MATTOON

The Effect of Selection on the Number of Facets in the Eye of the "Barred-Eye"

Mutant of Drosophila Ampelophila

General Science
A. B.

1915

THE UNIVERSITY

OF ILLINOIS

LIBRARY
1915
M43

THE EFFECT OF SELECTION ON THE NUMBER OF FACETS IN THE EYE OF THE "BARRED-EYE" MUTANT OF DROSOPHILA AMPELOPHILA

EDWIN WHITAKER MATTOON

THESIS

FOR THE

DEGREE OF BACHELOR OF ARTS

IN

GENERAL SCIENCE

IN

THE COLLEGE OF LIBERAL ARTS AND SCIENCES

OF THE

UNIVERSITY OF ILLINOIS

Digitized by the Internet Archive in 2013

UNIVERSITY OF ILLINOIS

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY EDWIN WHITAKER MUTTON

ENTITLED The effect of selection on the number of facets in the eye of the "barred-eye" mutant of Drosophila ampelophila.

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE

DEGREE OF BACHELOR OF ARTS.

APPROVED:

1915 M43

I. Statement of the Problem 1
II. Material and Methods 1
III. Data 6
IV. Discussion 15
V. Summary 18
VI. Bibliography 19

THE AFFECT CT SETECTICN ON THE NUNBER OF FACETS IN TrA MVE OF THE "BARRIBD-EYE" NTMANT OF DROSOPYITA AMTETARHITA.
I. Statement of the Proniem.

The problem involved in this experiment has been to determine what effect, if ary, could be reduced by selection in rilus and minus directions with regard to the number of facets In the eye of the "barred-cye" mutant of Drosophila amielophila.

The theroetical problem involved is that of the stakility of the germilasn. If selection on the basis of somatic variation is rroductive of any efrect, there must be a change in the germinal constitution, since the common concertion of heredity is based on the organic relaticn betpeen parent and offspring through the medium of the germ cell.
II. Material and Methods.

The material used in this experiment consisted of a strain of Drosorhila known as the "barred-eye" mutant (so-called. because the eye is confined to an oblong, har-like area), which arose in one of Professor Morgan's cultures of wild stock late in 1913. In this strain a considerable variation has reen
observed in the number of facets in the eye. The curve of
 in Figure I.

As the figure indicates, the number of facets in the eye of the "barred-eve" mutant constitutes a 000 and fecsible wis for selection in that (1) there is a wide rance of variation Which offers amile roon for solection to te made, ard (2) the values are definite and may he taker with ease and accuracy.

The method of breedine w as to lece the individuals selected in 1 ounce salt-moutined, elass bottles, sterilized berore using. The bottles were stopped with cotton to provide for vertilation. The food used consisted of bananzs. These vere purchased wile creen, allowed to riven in a tightly sealed jar, and cooked to the boiling oint for ten minutes to avoid contamination by the presence of ecgs of the wild species. A small amount of yeast was added to aid fermentation and to revent the attack of the food by molds.

In making the first selection, food containing eces and larvae was removed froin the culture of the" barred-eye" stock and placed in glass vials. Every twelve hours the individuals which had emerged from the pupal cases were slichtly etherized and examined as to the number of facets in the eve under the low power of the microscope. liales and females with high and low numbers of facets were selected out, hich beinc mated with high and low with low. Each pair was placed in one of the swall bottles with sufficient food to last until the offspring were all wroduced.
General Population

FIGI.

Vhen larvae becan to apear in one of the hottios, the parents were etherized and tie number of facets recoried in each case. They were then wreserved in pasteboard bowes hearine proper labels.

As the offspring hatched out they were exainined and the highest or lowest indirlduals, as the cise mi:'t ne, were used to continue the selected stock. At least two pairs from the offspring of each of the original pairs were selected out in this Way to continue that rarticular line. The reminder of the brood were etheriaed and preserved in pasteboard boxes, as were their narents. In this way the parents and offsuring of each generation mere kept for later reference.

When the first ceneration of selected stock had heen oroduced it apneared from eencral orservation that as the hatching period progressed the number of facets in the eve increased. Counts were made, therefore, of the number of facets in five broods from the beginning to the end of the hatching period, and it was found that the totals for the individuals produced durine the first and second halves of the hatching veriod vere approximately equal.

Iate in December (1914), before the third generation of selected stock was comileted, the entire stock was killed owine to sudden changes in temperature in the laroratory and also to the food being badiy infected hy molds. This recessitated starting the experiment all over açain. To avoid repetition of the accident the work was practically doubled and two sets of
selected stock were run in different rooms, until the comind or warm weather.

Owing to the fact that an averace of twentr-cient ravs were required for the production of a sinfle rencration, only enough time remained after the hatching of the third enoration to comilete the counts on this and the revious gerorations for comarison with esch other and with the count on the general or unselected population.

Then the counting was begun the rumber of facets in both the right and left eyes was taken on account of there reing a slight variation in some cases between the two. Por 100 individuals, however, the sums of the facets in rient ard left eyes respectively, were practically the same, there being a difference of only 0.245 per cert in favor of the left. In subsequent countine the number of facats in tre richt eve only was recorded.

At the beginning of the experiment ejeht lines both high and low, sixteen in all, were started from as many nairs of oritinal ancestors. Of these only about 60 per cent were fertile or sicceeded in producing anr offspring, and by the time the third generation was produced, only four each of these hich and low Iines remained.

The counting was conpleted in each eeneration for three "hich" lines called A, B, and C, and for three "low" lines called $D, ~ I$, and F. Fifty individuals were measured for each Eeneration in each of the lines, with the excention of the third

Eencration in line R, were cnl: forty-six indivianals were avallable.

In order to determine the range of variability in the feneral ponulation a count was made of the numper of facets in the eres of 500 individuals. of these 250 were taken fron the cultures of the general population in November 1914, and 250 in April 1915. The mean number of facets for those remived in November was 98.04, and for those removed in April 98.03, with a difference of 0.01 . It is evident from this that there is no noticeable tendency for the general population to sifft toward a higher or lower number of facets.

The sexual dimorphism in the number of facets does not appear in the data, since the female values were reduced to the respective male values. This was accomplished by dividing the mean male value, 98.035 by the mean fernale value, 55.06 and multiplying each of the female values by the quotient, 1.51. This reduction made possible the use of mid-parental values in showing the effect of selection in Figures 2, 3, and 4.
III. Data.

In the following Tables the data are given for the counts made in the general population and in lines A, B, C, D, B, and F of the selected population.

Table I. - General Population
Reduced
Reduced
Reduced
Reduced
Reduced

88	94	109	91	104	157	79	97	157	109
132	158	98	62	78	100	104	62	80	89
37	92	126	107	72	101	107	98	20.5	2.2
45	148	91	89	137	145	67	51	119	91
60	107	46	98	93	100	$\bigcirc 9$	118	08	80
142	92	64	83	75	140	98	88	83	165
139	103	150	74	143	115	136	94	92	79
94	112	135	150	59	85	152	25	141	152
77	75	97	72	50	110	6.5	166	100	94
\% 3	77	69	94	81	104	49	00	50	105
140	36	66	89	131	83	S0	104	128	09
81	138	135	68	80	73	128	69	91	125
110	77	77	92	138	75	98	97	50	60
123	98	108	83	80	128	137	82	82	92
58	700	115	128	108	85	77	54	143	74
115	95	62	91	121	91	110	118	85	178
89	106	122	72	56	107	115	95	105	65
105	71	95	83	114	88	63	62	118	113
78	149	97	103	87	113	123	98	71	22
72	74	81	95	204	63	95	91	112	109
116	32	70	98	78	154	98	106	93	92
154	95	118	104	71	69	82	86	101	$5 ?$
80	103	157	1:37	114	89	71	11.5	81.	162
106	71	137	97	153	88	120	127	96	170
111	65	100	38	84.	57	101	104	109	77

Table I. - General Population (Cont.)
Reduced Reduced Reduced Reduced Reduced
Male Male Male Male Male Male Male Tiale Male Male

89	95	111	151	94	45	81	162	95	91
84	72	90	101	101	98	79	79	99	92
109	92	88	88	158	80	80	68	96	127
74	121	86	91	70	112	89	325	113	115
104	98	101	68	96	139	72	90	131	100
89	107	98	109	82	101	129	103	67	82
91	127	95	57	81	35	78	107	106	133

130	79	93	75	$14 ?$	99	96	93	97	128
38	110	103	97	97	115	88	83	98	95
93	185	96	86	69	83	90	62	108	100

102	94	99	89	127	103	91	97	64	101
85	113	114	94	92	108	135	100	97	94
89	91	82	80	100	77	94	85	106	110
105	77	128	98	85	95	65	95	86	87

94	104	97	95	102	97	76	104	142

100	100	75	115	98	103	60	94	98	106
99	88	89	82	79	95	69	80	83	74

| 79 | 92 | 107 | 60 | 120 | 107 | 103 | 91 | 100 | 92 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

112	115	91	97	84	89	85	65	96	88
84	103	93	88	104	91	89	94	77	100
83	105	54	83	95	107	100	119	92	94
90	94	81	133	62	91	98	101	125	106
106	56	118	104	144	75	111	104	169	103
87	104	87	122	77	74	93	109	98	83
175	83	125	113	155	72	137	106	94	115

```
Table II. - Plus Selection
```


LINE A.

Generation 1 Generation 2 Generation 3

	Males	Reduced Males	Males	Reduced Males	Males	Reduced Males
Parents	227	133	179	169	177	195
Offspring	103	69	125	112	117	137
	116	116	133	153	140	186
	86	148	124	89	107	97
	94	91	118	142	204	153
	102	128	99	94	98	119
	109	101	180	110	126	103
	134	89	125	133	180	136
	107	110	102	156	142	124
	118	94	95	137	92	153
	92	107	148	103	108	174
	140	106	97	119	135	115
	79	74	130	91	141	127
	101	151	176	187	192	134
	105	88	99	110	117	109
	107	133	88	113	93	95
	122	71	147	139	118	1.31
	99	115	90	100	167	160
	92	149	189	134	109	143
	112	106	142	115	103	137
	91	11.8	98	122	126	127
	118	149	84	148	159	17
	96	76	210	125	98	142
	127	100	103	163	187	1.31
	67	83	95	97	154	151
	179	169	177	210	139	157

Mean of
offsiring
108.74
127.52
135.48

IINE B.

Generation 1 Generation 2 Generation 3
\(\left.$$
\begin{array}{crccccc} & \text { Males } & \begin{array}{c}\text { Reduced } \\
\text { Males }\end{array}
$$ \& Males \& Reduced

Males\end{array}\right) ~\) Males | Reduced |
| :---: |
| Males |

lifean of
Offspring

```
Table IV. - Plus Selection
```


IIINE C.

Generation 1 Generation 2

Reduced
Nales Males

Reduced Males

$$
1
$$ Males

208
159
157
178

106

82	106
117	142
86	151
99	131
96	113
101	152
85	121
112	128

$1.45 \quad 85$
122130
$131 \quad 103$
93101

123	134
118	136

$176 \quad 63$

120	106
147	124

$121 \quad 133$

103	107
97	89

$100 \quad 153$
$124 \quad 71$

126	112
90	121
208	159

Niean of
offspring
116.92
133.45
140.97

Table V. - Minus Selection

IINE D.

Generation 1 Generation 2 Generation 3

	Males	Reduced Males	Nales	Reduced Males	Males	Reduced Males
Parents	52	60	69	71	63	58
Offsuring	102	74	104	86	104	115
	87	109	78	94	79	60
	79	65	49	104	68	68
	13.6	103	75	69	100	62
	$9 ?$	11.5	102	75	87	104
	55	85	83	133	74	65
	70	127	121	92	69	71
	108	83	75	56	77	72
	69	74	110	91	58	36
	92	103	84	1013	103	107
	95	75	89	79	97	74
	78	78	66	59	74	68
	90	62	99	100	75	98
	110	98	54	85	89	71
	98	110	92	92	100	88
	74	103	77	88	88	60
	100	82	95	97	65	91
	96	94	78	60	115	104
	67	101	105	82	56	115
	115	66	69	63	137	50
	93	56	76	86	48	95
	97	91	91	77	51	50
	44	82	92	103	92	115
	89	106	100	91	64	127
	69	71	63	58	83	53

Mean of Offspring
88. 28
85.46
81.66

Table VI. - Minus Selection

IJINE E.

Generation 1 Generation 2 Generation 3

	Reduced Males			Males	Rales	Reduced Males
Parents	82	80	64	74	Males	Reduced
Irales						

Mean of
Offspring
93.94
89.56
84.78

Table VII. - Minus Selection

IINE F.

Generation 1 Generation 2 Generation 3
Reduced
Males Males Males Prales Malns niales

Offspring	78	100	91	95	114	100
	92	88	143	63	79	56
	63	128	85	112	60	89
	110	109	71	104	92	62
	98	151	108	69	104	79
	71	68	95	92	95	48
	103	92	92	80	65	72
	87	115	67	116	90	91
	96	104	48	59	61	1.37
	104	57	110	82	89	74
	70	65	97	122	99	88
	73	118	99	100	58	92
	119	121	54	75	80	130
	84	95	59	103	89	74
	102	72	92	71	111	118
	159	107	89	89	98	80
	75	85	106	80	74	66
	79	86	112	60	57	53
	96	125	95	104	110	47
	63	118	83	109	89	95
	88	83	107	97	88	91
	100	51	102	80	101	83
	107	63	90	91	94	94
	75	94	86	98	82	107
	76	71	51	64	78	60

Mean of
Offspring
94.63
89.64
84.68

Tahle VIII. Summary of Tahles II. to VlI.

	Mean Number Of Facets
Ceneral	
Population	Parents

Mean Numher of Facets

Offspring
98.035

130
174 186
108.74
727.52
135.48

179
810
004
69
0.1
32

LINE B.

Gen.
"
"
"

$$
\begin{aligned}
& 130 \\
& 174.5 \\
& 202
\end{aligned}
$$

$$
\begin{aligned}
& 110.10 \\
& 128.64
\end{aligned}
$$

38.4

20?
0,07

IINE C.

$\begin{array}{cc}\text { Gon. } & 1 \\ " \prime & 2 \\ " & 3\end{array}$
157.5
183.5
196

$$
\begin{aligned}
& 111.97 \\
& 133.46 \\
& 140.07
\end{aligned}
$$

$$
\begin{aligned}
& 2018 \\
& 190 \\
& 213
\end{aligned}
$$

$$
\begin{gathered}
63 \\
5 \% \\
95
\end{gathered}
$$

IINE D.
$\begin{array}{cc}\text { Gen. } \\ \text { II } & 2 \\ \text { " } & 3\end{array}$

> 56 70 60.5
89.28
35.40
81.20

129
133
44
49
127

IINE E.

$\begin{array}{cc}\text { Gen } & 7 \\ \prime \prime & 2 \\ \text { " } & 3\end{array}$
81
69
61

> 93.04
> 39.56
> 84.78

141
50
134
J. 23

50
45

IINPR.
$\begin{array}{cc}\text { Gen. } & 1 \\ \prime \prime \prime & 2 \\ 11 & 3\end{array}$
33.5
73.5
62.5
94.33

159
51
89.30

143
48
34.98

137

* This mesn is calculated from the values of 46 irdivicuals instead of 50 .

A
: 4
+i
$-\frac{5}{4}$
General
Population

IV. Discussion.

Figures 2, 3, and 4 show graphically the effect of selection for threc generations as summarized in Tahle VIII. A stidy of these ficires indicates (1) that the means of the ines in which selection vias carried on have been considerably displaced from the mean of the general population, the displacement toward a high number of facets being two to three times as ereat as that in the opposite direction; (2) that there is in each case, however, a marked regression toward the mean of the eqeneral yopulation; (3) that as a result of selection t"e extremes of variation in the Eeneral population have been exceeded in bcth directions. This is common and of rather surprising magnitude in the case of hich selection, but it occurs only once (in the third evereration of line D), in the case of the low; (4) that there still exists in the third ceneration a rery considerahle overlapping between the ropulations of the high and low lines. In this Eeneration, however, the means of the high Ines, with the exception of line A, are higher than the extreme hifh variaties in the low lines, and the means of the low lines are apreciably lower in each case than the extreme low variates of the high lines.

Selection, therefore, has proved effective first, in tending to separate two opposite races, ard second, in jrodicire nev degrees of variation beyond these that exist in the unselected population.

It remains for continued selecticn to demonstrate to what extent these ne: derees of variation produced are herftat?e. It also remains to test out the nure lire hypothesis in aeterminine the extent to which selection is ahle to isclate jines which breed true and wich no amount of sursearent selection osn mod1fy. That there are a number of these lines or races differire only sliehtly fror each other in the eeneral pogulation of the "barred-cyc" stock, and that many eenerations of selection vilu rolably be req ired to isoliste these races is indicated bu the persistent overlapping already referred to ketween the porulations of the gross divisions of high and low. That trese jires are incapable of modification is not evicent, however, from the fact that new extremes of varjation have been roduced within a very few generations of selection.

On the basis of results obtained thus far no definite conclusjons can be drawn as to whether selection has or has not effected the stanility of the eerm plasm. As to the possibility of changine the eerminal constitution hy selection, different investicators have arrived at opposite conclusions.

Johannsen (1903) workine with the common earden hean found that wher he selected heavy and lifht irdividuals from a general porpulation and sowed them, the resultine crovs could he grouned according to their wejehts in normal curves arourd the characteristic wejchts of the parent individuals, rather then around the mode representinc the wejent of ereateat freunency in the genera? ropulation. Therefore, selection was effective. एhen,
however, the hesvier ant higiter indivicual: wer :eqected reom a fanily rajsed rrom a sinele self-fortilized seed, no rurthor effect of selection could ve cltained. Johannsen em lains this
 exterral rather then irtermsl interfercinces, wich, rifenuse tre: are external, cannot indicate that variations in the offsarire of a rure plant are calised by variations in the germ ..rys from which they were produced.

Jenrines (I908), who cirrjed on extensive exweriments with Paramecium, arrived at : recticaly the sac conclusicn as did Johannsen. Te found that bry progressively felecting in oprosite directions with regard to size from a wild culture of Paramecjum, it ras nossible to ontain tro lote of verv morved difference ir size, the differerce reire noreditary. But when the probery of a airgle irsintan? (fominc a mrs? ire) were tested it was found thet not the lesst eprect pas roduced ry rethouical erd lone continued selection. Altholich there uere force dife ferences among the irdividugls ir a nure lire, these differences were not irherjted. Jennires conoluced that the effect of in is selection corisisted "solely in the isolation of races that already existed."

Castle (1914) is one of the investicetors wha holds an ornosite viempoirt. He has exnerimented vith a verjety of hooded rat in wich selection has been made for incresse and decresse in tre nigmented ares of the coat. The result has been that the averace ricmentaticn in one serjes steadily increased, while

In the other it steadily decreased. At present the selection has procressed to the extent that the increase and decresse in piemented area have far transgressed the oricinal limits of variation. Castle's conclixions are that in this case the character acted on by selection has been modified steadily and perranently, and that since the variations of which advantage is tolen in selection are innerited, they mist have a germinal hasis.

Similar results were ohtained by DeVries (1903) in an exveriment with buttercups in which he succeeded by means of selection in raising the extreme number of petals frorn eleven to thirty-two.

In eeneral, those who take the positive side of the issue, that the ferminal constitution may be modified by selection, base their conclusions unon the results of experimentation with forms Which reproduce bisexually. Those who hold the negative view have usually worked with forms reproducinc asexually or by means of self-fertilization. Obviorsly, in the former case there is a greater chance for variations to occir which have a eerminal basis and of which advantage may be taken in selection.

V. Summary.

I-As a result of three generatjons of ius ard minus selecticn the mean number of facets in the "barred-oyc" mutant of Droscphila ampelophila was raised from 58.03 to 141.93 and lowered from 98.03 to 81.66. 2- This change was rrogressive frorr generation to generation.
IV. Bibliography.

Castle, W. E. and Phillips, J.C.
1914. Piebald Rats and Selection. Carnegie Institution of Washington, Publication No. 195.

DeVries, H.
1901-1903. Die Mutationstheorie. Viet \& Co., Leipzig.

Jennings, H.S.
1908. Heredity, Variation and Evolution in Protozoa. II. Proc. Amer. Phil. Soc., Vol. 47, No. 190.
1910. Experimental Evidence on the Effectiveness of Selection. American Naturalist, Vol. 44.

Johannsen. W.
1909. Flemente der Exakten Erblichkeitslehre. G. Fischer, Jena.

Shull, G. H.
1912. "Genotypes", "Biotypes", "Pure Iines", and "Clones!" Science, N.S. Vol. 35.

Tice, S. A.
1914. A New Sex-linked Character in Drosophila. Biological Bulletin, Vol. 26.

