

MATTOON

The Effect of Selection on the Number of Facets in the Eye of the "Barred-Eye" Mutant of Drosophila Ampelophila

General Science

A.B. 1915

> UNIV.OF ILUINDIS LIBRARY

THE UNIVERSITY OF ILLINOIS LIBRARY

LIBRARY OF THE UNIVERSITY OF RELINCIS

٠

0

THE EFFECT OF SELECTION ON THE NUMBER OF FACETS IN THE EYE OF THE "BARRED-EYE" MUTANT OF DROSOPHILA AMPELOPHILA

BY

EDWIN WHITAKER MATTOON

THESIS

FOR THE

DEGREE OF BACHELOR OF ARTS

IN

GENERAL SCIENCE

IN

THE COLLEGE OF LIBERAL ARTS AND SCIENCES

OF THE

UNIVERSITY OF ILLINOIS

THE EFFECT OF SELECTION ON THE NUMBER OF FAL EVE OF THE "BARRED-EVE" MUTANT OF DROSOPHILA AMPELOPHILA

(ensure)

Digitized by the Internet Archive in 2013

http://archive.org/details/effectofselectio00matt

UNIVERSITY OF ILLINOIS

May 28 1915

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

EDWIN WHITAKER MATTOON

ENTITLED The effect of selection on the number of facets in the

eye of the "barred-eye" mutant of Drosophila ampelophila.

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE

DEGREE OF BACHELOR OF ARTS.

bharles Zeleny. APPROVED: My Mart

Instructor in Charge

HEAD OF DEPARTMENT OF Joology

1915 M43

CONTENTS:

PAGE

I.	Statement of the Problem	1
II.	Material and Methods	1
III.	Data	6
IV.	Discussion	15
٧.	Summary	18
VI.	Bibliography	19

. UIUC

THE EFFECT OF SELECTION ON THE NUMBER OF FACETS IN THE EYE OF THE "BARRED-EYE" MUTANT OF DROSOPHILA AMPELOPHILA.

I. Statement of the Problem.

The problem involved in this experiment has been to determine what effect, if any, could be produced by selection in plus and minus directions with regard to the number of facets in the eye of the "barred-cye" mutant of Drosophila ampelophila.

The therefore ical problem involved is that of the stability of the germ plasm. If selection on the basis of somatic variation is productive of any effect, there must be a change in the germinal constitution, since the common conception of heredity is based on the organic relation between parent and offspring through the medium of the germ cell.

II. Material and Methods.

The material used in this experiment consisted of a strain of Drosophila known as the "barred-eye" mutant (so-called because the eye is confined to an oblong, bar-like area), which arose in one of Professor Morgan's cultures of wild stock late in 1913. In this strain a considerable variation has been •

observed in the number of facets in the eye. The curve of variability for this character in the peneral copulation is a sym in Figure I.

As the Figure indicates, the number of facets in the eye of the "barred-eye" mutant constitutes a good and forsible b is for selection in that (1) there is a wide range of variation which offers angle room for selection to be mide, and (2) the values are definite and may be taken with ease and accuracy.

The method of breeding was to clace the individuals selected in 1 ounce salt-mouthed, glass bottles, sterilized before using. The bottles were stopped with cotton to provide for ventilation. The food used consisted of bananas. These were purchased while green, allowed to riven in a tightly sealed jar, and cooked to the boiling woint for ten minutes to avoid contamination by the presence of eggs of the wild species. A small amount of yeast was added to aid fermentation and to prevent the attack of the food by molds.

In making the first selection, food containing eggs and larvae was removed from the culture of the "barred-eye" stock and placed in glass vials. Every twelve hours the individuals which had emerged from the pupal cases were slightly etherized and examined as to the number of facets in the eye under the low power of the microscope. Males and females with high and low numbers of facets were selected out, high being mated with high and low with low. Each pair was placed in one of the swall bottles with sufficient food to last until the offspring were all produced.

- 2-

×

t

When larvae began to appear in one of the bottles, the parents were otherized and the number of facets recorded in each case. They were then preserved in pasteboard boxes bearing proper labels.

As the offspring hatched out they were examined and the highest or lowest individuals, as the case might be, were used to continue the selected stock. At least two pairs from the offspring of each of the original pairs were selected out in this way to continue that particular line. The remainder of the brood were etherized and preserved in pasteboard boxes, as were their parents. In this way the parents and offspring of each generation were kept for later reference.

When the first generation of selected stock had been aroduced it appeared from general observation that as the hatching period progressed the number of facets in the eye increased. Counts were made, therefore, of the number of facets in five broods from the beginning to the end of the hatching period, and it was found that the totals for the individuals produced during the first and second halves of the hatching period were approximately equal.

Late in December (1914), before the third generation of selected stock was completed, the entire stock was killed owing to sudden changes in temperature in the laboratory and also to the food being badly infected by molds. This necessitated starting the experiment all over again. To avoid repetition of the accident the work was practically doubled and two sets of

- 3-

selected stock were run in different rooms, until the coming of warm weather.

Owing to the fact that an average of twenty-eight days were required for the production of a single generation, only enough time remained after the hatching of the third reneration to complete the counts on this and the previous generations for comparison with each other and with the count on the general or unselected population.

When the counting was begun the number of facets in both the right and left eyes was taken on account of there being a slight variation in some cases between the two. For 100 individuals, however, the sums of the facets in right and left eyes respectively, were practically the same, there being a difference of only 0.245 per cent in favor of the left. In subsequent counting the number of facets in the right eye only was recorded.

At the beginning of the experiment eight lines both high and low, sixteen in all, were started from as many pairs of original ancestors. Of these only about 60 per cent were fertile or succeeded in producing any offspring, and by the time the third generation was produced, only four each of these high and low lines remained.

The counting was completed in each generation for three "high" lines called A, B, and C, and for three "low" lines called D, E, and F. Fifty individuals were measured for each generation in each of the lines, with the exception of the third

- 1-

.

generation in line B, where only forty-six individuals more available.

In order to determine the range of variability in the general population a count was made of the number of facets in the eyes of 500 individuals. Of these 250 were taken from the cultures of the general population in November 1914, and 250 in April 1915. The mean number of facets for those removed in November was 98.04, and for those removed in April 98.03, with a difference of 0.01. It is evident from this that there is no noticeable tendency for the general population to shift toward a higher or lower number of facets.

The sexual dimorphism in the number of facets does not appear in the data, since the female values were reduced to the respective male values. This was accomplished by dividing the mean male value, 98.035 by the mean female value, 65.06 and multiplying each of the female values by the quotient, 1.51. This reduction made possible the use of mid-parental values in showing the effect of selection in Figures 2, 3, and 4.

III. Data.

In the following Tables the data are given for the counts made in the general population and in lines A, B, C, D, E, and F of the selected population.

- 5-

Table I. - General Population

Male	Reduced Male	Vale	Reduced Male	Male	Reduced Nale		Reduced	linle	Reduced Nale
88	94	109	91	104	157	79	97	157	109
132	152	98	62	78	100	104	62	80	89
37	92	126	107	72	101	107	<u>98</u>	105	1.92
45	148	91	89	137	145	67	51	119	91
60	107	46	98	93	100	09	118	68	80
142	92	64	83	75	140	98	88	83	165
139	103	150	74	143	115	136	91	92	79
94	112	135	156	59	85	151	65	141	162
77	75	97	72	50	110	65	166	100	94
~3	77	69	94	81	104	49	60	56	106
140	36	66	89	131	83	90	104	128	29
81	138	135	68	86	78	128	89	91	125
110	77	77	92	138	75	98	97	50	60
123	98	108	83	80	128	137	82	82	92
68	100	1 15	128	108	85	77	94	143	74
115	95	62	91	121	91	110	118	85	148
89	106	122	72	55	107	11 5	95	105	65
105	71	95	83	114	88	63	62	118	113
78	149	97	103	87	113	123	98	71	82
72	74	81	95	104	63	96	91	112	109
116	82	70	98	76	154	98	106	93	92
154	95	118	104	71	69	82	86	101	57
80	103	157	137	114	89	71	116	81	162
106	71	117	97	153	88	120	127	76	110
111	66	100	88	84	57	101	104	109	77

- 7-

Male	Reduced Male	Male	Reduced Male	Male	Reduced Male	Male	Reduced Male	Male	Reduced Male
89	95	111		94	45	81	162	95	91
84	72	90	101	101	98	79	79	99	92
109	92	88	88	158	80	80	68	96	127
74	121	86	91	70	112	89	125	113	115
104	98	101	68	96	139	72	e, çi	134	100
89	107	98	109	82	101	129	103	67	82
91	127	95	57	81	85	78	107	106	153
130	79	93	75	148	89	96	99	97	128
58	116	103	97	97	115	88	83	98	95
93	185	96	86	69	83	90	62	108	100
102	94	99	89	127	103	91	97	64	101
85	113	11.4	94	92	106	135	100	97	94
89	91	82	80	100	77	94	85	106	110
105	77	128	9 8	85	95	65	95	86	97
94	104	97	95	102	91	76	104	142	92
100	100	75	115	98	103	60	94	98	106
99	88	89	82	79	95	69	80	83	74
79	92	107	60	120	107	103	91	100	92
112	116	91	97	84	89	85	65	96	88
84	103	93	88	104	94	89	94	77	100
83	106	54	83	9 5	107	100	119	92	94
90	94	81	133	62	91	98	101	126	106
106	56	118	104	144	75	111	104	169	101
87	104	87	122	77	74	93	109	98	83
175	83	125	113	156	72	137	106	94	1 15

Table II. - Plus Selection

- - -

LINE A.

Comparation 7 Comparation 9

	Generation 1	Generation 2	Generation 3		
	Reduced Males Males	Reduced Males Males	Reduced Males Males		
Parents	127 133	179 169	.177 195		
Offspring	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Mean of Offspring	108.74	127.52	135.48		

a de la marca 177

12 -

Table III. - Plus Selection

LINE B.

Generation 1 Generation 2 Generation 3

	Males	Reduced Males		Reduced Males	Males	Reduced Males
Parents	139	121	184	165	182	222
Offspring	$ \begin{array}{r} 89\\ 108\\ 145\\ 102\\ 80\\ 131\\ 74\\ 112\\ 156\\ 105\\ 95\\ 90\\ 147\\ 115\\ 98\\ 133\\ 79\\ 104\\ 82\\ 167\\ 100\\ 75\\ 98\\ 68\\ 184 \end{array} $	95 124 76 100 80 148 131 106 118 125 145 145 145 145 128 57 137 97 108 95 89 133 85 91 149 85 165	166 122 144 90 101 95 132 140 93 160 118 86 171 92 125 144 183 137 108 126 99 97 127 172 182	148 137 127 201 113 79 101 145 76 143 107 163 95 119 157 131 111 134 139 175 103 149 137 222	154 123 118 99 156 169 100 145 207 147 172 141 128 197 102 130 139 175 158 96 124 160 121	116 159 165 137 175 124 148 154 166 104 207 122 156 118 169 136 95 89 189 131 163 137 124
Mean of						

 Mean of
 0ffspring
 110.10
 128.64

and was not use one one one one one one and one one and

141.93

.

Table IV. - Plus Selection

LINE C.

Generation 1 Generation 2 Generation 3

	Males	Reduced Males	Males	Reduced Males	Males	Reduced Males
Parents	178	157	208	159	194	198
Offspring	82 117 86 99 96 101 85 112 146 122 131 93 123 123 123 123 123 123 123 123 123 12	106 142 151 131 113 152 121 128 85 130 103 101 134 136 63 106 124 133 107 89 163 71 112 121 159	140 67 105 99 140 133 169 102 100 118 94 177 101 105 93 113 189 168 97 141 160 193 154 135 194	137 91 130 88 177 124 98 186 122 165 121 79 153 118 180 174 115 153 110 149 174 127 101 118 198	155 108 163 119 142 139 100 187 151 120 121 118 213 127 162 158 143 98 120 182 177 165 109 95 134	137 180 106 181 137 162 97 131 143 163 100 139 172 130 205 157 127 146 165 130 149 127 107 140 116

Mean of
Offspring116.92133.46140.97

Table V. - Minus Selection

LINE D.

-11-

Generation 1 Generation 2 Generation 3

	Males	Reduced Males	Males	Reduced Males	Males	Reduced Males
Parents	52	60	6 9	71	. 63	58
Offspring	102 87 79 116 97 65 70 108 69 92 95 78 90 110 98 74 100 96 67 115 93 97 44 89 69	74 109 65 103 116 85 127 83 74 103 75 78 62 98 110 103 82 94 101 66 56 91 82 106 71	104 78 49 75 102 88 121 75 100 84 89 66 99 54 92 77 95 78 105 69 76 91 92 100 63	86 94 104 69 75 133 92 56 91 103 79 59 100 85 92 88 97 60 82 63 86 77 103 91 58	104 79 68 100 87 74 69 77 58 103 97 74 75 89 100 88 66 115 56 137 48 51 92 64 83	$ \begin{array}{r} 116\\ 60\\ 68\\ 62\\ 104\\ 65\\ 71\\ 72\\ 36\\ 107\\ 74\\ 68\\ 98\\ 71\\ 88\\ 60\\ 91\\ 104\\ 115\\ 50\\ 95\\ 50\\ 115\\ 127\\ 53 \end{array} $

Mean of
 Mean of
 0ffspring
 88.28
 85.46
 81.66

.

.

.

Table VI. - Minus Selection

LINE E.

Generation 1 Generation 2 Generation 3

	Males	Reduced Males	Males	Reduced Males	Males	Reduced Males
Parents	82	80	64	74	60	62
Offspring	92 53 101 84 107 85 69 118 93 109 74 108 86 141 99 94 88 123 75 87 91 117 99 71 64	97 121 89 121 91 50 122 107 74 118 68 77 91 86 154 72 104 77 88 97 106 101 83 101 74	114 83 73 91 122 65 87 58 82 93 76 98 103 50 79 95 134 68 97 95 134 68 97 99 103 86 100 94 60	76 94 124 95 74 51 98 107 59 80 116 97 69 113 83 89 101 85 109 66 104 76 92 98 62	62 106 89 111 99 58 103 80 46 75 88 94 123 61 70 67 78 91 101 59 84 98 80 106 97	97 100 88 60 68 109 57 82 63 106 77 100 80 71 92 72 136 77 91 72 83 63 113 60 92
Mean of Offspring	93.	94	89.5	56	84.	78

-1-2-

Table VII. - Minus Selection

LINE F.

Generation 1 Generation 2 Generation 3

	Males	Reduced Males	Males	Reduced Males	Maltz	Reduced Vales
Parents	89	78	76	71	61	64
Offspring	$78 \\ 92 \\ 63 \\ 110 \\ 98 \\ 71 \\ 103 \\ 87 \\ 96 \\ 104 \\ 70 \\ 73 \\ 104 \\ 70 \\ 73 \\ 104 \\ 70 \\ 73 \\ 104 \\ 70 \\ 73 \\ 104 \\ 70 \\ 75 \\ 76 \\ 88 \\ 100 \\ 107 \\ 75 \\ 76 \\ 76 \\ 76 \\ 76 \\ 76 \\ 76 \\ 7$	100 88 128 109 151 68 92 115 104 57 65 118 121 95 72 107 85 86 125 118 83 51 63 94 71	91 143 89 71 108 95 92 67 48 110 97 99 54 59 91 89 106 112 95 83 107 102 90 86 61	95 63 112 104 69 92 80 116 59 82 122 100 75 103 71 89 80 60 104 109 97 80 91 98 64	114 79 60 92 104 95 65 90 61 89 99 58 80 89 111 98 74 67 110 89 88 101 94 82 78	100 56 89 62 79 48 72 91 137 74 88 92 130 74 116 80 66 53 47 95 91 83 94 107 60

Mean of
 Mean of
 Offspring
 94.63
 89.64
 84.68

·

Table VIII. Summary of Tables II. to VII.

	Mean Number Of Facets	Mean Number of Facets		Extreme Variates Offspring	
	Parents	Offspring	High	L OL.	
General Population		98.035	182	15	
LINE A. Gen. I "2 "3	130 174 186	108.74 127.52 135.48	179 210 204	50 9.4 3.2	
LINE B. Gen. 1 " 2 " 3	130 174.5 202	110.10 128.64 141.93 *	184 222 207	75 79 89	
LINE C. Gon. 1 " 2 " 3	167.5 183.5 196	110.92 133.46 140.97	208 192 213	63 67 95	
LINE D. Gen. 1 " 2 " 3	56 70 60.5	88.28 85.46 81.66	127 133 127	44 49 3 6	
LINE E. Gen. 1 " 2 " 3	81 69 61	93.94 89.56 84.78	141 134 123	50 50 46	
LINE F. Gen. 1 " 2 " 3	83.5 73.5 62.5	94.63 89.80 84.68	159 143 137	51 48 47	

* This mean is calculated from the values of 46 individuals in-stead of 50.

-14-

.

IV. Discussion.

Figures 2, 3, and 4 show graphically the effect of selection for three generations as summarized in Table VIII. A study of these figures indicates (1) that the means of the lines in which selection was carried on have been considerably displaced from the mean of the general population, the displacement toward a high number of facets being two to three times as great as that in the opposite direction; (2) that there is in each case, however, a marked regression toward the mean of the general population; (3) that as a result of selection the extremes of variation in the general population have been exceeded in both directions. This is common and of rather surprising magnitude in the case of high selection, but it occurs only once (in the third generation of line D), in the case of the low; (4) that there still exists in the third generation a very considerable overlapping between the ropulations of the high and low lines. In this generation, however, the means of the high lines, with the exception of line A, are higher than the extreme high variaties in the low lines, and the means of the low lines are appreciably lower in each case than the extreme low variates of the high lines.

Selection, therefore, has proved effective first, in tending to separate two opposite races, and second, in producing new degrees of variation beyond these that exist in the unselected population.

-15-

_

It remains for continued selection to demonstrate to what extent these new degrees of variation produced are heritable. It also remains to test out the pure line hypothesis in determining the extent to which selection is able to isolate lines which breed true and which no amount of subsequent selection can modify. That there are a number of these lines or races differing only slightly from each other in the general population of the "barred-eye" stock, and that many generations of selection will probably be required to isolate these races is indicated by the persistent overlapping already referred to hetween the populations of the gross divisions of high and low. That these lines are incapable of modification is not evident, however, from the fact that new extremes of variation have been produced within a very few generations of selection.

On the basis of results obtained thus far no definite conclusions can be drawn as to whether selection has or has not effected the stability of the germ plasm. As to the possibility of changing the germinal constitution by selection, different investigators have arrived at opposite conclusions.

Johannsen (1903) working with the common garden bean found that when he selected heavy and light individuals from a general population and sowed them, the resulting crops could be grouped according to their weights in normal curves around the characteristic weights of the parent individuals, rather than around the mode representing the weight of greatest frequency in the general population. Therefore, selection was effective. When,

-15-

however, the heavier and lighter individuals were selected from a family raised from a single self-fortilized seed, no further effect of selection could be obtained. Johannsen exclains this variation within a pure line as being due to environmental or external rather than internal interferences, which, because they are external, cannot indicate that variations in the offspring of a pure plant are caused by variations in the germ wolls from which they were produced.

Jennings (1908), who carried on extensive experiments with Paramecium, arrived at practically the same conclusion as did Johannsen. He found that by progressively selecting in opposite directions with regard to size from a wild culture of Paramecium, it was possible to obtain two lots of very marked difference in size, the difference heing hereditary. But when the progeny of a single individeal (forming a number) were tested, it was found that not the least effect was produced by methodical and long continued selection. Although there were large differences among the individuals in a pure line, these differences were not inherited. Jennings concluded that the effect of his selection consisted "solely in the isolation of races that already existed."

Castle (1914) is one of the investigators who holds an opposite viewpoint. He has experimented with a variety of hooded rat in which selection has been made for increase and decrease in the pigmented area of the coat. The result has been that the average pigmentation in one series steadily increased, while

-17-

.

in the other it steadily decreased. At present the selection has progressed to the extent that the increase and decrease in pigmented area have far transgressed the original limits of variation. Castle's conclusions are that in this case the character acted on by selection has been modified steadily and permanently, and that since the variations of which advantage is taken in selection are inherited, they must have a germinal basis.

Similar results were obtained by DeVries (1903) in an experiment with buttercups in which he succeeded by means of selection in raising the extreme number of petals from eleven to thirty-two.

In general, those who take the positive side of the issue, that the germinal constitution may be modified by selection, base their conclusions upon the results of experimentation with forms which reproduce bisexually. Those who hold the negative view have usually worked with forms reproducing asexually or by means of self-fertilization. Obviously, in the former case there is a greater chance for variations to occur which have a germinal basis and of which advantage may be taken in selection.

V. Summary.

1-As a result of three generations of plus and minus selection the mean number of facets in the "barred-cyc" mutant of Drosophila ampelophila was raised from 98.03 to 141.93 and lowered from 98.03 to 81.66. 2- This change was progressive from generation to generation.

-13-

IV. Bibliography.

Castle, W. E. and Phillips, J.C.

1914. Piebald Rats and Selection. Carnegie Institution of Washington, Publication No. 195.

-19-

DeVries, H.

1901-1903. Die Mutationstheorie. Viet & Co., Leipzig.

Jennings, H.S.

1908. Heredity, Variation and Evolution in Protozoa. II. Proc. Amer. Phil. Soc., Vol. 47, No. 190.
1910. Experimental Evidence on the Effectiveness

1910. Experimental Evidence on the Effectiveness of Selection. American Naturalist, Vol. 44.

Johannsen. W.

1909. Elemente der Exakten Erblichkeitslehre. G. Fischer, Jena.

Shull, G. H.

1912. "Genotypes", "Biotypes", "Pure Lines", and "Clones" Science, N.S. Vol. 35.

Tice, S. A.

1914. A New Sex-linked Character in Drosophila. Biological Bulletin, Vol. 26.

