was taken to the green house and shoveled out into a pile by the door. From this pile it was shoveled into a half bushel can from which it was scattered along on a bench in the green house, thus insuring again a thorough mixing. At the time it was brought in, it contained just enough moisture to make it handle easily. It remained on the bench in the green house until the end of the first week in December, at which time it was placed into four-gallon, glazed, earthen jars which were used in the experiment. Just before the soil was put into the jars, however, it was passed through a sieve containing nine meshes to the inch. It was then placed into the jars and compacted by pressure from the hand.

-26-

No effort was made to put the same amount of soil in each pot. Every effort was made, however, to have the soil in all the jars perfectly uniform both chemically and physically. As the pots were filled they were transferred to another green house in which the experiment was conducted. The next day after filling, the soil in the jars was dampened down and allowed to settle until December 23rd. In the meantime just enough water was added to the jars to keep the soil damp. As was anticipated, the soil in the jars settled somewhat. Just before taking the final weights, the jars were again filled to a mark about one-half inch from the top with soil exactly the same as that already in the jars.

During the time intervening between December 23rd and 28th the soil was removed from each jar, the jar was carefully wiped out, the drain hole carefully covered over with glass wool and a small piece of wire gauze, weighed and the weights recorded. Before replacing the soil into the jars, it was thoroughly mixed and a small sample taken for the determination of the moisture content.

About one-half of the soil was now returned to the jar. With the other half the fertilizers were mixed then this, too, was returned to the jar. Thus to only about the first five inches of soil was any fertilizer added. The pot and soil were now weighed and the difference between this weight and the weight of the pot was taken as the weight of the soil plus the water it contained at the time of weighing.

The average moisture content of the soil at the time of sampling was 19.25 per cent, but varied from 15.38 per cent in jar No.209 to 24.73 per cent in jar 303. The exact moisture content of each jar at this time may be ascertained from tables I, II, and III.

Hereafter, whenever weight of soil is referred to, except otherwise stated, reference is made to dry, or water free soil.

-27-

The average weight of soil to the jar was 14303 grams, but varied from 12858 grams in jar 306 to 15149 grams in jar 311. The exact number of grams of soil in each jar may be ascertained by referring to the tables just cited.

The soil was again allowed to settle in the jars and an attempt was made to keep the moisture content of all the jars at about 50 per cent of the water holding capacity of the soil as this was considered to be the most favorable for the decomposition of the organic fertilizers applied and the germination and growth of the seed subsequently.

Analysis of the Soil.

Physical: For the purpose of making a physical analysis of the soil, an average sample was set aside at the time the jars were filled. Fom this larger sample two five-gram samples were taken, placed into shaker bottles which contained several hundred cubic centimeters of distilled water and about twelve drops of ammonia each. The bottles were now placed in the shaker and agitated until all the soil particles were separated one from the other. The coarse, medium and fine sands were separated from the silt and clay, and from each other, by the sieve and modified decantation method that is now employed in the soil physics laboratory of the University of Illinois. The coarse and medium silts were separated from the fine silts and clay and from each other by the centrifugal and modified decantation method. The following table gives the results of the analysis as it was obtained in duplicate:

-28-

	Ι.	II.	Average
Hygroscopic moisture	2.61%	2.62%	2.61%
Loss on Ignition	6.09%	6.09%	6.09%
Clay and fine silt	17.28%	18.24%	17.76%
Medium silt	14.50%	12.50%	13.50%
Coarse silt	34.41%	33.16%	33.78%
Fine sand	22.44%	25.17%	23.80
Medium sand	6.32%	6.32%	6.32%
Coarse sand	. 36%	.35%	• 35%
Total	101.40%	101.83%	101.61%

Chemical: In determining the moisture content of the soil in the various jars two twenty-gram samples were taken from the sample obtained at the time the jars were last filled, or, in other words, forty grams of soil were taken from each jar. The moisture determinations were made in duplicate in the usual way. The results of these determinations may be seen in tables I, II, and III.

After the moisture determinations were all made, the twenty-gram samples which had been used in these determinations were all put into a pan and thoroughly mixed, the idea being to get uniform, composite samples of the soil in all of the jars for the chemical analysis. The method employed in making this analysis was the same as that now in use at the Soil Fertility Laboratory in the University of Illinois. The figures in the following table, which gives the results of the chemical analysis, represent the total nitrogen, but only the amounts of phosphorus and potassium which were extracted by digesting the soil sample for ten hours at boiling temperature with Hydrochloric acid with a specific gravity of 1.115.

-29-

	I.	II.	Average	Lbs.per A.#
	Per cent	Per cent	Per cent	lst 7 inches
Nitrogen	.171	.173	.172	3450
Phosphorus	.056	.055	.055	1119
Potassium	.286	.286	.286	5738
Insoluble matter 82.95		82.95	82.95	
Dry matter	98.29	98.29	98.29	

It will be remembered that it was stated in the foregoing pages that partially exhausted soil was used for the experiment under discussion. A comparison of the figures just given with those obtained by analyzing a soil capable of producing 80 to 100 bushels of corn per acre, reveals the fact that the phosphorus and nitrogen are low and thus are the limiting elements in crop production. The crucial test, however, of the fertility of a soil is obtained when crops are grown upon it. The fertility of this soil, therefore, may best be judged by referring to the history. It will be seen that the average of the crops produced in five years was 43.8 bushels of corn, only about half that produced on the best treated plots on the Illinois Experiment Station farm. That the phosphorus and nitrogen are the limiting elements is also evidenced from ready response this soil shows when treated with fertilizers containing these elements. This fact is brought out clearly by referring to either the tables or the photographs in the appendix.

2,000,000 pounds per acre.

Fertilizers Used.

Steamed bone meal which yielded about 13 per cent of total phosphorus was used as a source of the phosphorus. For this experiment six grams of bone meal were applied to the pot which was equivalent

to 960 pounds per acre.

Fifteen grams per pot of dried blood, yielding 14 per cent of nitrogen, served as a source of the nitrogen. If applied at this rate in the field 2400 pounds per acre would be required.

The potassium and magnesium were applied in the form of the sulphates. Three grams per pot, which is equivalent to 480 pounds per acre, were added. The magnesium was added, not because it was considered that the soil was deficient in this element, but rather for a comparison with the potassium. By the acid-scluble method the amount of potassium obtained in the analysis of the soil was equivalent to 5738 pounds of potassium per acre. For a rough estimate it has been assumed that the equivalent of only about one per cent of the total potassium in the first 7 inches can, by practical methods of farming, be made available each year (4). On this basis 57 pounds would be made available and this would not be sufficient for a large crop, for a 100 bushel oat crop requires something like 68 pounds of this element (4). This being true, this soil is possibly slightly deficient in available potassium. In fact the Illinois Experiment Station has found (4) that the addition of potassium does not always increase the productivity of this soil, but, on the other hand, may sometimes act disadvantageously.

The method of analysis employed gave all the nitrogen, and practizally all of the phosphorus the soil contained. According to Dr. Hopkins (4) of the Illinois Station, it may be roughly estimated that the equivalent of about two per cent of the nitrogen and one per cent of the total phosphorus contained in the first seven inches of the soil may be rendered available each year for the plant. Taking the total amount of nitrogen in the first seven inches of soil as 3450 pounds, and the total amount of phosphorus as 1119 pounds per acre,

-31-

according to the above calculation there would be about 70 pounds of nitrogen and 11 pounds of phosphorus available per acre per annum. Since it requires 97 pounds of nitrogen and 16 pounds of phosphorus to produce a 100 bushel crop of oats or 148 pounds of nitrogen and 23 pounds of phosphorus for 100 bushel crop of corn, it becomes evident that these two elements are the limiting factors in crop production on this soil. From what has been said, it is plainly seen that this soil is capable of producing only about one-half of a hundred bushel crop. Referring again to our history we see that the actual average yield for the last five years is 43.8 bushels of corn, which is just such a crop as we might expect from our calculations and the results of our analysis.

The manure that was added was well rotted, finely ground stable manure that had been subjected for some little time to leaching. 62.5 grams of dry matter were added to those pots receiving manure treatment. This amount is equivalent to 5 tons of dry matter per acre, or to 20 tons of average fresh manure.

The legume that was added was the one year old red clover, and the material added represented the entire plant (roots and branches). The amount added was the same as in the case of manure.

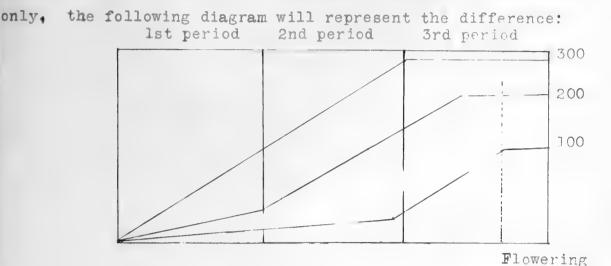
By referring to tablesI, II, and III the pots to which the various fertilizers were added may be ascertained.

General plan.

The 66 pots, the total number used in the experiment, were divided into three series with 22 pots in each series. The series differed from each other only in the amount of water the soil contained. To the 100 series, 20 per cent[#], to the 200 series, 40 per cent; # That is, 20 per cent of the water holding capacity of the

-32-

and to the 300 series 80 per cent of the water holding capacity of the soil was added. The pots were run in duplicates in all three series. In order to ascertain the amount of water that evaporated from the soil the first two pots in each series were kept as checks. To these six pots no fertilizers were added.


The fertilizers were mixed with only the first five inches of the soil, as has already been stated. About thirty days intervened between the time of mixing and the planting of theseeds. That the organic fertilizers had begun to decompose in the meantime and yield the fertilizing elements they contained for the use of the plants, is evidenced by the acceleration in the growth of the seedlings as soon as they became large enough to draw upon the soil for their nutriment. This lead in growth was especially noticeable in those pots which contained the dried blood. The nitrogen in the form of the legume (Red clover) did not show marked effect till about 40 to 50 days after planting. From this on to the time of heading, the abundant vegetative growth and the dark green color of the foliage gave ample assurance that plants were drawing upon the nitrogen in the decomposing legume for the amount required for their vigorous growth. After about 30 days from seeding, the general appearance of the plants growing in the pots which contained the dried blood seemed to indicate that the fertilizer was going to be harmful. The plants were making good vegetative growth, but the color was not that of healthy plants. This unhealthy color soon faded away, however, and the plants took on that deep green color so characteristic of plants growing where an abundant supply of nitrogen and moisture is available.

soil. The average of five trials with the soil in the pots as used for planting gave 44.4 per cent of the dry weight of the soil. 45 per cent was taken as total capacity of the soil for water. 20,40, and 80 per cents of this amount would therefore be 9,18, and 36 per cent, respectfully of the dry weight of the soil. These were the per cents used in finding the standard weights.

-33-

The effect due to the fertilizers was not equally apparent in the three series. If we divide the grand period of growth into three equal parts and consider the effects of nitrogen in the dried blood

From this diagram it is seen that in the 300 series, in which was 80 per cent of water, the influence of nitrogen appeared at once and reached its maximum at the beginning of the third period. In the 200 series, which contained 40 per cent of water, the effect of the nitrogen was not so manifest until near the end of the first period and reached its maximum somewhat later than in the 300 series; that is, near the middle of the last period. While the plants in this series showed the same deep green rank appearance, the influence of the nitrogen was never so markedly evident as in the 300 series.

The influence of the nitrogen was so slight for so long a time in the 100 series that it was thought to be without effect. Near the end of the second period, however, after the plants in the other two series had made the greater part of their vegetative growth, the plants have in those pots containing nitrogen seemed suddenly to taken on new life and made a rapid growth for a short time. The maximum was hardly reached when the first heads began to make their appearance. The legume in this series had but little or no effect, while in the next series the influence was marked enough to be readily noticeable.

-34-

The results of this experiment confirms the generally accepted idea that nitrogenous fertilizers cause the plant to take on a deep green color and make a rank growth. This rankness of growth was in proportion to the amount of water the soil contained, being most evident in the soil with the highest per cent of water.

About the beginning of the third period some of the plants in the green house, (which, however, were not in this experiment) became affected with plant lice. To check the spread of this pest, the green house was fumigated with hydrocyanic acid gas. This gas discolored parts of a few of the leaves of the plants in all the three series. It was noted, however, that the plants growing in the soil to which nitrogen had been applied escaped the action of the gas. Of all the plants affected those growing in the soil containing the application of potassium alone suffered the most. In those cases where the effect was most noticeable it was not serious enough to interfere in the least with the results of the experiment.

Seeding.

In this experiment the oat plant was used. The variety was what is generally known as the 60 day oats. Just before planting, the seed was treated with a weak solution of formaldehyde for the prevention of smut (Ustilago avenae). Pots from 302 to 306 inclusive were planted January 25 and the remaining, two days later. The planting was done in the following manner: About two inches of soil was removed from the pot and passed through a sieve containing four meshes to the inch. About one-half of this was again placed back into the pot and carefully leveled. Upon this were arranged thirty plump, medium to large seeds. About half of the remaining soil was now spread evenly over the seeds, as was also the other half afterit had

-35-

been passed through a sieve containing nine meshes to the inch. The inch of soil that now covered the seeds was snugly pressed on to them. The advantage gained by thus carefully planting was that the moisture which came up by capillarity was retained just beneath the surface, thus insuring quick and uniform germination. By thus retaining the moisture, it was found unnecessary to make further applications till the plants had attained considerable size, well out of danger of any injury that may arise by reason of the soil crusting upon the first application of water. By February 1, about ninety per cent of the seed had produced vigorous plantlets. Ten days later, these were thinned to eighteen of the strongest, best placed plants to the pot. This number was finally reduced to fifteen. No attempt was made to establish the desired water contents of the pots until the plants had become thoroughly established, as there was some apprehension that "damping off" may occur in the 80 per cent moisture series, while the plants in the 20 per cent moisture series may perish for want of water. The first weighing to ascertain the exact amount of water in the pots was made February 14. The pots of the 300 series was found to be deficient in water, while the amount in the 200 series was slightly in excess, and in the 100 series far in excess of the required amount. At this time the pots in the 300 series were made up to the required standard, that is, to 80 per cent. By March first, the excess of water had passed from all but two of the pots in the 200 series; but so slow was the evaporation from the pots of the 100 series, that it was not until April first that the majority of the pots in this series contain the required 20 per cent of moisture. Accurate data were kept of all the pots in all the series from March first. The totals obtained for March in the 100 series represent the amounts of water that was transpired by the plants when growing in a soil which was

-36-

constantly decreasing from 35 or 40 per cent to the required 20 per cent.

This lack of data the first month, that is, February, vitiated the final results but slightly, for it was ascertained by check pots that the amount of water transpired by the plants which were the most vigorous in the 300 series amounted, during the whole month, to no more than 600 c.c., which was less than one-half the amount transpired in a single day by the most vigorous plants in the same series in May.

After the pots were made up to standard weights, the approximate amount of water that was given off was returned daily. At the end of each week, the pots were weighed. In case there was a deficiency, which was nearly always the case, water was added to bring it to the standard; or in case there was an excess, which occasionally happened, the amount was ascertained and no more water was added until the excess had time to pass off.

An examination of the tables which give the daily amounts of water added brings out clearly the fact that the amounts added from day to day were very inconstant. This was due to the changes in the weath er which were very frequent. When weather conditions were constant, the variations in the amount of water required for any one pot were very slight. During those days in which there was bright sunshine and drying winds, fully three times as much water was given off from the pots of the 300 series as when the contrary condition prevailed. The plants growing under the influence of 40 per cent of moisture were far less susceptible to these weather changes than were those under the influence of 80 per cent of moisture, while the plants under the influence of only 20 per cent of moisture were far less susceptible than either of the others. The plants growing under the influence of nitrogen were more influenced by weather changes than the others.

-37-

This was more especially true of the 300 series.

The water that was applied was the ordinary tap water. This was introduced from a graduate cylinder directly into the center of the pots by pouring it through a glass tube about 12 inches long and one inch in diameter which had been inserted into the center of the pots. This allowed the addition of small quantities of water without disturbing the earth mulch, in series 100, from the beginning to the end of the experiment, and in series 200 the greater part of the time. It was found to be impracticable to add all of the water through the tubes in the 300 series, so only a portion was thus added, the remaining being poured over the surface. In this experiment one c.c. of water was taken as the equivalent of one gram of water.

Results of the Experiment.

An examination of the photographs in the appendix gives very convincing proof that the plants responded markedly to both the water and fertilizer treatment. The plants growing under the influence of 80 per cent of water in the soil produced more abundant foliage and longer, better-filled heads than in the other two series. The vegetative growth and head production decreased as the per cent of water in the soil decreased. The proportion of head to straw, however, increased as the per cent of water in the soil decreased. It was noted also that the plants growing under the influence of only 20 per cent of water made slow growth and as a consequence used but little water. The following tables give the amounts of water required by the plants for each month.

-38-

Table I.

Total Transpiration

(not including water evaporated from the soil).

Series 100 (20% of saturation)

	Pot No	. 2	2'	3	3	4	4	5	5	6	6'	
	soil treat.	No	one		P		N		К.	N	I.P.	
	March April May Total June Total	678 604 1203 2485 690 3175	878 438 1170 2486 372 2858	968 1398 726 3092 655 3747 Serie	998 1348 1791 4137 501 4638 200	1384 678 1860 3922 474 4396 (40%	962 538 895 2395 310 2705 of satu	916 894 1610 3420 640 4060 uration	794 878 1591 3263 400 3713	1013 1292 2141 4446 435 435	$ \begin{array}{r} 1097 \\ 1313 \\ 1865 \\ 4275 \\ 450 \\ 4720 \end{array} $	
	March April May Total June Total	1562 4610 6453 12625 2790 15415	1257 3885 6073 11215 1710 12925	2042 7580 5945 15667 2510 18177 Serie	4102 9490 10528 24120 2760 26030 es 300	1732 5018 8408 15158 3210 13368 (80%	2242 5815 9653 17710 5.30 20940 of satu	$\begin{array}{r} 2452 \\ 3920 \\ 7533 \\ 13905 \\ 2960 \\ 16865 \\ 16865 \\ 1681 \end{array}$	2642 7240 9533 19415 2760 22175 1).	3982 10710 14673 29365 4000 33725	3622 9610 13188 26410 +135 305+5	- 1
[March April May Total June Total	4844 9695 8393 22932 2770 25702	2442 6955 7643 17040 1010 18050	5652 12208 14188 32048 4320 36368	4462 6680 8983 20125 2580 22705	4622 15590 26478 46690 9330 56020	4252 14735 25048 44035 8280 52315	3697 4780 5308 13785 1360 15145	4457 7335 8288 20080 2240 22520	4668 16385 25368 46421 10630 67051	4826 16700 27653 49179 11810 60989	

-39-

Table I con.

Total Transpiration

Series 100

Pot No Soil	. 7	7'	8	8'	9	9'	10	10'	11	11'		
treat.	K.	P.	K.)	I.P.	Mg	N.P.	Mnr.		Leg'm			
March	826	1889	884	1003	1345	1013	665	1015	940	741		
April	8 88	1083	1088	882	1298	1512	498	842	1033	583		
May	1420	2481	1691	1532	1817	1995	1417	1215	1902	850		
Total June Total	3134 260 3394	5 453 1075 6528	3663 500 4 ₊ 63	34 17 686 4103	4460 514 4974	4520 575 5095	2580 270 2850	3072 400 3502	3875 070 ±0±5	2374 010 2404		
Series 200												
March	4312	4162	3612	3152	2602	3052	2142	2112	2052	1020		
April	9040	9100	9960	9605	6595	8605	5495	6300	5770	3095		
May	12168	12288	13778	13473	10168	11978	8634	9363	9208	6233		
June) 1610	27250 4110 31360	26230 3810 30040	18365 3060 22425	23635 3500 27135	16271 2430 18701	17775 3300 21075	17020 3870 20890	10348 3185 1883		
				Se	eries 3	300						
March	5424	5168	4707	458 3	5184	5132	5691	6082	5381	6187		
April	9270	8935	16875	15150	14320	15960	10045	8385	13593	12755		
May	12468	11193	27568	24838	35363	27468	12578	9 208	19438	17163		
Total June Total	27162 4150 31312	2970	49150 13410 62560	13410	12750	48550 12130 60690	4980	23675 3500 27175	38412 •7250 45662	36095 7790 43885		

-40-

The duplicate pots in all three series were very similar in appearance, yet from the tables we observe that they used, in most cases, quite different amounts of water. To compare them accurately, therefore, it is necessary to take a unit and ascertain how many of these units were produced and how much water was required for each unit. A gram of dry substance produced is generally chosen as the unit. For the computing of the results in this experiment I have chosen two units, namely, centimeters of heads produced and the grams of dry weight.

To obtain results in terms of centimeters of heads produced the experiment ran from Feb. 1st till May 27. At this time the heads were well developed and the transpiration current was beginning to slacken. To obtain results in terms of dry weight the crop was allowed to mature and dry weight of both straw and grain ascertained.

To ascertain the number of centimeters of heads produced each panicle was carefully measured. The lengths of the panicles in each pot were added together. By dividing this total into the total number of grams (c.c.) of water used during the experiment the number of grams of water required for each centimeter of heads produced is found. The following tables of results give this data, also the number of heads to each pot and the soil treatment.

-41-

Table 2.

Table of Results.

Series 100.

Pot Soil No. Treat.	No.of heads Prod.	T.length of heads C.M.	Av.lgt. of heads C.M.	Av.hgt. of plants C.M.	T.water used G.	G.wate for 1 length heads	l of
102, None 102 None	15 15	160 155	10.6	50 58	2485 2486	15 16	av . 15
103 P 103 P	15 15	186 210	12.4 14.1	68 66	3092 4137	11 19	15
104 N 104' N	14	170 139	11.5	54 57	3922 2395	17 17	17
105 K 105 K	15 15	198 187	13.2	60 60	3420 3263	17	17
106 NP 106 NP	16 16	237	14.8	68 68	4446 4275	19 19	19
107 KP 107 KP	15 16	192 249	12.8	60 65	3134 5453	16 22	19
108 KNP 108 KNP	15 17	228 212	15.1	65 65	3663 3417	16 16	16
109 MgNP 109 MgNP	15 15	220 218	14.66	67 68	4460 4520	20	20
110 Mnr 110 Mnr	15 15	175 191	11.66	50 58	2580 3072	15 16	15
lll Legm lll Legm	17 15	209 165	12.3	64 63	3875 2144	18 14	16

-42-

Table 3.

Table of Results.

Series 200.

			analise differentia and a sum order of a selfer of	a annah cale anteger afragarradingka a		anger ad every all either discontinuitation		
	Soil Treat.	No.of heads	of heads	Av.lgt. of heads	of plants	used	for l	C.M.
		Prod.	C . M .	С. М.	С.М.	G.	length heads	01
								av.
202	None	18	278	15.4	100	12625	45	40
202	None	20	314	15.7	95	11215	35	
203	Р	20	317	15.8	110	15667	49	56
203	P	22	383	17.4	125	24120	63	
204	N	26	467	21.2	100	15158	32	33
204	N	30	495	16.5	100	17710	35	
205	K	23	324	14.	94	13905	43	49
205	K	22	350	15.8	114	19415	55	
206	NP	37	628	16.9	124	23365	37	39
206	NP	37	633	17.1	115	26410	41	
207	KP	20	379	18.9	120	25510	67	70
207	KP	20	344	17.2	120	25550	74	
208	KNP	31	565	18.2	120	27250	48	
208	KNP	28	521	18.6	120	26230	50	49
209	MgNP	22	419	19.	117	18365	44	
	MgNP	26	489	18.8	120	23635	48	46
210		15	258	17.2	115	16271	63	
210	Mnr	21	359	17.1	110	17775	51	57
	Legm	25	422	16.8	111	17020	40	
211'	Legm	22	327	14.8	90	10348	31	35

-43-

Table 4.

Table of Results.

Series 300

						and a second second	and the second second second second	
	Soil Treat.	No.of heads Prod.		Av.lgt. of heads C.M.			G.wate: for 1 length heads	
				and and the second s	and a second			av.
302	None	18	334	18.5	125	22932	68	66
	None	16	265	16.5	120	17040	64	
303	P	22	433	19.6	145	32048	74	75
303		16	262	16.3	130	20125	76	
304	Ň	39	774	19.8	147	46690	60	60
304		39	745	19.1	150	44035	59	
305	K	15	249	1646	126	13785	55	63
305		16	284	17.7	135	20080	70	
306	NP	44	862	19.6	150	46421	53	55
306	NP	41	855	20.8	150	49179	57	
307	KP	16	302	18.7	145	27162	89	85
307		18	318	17.6	150	26296	82	
308		42	842	20.	152	49150	58	68
308		29	572	19.7	165 .	44571	79	
	MgNP	44	845	19.2	150	54867	64	64
	MgNP	42	752	17.9	157	48550	64	
310		19	349	18.5	148	28314	81	81
310		16	287	17.9	140	23675	82	
	Legn	26	522	20.	150	38412	73	74
311	Legm	25	492	19.6	150	36095	75	, and

It will be observed from the foregoing tables that there is a pretty general agreement in the duplicates in the number of heads produced and also in the amount of water required for the production of a centimeter of head growth. There are some irregularities in this latter, however. In order to make the results more nearly comparable and more easily compared the table of averages (Table 5) is given. This table also gives the average amounts of water required for the production of one gram of dry straw and grain.

-44-



Table 5.

Table of averages showing the amounts of water required for a unit of growth and production under varying conditions of soil treatment.

	1		ato mana altitudor solo referati	na nami kan ambirkan mi	1	+		an ander som der Ander Lateranden		
Soil Treat.	None	P	N	K	NP	KP	KNP	MgNP	Mnr.	Legm.
Pot No. unit p. of pl	2 cm g. .h.dm	3 cm g h.d.m.	4 cm g h.d.m.	5 cm g h.d.m.	6 cm g a.d.m	7 [cm] g •].d.m	8 cm g n.h.d.m	9 cm g .h.d.m.	cm g h.d.m.	cm h.d.~:
% 20 40 80	15214 40358 66,341					1				
20 40 80		15276 56767 75,377			1					
20 40 80			17526 33305 60339			1				
20 40 80				17209 49409 <u>6</u> 38%6	т. Т.					
20 40 80					19380 39340 55 <u>7</u> 70		}			
20 40 80						19010 70400 85,292			1	
20 40 80							16277 49245 68774	-		
20 40 80				,				20 7 84 46 7 7 7 64 7 9 7	,	
20 40 80			•						15 101 57 202 81 4 10	
20 40 80 p.of Pl	. = part:	s of t	the pla:	nt. h	= heads	: d.m	dry	matter		16 103 35 329 74 380 -

-45-

As has been said, to obtain results in terms of dry matter produced the crop was allowed to mature. The amount of water the solid contained influences quite markedly the time of material as allowing time of heading. This difference was not so marked between series 100 and 200 as between series 200 and 300. The clop on series 100 was cut June 5, on series 200 June 9, and on series 300 June 10. After the plants were thoroughly sub dry, the grain was incomed one and the weight of grain and straw ascertained.

The following tables give these results, also the solid that ment, pounds per acre, total number of grass of Water used, and the amount of water required for the production of a grass of us junction. Table 6. Table of Reserve.

Series 100

								G	60. 10 <u>4</u> 0
							T	d' la si	Ji. 20
No.	Treat.	Pro.	Pro.	sub.Pro	.per A.	per A.	used	und.	W virw Warsha
		<u> </u>	<u> </u>	<u> </u>	105.	N.U	ĕ		A/
102	None	5	8.7	13.7	800	25	3175	200	
	None			14.6			2858	196	414
103	P	7.5		23.6			3747	127	
103	P	8	16		1280			ようじ	210
104	N	5.5	11.4	16.9	880		4396	~00	
104	N	4.5	9.5	14	720	22.5	2705	190	Lint
105	K	6.5	13	19.5	1040		4060	202	
105		6.5	11.1	17.6	1040	32.5	3713	he with	209
106	NP	10.5	17.6	28.1	1680	52.5	4881	115	
106		8.1	16.6	24.7	1296	40.5	4125	+9:	
107	KP	6.3	13.5	19.8	1008	32	3394	111	
107	KP	8.2	17.9	26.1	1312	41	6528	250	2.20
108	KNP	8.7	16.6	25.3	1392	43.5	4163	165	
108	KNP		15.8	23.2	1184	37	4103	117	171
109		9.5	16.8	26.3	1520	47.5	4974	183	
	MgNP		18.2	28.2	1600	50	5095	180	184
110				15.4			2850	185	
110	Mnr			17.8			3502	197	181
	Legm	7.5	15	22.5	1300		4545	202	
111	Legm	4.5	9	13.5	720	22.5	2484	184	193

-46-

Table 7.

Taone di Results.

Series 200

	Soil Treat.	Grain Pro.	Straw Pro.	T.Dry sub.Prc.	Grain p.r A. los.	Grain p.: A. bu.	T. Wales Ged	G.Wate. for on sec. 1	6.ary
	None None	17.2	23.8 14	4 0 39	2752 2400	80 75	15415 12925	365 331	358
203 203	P P	17.2	32.8 44.4	50 72.1	2752 4402	86 138.3	10111	015 312	00 ¹
204 204	N N	25.8 28.6	35.2 39	6± 67.6	4048 4576	120.2 143	18368 20940	301 309	305
205 205	K K	16 22	24.6 32	40.6 54	206 0 3520	80 011	16865 22175	415 403	409
206 206	NP NP	39.2 34.8	59.8 51.9	99 86.7	6272 5568	196 174	33725 30545	340 351	545
207	KP KP	25.3	41.3	66.6 63.8	4048 3760	120.2	21970 27160	420 424	422
	KNP KNP	35.5	54.1 51.4	89.6 88	568 0 5856	177.5 183	31360 30040	350 341	3-15
	MgNP MgNP	28 32.7	41.5 52.4	69.5 85.1	448 0 5232	140 163.5	22425	308 318	313
	Mnr Mnr	17 22.5	28.1 34	45.1 56.5	2720 3600	85 102.9	18701 21075	412 373	392
	Legm Legm	25.1 19.4		60 43.6	4016 3104	125.5 97	20890 13533	348 310	529

-47-

Table of Resulus.

Se. 1.5 300.

		pro.	pro.	T.ary Sub.p:0. <u>B</u> .	Lor A.		c z . U	G. Water For one Suc. Av	B. CIY
	None None	23.8 15	51.2 38	75 55	ა808 ~400	119 75	25702 18050	-40	لأ 11 1⇒ت
303 303	P P	33 16.5	67 41.5	100 58	0200 2640	105 82.5	36008 22705	363 391	327
304 304	N N	63 60.9	95.6	156.5 156.5	10080 9744	315 304.5	56020 52315	364 334	349
305 305	K K	15 18	35.5 46	50.5 64	2400 288 0	75 90	15145 2232 0	300 372	336
306 306	NP NP	63.3 64.5	101.7 106		10128		67051 609c9	406 300	002
307 307		24.7	55.3		0952 0952		01312 29266	391 377	384
	KNP KNP	61.8 56	110.8 94	172.6 150	896 0		6256 0 57981	362 386	374
	MgNP MgNP		97 101.4		9520 10208	297.5		432 367	399
	Mnr Mnr	25.3	54.7 45.2	80 64.2	4048 3040	151.ĉ 95	33294 27175	4.16	619
	<u> </u>	41.8 41.8	77.7	119.5 116	8890 8890	209 209	45602 43665	382 378	380

Table 8.

•• - 1 E •••

From the 195 my C, which is the set of the me and the prain and shan i sharing for a second second up to 80 plicing a contra . The providence and the second Was almost an entry00 may .00 mars ious pols w thim the Deliver a plane 00 to the to show was i an include the state of the state of indicase the factor is an all a second of the second of the second of the or its construction and the Program of Program and the second of the second With Nations in the second of the second sec than with any other being a structure. In some to 200 in the second structure the application of these the sub-side is a we have should be applied. in this series one philo was grader and a most of control of applied is complete an annumber of

Potastial main applied along outs is indicate and in plate save in series 100, 4. milling case in the nade Was but elades. While applied in conclusion dith the propheric 5 and monopole and phosphorus concluse, it proved to mave a detriction and cheest. The largest yields the grain in source 100 issues in applied of the two mesters in conclusion with director and prospheres. The first action was slight, however, and is series 200 and 000 in conclusions offices of magnesian were forma.

The manure has but situal effect. A slight increase in yield of both grain and straw formula its applies con in all the series. The application of the regime gave an increase on yield in all one series over the manure. In series 300 this increase was very pronounced.

-49-

When considered from the standpole, of grams of wat they find for the production of a gran or any many of the actor not apply from the data obtained that any of the treasment apprend the solution any appreciable effect under une three conditions. When the loss no content of the soil was at 20 percent of saturation the plants giveing under the influence of K.N.P. treatment used to grams of water, for a gram of dry matter, which was equivalent to about 20 percent less, for the production of a gram of dry matter, than the planet on the soil without creatment. The same is true, to a less theory, in series 200 with both the K.N.P. and Mg.N.P. treatment, but the Sudarest amount of waver was used by the plant growing under the influence of nitrogen, the difference using in the latter case by grams or about 15 percent for a gram of dry matter in favor of the altregen treatment. There was a slight checking of transpiration in the 60 percent moisture series falling the application of petassion. It amounted, however, to only 5 grams of water, or less than 2 percent, for the production of each gram of dry matter.

The Root System.

After the orop was marvested the rects were carefully washed out of pots 102, 108, 202, 208, 302, and 308, aried and weighed with the following results:

No.of Pot	Soil	Wt.of	To.wt.ary mat.	Pro. of root	Average
	Treat.	roots,	in tops.	to top.	
102	None	1.6	13.7	1:8.5	
108	K.N.P.	2	23.2	1:11.6	1:10.1
202	None	4.8	40	1:8.3	
208	K.N.P.	5.1	51.4	1:10	1:3.1
302	None	6.1	75	1:12.3	
308	K.N.P.	9.1	150	1:16.4	1:14.0
T					

It will be seen from the above table that an increase of both top and roots followed the K.N.P. soil treatment, but the proportion

-49 a-

of top to roots is considerable less without the treatment.

The yield of boar rotts and tops increase as the percent of water in the soil increased and reached its maximum propertion with 80 percent of water in the soil.

Conclusions.

From the results of the foregoing experiment the following our-

The yield was increased by increasing the water content if the soil up to 80 percent of its water holding capacity.

With the water content of the soil at 20 per cent of its water holding capacity, nitrogen in the form of dried blood, uld not increase the yield of neads. With a water content at 40 or 30 per cent, nitrogen in the form of orled blood, whether alone or in combination with phosphorus or potassium, gave an increase in head yield as well as in straw yield. In every two cases, nitrogon gave better returns in combination with the other elements, especially phosphorus. When the water content of one soil was sufficient for good growth, i.e., at 40 percent, nitrogen decreased transpiration. With an abundance of water this was not true.

The influence of phosphorus in the form of bond meal was marked during the second period of growth. It had but little effect in increasing the number of heads; but a marked effect on the length of head and the filling of the panicle. This is especially true in the 20 per cent of moisture content of the soil. It had no retarding effect on transpiration save in series 100, in which case there was a saving of about 13 per cent.

Potassium alone in the form of the sulphate had no appreciable effect either in the number of heads or the length of heads in socies 100 and 200, but was harmful in series 300. In all three series the plants "fired" early under the influence of potassium. It had a retarding influence on evaporation in a soil containing 80 per cent of water. In series 100 it retarded evaporation slightly and increased the average yield 2.9 gr.

Potassium and phosphorus when applied together did not increase very markedly the number of heads produced, but the length of the

-50-

heads in each series was increased. This is more especially true in series 100. The maximum amount of water for the production of one centimeter of heads was reached in each series under the influence of this soil treatment. With this treatment the plants "fired" but this trouble came on somewhat later than when potassium was applied alone. ¶ Potassium, nitrogen and phosphorus when applied together gave the maximum yield. The plants growing under the influence of the three elements in series 100 and 200 used but slightly more water for the production of one centimeter of heads than was used by the plants growing in the soil without treatment. In the 200 series, however, the amount of water required was considerably in excess of that required by the plants in the soil alone. "Firing" of the plants did not occur under this soil treatment. ¶On the whole the magnesium proved to be quite as effectual as the potassium when applied with nitrogen and phosphorus. In each series the plants growing under this treatment resemble very closely the plants growing under the influence of potassium nitrogen and phosphorus.

It had no retarding effect on transpiration nor was its application accompanied by early "firing."

The application of manure was accompanied, after a time, by an increase in vegetative growth.

The legume treatment gave better results than the manure. The plants in these pots receiving this treatment resembled the plants in those pots which had received the dried blood.

The number of grams of water required for one centimeter of heads produced increased as the water content of the soil increased. This increase is not proportional in the various soil treatments.

Soils low in fertility have their productive power increased by a copious supply of water.

-51-

An increase in soil humidity decreased the temptrature of the soil and delayed the maturity of the crop. When the water content of the soil is sufficient for good growth the proportion of train to straw varied but little with an increase of soil number, the ey decreasing the water content to 20 percent of saturation and propution of straw to grain increased. Fertilizers give larger returns when applied to the soils that were abundantly supplied with water.

The results following a specific soil treatment may be greatly modified by the humidity of the soil.

Plants growing on the soils low in humidity used considerally less water for unit of dry matter when an ample amount of soluble plant food is available than when the contrary condition prevailed.

Fertilizers increased the production of both roots and top but decreased the proportion of top to root.

An increase of water in the soil from 20 to 40 percent saturation effected but little the proportion between top and root but a further addition of water up to 80 percent saturation decreased this propertion.

Literature rifed.

1. Beal, W. H.

Farmers' Bul. U.S.Dep. of Agr., No.114

2. Burgerstein, Alfred

Die Transpiration Der Pflanzen, 1904, 135-139.

3. Deherain, P. P. von

Biederman's Centralblatt, 1893, XXII, 644.

4. Gain, E.

Exp. Sta. Rec., vol. 8, 3.

5. Hopkins, C. G.

111. Exp. Sta., Bul. 123.

6. Heinrich, R.

Zweiter Ber. landw. Vers. Stat., 1894, 170-174.

7. King, F. H.

Wisconsin Sta. Report, 1893, 167-200.

8.	**	11	81	1894,	240-248.
9.	n	¥	98	1897,	229.
10.	87	п	77	1890.	111-120.

11. Kohl, F. G.

Die Transpiration der Pflanzen, 1886, 82-86.

12. Livingston, B. E.

Botanical Gazette, 1905, XL, 178-195.

13. " " 1903, XXXVIII, 67-71.

14. Lawes, J. B.

Jour. Hort. Society, London, 1886, V, 38, also Rothamsted Memoirs, 1886, I.

15. Lawes and Gilbert

Ann. Agron., 1875, I, 251

-53-

16. Maxwell, W. Jour. Amer. Chem. Soc., 1898, XX, 469-483. 17. Mäercker, M. Jahrb. Agr. Chem. Vers. Stat. Halle, 1895, 15-16. 18. Mäercker, M. Chem. Centbl., 1894, LXV, 595 19. Mac Dougal, D. T. Plant Physiology, 1901, 6 20. Pfeffer, W. Physiology of Plants, 1880, I, 234-286 21. Pagnoul, A. von Bul. Sta. Agron. Pas de Calais, 1898, 10-15 22. Pagnoul, A. von. Biederman's Centbl., 1900, XXIX, 96 23. Prianishnikov, D. Exp. Sta. Rec., XIII, 631. 24. Schroeder, M. R., Jr. Annual Agricultural Institute, Moscow, 1896, II, 231-232 25. Seelhorst, C. von Journal Landw. 1901, IXL, 231-250 26. Seelhorst, C. von Jour. Landw., 1900, VIIIL, 165-177. 27. Seelhorst, C. von. Exp. Sta. Rec., XIII, 6 28. Sachs, J. von. The Physiology of Plants, 1882, 252, also Landw. Vers. Stat., 1858, I, 203 29. Tucker, M. and Seelhorst, C. von. Journal Landw., 1898, 46, 53-63

-54-

30. Thorne, C. E.

Ohio Exp. Sta. Bul. 167

31. Whitney, M.

Mary Sta. Rep., 1891, 249-296

32. Wollny, E.

Vrtljschr. Bayer. Landw. Rathes, 1899, IV, 437-479, Exp.Sta.

Rec., XI, 717

33. Willard, J. T.

Kans. Exp. Sta. Bul. 89

34. Widtsoe, John A.

Utah Exp. Sta. Bul. No. 80, 101

APPENDIX

PLATES AND TABLES

Explanation of Plates.

Plates I, II, and III are the photographs of one half of the pots in series 100, 200, and 300 respectively. The top row of numbers on the pots represent the series and pot numbers. The middle row represents the water content of the soil. The letters at the bottom represent the soil treatment. For example, 108 means pot eight in 20 100 series. K.N.P.

20 means that the soil contains water to make it 20 per cent of saturation, K means potassium, N means nitrogen, and P means phosphorus. Plates IV to XIII inclusive represent the corresponding pots in each series. Plate XIV represents corresponding pots in the three series as they appeared just before heading. Plate XV represents corresponding pots in the three series as they appeared after 60 days from planting.

PLATE I.

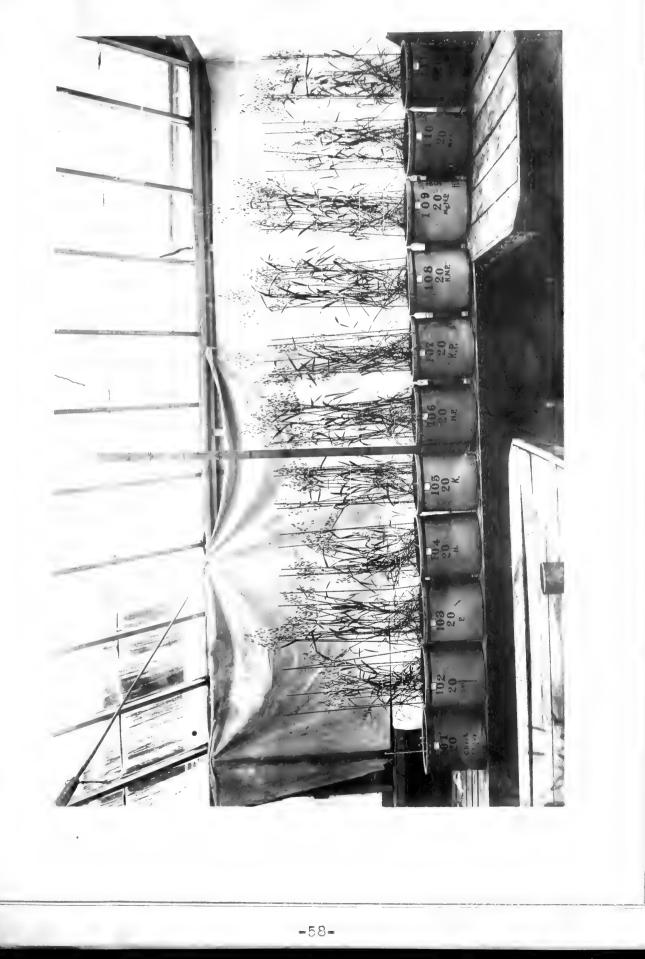
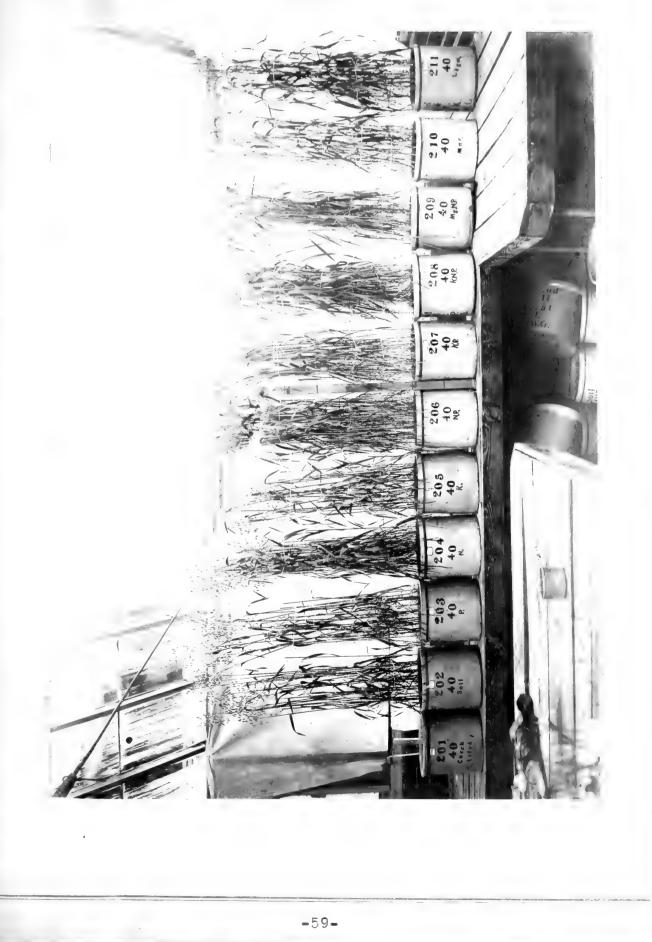
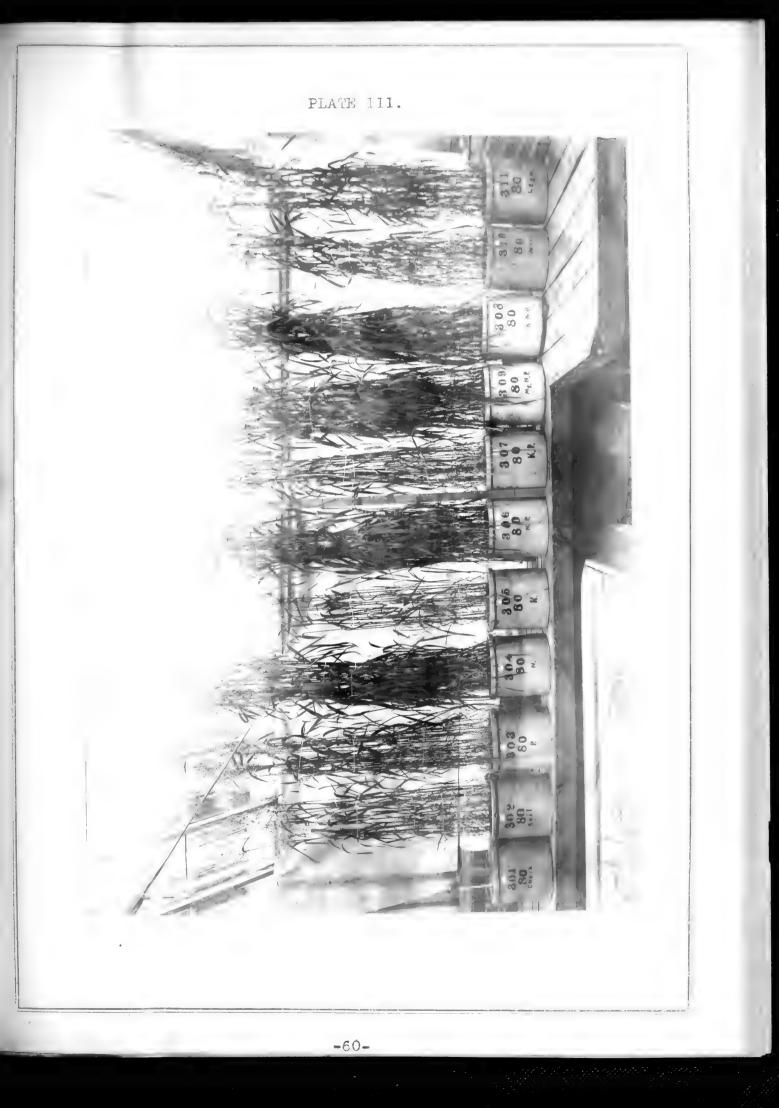
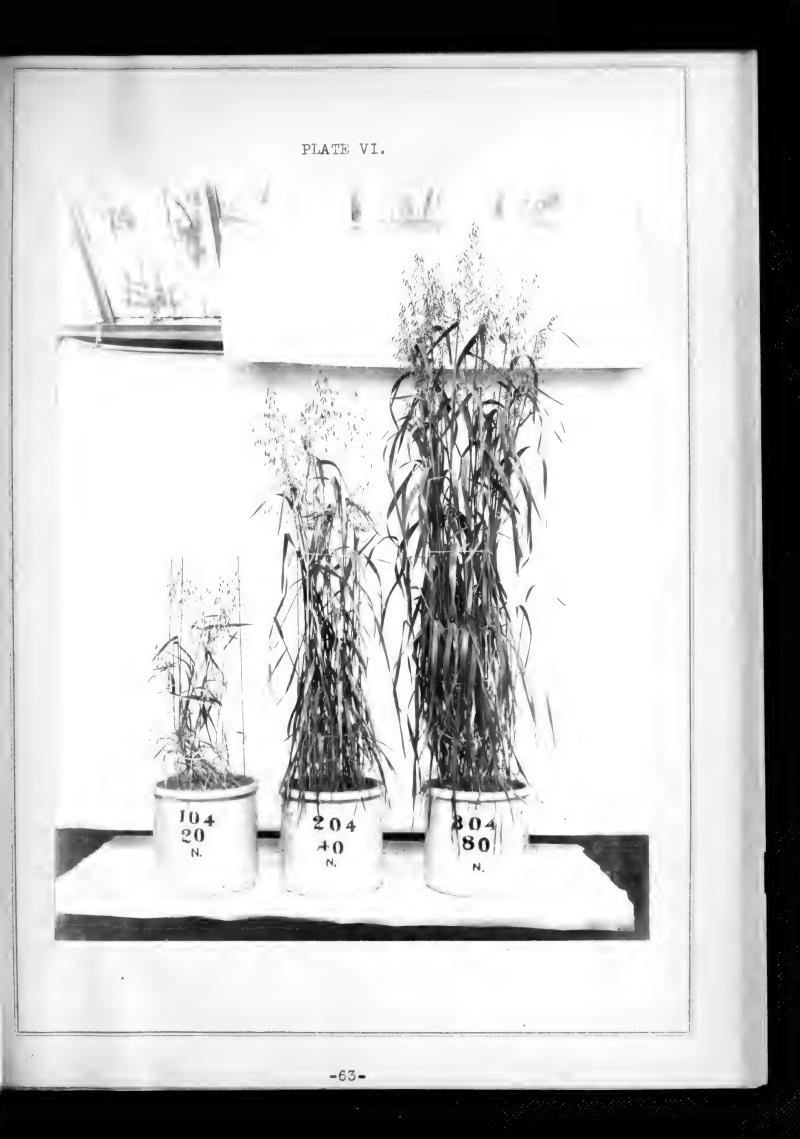
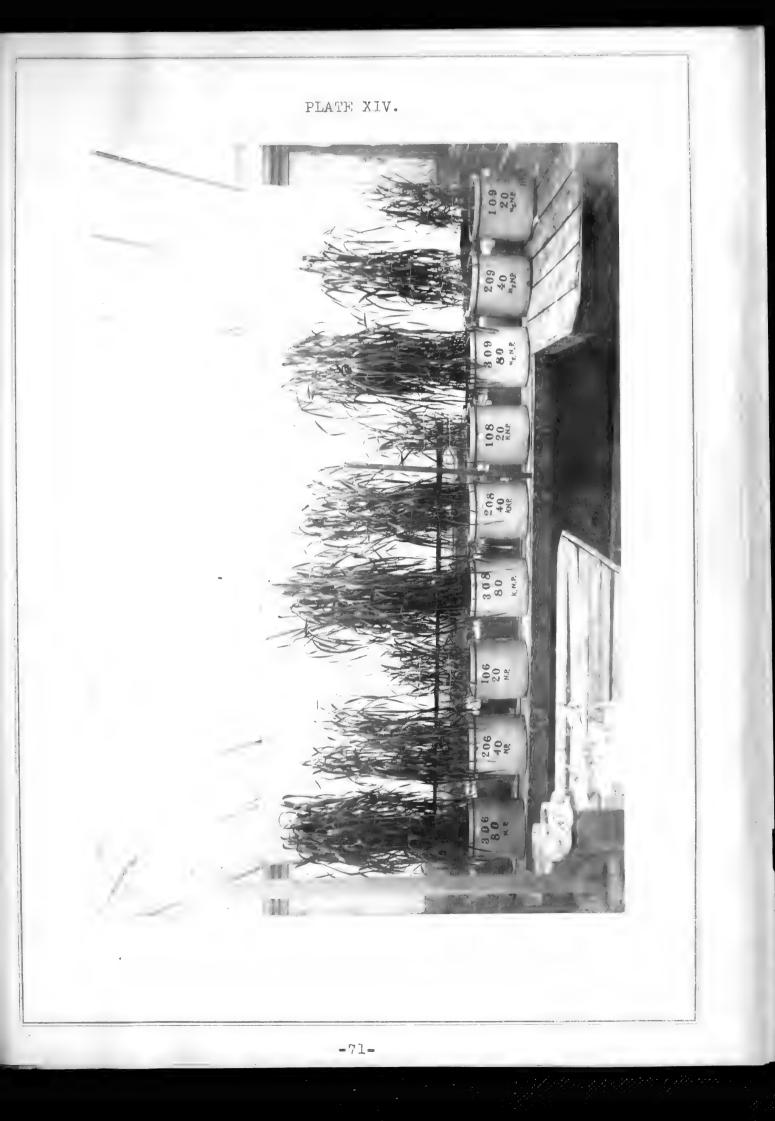
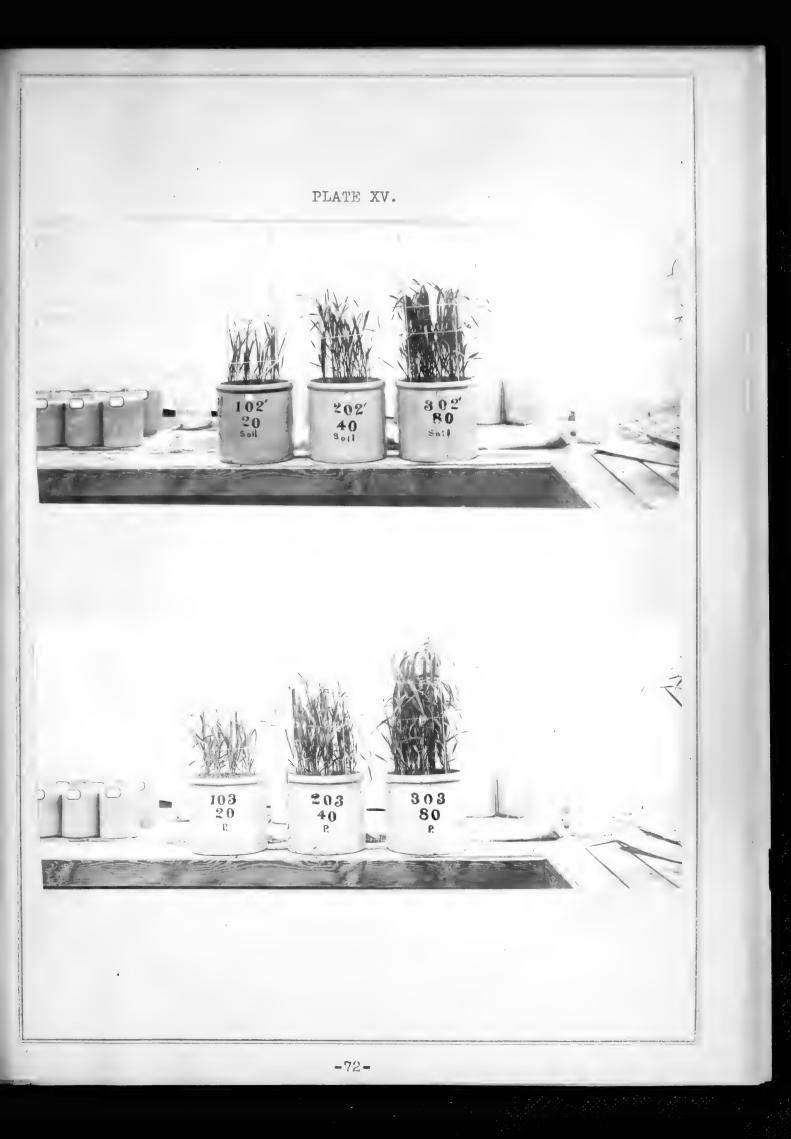
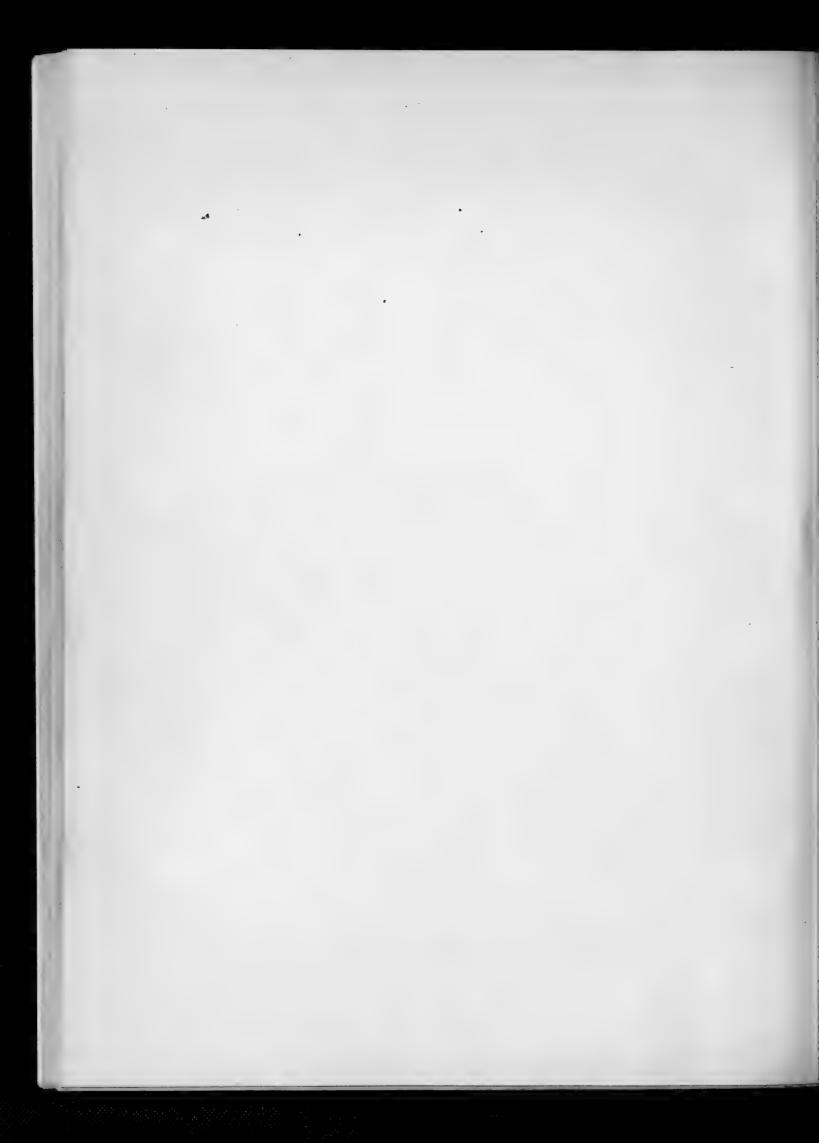




PLATE II.









Explanation of Tables.

The numbers in the first columns in tables 1, 11, and 111 represent the pot numbers. The numbers in the second column represent the weight of the empty jars at the time of filling them with soil; in the third the weight of the soil plus the water it contained at the time the fertilizers were added; in the fourth, the per cents of in the soil of the various pots at the time the soil water was weighed; in the fifth, calculated weights of the water free soil in the various pots. Each number in the sixth column in each table represents the sum of the weights of the pot, the dry soil, the amount of water to make it up to the required moisture contents, the glass tube in the center of the pot, and the supports for the plants. The letters in the last column represent the soil treatment. P = phosphorus; N = nitrogen; K = potassium; Mg = magnesium; Mnr = manure, and Lege legume (Red clover). The "checks" were pots in which no plants were growing and were kept to ascertain the amount of evaporation from the soil.

In the tables "Daily amounts of water added", the top row of numbers is the pot numbers. The other numbers, excluding totals, represent the number of cubic-centimeters of water which were added daily. In all these tables the first two pots were check pots.

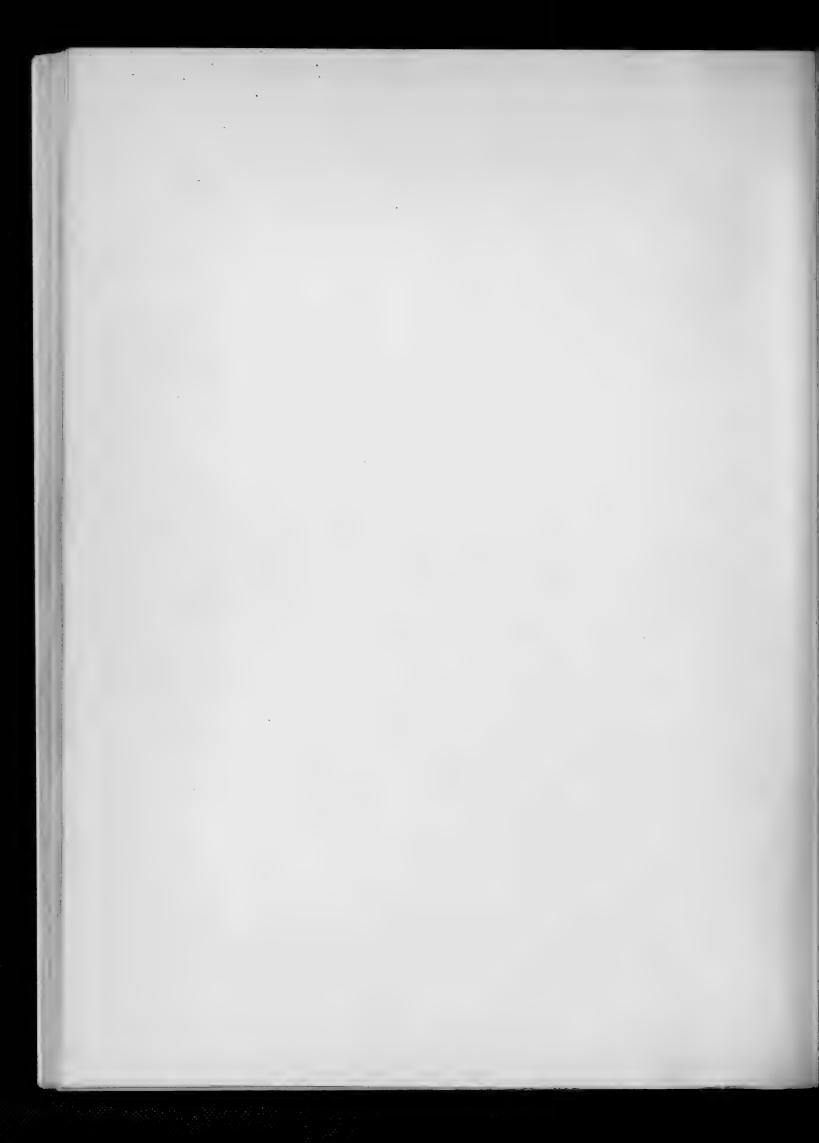


Table I. Table of Weights. Series 100.

No.of Pot			Per cent Water	Wt.of Dry Soil g.	Standard Wt.of Pot g.	
101	7255	17825	18.80	14474	23094	Check
101'	8190	17070	16.30	14288	23826	Check
102	9270	16985	20.10	13571	24469	None
102	7435	16150	18.19	13213	22244	None
103	8830	17515	18.96	14195	24799	P.
103	8970	16360	16.10	13726	24428	P.
104	6890	18695	18.80	15181	23844	N.
104	7315	17820	16.07	14957	24025	N.
105	7315	17755	16.45	14935	24201	K.
105'	7985	17595	18.16	14400	24088	K.
106	7635	16115	16.98	13379	22715	N.P.
106	7565	16615	15.30	14073	23311	N.P.
107	8320	17235	17.52	14216	24222	K.P.
107	7880	17030	16.59	14205	23770	K.P.
108	8275	17305	18.56	14094	24044	K.N.P.
108'	7705	17295	16.76	14398	23805	K.N.P.
109	7365	17950	18.89	14560	23731	Mg.N.P.
109	7800	17870	16.84	14861	24495	Mg.N.P.
110	7430	17190	16.66	14327	23453 .	Mnr.
110	7300	18080	16.19	15153	24223	Mnr.
111	7290	18080	17.18	14974	24018	Lege.
111'	9195	16425	18.09	13455	24267	Lege.

-74-

Table II. Table of Weights. Series 200.

No.of Pot	Wt.of Pot g.	Wt.of Soil g.	Per cent Water	Wt.of Dry soil g.	Standard Wt.of Pot g.	
201	8860	16405	17.51	13633	25021	Check
201'	8800	15550	16.82	12935	24138	Check
202	8370	20535	24.34	15531	27163	None
202	7925	19200	23.32	14723	25758	None
203	8140	20165	24.49	15227	26567	P.
203	7795	17965	20.05	14364	25204	P.
204	9175	17175	21.07	13557	25632	N .
204	8430	17205	19.27	13890	25280	N.
205	7925	18055	18.65	14688	25716	К.
205	8105	18280	19.20	14771	25991	К.
206	8300	17985	19.23	14527	25901	N.P.
206	8140	17595	17.75	14472	25764	N.P.
207	7570	17930	16.71	14934	25652	K.P.
207	7705	17465	17.05	14488	25260	K.P.
208	8320	17640	18.09	14459	25841	K.N.P.
208	7685	16490	18.20	13489	24092	K.N.P.
209	8495	17315	19.93	13865	25315	Mg.N.P.
2091	7760	16370	15.38	13853	24566	Mg.N.P.
210	9300	16205	17.16	13425	25601 ·	Mnr.
210	7380	18790	20.05	15023	25227	Mnr.
211	6600	17715.	18.18	14495	24164	Lege.
211	7570	18155	21.15	15104	25852	Lege.

Table III. Table of Weights. Series 300.

No.of Pot	Wt.of Pot g.	Wt.of Soil g.	Per cent Water	Wt.of Dry Soil g.	Standard Wt.of Pot g.	
301	8930	16785	19.84	13455	27303	Check
301'	8890	17015	19.13	13761	27679	Check
302	7860	17615	19.71	14143	27510	None
302'	6385	20135	23.58	15378	26068	None
303	7900	18400	21.47	14450	27967	P.
303 '	9020	19680	24.73	14814	28752	P.
304	7570	19910	22.23	15485	29044	N.
304	8995	19975	23.68	15246	29336	N.
305	8860	19740	28.88	15027	28780	K.
305'	7445	19700	22.60	15248	28124	K.
306	9150	15400	16.51	12858	27051	N.P.
306	8510	18030	20.28	14374	28273	N.P.
307	8905	15655	16.23	13115	27156	K.P.
307	9145	18330	23.12	14093	28728	K.P.
308	7360	19670	22.14	15315	28604	K.N.P.
308	8275	16910	19.62	14593	27962	K.N.P.
309	7435	16625	17.03	13794	26609	Mg.N.P.
309	8340	16175	17.28	13380	26941	Mg.N.P.
310	6845	17745	18.76	14416	26865	Mnr.
310	7650	18040	21.10	14234	28013	Mnr.
311	8070	20250	22.23	15749	29903	Lege.
311'	9070	18665	22.13	1553 5	29252	Lege.

-76-

	We have lead	line como dites							
Table IV.	water not	Water holding capacity							
	of	Soil.							
First test.									
No.of Pot	Wt.of Soil	Water absorbed	Per cent						
301	13455 g.	5780 g.	42.9						
Second test.									
301'	13761 gr.	6319 gr.	45.9						
Third test.									
201	13633 gr.	6127 gr.	44.2						
Fourth test.									
301	13455	5785	43.						
Fifth test.									
301'	13761	6322 Average	46.						

-77-

Table V. Daily amounts of water added.

Series 200. C.C. March.

Date	201	201	202	202	203	203	204	204	205	205	206	206	
1	60	60	20	15	50	60	60	60	60	60	60	60	
3	60	60	20	10	50	300	130	140	130	130	130	130	
8	66	80	250	140	100	400	190	260		400	540	480	
9	15	20	50	30	40	80	40	50	80	100	100	100	
10	15	20	50	50	60	60	40	50	80	80	80	80	
11	20	20	50	50	60	60	40	40	80	80	80	80	
12	20	20	50	50	60	60	40	40	80	80	80	80	
13	20	20	50	50	60	60	40	40	80	80	80	80	
14			200	180	380	450	220	250	200	190	390	240	
15	20	20	80	80	130	130	70	70	100	100	135	135	
16	20	20	80	80	130	130	70	70	100	100	135	135	
17	20	20	80	80	130	130	70	70	100	100	135	135	
18	20	20	80	80	130	130	70	70	100	300	135	135	
19	20	20	80	80	130	130	70	70	100	100	135	135	
20	20	<u></u> 20	80	80	130	130	70	70	100	100	135	135	
21	<i></i> #50	[#] 50			60	220			#350		220	150	
22			80	80	130	130	70	70	70	100	135	135	
23			80	80	130)	100	135	135	
24			80	80	130	130	70	70		100	135	135	
25	20	20	80	80	130	130	70	70	100	100	135	135	
26	20	20	80	80	130	130	70	70	100	100	135	135	
27	20	20	80	80	130	130	70	70	100	100	135	135	
28			200	100	420	750	290	500		410	580	500	
29	20	20	90	90	150	150	100	100	100	100	150	150	
30	20	20	100	100	210	210	115	115	110	110	200	200	
31	20	20	100	100	210	210	115	115	110	110	200	200	ar 1.491 -
Metel	516	540	0000	1005	7400	1070	0000	0000	0000	7100	4530	4350	

Total 516 540 2090 1785 3470 4630 2260 2770 2980 3170 4510 4150

Total

Transp.##528 1562 1257 2042 4102 1732 2242 2452 2642 3982 3622

Excess.
Obtained by subtracting average evaporation (528) from the
check pots from the totals.

Table V con.

Daily amounts of water added.

Series 200. c.c. March.

Date	207	207	208	208	209	209	210	210	211	211	
1	60	1000#	60	60	60	60	60	60	60	818	
3	130		130	130	130	100	130	130	50		
8	500		410	310	130	150	220	210	110		
8 9	100		80	60	40	50	40	40	40		
10	80		80	60	50	50	40	40	40		
11	80		70	70	50	50	40	40	40		
12	80	80	70	70	50	50	40	40	40		
13	80	188	70	70	50	50	40	40	40		
14	350	135	370	250	250	660	340	250	250	420	
15	135	135	110	110	85		90	90	90		
16	135	135	110	110	85		90	90	90		
17	135	135	110		85		90	90	90		
18	135	135	110	110	85		90	90	90		
19	135	135	110	110	85	85	90	90	90	40	
20	135	372	110	110	85	85	90	90	90	# 90	
21	312	160	250	200	240	390		30		$\#_{225}^{90}$	
22	160	160	130		110	110	90	90	90		
23	160	160	130		110	110	90	90	90		
24	160	160	130		110	110	90	90	90		
25	160	160	130	130	110	110	90	90	90	90	
26	160	160	130	130	110	110	90	90	90	90	
27	160	160	130	1.30	110	110	90	90	90	90	
28	700	620	500	450	420	500	200		204	0.0	
29	200	200	150	150	130	130	100		90	90	
30	230	230	180		180 180	180 180	120	-	120	120	
31	230	230	180	180	100	190	120	120	120	120	- 1- 1- AM
Tota	14840	4690	4040	3680	3130	358 0	2670	2640	2580	1548	
Tot.	4312	4162	3512	3152	2602	3052	2142	2112	2052	1020	

Trans.##

Excess.
Obtained by subtracting the average evaporation (528) from the
check pots from the totals.

Table VI.

.

Daily amounts of water added.

Series 300. C.C. March.

Date	301	301	302	302	303	303	304	304	305	305	306	306	
1	100	100	100	100	100	100	100	100	100	100	100	100	
1 3	150	160	155	155	155	155	155	155	155	155	155	155	
8	350	364	918		890	610	890	950	570	770	790	860	
9	75	75	180	180	180	160	180	210	120	170	170	170	
10	75	75	180	180	180	160	180	180	180	170	170	170	
11	75	75	180	180	170	170	180	180	175	175	170	170	
12	75	75	180	180	170	170	180	180	175	175	170	170	
13	75	75	1.80	"180	170	170	180	180	175	175	170	170	
14	130	132	80	#120	200	200	230	60	130	140	156	158	
15	85	85	170	50	180	180	180	180	170	170	170	170	
16	85	85	170	170	180	180	180	180	170	170	170	170	
17	85	85	170	170	180	180	180	180	170	170	170	170	
18	85	85	170	170	180	180	180	180	170	170	170	170	
19	85	85	170	170	180	180	180	180	170	170	170	170	
20	"80	"80	170	"170	180	180	180	180	170	170	170	170	
21	#60	#60	404	#100	540	370	290	140	250	350	310	366	
22	60	60	200	200	220	220	190	190	185	185	200	200	
23	60	60	200	200.	220	220	190	190	185	185	200	200	
24	60	60	200	200	220	220	190	190	185	185	200	200	
25	60	60	200	200	220	220	190	190	185	185	200	200	
26	60	60	200	200	220	220	190	190	185	185	200	200	
27	60	60	200	200	220	220	190	190	185	185	200	200	
28	290	340	1620	830	1950	1250		1250	1150	1500		1570	
29	70	50	250	250	250	250	250	250	250	250	250	250	
30	70	70	350	350	400	400	350		350	350	400	400	
31	70	70	350	350	400	400	350	350	350	350	400	400	
Tot.	2475	2531	7347	4945	8155	6965	7125	6755	6200	6960	7171	7329	
	2503												

Trans.##

Excess.
Obtained by subtracting the average evaporation (2503 c.c.)
from the check pots from the totals.

Table VI con. Daily amounts of water added.

Series 300. C.C. March.

Date	307	307	308	308	309	309	310	310	311	311	
1 3 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 7 28	100 155 860 170 180 180 202 180 180 180 180 180 180 180 230 230 230 230 230 230 230	100 155 900 190 190 180 180 180 180 180 180 180 180 180 230 230 230 230 230 230	100 155 100 175 175 175 175 175 250 190 190 190 190 190 190 220 220 220 220 220 220 220	100 155 436 170 175 175 175 190 190 190 190 190 190 250 220 220 220 220 220 220 220	100 155 950 190 190 190 190 190 190 190 190 190 19	100 155 850 190 190 190 190 190 190 190 190 190 19	100 155 1130 220 250 250 250 250 250 250 250 250 25	100 155 1380 270 250 250 250 250 250 250 250 250 250 25	$ \begin{array}{r} 100 \\ 155 \\ 1000 \\ 200 \\ 200 \\ 315 \\ 315 \\ 315 \\ 154 \\ 200 \\ 240 \\ 240 \\ 240 \\ $	100 155 1180 230 215 215 215 250 200 200 200 200 200 200 200 200 20	
29 30	250 420	250 420	250 420	250 420	250 420	250 420	250 380	250 380	250 420	250 420	
31	420	420	420	420	420	420	380	380	420	420	- 0400
Tot. Tot. Tran	7927 5424 5•	7671 5168	7210 4707	7086 4583	7687 5184	7635 5132	8196 5691	8585 6082	7884 5381	<mark>8690</mark> 6187	

-81-

Table VII.

Daily amounts of water added.

Series 100. C.C. April.

Date	101	101	102	102	103	103	104	104	105	105	106	106'
1 2 3 4	#194	#40	#100	#125	35 35 35 40	35 35 40 40	45 45 # ₂₈₆	# ₂₃₀	45 45 # ₃₀	# 75	45 45	25 45
5 6 7 8			35 35 35 35	35 35 35 35	40 40 40 40	40 40 40 40	30	30	40 40 40	40 40 40	40 40 40 40	40 45 45 40
9 10	144	24	35 100	35 125	40) 30 150	40	40 90	40	40
11 12 13			25	25	40 40 60	40 40 60			40 40 60	40	40 40 60	40 40 60
14 15 16			40 25 25	40 25 25	60 40 40	60 40 40	50 50 50	50 50 50	50 40 40	40 40 40	50 40 , 40	50 40 4 0
17 18 19	#60	30 10 10	26 25 25	25 25	125 55 55	# <u>100</u> 55 55	50 50	100	56 50 50	50 50 50	#110 70 70	85 70 70
20 21 22 23		10 10 10	25 25 25 25	25 25 25 25	55 55 55 55	55 55 55 55	50 50 50 50	50 50 50 50	50 50 50 50	50 50 50 50	70 70 70 70	70 70 70 70
24 25	10	10	120 40	40 30	150 65	120 65	50	50 50	7 5	60 55	84 75	60 70
26 27	10 10	10 10 10	40 40	30 30	65 65	6 5 65	50 50 50	50 50	25 25	55 5 5	75 75 75	70 70 70
28 29 30	10 10 10	10 10 10	40 40 40	30 30 30	65 65 65	65 65 65	50 50 50	50 50 50	50 50 50	65 55 55	75 75 75	70 70 70
Tot. Tot. Tran	254 22 s.##	190 22	826 604			1570 1348	900 678	760 538	1116 894			1535 1313

Excess.
Obtained by subtracting the average evaporation from the check
pots (222 c.c.) from the totals.

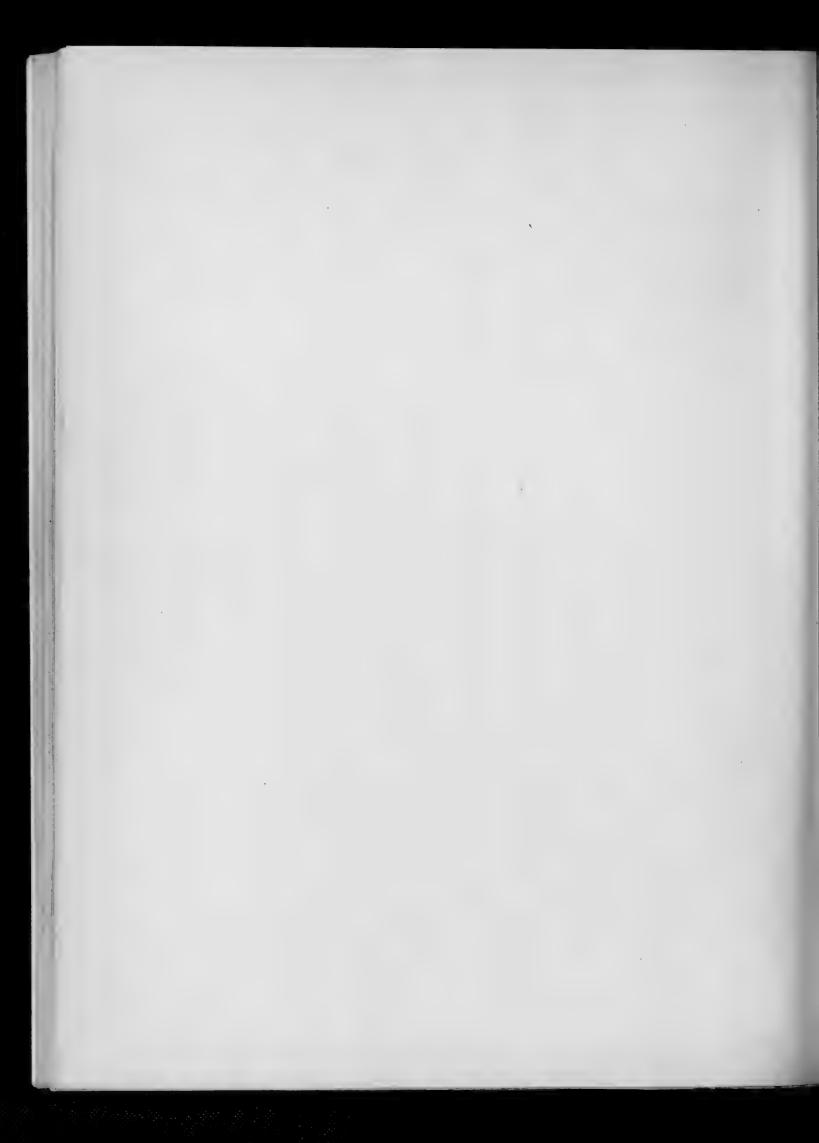


Table VII. con. Daily amounts of water added.

Series 100. C.C. April.

											Temper F	ature
Date	107	107'	108	108	109	109	110	110	111	111'	House	Soil
1	45	45	45		15	40			40 40		51.5	56
23	$\#_{40}^{45}$	45 130	45	#100	40	40 35	#130		40	#200	57.5	57.5
4	45 45	45 45	45 45	45	40 35	40 35		40	40		57.5 57	
5	45 45	45 45	45 45	40	40	40	40	40	40		68	65
7	45	45	45	40	50	50	40 40	40 40	40 40	40	60 49	60 53
8	45 45	45 45	45 µ45	45 145	50 50	50 50	40 1 40	, 40		, 40	60	58.5
10	$\#_{150}^{45}$	310	#50	#30	50	50	#130	#100	#40 20 20	[#] 200	63 60	6 5 55
11 12		80	45	45	50	50			40		65	64.5
13	4.0		70	70 60	85 70	85 70	40 40	60 50	60 50	40	74.5 68	70 72
14 15	40 40		60 45	45	50	50	40	50	40	40	57	58
16 17	40		45	45 50	50	50 95	40 #100	50	60 90	40 175	57.5	55.5 62.5
18	40		45	45	65	65	" 100	50	50	40	57.5	64
19 20	40 40		45 45	45 45	65 65	65 65	50	50 50	50 50	40 40	77	68
21	40		45	45	65	65	50	50	50	40	11	
22	40 40	40 40	45 45	45 45	65 65	65 65	50 "50	5 0 50	50 50	40 40	80	74
24	90	45	90	34	70	94	#100	54	115	40	72.5	73
25	50 50	50 50	55 55	45 45	65 65	70 70		50 50		#100	67 62	65
27	50	50	55	45	65	70	50	50	50	40	51	51.5
28	50 50	50 50	55 55	45 45	65 65	70 70	50 50	50 50	50 50	40 40	52 55	50 57
30	50	50	55	45	65	70	50	50	50	40	59	54
Tot. Tot.	1110 888	1305 1083	1310 1088	1104 882	1520 1298	1734 1512	720 498	1064 842	1255 1033	805 58 3	61.5	60.7

Trans.

Table VIII. Daily amounts of water added.

Series 200. C.C. April.

Date	201	201	202	202	203	203	204	204	205	205	206	206
1	10	10	35	35	75	75	4 0 40	4 0 4 0	40 40	40 40	110 115	60 65
23	10	10	40 265	40 100	75 205	75 575	200	450	40	565	725	595
4	20	20	100	100	210	210	115	115	110	150	325	325
5	20	20	100	100	210	210	115	115	110	150	325	325
6	20	20	100	100	210	210	115	115	110	150	325	325
78	20	20 20	100 100	100 100	210 210	210 350	115 115	$115 \\ 115$	110 110	150 150	325 325	325 325
9	20	"20	100	100	210	350	115	115		150	325	,,325
10	$\#_{50}$	#50	200	100	475	300	168	450	110 #75	335		#250
11			120	110	250	350	125	165	160	175	325	100
12	3.5	75	120	110	250	350 500	125 200	16 5 300	$\frac{160}{275}$	175 325	325 500	325 500
13	15 20	15 20	200	175 400	375 550	650	425	300	500	300	650	650
15	20	20	120	110	250	350	125	165	160	175	325	325
16	20	"20	120	110	250	350	125	165	160	175	325	.325
17	#145	#76	150	100	400	7.05	250	350	300	580	345	100
18			195 195	170 170	350 350	365 365	200 200	225 225	150 160	270 270	400 400	340 340
20	20	20	195	170	350	365	200	225	160	270	400	340
21	20	20	195	170	350	365	200	225	160	270	400	340
22	20	20	195	170	350	365	200	225	160	270	400	340
23	#20 #70	20	195	170	350	365	200		160	270	400 750	340 560
24 25	11.70	20	430 200	310 190	300 50	570 400	490 240	320 250	100 160	620 320	450	380
26		20	200	190	350	400	240	250	160	320	450	380
27	10	20	100	95	175	200	120	125	80	160	225	190
28	20	20	100	95	175	200	120	125	80	160	225	190
29 30	20 20	20 20	2 00 200	190 190	350 350	4 00 400	$240 \\ 240$	250 250	160 160	320 320	45 0 4 50	380 380
00	20	20	200	190	550	400	240	200	TOO	520	400	000
Tot.		410	4995 4610	4270 3885	7965 7580	9875 9490		6200 5815	4305 3920	7625	11095 10710	

Tot. 3 Trans.## **385 4610 3885 7580 9490 5018 5815 3920 7240 10710 9610**

Excess. ## Obtained by subtracting the average evaporation from the check pots (385 c.c.) from the totals.

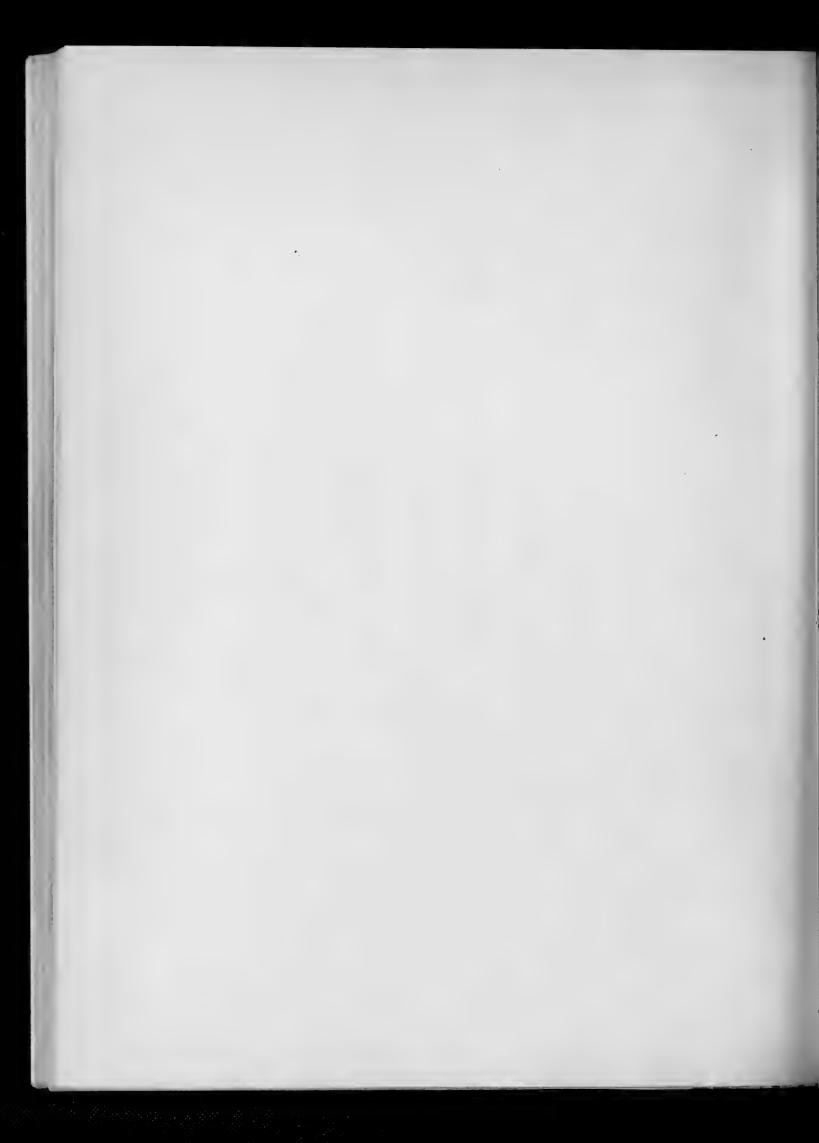


Table VIII. con. Daily amounts of water added.

Series 200. C.C. April.

											Temperature
Date	207	207	208	208	209	209	210	210'	211	211'	House [#] Soil
1	90	90	50	50	50	50	45	45	45	45	58
2 3	90	90	50	50	50	50	45	45	45 190	45 130	60 69
3	560	560	655 250	500 250	325 200	500 200	240 120	300 120	120	100	64.5
4 5	325 325	325 325	250	250	200	200	120	120	120	120	60
6	325	325	250	250	200	200	120	120	120	120	69
7	325	325	250	250	200	200	120	120	120	120	65
8	325	325	250	250	200	200	120	120	120	120	55
9	"325	"525	250	250	200	200	120	120	120	120	65
10	#225	#225	275	250		500	150	265	130	300	62
11	100	100	260	260	200	200	130	145	125		60
12	325	325	260	260	200	215 360	130 210	145 220	145 225	200	70 75
13 14	500 650	500 650	380 580	380 580	350 540	540	340	450	450	300	68
15	325	325	260	260	200	215	130	145	145	100	59
16	325	325	275	275	200	215	130	145	145	100	
17	80	90	500	325	105	475	275	455	340	200	58
18	330	330	360	360	260	300	200	240	240	200	63
19	330	330	360	360	260	300	200	240	240	100	
20	330	330	360	360	260	300	200	240	240	100	6 8
21	330	330	360	360	260	300	200	240	240	100	72
22 23	330 330	330 330	360 360	360 360	260 260	300 300	200 200	240 240	240 240	100	
24	600	500	600	600	500	820	740	660	510	275	71
25	370	360	420	420	300	370	275	300	300	125	66
26	370	360	420	420	300	370	275	300	300	125	64
27	185	180	210	210	150	185	140	150	150	75	57
28	185	180	210	210	150	185	140	150	150	40	58
29	370	360	420	420	300	370	275	300	300	125	58
30	370	360	420	420	300	370	275	300	300	125	51

Tot. 9425 9485 10345 9990 6980 8990 5880 6685 6155 3480 61.5 64 Tot. 9040 9100 9960 9605 6595 8605 5495 6300 5770 3095 Trans.

See Table VII con.

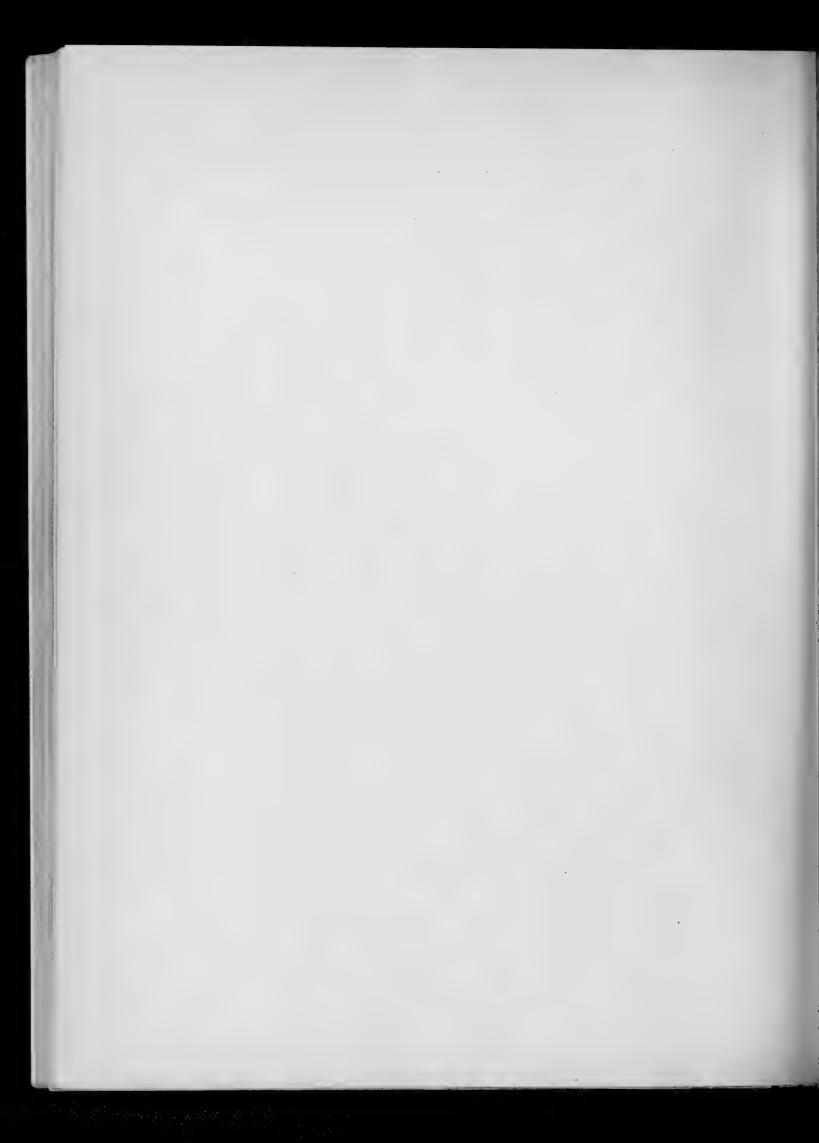


Table IX. Daily amounts of water added.

Series 300. C.C. April.

Date	301	301	302	302	303	303	304	304	305	305	306	306
1	30	30	125	125	150	150	125	125	125	125	150	150
2	40	30	125	125	150	150	125	125	125	125	150	150
3	150	130	555	300	550	100	690	575	100	245	710	660
4	70	70	350	350	400	400	350	350	350	350	400	400
5	70	70	350	350	400	400	350	350	350	350	400	400
6	70	70	350	350	350	250	350	350	350	350	400	400
7	70	70	350	350	400	350	350	350	350	350	400	400
8	70	70	150	150	200	150	150	150	150	150	200	200
9	70	70	350	350	400	350	350	350	350	350	400	400
10	50	50	230	#350	308	#150	600	500	#485	#250	665	640
11	70	70	350		400	250	350	350		100	420	420
12	70	70	350	300	400	350	400	400	300	300	420	450
13	70	70	500	500	1200	500	1200	1260	300	300	1400	1400
14	70	70	600	615	1200	1000	1140	1200	350	350	1300	1300
15	70	70	350	300	400	350	400	400	300	300	225	450
16	70	70	350	300	400	350	400	400	300	300	225	450
17	300	250	700			#300	560	300	#250	910	800	480
18	90	90	450	300	500	100	630	630	100	360	700	700
19	90	90	450	300	500	400	630	630	300	360	700	700
20	90	90	450	300	500	400	630	630	300	360	700	700
21	90	90	450	930	500	400	630	630	300	360	700	700
22	90	90	450	300	500	400	630	630	300	360	700	700
23	90	90	450	300	500	400	630	630	300	360	700	700
24	290	250	1060	6001	600	700	2500	2000	520	900	2100	2330
25	120	120	550	420	660	440	900	900	350	450	900	900
26	120	120	550	480	660	440	900	900	350	450	900	900
27	60	60	180	190	220	150	300	300	120	150	300	300
28	60	60	180	190	220	150	300	300	120	150	300	300
29	120	120	550	480	660	440	900	900	350	450	900	900
30 _	120	120	550	480	660	440	900	900	350	450	900	900
Tot.	2840	2720	124759	9735	14988	9460	18370	17515	7560	10115	19165,	19480
Tot.	278	30		6955	12208	6680	15590	14735	4780	7335	16385,	16700
TLAU	s•##											
										•		
						-						
				1								
_11	Tiles a				1	.	20 010 vai 900 620					
#	Exce	222.										

Obtained by subtracting the average evaporation from the check pots (2780 c.c.) from the totals.

Table IX Con. . Daily amounts of water added.

Series 300. C.C. April.

Temp.

											romb.
Date	307	307	308	308	309	309	310	310	311	311'	Soil#
11	155	155	155	155	1 55	155	125	125	155	155	56
	155	155	155	155	155	155	125	125	155	155	56
23	265	340	725	705	565	500	500	380	500	595	64
4	420	420	420	420	420	420	380	380	420	420	61
5	420	420	420	420	420	420	380	380	420	420	58
6	335	335	420	420	420	420	380	380	420	420	65
7	375	375	420	420	420	420	380	380	420	420	60
8	150	150	200	200	200	200	150	150	200	200	54
9	375	375	420	420	420	420	380	380	420	420	61
10	#75	#50	500	125	290	425	75		168	125	60
11	375	375	420	420	420	420	380	380	420	420	58.5
12	375	375	420	420	420	420	380	380	420	420	66
13	500	500	1250	1250	125	1250	1200	1200	1250	1250	72
114	700	700	1300	1300	1300	1300	800	800	1300	1300	67.5
15	375	375	420	420	420	420	380	380	420	420	59
16	375	375	420	420	420	420	380	380	420	420	58.5
17	420	190	640	140	320	620	90	#250	45	#350	57
18	450	440	700	650	650	700	500	250	600	200	63
19	450	440	700	650	650	700	500	475	600	575	
20	450	440	700	650	650	700	500	475	600	575	67
21	450	440	700	650	650	700	500	475	600	575	69
22	450	440	700	650	650	700	500	475	600	575	70
23	450	440	700	650	650	700	500	475	600	575	
24	1060	- 1030	2550	2210	2300	2050	800	100	1780	1380	70
25	540	520	900	860	860	880	540	480	780	690	65
26	540	520	900	860	860	880	540	480	780	690	64
27	180	175	300	285	285	295	180	160	260	230	57
28	180	175	300	285	285	295	180	160	260	230	58
29	540	520	900	860	860	880	540	480	780	690	57.5
30	540	520	900	860	860	880	540	480	780	690	55
Tot.	12050	11715	19655	17930	17100	18745	12825	11165	16373	15235	61.7
Tot.	9270	8935	16875	15150	14320	15960	10045	8385	13593	12755	

Trans.

See Table VII con. for house temperature.

-87-

Table X.

Daily amounts of water added.

Series 100 c.c. May.

Date 101	101	102	102	103	103	104	104	1.05	105	106	106
1 #46 2 3 4 5 6 10	#46 10	42 40 40 20 20 40	74 40 20 20 40	65 65 37 37 65	65 65 37 37 65	50 50 25 25	#150 50	94 50 25 25 50	#50 55 23 23 55	75 75 37 37 75	70 70 35 35 70
7 10 8	10	40	40 #50	65 † #30	65	50 #75	50 #125 †	. 50 . ,	551 #25	751	707
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 10 10 10 10 10 10 10 10 436 10 10 10 10	$\begin{array}{r} 40\\ 40\\ 40\\ 40\\ 40\\ 40\\ 40\\ 40\\ 40\\ 40\\$	40 75 50 50 80 40 40 100 40 60 60 80 65 83 83 55 55	65 65 65 65 65 65 65 65 130 65 98 98 130 70 105 105 70 70	65 65 102 65 194 65 130 65 98 98 170 75 105 105 75 75	75 75 75 75 75 75 75 150 75 107 75 107 75 60 90 60 60	t 50 50 50 50 100 50 75 75 60 90 90 60 60	50 50 75 50 204 50 204 50 204 50 75 75 158 66 87 87 65 65	55 56 88 55 116 55 110 55 120 120 80 80 80	75 75 75 75 210 75 210 75 150 75 108 164 85 125 125 85 85	70 70 105 70 70 66 70 140 70 140 70 105 105 95 90 135 135 90 90
Tot. 190 Tot. 190 Trans.44-	190	1393 1203					1085 895				

Excess.

Table X con.

Daily amounts of water added.

Series 100 c.c. May.

Date	107	107'	108	108'	109	109'	110	110	111	111'	Tem <u>r</u> House	perature Soil
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 8 9 0 11 2 3 4 5 8 9 0 11 2 3 4 5 8 9 0 11 2 3 4 5 8 9 0 11 2 3 4 5 8 9 0 11 2 3 4 5 1 5 8 9 0 11 2 3 4 5 1 1 2 2 2 3 4 5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50 50 25 25 50 50 50 50 50 50 50 5	$ \begin{array}{c} 128 \\ 60 \\ 60 \\ 30 \\ 30 \\ 60 \\ 50 \\ 100 \\ 50 \\ 75 \\ 360 \\ 100 \\ 150 \\ 150 \\ 100 \end{array} $	72 50 50 25 25 50 50 50 50 55 55 196 55 196 55 196 55 196 55 196 55 100 55 70 105 70	$\begin{array}{r} 45\\ 46\\ 23\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45$	65 65 65 65 65 65 65 200 65 65 200 65 130 65 130 65 97 97 80 120 80	70 70 35 35 70 70 70 70 105 70 70 200 70 200 70 70 200 70 105 105 105 140 80 120 80	#100 50 25 50 50 #125 50 75 50 50 72 50 50 72 50 50 72 50 50 72 50 50 72 50 50 72 50 50 72 50 50 72 50 50 72 50 72 50 50 72 50 50 72 50 70 72 50 70 72 50 70 72 50 70 70 70 70 70 70 70 70 70 70 70 70 70	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$ \begin{array}{r} 112 \\ 50 \\ 25 \\ 25 \\ 50 \\ 50 \\ 75 \\ 50 \\ 75 \\ 50 \\ 50 \\ 250 \\ 75 \\ 105 \\ 75 \\ 105 \\ 75 \\ 75 \\ 105 \\ 75 \\ 75 \\ 75 \\ 105 \\ 75 \\ 75 \\ 105 \\ 75 \\ 75 \\ 105 \\ 75 \\ 75 \\ 105 \\ 75 \\ 75 \\ 105 \\ 75 \\ 75 \\ 105 \\ 75 \\ 105 \\ 75 \\ 105 \\ 75 \\ 105 \\ 75 \\ 105 \\ 75 \\ 105 \\ 75 \\ 105 \\ 75 \\ 105 \\ 75 \\ 105 \\ 75 \\ 105 \\ 75 \\ 105 \\ 75 \\ 105 \\ $	#75 40 20 20 40 40 40 40 40 40 40 40 40 4	64 58 59.5 64.5 60 58 55.5 74 72 82 72 84 72 84 72 84 83 67.5 74 80 87 9 79 79	60 56.5 56.5 61 60 68 62 68.5 83.5 77.5 85 74 84.5 93 85.5 79.5 74.5 70 90 70 78 92 91 89
j.	70 1610 1420 s.	100 2671 2481	70 1881 1691	80 1722 1532	80 2001 1817	80 2185 1995	60 1607 1417	60 1505 1215	75 2092 1902	60 1060 850	80 80.5	91 73.6

See notes table X.

Table XI.

Daily amounts of water added. Series 200 c.c. May

Date 201	201′	202	202	203	203′	204	204	205	205′	206	206′
1 #125 2 3 4 5 6 7 8 #70 9	#40 10 10 10 #20	250 200 200 100 100 100 225 2007	100 190 95 95 95 95 115	350 350 175 175 175	200 400 200 200 200 200 150 400	300 240 250 120 120 120 120 120 320 240	525 525 250 125 1257 1257 1257 590 250	350 260 130 130 130 130 130 150 200	175 200 200 100 100 100 100 200 320	700 450 450 225 225 225 125 650 450	5007 380 380 190 190 190 190 500 380
10 11 20 12 20 13 20 14 20 15 16 16 20 17 20 18 20 20 20 21 20 22 100 23 20 24 20 25 20 26 20	20 20 20 20 20 20 20 20 20 20 40 20 20 20	20 200 200 200 200 200 200 200 200 300 200 300 200 300 200 300 200 300 200 300	190 190 270 190 340 390 190 380 190 285 285 400 300 450 450 300	400 600 600 400	$\begin{array}{r} 400\\ 400\\ 400\\ 400\\ 400\\ 400\\ 400\\ 400$	240 240 240 240 240 240 240 240 240 360 360 360 600 400 600 400	$\begin{array}{c} 250\\ 250\\ 375\\ 250\\ 250\\ 250\\ 250\\ 250\\ 250\\ 375\\ 720\\ 400\\ 600\\ 400\\ 400\\ \end{array}$	200 200 200 200 200 725 200 200 200 200 200 300 300 300 350 525 525 350	320 320 480 320 320 600 320 320 640 320 480 480 480 480 450 675 675 450	$\begin{array}{r} 450\\ 450\\ 675\\ 450\\ 900\\ 550\\ 450\\ 900\\ 450\\ 675\\ 675\\ 880\\ 600\\ 900\\ 900\\ 600\\ \end{array}$	380 380 570 380 940 380 380 380 570 570 570 620 600 900 600
27 20 Tot. 400 Tot. 38 Trans.	20 365 32	300 6835 6453	300 6455 6073	400 6327,1 5945,1	500 1910 0528	400 8790,1 8408	400 0035 9653	350 7915 7533	450 99151 95331		

Table XI con.

Daily amounts of water added.

Series 200 c.c. May

Dt.	207	207'	208	208	209	209'	210	210	211	211	Temp. Soil F.
Dt. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	207 450 370 370 185 185 95 185 425 370 370 555 370 370 370	500 360 360	500 420	500 1 420			#75 375 375	225 300 300 150 150	200 300 300 150 150 150 150	200 125	60 58
15 16 17 18	960 370 370 740	900 360 360 720	910 420 420 840	940 420 420 840	720 300 300 600	900 470 370 740	550 275 275 550	800 300 300 600	780 300 300 600	660 150 225 450	91 81 77 74
19 20 21 22 23	370 555 555 360 600	360 540 540 560 600	420 630 630 580 650	420 630 630 410 650	300 450 450 640 450	370 525 525 740 450	375 562 562 400 380	300 450 450 620 400	300 450 450 720 400	150 225 225 770 350	71.5 82 86 70 74.5
24 25 26 27	900 900 600 600	900 900 600 600	925 925 650 650	925 925 650 650	430 625 625 450 450	450 625 625 450 450	570 570 380 380	400 600 400 400	400 600 400 400	525 525 350 350	86 86 86
T.1	2550 2168 ns.	12670 12288	14160 13778	1385 5 13 473	10550 10168	12360 11978	9016 8634	9745 9363	9590 9208	6615 6233	73.5

Table XII.

Daily amounts of water added.

Series 300 c.c. May

Dt.	301	301'	302	302′	303	303	304	304	305	305	306	306
1	#40	#250	#475	#400	#300		410		#300		800	575
2			55 0	480	660	440	900	900	350	450	900	900
3	120		550	480	660	440	900	900	350	450	900	900
4	60		275	240	320	220	450	450	175	225	450	450
5	60		275	240	320	220	450	450	175	225	450	450
6	60	60					450	450			450	450
7	60	60	275	240	320	200	450	450	175	225	450	450
8	#50	#100		#650	350	150	910	320			1120	1250
9			350		660	440	900	900	350	450	900	900
10	120	120	350	480	660	440	9001		350		900	900
11	120	120	3501					900	350	450		
12	120	120	525	720	990	660	1350	1400		675	1350	1350
13	120	120	350	480	660	440	1350	1350	350	450	1350	1350
14	120	120	350	480	660	440	1350	1350	350	450	1350	1350
15	210	40	350	500	500	355	1860	1660		105	2170	2360
16	120	120	700	700	540	290	900	900	350	450	900	900
17	120	120	350	350	660	440	900	900	350	450	900	900
18	120	120	700	600	1320	880	1800	1800	700	900	1800	2000
19	120	120	350	350	660	440	900	900	350	450	900	900
20	120	120	525	525	660	660	1350	1350	525	675	1350	1350
21	120	120	350	350	660	440	1350	1350	350	450	1350	1350
22	175	40	860	240	660	320	1330	1060	#50	0	1200	1310
23	120	120	400	350	660	500	1200	1200	350	450	1200	1200
24	120	120	600	525	990	750	1600	1600	525	675	1600	1600
25	120	120	600	525	990	750	1600	1600	525	675	1600	1600
26	120	120	400	350	660	500	1200	1200	350	450	1200	1200
27	120	120	400	350	660	500	1200	1200	350	450	1200	1200

T. 2665 2120107851003516570113752886027440 7700106802775030045 To. 2392 8393 764314188,89832647825048 5308 82882536827653 Trans.

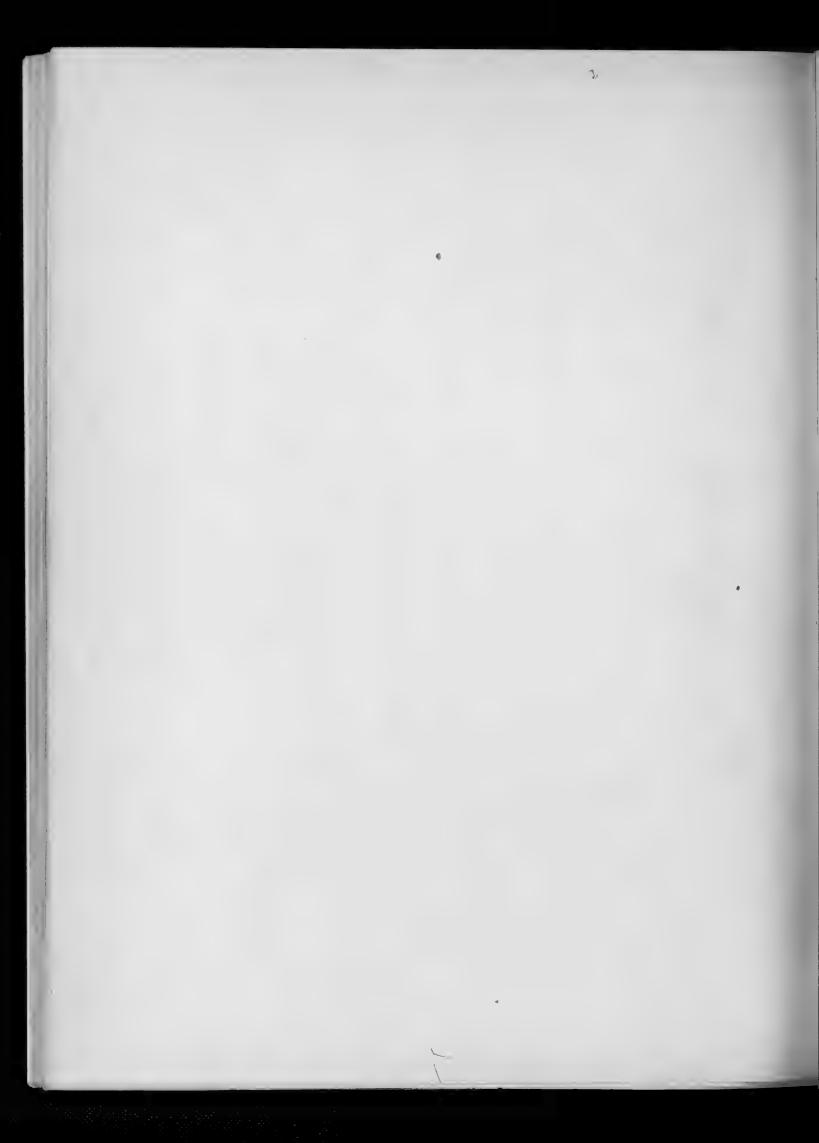


Table XII on.

Daily amounts of water added.

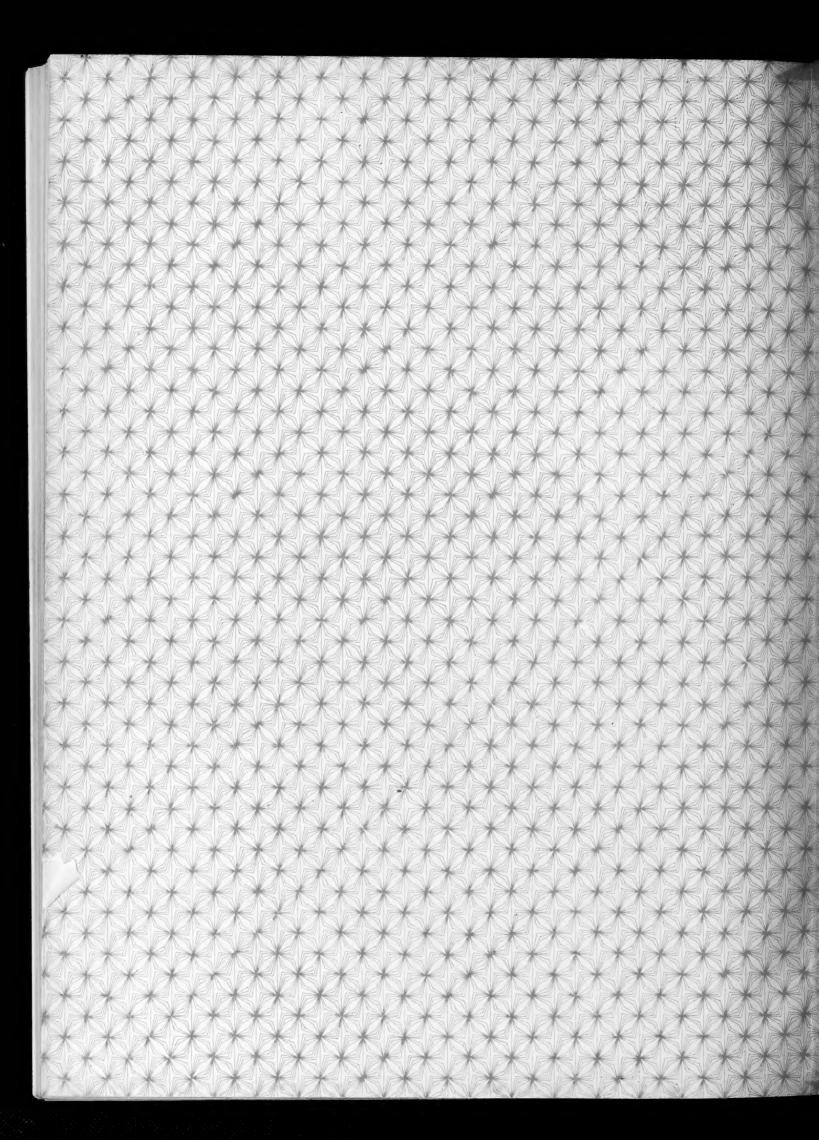
Series 300 c.c. May

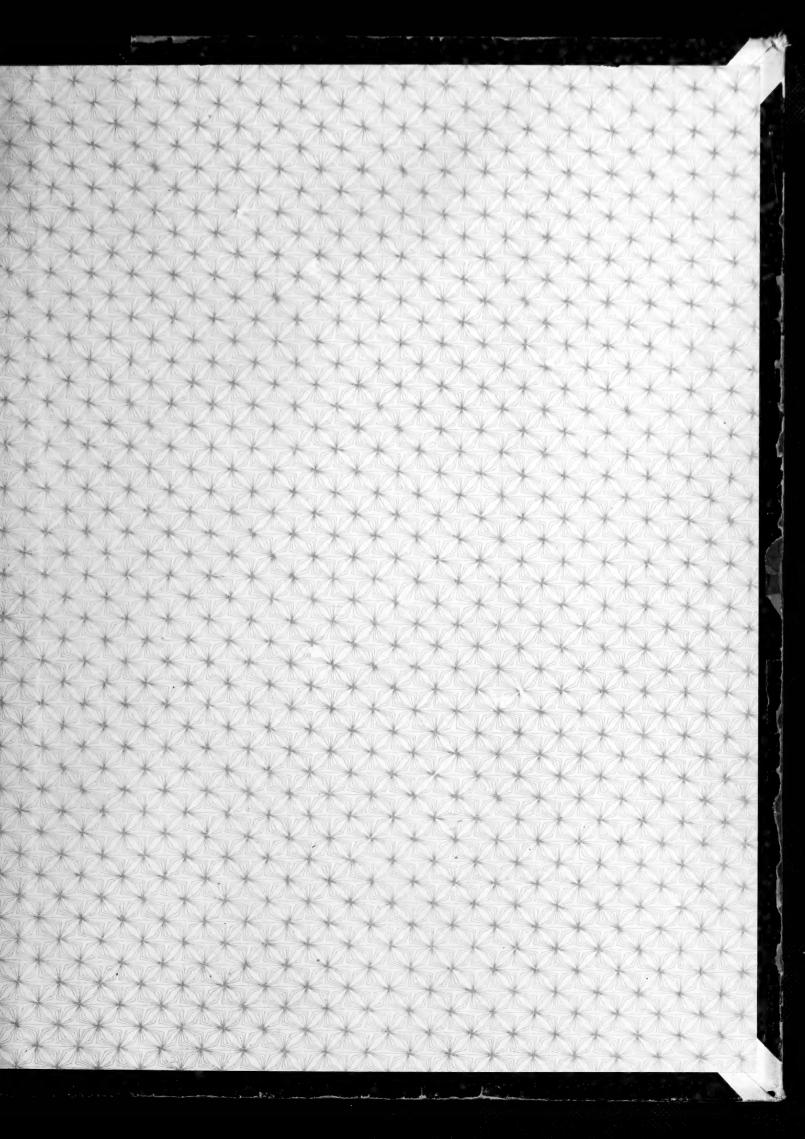
		n o mi		700'	7.00	7.00'	710	310'	311	311	Temp. Soil E
Dt.	307	307'	308	308'	309	309'	310	210	311	OIL	DOIT T
11	#550	215	500	150	575	1000		#150		300	58
2	540	520	900	850	860	880	540	480	780	690	54
3	540	520	900	850	860	880	540	480	780	690	56
4	270	260	450	425	430	440	270	240	390	545	59
1 5	270	260	450	425	430	440	270	240	390	345	57.5
6			450	425	430	4401			390	345	60.5
17	650	260	450	425	430	440	270	240	390	345	64
8	600	360	1200	550	1210	1200	350	150		300	61.5
9		520	900	850	860	880	540	480	780	690	65
10		520	900	850	860	880	540	480	780	6907	
11	7	5201	900	850	860	880	540	4807		690	70
12	1000	780	1300	1275	12907		7707			1035	85
13	540	520	13507			1320	540	480	780	690	73.5
14	540	520	1350	1850	1290	1320	540	480	780	690	81
15	1580	340	2600	850	2310	2330	940	370	1600	1430	87.5
16	540	520	900	850	860	880	540	480	780	690	80
117	540	520	900	1700	1360	880	540	480	780	690	75
18	1080	1040	1800	850	1720	1760	1080	960	1560	1380	72
119	540	520	900	1275	860	880	540	480	780	690	73
20	820	780	1350	1275	1290	1320	810	480	1170	1035	70
21	540	540	1350	1275	1290	1320	540	480	1170	1035	89
22	1750	430	1300	1400	1380	1370	670	#180	1020	540	68
23	520	520	1200	1200	1200	1200	600	480	800	700	71
24	780	780	1600	1600	1600	1600	900	720	1200	1050	81
25	780	780	1600	1600	1600	1600	900	720	1200	1050	84
26	520	520	1200	1200	1200	1200	600	480	800	700	84
27	520	520	1200	1200	1200	1200	600	480	800	700	80
14	14860	13585	29950	27230	37745	29860	14970	11500	21830	19555	72.1
T. Tra	12468 .ns.	11193	27568	24838	35363	27468	12578	9208	19438	17163	

Table :	XIII.		I) .	Δ ·	-	191.	Λ				
						۲	J					
						S :	00					
Deco	7		:			-	* #	۰.				
3-x 5 10 Tot. Tot.	20 20 10 20 20 20 20					. 0 . 00 0 		0 0 0 0 0 0 0	0 00 0 .0		0.	000000000000000000000000000000000000000
					S - 1	: : 0	0					
2:9 5 T T	100 100 10		····00 ···00 ···000 ····0	#000 00 00 00	#300 00 700	000	. 00 00 . 00 . 00 . 00		000 - 00 - 00	00 00 00 00 0		1000 01 800 0
					ç	3	£00					
	14 0 420 420 420 420 420 420 420 420 420 42		400 400 100 100 00	0 2:0 0 0 0	0 00 00 .00	00 . 00 . 00 . 00	00 100 00 00 1.00	. 00 00 00 00	0 0030 0035 0 0055	0 .0 .0 .0	00 ¹ 00 	00 1200 1200 1200 1200
			200 200 210		. 00 . 00 . 00		600 000 100	000 200 00	- 0	. 0	.00 000 00	.00 .00 .00
9 11 10 10 10 10 10 10 10 10 10 10 10 10	10 5.00 5.0 5.0 0000 50	120 0.0 0.0 2.0 2.0 0	.00 +00 -00 00 -00 -00 -00 -00 -00		.00 .00 .00	000 000 000 00 00 00 00 00	300 200 200 200 200 9020		0 0 0		00 .00 .00 .00 .00 01.0	1900 2400 1200 1450 1459 1310

Excess.

-94- .




Table 3	TTT C	011.		Party		ts of '				
					c.c. M	lay- I un	е			
				Series 100						
Date	7	7	8	8	9	9	10	10	11	11
28-29 31 3-4 5 10 Tot. Tot. Trans.	140 70 70 40 360 260	200 100 250 100 425 1175 1075	140 70 140 70 70 110 600 500	160 80 186 80 200 786 686	16 9 80 80 80 162 614 514	160 80 140 80 135 675 575	120 60 #50 60 70 870 770	120 60 140 60 120 530 430	150 75 200 70 75 200 770 670	120 60 60 110 410 310
					Series	3 200				
28-29 1 3-4-5 9 Tot. Tot. Trans.	1800 #800 400 450 2650 2460	1800 #900 400 #400 1800 1610	1950 1200 1200 4300 4110	1950 #200 1200 900 4000 3810	1350 160 900 350 3250 3060	1350 440 900 1000 3690 3500	1140 120 760 600 2620 2430	1200 640 800 750 3490 3300	1200 800 800 1260 4060 3870	1050 500 525 1300 3375 3185
					Series	300				
28. 29 30 31 1	520 520 520 520 940	520 520 520 520 460	1200 1200 1200 1200 680	1200 1200 1200 1200 580	1200 1200 1200 1200 220	1200 1200 1200 1200	600 600 600 600 1200	480 480 480 480 950	800 800 800 800 1620	700 700 700 700 2460
2 3 4 5 6	260 520 260	260 260 520	600 600 2400	600 600 2400	600 600 2400	600 600 2400	300 300 600	240 240 480	400 400 800	350 350 700
7 9 11 15 Tot. Tot. Trans.	520 520 520 1600 7220 4150	520 520 520 1900 6040 2970	1200 2400 1200 2600 16480 13410	1200 2400 1200 2700 16480 13410	1200 2400 1200 2400 15820 12750	1200 2400 1200 2000 15200 12130	600 600 1450 8050 4980	480 480 1300 6570 3500	800 800 1500 10320 7250	700 700 2100 10860 7790

Excess.

-.

-95-

