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PART III.

MAGNETISM.

CHAPTEK I.

ELEMENTARY THEORY OF MAGNETISM.

371.] CERTAIN bodies, as, for instance, the iron ore called load

stone, the earth itself, and pieces of steel which have been sub

jected to certain treatment, are found to possess the following

properties, and are called Magnets.

If, near any part of the earth s surface except the Magnetic

Poles, a magnet be suspended so as to turn freely about a vertical

axis, it will in general tend to set itself in a certain azimuth, and

if disturbed from this position it will oscillate about if. An un-

magnetized body has no such tendency, but is in equilibrium in

all azimuths alike.

372.] It is found that the force which acts on the body tends

to cause a certain line in the body, called the Axis of the Magnet,
to become parallel to a certain line in space, called the Direction

of the Magnetic Force.

Let us suppose the magnet suspended so as to be free to turn

in all directions about a fixed point. To eliminate the action of

its weight we may suppose this point to be its centre of gravity.

Let it come to a position^of equilibrium. Mark two points on

the magnet, and note their positions in space. Then let the

magnet be placed in a new position of equilibrium, and note the

positions in space of the two marked points on the magnet.

Since the axis of the magnet coincides with the direction of

magnetic force in both positions, we have to find that line in

the magnet which occupies the same position in space before and

VOL. II. B
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after the motion. It appears, from the theory of the motion of

&amp;gt;;{ ^ bodies of invariable form, that such a line always exists, and that

a motion equivalent to the actual motion might have taken place

by simple rotation round this line.

To find the line, join the first and last positions of each of the

marked points, and draw planes bisecting these lines at right

angles. The intersection of these planes will be the line required,

which indicates the direction of the axis of the magnet and the

direction of the magnetic force in space.

The method just described is not convenient for the practical

determination of these directions. We shall return to this subject

when we treat of Magnetic Measurements.

The direction of the magnetic force is found to be different at

different parts of the earth s surface. If the end of the axis of

the magnet which points in a northerly direction be marked, it

has been found that the direction in which it sets itself in general

deviates from the true meridian to a considerable extent, and that

the marked end points on the whole downwards in the northern

fc hemisphere and upwards in the southern.

The azimuth of the direction of the magnetic force, measured

from the true north in a westerly direction, is called the Variation,

or the Magnetic Declination. The angle between the direction of

the magnetic force and the horizontal plane is called the Magnetic

Dip. These two angles determine the direction of the magnetic

force, and, when the magnetic intensity is also known, the magnetic
force is completely determined. The determination of the values

of these three elements at different parts of the earth s surface,

the discussion of the manner in which they vary according to the

place and time of observation, and the investigation of the causes

of the magnetic force and its variations, constitute the science of

Terrestrial Magnetism.

373.] Let us now suppose that the axes of several magnets have

been determined, and the end of each which points north marked.

Then, if one of these be freely suspended and another brought
near it, it is found that two marked ends repel each other, that

a marked and an unmarked end attract each other, and that two

unmarked ends repel each other.

If the magnets are in the form of long rods or wires, uniformly
and longitudinally magnetized, see below, Art. 384, it is found

that the greatest manifestation of force occurs when the end of

one magnet is held near the end of the other, and that the
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phenomena can be accounted for by supposing- that like ends of

the magnets repel each other, that unlike ends attract each other,

and that the intermediate parts of the magnets have no sensible

mutual action.

The ends of a long thin magnet are commonly called its Poles.

In the case of an indefinitely thin magnet, uniformly magnetized

throughout its length, the extremities act as centres of force, and

the rest of the magnet appears devoid of magnetic action. In

all actual magnets the magnetization deviates from uniformity, so

that no single points can be taken as the poles. Coulomb, how

ever, by using long thin rods magnetized with care, succeeded in

establishing the law of force between two magnetic poles *.

The repulsion between two magnetic poles is in the straight line joining

them, and is numerically equal to the product of the strengths of

the poles divided by the square of the distance between them.

374.] This law, of course, assumes that the strength of each

pole is measured in terms of a certain unit, the magnitude of which

may be deduced from the terms of the law.

The unit-pole is a pole which points north, and is such that,

when placed at unit distance from another unit-pole, it repels it

with unit offeree, the unit of force being defined as in Art. 6. A
pole which points south is reckoned negative.

If m
1
and m

2
are the strengths of two magnetic poles, I the

distance between them, and/ the force of repulsion, all expressed

numerically, then .
~

But if [m], [I/I
and [F] be the concrete units of magnetic pole,

length and force, then

whence it follows that

or [m]
= \Il*T-

l

M*\.
The dimensions of the unit pole are therefore f as regards length,

( 1) as regards time, and \ as regards mass. These dimensions

are the same as those of the electrostatic unit of electricity, which

is specified in exactly the same way in Arts. 41, 42.

* His experiments on magnetism with the Torsion Balance are contained in

the Memoirs of the Academy of Paris, 1780-9, and in Biot s Traite de Physique,
torn. iii.
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375.] The accuracy of this law may be considered to have

been established by the experiments of Coulomb with the Torsion

Balance, and confirmed by the experiments of Gauss and Weber,
and of all observers in magnetic observatories, who are every day

making measurements of magnetic quantities, and who obtain results

which would be inconsistent with each other if the law of force

had been erroneously assumed. It derives additional support from

its consistency with the laws of electromagnetic phenomena.

376.] The quantity which we have hitherto called the strength

of a pole may also be called a quantity of Magnetism, provided

we attribute no properties to Magnetism except those observed

in the poles of magnets.
Since the expression of the law of force between given quantities

of Magnetism has exactly the same mathematical form as the

law of force between quantities of Electricity of equal numerical

value, much of the mathematical treatment of magnetism must be

similar to that of electricity. There are, however, other properties

of magnets which must be borne in mind, and which may throw

some light on the electrical properties of bodies.

Relation between the Poles of a Magnet.

377.] The quantity of magnetism at one pole of a magnet is

always equal and opposite to that at the other, or more generally

thus :

In every Magnet the total quantity of Magnetism (reckoned alge

braically) is zero.

Hence in a field of force which is uniform and parallel throughout
the space occupied by the magnet, the force acting on the marked

end of the magnet is exactly equal, opposite and parallel to that on

the unmarked end, so that the resultant of the forces is a statical

couple, tending to place the axis of the magnet in a determinate

direction, but not to move the magnet as a whole in any direction.

This may be easily proved by putting the magnet into a small

vessel and floating it in water. The vessel will turn in a certain

direction, so as to bring the axis of the magnet as near as possible

to the direction of the earth s magnetic force, but there will be no

motion of the vessel as a whole in any direction
;

so that there can

be no excess of the force towards the north over that towards the

south, or the reverse. It may also be shewn from the fact that

magnetizing a piece of steel does not alter its weight. It does alter

the apparent position of its centre of gravity, causing it in these
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latitudes to shift along the axis towards the north. The centre

of inertia, as determined by the phenomena of rotation, remains

unaltered.

378.] If the middle of a long thin magnet be examined, it is

found to possess no magnetic properties, but if the magnet be

broken at that point, each of the pieces is found to have a magnetic

pole at the place of fracture, and this new pole is exactly equal
and opposite to the other pole belonging to that piece. It is

impossible, either by magnetization, or by breaking magnets, or

by any other means, to procure a magnet whose poles are un

equal.

If we break the long thin magnet into a number of short pieces

we shall obtain a series of short magnets, each of which has poles

of nearly the same strength as those of the original long magnet.
This multiplication of poles is not necessarily a creation of energy,

for we must remember that after breaking the magnet we have to

do work to separate the parts, in consequence of their attraction

for one another.

379.] Let us now put all the pieces of the magnet together
as at first. At each point of junction there will be two poles

exactly equal and of opposite kinds, placed in contact, so that their

united action on any other pole will be null. The magnet, thus

rebuilt, has therefore the same properties as at first, namely two

poles, one at each end, equal and opposite to each other, and the

part between these poles exhibits no magnetic action.

Since, in this case, we know the long magnet to be made up
of little short magnets, and since the phenomena are the same

as in the case of the unbroken magnet, we may regard the magnet,
even before being broken, as made up of small particles, each of

which has two equal and opposite poles. If we suppose all magnets
to be made up of such particles, it is evident that since the

algebraical quantity of magnetism in each particle is zero, the

quantity in the whole magnet will also be zero, or in other words,

its poles will be of equal strength but of opposite kind.

Theory of Magnetic Matter?

380.] Since the form of the law of magnetic action is identical

with that of electric action, the same reasons which can be given

for attributing electric phenomena to the action of one flu id

or two fluids can also be used in favour of the existence of a

magnetic matter, or of two kinds of magnetic matter, fluid or
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otherwise. In fact, a theory of magnetic matter, if used in a

purely mathematical sense, cannot fail to explain the phenomena,

provided new laws are freely introduced to account for the actual

facts.

One of these new laws must be that the magnetic fluids cannot

pass from one molecule or particle of the magnet to another, but

that the process of magnetization consists in separating to a certain

extent the two fluids within each particle, and causing the one fluid

to be more concentrated at one end, and the other fluid to be more

concentrated at the other end of the particle. This is the theory of

Poisson.

A particle of a magnetizable body is, on this theory, analogous

to a small insulated conductor without charge, which on the two-

fluid theory contains indefinitely large but exactly equal quantities

of the two electricities. When an electromotive force acts on the

conductor, it separates the electricities, causing them to become

manifest at opposite sides of the conductor. In a similar manner,

according to this theory, the magnetizing force causes the two

kinds of magnetism, which were originally in a neutralized state,

to be separated, and to appear at opposite sides of the magnetized

particle.

In certain substances, such as soft iron and those magnetic
substances which cannot be permanently magnetized, this magnetic

condition, like the electrification of the conductor, disappears when

the inducing force is removed. In other substances, such as hard

steel, the magnetic condition is produced with difficulty, and, when

produced, remains after the removal of the inducing force.

This is expressed by saying that in the latter case there is a

Coercive Force, tending to prevent alteration in the magnetization,

which must be overcome before the power of a magnet can be

either increased or diminished. In the case of the electrified body
this would correspond to a kind of electric resistance, which, unlike

the resistance observed in metals, would be equivalent to complete
insulation for electromotive forces below a certain value.

This theory of magnetism, like the corresponding theory of

electricity, is evidently too large for the facts, and requires to be

restricted by artificial conditions. For it not only gives no reason

why one body may not differ from another on account of having
more of both fluids, but it enables us to say what would be the

properties of a body containing an excess of one magnetic fluid.

It is true that a reason is given why such a body cannot exist,
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but this reason is only introduced as an after-thought to explain
this particular fact. It does not grow out of the theory.

381.] We must therefore seek for a mode of expression which

shall not be capable of expressing too much, and which shall leave

room for the introduction of new ideas as these are developed from

new facts. This, I think, we shall obtain if we begin by saying
that the particles of a magnet are Polarized.

Meaning of the term Polarization?

When a particle of a body possesses properties related to a

certain line or direction in the body, and when the body, retaining

these properties, is turned so that this direction is reversed, then

if as regards other bodies these properties of the particle are

reversed, the particle, in reference to these properties, is said to be

polarized, and the properties are said to constitute a particular

kind of polarization.

Thus we may say that the rotation of a body about an axis

constitutes a kind of polarization, because if, while the rotation

continues, the direction of the axis is turned end for end, the body
will be rotating in the opposite direction as regards space.

A conducting particle through which there is a current of elec

tricity may be said to be polarized, because if it were turned round,

and if the current continued to flow in the same direction as regards

the particle, its direction in space would be reversed.

In short, if any mathematical or physical quantity is of the

nature of a vector, as defined in Art. 11, then any body or particle

to which this directed quantity or vector belongs may be said to

be Polarized *
9
because it has opposite properties in the two opposite

directions or poles of the directed quantity.

The poles of the earth, for example, have reference to its rotation,

and have accordingly different names.

* The word Polarization has been used in a sense not consistent with this in

Optics, where a ray of light is said to be polarized when it has properties relating
to its sides, which are identical on opposite sides of the ray. This kind of polarization
refers to another kind of Directed Quantity, which may be called a Dipolar Quantity,
in opposition to the former kind, which may be called Unipolar.
When a dipolar quantity is turned end for end it remains the same as before.

Tensions and Pressures in solid bodies, Extensions, Compressions and Distortions

and most of the optical, electrical, and magnetic properties of crystallized bodies

are dipolar quantities.
The property produced by magnetism in transparent bodies of twisting the plane

of polarization of the incident light, is, like magnetism itself, a unipolar property.
The rotatory property referred to in Art. 303 is also unipolar.
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Meaning of the term Magnetic Polarization.

382.] In speaking of the state of the particles of a magnet as

magnetic polarization, we imply that each of the smallest parts

into which a magnet may be divided has certain properties related

to a definite direction through the particle, called its Axis of

Magnetization, and that the properties related to one end of this

axis are opposite to the properties related to the other end.

The properties which we attribute to the particle are of the same

kind as those which we observe in the complete magnet, and in

assuming that the particles possess these properties, we only assert

what we can prove by breaking the magnet up into small pieces,

for each of these is found to be a magnet.

Properties of a Magnetized Particle.

383.] Let the element dxdydz be a particle of a magnet, and

let us assume that its magnetic properties are those of a magnet
the strength of whose positive pole is m

t
and whose length is ds.

Then if P is any point in space distant r from the positive pole and

/ from the negative pole, the magnetic potential at P will be

due to the positive pole, and ---^ due to the negative pole, or

If ds, the distance between the poles, is very small, we may put
/ r = dscos e, (2)

where e is the angle between the vector drawn from the magnet
to P and the axis of the magnet, or

,
N

cose. (3)

Magnetic Moment.

384.] The product of the length of a* uniformly and longitud

inally magnetized bar magnet into the strength of its positive pole

is called its Magnetic Moment.

Intensity of Magnetization.

The intensity of magnetization of a magnetic particle is the ratio

of its magnetic moment to its volume. We shall denote it by /.

The magnetization at any point of a magnet may be defined

by its intensity and its direction. Its direction may be defined by
its direction-cosines A, /u,,

v.
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Components of Magnetization.

The magnetization at a point of a magnet (being a vector or

directed quantity) may be expressed in terms of its three com

ponents referred to the axes of coordinates. Calling these A, B, C,

A = I\, B = Iy., C=Iv,
and the numerical value of I is given by the equation (4)

ja = A*+B* + C2
. (5)

385.] If the portion of the magnet which we consider is the

differential element of volume dxdydz, and if / denotes the intensity

of magnetization of this element, its magnetic moment is Idxdydz.

Substituting this for mds in equation (3), and remembering that

rcose = \(-x)+iL(riy) + v(Cz), (6)

where
, 77, f are the coordinates of the extremity of the vector r

drawn from the point (#, y, z), we find for the potential at the point

(, 77, () due to the magnetized element at
(a?, y, z\

W= {A(-x) + B(ri-y)+C({-z)};dxdydz. (7)

To obtain the potential at the point (. r], f) due to a magnet of

finite dimensions, we must find the integral of this expression for

every element of volume included within the space occupied by
the magnet, or

(8)

Integrating by parts, this becomes

dc

where the double integration in the first three terms refers to the

surface of the magnet, and the triple integration in the fourth to

the space within it.

If I, m, n denote the direction-cosines of the normal drawn

outwards from the element of surface dS, we may write, as in

Art. 21 j the sum of the first three terms,

where the integration is to be extended over the whole surface of

the magnet.
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If we now introduce two new symbols a and p} defined by the

equations &amp;lt;r =

(dA dB dC^
p: ~^ + ^ + ^; j

the expression for the potential may be written

386.] This expression is identical with that for the electric

potential due to a body on the surface of which there is an elec

trification whose surface-density is o-, while throughout its substance

there is a bodily electrification whose volume-density is p. Hence,

if we assume cr and p to be the surface- and volume-densities of the

distribution of an imaginary substance, which we have called

t

magnetic matter, the potential due to this imaginary distribution

will be identical with that due to the actual magnetization of every

element of the magnet.
The surface-density v is the resolved part of the intensity of

magnetization 7 in the direction of the normal to the surface drawn

outwards, and the volume-density p is the convergence (see

Art. 25) of the magnetization at a given point in the magnet.
This method of representing the action of a magnet as due

to a distribution of f

magnetic matter is very convenient, but we

must always remember that it is only an artificial method of

representing the action of a system of polarized particles.

On the Action of one Magnetic Molecule o

387.] If, as in the chapter on Spherical Harmonics, Art. 129,

we make d , d d d
~TL
= ^ T~ + m

~j \- n r &quot;&amp;gt; Wdh dx dy dz

where I, m, n are the direction-cosines of the axis It, then the

potential due to a magnetic molecule at the origin, whose axis is

parallel to k
lt
and whose magnetic moment is m

lt
is

y _
d m

l
m

l
(**

~5*77~&quot;H
Ai

where A.
L

is the cosine of the angle between h and r.

Again, if a second magnetic molecule whose moment is m
2 ,

and

whose axis is parallel to h
z , is placed at the extremity of the radius

vector r, the potential energy due to the action of the one magnet
on the other is
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(3)

(4)

where /u12 is the cosine of the angle which the axes make with each

other, and X
ls

A
2
are the cosines of the angles which they make

with r.

Let us next determine the moment of the couple with which the

first magnet tends to turn the second round its centre.

Let us suppose the second magnet turned through an angle

d(f) in a plane perpendicular to a third axis &3 ,
then the work done

against the magnetic forces will be -^ dti, and the moment of the
a(f&amp;gt;

forces on the magnet in this plane will be

dW m
l
m

2 ,dyl2 d\
2^

~~d^
=

~^~\d$~ Al3^
The actual moment acting on the second magnet may therefore

be considered as the resultant of two couples, of which the first

acts in a plane parallel to the axes of both magnets, and tends to

increase the angle between them with a force whose moment is

while the second couple acts in the plane passing through r and

the axis of the second magnet, and tends to diminish the angle
between these directions with a force

3 m* m9

&amp;gt;~^cos(r/
h)siu(r/^, (7)

where (f^), (?
^
2); (^1^2) denote the angles between the lines r,

To determine the force acting on the second magnet in a direction

parallel to a line 7/
3 ,
we have to calculate

dW d* ,K

(9)

(10)

If we suppose the actual force compounded of three forces, R,

H^ and H
2 , in the directions of r, ^ and ^

2 respectively, then the

force in the direction of ^
3
is

(11)
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Since the direction of h% is arbitrary, we must have

3 tYl-i tlfli\ ~\

_/L ^^ . vMl2
&quot;~~

1 2/5

(12)

The force 72 is a repulsion, tending to increase r
; H^ and ZT

2

act on the second magnet in the directions of the axes of the first

and second magnet respectively.

This analysis of the forces acting between two small magnets
was first given in terms of the Quaternion Analysis by Professor

Tait in the Quarterly Math. Journ. for Jan. 1860. See also his

work on Quaternions, Art. 414.

Particular Positions.

388.] (1) If Aj and A
2
are each equal to 1, that is, if the axes

of the magnets are in one straight line and in the same direction,

fj.12
= 1, and the force between the magnets is a repulsion

p. TT
,

TT Qm
1
m2

. .

Jic-f jczi-f/ZgTs
--

4
--

(13)

The negative sign indicates that the force is an attraction.

(2) If A
:
and A

2
are zero, and /*12 unity, the axes of the magnets

are parallel to each other and perpendicular to /, and the force

is a repulsion 3m
1
m

2

In neither of these cases is there any couple.

(3) If A! = 1 and A
2
= 0, then /u12

= 0. (15)

The force on the second magnet will be - * 2
in the direction

of its axis, and the couple will be
^

2
t tending to turn it parallel

to the first magnet. This is equivalent to a single force -
^

2

acting parallel to the direction of the axis of the second magnet,
and cutting r at a point two-thirds of its length from m2 .

Fig. 1.

Thus in the figure (1) two magnets are made to float on water,
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being in the direction of the axis of m
1 ,

but having- its own axis

at right angles to that of m
l

. If two points, A, B, rigidly connected

with % and m
2 respectively, are connected by means of a string T,

the system will be in equilibrium,, provided T cuts the line m
1
m2

at right angles at a point one-third of the distance from ml to m
2

.

(4) If we allow the second magnet to turn freely about its centre

till it comes to a position of stable equilibrium, ?Fwill then be a

minimum as regards k
2 ,
and therefore the resolved part of the force

due to m
2 , taken in the direction of ^

15
will be a maximum. Hence,

if we wish to produce the greatest possible magnetic force at a

given point in a given direction by means of magnets, the positions

of whose centres are given, then, in order to determine the proper

directions of the axes of these magnets to produce this effect, we
have only to place a magnet in the given direction at the given

point, and to observe the direction of stable equilibrium of the

axis of a second magnet when its centre is placed at each of the

other given points. The magnets must then be placed with their

axes in the directions indicated by that of the second magnet.
Of course, in performing this experi

ment we must take account of terrestrial

magnetism, if it exists.

Let the second magnet be in a posi

tion of stable equilibrium as regards its

direction, then since the couple acting

on it vanishes, the axis of the second

magnet must be in the same plane with

that of the first. Hence

(M2)
= (V)+M2), (16)

and the couple being

Fig. 2.

m
(sin (h-^

/t&amp;gt;

2 )
3 cos

(h-^ r) sin (r h2 )), (17)

we find when this is zero

tan (^ r)
= 2 tan (r 7*

2) , (18)

or tan^Wg-B = 2 ta,nRm
2
ff

2 . (19)

When this position has been taken up by the second magnet the

dV
value of W becomes

where h
2 is in the direction of the line of force due to m

l
at
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Hence W,-.V; T ~1 * (20)

Hence the second magnet will tend to move towards places of

greater resultant force.

The force on the second magnet may be decomposed into a force

R, which in this case is always attractive towards the first magnet,
and a force ff

l parallel to the axis of the first magnet, where

H
L
= 3^ **_ .

(21)^ 73 A
x
2 + 1

In Fig. XVII, at the end of this volume, the lines of force and

equipotential surfaces in two dimensions are drawn. The magnets
which produce them are supposed to be two long cylindrical rods

the sections of which are represented by the circular blank spaces,

and these rods are magnetized transversely in the direction of the

arrows.

Jf we remember that there is a tension along the lines of force, it

is easy to see that each magnet will tend to turn in the direction

of the motion of the hands of a watch.

That on the right hand will also, as a whole, tend to move

towards the top, and that on the left hand towards the bottom

of the page.

On the Potential Energy of a Magnet placed in a Magnetic Field.

389.] Let V be the magnetic potential due to any system of

magnets acting on the magnet under consideration. We shall call

V the potential of the external magnetic force.

If a small magnet whose strength is m, and whose length is ds,

be placed so that its positive pole is at a point where the potential

is T
3
and its negative pole at a point where the potential is F

,
the

potential energy of this magnet will be mCFP ), or, if ds is

measured from the negative pole to the positive,

dV -
, 1X

m-f-ds. (1)
as

If / is the intensity of the magnetization, and A, p, v its direc

tion-cosines, we may write,

mds =
dV dV dV dV

and -

7
- = A-y--f-ju-^ |- v^-&amp;gt;ds dx dy dz

and, finally, if A, B, C are the components of magnetization,

A=\I, B=pl, C=vl,
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so that the expression (1) for the potential energy of the element

of the magnet becomes

To obtain the potential energy of a magnet of finite size, we
must integrate this expression for every element of the magnet.
We thus obtain

W = fff(A
df + B

ll^ + C
d
-f) dxdydz (3)J JJ ^ dx dy dz

as the value of the potential energy of the magnet with respect

to the magnetic field in which it is placed.

The potential energy is here expressed in terms of the components
of magnetization and of those of the magnetic force arising from

external causes.

By integration by parts we may express it in terms of the

distribution of magnetic matter and of magnetic potential

~ + -- + -dxdydzy (4)

where /, m, n are the direction-cosines of the normal at the element

of surface dS. If we substitute in this equation the expressions for

the surface- and volume-density of magnetic matter as given in

Art. 386, the expression becomes

pdS. (5)

We may write equation (3) in the form

+ Cy}dxdydz, (6)

where a, ft and y are the components of the external magnetic force.

On the Magnetic Moment and Axis of a Magnet.

390.] If throughout the whole space occupied by the magnet
the external magnetic force is uniform in direction and magnitude,

the components a, /3, y will be constant quantities, and if we write

IJJAdxdydz=lK, jjJBdxdydz=mK, [((cdxdydz = nK
t (7)

the integrations being extended over the whole substance of the

magnet, the value of ^may be written

y). (8)
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In this expression I, m, n are the direction-cosines of the axis of

the magnet, and K is the magnetic moment of the magnet. If

e is the angle which the axis of the magnet makes with the

direction of the magnetic force ), the value of W may be written

JF = -K$cos. (9)

If the magnet is suspended so as to be free to turn about a

vertical axis, as in the case of an ordinary compass needle, let

the azimuth of the axis of the magnet be $, and let it be inclined

to the horizontal plane. Let the force of terrestrial magnetism
be in a direction whose azimuth is 5 and dip ,

then

a = $p cos cos bj (3
= j cos sin 8, y = ) sin f; (10)

I = cos cos
&amp;lt;,

m = cos sin
&amp;lt;,

n sin
; (11)

whence W KQ (cos cos 6 cos ($ 8) + sin ( sin e). (12)

The moment of the force tending to increase $ by turning the

magnet round a vertical axis is

_ ^L=_K cos
Ccos&amp;lt;9

sin
(&amp;lt;J&amp;gt;-5). (13)

On the Expansion of the Potential of a Magnet in Solid Harmonics.

391.] Let V be the potential due to a unit pole placed at the

point (, T?, f). The value of F&quot; at the point #, y, z is

r= {(f-*)
2

+(&amp;gt;/-,?o

2
+(&amp;lt;r-*)Ti (i)

This expression may be expanded in terms of spherical harmonics,

with their centre at the origin. We have then

(2)

when F
Q
= -

,
r being the distance of (f, 77, f)

from the origin, (3)

(4)

_
2
~

2r5

fee.

To determine the value of the potential energy when the magnet
is placed in the field of force expressed by this potential, we have

to integrate the expression for W in equation (3) with respect to

x, y and z, considering , 77, (&quot;

and r as constants.

If we consider only the terms introduced by F~ , Ft
and V2 the

result will depend on the following volume-integrals,
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lK=
jjJAdxdydz,

mK =
fjfsdxdydz,

nK
=JJJCdxdydz; (6)

L=jjJAxdxdydz &amp;gt;

M=
jjj Bydxdydz, N

=jjJCzdxdydz , (7)

P = (B* + Cy)dxdydz, Q =

R = ^y+ Bnyndydz- (8)

We thus find for the value of the potential energy of the magnet
placed in presence of the unit pole at the point (^17, Q,

_

r5

This expression may also be regarded as the potential energy of

the unit pole in presence of the magnet, or more simply as the

potential at the point , 17, f due to the magnet.

On ike Centre of a Magnet and its Primary and Secondary Axes.

392.] This expression may be simplified by altering the directions

of the coordinates and the position of the origin. In the first

place, we shall make the direction of the axis of x parallel to the

axis of the magnet. This is equivalent to making

l\^ m = 0, n 0. (10)

If we change the origin of coordinates to the point (# , y , /), the

directions of the axes remaining unchanged, the volume-integrals

IK, mK and nK will remain unchanged, but the others will be

altered as follows :

L =L-lKx
,

M =M-mKy ,
Nf = N-nKz/

-

f (11)

P =PK(mz +ny), Q =Q- K(nx + lz \ R R K(ly + mx }.

If we now make the direction of the axis of x parallel to the

axis of the magnet, and put

, Zl-M-N , R , Q , .

x = ^ &amp;gt; y = Tr&amp;gt;
z =

-^&amp;gt;
(13)2A A A

then for the new axes M and N have their values unchanged, and

the value of 1! becomes \ (M+N). P remains unchanged, and Q
and R vanish. We may therefore write the potential thus,

VOL. II.
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We have thus found a point, fixed with respect to the magnet,

such that the second term of the potential assumes the most simple

form when this point is taken as origin of coordinates. This point

we therefore define as the centre of the magnet, and the axis

drawn through it in the direction formerly defined as the direction

of the magnetic axis may be defined as the principal axis of the

magnet.
We may simplify the result still more by turning the axes of y

and z round that of x through half the angle whose tangent is

p
-= . This will cause P to become zero, and the final form

of the potential may be written

K t t tf-
3 2

This is the simplest form of the first two terms of the potential

of a magnet. When the axes of y and z are thus placed they may
be called the Secondary axes of the magnet.
We may also determine the centre of a magnet by finding the

position of the origin of coordinates, for which the surface-integral

of the square of the second term of the potential, extended over

a sphere of unit radius, is a minimum.

The quantity which is to be made a minimum is, by Art. 141,

4 (Z
2 +Mz +N*-MN-NL-LM] + 3 (P

2 + Q
2 +^2

). (16)

The changes in the values of this quantity due to a change of

position of the origin may be deduced from equations (11) and (12).

Hence the conditions of a minimum are

21(2LM N)+3nQ+3mR = 0,

2m(2M-N-L)+3lR+3nP = 0, (17)

2n (2NZM)+3mP+3lQ = 0.

If we assume I = I, m = 0, n = Q, these conditions become

2L-MN=0, q = 0, R=0, (18)

which are the conditions made use of in the previous invest

igation.

This investigation may be compared with that by which the

potential of a system of gravitating matter is expanded. In the

latter case, the most convenient point to assume as the origin

is the centre of gravity of the system, and the most convenient

axes are the principal axes of inertia through that point.

In the case of the magnet, the point corresponding to the centre

of gravity is at an infinite distance in the direction of the axis,
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and the point which we call the centre of the magnet is a point

having- different properties from those of the centre of gravity.
The quantities If, M, N correspond to the moments of inertia,

and P, Q, R to the products of inertia of a material body, except
that Z, M and N are not necessarily positive quantities.

When the centre of the magnet is taken as the origin, the

spherical harmonic of the second order is of the sectorial form,

having its axis coinciding with that of the magnet, and this is

true of no other point.

When the magnet is symmetrical on all sides of this axis, as

in the case of a figure of revolution, the term involving the harmonic

of the second order disappears entirely.

393.] At all parts of the earth s surface, except some parts of

the Polar regions, one end of a magnet points towards the north,

or at least in a northerly direction, and the other in a southerly

direction. In speaking of the ends of a magnet we shall adopt the

popular method of calling the end which points to the north the

north end of the magnet. When, however, we speak in the

language of the theory of magnetic fluids we shall use the words

Boreal and Austral. Boreal magnetism is an imaginary kind of

matter supposed to be most abundant in the northern, parts of

the earth, and Austral magnetism is the imaginary magnetic
matter which prevails in the southern regions of the earth. The

magnetism of the north end of a magnet is Austral, and that of

the south end is Boreal. When therefore we speak of the north

and south ends of a magnet we do not compare the magnet with

the earth as the great magnet, but merely express the position

which the magnet endeavours to take up when free to move. When,
on the other hand, we wish to compare the distribution of ima

ginary magnetic fluid in the magnet with that in the earth we shall

use the more grandiloquent words Boreal and Austral magnetism.

394.] In speaking of a field of magnetic force we shall use the

phrase Magnetic North to indicate the direction in which the

north end of a compass needle would point if placed in the field

of force.

In speaking of a line of magnetic force we shall always suppose

it to be traced from magnetic south to magnetic north, and shall

call this direction positive. In the same way the direction of

magnetization of a magnet is indicated by a line drawn from the

south end of the magnet towards the north end, and the end of

the magnet which points north is reckoned the positive end.
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We shall consider Austral magnetism, that is, the magnetism of

that end of a magnet which points north, as positive. If we denote

its numerical value by m&amp;gt;
then the magnetic potential

and the positive direction of a line of force is that in which V
diminishes.



CHAPTER II.

MAGNETIC FORCE AND MAGNETIC INDUCTION.

395.] WE have already (Art. 386) determined the magnetic

potential at a given point due to a magnet, the magnetization of

which is given at every point of its substance, and we have shewn

that the mathematical result may be expressed either in terms

of the actual magnetization of every element of the magnet, or

in terms of an imaginary distribution of magnetic matter, partly

condensed on the surface of the magnet and partly diffused through
out its substance.

The magnetic potential, as thus denned, is found by the same

mathematical process, whether the given point is outside the magnet
or within it. The force exerted on a unit magnetic pole placed

at any point outside the magnet is deduced from the potential by
the same process of differentiation as in the corresponding electrical

problem. If the components of this force are a, /3, y,

dV dV dV ma= &amp;gt; /3
= j-j y j-- (1)

dx dy dz

To determine by experiment the magnetic force at a point within

the magnet we must begin by removing part of the magnetized

substance, so as to form a cavity within which we are to place the

magnetic pole. The force acting on the pole will depend, in general,

in the form of this cavity, and on the inclination of the walls of

the cavity to the direction of magnetization. Hence it is necessary,

in order to avoid ambiguity in speaking of the magnetic force

within a magnet, to specify the form and position of the cavity

within which the force is to be measured. It is manifest that

when the form and position of the cavity is specified, the point

within it at which the magnetic pole is placed must be regarded as
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no longer within the substance of the magnet, and therefore the

ordinary methods of determining the force become at once applicable.

396.] Let us now consider a portion of a magnet in which the

direction and intensity of the magnetization are uniform. Within

this portion let a cavity be hollowed out in the form of a cylinder,

the axis of which is parallel to the direction of magnetization, and

let a magnetic pole of unit strength be placed at the middle point

of the axis.

Since the generating lines of this cylinder are in the direction

of magnetization, there will be no superficial distribution of mag
netism on the curved surface, and since the circular ends of the

cylinder are perpendicular to the direction of magnetization, there

will be a uniform superficial distribution, of which the surface-

density is /for the negative end, and /for the positive end.

Let the length of the axis of the cylinder be 2 b, and its radius a.

Then the force arising from this superficial distribution on a

magnetic pole placed at the middle point of the axis is that due

to the attraction of the disk on the positive side, and the repulsion

of the disk on the negative side. These two forces are equal and

in the same direction, and their sum is

---!=. (2)

From this expression it appears that the force depends, not on

the absolute dimensions of the cavity, but on the ratio of the length
to the diameter of the cylinder. Hence, however small we make the

cavity, the force arising from the surface distribution on its walls

will remain, in general, finite.

397.] We have hitherto supposed the magnetization to be uniform

and in the same direction throughout the whole of the portion of

the magnet from which the cylinder is hollowed out. Wlien the

magnetization is not thus restricted, there will in general be a

distribution of imaginary magnetic matter through the substance

of the magnet. The cutting out of the cylinder will remove part
of this distribution, but since in similar solid figures the forces at

corresponding points are proportional to the linear dimensions of

the figures, the alteration of the force on the magnetic pole due

to the volume-density of magnetic matter will diminish indefinitely

as the size of the cavity is diminished, while the effect due to

the surface-density on the walls of the cavity remains, in general,
finite.

If, therefore, we assume the dimensions of the cylinder so small
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that the magnetization of the part removed may be regarded as

everywhere parallel to the axis of the cylinder, and of constant

magnitude I, the force on a magnetic pole placed at the middle

point of the axis of the cylindrical hollow will be compounded
of two forces. The first of these is that due to the distribution

of magnetic matter on the outer surface of the magnet, and

throughout its interior, exclusive of the portion hollowed out. The

components of this force are a, /3 and y, derived from the potential

by equations (1). The second is the force 72, acting along the axis

of the cylinder in the direction of magnetization. The value of

this force depends on the ratio of the length to the diameter of the

cylindric cavity.

398.] Case I. Let this ratio be very great, or let the diameter

of the cylinder be small compared with its length. Expanding the

expression for R in terms of
j-

,
it becomes

a quantity which vanishes when the ratio of b to a is made infinite.

Hence, when the cavity is a very narrow cylinder with its axis parallel

to the direction of magnetization, the magnetic force within the

cavity is not affected by the surface distribution on the ends of the

cylinder, and the components of this force are simply a, /3, y, where

dV dV dV ,,.
a = --7-, = -=-, y= -. (4)

dx dy dz

We shall define the force within a cavity of this form as the

magnetic force within the magnet. Sir William Thomson has

called this the Polar definition of magnetic force. When we have

occasion to consider this force as a vector we shall denote it

*&amp;gt;7$.

399.] Case II. Let the length of the cylinder be very small

compared with its diameter, so that the cylinder becomes a thin

disk. Expanding the expression for R in terms of -
,
it becomes

_ +-*..}, (5)
a 2 # 3

3

the ultimate value of which, when the ratio of a to b is made

infinite, is 4 TT J.

Hence, when the cavity is in the form of a thin disk, whose plane

is normal to the direction of magnetization, a unit magnetic pole
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placed at the middle of the axis experiences a force 4 IT I in the

direction of magnetization arising from the superficial magnetism

on the circular surfaces of the disk *.

Since the components of J are A, B and (7, the components of

this force are 4 -n A, 4 TTB and 4 TT C. This must be compounded
with the force whose components are a, {3, y.

400.] Let the actual force on the unit pole be denoted by the

vector 35, and its components by a, b and c, then

a = a + 4 TT A,

0=/3+ 47T., (6)

C = y -f 4 TT C.

We shall define the force within a hollow disk, whose plane sides

are normal to the direction of magnetization, as the Magnetic
Induction within the magnet. Sir William Thomson has called

this the Electromagnetic definition of magnetic force.

The three vectors, the magnetization 3, the magnetic force
&amp;lt;!fj,

and the magnetic induction S3 are connected by the vector equation

47:3. (7)

Line-Integral of Magnetic Force.

401.] Since the magnetic force, as denned in Art. 398, is that

due to the distribution of free magnetism on the surface and through

the interior of the magnet, and is not affected by the surface-

magnetism of the cavity, it may be derived directly from the

general expression for the potential of the magnet, and the line-

integral of the magnetic force taken along any curve from the

point A to the point B is

where VA and V^ denote the potentials at A and B respectively.

* On the force within cavities of other forms.

1. Any narrow crevasse. The force arising from the surface-magnetism is

47r/cos in the direction of the normal to the plane of the crevasse, where 6 is the

angle between this normal and the direction of magnetization. When the crevasse
is parallel to the direction of magnetization the force is the magnetic force ; when
the crevasse is perpendicular to the direction of magnetization the force is the

magnetic induction 93.

2. In an elongated cylinder, the axis of which makes an angle with the
direction of magnetization, the force arising from the surface-magnetism is 27r/sin e,

perpendicular to the axis in the plane containing the axis and the direction of

magnetization.
3. In a sphere the force arising from surface-magnetism is f IT I in the direction of

magnetization.
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Surface-Integral of Magnetic Induction.

402.] The magnetic induction through the surface 8 is defined

as the value of the integral

Q = ff%cosdS, (9)

where 23 denotes the magnitude of the magnetic induction at the

element of surface clS, and e the angle between the direction of

the induction and the normal to the element of surface, and the

integration is to be extended over the whole surface, which may
be either closed or bounded by a closed curve.

If a, b, c denote the components of the magnetic induction, and

/, m, n the direction-cosines of the normal, the surface-integral

may be written

q = jj(la+mb+nG)d8. (10)

If we substitute for the components of the magnetic induction

their values in terms of those of the magnetic force, and the

magnetization as given in Art. 400, we find

Q = n(la + mp + ny)dS + 4 TT (lA + m + nC)dS. (11)

We shall now suppose that the surface over which the integration

extends is a closed one, and we shall investigate the value of the

two terms on the right-hand side of this equation.

Since the mathematical form of the relation between magnetic
force and free magnetism is the same as that between electric

force and free electricity, we may apply the result given in Art. 77

to the first term in the value of Q by substituting a, ft, y, the

components of magnetic force, for X, Y, Z, the components of

electric force in Art. 77, and M, the algebraic sum of the free

magnetism within the closed surface, for e, the algebraic sum of

the free electricity.

We thus obtain the equation

ny)48*x 4irM. (12)

Since every magnetic particle has two poles, which are equal
in numerical magnitude but of opposite signs, the algebraic sum
of the magnetism of the particle is zero. Hence, those particles

which are entirely within the closed surface S can contribute

nothing to the algebraic sum of the magnetism within S. The
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value of M must therefore depend only on those magnetic particles

which are cut by the surface S.

Consider a small element of the magnet of length s and trans

verse section kz
, magnetized in the direction of its length, so that

the strength of its poles is m. The moment of this small magnet
will be ms, and the intensity of its magnetization, being the ratio

of the magnetic moment to the volume, will be

/= (13)

Let this small magnet be cut by the surface S, so that the

direction of magnetization makes an angle e with the normal

drawn outwards from the surface, then if dS denotes the area of

the section, p = ds cos e
/

t
(
1 4)

The negative pole m of this magnet lies within the surface S.

Hence, if we denote by dM the part of the free magnetism
within S whic*h is contributed by this little magnet,

IS. (15)

To find M, the algebraic sum of the free magnetism within the

closed surface S, we must integrate this expression over the closed

surface, so that
M=-

or writing A, .Z?, C for the components of magnetization, and I, m, n

for the direction-cosines of the normal drawn outwards,

(16)

This gives us the value of the integral in the second term of

equation (11). The value of Q in that equation may therefore

be found in terms of equations (12) and (16),

Q = 47r3/-47rl/= 0, (17)

or, the surface-integral of the magnetic induction through any closed

surface is zero.

403.] If we assume as the closed surface that of the differential

element of volume dx dy dz, we obtain the equation

*! + *+* = 0. (18)
dx dy dz

This is the solenoidal condition which is always satisfied by the

components of the magnetic induction.
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Since the distribution of magnetic induction is solenoidal, the

induction through any surface bounded by a closed curve depends

only on the form and position of the closed curve, and not on that

of the surface itself.

404.] Surfaces at every point of which

la + mb+ nc =
(19)

are called Surfaces of no induction, and the intersection of two such

surfaces is called a Line of induction. The conditions that a curve,

Sj may be a line of induction are

1 dx 1 dy \ dz , .= L = . (20)
a ds I ds c ds

A system of lines of induction drawn through every point of a

closed curve forms a tubular surface called a Tube of induction.

The induction across any section of such a tube is the same.

If the induction is unity the tube is called a Unit tube of in

duction.

All that Faraday
*

says about lines of magnetic force and mag
netic sphondyloids is mathematically true, if understood of the

lines and tubes of magnetic induction.

The magnetic force and the magnetic induction are identical

outside the magnet, but within the substance of the magnet they
must be carefully distinguished. In a straight uniformly mag
netized bar the magnetic force due to the magnet itself is from

the end which points north, which we call the positive pole, towards

the south end or negative pole, both within the magnet and in

the space without.

The magnetic induction, on the other hand, is from the positive

pole to the negative outside the magnet, and from the negative

pole to the positive within the magnet, so that the lines and tubes

of induction are re-entering or cyclic figures.

The importance of the magnetic induction as a physical quantity

will be more clearly seen when we study electromagnetic phe
nomena. When the magnetic field is explored by a moving wire,

as in Faraday s Exp. Res. 3076, it is the magnetic induction and

not the magnetic force which is directly measured.

The Vector-Potential of Magnetic Induction.

405.] Since, as we have shewn in Art. 403, the magnetic in

duction through a surface bounded by a closed curve depends on

*
Exp. Res., series xxviii.
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the closed curve, and not on the form of the surface which is

bounded by it, it must be possible to determine the induction

through a closed curve by a process depending only on the nature

of that curve, and not involving the construction of a surface

forming a diaphragm of the curve.

This may be done by finding a vector 21 related to 33, the magnetic

induction, in such a way that the line-integral of SI, extended round

the closed curve, is equal to the surface-integral of 33, extended

over a surface bounded by the closed curve.

If, in Art. 24, we write F
9 G, H for the components of SI, and

a, b, c for the components of 33, we find for the relation between

these components
dH dG dF dH dG dFa= .j 7dz dz ax ax ay

The vector SI, whose components are F, G, //, is called the vector-

potential of magnetic induction. The vector-potential at a given

point, due to a magnetized particle placed at the origin, is nume

rically equal to the magnetic moment of the particle divided by
the square of the radius vector and multiplied by the sine of the

angle between the axis of magnetization and the radius vector,

and the direction of the vector-potential is perpendicular to the

plane of the axis of magnetization and the radius vector, and is

such that to an eye looking in the positive direction along the

axis of magnetization the vector-potential is drawn in the direction

of rotation of the hands of a watch.

Hence, for a magnet of any form in which A^ B, C are the

components of magnetization at the point xyz, the components
of the vector-potential at the point f 77 are

(22)

where p is put, for conciseness, for the reciprocal of the distance

between the points (f, 77, Q and (#, y, z), and the integrations are

extended over the space occupied by the magnet.

406.] The scalar, or ordinary, potential of magnetic force,

Art. 386, becomes when expressed in the same notation,
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/v /y\
t-j

/v\

Kemembering that ~ = -~, and that the integraldx u/

has the value 4 TT
(A) when the point (, 77, f) is included within

the limits of integration, and is zero when it is not so included,

(A) being the value of A at the point (f, 77, (*),
we find for the value

of the ^-component of the magnetic induction,

dH _ dG_
dr] d

f d^p d zp \ d*p d 2
j) }

\dydr) dzdC dx dr] dxd^S

7&amp;gt; r, ^ 7 7
-ri

- ~ + B -/- -f- (7 7 \dxdydzdjJJ ( dx dy d

The first term of this expression is evidently
--^ ,

or a, the

component of the magnetic force.

The quantity under the integral sign in the second term is zero

for every element of volume except that in which the point (f, ry, )

is included. If the value of A at the point (f, r/, f) is (A), the

value of the second term is 4 TT (A) 9
where (A) is evidently zero

at all points outside the magnet.
We may now write the value of the ^-component of the magnetic

induction = o+4w(^), (25)

an equation which is identical with the first of those given in

Art. 400. The equations for b and c will also agree with those

of Art. 400.

We have already seen that the magnetic force is derived from

the scalar magnetic potential V by the application of Hamilton s

operator y ,
so that we may write, as in Art. 1 7,

=-vF, (26)

and that this equation is true both without and within the magnet.
It appears from the present investigation that the magnetic

induction S3 is derived from the vector-potential SI by the appli

cation of the same operator, and that the result is true within the

magnet as well as without it.

The application of this operator to a vector-function produces,
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in general, a scalar quantity as well as a vector. The scalar part,

however, which we have called the convergence of the vector-

function, vanishes when the vector-function satisfies the solenoidal

condition

dF dG dH
Jl + -J~ + -7TF

= *

df; dr] d

By differentiating the expressions for F, G, If in equations (22), we

find that this equation is satisfied by these quantities.

We may therefore write the relation between the magnetic
induction and its vector-potential

23 = V %
which may be expressed in words by saying that the magnetic
induction is the curl of its vector-potential. See Art. 25.



CHAPTER III

MAGNETIC SOLENOIDS AND SHELLS*.

On Particular Forms of Magnets.

407.] IF a long narrow filament of magnetic matter like a wire

is magnetized everywhere in a longitudinal direction, then the

product of any transverse section of the filament into the mean

intensity of the magnetization across it is called the strength of

the magnet at that section. If the filament were cut in two at

the section without altering the magnetization, the two surfaces,

when separated, would be found to have equal and opposite quan
tities of superficial magnetization, each of which is numerically

equal to the strength of the magnet at the section.

A filament of magnetic matter, so magnetized that its strength

is the same at every section, at whatever part of its length the

section be made, is called a Magnetic Solenoid.

If m is the strength of the solenoid, ds an element of its length,

r the distance of that element from a given point, and e the angle

which r makes with the axis of magnetization of the element, the

potential at the given point due to the element is

m ds cos m dr ..

o = s- ~r~ ds.
r2 r* ds

Integrating this expression with respect to s} so as to take into

account all the elements of the solenoid, the potential is found

to be ,11^V = m (
)

&amp;gt;

r
l

r
2

T! being the distance of the positive end of the solenoid, and r^

that of the negative end from the point where V exists.

Hence the potential due to a solenoid, and consequently all its

magnetic effects, depend only on its strength and the position of

* See Sir W. Thomson s Mathematical Theory of Magnetism, Phil. Trans., 1850,
or Reprint.
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its ends, and not at all on its form, whether straight or curved,

between these points.

Hence the ends of a solenoid may be called in a strict sense

its poles.

If a solenoid forms a closed curve the potential due to it is zero

at every point, so that such a solenoid can exert no magnetic

action, nor can its magnetization be discovered without breaking
it at some point and separating the ends.

If a magnet can be divided into solenoids, all of which either

form closed curves or have their extremities in the outer surface

of the magnet, the magnetization is said to be solenoidal, and,

since the action of the magnet depends entirely upon that of the

ends of the solenoids, the distribution of imaginary magnetic matter

will be entirely superficial.

Hence the condition of the magnetization being solenoidal is

dA dB dC _
dx dy dz

where A, B, C are the components of the magnetization at any

point of the magnet.

408.] A longitudinally magnetized filament, ofwhich the strength

varies at different parts of its length, may be conceived to be made

up of a bundle of solenoids of different lengths, the sum of the

strengths of all the solenoids which pass through a given section

being the magnetic strength of the filament at that section. Hence

any longitudinally magnetized filament may be called a Complex
Solenoid.

If the strength of a complex solenoid at any section is m, then

the potential due to its action is

ds where m is variable,
Cm dr

f% -m
\

m
i /I

fll* 4* i 4*
/I /*&amp;gt;

J I

l dm
7

ds

This shews that besides the action of the two ends, which may
in this case be of different strengths, there is an action due to the

distribution of imaginary magnetic matter along the filament with

a linear density dm
/V. -

&quot;

j
*

ds

Magnetic Shells.

409.] If a thin shell of magnetic matter is magnetized in a
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direction everywhere normal to its surface, the intensity of the

magnetization at any place multiplied by the thickness of the

sheet at that place is called the Strength of the magnetic shell

at that place.

If the strength of a shell is everywhere equal, it is called a

Simple magnetic shell; if it varies from point to point it may be

conceived to be made up of a number of simple shells superposed
and overlapping each other. It is therefore called a Complex
magnetic shell.

Let dS be an element of the surface of the shell at Q, and 4&amp;gt;

the strength of the shell, then the potential at any point, P, due

to the element of the shell, is

d V = &amp;lt;J&amp;gt;

- dS cos *

r2

where e is the angle between the vector QP, or r and the normal

drawn from the positive side of the shell.

But if du&amp;gt; is the solid angle subtended by dS at the point P
r2 da dS cos e,

whence dF =
&amp;lt;&da&amp;gt;,

and therefore in the case of a simple magnetic shell

or, the potential due to a magnetic shell at any point is the product

of its strength into the solid angle subtended by its edge at the

given point*.

410.] The same result may be obtained in a different way by

supposing the magnetic shell placed in any field of magnetic force,

and determining the potential energy due to the position of the

shell.

If V is the potential at the element dS, then the energy due to

this element is dy dy dy
* (^ -r- + m ~j- + n ~r) &amp;lt;***\ da dy dz

or, the product of the strength of the shell into the part of the

surface-integral of V due to the element dS of the shell.

Hence, integrating with respect to all such elements, the energy

due to the position of the shell in the field is equal to the product

of the strength of the shell and the surface-integral of the magnetic

induction taken over the surface of the shell.

Since this surface-integral is the same for any two surfaces which

* This theorem is due to Gauss, General Theory of Terrestrial Magnetism, 38.

VOL. II. D
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have the same bounding- edge and do not include between them

any centre of force, the action of the magnetic shell depends only

on the form of its edge.

Now suppose the field of force to be that due to a magnetic

pole of strength m. We have seen (Art. 76, Cor.) that the surface-

integral over a surface bounded by a given edge is the product

of the strength of the pole and the solid angle subtended by the

edge at the pole. Hence the energy due to the mutual action

of the pole and the shell is

and this (by Green s theorem. Art. 100) is equal to the product

of the strength of the pole into the potential due to the shell at

the pole. The potential due to the shell is therefore 4&amp;gt; co.

411.] If a magnetic pole m starts from a point on the negative

surface of a magnetic shell, and travels along any path in space so as

to come round the edge to a point close to where it started but on

the positive side of the shell, the solid angle will vary continuously,

and will increase by 4 TT during the process. The work done by
the pole will be 4 TT 4&amp;gt; m, and the potential at any point on the

positive side of the shell will exceed that at the neighbouring point

on the negative side by 4 TT 4&amp;gt;.

If a magnetic shell forms a closed surface, the potential outside

the shell is everywhere zero, and that in the space within is

everywhere 4 TT
4&amp;gt;, being positive when the positive side of the shell

is inward. Hence such a shell exerts no action on any magnet

placed either outside or inside the shell.

412.] If a magnet can be divided into simple magnetic shells,

either closed or having their edges on the surface of the magnet,
the distribution of magnetism is called Lamellar. If &amp;lt; is the

sum of the strengths of all the shells traversed by a point in

passing from a given point to a point xy z by a line drawn within

the magnet, then the conditions of lamellar magnetization are

,_&amp;lt;Z&amp;lt;I&amp;gt; d&amp;lt;}&amp;gt; d(f&amp;gt;A = =
,

JD = -r
, L&amp;gt;

= T~ *

dx dy dz

The quantity, &amp;lt;J&amp;gt;,

which thus completely determines the magnet
ization at any point may be called the Potential of Magnetization.
It must be carefully distinguished from the Magnetic Potential.

413.] A magnet which can be divided into complex magnetic
shells is said to have a complex lamellar distribution of mag
netism. The condition of such a distribution is that the lines of
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magnetization must be such that a system of surfaces can be drawn

cutting them at right angles. This condition is expressed by the

well-known equation

A
ff__&amp;lt;lB} ^A_&amp;lt;IC ^_&amp;lt;U^dy dz&amp;gt; ^dz dx ^dx dy

Forms of the Potentials of Solenoidal and Lamellar Magnets.

414.] The general expression for the scalar potential of a magnet

where p denotes the potential at (#, y, z) due to a unit magnetic

pole placed at f, TJ, or in other words, the reciprocal of the

distance between (f, r;, Q, the point at which the potential is

measured, and (#, y&amp;gt; z), the position of the element of the magnet
to which it is due.

This quantity may be integrated by parts, as in Arts. 96, 386.

where I, m, n are the direction-cosines of the normal drawn out

wards from dS, an element of the surface of the magnet.
When the magnet is solenoidal the expression under the integral

sign in the second term is zero for every point within the magnet,
so that the triple integral is zero, and the scalar potential at any

point, whether outside or inside the magnet, is given by the surface-

integral in the first term.

The scalar potential of a solenoidal magnet is therefore com

pletely determined when the normal component of the magnet
ization at every point of the surface is known, and it is independent
of the form of the solenoids within the magnet.

415.] In the case of a lamellar magnet the magnetization is

determined by c/&amp;gt;,

the potential of magnetization, so that

dcf) d&amp;lt;j&amp;gt; d$
** - ~^ j .&amp;gt; = 7 , &amp;lt;-/

= ;

ax ay dz

The expression for V may therefore be written

= fff,JJJ \
dp .

dx dx dy dy dz dz

Integrating this expression by parts, we find

D 2
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The second term is zero unless the point (f, r/, f) is included in

the magnet, in which case it becomes 4 TT
(&amp;lt;)

where
(&amp;lt;)

is the value

of
&amp;lt;p

at the point , 77, f The surface-integral may be expressed in

terms of r
t
the line drawn from (x, y, z] to (f, rj, f ),

and the angle
which this line makes with the normal drawn outwards from dS

t

so that the potential may be written

where the second term is of course zero when the point (f, TJ, f) is

not included in the substance of the magnet.
The potential, F, expressed by this equation, is continuous even

at the surface of the magnet, where $ becomes suddenly zero, for

if we write

fit =

and if 1
L

is the value of H at a point just within the surface, and

12
2 that at a point close to the first but outside the surface,

fla
= ^ + 477^),

r
2
= r,.

The quantity H is not continuous at the surface of the magnet.
The components of magnetic induction are related to 12 by the

equations
d& da daa= --=

,
0= --=-, c --

-j-dx dy dz

416.] In the case of a lamellar distribution of magnetism we

may also simplify the vector-potential of magnetic induction.

Its ^-component may be written

By integration by parts we may put this in the form of the

surface-integral

or F .

The other components of the vector-potential may be written

down from these expressions by making the proper substitutions.

On Solid Angles.

417.] We have already proved that at any point P the potential
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due to a magnetic shell is equal to the solid angle subtended by
the edge of the shell multiplied by the strength of the shell. As
we shall have occasion to refer to solid angles in the theory of

electric currents, we shall now explain how they may be measured.

Definition. The solid angle subtended at a given point by a

closed curve is measured by the area of a spherical surface whose

centre is the given point and whose radius is unity, the outline

of which is traced by the intersection of the radius vector with the

sphere as it traces the closed curve. This area is to be reckoned

positive or negative according as it lies on the left or the right-

hand of the path of the radius vector as seen from the given point.

Let (, r], f) be the given point, and let (#, y, z) be a point on

the closed curve. The coordinates- x, y, z are functions of s, the

length of the curve reckoned from a given point. They are periodic

functions of s, recurring whenever s is increased by the whole length

of the closed curve.

We may calculate the solid angle o&amp;gt; directly from the definition

thus. Using spherical coordinates with centre at (, 77, Q, and

putting

x f = r sin0cos$, y rj
= r sin sin^, z C=rcos0,

we find the area of any curve on the sphere by integrating

co = /(I cos0) d$,

or, using the rectangular coordinates,

the integration being extended round the curve s.

If the axis of z passes once through the closed curve the first

term is 2 IT. If the axis of z does not pass through it this term

is zero.

418.] This method of calculating a solid angle involves a choice

of axes which is to some extent arbitrary, and it does not depend

solely on the closed curve. Hence the following method, in which

no surface is supposed to be constructed, may be stated for the sake

of geometrical propriety.

As the radius vector from the given point traces out the closed

curve, let a plane passing through the given point roll on the

closed curve so as to be a tangent plane at each point of the curve

in succession. Let a line of unit-length be drawn from the given

point perpendicular to this plane. As the plane rolls round the
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closed curve the extremity of the perpendicular will trace a second

closed curve. Let the length of the second closed curve be o-, then

the solid angle subtended by the first closed curve is

00 = 27T (7.

This follows from the well-known theorem that the area of a

closed curve on a sphere of unit radius, together with the circum

ference of the polar curve, is numerically equal to the circumference

of a great circle of the sphere.

This construction is sometimes convenient for calculating the

solid angle subtended by a rectilinear figure. For our own purpose,

which is to form clear ideas of physical phenomena, the following

method is to be preferred, as it employs no constructions which do

not flow from the physical data of the problem.

419.] A closed curve s is given in space, and we have to find

the solid angle subtended by s at a given point P.

If we consider the solid angle as the potential of a magnetic shell

of unit strength whose edge coincides with the closed curve, we

must define it as the work done by a unit magnetic pole against

the magnetic force while it moves from an infinite distance to the

point P. Hence, if cr is the path of the pole as it approaches the

point P, the potential must be the result of a line-integration along
this path. It must also be the result of a line-integration along

the closed curve s. The proper form of the expression for the solid

angle must therefore be that of a double integration with respect

to the two curves s and a.

When P is at an infinite distance, the solid angle is evidently

zero. As the point P approaches, the closed curve, as seen from

the moving point, appears to open out, and the whole solid angle

may be conceived to be generated by the apparent motion of the

different elements of the closed curve as the moving point ap

proaches.

As the point P moves from P to P over the element do-, the

element QQ of the closed curve, which we denote by ds, will

change its position relatively to P, and the line on the unit sphere

corresponding to QQ will sweep over an area on the spherical

surface, which we may write

da = Udsdcr. (I)

To find FT let us suppose P fixed while the closed curve is moved

parallel to itself through a distance da- equal to PPf

but in the

opposite direction. The relative motion of the point P will be the

same as in the real case.
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During this motion the element QQ will generate an area in

the form of a parallelogram whose sides are parallel and equal
to QQ and PP . If we construct a pyramid on this parallelogram
as base with its vertex at P, the solid angle of this pyramid will

be the increment d& which we are in search of.

To determine the value of this solid

angle, let 6 and tf be the angles which

ds and dcr make with PQ respect

ively, and let &amp;lt; be the angle between

the planes of these two angles, then

the area of the projection of the

parallelogram ds .dcr on a. plane per

pendicular to PQ or r will be

ds dcr sin Q sin 6 sin

and since this is equal to r2
d&amp;lt;a,

we find

Fig. 3.

Hence

du&amp;gt; = II ds dcr = -g sin Q sin 6 sin
&amp;lt;/&amp;gt;

ds dcr.

n = - sin 6 sin sin &amp;lt;&amp;gt;.

(2)

(3)

420.] We may express the angles 6, 6 , and $ in terms of

and its differential coefficients with respect to s and o-, for

cos0= -=-,
//

cos&amp;lt;9 = -=-,
dcr

and sin 6 sin 6 cos cp
= r

dsdcr
(4)

We thus find the following value for D 2
,

(5)

A third expression for II in terms of rectangular coordinates

may be deduced from the consideration that the volume of the

pyramid whose solid angle is d& and whose axis is r is

J r* do) = J r* FT ds dcr.

But the volume of this pyramid may also be expressed in terms

of the projections of r, ds, and dcr on the axis of #, y and z
t
as

a determinant formed by these nine projections, of which we must

take the third part. We thus find as the value of n,

n = -^
-= &amp;gt; -^ &amp;gt; -=

c *i
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This expression gives the value of FT free from the ambiguity of

sign introduced by equation (5).

421.] The value of
o&amp;gt;,

the solid angle subtended by the closed

curve at the point P, may now be written

a) = ndsdv-i-WQ, (7)

where the integration with respect to s is to be extended completely

round the closed curve, and that with respect to &amp;lt;r from A a fixed

point on the curve to the point P. The constant &amp;lt;o is the value

of the solid angle at the point A. It is zero if A is at an infinite

distance from the closed curve.

The value of o&amp;gt; at any point P is independent of the form of

the curve between A and P provided that it does not pass through
the magnetic shell itself. If the shell be supposed infinitely thin,

and if P and Pf
are two points close together, but P on the positive

and P on the negative surface of the shell, then the curves AP and

AP/ must lie on opposite sides of the edge of the shell, so that PAP
is a line which with the infinitely short line PP forms a closed

circuit embracing the edge. The value of o&amp;gt; at P exceeds that at P

by 47T, that is, by the surface of a sphere of radius unity.

Hence, if a closed curve be drawn so as to pass once through
the shell, or in other words, if it be linked once with the edge

of the shell, the value of the integral I lUdsdv extended round

both curves will be 47r.

This integral therefore, considered as depending only on the

closed curve s and the arbitrary curve AP, is an instance of a

_ function of multiple values, since, if we pass from A to P along

different paths the integral will have different values according

to the number of times which the curve AP is twined round the

curve s.

If one form of the curve between A and P can be transformed

into another by continuous motion without intersecting the curve

s, the integral will have the same value for both curves, but if

during the transformation it intersects the closed curve n times the

values of the integral will differ by 47m.

If s and a- are any two closed curves in space, then, if they are

not linked together, the integral extended once round both is

zero.

If they are intertwined n times in the same direction, the value

of the integral is 4iTn. It is possible, however, for two curves
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to be intertwined alternately in opposite directions, so that they
are inseparably linked together though the value of the integral

is zero. See Fig. 4.

It was the discovery by Gauss of this very integral, expressing
the work done on a magnetic pole while de

scribing a closed curve in presence of a closed

electric current, and indicating the geometrical

connexion between the two closed curves, that

led him to lament the small progress made in the

Geometry of Position since the time of Leibnitz,

Euler and Vandermonde. We have now, how- Flg&amp;gt;
4&amp;gt;

ever, some progress to report, chiefly due to Riemann, Helmholtz

and Listing.

422.] Let us now investigate the result of integrating with

respect to s round the closed curve.

One of the terms of FT in equation (7) is

f x dri dz _ di) d A
dz^

, .

r 3 da- ds
~~

da d W ds

If we now write for brevity

^ f 1 dx
7 f 1 dy .. TT f 1 dz

F I - -r- ds, G = I
-

-f- ds, R\- ~
ds, (9)

J r ds J r ds J r ds

the integrals being taken once round the closed curve s, this term

of FT may be written

da- dds

and the corresponding term of / n ds will be

da- d

Collecting all the terms of n, we may now write

This quantity is evidently the rate of decrement of co, the

magnetic potential, in passing along the curve a-, or in other words,

it is the magnetic force in the direction of da:

By assuming da- successively in the direction of the axes of

x, y and z, we obtain for the values of the components of the

magnetic force
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do&amp;gt; _ dH dG
Ot ~~~

7 f. ~~j
~&quot;

T&quot;T~

dt, d-r] d

d&amp;lt;* _ dF dH
dr] d d

do&amp;gt; _ dG dF
y =~

JT&amp;gt; ,7 / ~j

(11)

The quantities F, G, H are the components of the vector-potential

of the magnetic shell whose strength is unity, and whose edge is

the curve s. They are not, like the scalar potential o&amp;gt;,
functions

having a series of values, but are perfectly determinate for every

point in space.

The vector-potential at a point P due to a magnetic shell bounded

by a closed curve may be found by the following geometrical

construction :

Let a point Q travel round the closed curve with a velocity

numerically equal to its distance from P, and let a second point

R start from A and travel with a velocity the direction of which

is always parallel to that of Q, but whose magnitude is unity.

When Q has travelled once round the closed curve join AR, then

the line AR represents in direction and in numerical magnitude
the vector-potential due to the closed curve at P.

Potential Energy of a Magnetic Shellplaced in a Magnetic Field.

423.] We have already shewn, in Art. 410, that the potential

energy of a shell of strength &amp;lt; placed in a magnetic field whose

potential is T
9
is

rffidV d7 dY\ 70

x-tJJ ( is +*?+*)** ^
where I, m, n are the direction-cosines of the normal to the shell

drawn from the positive side, and the surface-integral is extended

over the shell.

Now this surface-integral may be transformed into a line-integral

by means of the vector-potential of the magnetic field, and we

- +cf +^,
where the integration is extended once round the closed curve s

which forms the edge of the magnetic shell, the direction of ds

being opposite to that of the hands of a watch when viewed from

the positive side of the shell.

If we now suppose that the magnetic field is that due to a
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second magnetic shell whose strength is &amp;lt; , the values of F, G, H
will be

where the integrations are extended once round the curve /, which

forms the edge of this shell.

Substituting these values in the expression for M we find

, ff I fdx dx dy dy dz dz^ .

Jf= $$ //
-

(-J- -j- + ir j + -j--,,)dsds , (15)^ JJ r ^ds ds ds ds ds ds

where the integration is extended once round s and once round /.

This expression gives the potential energy due to the mutual action

of the two shells, and is, as it ought to be, the same when s and /

are interchanged. This expression with its sign reversed, when the

strength of each shell is unity, is called the potential of the two

closed curves s and /. It is a quantity of great importance in the

theory of electric currents. If we write e for the angle between

the directions of the elements ds and ds
,
the potential of s and /

may be written

(16)

It is evidently a quantity of the dimension of a line.



CHAPTER IV.

INDUCED MAGNETIZATION.

424.] WE have hitherto considered the actual distribution of

magnetization in a magnet as given explicitly among the data

of the investigation. We have not made any assumption as to

whether this magnetization is permanent or temporary, except in

those parts of our reasoning in which we have supposed the magnet
broken up into small portions, or small portions removed from

the magnet in such a way as not to alter the magnetization of

any part.

We have now to consider the magnetization of bodies with

respect to the mode in which it may be produced and changed.
A bar of iron held parallel to the direction of the earth s magnetic
force is found to become magnetic, with its poles turned the op

posite way from those of the earth, or the same way as those of

a compass needle in stable equilibrium.

Any piece of soft iron placed in a magnetic field is found to exhibit

magnetic properties. If it be placed in a part of the field where

the magnetic force is great, as between the poles of a horse-shoe

magnet, the magnetism of the iron becomes intense. If the iron

is removed from the magnetic field, its magnetic properties are

greatly weakened or disappear entirely. If the magnetic properties

of the iron depend entirely on the magnetic force of the field in

which it is placed, and vanish when it is removed from the field,

it is called Soft iron. Iron which is soft in the magnetic sense

is also soft in the literal sense. It is easy to bend it and give

it a permanent set, and difficult to break it.

Iron which retains its magnetic properties when removed from

the magnetic field is called Hard iron. Such iron does not take
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up the magnetic state so readily as soft iron. The operation of

hammering-, or any other kind of vibration, allows hard iron under

the influence of magnetic force to assume the magnetic state more

readily, and to part with it more readily when the magnetizing
force is removed. Iron which is magnetically hard is also more
stiff to bend and more apt to break.

The processes of hammering, rolling, wire-drawing, and sudden

cooling tend to harden iron, and that of annealing tends to

soften it.

The magnetic as well as the mechanical differences between steel

of hard and soft temper are much greater than those between hard

and soft iron. Soft steel is almost as easily magnetized and de

magnetized as iron, while the hardest steel is the best material

for magnets which we wish to be permanent.
Cast iron, though it contains more carbon than steel, is not

so retentive of magnetization.
If a magnet could be constructed so that the distribution of its

magnetization is not altered by any magnetic force brought to

act upon it, it might be called a rigidly magnetized body. The

only known body which fulfils this condition is a conducting circuit

round which a constant electric current is made to flow.

Such a circuit exhibits magnetic properties, and may therefore be

called an electromagnet, but these magnetic properties are not

affected by the other magnetic forces in the field. We shall return

to this subject in Part IV.

All actual magnets, whether made of hardened steel or of load

stone, are found to be affected by any magnetic force which is

brought to bear upon them.

It is convenient, for scientific purposes, to make a distinction

between the permanent and the temporary magnetization, defining

the permanent magnetization as that which exists independently
of the magnetic force, and the temporary magnetization as that

which depends on this force. We must observe, however, that

this distinction is not founded on a knowledge of the intimate

nature of magnetizable substances : it is only the expression of

an hypothesis introduced for the sake of bringing calculation to

bear on the phenomena. We shall return to the physical theory
of magnetization in Chapter VI.

425.] At present we shall investigate the temporary magnet
ization on the assumption that the magnetization of any particle

of the substance depends solely on the magnetic force acting on
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that particle. This magnetic force may arise partly from external

causes, and partly from the temporary magnetization of neigh

bouring particles.

A body thus magnetized in virtue of the action of magnetic

force, is said to be magnetized by induction, and the magnetization
is said to be induced by the magnetizing force.

The magnetization induced by a given magnetizing force differs

in different substances. It is greatest in the purest and softest

iron, in which the ratio of the magnetization to the magnetic force

may reach the value 32, or even 45 *.

Other substances, such as the metals nickel and cobalt, are

capable of an inferior degree of magnetization, and all substances

when subjected to a sufficiently strong magnetic force, are found

to give indications of polarity.

When the magnetization is in the same direction as the magnetic

force, as in iron, nickel, cobalt, &c., the substance is called Para

magnetic, Ferromagnetic, or more simply Magnetic. When the

induced magnetization is in the direction opposite to the magnetic

force, as in bismuth, &c., the substance is said to be Diamagnetic.
In all these substances the ratio of the magnetization to the

magnetic force which produces it is exceedingly small, being only

about 4 o (H) o Q m the case f bismuth, which is the most highly

diamagnetic substance known.

In crystallized, strained, and organized substances the direction

of the magnetization does not always coincide with that of the

magnetic force which produces it. The relation between the com

ponents of magnetization, referred to axes fixed in the body, and

those of the magnetic force, may be expressed by a system of three

linear equations. Of the nine coefficients involved in these equa
tions we shall shew that only six are independent. The phenomena
of bodies of this kind are classed under the name of Magnecrystallic

phenomena.
When placed in a field of magnetic force, crystals tend to set

themselves so that the axis of greatest paramagnetic, or of least

diamagnetic, induction is parallel to the lines of magnetic force.

See Art. 435.

In soft iron, the direction of the magnetization coincides with

that of the magnetic force at the point, and for small values of

the magnetic force the magnetization is nearly proportional to it.

* Thaten, Nova Ada, Reg. Soc. Sc., Upsal., 1863.
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As the magnetic force increases, however, the magnetization in

creases more slowly, and it would appear from experiments described

in Chap. VI, that there is a limiting value of the magnetization,

beyond which it cannot pass, whatever be the value of the

magnetic force.

In the following outline of the theory of induced magnetism,

we shall begin by supposing the magnetization proportional to the

magnetic force, and in the same line with it.

Definition of the Coefficient of Induced Magnetization.

426.] Let $ be the magnetic force, defined as in Art. 398, at

any point of the body, and let 3 be the magnetization at that

point, then the ratio of 3 to is called the Coefficient of Induced

Magnetization.

Denoting this coefficient by K, the fundamental equation of

induced magnetism is

The coefficient K is positive for iron and paramagnetic substances,

and negative for bismuth and diamagnetic substances. It reaches

the value 32 in iron, and it is said to be large in the case of nickel

and cobalt, but in all other cases it is a very small quantity, not

greater than 0.00001.

The force &amp;lt;)
arises partly from the action of magnets external

to the body magnetized by induction, and partly from the induced

magnetization of the body itself, Both parts satisfy the condition

of having a potential.

427.] Let V be the potential due to magnetism external to the

body, let X2 be that due to the induced magnetization, then if

U is the actual potential due to both causes

u= r+a. (2)

Let the components of the magnetic force ), resolved in the

directions of x, y, z, be a, /3, y, and let those of the magnetization

3 be A, B, C, then by equation (1),

A = K a,

*=K/3, (3)

C = K y.

Multiplying these equations by dx, dy, dz respectively, and

adding, we find

Adx + Bdy+Cdz = K(
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But since a, (3 and y are derived from the potential U, we may
write the second member KdU.

Hence, if /c is constant throughout the substance, the first member
must also be a complete differential of a function of #, y and z,

which we shall call $, and the equation becomes

i A d(b d(b d(b
where A = -f- ,

B = ~-
, C -

. (5)ax dy dz

The magnetization is therefore lamellar, as defined in Art. 412.

It was shewn in Art. 386 that if p is the volume-density of free

magnetism,
(dA dB dC.

P- (-J- +-J- + T-}x## dy dz

which becomes in virtue of equations (3),

/da d(3 dy\
\lx dy dz

But, by Art. 77,

da dj3 dy _
dx dy dz

~

Hence (l+47r*)p = 0,

whence p = (6)

throughout the substance, and the magnetization is therefore sole-

noidal as well as lamellar. See Art. 407.

There is therefore no free magnetism except on the bounding
surface of the body. If v be the normal drawn inwards from the

surface, the magnetic surface-density is

d^&amp;gt; ( -^
a- = j-- (7)

dv

The potential II due to this magnetization at any point may
therefore be found from the surface-integral

-//=
dS. (8)

The value of 1 will be finite and continuous everywhere, and

will satisfy Laplace s equation at every point both within and

without the surface. If we distinguish by an accent the value

of H outside the surface, and if v be the normal drawn outwards,

we have at the surface

Of =0.1 (9)
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da da
+^ =-4, by Art. 78,

= 4*8.^). , ., -..: : .

dU= - 47rK
j;&amp;gt;

bF(4
)

fdV d^ ,= - 47
rK(^+^),by(2).

We may therefore write the surface-condition

Hence the determination of the magnetism induced in a homo

geneous isotropic body, bounded by a surface S, and acted upon by
external magnetic forces whose potential is V

9 may be reduced to

the following mathematical problem.
We must find two functions H and H satisfying the following

conditions :

Within the surface S
9
XI must be finite and continuous, and must

satisfy Laplace s equation.

Outside the surface S, Of must be finite and continuous, it must

vanish at an infinite distance, and must satisfy Laplace s equation.

At every point of the surface itself, H = Of, and the derivatives

of H, Of and V with respect to the normal must satisfy equation

(10).
_

This method of treating the problem of induced magnetism is

due to Poisson. The quantity k which he uses in his memoirs is

not the same as *, but is related to it as follows :

47TK(-l)+3/&= 0. (11)

The coefficient K which we have here used was introduced by
J. Neumann.

428.] The problem of induced magnetism may be treated in a

different manner by introducing the quantity which we have called,

with Faraday, the Magnetic Induction.

The relation between 23, the magnetic induction, j, the magnetic

force, and
3&amp;gt;

the magnetization, is expressed by the equation

53 = $ + 471 3. (12)

The equation which expresses the induced magnetization in

terms of the magnetic force is

3 = K$. (13)

VOL. IT. E
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Hence, eliminating- 3, we find

$ = (1+47TK) (14)

as the relation between the magnetic induction and the magnetic
force in substances whose magnetization is induced by magnetic

force.

In the most general case K may be a function, not only of the

position of the point in the substance, but of the direction of the

vector
jp,

but in the case which we are now considering K is a

numerical quantity.

If we next write ^ = I + 4 -n K
} (15)

we may define /x as the ratio of the magnetic induction to the

magnetic force, and we may call this ratio the magnetic inductive

capacity of the substance, thus distinguishing it from K, the co

efficient of induced magnetization.

If we write U for the total magnetic potential compounded of T
7

,

the potential due to external causes, and 12 for that due to the

induced magnetization, we may express a, b, c, the components of

magnetic induction, and a, (3, y, the components of magnetic force,

as follows : dU
~}

a =
&quot;

= -M

dU
e = =-*& j

The components #, d, c satisfy the solenoidal condition

+!+= (17
&amp;gt;

Hence, the potential U must satisfy Laplace s equation

at every point where
/ot

is constant, that is, at every point within

the homogeneous substance, or in empty space.

At the surface itself, if v is a normal drawn towards the magnetic

substance, and v one drawn outwards, and if the symbols of quan
tities outside the substance are distinguished by accents, the con

dition of continuity of the magnetic induction is

dv , dv dv , dv ,, dv , dv
a-j- +6-j- +0-=- +a -j- +V -r- +&amp;lt;f -j- = 0; (19)dx dy dz dx dy dz
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or, by equations (16),

fjf, the coefficient of induction outside the magnet, will be unity
unless the surrounding medium be magnetic or diamagnetic.

If we substitute for U its value in terms of V and H, and for

fj&amp;gt;

its value in terms of K, we obtain the same equation (10) as we
arrived at by Poisson s method.

The problem of induced magnetism, when considered with respect

to the relation between magnetic induction and magnetic force,

corresponds exactly with the problem of the conduction of electric

currents through heterogeneous media, as given in Art. 309.

The magnetic force is derived from the magnetic potential, pre

cisely as the electric force is derived from the electric potential.

The magnetic induction is a quantity of the nature of a flux,

and satisfies the same conditions of continuity as the electric

current does.

In isotropic media the magnetic induction depends on the mag
netic force in a manner which exactly corresponds with that in

which the electric current depends on the electromotive force.

The specific magnetic inductive capacity in the one problem corre

sponds to the specific conductivity in the other. Hence Thomson,
in his Theory ofInduced Magnetism (Reprint, 1872, p. 484), has called

this quantity the permeability of the medium.

We are now prepared to consider the theory of induced magnetism
from what I conceive to be Faraday s point of view.

When magnetic force acts on any medium, whether magnetic or

diamagnetic, or neutral, it produces within it a phenomenon called

Magnetic Induction.

Magnetic induction is a directed quantity of the nature of a flux,

and it satisfies the same conditions of continuity as electric currents

and other fluxes do.

In isotropic media the magnetic force and the magnetic induction

are in the same direction, and the magnetic induction is the product

of the magnetic force into a quantity called the coefficient of

induction, which we have expressed by p.

In empty space the coefficient of induction is unity. In bodies

capable of induced magnetization the coefficient of induction is

1 + 4 TT K = /x,
where K is the quantity already defined as the co

efficient of induced magnetization.

429.] Let p, [k be the values of p on opposite sides of a surface

E
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separating two media, then if F, V are the potentials in the two

media, the magnetic forces towards the surface in the two media

dV , dV
are -7- and -3-7-Av dv

The quantities of magnetic induction through the element of

dV dV
surface dS are u-^-dS and u? -^-j-dS in the two media respect-r dv dv

ively reckoned towards dS.

Since the total flux towards dS is zero,

dV ,dV

But by the theory of the potential near a surface of density o-,

dV dV
+ 4. 47r(r:r= o.

dv dv

Hence -7- (l A + 4 TT or = 0.
c?i&amp;gt;

V
ju,

/

If K! is the ratio of the superficial magnetization to the normal

force in the first medium whose coefficient is
jot,
we have

4 77 KI
=

Hence K will be positive or negative according as
/ut

is greater

or less than //. If we put ju
= 4 TT /c + 1 and p = 4 77 / + 1

,

&quot;47T/+1

In this expression K and K are the coefficients of induced mag
netization of the first and second medium deduced from experiments

made in air, and K
X

is the coefficient of induced magnetization of

the first medium when surrounded by the second medium.

If K is greater than K, then /q is negative, or the apparent

magnetization of the first medium is in the opposite direction from

the magnetizing force.

Thus, if a vessel containing a weak aqueous solution of a para

magnetic salt of iron is suspended in a stronger solution of the

same salt, and acted on by a magnet, the vessel moves as if it

were magnetized in the opposite direction from that in which a

magnet would set itself if suspended in the same place.

This may be explained by the hypothesis that the solution in

the vessel is really magnetized in the same direction as the mag
netic force, but that the solution which surrounds the vessel is

magnetized more strongly in the same direction. Hence the vessel

is like a weak magnet placed between two strong ones all mag-
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netized in the same direction, so that opposite poles are in contact.

The north pole of the weak magnet points in the same direction

as those of the strong- ones, but since it is in contact with the south

pole of a stronger magnet, there is an excess of south magnetism
in the neighbourhood of its north pole, which causes the small

magnet to appear oppositely magnetized.

In some substances, however, the apparent magnetization is

negative even when they are suspended in what is called a vacuum.

If we assume K = for a vacuum, it will be negative for these

substances. No substance, however, has been discovered for which

K has a negative value numerically greater than
,
and therefore

for all known substances /x is positive.

Substances for which K is negative, and therefore p less than

unity, are called Diamagnetic substances. Those for which K is

positive, and ^ greater than unity, are called Paramagnetic, Ferro

magnetic, or simply magnetic, substances.

We shall consider the physical theory of the diamagnetic and

paramagnetic properties when we come to electromagnetism, Arts.

831-845.

430.] The mathematical theory of magnetic induction was first

given by Poisson *. The physical hypothesis on which he founded

his theory was that of two magnetic fluids, an hypothesis which

has the same mathematical advantages and physical difficulties

as the theory of two electric fluids. In order, however, to explain

the fact that, though a piece of soft iron can be magnetized by
induction, it cannot be charged with unequal quantities of the

two kinds of magnetism, he supposes that the substance in general

is a non-conductor of these fluids, and that only certain small

portions of the substance contain the fluids under circumstances

in which they are free to obey the forces which act on them.

These small magnetic elements of the substance contain each pre

cisely equal quantities of the two fluids, and within each element

the fluids move with perfect freedom, but the fluids can never pass

from one magnetic element to another.

The problem therefore is of the same kind as that relating to

a number of small conductors of electricity disseminated through
a dielectric insulating medium. The conductors may be of any
form provided they are small and do not touch each other.

If they are elongated bodies all turned in the same general

* Memoires de I lnstitut, 1824.
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direction, or if they are crowded more in one direction than another,

the medium, as Poisson himself shews, will not be isotropic. Poisson

therefore, to avoid useless intricacy, examines the case in which

each magnetic element is spherical, and the elements are dissem

inated without regard to axes. He supposes that the whole volume

of all the magnetic elements in unit of volume of the substance

is k.

We have already considered in Art. 314 the electric conductivity

of a medium in which small spheres of another medium are dis

tributed.

If the conductivity of the medium is ^ ,
and that of the spheres

ju2 ,
we have found that the conductivity of the composite system is

2)
P =

f*l-j

Putting fa = 1 and
/ot2
= oc, this becomes

_
1 + 2/fc

This quantity ju is the electric conductivity of a medium con

sisting of perfectly conducting spheres disseminated through a

medium of conductivity unity, the aggregate volume of the spheres

in unit of volume being k.

The symbol ^ also represents the coefficient of magnetic induction

of a medium, consisting of spheres for which the permeability is

infinite, disseminated through a medium for which it is unity.

The symbol k, which we shall call Poisson s Magnetic Coefficient,

represents the ratio of the volume of the magnetic elements to the

whole volume of the substance.

The symbol K is known as Neumann s Coefficient of Magnet
ization by Induction. It is more convenient than Poisson s.

The symbol ^ we shall call the Coefficient of Magnetic Induction.

Its advantage is that it facilitates the transformation of magnetic

problems into problems relating to electricity and heat.

The relations of these three symbols are as follows :

47TK

3
* =

3*
477

If we put K = 32, the value given by Thalen s* experiments on

* Recherches sur les Proprietes Magnetiques dufer, Nova Ada, Upsal, 1863.
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soft iron, we find k = |f|-. This, according to Poisson s theory,

is the ratio of the volume of the magnetic molecules to the whole

volume of the iron. It is impossible to pack a space with equal

spheres so that the ratio of their volume to the whole space shall

be so nearly unity, and it is exceedingly improbable that so large

a proportion of the volume of iron is occupied by solid molecules

whatever be their form. This is one reason why we must abandon

Poisson s hypothesis. Others will be stated in Chapter VI. Of

course the value of Poisson s mathematical investigations remains

unimpaired, as they do not rest on his hypothesis, but on the

experimental fact of induced magnetization.



CHAPTER V.

PARTICULAR PROBLEMS IN MAGNETIC INDUCTION.

A Hollow Spherical Shell.

431.] THE first example of the complete solution of a problem

in magnetic induction was that given by Poisson for the case of

a hollow spherical shell acted on by any magnetic forces whatever.

For simplicity we shall suppose the origin of the magnetic forces

to be in the space outside the shell.

If V denotes the potential due to the external magnetic system,

we may expand V in a series of solid harmonics of the form

7= CQ
8 + C1

S
1
r + to. + C

i
S

i
i
A

, (1)

where r is the distance from the centre of the shell, #&amp;lt;

is a surface

harmonic of order i, and C
i
is a coefficient.

This series will be convergent provided r is less than the distance

of the nearest magnet of the system which produces this potential.

Hence, for the hollow spherical shell and the space within it, this

expansion is convergent.

Let the external radius of the shell be a
2 and the inner radius alf

and let the potential due to its induced magnetism be H. The form

of the function H will in general be different in the hollow space,

in the substance of the shell, and in the space beyond. If we

expand these functions in harmonic series, then, confining our

attention to those terms which involve the surface harmonic Si9

we shall find that if Q^ is that which corresponds to the hollow

space within the shell, the expansion of Q^ must be in positive har

monics of the form Al St r*, because the potential must not become

infinite within the sphere whose radius is a^.

In the substance of the shell, where r lies between a
L
and a

2 ,

the series may contain both positive and negative powers of /*,

of the form

Outside the shell, where r is greater than a
2 , since the series
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must be convergent however great r may be, we must have only

negative powers of /, of the form

The conditions which must be satisfied by the function 12, are :

It must be (1) finite, and (2) continuous, and (3) must vanish at

an infinite distance, and it must (4) everywhere satisfy Laplace s

equation.

On account of (1) Bl
= 0.

On account of (2) when r = a^

(4-4,H2i+1-52 =0, (2)

and when r =
2 ,

(^2-J3)^2i+1 +^2-^3
= 0. (3)

On account of (3) Az
= 0, and the condition (4) is satisfied

everywhere, since the functions are harmonic.

But, besides these, there are other conditions to be satisfied at

the inner and outer surface in virtue of equation (10), Art. 427.

At the inner surface where r = a
lt

, dl9 d&, dV ,..

&amp;lt;

1+4
*&amp;gt;V-ifr

+4 &quot; * =
&amp;lt;)

and at the outer surface where r = a
2 ,

d dV , KN
0.

From these conditions we obtain the equations

iC
i
a
1
2i+l =

&amp;lt;), (6)

2
2 +1 -(^+l)^2)+(^+l)^3+ 47r^^22i+1 =

^ (
7
)

and if we put

we find
/ /, 2 + l\

4 = -(4)^ +
l)(l-Q) }Nt Clt (9)[I a 2t+l^-j

2^+ l + 477K(^+l)(l-(^) )J^Ci, (10)

(11)

1
2i+1)^Ci

. (12)

These quantities being substituted in the harmonic expansions

give the part of the potential due to the magnetization of the shell.

The quantity Ni
is always positive, since 1 -f 4 ir K can never be

negative. Hence A
1 is always negative, or in other words, the
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action of the magnetized shell on a point within it is always op

posed to that of the external magnetic force whether the shell he

paramagnetic or diamagnetic. The actual value of the resultant

potential within the shell is

or (l + 4wjc)(2i+ l^NiCtS.r. (13)

432.] When K is a large number, as it is in the case of soft iron,

then, unless the shell is very thin, the magnetic force within it

is hut a small fraction of the external force.

In this way Sir W. Thomson has rendered his marine galvano

meter independent of external magnetic force hy enclosing it in

a tube of soft iron.

433.] The case of greatest practical importance is that in which

i = 1. In this case

(14)

9(l+47TK)+2(477K)
2

(l-0 )

= -477*13+ 8w(l (^) )UViQ, !&amp;gt; (15)L X
dr&amp;gt; I

3
= 4 7TK(3 + 8 7TK)(#2

3
1

3
)^V1 Ci.

The magnetic force within the hollow shell is in this case uniform

and equal to

9(1+477*)

If we wish to determine K by measuring the magnetic force

within a hollow shell and comparing it with the external magnetic

force, the best value of the thickness of the shell may be found

from the equation

1 _-
2 (4 TT K)

2

The magnetic forc&quot;e inside the shell is then half of its value outside.

Since, in the case of iron, K is a number between 20 and 30, the

thickness of the shell ought to be about the hundredth part of its

radius. This method is applicable only when the value of K is

large. When it is very small the value of A^ becomes insensible,

since it depends on the square of K.
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For a nearly solid sphere with a very small spherical hollow,

. 2(4ir)
1J

4 77 K

The whole of this investigation might have been deduced directly

from that of conduction through a spherical shell, as given in

Art. 312, by putting ^ = (1 -f 47TK)/ 2
in the expressions there given,

remembering that A^ and A
2
in the problem of conduction are equi

valent to C
1 +A1

and C
1 + A2

in the problem of magnetic induction.

434.] The corresponding solution in two dimensions is graphically

represented in Fig. XV, at the end of this volume. The lines of

induction, which at a distance from the centre of the figure are

nearly horizontal, are represented as disturbed by a cylindric rod

magnetized transversely and placed in its position of stable equi

librium. The lines which cut this system at right angles represent

the equipotential surfaces, one of which is a cylinder. The large

dotted circle represents the section of a cylinder of a paramagnetic

substance, and the dotted horizontal straight lines within it, which

are continuous with the external lines of induction, represent the

lines of induction within the substance. The dotted vertical lines

represent the internal equipotential surfaces, and are continuous

with the external system. It will be observed that the lines of

induction are drawn nearer together within the substance, and the

equipotential surfaces are separated farther apart by the paramag
netic cylinder, which, in the language of Faraday, conducts the

lines of induction better than the surrounding medium.

If we consider the system of vertical lines as lines of induction,

and the horizontal system as equipotential surfaces, we have, in

the first place, the case of a cylinder magnetized transversely and

placed in the position of unstable equilibrium among the lines of

force, which it causes to diverge. In the second place, considering

the large dotted circle as the section of a diamagnetic cylinder,

the dotted straight lines within it, together with the lines external

to it, represent the effect of a diamagnetic substance in separating

the lines of induction and drawing together the equipotential

surfaces, such a substance being a worse conductor of magnetic

induction than the surrounding medium.



60 MAGNETIC PROBLEMS. [435-

Case of a Sphere in which the Coefficients of Magnetization are

Different in Different Directions.

435.] Let a, (B, y be the components of magnetic force, and A, ,

C those of the magnetization at any point, then the most general

linear relation between these quantities is given by the equations

A = ^0+^3/3+ q2 y, \

= q9 a+r2 p+ fl y, { (1)

C = p2 a+q1
h2+ 7-

3 y, )

where the coefficients r,jo, q are the nine coefficients of magnet
ization.

Let us now suppose that these are the conditions of magnet
ization within a sphere of radius a, and that the magnetization at

every point of the substance is uniform and in the same direction,

having the components A, 13, C.

Let us also suppose that the external magnetizing force is also

uniform and parallel to one direction, and has for its components

X, Y, Z.

The value of V is therefore

and that of& the potential of the magnetization outside the sphere is

(3)

The value of H, the potential of the magnetization within the

sphere, is 4-n-

(4)
o

The actual potential within the sphere is V-\- 1, so that we shall

have for the components of the magnetic force within the sphere

a = X ^TtA, \

= 7-J.ir-B, (5)

y =Z-
Hence

+i*r1)^+ twftjjB + iir&
C = &J+ r

2Y+frZ, (6)

+(1 +

Solving these equations, we find

A = r/^+K
(7)
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where I/ //= r + ^ TT
(
r
B
r
l p2 q2 4 r- r

2

;-A^i)&amp;gt;

&c.,

where D is the determinant of the coefficients on the right side of

equations (6), and D that of the coefficients on the left.

The new system of coefficients _p , /_, / will be symmetrical only
when the system p, q, r is symmetrical, that is, when the co

efficients of the form p are equal to the corresponding ones of

the form q.

436.] The moment of the couple tending to turn the sphere about

the axis of x from y towards z is

f. n Y\\ (Q\
Jr2 ))* \ /

If we make

X = 0, Y = Fcos 0, Y= Fsin 0,

this corresponds to a magnetic force F in the plane of yz, and

inclined to y at an angle 0. If we now turn the sphere while this

force remains constant the work done in turning the sphere will

T27T

be
/

LdQ in each complete revolution. But this is equal to

Hence, in order that the revolving sphere may not become an

inexhaustible source of energy, j 1

/=
fa ,

and similarlyj./= q2 and

These conditions shew that in the original equations the coeffi

cient of B in the third equation is equal to that of C in the second,

and so on. Hence, the system of equations is symmetrical, and the

equations become when referred to the principal axes of mag
netization, TIA =

rr*&quot;i

C =

(11)

The moment of the couple tending to turn the sphere round the

axis of x is
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In most cases the differences between the coefficients of magnet
ization in different directions are very small, so that we may put

This is the force tending to turn a crystalline sphere about the

axis of oo from y towards z. It always tends to place the axis of

greatest magnetic coefficient (or least diamagnetic coefficient) parallel

to the line of magnetic force.

The corresponding case in two dimensions is represented in

Fig. XVI.
If we suppose the upper side of the figure to be towards the

north, the figure represents the lines of force and equipotential

surfaces as disturbed by a transversely magnetized cylinder placed

with the north side eastwards. The resultant force tends to turn

the cylinder from east to north. The large dotted circle represents

a section of a cylinder of a crystalline substance which has a larger

coefficient of induction along an axis from north-east to south-west

than along an axis from north-west to south-east. The dotted lines

within the circle represent the lines of induction and the equipotential

surfaces, which in this case are not at right angles to each other.

The resultant force on the cylinder is evidently to turn it from east

to north.

437.] The case of an ellipsoid placed in a field of uniform and

parallel magnetic force has been solved in a very ingenious manner

by Poisson.

If V is the potential at the point (as, y, z\ due to the gravitation

dV
of a body of any form of uniform density p, then -=- is the

potential of the magnetism of the same body if uniformly mag
netized in the direction of x with the intensity I = p.

For the value of --= 8# at any point is the excess of the value
clx

of V3 the potential of the body, above V, the value of the potential

when the body is moved x in the direction of x.

If we supposed the body shifted through the distance 8#, and

its density changed from p to p (that is to say, made of repulsive

dV
instead of attractive matter,) then y-8# would be the potential

due to the two bodies.

Now consider any elementary portion of the body containing a

volume b v. Its quantity is pbv, and corresponding to it there is
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an element of the shifted body whose quantity is pbv at a

distance 8#. The effect of these two elements is equivalent to

that of a magnet of strength pbr and length 8#. The intensity

of magnetization is found hy dividing the magnetic moment of an

element by its volume. The result is p 8#.

dV
Hence -=- 8# is the magnetic potential of the body magnetized

rlV
with the intensity p bx in the direction of x, and is that of

ax
the body magnetized with intensity p.

This potential may be also considered in another light. The

body was shifted through the distance 8# and made of density

p. Throughout that part of space common to the body in its

two positions the density is zero, for, as far as attraction is con

cerned, the two equal and opposite densities annihilate each other.

There remains therefore a shell of positive matter on one side and

of negative matter on the other, and we may regard the resultant

potential as due to these. The thickness of the shell at a point
where the normal drawn outwards makes an angle e with the axis

of a? is 8 a? cos e and its density is p. The surface-density is therefore

dV
p bx cos 6, and, in the case in which the potential is

, the

surface-density is p cos e.

In this way we can find the magnetic potential of any body

uniformly magnetized parallel to a given direction. Now if this

uniform magnetization is due to magnetic induction, the mag
netizing force at all points within the body must also be uniform

and parallel.

This force consists of two parts, one due to external causes, and

the other due to the magnetization of the body. If therefore the

external magnetic force is uniform and parallel, the magnetic force

due to the magnetization must also be uniform and parallel for

all points within the body.

Hence, in order that this method may lead to a solution of the

clV
problem of magnetic induction, -=- must be a linear function of

doc

the coordinates x,
y&amp;gt;

z within the body, and therefore V must be

a quadratic function of the coordinates.

Now the only cases with which we are acquainted in which V
is a quadratic function of the coordinates within the body are those

in which the body is bounded by a complete surface of the second

degree, and the only case in which such a body is of finite dimen-
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sions is when it is an ellipsoid. We shall therefore apply the

method to the case of an ellipsoid.

be the equation of the ellipsoid, and let 4&amp;gt; denote the definite integral

f
Then if we make

dfr

the value of the potential within the ellipsoid will be

7 = - (L x
2 + My* + Nz*}+ const. (4)

2

If the ellipsoid is magnetized with uniform intensity / in a

direction making angles whose cosines are I, m, n with the axes

of #, y, z, so that the components of magnetization are

A = II, B = Im, C = In,

the potential due to this magnetization within the ellipsoid will be

a = I(Llx+Mmy+ Nnz). (5)

If the external magnetizing force is
,
and if its components

are a, ft, y, its potential will be

r=Xx + Yy + Zz. (6)

The components of the actual magnetizing force at any point

within the body are therefore

X-AL, Y-BM, Z-CN. (7)

The most general relations between the magnetization and the

magnetizing force are given by three linear equations, involving

nine coefficients. It is necessary, however, in order to fulfil the

condition of the conservation of energy, that in the case of magnetic
induction three of these should be equal respectively to other three,

so that we should have

A = K,(X-AL)+Kf

s(Y-BM)+K 2 (Z-CN},
B = K\ (X-AL) +K 2i (Y-BM) +K\(Z-CN], (8)

C = K
2 (X-AL) +K\(Y-BM)+Kz(Z-CN}.

From these equations we may determine J, B and C in terms

of X, Y} Z, and this will give the most general solution of the

problem.
The potential outside the ellipsoid will then be that due to the

* See Thomson and Tait s Natural Philosophy, 522.



438.] ELLIPSOID. 65

magnetization of the ellipsoid together with that due to the external

magnetic force.

438.] The only case of practical importance is that in which

K\ = K
2
= K 3

= 0. (9)

We have then

If the ellipsoid

flattened form,
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(2) When K is a large positive quantity, the magnetization depends

principally on the form of the body,, and is almost independent of

the precise value of /c, except in the case of a longitudinal force

acting on an ovoid so elongated that NK is a small quantity though
K is large.

(3) If the value of K could be negative and equal to we

should have an infinite value of the magnetization in the case of

a magnetizing force acting normally to a flat plate or disk. The

absurdity of this result confirms what we said in Art. 428.

Hence, experiments to determine the value of K may be made

on bodies of any form provided K is very small, as it is in the case

of all diamagnetic bodies, and all magnetic bodies except iron,

nickel, and cobalt.

If, however, as in the case of iron, K is a large number, experi

ments made on spheres or flattened figures are not suitable to

determine K ; for instance, in the case of a sphere the ratio of the

magnetization to the magnetizing force is as 1 to 4.22 if K = 30,

as it is in some kinds of iron, and if K were infinite the ratio would

be as 1 to 4.19, so that a very small error in the determination

of the magnetization would introduce a very large one in the

value of K.

But if we make use of a piece of iron in the form of a very

elongated ovoid, then, as long as NK is of moderate value com

pared with unity, we may deduce the value of K from a determination

of the magnetization, and the smaller the value of JV the more

accurate will be the value of K.

In fact, if NK be made small enough, a small error in the value

of N itself will not introduce much error, so that we may use

any elongated body, such as a wire or long rod, instead of an

ovoid.

We must remember, however, that it is only when the product
JV~/c is small compared with unity that this substitution is allowable.

In fact the distribution of magnetism on a long cylinder with flat

ends does not resemble that on a long ovoid, for the free mag
netism is very much concentrated towards the ends of the cylinder,

whereas it varies directly as the distance from the equator in the

case of the ovoid.

The distributi6n of electricity on a cylinder, however, is really

comparable with that on an ovoid, as we have already seen,

Art. 152.
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These results also enable us to understand why the magnetic
moment of a permanent magnet can be made so much greater when
the magnet has an elongated form. If we were to magnetize a

disk with intensity / in a direction normal to its surface, and then

leave it to itself, the interior particles would experience a constant

demagnetizing force equal to 4 TT I, and this, if not sufficient of

itself to destroy part of the magnetization, would soon do so if

aided by vibrations or changes of temperature.

If we were to magnetize a cylinder transversely the demagnet

izing force would be only 2 TT I.

If the magnet were a sphere the demagnetizing force would

be */.

In a disk magnetized transversely the demagnetizing force is

a
7T

2 -
1) and in an elongated ovoid magnetized longitudinally it

a2 2c
is least of all, being 4 TT -^ 7 log

---
G a

Hence an elongated magnet is less likely to lose its magnetism
than a short thick one.

The moment of the force acting on an ellipsoid having different

magnetic coefficients for the three axes which tends to turn it about

the axis of #, is

Hence, if *
2
and K

3
are small, this force will depend principally

on the crystalline quality of the body and not on its shape, pro

vided its dimensions are not very unequal, but if K
2 and *3 are

considerable, as in the case of iron, the force will depend principally

on the shape of the body, and it will turn so as to set its longer

axis parallel to the lines of force.

If a sufficiently strong, yet uniform, field of magnetic force could

be obtained, an elongated isotropic diamagnetic body would also

set itself with its longest dimension parallel to the lines of magnetic
force.

439.] The question of the distribution of the magnetization of

an ellipsoid of revolution under the action of any magnetic forces

has been investigated by J. Neumann*. Kirchhofff has extended

the method to the case of a cylinder of infinite length acted on by

any force.

*
Crelle, bd. xxxvii (1848).

t Crelle, bd. xlviii (1854).

F 2
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Green, in the 17th section of his Essay, has given an invest

igation of the distribution of magnetism in a cylinder of finite

length acted on by a uniform external force parallel to its axis.

Though some of the steps of this investigation are not very

rigorous, it is probable that the result represents roughly the

actual magnetization in this most important case. It certainly

expresses very fairly the transition from the case of a cylinder

for which K is a large number to that in which it is very small,

but it fails entirely in the case in which K is negative, as in

diamagnetic substances.

Green finds that the linear density of free magnetism at a

distance x from the middle of a cylinder whose radius is a and

whose length is 2 I, is

px

e a + e

wherep is a numerical quantity to be found from the equation

0.231863 2 \oge p + 2p = - -

The following are a few of the corresponding values ofp and K.

K K

oo

336.4 0.01

62.02 0.02

48.416 0.03

29.475 0.04

20.185 0.05

14.794 0.06

11.802 0.07

9.137 0.08

7.517 0.09

6.319 0.10

0.1427 1.00

0.0002 10.00

0.0000 oo

negative imaginary.

When the length of the cylinder is great compared with its

radius, the whole quantity of free magnetism on either side of

the middle of the cylinder is, as it ought to be,

M= v 2 a K X.

Of this \pM is on the flat end of the cylinder, and the distance

of the centre of gravity of the whole quantity M from the end

a
of the cylinder is -

P
When K is very small p is large, and nearly the whole free

magnetism is on the ends of the cylinder. As K increases p
diminishes, and the free magnetism is spread over a greater distance
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from the ends. When K is infinite the free magnetism at any

point of the cylinder is simply proportional to its distance from

the middle point, the distribution being similar to that of free

electricity on a conductor in a field of uniform force.

440.] In all substances except iron, nickel, and cobalt, the co

efficient of magnetization is so small that the induced magnetization

of the body produces only a very slight alteration of the forces in

the magnetic field. We may therefore assume, as a first approx

imation, that the actual magnetic force within the body is the same

as if the body had not been there. The superficial magnetization
dV dV

of the body is therefore, as a first approximation, K
-j-

, where -=-

is the rate of increase of the magnetic potential due to the external

magnet along a normal to the surface drawn inwards. If we

now calculate the potential due to this superficial distribution, we

may use it in proceeding to a second approximation.

To find the mechanical energy due to the distribution of mag
netism on this first approximation we must find the surface-integral

taken over the whole surface of the body. Now we have shewn in

Art. 100 that this is equal to the volume-integral

/*/*/* ~^r~T7 ^ j 77&quot;

2

taken through the whole space occupied by the body, or, if R is the

resultant magnetic force,

E = -

Now since the work done by the magnetic force on the body

during a displacement 8# is Xbos where X is the mechanical force

in the direction of SB, and since

/ = constant,

which shews that the force acting on the body is as if every part

of it tended to move from places where R2
is less to places where

it is greater with a force which on every unit of volume is

rf.JP
K

dx
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If K is negative, as in diamagnetic bodies, this force is, as Faraday
first shewed, from stronger to weaker parts of the magnetic field.

Most of the actions observed in the case of diamagnetic bodies

depend on this property.

Skip s Magnetism.

441.] Almost every part of magnetic science finds its use in

navigation. The directive action of the earth s magnetism on the

compass needle is the only method of ascertaining the ship s course

when the sun and stars are hid. The declination of the needle from

the true meridian seemed at first to be a hindrance to the appli

cation of the compass to navigation, but after this difficulty had

been overcome by the construction of magnetic charts it appeared

likely that the declination itsylf would assist the mariner in de

termining his ship s place.

The greatest difficulty in navigation had always been to ascertain

the longitude ;
but since the declination is different at different

points on the same parallel of latitude, an observation of the de

clination together with a knowledge of the latitude would enable

the mariner to find his position on the magnetic chart.

But in recent times iron is so largely used in the construction of

ships that it has become impossible to use the compass at all without

taking into account the action of the ship, as a magnetic body,

on the needle.

To determine the distribution of magnetism in a mass of iron

of any form under the influence of the earth s magnetic force,

even though not subjected to mechanical strain or other disturb

ances, is, as we have seen, a very difficult problem.
In this case, however, the problem is simplified by the following

considerations.

The compass is supposed to be placed with its centre at a fixed

point of the ship, and so far from any iron that the magnetism
of the needle does not induce any perceptible magnetism in the

ship. The size of the compass needle is supposed so small that

we may regard the magnetic force at any point of the needle as

the same.

The iron of the ship is supposed to be of two kinds only.

(1) Hard iron, magnetized in a constant manner.

(2) Soft iron, the magnetization of which is induced by the earth

or other magnets.
In strictness we must admit that the hardest iron is not only
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capable of induction but that it may lose part of its so-called

permanent magnetization in various ways.
The softest iron is capable of retaining what is called residual

magnetization. The actual properties of iron cannot be accurately

represented by supposing it compounded of the hard iron and the

soft iron above defined. But it has been found that when a ship

is acted on only by the earth s magnetic force, and not subjected

to any extraordinary stress of weather, the supposition that the

magnetism of the ship is due partly to permanent magnetization
and partly to induction leads to sufficiently accurate results when

applied to the correction of the compass.

The equations on which the theory of the variation of the compass
is founded were given by Poisson in the fifth volume of the

Memoires de I Institut, p. 533 (1824).

The only assumption relative to induced magnetism which is

involved in these equations is, that if a magnetic force X due to

external magnetism produces in the iron of the ship an induced

magnetization, and if this induced magnetization exerts on the

compass needle a disturbing force whose components are JT
,
Y

9
Z

,

then, if the external magnetic force is altered in a given ratio,

the components of the disturbing force will be altered in the

same ratio.

It is true that when the magnetic force acting on iron is very

great the induced magnetization is no longer proportional to the

external magnetic force, but this want of proportionality is quite

insensible for magnetic forces of the magnitude of those due to the

earth s action.

Hence, in practice we may assume that if a magnetic force

whose value is unity produces through the intervention of the iron

of the ship a disturbing force at the compass needle whose com

ponents are a in the direction of #, d in that of y, and g in that of z,

the components of the disturbing force due to a force X in the

direction of x will be aX, dX, and gX.
If therefore we assume axes fixed in the ship, so that x is towards

the ship s head, y to the starboard side, and z towards the keel,

and if X, Y, Z represent the components of the earth s magnetic

force in these directions, and X
,
Y

,
Z the components of the

combined magnetic force of the earth and ship on the compass

needle, X = X+aX+bY+c Z+P,
)

Y = Y+dX+eY+fZ+Q, (1)
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In these equations #, #, c, d, e,f, g, h, Jc are nine constant co

efficients depending on the amount, the arrangement, and the

capacity for induction of the soft iron of the ship.

P, Q, and E are constant quantities depending on the permanent

magnetization of the ship.

It is evident that these equations are sufficiently general if

magnetic induction is a linear function of magnetic force, for they

are neither more nor less than the most general expression of a

vector as a linear function of another vector.

It may also be shewn that they are not too general, for, by a

proper arrangement of iron, any one of the coefficients may be

made to vary independently of the others.

Thus, a long thin rod of iron under the action of a longitudinal

magnetic force acquires poles, the strength of each of which is

numerically equal to the cross section of the rod multiplied by
the magnetizing force and by the coefficient of induced magnet
ization. A magnetic force transverse to the rod produces a much

feebler magnetization, the effect of which is almost insensible at

a distance of a few diameters.

If a long iron rod be placed fore and aft with one end at a

distance x from the compass needle, measured towards the ship s

head, then, if the section of the rod is A, and its coefficient of

magnetization K, the strength of the pole will be A K X, and, if

A =
,
the force exerted by this pole on the compass needle

will be aX. The rod may be supposed so long that the effect of

the other pole on the compass may be neglected.

We have thus obtained the means of giving any required value

to the coefficient a.

If we place another rod of section B with one extremity at the

same point, distant x from the compass toward the head of the

vessel, and extending to starboard to such a distance that the

distant pole produces no sensible effect on the compass, the dis

turbing force due to this rod will be in the direction of x, and

B K.Y bx*
equal to x -

,
or if B =

,
the force will be b Y.

X2
K

This rod therefore introduces the coefficient b.

A third rod extending downwards from the same point will

introduce the coefficient &amp;lt;?.

The coefficients d, e,f may be produced by three rods extending
to head, to starboard, and downward from a point to starboard of
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the compass, and g, h, k by three rods in parallel directions from

a point below the compass.

Hence each of the nine coefficients can be separately varied by
means of iron rods properly placed.

The quantities P, Q, R are simply the components of the force

on the compass arising from the permanent magnetization of the

ship together with that part of the induced magnetization which

is due to the action of this permanent magnetization.

A complete discussion of the equations (1), and of the relation

between the true magnetic course of the ship and the course as

indicated by the compass, is given by Mr. Archibald Smith in the

Admiralty Manual of the Deviation of the Compass.

A valuable graphic method of investigating the problem is there

given. Taking a fixed point as origin, a line is drawn from this

point representing in direction and magnitude the horizontal part

of the actual magnetic force on the compass-needle. As the ship

is swung round so as to bring her head into different azimuths

in succession, the extremity of this line describes a curve, each

point of which corresponds to a particular azimuth.

Such a curve, by means of which the direction and magnitude of

the force on the compass is given in terms of the magnetic course

of the ship, is called a Dygogram.
There are two varieties of the Dygogram. In the first, the curve

is traced on a plane fixed in space as the ship turns round. In

the second kind, the curve is traced on a plane fixed with respect

to the ship.

The dygogram of the first kind is the Lima9on of Pascal, that

of the second kind is an ellipse. For the construction and use of

these curves, and for many theorems as interesting to the mathe

matician as they are important to the navigator, the reader is

referred to the Admiralty Manual of the Deviation of the Compass.



CHAPTER VI.

WEBER S THEORY OF INDUCED MAGNETISM.

442.] WE have seen that Poisson supposes the magnetization of

iron to consist in a separation of the magnetic fluids within each

magnetic molecule. If we wish to avoid the assumption of the

existence of magnetic fluids, we may state the same theory in

another form, hy saying that each molecule of the iron, when the

magnetizing force acts on it, becomes a magnet.
Weber s theory differs from this in assuming that the molecules

of the iron are always magnets, even before the application of

the magnetizing force, but that in ordinary iron the magnetic
axes of the molecules are turned indifferently in every direction,

so that the iron as a whole exhibits no magnetic properties.

When a magnetic force acts on the iron it tends to turn the

axes of the molecules all in one direction, and so to cause the iron,

as a whole, to become a magnet.
If the axes of all the molecules were set parallel to each other,

the iron would exhibit the greatest intensity of magnetization of

which it is capable. Hence Weber s theory implies the existence

of a limiting intensity of magnetization, and the experimental

evidence that such a limit exists is therefore necessary to the

theory. Experiments shewing an approach to a limiting value of

magnetization have been made by Joule * and by J. Miiller f.

The experiments of Beetz J on electrotype iron deposited under

the action of magnetic force furnish the most complete evidence

of this limit,

A silver wire was varnished, and a very narrow line on the

* Annals of Electricity, iv. p. 131, 1839
;
Phil Mag. [4] ii. p. 316.

t Pogg., Ann. Ixxix. p. 337, 1850.
+

Pogg. cxi. 1860.
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metal was laid bare by making
1 a fine longitudinal scratch on the

varnish. The wire was then immersed in a solution of a salt of

iron, and placed in a magnetic field with the scratch in the direction

of a line of magnetic force. By making the wire the cathode of

an electric current through the solution, iron was deposited on

the narrow exposed surface of the wire, molecule by molecule. The

filament of iron thus formed was then examined magnetically. Its

magnetic moment was found to be very great for so small a mass

of iron, and when a powerful magnetizing force was made to act

in the same direction the increase of temporary magnetization was

found to be very small, and the permanent magnetization was not

altered. A magnetizing force in the reverse direction at once

reduced the filament to the condition of iron magnetized in the

ordinary way.
Weber s theory, which supposes that in this case the magnetizing

force placed the axis of each molecule in the same direction during

the instant of its deposition, agrees very well with what is

observed.

Beetz found that when the electrolysis is continued under the

action of the magnetizing force the intensity of magnetization

of the subsequently deposited iron diminishes. The axes of the

molecules are probably deflected from the line of magnetizing
force when they are being laid down side by side with the mole

cules already deposited, so that an approximation to parallelism.

can be obtained only in the case of a very thin filament of iron.

If, as Weber supposes, the molecules of iron are already magnets,

any magnetic force sufficient to render their axes parallel as they

are electrolytically deposited will be sufficient to produce the highest

intensity of magnetization in the deposited filament.

If, on the other hand, the molecules of iron are not magnets,

but are only capable of magnetization, the magnetization of the

deposited filament will depend on the magnetizing force in the

same way in which that of soft iron in general depends on

it. The experiments of Beetz leave no room for the latter hy

pothesis.

443.] We shall now assume, with Weber, that in every unit of

volume of the iron there are n magnetic molecules, and that the

magnetic moment of each is m. If the axes of all the molecules

were placed parallel to one another, the magnetic moment of the

unit of volume would be

M = n m,
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and this would be the greatest intensity of magnetization of which

the iron is capable.

In the unmagnetized state of ordinary iron Weber supposes the

axes of its molecules to be placed indifferently in all directions.

To express this, we may suppose a sphere to be described, and

a radius drawn from the centre parallel to the direction of the axis

of each of the n molecules. The distribution of the extremities of

these radii will express that of the axes of the molecules. In

the case of ordinary iron these n points are equally distributed

over every part of the surface of the sphere, so that the number

of molecules whose axes make an angle less than a with the axis

of x is n .

-
(I
- cos a),

and the number of molecules whose axes make angles with that

of ^, between a and a-f da is therefore

n . j- sin a a a.
2t

This is the arrangement of the molecules in a piece of iron which

has never been magnetized.
Let us now suppose that a magnetic force X is made to act

on the iron in the direction of the axis of a?, and let us consider

a molecule whose axis was originally inclined a to the axis of so.

If this molecule is perfectly free to turn, it will place itself with

its axis parallel to the axis of a?, and if all the molecules did so,

the very slightest magnetizing force would be found sufficient

to develope the very highest degree of magnetization. This, how

ever, is not the case.

The molecules do not turn with their axes parallel to a?, and

this is either because each molecule is acted on by a force tending

to preserve it in its original direction, or because an equivalent

effect is produced by the mutual action of the entire system of

molecules.

Weber adopts the former of these suppositions as the simplest,

and supposes that each molecule, when deflected, tends to return

to its original position with a force which is the same as that

which a magnetic force D, acting in the original direction of its

axis, would produce.

The position which the axis actually assumes is therefore in the

direction of the resultant of X and D.

Let APB represent a section of a sphere whose radius represents,

on a certain scale, the force D.
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Let the radius OP be parallel to the axis of a particular molecule

in its original position.

Let SO represent on the same scale the magnetizing force X
which is supposed to act from 8 towards 0. Then, if the molecule

is acted on by the force X in the direction SO, and by a force

D in a direction parallel to OP, the original direction of its axis,

its axis will set itself in the direction SP, that of the resultant

of X and D.

Since the axes of the molecules are originally in all directions,

P may be at any point of the sphere indifferently. In Fig. 5, in

which X is less than D, SP, the final position of the axis, may be

in any direction whatever, but not indifferently, for more of the

molecules will have their axes turned towards A than towards JS.

In Fig. 6, in which X is greater than D, the axes of the molecules

will be all confined within the cone STT touching the sphere.

Fig. 5.

Hence there are two different cases according as X is less or

greater than D.

Let a = AOP, the original inclination of the axis of a molecule

to the axis of x.

= ASP, the inclination of the axis when deflected by
the force X.

(3
= SPO, the angle of deflexion.

SO = X, the magnetizing force.

OP = D, the force tending towards the original position.

SP = R, the resultant of X and D.

m = magnetic moment of the molecule.

Then the moment of the statical couple due to X, tending to

diminish the angle 0, is

mL = mX sin#,

and the moment of the couple due to D, tending to increase 6, is

mL
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Equating these values, and remembering that /3
= a 0, we find

J)sina
tan0 = - --

(1)X+D cos a

to determine the direction of the axis after deflexion.

We have next to find the intensity of magnetization produced
in the mass by the force X, and for this purpose we must resolve

the magnetic moment of every molecule in the direction of #, and

add all these resolved parts.

The resolved part of the moment of a molecule in the direction

of x is m cos 0.

The number of molecules whose original inclinations lay between

a and a -{-da is % .

-smaaa.
2

We have therefore to integrate

/= f* cos 6 tin a da, (2)
JQ 2

remembering that is a function of a.

We may express both 9 and a in terms of JR, and the expression

to be integrated becomes

(3)

the general integral of which is

In the first case, that in which X is less than D, the limits of

integration are R = D + X and R = D X. In the second case,

in which X is greater than D, the limits are R = X+D and

R = X-D.

When X is less than D, I =
|
~X. (5)

2
When X is equal to D, I = -mn. (6)

3
1 712

When X is greater than D, I mn(\ --
) ; (7)

* o J\. I

and when X becomes infinite / = mn. (8)

According to this form of the theory, which is that adopted

by Weber *, as the magnetizing force increases from to D, the

* There is some mistake in the formula given by Weber (Trans. Acad. Sax. i.

p. 572 (1852), or Pogg., Ann. Ixxxvii. p. 167 (1852)) as the result of this integration,
the steps of which are not given by him. His formula is
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magnetization increases in the same proportion. When the mag

netizing force attains the value D, the magnetization is two-thirds

of its limiting value. When the magnetizing force is further

increased, the magnetization, instead of increasing indefinitely,

tends towards a finite limit.

D 2D 3D 4D

Fig. 7.

The law of magnetization is expressed in Fig. 7, where the mag

netizing force is reckoned from towards the right and the mag
netization is expressed by the vertical ordinates. Weber s own

experiments give results in satisfactory accordance with this law.

It is probable, however, that the value of D is not the same for

all the molecules of the same piece of iron, so that the transition

from the straight line from to E to the curve beyond E may not

be so abrupt as is here represented.

444.] The theory in this form gives no account of the residual

magnetization which is found to exist after the magnetizing force

is removed. I have therefore thought it desirable to examine the

results of making a further assumption relating to the conditions

under which the position of equilibrium of a molecule may be

permanently altered.

Let us suppose that the axis&quot; of a magnetic molecule, if deflected

through any angle /3 less than /3 ,
will return to its original

position when the deflecting force is removed, but that if the

deflexion j3 exceeds ^ , then, when the deflecting force is removed,

the axis will not return to its original position, but will be per

manently deflected through an angle /3 j3 ,
which may be called

the permanent set of the molecule.

This assumption with respect to the law of molecular deflexion

is not to be regarded as founded on any exact knowledge of the

intimate structure of bodies, but is adopted, in our ignorance of

the true state of the case, as an assistance to the imagination in

following out the speculation suggested by Weber.

Let L = Dsin /3 , (9)
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then, if the moment of the couple acting on a molecule is less than

ml/, there will be no permanent deflexion, but if it exceeds mL
there will be a permanent change of the position of equilibrium.

To trace the results of this supposition, describe a sphere whose

centre is and radius OL = L.

As long as X is less than L everything will be the same as

in the case already considered, but as soon as X exceeds L it will

begin to produce a permanent deflexion of some of the molecules.

Let us take the case of Fig. 8, in which X is greater than L
but less than D. Through S as vertex draw a double cone touching
the sphere L. Let this cone meet the sphere D in P and Q. Then

if the axis of a molecule in its original position lies between OA
and OP, or between OB and OQ, it will be deflected through an

angle less than /3 ,
and will not be permanently deflected. But if

Fig. 8. Fig. 9.

the axis of the molecule lies originally between OP and OQ, then

a couple whose moment is greater than L will act upon it and

will deflect it into the position SP, and when the force X ceases

to act it will not resume its original direction, but will be per

manently set in the direction OP.

Let us put
L = Xsin0 when = PSA or QSB,

then all those molecules whose axes, on the former hypotheses,

would have values of 6 between and TT will be made to have

the value during the action of the force X.

During the action of the force X, therefore, those molecules

whose axes when deflected lie within either sheet of the double

cone whose semivertical angle is will be arranged as in the

former case, but all those whose axes on the former theory would

lie outside of these sheets will be permanently deflected, so that

their axes will form a dense fringe round that sheet of the cone

which lies towards A.
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As X increases, the number of molecules belonging to the cone

about B continually diminishes, and when X becomes equal to D
all the molecules have been wrenched out of their former positions

of equilibrium, and have been forced into the fringe of the cone

round A, so that when X becomes greater than D all the molecules

form part of the cone round A or of its fringe.

When the force X is removed, then in the case in which X is

less than L everything returns to its primitive state. When X
is between L and D then there is a cone round A whose angle

AOP = + /3 ,

and another cone round B whose angle

BOQ = -/3 .

Within these cones the axes of the molecules are distributed

uniformly. But all the molecules, the original direction of whose

axes lay outside of both these cones, have been wrenched from their

primitive positions and form a fringe round the cone about A.

If X is greater than D, then the cone round B is completely

dispersed, and all the molecules which formed it are converted into

the fringe round A, and are inclined at the angle -f-/3 .

445.] Treating this case in the same way as before, we find

for the intensity of the temporary magnetization during the action

of the force X, which is supposed to act on iron which has never

before been magnetized,

When X is less than L, I = -M -_-
3 J-f

When X is equal to It, I = -M
-=j

When X is between L and 2),

When X is equal to D,

When X is greater than
D&amp;gt;

When X is infinite, I = M.
When X is less than L the magnetization follows the former

law, and is proportional to the magnetizing force. As soon as X
exceeds L the magnetization assumes a more rapid rate of increase

VOL. n. G
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on account of the molecules beginning to be transferred from the

one cone to the other. This rapid increase, however, soon conies

to an end as the number of molecules forming the negative cone

diminishes, and at last the magnetization reaches the limiting

value M.

If we were to assume that the values of L and of D are different

for different molecules, we should obtain a result in which the

different stages of magnetization are not so distinctly marked.

The residual magnetization, / , produced by the magnetizing force

X, and observed after the force has been removed, is as follows :

When X is less than I/, No residual magnetization.

When X is between L and D,

When X is equal to D,
T2 2

When X is greater than D,

-J
When X is infinite,

If we make

M = 1000, L = 3, .# = 5,

we find the following values of the temporary and the residual

magnetization :

Magnetizing Temporary Residual

Force. Magnetization. Magnetization.

x i r000
1 133

2 267

3 400

4 729 280

5 837 410

6 864 485

7 882 537

8 897 574

oo 1000 810
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These results are laid down in Fig. 10.

10I 2 3 4 5 6 7 8 J

JHcufn.etizin.tp jforce

Fig. 10.

The curve of temporary magnetization is at first a straight line

from X = to X = L. It then rises more rapidly till X = 1),

and as X increases it approaches its horizontal asymptote.
The curve of residual magnetization begins when X =

_Z/,
and

approaches an asymptote at a distance = .8lJf.

It must be remembered that the residual magnetism thus found

corresponds to the case in which, when the external force is removed,
there is no demagnetizing force arising from the distribution of

magnetism in the body itself. The calculations are therefore

applicable only to very elongated bodies magnetized longitudinally.

In the case of short, thick bodies the residual magnetism will be

diminished by the reaction of the free magnetism in the same

way as if an external reversed magnetizing force were made to

act upon it.

446.] The scientific value of a theory of this kind, in which we

make so many assumptions, and introduce so many adjustable

constants, cannot be estimated merely by its numerical agreement
with certain sets of experiments. If it has any value it is because

it enables us to form a mental image of what takes place in a

piece of iron during magnetization. To test the theory, we shall

apply it to the case in which a piece of iron, after being subjected

to a magnetizing force X
Q&amp;gt;

is again subjected to a magnetizing
force X

1
.

If the new force X acts in the same direction in which X acted,

which we shall call the positive direction, then, if X is less than

X^ 9
it will produce no permanent set of the molecules, and when

X
1

is removed the residual magnetization will be the same as

G 2
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that produced by X . If X
l
is greater than X ,

then it will produce

exactly the same effect as if X had not acted.

But let us suppose Xl
to act in the negative direction, and let us

suppose XQ = L cosec
,

and X
l
= I/cosec01 .

As X
1
increases numerically, :

diminishes. The first molecules

on which X
1

will produce a permanent deflexion are those which

form the fringe of the cone round A, and these have an inclination

when undeflected of + J3 .

As soon as 61 /3 becomes less than -f~/3 the process of de

magnetization will commence. Since, at this instant, ^ = -f 2^3 ,

X13 the force required to begin the demagnetization, is less than

XQ, the force which produced the magnetization.

If the value of D and of L were the same for all the molecules,

the slightest increase of X
1
would wrench the whole of the fringe

of molecules whose axes have the inclination + /3 into a position

in which their axes are inclined 1 + )3 to the negative axis OB.

Though the demagnetization does not take place in a manner

so sudden as this, it takes place so rapidly as to afford some

confirmation of this mode of explaining the process.

Let us now suppose that by giving a proper value to the reverse

force Xj we have exactly demagnetized the piece of iron.

The axes of the molecules will not now be arranged indiffer

ently in all directions, as in a piece of iron which has never been

magnetized, but will form three groups.

(1) Within a cone of semiangle 1 /3 surrounding the positive

pole, the axes of the molecules remain in their primitive positions.

(2) The same is the case within a cone of semiangle /3

surrounding the negative pole.

(3) The directions of the axes of all the other molecules form

a conical sheet surrounding the negative pole, and are at an

inclination
l + /3 .

When X is greater than D the second group is absent. When
Xj_ is greater than I) the first group is also absent.

The state of the iron, therefore, though apparently demagnetized,
is in a different state from that of a piece of iron which has never

been magnetized.

To shew this, let us consider the effect of a magnetizing force

X2 acting in either the positive or the negative direction. The
first permanent effect of such a force will be on the third group
of molecules, whose axes make angles = 1 + /3 with the negative
axis.
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If the force X2 acts in the negative direction it will begin to

produce a permanent effect as soon as 2+ /3 becomes less than

^i+ A)5 that is, as soon as X
2
becomes greater than X

L
. But if

X
2

acts in the positive direction it will begin to remagnetize the

iron as soon as
2 {3 becomes less than Oi + P , that is, when

2
= O

l -j- 2/3 , or while X
2

is still much less than X.
It appears therefore from our hypothesis that

When a piece of iron is magnetized by means of a force X0i its

magnetism cannot be increased without the application of a force

greater than X . A reverse force, less than Jf
,

is sufficient to

diminish its magnetization.

If the iron is exactly demagnetized by a reversed force X19 then

it cannot be magnetized in the reversed direction without the

application of a force greater than X1} but a positive force less than

X
x

is sufficient to begin to remagnetize the iron in its original

direction.

These results are consistent with what has been actually observed

by Ritchie*. Jacobi f, Marianini J, and Joule .

A very complete account of the relations of the magnetization
of iron and steel to magnetic forces and to mechanical strains is

given by Wiedemann in his Galvanismus. By a detailed com

parison of the effects of magnetization with those of torsion, he

shews that the ideas of elasticity and plasticity which we derive

from experiments on the temporary and permanent torsion of wires

can be applied with equal propriety to the temporary and permanent

magnetization of iron and steel.

447.] Matteucci
||
found that the extension of a hard iron bar

during the action of the magnetizing force increases its temporary

magnetism. This has been confirmed by Wertheim. In the case

of soft bars the magnetism is diminished by extension.

The permanent magnetism of a bar increases when it is extended,

and diminishes when it is compressed.

Hence, if a piece of iron is first magnetized in one direction,

and then extended in another direction, the direction of magnet
ization will tend to approach the direction of extension. If it be

compressed, the direction of magnetization will tend to become

normal to the direction of compression.

This explains the result of an experiment of Wiedemann s. A

* Phil. Mag., 1833. t Pog., Ann., 1834.

J Ann. de Chimie d de Physique, 1846. Phil. Trans., 1855, p. 287.

||
Ann. de Chimie et de Physique, 1858.
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current was passed downward through a vertical wire. If, either

during the passage of the current or after it has ceased, the wire

be twisted in the direction of a right-handed screw, the lower end

becomes a north pole.

Fi.

Here the downward current magnetizes every part of the wire

in a tangential direction, as indicated by the letters NS.

The twisting of the wire in the direction of a right-handed screw

causes the portion ABCD to be extended along the diagonal AC
and compressed along the diagonal BD. The direction of magnet
ization therefore tends to approach AC and to recede from BD,
and thus the lower end becomes a north pole and the upper end

a south pole.

Effect of Magnetization on the Dimensions of the Magnet.

448.] Joule *, in 1842, found that an iron bar becomes length
ened when it is rendered magnetic by an electric current in a

coil which surrounds it. He afterwards f shewed, by placing the

bar in water within a glass tube, that the volume of the iron is

not augmented by this magnetization, and concluded that its

transverse dimensions were contracted.

Finally, he passed an electric current through the axis of an iron

tube, and back outside the tube, so as to make the tube into a

closed magnetic solenoid, the magnetization being at right angles
to the axis of the tube. The length of the axis of the tube was

found in this case to be shortened.

He found that an iron rod under longitudinal pressure is also

elongated when it is magnetized. When, however, the rod is

under considerable longitudinal tension, the effect of magnetization
is to shorten it.

*
Sturgeon s Annals of Electricity, vol. viii. p. 219.

t Phil. Mag., 1847.
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This was the case with a wire of a quarter of an inch diameter

when the tension exceeded 600 pounds weight.

In the case of a hard steel wire the effect of the magnetizing
force was in every case to shorten the wire, whether the wire was

under tension or pressure. The change of length lasted only as

long as the magnetizing force was in action, no alteration of length
was observed due to the permanent magnetization of the steel.

Joule found the elongation of iron wires to be nearly proportional

to the square of the actual magnetization, so that the first effect

of a demagnetizing current was to shorten the wire.

On the other hand, he found that the shortening effect on wires

under tension, and on steel, varied as the product of the magnet
ization and the magnetizing current.

Wiedemann found that if a vertical wire is magnetized with its

north end uppermost, and if a current is then passed downwards

through the wire, the lower end of the wire, if free, twists in the

direction of the hands of a watch as seen from above, or, in other

words, the wire becomes twisted like a right-handed screw.

In this case the magnetization due to the action of the current

on the previously existing magnetization is in the direction of

a left-handed screw round the wire. Hence the twisting would

indicate that when the iron is magnetized it contracts in the

direction of magnetization and expands in directions at right angles
to the magnetization. This, however, peems not to agree with Joule s

results.

For further developments of the theory of magnetization, see

Arts. 832-845.



CHAPTER VII.

MAGNETIC MEASUREMENTS.

449.] THE principal magnetic measurements are the determination

of the magnetic axis and magnetic moment of a magnet, and that

of the direction and intensity of the magnetic force at a given

place.

Since these measurements are made near the surface of the earth,

the magnets are always acted on by gravity as well as by terrestrial

magnetism, and since the magnets are made of steel their mag
netism is partly permanent and partly induced. The permanent

magnetism is altered by changes of temperature, by strong in

duction, and by violent blows ; the induced magnetism varies with

every variation of the external magnetic force.

The most convenient way of observing the force acting on a

magnet is by making the magnet free to turn about a vertical

axis. In ordinary compasses this is done by balancing the magnet
on a vertical pivot. The finer the point of the pivot the smaller

is the moment of the friction which interferes with the action of

the magnetic force. For more refined observations the magnet
is suspended by a thread composed of a silk fibre without twist,

either single, or doubled on itself a sufficient number of times, and

so formed into a thread of parallel fibres, each of which supports

as nearly as possible an equal part of the weight. The force of

torsion of such a thread is much less than that of a metal wire

of equal strength, and it may be calculated in terms of the ob

served azimuth of the magnet, which is not the case with the force

arising from the friction of a pivot.

The suspension fibre can be raised or lowered by turning a

horizontal screw which works in a fixed nut. The fibre is wound

round the thread of the screw, so that when the screw is turned

the suspension fibre always hangs in the same vertical line.
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The suspension fibre carries a small horizontal divided circle

called the Torsion-circle, and a stirrup with an index, which can

be placed so that the index coincides with any given division of

the torsion circle. The stirrup is so shaped that the magnet bar

can be fitted into it with its axis horizontal, and with any one

of its four sides uppermost.

To ascertain the zero of torsion a non-magnetic body of the

same weight as the magnet is placed

in the stirrup, and the position of

the torsion circle when in equilibrium

ascertained.

The magnet itself is a piece of

hard-tempered steel. According to

Gauss and Weber its length ought
to be at least eight times its greatest

transverse dimension. This is neces

sary when permanence of the direc

tion of the magnetic axis within the

magnet is the most important con

sideration. Where promptness of

motion is required the magnet should

be shorter, and it may even be ad

visable in observing sudden altera

tions in magnetic force to use a bar

magnetized transversely and sus

pended with its longest dimension

vertical *.

450.1 The magnet is provided with

an arrangement for ascertaining its

angular position. For ordinary pur

poses its ends are pointed, and a

divided circle is placed below the
Fig. 13.

ends, by which their positions are read oif by an eye placed in a

plane through the suspension thread and the point of the needle.

For more accurate observations a plane mirror is fixed to the

magnet, so that the normal to the mirror coincides as nearly as

possible with the axis of magnetization. This is the method

adopted by Gauss and Weber.

Another method is to attach to one end of the magnet a lens and

to the other end a scale engraved on glass, the distance of the lens

* Joule, Proc. Phil. Soc., Manchester, Nov. 29, 1864.
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from the scale being
1

equal to tlie principal focal length of the lens.

The straight line joining the zero of the scale with the optical

centre of the lens ought to coincide as nearly as possible with

the magnetic axis.

As these optical methods of ascertaining the angular position

of suspended apparatus are of great importance in many physical

researches, we shall here consider once for all their mathematical

theory.

Theory of the Mirror Method.

We shall suppose that the apparatus whose angular position is

to be determined is capable of revolving about a vertical axis.

This axis is in general a fibre or wire by which it is suspended.

The mirror should be truly plane, so that a scale of millimetres

may be seen distinctly by reflexion at a distance of several metres

from the mirror.

The normal through the middle of the mirror should pass through
the axis of suspension, and should be accurately horizontal. We
shall refer to this normal as the line of collimation of the ap

paratus.

Having roughly ascertained the mean direction of the line of

collimation during the experiments which are to be made, a tele

scope is erected at a convenient distance in front of the mirror, and

a little above the level of the mirror.

The telescope is capable of motion in a vertical plane, it is

directed towards the suspension fibre just above the mirror, and

a fixed mark is erected in the line of vision, at a horizontal distance

from the object glass equal to twice the distance of the mirror

from the object glass. The apparatus should, if possible, be so

arranged that this mark is on a wall or other fixed object. In

order to see the mark and the suspension fibre at the same time

through the telescope, a cap may be placed over the object glass

having a slit along a vertical diameter. This should be removed

for the other observations. The telescope is then adjusted so that

the mark is seen distinctly to coincide with the vertical wire at the

focus of the telescope. A plumb-line is then adjusted so as to

pass close in front of the optical centre of the object glass and

to hang below the telescope. Below the telescope and just behind

the plumb-line a scale of equal parts is placed so as to be bisected

at right angles by the plane through the mark, the suspension-fibre,

and the plumb-lino. The sum of the heights of the scale and the
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object glass should be equal to twice the height of the mirror from

the floor. The telescope being now directed towards the mirror

will see in it the reflexion of the scale. If the part of the scale

where the plumb-line crosses it appears to coincide with the vertical

wire of the telescope, then the line of collimation of the mirror

coincides with the plane through the mark and the optical centre

of the object glass. If the vertical wire coincides with any other

division of the scale, the angular position of the line of collimation

is to be found as follows :

Let the plane of the paper be horizontal, and let the various

points be projected on this plane. Let be the centre of the

object glass of the telescope, P the fixed mark, P and the vertical

wire of the telescope are conjugate foci with respect to the object

glass. Let M be the point where OP cuts the plane of the mirror.

Let MN be the normal to the mirror
;
then OMN = 6 is the angle

which the line of collimation makes with the fixed plane. Let MS
be a line in the plane of OM and MN, such that NMS = OMN,
then S will be the part of the scale which will be seen by reflexion

to coincide with the vertical wire of the telescope. Now, since

X

X
x x --- V

Fig. 14.

MN is horizontal, the projected angles OMN and NMS in the

figure are equal, and QMS =20. Hence OS = OMtan.20.

We have therefore to measure OM in terms of the divisions of

the scale
; then, if s is the division of the scale which coincides with

the plumb-line, and s the observed division,

whence 6 may be found. In measuring OM we must remember
that if the mirror is of glass, silvered at the back, the virtual image
of the reflecting surface is at a distance behind the front surface
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of the glass = ,
where t is the thickness of the glass, and

//,
is

the index of refraction.

We must also remember that if the line of suspension does not

pass through the point of reflexion, the position of M will alter

with 0. Hence, when it is possible, it is advisable to make the

centre of the mirror coincide with the line of suspension.

It is also advisable, especially when large angular motions have

to be observed, to make the scale in the form of a concave cylindric

surface, whose axis is the line of suspension. The angles are then

observed at once in circular measure without reference to a table

of tangents. The scale should be carefully adjusted, so that the

axis of the cylinder coincides with the suspension fibre. The

numbers on the scale should always run from the one end to the

other in the same direction so as to avoid negative readings. Fig. 1 5

Fig. 15.

represents the middle portion of a scale to be used with a mirror

and an inverting telescope.

This method of observation is the best when the motions are

slow. The observer sits at the telescope and sees the image of

the scale moving to right or to left past the vertical wire of the

telescope. With a clock beside him he can note the instant at

which a given division of the scale passes the wire, or the division

of the scale which is passing at a given tick of the clock, and he

can also record the extreme limits of each oscillation.

When the motion is more rapid it becomes impossible to read

the divisions of the scale except at the instants of rest at the

extremities of an oscillation. A conspicuous mark may be placed

at a known division of the scale, and the instant of transit of this

mark may be noted.

When the apparatus is very light, and the forces variable, the

motion is so prompt and swift that observation through a telescope
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would be useless. In this case the observer looks at the scale

directly, and observes the motions of the image of the vertical wire

thrown on the scale by a lamp.

It is manifest that since the image of the scale reflected by the

mirror and refracted by the object glass coincides with the vertical

wire, the image of the vertical wire, if sufficiently illuminated, will

coincide with the scale. To observe this the room is darkened, and

the concentrated rays of a lamp are thrown on the vertical wire

towards the object glass. A bright patch of light crossed by the

shadow of the wire is seen on the scale. Its motions can be

followed by the eye, and the division of the scale at which it comes

to rest can be fixed on by the eye and read off at leisure. If it be

desired to note the instant of the passage of the bright spot past a

given point on the scale, a pin or a bright metal wire may be

placed there so as to flash out at the time of passage.

By substituting a small hole in a diaphragm for the cross wire

the image becomes a small illuminated dot moving to right or left

on the scale, and by substituting for the scale a cylinder revolving

by clock work about a horizontal axis and covered with photo

graphic paper, the spot of light traces out a curve which can be

afterwards rendered visible. Each abscissa of this curve corresponds

to a particular time, and the ordinate indicates the angular

position of the mirror at that time. In this way an automatic

system of continuous registration of all the elements of terrestrial

magnetism has been established at Kew and other observatories.

In some cases the telescope is dispensed with, a vertical wire

is illuminated by a lamp placed behind it, and the mirror is a

concave one, which forms the image of the wire on the scale as

a dark line across a patch of light.

451.] In the Kew portable apparatus, the magnet is made in

the form of a tube, having at one end a lens, and at the other

a glass scale, so adjusted as to be at the principal focus of the lens.

Light is admitted from behind the scale, and after passing through
the lens it is viewed by means of a telescope.

Since the scale is at the principal focus of the lens, rays from

any division of the scale emerge from the lens parallel, and if

the telescope is adjusted for celestial objects, it will shew the scale

in optical coincidence with the cross wires of the telescope. If a

given division of the scale coincides with the intersection of the

cross wires, then the line joining that division with the optical

centre of the lens must be parallel to the line of collimation of
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the telescope. By fixing the magnet and moving the telescope, we

may ascertain the angular value of the divisions of the scale, and

then, when the magnet is suspended and the position of the tele

scope known, we may determine the position of the magnet at

any instant by reading off the division of the scale which coincides

with the cross wires.

The telescope is supported on an arm which is centred in the

line of the suspension fibre, and the position of the telescope is

read off by verniers on the azimuth circle of the instrument.

This arrangement is suitable for a small portable magnetometer
in which the whole apparatus is supported on one tripod, and in

which the oscillations due to accidental disturbances rapidly

subside.

Determination of the Direction of the Axis of the Magnet, and of
the Direction of Terrestrial Magnetism.

452.] Let a system of axes be drawn in the magnet, of which the

axis of z is in the direction of the length of the bar, and x and y

perpendicular to the sides of the bar supposed a parallelepiped.

Let I, m, n and A, /u, v be the angles which the magnetic axis

and the line of collimation make with these axes respectively.

Let M be the magnetic moment of the magnet, let H be the

horizontal component of terrestrial magnetism, let Z be the vertical

component, and let 6 be the azimuth in which H acts, reckoned

from the north towards the west.

Let ( be the observed azimuth of the line of collimation, let

a be the azimuth of the stirrup, and (3 the reading of the index

of the torsion circle, then a /3 is the azimuth of the lower end

of the suspension fibre.

Let y be the value of a /3 when there is no torsion, then the

moment of the force of torsion tending to diminish a will be

T (a-/3-y),

where r is a coefficient of torsion depending on the nature of the

fibre.

To determine A, fix the stirrup so that y is vertical and up

wards, z to the north and so to the west, and observe the azimuth

f of the line of collimation. Then remove the magnet, turn it

through an angle TT about the axis of z and replace it in this

inverted position, and observe the azimuth f of the line of col

limation when y is downwards and x to the east,
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f=a+f-A, (1)

r=a-|+A. (2)

Hence x = |+i(f-0. (
3
)

Next, hang the stirrup to the suspension fibre, and place the

magnet in it, adjusting it carefully so that y may be vertical and

upwards, then the moment of the force tending to increase a is

1 T (a /3 y). (4)

But if C is the observed azimuth of the line of collimation

C=a+|-A, (5)

so that the force may be written

MHsin * sin (d
- f+ J- A) -T (f+A-

- -
y) (6)

When the apparatus is in equilibrium this quantity is zero for

a particular value of f
When the apparatus never comes to rest, but must be observed

in a state of vibration, the value of corresponding to the position

of equilibrium may be calculated by a method which will be

described in Art. 735.

When the force of torsion is small compared with the moment
of the magnetic force, we may put d +1\ for the sine of that

angle.

If we give to /3, the reading of the torsion circle, two different

values, p! and /32 ,
and if and

2
are the corresponding values of

MHsinm^-Q = r(-_&+ &), (7)

or, if we put
&quot;

, (8)

and equation (7) becomes, dividing by Jf/Jsin m,

-^-y = 0. (9)

If we now reverse the magnet so that y is downwards, and

adjust the apparatus till y is exactly vertical, and if f is the new

value of the azimuth, and 5 the corresponding declination,

/(f-X + -/3-y=0 &amp;gt; (10)

whence - = i (f+C ) + i/ (C+C -2(/3-f y)). (11)
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The reading of the torsion circle should now be adjusted, so that

the coefficient of r may be as nearly as possible zero. For this

purpose we must determine y, the value of a (3 when there is no

torsion. This may be done by placing a non-magnetic bar of the

same weight as the magnet in the stirrup, and determining a /3

when there is equilibrium. Since / is small, great accuracy is not

required. Another method is to use a torsion bar of the same

weight as the magnet, containing within it a very small magnet

whose magnetic moment is - of that of the principal magnet.
Ifi

Since r remains the same, / will become m } and if (^ and f/ are

the values of ( as found by the torsion bar,

6 = iCt + fiO+i*!&quot; ( + & - 2 (/3+ y)). (12)

Subtracting this equation from (11),

2(-l)(/3+ y) = ( + ^)(CI + C1 )-(l + ^,)tf+O. (13)

Having found the value of /3-fy in this way, /3, the reading of

the torsion circle, should be altered till

f+f -2(/3 + y)
= 0, (14)

as nearly as possible in the ordinary position of the apparatus.

Then, since r is a very small numerical quantity, and since its

coefficient is very small, the value of the second term in the ex

pression for 5 will not vary much for small errors in the values

of T and y, which are the quantities whose values are least ac

curately known.

The value of 8, the magnetic declination, may be found in this

way with considerable accuracy, provided it remains constant during

the experiments, so that we may assume 5 = 8.

When great accuracy is required it is necessary to take account

of the variations of 8 during the experiment. For this purpose

observations of another suspended magnet should be made at the

same instants that the different values of are observed, and if

r], if are the observed azimuths of the second magnet corresponding

to f and f ,
and if 8 and 8 are the corresponding values of 8, then

8 -8 =
rj -r?. (15)

Hence, to find the value of 8 we must add to (11) a correction

i ( )-? )

The declination at the time of the first observation is therefore

8 = 4(C+r+ ^-770 + 4/^+^-2/3-2^. (16)
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To find the direction of the magnetic axis within the magnet
subtract (10) from (9) and add (15),

^ = A + i(f-r)-H^-^Hi^(f-r-f2A-7r). (17)

By repeating the experiments with the bar on its two edges, so

that the axis of OB is vertically upwards and downwards, we can

find the value of m. If the axis of collimation is capable of ad

justment it ought to be made to coincide with the magnetic axis

as nearly as possible, so that the error arising from the magnet not

being exactly inverted may be as small as possible *.

On the Measurement of Magnetic Forces.

453.] The most important measurements of magnetic force are

those which determine M, the magnetic moment of a magnet,
and //, the intensity of the horizontal component of terrestrial

magnetism. This is generally done by combining the results of

two experiments, one of which determines the ratio and the other

the product of these two quantities.

The intensity of the magnetic force due to an infinitely small

magnet whose magnetic moment is M, at a point distant r from

the centre of the magnet in the positive direction of the axis of

the magnet, is
^ = 2 (I)

and is in the direction of r. If the magnet is of finite size but

spherical, and magnetized uniformly in the direction of its axis,

this value of the force will still be exact. If the magnet is a

solenoidal bar magnet of length 2 It,

*=2*(l + 2 + sg + &c.). 00

If the magnet be of any kind, provided its dimensions are all

small compared with r,

JL)+fcc., (3)

where Alt A2 , &c. are coefficients depending on the distribution of

the magnetization of the bar.

Let H be the intensity of the horizontal part of terrestrial

magnetism at any place. H is directed towards magnetic north.

Let r be measured towards magnetic west, then the magnetic force

at the extremity of r will be H towards the north and R towards

* See a Paper on Imperfect Inversion, by W. Swan. Trans. R. S. Edin.,
vol. xxi (1855), p. 349.

VOL. TT. H
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the west. The resultant force will make an angle with the

magnetic meridian, measured towards the west, and such that

(4)

Hence, to determine -~= we proceed as follows :

JdL

The direction of the magnetic north having been ascertained, a

magnet, whose dimensions should not be too great, is suspended

as in the former experiments, and the deflecting magnet M is

placed so that its centre is at a distance r from that of the sus

pended magnet, in the same horizontal plane, and due magnetic

east.

The axis of M is carefully adjusted so as to be horizontal and

in the direction of r.

The suspended magnet is observed before M is brought near

and also after it is placed in position. If is the observed deflexion,

we have, if we use the approximate formula
(
1 ),

f=^tau*; (5)

or, if we use the formula (3),

.-. \ JrHan^l + ^i+^+fec. (6)

Here we must bear in mind that though the deflexion can

be observed with great accuracy, the distance r between the centres

of the magnets is a quantity which cannot be precisely deter

mined, unless both magnets are fixed and their centres defined

by marks.

This difficulty is overcome thus :

The magnet M is placed on a divided scale which extends east

and west on both sides of the suspended magnet. The middle

point between the ends of M is reckoned the centre of the magnet.
This point may be marked on the magnet and its position observed

on the scale, or the positions of the ends may be observed and

the arithmetic mean taken. Call this Sj, and let the line of the

suspension fibre of the suspended magnet when produced cut the

scale at *
,
then r

1
= s

1
s0) where ^ is known accurately and s ap

proximately. Let
1
be the deflexion observed in this position of M.

Now reverse M, that is, place it on the scale with its ends

reversed, then ^ will be the same, but M and Alt A3 ,
&c. will

have their signs changed, so that if 2 is ^ne deflexion,

- I r,tan 9, = 1 -A, + J, -&c. (7)
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Taking the arithmetical mean of (6) and (7),

i
^(tan^-tanfy

=
1+^72 +^4^ + &c. (8)

Now remove M to the west side of the suspended magnet, and

place it with its centre at the point marked 2&amp;lt;$ s on the scale.

Let the deflexion when the axis is in the first position be 3 ,
and

when it is in the second 4 , then, as before,

2

Let us suppose that the true position of the centre of the sus

pended magnet is not S
Q
but &amp;lt;? -f or, then

(10)

and
(V + ,2 )

=
,(!. + l^ + &c

.); (11)

O

and since -^ may be neglected if the measurements are .carefully

made, we are sure that we may take the arithmetical mean of r
L

n

and r2
n
for rn.

Hence, taking the arithmetical mean of (8) and (9),

--^
or, making

= 1 + A2
~ +&c., (12)

-
(tan O

l
tan 62+ tan

3
tan 4)

= D, (13)

454.] We may now regard D and r as capable of exact deter

mination.

The quantity A2
can in no case exceed 2^2

, where L is half the

length of the magnet, so that when r is considerable compared
with L we may neglect the term in A

2 and determine the ratio

ofH to M at once. We cannot, however, assume that A2 is equal

to 2i/2
,
for it may be less, and may even be negative for a magnet

whose largest dimensions are transverse to the axis. The term

in A, and all higher terms, may safely be neglected.

To eliminate A
2 , repeat the experiment, using distances r

lt
r
a ,

?*
3 ,

&c., and let the values ofD be J)19 D2 , #3 , &c., then

- 2M
(

l
, 4

2 ~~iT^ + ^
&c. &c.

II 2
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If we suppose that the probable errors of these equations are

equal, as they will be if they depend on the determination of D
only, and if there is no uncertainty about r, then, by multiplying

each equation by r~ 3 and adding the results, we obtain one equation,

and by multiplying each equation by r~ 5 and adding we obtain

another, according to the general rule in the theory of the com

bination of fallible measures when the probable error of each

equation is supposed the same.

Let us write

2(Vr-*) for AT 3+ -02V 3 +A^f 3 + &c.,

and use similar expressions for the sums of other groups of symbols,

then the two resultant equations may be written

*}
= (2 (r-

&
) +4 2

O TUT

2 (J)r~
5
)
=

-g- (2 (*-) + A2
2

whence

1 W
-=- 2 /- 6 2r-10 ~2/-82 = 2 Z&amp;gt;r

and
4&amp;gt;{2 (D?-

3
)
2 (r~

10)-2 (Dr~
5
)
2 (*-

8
)}

= 2 (Dr-B) 2 (r-)-2 (Dr~*) 2 (r-
8
).

The value of A2 derived from these equations ought to be less

than half the square of the length of the magnet M. If it is not

we may suspect some error in the observations. This method of

observation and reduction was given by Gauss in the ( First Report
of the Magnetic Association/

When the observer can make only two series of experiments at

2M
distances r and r2 ,

the value of -=- derived from these experi

ments is

- -
If 5Z)

X
and bD

2 are the actual errors of the observed deflexions

^
and _Z)

2 ,
the actual error of the calculated result Q will be

If we suppose the errors 8^ and bD2 to be independent, and

that the probable value of either is SD, then the probable value

of the error in the calculated value of Q will be 5 Q, where
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If we suppose that one of these distances, say the sinaHar,; ijs-

given, the value of the greater distance may be determined so as

to make b Q a minimum. This condition leads to an equation of

the fifth degree in rf^ which has only one real root greater than

r
2
2

. From this the best value of ^ is found to be r
x
= 1.3189/2*.

If one observation only is taken the best distance is when
bD r-lr- = x/3 ,D r

where bD is the probable error of a measurement of deflexion, and

br is the probable error of a measurement of distance.

Method of Sines.

455.] The method which we have just described may be called

the Method of Tangents, because the tangent of the deflexion is

a measure of the magnetic force.

If the line rl5 instead of being measured east or west, is adjusted

till it is at right angles with the axis of the deflected magnet,
then R is the same as before, but in order that the suspended

magnet may remain perpendicular to r, the resolved part of the

force H in the direction of r must be equal and opposite to R.

Hence, if is the deflexion, R Hsm 0.

This method is called the Method of Sines. It can be applied

only when R is less than H.

In the Kew portable apparatus this method is employed. The

suspended magnet hangs from a part of the apparatus which

revolves along with the telescope and the arm for the deflecting

magnet, and the rotation of the whole is measured on the azimuth

circle.

The apparatus is first adjusted so that the axis of the telescope

coincides with the mean position of the line of collimation of the

magnet in its undisturbed state. If the magnet is vibrating, the

true azimuth of magnetic north is found by observing the ex

tremities of the oscillation of the transparent scale and making the

proper correction of the reading of the azimuth circle.

The deflecting magnet is then placed upon a straight rod which

passes through the axis of the revolving apparatus at right angles

to the axis of the telescope, and is adjusted so that the axis of the

deflecting magnet is in a line passing through the centre of the

suspended magnet.
The whole of the revolving apparatus is then moved till the line

* See Airy s Magnetism.
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of coilimation of the suspended magnet again coincides with the

axis of the telescope, and the new azimuth reading is corrected,

if necessary, by the mean of the scale readings at the extremities

of an oscillation.

The difference of the corrected azimuths gives the deflexion, after

which we proceed as in the method of tangents, except that in the

expression for D we put sin & instead of tan 6.

In this method there is no correction for the torsion of the sus

pending fibre, since the relative position of the fibre, telescope,

and magnet is the same at every observation.

The axes of the two magnets remain always at right angles in

this method, so that the correction for length can be more ac

curately made.

456.] Having thus measured the ratio of the moment of the

deflecting magnet to the horizontal component of terrestrial mag
netism, we have next to find the product of these quantities, by
determining the moment of the couple with which terrestrial mag
netism tends to turn the same magnet when its axis is deflected

from the magnetic meridian.

There are two methods of making this measurement, the dy
namical, in which the time of vibration of the magnet under the

action of terrestrial magnetism is observed, and the statical, in

which the magnet is kept in equilibrium between a measurable

statical couple and the magnetic force.

The dynamical method requires simpler apparatus and is more

accurate for absolute measurements, but takes up a considerable

time, the statical method admits of almost instantaneous measure

ment, and is therefore useful in tracing the changes of the intensity

of the magnetic force, but it requires more delicate apparatus, and

is not so accurate for absolute measurement.

Method of Vibrations.

The magnet is suspended with its magnetic axis horizontal, and
is set in vibration in small arcs. The vibrations are observed by
means of any of the methods already described.

A point on the scale is chosen corresponding to the middle of

the arc of vibration. The instant of passage through this point
of the scale in the positive direction is observed. If there is suffi

cient time before the return of the magnet to the same point, the

instant of passage through the point in the negative direction is

also observed, and the process is continued till n+I positive and
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n negative passages have been observed. If the vibrations are

too rapid to allow of every consecutive passage being observed,

every third or every fifth passage is observed, care being taken that

the observed passages are alternately positive and negative.

Let the observed times of passage be T1} T2 ,
T2n+1 ,

then if

we put I 4 + y + y 4 &c .

then Tn+1 is the mean time of the positive passages, and ought
to agree with T n+v the mean time of the negative passages, if the

point has been properly chosen. The mean of these results is

to be taken as the mean time of the middle passage.

After a large number of vibrations have taken place, but before

the vibrations have ceased to be distinct and regular, the observer

makes another series of observations, from which he deduces the

mean time of the middle passage of the second series.

By calculating the period of vibration either from the first

series of observations or from the second, he ought to be able to

be certain of the number of whole vibrations which have taken

place in the interval between the time of middle passage in the two

series. Dividing the interval between the mean times of middle

passage in the two series by this number of vibrations, the mean
time of vibration is obtained.

The observed time of vibration is then to be reduced to the

time of vibration in infinitely small arcs by a formula of the same

kind as that used in pendulum observations, and if the vibrations

are found to diminish rapidly in amplitude, there is another cor

rection for resistance, see Art. 740. These corrections, however, are

very small when the magnet hangs by a fibre, and when the arc of

vibration is only a few degrees.

The equation of motion of the magnet is

- =

where is the angle between the magnetic axis and the direction

of the force H, A is the moment of inertia of the magnet and

suspended apparatus, M is the magnetic moment of the magnet,
H the intensity of the horizontal magnetic force, and MHr the

coefficient of torsion : / is determined as in Art. 452, and is a

very small quantity. The value of for equilibrium is

T
&quot;y= --
T 5

a very small angle,
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and the solution of the equation for small values of the amplitude,

C is f t \= Ccos (2 TT
-^ 4- a) + ,

where T is the periodic time, and C the amplitude, and

yr2

whence we find the value ofMH
9

Here T is the time of a complete vibration determined from

observation. A, the moment of inertia, is found once for all for

the magnet, either by weighing and measuring it if it is of a

regular figure, or by a dynamical process of comparison with a body
whose moment of inertia is known.

Combining this value of Mil with that of -~ formerly obtained,

we get Jp

and //*

457.] We have supposed that //and M continue constant during
the two series of experiments. The fluctuations of // may be

ascertained by simultaneous observations of the bifilar magnet
ometer to be presently described, and if the magnet has been in

use for some time, and is not exposed during the experiments to

changes of temperature or to concussion, the part ofM which de

pends on permanent magnetism may be assumed to be constant.

All steel magnets, however, are capable of induced magnetism

depending on the action of external magnetic force.

Now the magnet when employed in the deflexion experiments

is placed with its axis east and west, so that the action of ter

restrial magnetism is transverse to the magnet, and does not tend

to increase or diminish M. When the magnet is made to vibrate,

its axis is north and south, so that the action of terrestrial mag
netism tends to magnetize it in the direction of the axis, and

therefore to increase its magnetic moment by a quantity Jc //, where

k is a coefficient to be found by experiments on the magnet.
There are two ways in which this source of error may be avoided

without calculating Jc, the experiments being arranged so that the

magnet shall be in the same condition when employed in deflecting

another magnet and when itself swinging.



457-] ELIMINATION OF INDUCTION. 105

We may place the deflecting magnet with its axis pointing

north, at a distance r from the centre of the suspended magnet,

the line r making an angle whose cosine is \/J with the magnetic

meridian. The action of the deflecting magnet on the suspended

one is then at right angles to its own direction, and is equal to

Here M is the magnetic moment when the axis points north,

as in the experiment of vibration, so that no correction has to be

made for induction.

This method, however, is extremely difficult, owing to the large

errors which would be introduced by a slight displacement of the

deflecting magnet, and as the correction by reversing the deflecting

magnet is not applicable here, this method is not to be followed

except when the object is to determine the coefficient of induction.

The following method, in which the magnet while vibrating is

freed from the inductive action of terrestrial magnetism, is due to

Dr. J. P. Joule *.

Two magnets are prepared whose magnetic moments are as

nearly equal as possible. In the deflexion experiments these mag
nets are used separately, or they may be placed simultaneously

on opposite sides of the suspended magnet to produce a greater

deflexion. In these experiments the inductive force of terrestrial

magnetism is transverse to the axis.

Let one of these magnets be suspended, and let the other be

placed parallel to it with its centre exactly below that of the sus

pended magnet, and with its axis in the same direction. The force

which the fixed magnet exerts on the suspended one is in the

opposite direction from that of terrestrial magnetism. If the fixed

magnet be gradually brought nearer to the suspended one the time

of vibration will increase, till at a certain point the equilibrium will

cease to be stable, and beyond this point the suspended magnet
will make oscillations in the reverse position. By experimenting
in this way a position of the fixed magnet is found at which it

exactly neutralizes the effect of terrestrial magnetism on the sus

pended one. The two magnets are fastened together so as to be

parallel, with their axes turned the same way, and at the distance

just found by experiment. They are then suspended in the usual

way and made to vibrate together through small arcs.

* Proc. Phil. S., Manchester, March 19, 1867.
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The lower magnet exactly neutralizes the effect of terrestrial

magnetism on the upper one, and since the magnets are of equal

moment, the upper one neutralizes the inductive action of the earth

on the lower one.

The value of M is therefore the same in the experiment of

vibration as in the experiment of deflexion, and no correction for

induction is required.

458.] The most accurate method of ascertaining the intensity of

the horizontal magnetic force is that which we have just described.

The whole series of experiments, however, cannot be performed with

sufficient accuracy in much less than an hour, so that any changes
in the intensity which take place in periods of a few minutes would

escape observation. Hence a different method is required for ob

serving the intensity of the magnetic force at any instant.

The statical method consists in deflecting the magnet by means

of a statical couple acting in a horizontal plane. If L be the

moment of this couple, M the magnetic moment of the magnet,
// the horizontal component of terrestrial magnetism, and the

deflexion, MH sin = L.

Hence, if L is known in terms of 0, MH can be found.

The couple L may be generated in two ways, by the torsional

elasticity of a wire, as in the ordinary torsion balance, or by the

weight of the suspended apparatus, as in the bifilar suspension.

In the torsion balance the magnet is fastened to the end of a

vertical wire, the upper end of which can be turned round, and its

rotation measured by means of a torsion circle.

We have then
X, = r(a a 6)

= Mil sin 6.

Here a is the value of the reading of the torsion circle when the

axis of the magnet coincides with the magnetic meridian, and a is

the actual reading. If the torsion circle is turned so as to bring

the magnet nearly perpendicular to the magnetic meridian, so that

e = ~tf, then r(a-a - + 00

or

By observing ,
the deflexion of the magnet when in equilibrium,

we can calculate Mil provided we know r.

If we only wish to know the relative value of H at different

times it is not necessary to know either M or T.

We may easily determine T in absolute measure by suspending
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a non-magnetic body from the same wire and observing its time

of oscillation, then if A is the moment of inertia of this body, and

T the time of a complete vibration,

The chief objection to the use of the torsion balance is that the

zero-reading a is liable to change. Under the constant twisting

force, arising from the tendency of the magnet to turn to the north,

the wire gradually acquires a permanent twist, so that it becomes

necessary to determine the zero-reading of the torsion circle afresh

at short intervals of time.

Bifilar Suspension.

459.] The method of suspending the magnet by two wires or

fibres was introduced by Gauss and Weber. As the bifilar sus

pension is used in many electrical instruments, we shall investigate

it more in detail. The general appearance of the suspension is

shewn in Fig. 16, and Fig. 17 represents the projection of the wires

on a horizontal plane.

AB and A B are the projections of the two wires.

AA and BB are the lines joining the upper and the lower ends

of the wires.

a and b are the lengths of these lines.

a and /3 their azimuths.

TFand W the vertical components of the tensions of the wires.

Q and Q their horizontal components.
h the vertical distance between AA and BB .

The forces which act on the magnet are its weight, the couple

arising from terrestrial magnetism, the torsion of the wires (if any)
and their tensions. Of these the effects of magnetism and of

torsion are of the nature of couples. Hence the resultant of the

tensions must consist of a vertical force, equal to the weight of the

magnet, together with a couple. The resultant of the vertical

components of the tensions is therefore along the line whose pro

jection is 0, the intersection of AA and BB
,
and either of these

lines is divided in in the ratio of W to W.

The horizontal components of the tensions form a couple, and

are therefore equal in magnitude and parallel in direction. Calling
either of them Q, the moment of the couple which they form is

L=Q.PF, (1)

where PP7
is the distance between the parallel lines AB and AB .
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To find the value of L we have the equations of moments

Qh = W. AB = Jr. AK&amp;gt; (2)

and the geometrical equation

(AB + A ff) PP
f = ab sin (a- ft), ( 3)

whence we obtain,
ab WW1= W+ Wr, sin(a-/3).

Fig. 16. Fig. 17.

(4)

If m is the mass of the suspended apparatus, and g the intensity

of gravity, w+ W = mg. (5)

If we also write W W
nmg&amp;gt; (6)

L -
(i.n?)m.ff-jr

sin (a ft).
we find L -

(1 nz
}mff sin (a /3V (7)

The value of L is therefore a maximum with respect to n when n
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is zero, that is, when the weight of the suspended mass is equally

borne by the two wires.

We may adjust the tensions of the wires to equality by observing
1

the time of vibration, and making it a minimum, or we may obtain

a self-acting adjustment by attaching the ends of the wires, as

in Fig. 16, to a pulley, which turns on its axis till the tensions

are equal.

The distance of the upper ends of the suspension wires is re

gulated by means of two other pullies. The distance between the

lower ends of the wires is also capable of adjustment.

By this adjustment of the tension, the couple arising from the

tensions of the wires becomes

T I ab . .

L = -
-j- mg sin (a -/3).

The moment of the couple arising from the torsion of the wires

is of the form T (yp\
where r is the sum of the coefficients of torsion of the wires.

The wires ought to be without torsion when a = ft, we may
then make y a.

The moment of the couple arising from the horizontal magnetic
force is of the form

MS BIU (3 0),

where 8 is the magnetic declination, and is the azimuth of the

axis of the magnet. We shall avoid the introduction of unnecessary

symbols without sacrificing generality if we assume that the axis of

the magnet is parallel to JB
,
or that /3

= 0.

The equation of motion then becomes

4--j72= MHsw(b 0} + -
^-^sin(a 0)+ r(a-0). (8)

There are three principal positions of this apparatus.

(1) When a is nearly equal to 8. If T^ is the time of a complete
oscillation in this position, then

47r2 ^ lab

-yrr-
=

l-fi&amp;gt;&quot;ff+T
+ MH. (9)

(2) When a is nearly equal to 8 + 77. If T2 is the time of a

complete oscillation in this position, the north end of the magnet
being now turned towards the south,

1 ab

^-jrWff
+T-MH. (10)

The quantity on the right-hand of this equation may be made
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as small as we please by diminishing a or
,
but it must not be

made negative, or the equilibrium of the magnet will become un

stable. The magnet in this position forms an instrument by which

small variations in the direction of the magnetic force may be

rendered sensible.

For when 50 is nearly equal to TT, sin (8 0) is nearly equal to

6 by and we find

(8-a). (11)= a-
7l ah 71* rr-

~j-mg-\-T
MH

4 fl

By diminishing the denominator of the fraction in the last term

we may make the variation of very large compared with that of 8.

We should notice that the coefficient of 8 in this expression is

negative, so that when the direction of the magnetic force turns

in one direction the magnet turns in the opposite direction.

(3) In the third position the upper part of the suspension-

apparatus is turned round till the axis of the magnet is nearly

perpendicular to the magnetic meridian.

If we make

0-8=|+0
/

, and a-6 = p-P, (12)

the equation of motion may be written

(/:J-0 ). (13)

If there is equilibrium when //= EQ and = 0,

= 0, (14)

and if H is the value of the horizontal force corresponding to a

small angle
/

, x ^-
-j- mg cos /3 -|- T \--~-

In order that the magnet may be in stable equilibrium it is

necessary that the numerator of the fraction in the second member

should be positive, but the more nearly it approaches zero, the

more sensitive will be the instrument in indicating changes in the

value of the intensity of the horizontal component of terrestrial

magnetism.
The statical method of estimating the intensity of the force

depends upon the action of an instrument which of itself assumes
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different positions of equilibrium for different values of the force.

Hence, by means of a mirror attached to the magnet and throwing
1

a spot of light upon a photographic surface moved by clockwork,

a curve may be traced, from which the intensity of the force at any
instant may be determined according to a scale, which we may for

the present consider an arbitrary one.

460.] In an observatory, where a continuous system of regis

tration of declination and intensity is kept up either by eye ob

servation or by the automatic photographic method, the absolute

values of the declination and of the intensity, as well as the position

and moment of the magnetic axis of a magnet, may be determined

to a greater degree of accuracy.

For the declinometer gives the declination at every instant affected

by a constant error, and the bifilar magnetometer gives the intensity

at every instant multiplied by a constant coefficient. In the ex

periments we substitute for b, 8 + 8 where 8 is the reading of

the declinometer at the given instant, and 8 is the unknown but

constant error, so that 8 + 8 is the true declination at that instant.

In like manner for H, we substitute CH where IF is the reading*&quot; O
of the magnetometer on its arbitrary scale, and C is an unknown
but constant multiplier which converts these readings into absolute

measure, so that CH is the horizontal force at a given instant.

The experiments to determine the absolute values of the quan
tities must be conducted at a sufficient distance from the declino

meter and magnetometer, so that the different magnets may not

sensibly disturb each other. The time of every observation must

be noted and the corresponding values of 8 and H inserted. The

equations are then to be treated so as to find 8 , the constant error

of the declinometer, and C the coefficient to be applied to the

readings of the magnetometer. When these are found the readings
of both instruments may be expressed in absolute measure. The

absolute measurements, however, must be frequently repeated in

order to take account of changes which may occur in the magnetic
axis and magnetic moment of the magnets.

461.] The methods of determining the vertical component of the

terrestrial magnetic force have not been brought to the same degree
of precision. The vertical force must act on a magnet which turns

about a horizontal axis. Now a body which turns about a hori

zontal axis cannot be made so sensitive to the action of small forces

as a body which is suspended by a fibre and turns about a vertical

axis. Besides this, the weight of a magnet is so large compared
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with the magnetic force exerted upon it that a small displace

ment of the centre of inertia by unequal dilatation, &c. produces
a greater effect on the position of the magnet than a considerable

change of the magnetic force.

Hence the measurement of the vertical force, or the comparison
of the vertical and the horizontal forces, is the least perfect part

of the system of magnetic measurements.

The vertical part of the magnetic force is generally deduced from

the horizontal force by determining the direction of the total force.

If i be the angle which the total force makes with its horizontal

component, i is called the magnetic Dip or Inclination, and if H
is the horizontal force already found, then the vertical force is

//tan i, and the total force is H sec i.

The magnetic dip is found by means of the Dip Needle.

The theoretical dip-needle is a magnet with an axis which passes

through its centre of inertia perpendicular to the magnetic axis

of the needle. The ends of this axis are made in the form of

cylinders of small radius, the axes of which are coincident with the

line passing through the centre of inertia. These cylindrical ends

rest on two horizontal planes and are free to roll on them.

When the axis is placed magnetic east and west, the needle

is free to rotate in the plane of the magnetic meridian, and if the

instrument is in perfect adjustment, the magnetic axis will set itself

in the direction of the total magnetic force.

It is, however, practically impossible to adjust a dip-needle so

that its weight does not influence its position of equilibrium,

because its centre of inertia, even if originally in the line joining

the centres of the rolling sections of the cylindrical ends, will cease

to be in this line when the needle is imperceptibly bent or un

equally expanded. Besides, the determination of the true centre

of inertia of a magnet is a very difficult operation, owing to the

interference of the magnetic force with that of gravity.

Let us suppose one end of the needle and one end of the

pivot to be marked. Let a line, real or imaginary, be drawn on

the needle, which we shall call the Line of Collimation. The

position of this line is read off on a vertical circle. Let 6 be the

angle which this line makes with the radius to zero, which we shall

suppose to be horizontal. Let A. be the angle which the magnetic

axis makes with the line of collimation, so that when the needle

is in this position the line of collimation is inclined + A. to the

horizontal.
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Letp be the perpendicular from the centre of inertia on the plane

on which the axis rolls, then p will be a function of 6, whatever

be the shape of the rolling surfaces. If both the rolling sections

of the ends of the axis are circular,

p c #sin(0+a) (1)

where a is the distance of the centre of inertia from the line joining

the centres of the rolling sections, and a is the angle which this

line makes with the line of collimation.

IfM is the magnetic moment, m the mass of the magnet, and

g the force of gravity, I the total magnetic force, and i the dip, then,

by the conservation of energy, when there is stable equilibrium,

MIcos(0+ \
i) mgjp (2)

must be a maximum with respect to 0, or

MIsm(0+ \-i)=-m&amp;lt;?

d

^&amp;gt;

(3)

= mga cos (6 + a),

if the ends of the axis are cylindrical.

Also, if T be the time of vibration about the position of equi

librium, : /,x

MI+ mga sin (6+ a)
= -^-

where A is the moment of inertia of the needle about its axis of

rotation.

In determining the dip a reading is taken with the dip circle in

the magnetic meridian and with the graduation towards the west.

Let 6
1
be this reading, then we have

MIsm(01+ \i) = m(/acos(0l+ a). (5)

The instrument is now turned about a vertical axis through 180,

so that the graduation is to the east, and if 2
is the new reading,

MIsm(02+ X v+i) mga cos (02+ a). (6)

Taking (6) from (5), and remembering that 6^ is nearly equal to

i, and 2 nearly equal to TT i, and that X is a small angle, such

that mgaK may be neglected in comparison with MI,

MI(0l 2 -{-7f2i) =2mgaco$icosa. (7)

Now take the magnet from its bearings and place it in the

deflexion apparatus, Art. 453, so as to indicate its own magnetic
moment by the deflexion of a suspended magnet, then

M=\r*HD (8)

where D is the tangent of the deflexion.

VOL. II. I
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Next, reverse the magnetism of the needle and determine its

new magnetic moment M , by observing a new deflexion, the tan

gent of which is D
, M &amp;gt; = i ^ H1)^ (9)

whence MD = M D. (
1 0)

Then place it on its bearings and take two readings, 3 and 4 ,

in which
3

is nearly ir+ i, and 4 nearly i,

3/ / sin (03 + A 77
i)
= mgaco8(0B +a), (11)

M l sin (04+ A + i)
= m g a cos (04 + a), (1 2)

whence, as before,

M I(93 4 77 2i) 2mgacosicosa, (13)

adding (8),

Jf/^-^ + Tr 2z
) + lT/(03 4 IT 2 a)

= 0, (14)

or J9(01
-02 + 7r-2;) + .Z/(03-04-7r-2*) = 0, (15)

whence we find the dip -e4 -Tr) , .

where D and _Z/ are the tangents of the deflexions produced by the

needle in its first and second magnetizations respectively.

In taking observations with the dip circle the vertical axis is

carefully adjusted so that the plane bearings upon which the axis of

the magnet rests are horizontal in every azimuth. The magnet being

magnetized so that the end A dips, is placed with its axis on the

plane bearings, and observations are taken with the plane of the circle

in the magnetic meridian, and with the graduated side of the circle

east. Each end of the magnet is observed by means of reading

microscopes carried on an arm which moves concentric with the

dip circle. The cross wires of the microscope are made to coincide

with the image of a mark on the magnet, and the position of the

arm is then read off on the dip circle by means of a vernier.

We thus obtain an observation of the end A and another of the

end B when the graduations are east. It is necessary to observe

both ends in order to eliminate any error arising from the axle

of the magnet not being concentric with the dip circle.

The graduated side is then turned west, and two more observ

ations are made.

The magnet is then turned round so that the ends of the axle

are reversed, and four more observations are made looking at the

other side of the magnet.
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The magnetization of the magnet is then reversed so that the

end B dips, the magnetic moment is ascertained, and eight ohserva-

tions are taken in this state, and the sixteen observations combined

to determine the true dip.

462.] It is found that in spite of the utmost care the dip, as thus

deduced from observations made with one dip circle, differs per

ceptibly from that deduced from observations with another dip

circle at the same place. Mr. Broun has pointed out the effect

due to ellipticity of the bearings of the axle, arid how to correct

it by taking observations with the magnet magnetized to different

strengths.

The principle of this method may be stated thus. We shall

suppose that the error of any one observation is a small quantity

not exceeding a degree. We shall also suppose that some unknown

but regular force acts upon the magnet, disturbing it from its

true position.

If L is the moment of this force, the true dip, and the

observed dip, then
L = Jf/sin(0-0 ), (17)

= MI(0-0 ), (18)
since 6$ is small.

It is evident that the greater M becomes the nearer does the

needle approach its proper position. Now let the operation of

taking the dip be performed twice, first with the magnetization

equal to Mlt the greatest that the needle is capable of, and next

with the magnetization equal to M~
29

a much smaller value but

sufficient to make the readings distinct and the error still moderate.

Let
1
and 6

2
be the dips deduced from these two sets of observ

ations, and let L be the mean value of the unknown disturbing

force for the eight positions of each determination, which we shall

suppose the same for both determinations. Then

L = M1i(01
-e )

= M
2 i(02

-0
). (19)

If we find that several experiments give nearly equal values for

L, then we may consider that must be very nearly the true value

of the dip.

463.] Dr. Joule has recently constructed a new dip-circle, in

which the axis of the needle, instead of rolling on horizontal agate

planes, is slung on two filaments of silk or spider s thread, the ends

I 2
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of the filaments being attached to the arms of a delicate balance.

The axis of the needle thus rolls on two loops of silk fibre, and
Dr. Joule finds that its freedom of motion is much greater than

when it rolls on agate planes.

In Fig. 18, NS is the needle, CC is its axis, consisting of a

straight cylindrical wire, and PCQ, P C Q are the filaments on which

the axis rolls. POQ is the

balance, consisting of a double

bent lever supported by a

wire, 0, stretched horizont

ally between the prongs of

a forked piece, and having
a counterpoise It which can

be screwed up or down, so

that the balance is in neutral

equilibrium about 0.

In order that the needle

may be in neutral equilibrium

as the needle rolls on the

filaments the centre of gra

vity must neither rise nor fall.

Hence the distance OC must

remain constant as the needle

rolls. This condition will be

fulfilled if the arms of the

balance OP and Q are equal,

and if the filaments are at

right angles to the arms.

Dr. Joule finds that the

needle should not be more than

five inches long. When it is eight inches long, the bending of the

needle tends to diminish the apparent dip by a fraction of a minute.

The axis of the needle was originally of steel wire, straightened by

being brought to a red heat while stretched by a weight, but

Dr. Joule found that with the new suspension it is not necessary

to use steel wire, for platinum and even standard gold are hard

enough.
The balance is attached to a wire 00 about a foot long stretched

horizontally between the prongs of a fork. This fork is turned

round in azimuth by means of a circle at the top of a tripod which

supports the whole,. Six complete observations of the dip can be
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obtained in one hour, and the average error of a single observation

is a fraction of a minute of arc.

It is proposed that the dip needle in the Cambridge Physical

Laboratory shall be observed by means of a double image instru

ment, consisting of two totally reflecting prisms placed as in

Fig. 19 and mounted on a vertical graduated circle, so that the

plane of reflexion may be turned round a horizontal axis nearly

coinciding with the prolongation of the axis of the suspended dip-

needle. The needle is viewed by means of a telescope placed

behind the prisms, and the two ends of the needle are seen together

as in Fig. 20. By turning the prisms about the axis of the vertical

circle, the images of two lines drawn on the needle may be made

to coincide. The inclination of the needle is thus determined from

the reading of the vertical circle.

Fig. 19. Fig. 20.

The total intensity / of the magnetic force in the line of dip may
be deduced as follows from the times of vibration

in the four positions already described,

T13 Tz ,
jP3 ,

5JL _L JL J_l.
&quot;

2M+2 I Zi
2 +

Tf
&quot;h T* h T* )

The values ofM andM must be found by the method of deflexion

and vibration formerly described, and A is the moment of inertia of

the magnet about its axle.

The observations with a magnet suspended by a fibre are so

much more accurate that it is usual to deduce the total force from

the horizontal force from the equation

/= H sec 6,

where / is the total force, H the horizontal force, and the dip.

464.] The process of determining the dip being a tedious one, is

not suitable for determining the continuous variation of the magnetic
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force. The most convenient instrument for continuous observa

tions is the vertical force magnetometer, which is simply a magnet
balanced on knife edges so as to be in stable equilibrium with its

magnetic axis nearly horizontal.

If Z is the vertical component of the magnetic force, M the

magnetic moment, and the small angle which the magnetic axis

makes with the horizon

HZ = mgacQ&(a.~6),

where m is the mass of the magnet, g the force of gravity, a the

distance of the centre of gravity from the axis of suspension, and

a the angle which the plane through the axis and the centre of

gravity makes with the magnetic axis.

Hence, for the small variation of vertical force bZ, there will be

a variation of the angular position of the magnet bO such that

In practice this instrument is not used to determine the absolute

value of the vertical force, but only to register its small variations.

For this purpose it is sufficient to know the absolute value of Z

when = 0, and the value of -y-r
civ

The value of Z, when the horizontal force and the dip are known,
is found from the equation Z = ZTtan0 , where is the dip and

H the horizontal force.

To find the deflexion due to a given variation of Z, take a magnet
and place it with its axis east and west, and with its centre at a

known distance i\ east or west from the declinometer, as in ex

periments on deflexion, and let the tangent of deflexion be D
l

.

Then place it with its axis vertical and with its centre at a

distance r
z
above or below the centre of the vertical force mag

netometer, and let the tangent of the deflexion produced in the

magnetometer be D
2

. Then, if the moment of the deflecting

magnet is M, jr.

M^IIr^D^ = ^r^D2
.

clZ r^ D
LHence -7 = H -^ -~

dO r
2
3 D2

The actual value of the vertical force at any instant is

7 7 +fi
dZ

& = &Q H- v -j^ &amp;gt;

where ZQ
is the value of Z when Q = 0.

For continuous observations of the variations of magnetic force
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at a fixed observatory the Unifilar Declinometer, the Bifilar Hori

zontal Force Magnetometer, and the Balance Vertical Force Mag
netometer are the most convenient instruments.

At several observatories photographic traces are now produced on

prepared paper moved by clock work, so that a continuous record

of the indications of the three instruments at every instant is formed.

These traces indicate the variation of the three rectangular com

ponents of the force from their standard values. The declinometer

gives the force towards mean magnetic west, the bifilar magnet
ometer gives the variation of the force towards magnetic north, and

the balance magnetometer gives the variation of the vertical force.

The standard values of these forces, or their values when these

instruments indicate their several zeros, are deduced by frequent

observations of the absolute declination, horizontal force, and dip.



CHAPTER VIII.

ON TERRESTRIAL MAGNETISM.

465.] OUR knowledge of Terrestrial Magnetism is derived from

the study of the distribution of magnetic force on the earth s sur

face at any one time, and of the changes in that distribution at

different times.

The magnetic force at any one place and time is known when

its three coordinates are known. These coordinates may be given
in the form of the declination or azimuth of the force, the dip

or inclination to the horizon, and the total intensity.

The most convenient method, however, for investigating the

general distribution of magnetic force on the earth s surface is to

consider the magnitudes of the three components of the force,

X=Hcosb, directed due north, \

Y=Hsmb, directed due west, (1)

Z = If tan 0, directed vertically downwards, )

where H denotes the horizontal force, 8 the declination, and

the dip.

If V is the magnetic potential at the earth s surface, and if we

consider the earth a sphere of radius a, then

Y i dr i dv dv ,

}A = --^yj Y =-j &amp;gt; ^=-^-7 (*)
a dl a cos I dK dr

where I is the latitude, and A. the longitude, and r the distance

from the centre of the earth.

A knowledge of V over the surface of the earth may be obtained

from the observations of horizontal force alone as follows.

Let FQ be the value of V at the true north pole, then, taking
the line-integral along any meridian, we find,

o , (3)

for the value of the potential on that meridian at latitude I.
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Thus the potential may be found for any point on the earth s

surface provided we know the value of X, the northerly component
at every point, and F

,
the value of Fat the pole.

Since the forces depend not on the absolute value of V but

on its derivatives, it is not necessary to fix any particular value

for F .

The value of V at any point may be ascertained if we know

the value of X along any given meridian, and also that of T over

the whole surface.

Let JF/j:tf+7*, W
where the integration is performed along the given meridian from

the pole to the parallel I, then

F= ^+fVco8/#A, (5)
^AO

where the integration is performed along the parallel I from the

given meridian to the required point.

These methods imply that a complete magnetic survey of the

earth s surface has been made, so that the values of X or of Y
or of both are known for every point of the earth s surface at a

given epoch. What we actually know are the magnetic com

ponents at a certain number of stations. In the civilized parts of

the earth these stations are comparatively numerous ; in other places

there are large tracts of the earth s surface about which we have

no data.

Magnetic Survey.

466.] Let us suppose that in a country of moderate size, whose

greatest dimensions are a few hundred miles, observations of the

declination and the horizontal force have been taken at a con

siderable number of stations distributed fairly over the country.

Within this district we may suppose the value of V to be re

presented with sufficient accuracy by the formula

F= Vt + a(AJ + Ai\+\BJ*+EJ\+\3iK* +^ (6)

whence X = A
1+Bl

I+ 2 X, (7)

Ycosl = A
2+ 2

l+33 \. (8)

Let there be n stations whose latitudes are ll} 2 ,
...&c. and

longitudes \lt
A
2 , &c., and let X and 7 be found for each station.

Let J =
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/ and A may be called the latitude and longitude of the central

station. Let

X =-i(i)- and r
o cosJ =:-2(rcosJ), (10)

tl ti

then X and Y are the values of X and Y at the imaginary central

station, then

\-\
), (11)

A-A
). (12)

We have n equations of the form of (11) and n of the form (12).

If we denote the probable error in the determination of X by ,

and that of Ycos I by q, then we may calculate f and
r/

on

the supposition that they arise from errors of observation of H
and 8.

Let the probable error of H be ^, and that of 8, d, then since

dX cos 5 . dffHsm 8 . db,

2 = 7,2 COS2 8 + d * H* sin 2
8

Similarly 7?

2 = /fc
2 sin2 8+ d 2 //2 cos 2

8.

If the variations of X and T from their values as given by equa
tions of the form (11) and (12) considerably exceed the probable

errors of observation, we may conclude that they are due to local

attractions, and then we have no reason to give the ratio of to r\

any other value than unity.

According to the method of least squares we multiply the equa
tions of the form (11) by r/, and those of the form (12) by to

make their probable error the same. We then multiply each

equation by the coefficient of one of the unknown quantities J3lt

H
2 ,

or BZ and add the results, thus obtaining three equations from

which to find B B and B.

in which we write for conciseness,

*
1
= 2(^

2)-^ ^ =
P

l
= 2(lX)-nlQ

X
Q ,

By calculating 19 J5
2 ,

and J5
3 ,

and substituting in equations

(11) and (12), we can obtain the values of X and Y at any point
within the limits of the survey free from the local disturbances
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which are found to exist where the rock near the station is magnetic,
as most igneous rocks are.

Surveys of this kind can be made only in countries where mag
netic instruments can be carried about and set up in a great many
stations. For other parts of the world we must be content to find

the distribution of the magnetic elements by interpolation between

their values at a few stations at great distances from each other.

467.] Let us now suppose that by processes of this kind, or

by the equivalent graphical process of constructing charts of the

lines of equal values of the magnetic elements, the values of X and

Y, and thence of the potential V, are known over the whole surface

of the globe. The next step is to expand V in the form of a series

of spherical surface harmonics.

If the earth were magnetized uniformly and in the same direction

throughout its interior, V would be an harmonic of the first degree,

the magnetic meridians would be great circles passing through two

magnetic poles diametrically opposite, the magnetic equator would

be a great circle, the horizontal force would be equal at all points

of the magnetic equator, and if H is this constant value, the value

at any other point would be H= //O cos I
, where V is the magnetic

latitude. The vertical force at any point would be Z = 2H
Q sin I ,

and if Q is the dip, tan 6 = 2 tan I .

In the case of the earth, the magnetic equator is defined to be

the line of no dip. It is not a great circle of the sphere.

The magnetic poles are defined to be the points where there is

no horizontal force or where the dip is 90. There are two such

points, one in the northern and one in the southern regions, but

they are not diametrically opposite, and the line joining them is

not parallel to the magnetic axis of the earth.

468.] The magnetic poles are the points where the value of V
on the surface of the earth is a maximum or minimum, or is

stationary.

At any point where the potential is a minimum the north end

of the dip-needle points vertically downwards, and if a compass-
needle be placed anywhere near such a point, the north end will

point towards that point.

At points where the potential is a maximum the south end of

the dip-needle points downwards, and the south end of the compass-
needle points towards the point.

If there are p minima of V on the earth s surface there must be

p \ other points, where the north end of the dip-needle points
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downwards, but where the compass-needle, when carried in a circle

round the point, instead of revolving so that its north end points

constantly to the centre, revolves in the opposite direction, so as to

turn sometimes its north end and sometimes its south end towards

the point.

If we call the points where the potential is a minimum true

north poles, then these other points may be called false north poles,

because the compass-needle is not true to them. If there are p
true north poles, there must be p I false north poles, and in like

manner, if there are q true south poles, there must be y 1 false

south poles. The number of poles of the same name must be odd,

so that the opinion at one time prevalent, that there are two north

poles and two south poles, is erroneous. According to Gauss there

is in fact only one true north pole and one true south pole on

the earth s surface, and therefore there are no false poles. The line

joining these poles is not a diameter of the earth, and it is not

parallel to the earth s magnetic axis.

469.] Most of the early investigators into the nature of the

earth s magnetism endeavoured to express it as the result of the

action of one or more bar magnets, the position of the poles of

which were to be determined. Gauss was the first to express the

distribution of the earth s magnetism in a perfectly general way by

expanding its potential in a series of solid harmonics, the coefficients

of which he determined for the first four degrees. These coeffi

cients are 24 in number, 3 for the first degree, 5 for the second,

7 for the third, and 9 for the fourth. All these terms are found

necessary in order to give a tolerably accurate representation of

the actual state of the earth s magnetism.

To find what Part of the Observed Magnetic Force is due to External

and what to Internal Causes.

470.] Let us now suppose that we have obtained an expansion
of the magnetic potential of the earth in spherical harmonics,

consistent with the actual direction and magnitude of the hori

zontal force at every point on the earth s surface, then Gauss has

shewn how to determine, from the observed vertical force, &quot;whether

the magnetic forces are due to causes, such as magnetization or

electric currents, within the earth s surface, or whether any part
is directly due to causes exterior to the earth s surface.

Let V be the actual potential expanded in a double series of

spherical harmonics,
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-2

The first series represents the part of the potential due to causes

exterior to the earth,, and the second series represents the part due

to causes within the earth.

The observations of horizontal force give us the sum of these

series when r a, the radius of the earth. The term of the order i is

The observations of vertical force give us

Z=* &amp;gt;

dr

and the term of the order i in aZ is

Hence the part due to external causes is

and the part due to causes within the earth is

_
r-

The expansion of V has hitherto been calculated only for the

mean value of V at or near certain epochs. No appreciable part
of this mean value appears to be due to causes external to the

earth.

471.] We do not yet know enough of the form of the expansion
of the solar and lunar parts of the variations of V to determine

by tills method whether any part of these variations arises from

magnetic force acting from without. It is certain, however, as

the calculations of MM. Stoney and Chambers have shewn, that

the principal part of these variations cannot arise from any direct

magnetic action of the sun or moon, supposing these bodies to be

magnetic *.

472.] The principal changes in the magnetic force to which

attention has been directed are as follows.

* Professor Hornstein of Prague has discovered a periodic change in the magnetic
elements, the period of which is 26.33 days, almost exactly equal to that of the

synodic revolution of the sun, as deduced from the observation of sun-spots near his

equator. This method of discovering the time of rotation of the unseen solid body of
the sun by its effects on the magnetic needle is the first instalment of the repayment
by Magnetism of its debt to Astronomy. Akad., Wien, June 1,5, 1871. See Proc.

R.8., Nov. 16,1871.
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I. The more Regular Variations.

(1) The Solar variations, depending on the hour of the day and

the time of the year.

(2) The Lunar variations, depending on the moon s hour angle

and on her other elements of position.

(3) These variations do not repeat themselves in different years,,

but seem to be subject to a variation of longer period of about

eleven years.

(4) Besides this, there is a secular alteration in the state of the

earth s magnetism, which has been going on ever since magnetic
observations have been made, and is producing changes of the

magnetic elements of far greater magnitude than any of the varia

tions of small period.

II. The Disturbances.

473.] Besides the more regular changes, the magnetic elements

are subject to sudden disturbances of greater or less amount. It

is found that these disturbances are more powerful and frequent

at one time than at another, and that at times of great disturbance

the laws of the regular variations are masked, though they are very

distinct at times of small disturbance. Hence great attention has

been paid to these disturbances, and it has been found that dis

turbances of a particular kind are more likely to occur at certain

times of the day, and at certain seasons and intervals of time,

though each individual disturbance appears quite irregular. Besides

these more ordinary disturbances, there are occasionally times of

excessive disturbance, in which the magnetism is strongly disturbed

for a day or two. These are called Magnetic Storms. Individual

disturbances have been sometimes observed at the same instant

in stations widely distant.

Mr. Airy has found that a large proportion of the disturbances

at Greenwich correspond with the electric currents collected by
electrodes placed in the earth in the neighbourhood, and are such

as would be directly produced in the magnet if the earth-current,

retaining its actual direction, were conducted through a wire placed

underneath the magnet.
It has been found that there is an epoch of maximum disturbance

every eleven years, and that this appears to coincide with the epoch
of maximum number of spots in the sun.

474.] The field of investigation into which we are introduced
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by the study of terrestrial magnetism is as profound as it is ex

tensive,

We know that the sun and moon act on the earth s magnetism.
It has been proved that this action cannot be explained by sup

posing these bodies magnets. The action is therefore indirect. In

the case of the sun part of it may be thermal action, but in the

case of the moon we cannot attribute it to this cause. Is it pos

sible that the attraction of these bodies, by causing strains in the

interior of the earth, produces (Art. 447) changes in the magnetism

already existing in the earth, and so by a kind of tidal action causes

the semidiurnal variations ?

But the amount of all these changes is very small compared with

the great secular changes of the earth s magnetism.
What cause, whether exterior to the earth or in its inner depth s,

produces such enormous changes in the earth s magnetism, that its

magnetic poles move slowly from one part of the globe to another ?

When we consider that the intensity of the magnetization of the

great globe of the earth is quite comparable with that which we

produce with much difficulty in our steel magnets, these immense

changes in so large a body force us to conclude that we are not yet

acquainted with one of the most powerful agents in nature,, the

scene of whose activity lies in those inner depths of the earth, to

the knowledge of which we have so few means of access.



PART IV.

ELECTROMAGNETISM.

CHAPTEK I.

ELECTROMAGNETIC FORCE.

475.] IT had been noticed by many different observers that in

certain cases magnetism is produced or destroyed in needles by
electric discharges through them or near them, and conjectures

of various kinds had been made as to the relation between mag
netism and electricity, but the laws of these phenomena, and the

form of these relations, remained entirely unknown till Hans

Christian Orsted *, at a private lecture to a few advanced students

at Copenhagen, observed that a wire connecting the ends of a

voltaic battery affected a magnet in its vicinity. This discovery

he published in a tract entitled Experiments circa effectum Conflictus

Electrici in Acum Magneticam, dated July 21, 1820.

Experiments on the relation of the magnet to bodies charged
with electricity had been tried without any result till Orsted

endeavoured to ascertain the effect of a wire heated by an electric

current. He discovered, however, that the current itself, and not

the heat of the wire, was the cause of the action, and that the
e electric conflict acts in a revolving manner, that is, that a magnet

placed near a wire transmitting an electric current tends to set

itself perpendicular to the wire, and with the same end always

pointing forwards as the magnet is moved round the wire.

476.] It appears therefore that in the space surrounding a wire

* See another account of Orsted s discovery in a letter from Professor Hansteen in

the Life of Faraday by Dr. Bence Jones, vol. ii. p. 395.
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transmitting an electric current a magnet is acted on by forces

depending on the position of the wire and on the strength of the

current. The space in which these forces act may therefore be

considered as a magnetic field, and we may study it in the same

way as we have already studied the field in the neighbourhood of

ordinary magnets, by tracing the course of the lines of magnetic

force, and measuring the intensity of the force at every point.

477.] Let us begin with the case of an indefinitely long straight

wire carrying an electric current. If a man were to place himself

in imagination in the position of the wire, so that the current

should flow from his head to his feet, then a magnet suspended

freely before him would set itself so that the end which points north

would, under the action of the current, point to his right hand.

The lines of magnetic force are everywhere at right angles to

planes drawn through the wire, and are there

fore circles each in a plane perpendicular to

the wire, which passes through its centre.

The pole of a magnet which points north, if

carried round one of these circles from left to

right, would experience a force acting always

in the direction of its motion. The other

pole of the same magnet would experience

a force in the opposite direction.

478.] To compare these forces let the wire

be supposed vertical, and the current a de

scending one, and let a magnet be placed on

an apparatus which is free to rotate about a

vertical axis coinciding with the wire. It

is found that under these circumstances the

current has no effect in causing the rotation

of the apparatus as a whole about itself as an axis. Hence the

action of the vertical current on the two poles of the magnet is

such that the statical moments of the two forces about the current

as an axis are equal and opposite. Let % and m2 be the strengths

of the two poles, r
l
and r

2
their distances from the axis of the wire,

5\ and T2 the intensities of the magnetic force due to the current at

Fig. 21.

the two poles respectively, then the force on m
1

is and

ssince it is at right angles to the axis its moment
l

Similarly that of the force on the other pole is m2 T2
r
2 ,

and since

there is no motion observed,

m
l
T

1
r
l+m2

T
2 r2 = 0.

VOL. II. K
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But we know that in all magnets

m-L+ m^ = 0.

Hence T^ = T
2
r
2 ,

or the electromagnetic force due to a straight current of infinite

length is perpendicular to the current, and varies inversely as the

distance from it.

479.] Since the product Tr depends on the strength of the

current it may be employed as a measure of the current. This

method of measurement is different from that founded upon elec

trostatic phenomena, and as it depends on the magnetic phenomena

produced by electric currents it is called the Electromagnetic system
of measurement. In the electromagnetic system if i is the current,

Tr = 2i.

480.] If the wire be taken for the axis of z
}
then the rectangular

components of T are

Here Xdx+Ydy+Zdz is a complete differential, being that of

Hence the magnetic force in the field can be deduced from a

potential function, as in several former instances, but the potential

is in this case a function having an infinite series of values whose

common difference is 4:iri. The differential coefficients of the

potential with respect to the coordinates have, however, definite and

single values at every point.

The existence of a potential function in the field near an electric

current is not a self-evident result of the principle of the con

servation of energy, for in all actual currents there is a continual

expenditure of the electric energy of the battery in overcoming the

resistance of the wire, so that unless the amount of this expenditure
were accurately known, it might be suspected that part of the

energy of the battery may be employed in causing work to be

done on a magnet moving in a cycle. In fact, if a magnetic pole,

m, moves round a closed curve which embraces the wire, work

is actually done to the amount of 4 TT m i. It is only for closed

paths which do not embrace the wire that the line-integral of the

force vanishes. We must therefore for the present consider the

law of force and the existence of a potential as resting on the

evidence of the experiment already described.
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481.] If we consider the space surrounding an infinite straight

line we shall see that it is a cyclic space, because it returns into

itself. If we now conceive a plane, or any other surface, com

mencing at the straight line and extending on one side of it

to infinity, this surface may be regarded as a diaphragm which

reduces the cyclic space to an acyclic one. If from any fixed point

lines be drawn to any other point without cutting the diaphragm,

and the potential be defined as the line-integral of the force taken

along one of these lines, the potential at any point will then have

a single definite value.

The magnetic field is now identical in all respects with that due

to a magnetic shell coinciding with this surface, the strength of

the shell being i. This shell is bounded on one edge by the infinite

straight line. Tho other parts of its boundary are at an infinite

distance from the part of the field under consideration.

482.] In all actual experiments the current forms a closed circuit

of finite dimensions. We shall therefore compare the magnetic

action of a finite circuit with that of a magnetic shell of which the

circuit is the bounding edge.

It has been shewn by numerous experiments, of which the

earliest are those of Ampere, and the most accurate those of Weber,

that the magnetic action of a small plane circuit at distances which

are great compared with the dimensions of the circuit is the same

as that of a magnet whose axis is normal to the plane of the circuit,

and whose magnetic moment is equal to the area of the circuit

multiplied by the strength of the current.

If the circuit be supposed to be filled up by a surface bounded

by the circuit and thus forming a diaphragm, and if a magnetic

shell of strength i coinciding with this surface be substituted for

the electric current, then the magnetic action of the shell on all

distant points will be identical with that of the current.

483.] Hitherto we have supposed the dimensions of the circuit

to be small compared with the distance of any part of it from

the part of the field examined. We shall now suppose the circuit

to be of any form and size whatever, and examine its action at any

point P not in the conducting wire itself. The following method,

which has important geometrical applications, was introduced by

Ampere for this purpose.

Conceive any surface S bounded by the circuit and not passing

through the point P. On this surface draw two series of lines

crossing each other so as to divide it into elementary portions, the

K 2
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dimensions of which are small compared with their distance from

P, and with the radii of curvature of the surface.

Round each of these elements conceive a current of strength i

to flow, the direction of circulation being the same in all the ele

ments as it is in the original circuit.

Along every line forming the division between two contiguous

elements two equal currents of strength i flow in opposite direc

tions.

The effect of two equal and opposite currents in the same place

is absolutely zero, in whatever aspect we consider the currents.

Hence their magnetic effect is zero. The only portions of the

elementary circuits which are not neutralized in this way are those

which coincide with the original circuit. The total effect of the

elementary circuits is therefore equivalent to that of the original

circuit.

484.] Now since each of the elementary circuits may be con

sidered as a small plane circuit whose distance from P is great

compared with its dimensions, we may substitute for it an ele

mentary magnetic shell of strength i whose bounding edge coincides

with the elementary circuit. The magnetic effect of the elementary

shell on P is equivalent to that of the elementary circuit. The

whole of the elementary shells constitute a magnetic shell of

strength i, coinciding with the surface 8 and bounded by the

original circuit, and the magnetic action of the whole shell on P
is equivalent to that of the circuit.

It is manifest that the action of the circuit is independent

of the form of the surface S
9
which was drawn in a perfectly

arbitrary manner so as to fill it up. We see from this that the

action of a magnetic shell depends only on the form of its edge

and not on the form of the shell itself. This result we obtained

before, at Art. 410, but it is instructive to see how it may be

deduced from electromagnetic considerations.

The magnetic force due to the circuit at any point is therefore

identical in magnitude and direction with that due to a magnetic

shell bounded by the circuit and not passing through the point,

the strength of the shell being numerically equal to that of the

current. The direction of the current in the circuit is related to

the direction of magnetization of the shell, so that if a man were to

stand with his feet on that side of the shell which we call the

positive side, and which tends to point to the north, the current in

front of him would be from right to left.
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485.] The magnetic potential of the circuit, however, differs

from that of the magnetic shell for those points which are in the

substance of the magnetic shell.

If co is the solid angle subtended at the point P by the magnetic

shell, reckoned positive when the positive or austral side of the shell

is next to P, then the magnetic potential at any point not in the

shell itself is
coc/&amp;gt;,

where $ is the strength of the shell. At any

point in the substance of the shell itself we may suppose the shell

divided into two parts whose strengths are ^ and
c/&amp;gt;2 ,

where

&amp;lt;/&amp;gt;!

-f
c/&amp;gt;2
=

c/&amp;gt;,

such that the point is on the positive side of c^1
and

on the negative side of
c/&amp;gt;2

. The potential at this point is

On the negative side of the shell the potential becomes $ (co 47r).

In this case therefore the potential is continuous, and at every

point has a single determinate value. In the case of the electric

circuit, on the other hand, the magnetic potential at every point

not in the conducting wire itself is equal to
ia&amp;gt;,

where i is the

strength of the current, and co is the solid angle subtended by the

circuit at the point, and is reckoned positive when the current, as

seen from P, circulates in the direction opposite to that of the hands

of a watch.

The quantity ^co is a function having an infinite series of values

whose common difference is 4 TT i. The differential coefficients of

id) with respect to the coordinates have, however, single and de

terminate values for every point of space.

486.] If a long thin flexible solenoidal magnet were placed in

the neighbourhood of an electric circuit, the north and south ends

of the solenoid would tend to move in opposite directions round

the wire, and if they were free to obey the magnetic force the

magnet would finally become wound round the wire in a close

coil. If it were possible to obtain a magnet having only one pole,

or poles of unequal strength, such a magnet would be moved round

and round the wire continually in one direction, but since the poles

of every magnet are equal and opposite, this result can never occur.

Faraday, however, has shewn how to produce the continuous rotation

of one pole of a magnet round an electric current by making it

possible for one pole to go round and round the current while

the other pole does not. That this process may be repeated in

definitely, the body of the magnet must be transferred from one

side of the current to the other once in each revolution. To do

this without interrupting the flow of electricity, the current is split
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into two branches, so that when one branch is opened to let the

magnet pass the current continues to flow through the other.

Faraday used for this purpose a circular trough of mercury, as

shewn in Fig. 23, Art. 491. The current enters the trough through
the wire AB, it is divided at B, and after flowing through the arcs

QP and BRP it unites at P, and leaves the trough through the

wire PO, the cup of mercury 0, and a vertical wire beneath 0,

down which the current flows.

The magnet (not shewn in the figure) is mounted so as to be

capable of revolving about a vertical axis through 0, and the wire

OP revolves with it. The body of the magnet passes through the

aperture of the trough, one pole, say the north pole, being beneath

the plane of the trough, and the other above it. As the magnet
and the wire OP revolve about the vertical axis, the current is

gradually transferred from the branch of the trough which lies in

front of the magnet to that which lies behind it, so that in every

complete revolution the magnet passes from one side of the current

to the other. The north pole of the magnet revolves about the

descending current in the direction N.E.S.W. and if w, o&amp;gt; are the

solid angles (irrespective of sign) subtended by the circular trough
at the two poles, the work done by the electromagnetic force in a

complete revolution is

mi (ITT o&amp;gt; a/),

where m is the strength of either pole, and i the strength of the

current.

487.] Let us now endeavour to form a notion of the state of the

magnetic field near a linear electric circuit.

Let the value of
o&amp;gt;,

the solid angle subtended by the circuit,

be found for every point of space, and let the surfaces for which

co is constant be described. These surfaces will be the equipotential
surfaces. Each of these surfaces will be bounded by the circuit,

and any two surfaces, o^ and o&amp;gt;

2 , will meet in the circuit at an

angle i(o&amp;gt; 1
-&amp;lt;i)

2).

Figure XVIII, at the end of this volume, represents a section

of the equipotential surfaces due to a circular current. The small

circle represents a section of the conducting wire, and the hori

zontal line at the bottom of the figure is the perpendicular to the

plane of the circular current through its centre. The equipotential

surfaces, 24 of which are drawn corresponding to a series of values

of CD differing by &amp;gt; are surfaces of revolution, having this line for
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their common axis. They are evidently oblate figures, being flat

tened in the direction of the axis. They meet each other in the line

of the circuit at angles of 1 5.

The force acting on a magnetic pole placed at any point of an

equipotential surface is perpendicular to this surface, and varies

inversely as the distance between consecutive surfaces. The closed

curves surrounding the section of the wire in Fig. XVIII are the

lines of force. They are copied from Sir W. Thomson s Paper on

Vortex Motion*. See also Art. 702.

Action of an Electric Circuit on any Magnetic System.

488.] We are now able to deduce the action of an electric circuit

on any magnetic system in its neighbourhood from the theory of

magnetic shells. For if we construct a magnetic shell, whose

strength is numerically equal to the strength of the current, and

whose edge coincides in position with the circuit, while the shell

itself does not pass through any part of the magnetic system, the

action of the shell on the magnetic system will be identical with

that of the electric circuit.

Reaction of the Magnetic System on the Electric Circuit.

489.] From this, applying the principle that action and reaction

are equal and opposite, we conclude that the mechanical action of

the magnetic system on the electric circuit is identical with its

action on a magnetic shell having the circuit for its edge.
The potential energy of a magnetic shell of strength $ placed

in a field of magnetic force of which the potential is T, is, by
Art. 410,

T- -J- &amp;gt;x dy dz

where I, m, n are the direction-cosines of the normal drawn from the

positive side of the element dS of the shell, and the integration
is extended over the surface of the shell.

Now the surface-integral

where #, I, c are the components of the magnetic induction, re

presents the quantity of magnetic induction through the shell, or,

* Trans. R. 8. Edin., vol. xxv. p. 217, (1869).
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in the language of Faraday, the number of lines of magnetic in

duction, reckoned algebraically, which pass through the shell from

the negative to the positive side, lines which pass through the

shell in the opposite direction being reckoned negative.

Remembering that the shell does not belong to the magnetic

system to which the potential V is due, and that the magnetic
force is therefore equal to the magnetic induction, we have

dV dV dVa= --=-, b= --=-, c = --
j-&amp;gt;dx dy dz

and we may write the value of M,

M=-&amp;lt;t&amp;gt;N.

If bx
1 represents any displacement of the shell, and X

1
the force

acting on the shell so as to aid the displacement, then by the

principle of conservation of energy,

&quot;= 0,

^or X = 6 --r x

We have now determined the nature of the force which cor

responds to any given displacement of the shell. It aids or resists

that displacement accordingly as the displacement increases or

diminishes N, the number of lines of induction which pass through
the shell.

The same is true of the equivalent electric circuit. Any dis

placement of the circuit will be aided or resisted accordingly as it

increases or diminishes the number of lines of induction which pass

through the circuit in the positive direction.

We must remember that the positive direction of a line of

magnetic induction is the direction in which the pole of a magnet
which points north tends to move along the line, and that a line

of induction passes through the circuit in the positive direction,

when the direction of the line of induction is related to the

direction of the current of vitreous electricity in the circuit as

the longitudinal to the rotational motion of a right-handed screw.

See Art. 23.

490.] It is manifest that the force corresponding to any dis

placement of the circuit as a whole may be deduced at once from

the theory of the magnetic shell. But this is not all. If a portion

of the circuit is flexible, so that it may be displaced independently
of the rest, we may make the edge of the shell capable of the same

kind of displacement by cutting up the surface of the shell into
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a sufficient number of portions connected by flexible joints. Hence

we conclude that if by the displacement of any portion of the circuit

in a given direction the number of lines of induction which pass

through the circuit can be increased, this displacement will be aided

by the electromagnetic force acting on the circuit.

Every portion of the circuit therefore is acted on by a force

urging it across the lines of magnetic induction so as to include

a greater number of these lines within the embrace of the circuit,

and the work done by the force during this displacement is

numerically equal to the number of the additional lines of in

duction multiplied by the strength of the current.

Let the element ds of a circuit, in which a current of strength
i is flowing, be moved parallel to itself through a space x, it will

sweep out an area in the form of a parallelogram whose sides are

parallel and equal to ds and bx respectively.

If the magnetic induction is denoted by 33, and if its direction

makes an angle e with the normal to the parallelogram, the value

of the increment of N corresponding to the displacement is found

by multiplying the area of the parallelogram by 33 cos e. The result

of this operation is represented geometrically by the volume of a

parallelepiped whose edges represent in magnitude and direction

8ar, ds, and 33, and it is to be reckoned positive if when we point
in these three directions in the order here given the pointer

moves round the diagonal of the parallelepiped in the direction of

the hands of a watch. The volume of this parallelepiped is equal
to Xb%.

If is the angle between ds and 33, the area of the parallelogram

is ds . 33 sin 6, and if
77

is the angle which the displacement b%

makes with the normal to this parallelogram, the volume of the

parallelepiped is

ds . 33 sin . bx cos
77

8 N.

Now X bx = i 5N = i ds . 33 sin fix cos 77,

and X =. i ds . 33 sin cos
77

is the force which urges ds, resolved in the direction 8#.

The direction of this force is therefore perpendicular to the paral

lelogram, and is equal to i . ds . 33 sin 0.

This is the area of a parallelogram whose sides represent in mag
nitude and direction i ds and 33. The force acting on ds is therefore

represented in magnitude by the area of this parallelogram, and

in direction by a normal to its plane drawn in the direction of the

longitudinal motion of a right-handed screw, the handle of which
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South East

is turned from the direction of the current ids to that of the

magnetic induction 33.

We may express in the language of

Quaternions, both the direction and

West ^ J^ North the magnitude of this force by saying
that it is the vector part of the result

of multiplying the vector ids, the

element of the current, by the vector

33, the magnetic induction.

491.] We have thus completely de

termined the force which acts on any

portion of an electric circuit placed in

a magnetic field. If the circuit is

moved in any way so that, after assuming various forms and

positions, it returns to its original place, the strength of the

current remaining constant during the motion, the whole amount

of work done by the electromagnetic forces will be zero. Since

this is true of any cycle of motions of the circuit, it follows that

it is impossible to maintain by electromagnetic forces a motion

of continuous rotation in any part of a linear circuit of constant

strength against the resistance of friction, &c.

It is possible, however, to produce continuous rotation provided
that at some part of the course of the electric current it passes
from one conductor to another which slides or glides over it.

When in a circuit there is sliding contact of a conductor over

the surface of a smooth solid or

a fluid, the circuit can no longer
be considered as a single linear

circuit of constant strength, but

must be regarded as a system of

two or of some greater number
of circuits of variable strength,

the current being so distributed

among them that those for

which N is increasing have

currents in the positive direc

tion, while those for which N is diminishing have currents in the

negative direction.

Thus, in the apparatus represented in Fig. 23, OP is a moveable

conductor, one end of which rests in a cup of mercury 0, while the

other dips into a circular trough of mercury concentric with 0.

Fig. 23.
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The current i enters along AB, and divides in the circular trough

into two parts, one of which, #, flows along the arc BQP, while the

other, y, flows along BRP. These currents, uniting at P, flow

along the moveable conductor PO and the electrode OZ to the zinc

end of the battery. The strength of the current along OP and OZ
is x+ y or i.

Here we have two circuits, ABQPOZ, the strength of the current

in which is x, flowing in the positive direction, and ABRPOZ, the

strength of the current in which is
y&amp;gt; flowing in the negative

direction.

Let 23 be the magnetic induction, and let it be in an upward

direction, normal to the plane of the circle.

While OP moves through an angle 9 in the direction opposite

to that of the hands of a watch, the area of the first circuit increases

by i#P2
. 0, and that of the second diminishes by the same quantity.

Since the strength of the current in the first circuit is #, the work

done by it is J x.OP2
. 0.33, and since the strength of the second

is y, the work done by it is \y.OP
2

. 6 33. The whole work done

is therefore

i(tf + 3/)OP
2.033 or ii.OP2

.0B,

depending only on the strength of the current in PO. Hence, if

i is maintained constant, the arm OP will be carried round and

round the circle with a uniform force whose moment is \i .OP2
53.

If, as in northern latitudes, 33 acts downwards, and if the current

is inwards, the rotation will be in the negative direction, that is,

in the direction PQBR.
492.] We are now able to pass from the mutual action of

magnets and currents to the action of one current on another.

For we know that the magnetic properties of an electric circuit C
,

with respect to any magnetic system M2 ,
are identical with those

of a magnetic shell S
19 whose edge coincides with the circuit, and

whose strength is numerically equal to that of the electric current.

Let the magnetic system M2
be a magnetic shell S

2 , then the

mutual action between ^ and 8
2

is identical with that between ^
and a circuit C

2 , coinciding with the edge of S
2
and equal in

numerical strength, and this latter action is identical with that

between C
t
and C2 .

Hence the mutual action between two circuits, C
l
and C2) is

identical with that between the corresponding magnetic shells S
l

and S
2

.

We have already investigated, in Art. 423, the mutual action
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of two magnetic shells whose edges are the closed curves s
1
and s

2 .

/**2 /**! COS 6
If we make M= I - &,&amp;lt;&,

J ^0 ?

where e is the angle between the directions of the elements ds1 and

ds2 ,
and r is the distance between them, the integration being

extended once round s.2 and once round slf and if we call M the

potential of the two closed curves ^ and &amp;lt;s

2 ,
then the potential energy

due to the mutual action of two magnetic shells whose strengths

are ^ and a
2
bounded by the two circuits is

and the force X, which aids any displacement 8#, is

The whole theory of the force acting on any portion of an electric

circuit due to the action of another electric circuit may be deduced

from this result.

493.] The method which we have followed in this chapter is

that of Faraday. Instead of beginning, as we shall do, following

Ampere, in the next chapter, with the direct action of a portion

of one circuit on a portion of another, we shew, first, that a circuit

produces the same effect on a magnet as a magnetic shell, or, in

other words, we determine the nature of the magnetic field due

to the circuit. We shew, secondly, that a circuit when placed in

any magnetic field experiences the same force as a magnetic shell.

We thus determine the force acting on the circuit placed in any

magnetic field. Lastly, by supposing the magnetic field to be due

to a second electric circuit we determine the action of one circuit

on the whole or any portion of the other.

494.] Let us apply this method to the case of a straight current

of infinite length acting on a portion of a parallel straight con

ductor.

Let us suppose that a current i in the first conductor is flowing

vertically downwards. In this case the end of a magnet which

points north will point to the right-hand of a man looking at it

from the axis of the current.

The lines of magnetic induction are therefore horizontal circles,

having their centres in the axis of the current, and their positive

direction is north, east, south, west.

Let another descending vertical current be placed due west of

the first. The lines of magnetic induction clue to the first current
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are here directed towards the north. The direction of the force

acting on the second current is to be determined by turning the

handle of a right-handed screw from the nadir, the direction of

the current, to the north, the direction of the magnetic induction.

The screw will then move towards the east, that is, the force acting

on the second current is directed towards the first current, or, in

general, since the phenomenon depends only on the relative position

of the currents, two parallel currents in the same direction attract

each other.

In the same way we may shew that two parallel currents in

opposite directions repel one another.

495.] The intensity of the magnetic induction at a distance r

from a straight current of strength i is, as we have shewn in

Art. 479, i

2-.
r

Hence, a portion of a second conductor parallel to the first, and

carrying a current i in the same direction, will be attracted towards

the first with a force

where a is the length of the portion considered, and r is its distance

from the first conductor.

Since the ratio of a to r is a numerical quantity independent of

the absolute value of either of these lines, the product of two

currents measured in the electromagnetic system must be of the

dimensions of a force, hence the dimensions of the unit current are

[i]
= [F*] = \_M* L* T-*].

496.] Another method of determining the direction of the force

which acts on a current is to consider the relation of the magnetic
action of the current to that of other currents and magnets.

If on one side of the wire which carries the current the magnetic
action due to the current is in the same or nearly the same direction

as that due to other currents, then, on the other side of the wire,

these forces will be in opposite or nearly opposite directions, and

the force acting on the wire will be from the side on which the

forces strengthen each other to the side on which they oppose each

other.

Thus, if a descending current is placed in a field of magnetic
force directed towards the north, its magnetic action will be to the

north on the west side, and to the south on the east side. Hence
the forces strengthen each other on the west side and oppose each
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other on the east side, and the current will therefore be acted

on by a force from west to east. See Fig. 22, p. 138.

In Fig. XVII at the end of this volume the small circle represents

a section of the wire carrying a descending current, and placed

in a uniform field of magnetic force acting towards the left-hand

of the figure. The magnetic force is greater below the wire than

above it. It will therefore be urged from the bottom towards the

top of the figure.

497.] If two currents are in the same plane but not parallel,

we may apply this principle. Let one of the conductors be an

infinite straight wire in the plane of the paper, supposed horizontal.

On the right side of the current the magnetic force acts downward,
and on the left side it acts upwards. The same is true of the mag
netic force due to any short portion of a second current in the same

plane. If the second current is on the right side of the first, the

magnetic forces will strengthen each other on its right side and

oppose each other on its left side. Hence the second current will

be acted on by a force urging it from its right side to its left side.

The magnitude of this force depends only on the position of the

second current and not on its direction. If the second current is

on the left side of the first it will be urged from left to right.

Hence, if the second current is in the same direction as the first

it is attracted, if in the opposite direction it is repelled, if it flows

at right angles to the first and away from it, it is urged in the

direction of the first current, and if it flows toward the first current,

it is urged in the direction opposite to that in which the first

current flows.

In considering the mutual action of two currents it is not neces

sary to bear in mind the relations between electricity and magnetism
which we have endeavoured to illustrate by means of a right-handed
screw. Even if we have forgotten these relations we shall arrive

at correct results, provided we adhere consistently to one of the two

possible forms of the relation.

498.] Let us now bring together the magnetic phenomena of

the electric circuit so far as we have investigated them.

We may conceive the electric circuit to consist of a voltaic

battery, and a wire connecting its extremities, or of a thermoelectric

arrangement, or of a charged Leyden jar with a wire connecting its

positive and negative coatings, or of any other arrangement for

producing an electric current along a definite path.
The current produces magnetic phenomena in its neighbourhood.
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If any closed curve be drawn, and the line-integral of the

magnetic force taken completely round it, then, if the closed curve

is not linked with the circuit, the line-integral is zero, but if it

is linked with the circuit, so that the current i flows through the

closed curve, the line-integral is 4 IT i, and is positive if the direction

of integration round the closed curve would coincide with that

of the hands of a watch as seen by a person passing through it

in the direction in which the electric current flows. To a person

moving along the closed curve in the direction of integration, and

passing through the electric circuit, the direction of the current

would appear to be that of the hands of a watch. We may express

this in another way by saying that the relation between the direc

tions of the two closed curves may be expressed by describing a

right-handed screw round the electric circuit and a right-handed

screw round the closed curve. If the direction of rotation of the

thread of either, as we pass along it, coincides with the positive

direction in the other, then the line-integral will be positive, and

in the opposite case it will be negative.

Fig. 24.

Relation between the electric current and the lines of magnetic induction indicated

by a right-handed screw.

499.] Note. The line-integral 4 TT i depends solely on the quan

tity of the current, and not on any other thing whatever. It

does not depend on the nature of the conductor through which

the current is passing, as, for instance, whether it be a metal

or an electrolyte, or an imperfect conductor. We have reason

for believing that even when there is no proper conduction, but
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merely a variation of electric displacement, as in the glass of a

Leyden jar during charge or discharge, the magnetic effect of the

electric movement is precisely the same.

Again , the value of the line-integral 4 TT i does not depend on

the nature of the medium in which the closed curve is drawn.

It is the same whether the closed curve is drawn entirely through

air, or passes through a magnet, or soft iron, or any other sub

stance, whether paramagnetic or diamagnetic.

500.] When a circuit is placed in a magnetic field the mutual

action between the current and the other constituents of the field

depends on the surface-integral of the magnetic induction through

any surface bounded by that circuit. If by any given motion of

the circuit, or of part of it, this surface-integral can be increased,

there will be a mechanical force tending to move the conductor

or the portion of the conductor in the given manner.

The kind of motion of the conductor which increases the surface-

integral is motion of the conductor perpendicular to the direction

of the current and across the lines of induction.

If a parallelogram be drawn, whose sides are parallel and pro

portional to the strength of the current at any point, and to the

magnetic induction at the same point, then the force on unit of

length of the conductor is numerically equal to the area of this

parallelogram, and is perpendicular to its plane, and acts in the

direction in which the motion of turning the handle of a right-

handed screw from the direction of the current to the direction

of the magnetic induction would cause the screw to move.

Hence we have a new electromagnetic definition of a line of

magnetic induction. It is that line to which the force on the

conductor is always perpendicular.

It may also be defined as a line along which, if an electric current

be transmitted, the conductor carrying it will experience no force.

501.] It must be carefully remembered, that the mechanical force

which urges a conductor carrying a current across the lines of

magnetic force, acts, not on the electric current, but on the con

ductor which carries it. If the conductor be a rotating disk or a

fluid it will move in obedience to this force, and this motion may
or may not be accompanied with a change of position of the electric

current which it carries. But if the current itself be free to choose

any path through a fixed solid conductor or a network of wires,

then, when a constant magnetic force is made to act on the system,
the path of the current through the conductors is not permanently



501 -] RECAPITULATION. 145

altered, but after certain transient phenomena, called induction

currents, have subsided, the distribution of the current will be found

to be the same as if no magnetic force were in action.

The only force which acts on electric currents is electromotive

force, which must be distinguished from the mechanical force which

is the subject of this chapter.

Fig. 25.

Relations between the positive directions of motion and of rotation indicated by
three right-handed screws.

VOL. II.



CHAPTER II.

AMPERE S INVESTIGATION OF THE MUTUAL ACTION OF

ELECTRIC CURRENTS.

502.] WE have considered in the last chapter the nature of the

magnetic field produced by an electric current; and the mechanical

action on a conductor carrying an electric current placed in a mag
netic field. From this we went on to consider the action of one

electric circuit upon another, by determining the action on the first

due to the magnetic field produced by the second. But the action

of one circuit upon another was originally investigated in a direct

manner by Ampere almost immediately after the publication of

Orsted s discovery. We shall therefore give an outline of Ampere s

method, resuming the method of this treatise in the next chapter.

The ideas which guided Ampere belong to the system which

admits direct action at a distance, and we shall find that a remark

able course of speculation and investigation founded on these ideas

has been carried on by Gauss, Weber, J. Neumann, Riemann,

Betti, C. Neumann, Lorenz, and others, with very remarkable

results both in the discovery of new facts and in the formation of

a theory of electricity. See Arts. 846-866.

The ideas which I have attempted to follow out are those of

action through a medium from one portion to the contiguous

portion. These ideas were much employed by Faraday, and the

development of them in a mathematical form, and the comparison of

the results with known facts, have been my aim in several published

papers. The comparison, from a philosophical point of view, of the

results of two methods so completely opposed in their first prin

ciples must lead to valuable data for the study of the conditions

of scientific speculation.

503.] Ampere s theory of the mutual action of electric currents

is founded on four experimental facts and one assumption.
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Ampere s fundamental experiments are all of them examples of

what has been called the null method of comparing forces. See

Art. 214. Instead of measuring the force by the dynamical effect

of communicating
1 motion to a body, or the statical method of

placing it in equilibrium with the weight of a body or the elasticity

of a fibre, in the null method two forces, due to the same source,

are made to act simultaneously on a body already in equilibrium,

and no effect is produced, which shews that these forces are them

selves in equilibrium. This method is peculiarly valuable for

comparing the effects of the electric current when it passes through
circuits of different forms. By connecting all the conductors in

one continuous series, we ensure that the strength of the current

is the same at every point of its course, and since the current

begins everywhere throughout its course almost at the same instant,

we may prove that the forces due to its action on a suspended

body are in equilibrium by observing that the body is not at all

affected by the starting or the stopping of the current.

504.] Ampere s balance consists of a light frame capable of

revolving
1 about a vertical axis, and carrying

1 a wire which forms

two circuits of equal area, in the same plane or in parallel planes,

in which the current flows in opposite directions. The object of

this arrangement is to get rid of the effects of terrestrial magnetism
on the conducting wire. When an electric circuit is free to move
it tends to place itself so as to embrace the largest possible number

of the lines of induction. If these lines are due to terrestrial

magnetism, this position, for a circuit in a vertical plane, will be

when the plane of the circuit is east and west, and when the

direction of the current is opposed to the apparent course of the

sun.

By rigidly connecting two circuits of equal area in parallel planes,

in which equal currents run in opposite directions, a combination

is formed which is unaffected by terrestrial magnetism, and is

therefore called an Astatic Combination, see Fig. 26. It is acted

on, however, by forces arising from currents or magnets which are

so near it that they act differently on the two circuits.

505.] Ampere s first experiment is on the effect of two equal
currents close together in opposite directions. A wire covered with

insulating material is doubled on itself, and placed near one of the

circuits of the astatic balance. When a current is made to pass

through the wire and the balance, the equilibrium of the balance

remains undisturbed, shewing that two equal currents close together
L 2
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in opposite directions neutralize each other. If, instead of two

wires side by side, a wire be insulated in the middle of a metal

Fig. 26.

tube, and if the current pass through the wire and back by the

tube, the action outside the tube is not only approximately but

accurately null. This principle is of great importance in the con

struction of electric apparatus, as it affords the means of conveying
the current to and from any galvanometer or other instrument in

such a way that no electromagnetic effect is produced by the current

on its passage to and from the instrument. In practice it is gene

rally sufficient to bind the wires together, care being taken that

they are kept perfectly insulated from each other, but where they
must pass near any sensitive part of the apparatus it is better to

make one of the conductors a tube and the other a wire inside it.

See Art. 683.

506.] In Ampere s second experiment one of the wires is bent

and crooked with a number of small sinuosities, but so that in

every part of its course it remains very near the straight wire.

A current, flowing through the crooked wire and back again

through the straight wire, is found to be without influence on the

astatic balance. This proves that the effect of the current running

through any crooked part of the wire is equivalent to the same

current running in the straight line joining its extremities, pro

vided the crooked line is in no part of its course far from the

straight one. Hence any small element of a circuit is equivalent

to two or more component elements, the relation between the

component elements and the resultant element being the same as

that between component and resultant displacements or velocities.

507.] In the third experiment a conductor capable of moving
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only in the direction of its length is substituted for the astatic

balance, the current enters the conductor and leaves it at fixed

points of space, and it is found that no closed circuit placed in

the neighbourhood is able to move the conductor.

Fig. 27.

The conductor in this experiment is a wire in the form of a

circular arc suspended on a frame which is capable of rotation

about a vertical axis. The circular arc is horizontal, and its centre

coincides with the vertical axis. Two small troughs are filled with

mercury till the convex surface of the mercury rises above the

level of the troughs. The troughs are placed under the circular

arc and adjusted till the mercury touches the wire, which is of

copper well amalgamated. The current is made to enter one of

these troughs, to traverse the part of the circular arc between the

troughs, and to escape by the other trough. Thus part of the

circular arc is traversed by the current, and the arc is at the same

time capable of moving with considerable freedom in the direc

tion of its length. Any closed currents or magnets may now be

made to approach the moveable conductor without producing the

slightest tendency to move it in the direction of its length.

508.] In the fourth experiment with the astatic balance two

circuits are employed, each similar to one of those in the balance,

but one of them, C, having dimensions n times greater, and the

other, A, n times less. These are placed on opposite sides of the

circuit of the balance, which we shall call B, so that they are

similarly placed with respect to it, the distance of C from B being

n times greater than the distance of B from A. The direction and
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strength of the current is the same in A and C. Its direction in

B may be the same or opposite. Under these circumstances it is

found that B is in equilibrium under the action of A and C, whatever

be the forms and distances of the three circuits, provided they have

the relations given above.

Since the actions between the complete circuits may be considered

to be due to actions between the elements of the circuits, we may
use the following method of determining the law of these actions.

Let Alt BI} Cv Fig. 28, be corresponding elements of the three

circuits, and let A2 ,
B

2 , C2 be also corresponding elements in an

other part of the circuits. Then the situation of B with respect

to A2 is similar to the situation of C^ with respect to B.2) but the

u

distance and dimensions of Cl
and B2 are n times the distance and

dimensions of B
l
and A2i respectively. If the law of electromag

netic action is a function of the distance, then the action, what

ever be its form or quality, between B
l
and A.2 , may be written

and that between C
1
and B

2

where #, b, c are the strengths of the currents in A, B, C. But

A CB and a = c. Hence
^
= Clt

= B

and this is equal to F by experiment, so that we have

or, theforce varies inversely as the square of the distance.
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509.] It may be observed with reference to these experiments

that every electric current forms a closed circuit. The currents

used by Ampere, being produced by the voltaic battery, were of

course in closed circuits. It might be supposed that in the case

of the current of discharge of a conductor by a spark we might
have a current forming an open finite line, but according to the

views of this book even this case is that of a closed circuit. No

experiments on the mutual action of unclosed currents have been

made. Hence no statement about the mutual action of two ele

ments of circuits can be said to rest on purely experimental grounds.

It is true we may render a portion of a circuit moveable, so as to

ascertain the action of the other currents upon it, but these cur

rents, together with that in the moveable portion, necessarily form

closed circuits, so that the ultimate result of the experiment is the

action of one or more closed currents upon the whole or a part of a

closed current.

510.] In the analysis of the phenomena, however, we may re

gard the action of a closed circuit on an element of itself or of

another circuit as the resultant of a number of separate forces,

depending on the separate parts into which the first circuit may
be conceived, for mathematical purposes, to be divided.

This is a merely mathematical analysis of the action, and is

therefore perfectly legitimate, whether these forces can really act

separately or not.

511.] We shall begin by considering the purely geometrical

relations between two lines in space representing the circuits, and

between elementary portions of these lines.

Let there be two curves in space in each of which a fixed point

is taken from which the arcs are

measured in a defined direction

along the curve. Let A, A be

these points. Let PQ and P Q
be elements of the two curves.

Let AP=s, A P =s

and let the distance PPf
be de- Fig&amp;lt;

29

noted by r. Let the angle P*PQ be denoted by 0, and PP (g

by Q
f

, and let the angle between the planes of these angles be

denoted by rj.

The relative position of the two elements is sufficiently defined by
their distance r and the three angles 0, 6 , and r/,

for if these be
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given their relative position is as completely determined as if they
formed part of the same rigid body.

512.] If we use rectangular coordinates and make #, y, z the

coordinates of P, and of, y ,
z those of P

,
and if we denote by I, m,

n and by I
,
m

,
n the direction-cosines of PQ, and of P Q re

spectively, then

dx j dy dz -

-J-1) -f-
= m, = n,

as as as

dx ,, dy , dz ,

(2)

and I\x x) + m (y y} + n (z z) = rcos0,

I (x
f

x] -f-m (y y) -f n (z
f

z)
= rcos6\ (3)

II -fmm -f nn = cos e,

where e is the angle between the directions of the elements them

selves, and
cos e = cos 6 cos 6 + sin sin (f cos rj. (4)

r* = (af x)* + (tfy)* + (af-z)
2

, (5)Again

.

whence

+ -*,
dr . , . dx

, , N dy , , . dz- = -(* -*) _(y _,) -(, -z)

= rcosO.

dr
Similarly r= (^-

. i . &amp;lt;

-^) +(/-*)
\

(6)

= r cos 6 ;

and differentiating r -=- with respect to /,

dr dr dx dx dy dy dz dz

CvS CtS CvS CvS CvS CvS CtS dS
(7)

(II -j- mm + n n
}

= cos e. j

We can therefore express the three angles 0, 6 , and r;,
and the

auxiliary angle e in terms of the differential coefficients of r with

respect to s and s as follows,

dr
cos =

dr

cose = r
dr dr

d 2r
sin 6 sin 6 cos

77
= r -

(8)
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513.] We shall next consider in what way it is mathematically

conceivable that the elements PQ and PQ might act on each

other, and in doing so we shall not at first assume that their mutual

action is necessarily in the line joining them.

We have seen that we may suppose each element resolved into

other elements, provided that these components, when combined

according to the rule of addition of vectors, produce the original

element as their resultant.

We shall therefore consider ds as resolved into cos 6 ds a in the

direction of r, and sin 6 ds = /3
fl ^

in a direction perpendicular to \ / *^\/
T in the plane P PQ. p

&amp;gt;&quot;

We shall also consider ds

as resolved into cos Q els = a in the direction of r reversed,

mntfoO8ri(tf=P in a direction parallel to that in which /3 was

measured, and sin sin
17

els = y in a direction perpendicular to

a and /3 .

Let us consider the action between the components a and j3 on

the one hand, and a, /3 , / on the other.

(1) a and a are in the same straight line. The force between

them must therefore be in this line. We shall suppose it to be

an attraction = Aa&amp;lt;xii t

where A is a function of r, and i
}

i are the intensities of the

currents in ds and els respectively. This expression satisfies the

condition of changing sign with i and with i m

(2) /3 and (3 are parallel to each other and perpendicular to the

line joining them. The action between them may be written

This force is evidently in the line joining (3 and /3 ,
for it must

be in the plane in which they both lie, and if we were to measure

(3 and ft in the reversed direction, the value of this expression

would remain the same, which shews that, if it represents a force,

that force has no component in the direction of f3, and must there

fore be directed along r. Let us assume that this expression, when

positive, represents an attraction.

(3) /3 and y are perpendicular to each other and to the line

joining them. The only action possible between elements so related

is a couple whose axis is parallel to T. We are at present engaged
with forces, so we shall leave this out of account.

(4) The action of a and /3 ,
if they act on each other, must be

expressed by
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The sign of this expression is reversed if we reverse the direction

in which we measure j3 . It must therefore represent either a force

in the direction of ft ,
or a couple in the plane of a and /3 . As we

are not investigating couples, we shall take it as a force acting

on a in the direction of ft .

There is of course an equal force acting on /3 in the opposite

direction.

We have for the same reason a force

Cay ii

acting on a in the direction of y ,
and a force

acting on /3 in the opposite direction.

514.] Collecting our results, we find that the action on ds is

compounded of the following forces,

X = (Aaa +B (3fi )ii in the direction of r,

Y C(a(B aj3)ii in the direction of (3, (9)

and Z C ay ii in the direction of y .

Let us suppose that this action on ds is the resultant of three

forces, Rii dsds acting in the direction of r, Sii dsds acting in

the direction of ds, and S ii dsds acting in the direction of ds ,

then in terms of 6, d , and 77,

R = A cos cos + J9sin0sin0 cosr7,

In terms of the differential coefficients of

. r o, r^ + G-yyJ & = G--1
ds ds J

In terms of I, m, n, and I
,
m

,
n

9

R =-

where f, ??, fare written for afx, y y, and / z respectively.

515.] We have next to calculate the force with which the finite

current / acts on the finite current s. The current s extends from

A, where s = 0, to P, where it has the value s. The current /
extends from A

,
where s = 0, to P

,
where it has the value /.
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The coordinates of points on either current are functions of s or

of /.

If F is any function of the position of a point, then We shall use

the subscript (s o)
to denote the excess of its value at P over that

at A, thus jr
(SiQ}

= FP-FA ,

Such functions necessarily disappear when the circuit is closed.

Let the components of the total force with which A P* acts on

AA be ii
f

Xj ii Y, and ii Z. Then the component parallel to X of

the force with which da acts on ds will be ii -
7-7 da ds .

dsds

Hence -T = R+8l+8 l . (13)
r

Substituting the values of R, S, and S from (12), remembering

(14)

and arranging the terms with respect to l
t m, n, we find

ds

Since A, B, and C are functions of r, we may write

P = f (A + )~dr, Q=[ Cdr, (16)
j r r j r

the integration being taken between r and oo because A, JB, C
vanish when r = oo.

Hence (A + )-L = -~, and &amp;lt;?
= -^. (17)

516.] Now we know, by Ampere s third case of equilibrium, that

when / is a closed circuit, the force acting on ds is perpendicular

to the direction of ds, or, in other words, the component of the force

in the direction of ds itself is zero. Let us therefore assume the

direction of the axis of x so as to be parallel to ds by making I= 1
,

m 0, n == 0. Equation (15) then becomes

-

To find
,
the force on ds referred to unit of length, we must

ds
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integrate this expression with respect to /. Integrating the first

term by parts, we find

*X=(Pp-Q)Va-(2Pr-3-O?l-&amp;lt;U . (19)

When / is a closed circuit this expression must be zero. The

first term will disappear of itself. The second term, however, will

not in general disappear in the case of a closed circuit unless the

quantity under the sign of integration is always zero. Hence, to

satisfy Ampere s condition,

(20)

517.] We can now eliminate P, and find the general value of

When / is a closed circuit the first term of this expression

vanishes, and if we make

(22)
& r

/=r
JQ Z T

where the integration is extended round the closed circuit /, we

may write
ĉ

Similarly =na _iy t (
23

)
u/s

dZ
-j-=lpds

The quantities a
, (3 , y are sometimes called the determinants of

the circuit / referred to the point P. Their resultant is called by
Ampere the directrix of the electrodynamic action.

It is evident from the equation, that the force whose components
dX dY . dZ .

are
-^&amp;gt; -=-, and ~ is perpendicular both to ds and to this
as as ds

directrix, and is represented numerically by the area of the parallel

ogram whose sides are ds and the directrix.
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In the language of quaternions, the resultant force on ds is the

vector part of the product of the directrix multiplied by ds.

Since we already know that the directrix is the same thing as

the magnetic force due to a unit current in the circuit /, we shall

henceforth speak of the directrix as the magnetic force due to the

circuit.

518.] We shall now complete the calculation of the components
of the force acting between two finite currents, whether closed or

open.

Let p be a new function of r, such that

&quot;oo

P = i/ (B-C)dr, (24)

then by (17) and (20)
d% d

and equations (11) become

& - au&(Q+P)

B ** , ** \O = ^7-7 &amp;gt;
O = -

ds ds J

With these values of the component forces, equation (13) becomes

l_L_ I _UL . (27}w ds ds ds ds

519.] Let

F = I Ipds, G = I mpds, H = I npds, (28)
i/O JQ JQ

F = f l p ds , G = f m pds , H = [ n pds . (29)
^0 &quot; Jo

These quantities have definite values for any given point of space.

When the circuits are closed, they correspond to the components of

the vector-potentials of the circuits.

Let L be a new function of r, such that

frL I r(Q + p)dr, (30)
^o

and let M be the double integral

M = I I pcosedsds , (31)
^0 *
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which, when the circuits are closed, becomes their mutual potential,

then (27) may be written

*
\dM

dL
}

dsds
~

dsds I da dx^ \

520.] Integrating
1

,
with respect to s and *

,
between the given

limits, we find

d_
dx dx

+F P-F fA-FP, +FAf , (33)

where the subscripts of L indicate the distance, r, of which the

quantity L is a function, and the subscripts of F and F indicate

the points at which their values are to be taken.

The expressions for Y and Z may be written down from this.

Multiplying the three components by dx
t dy, and dz respectively,

we obtain

Xdx+Ydy+ Zdz = DM-D(Lpp,LAP,LA,p

X =- (LP p&amp;gt; LAP LA p

P,-Ay, (34)

where D is the symbol of a complete differential.

Since Fdx + Gdy +Hdz is not in general a complete differential of

a function of #,y, ,
Xdx + Ydy+ Zdz is not a complete differential

for currents either of which is not closed.

521.] If, however, both currents are closed, the terms in I/, F,

G, H, F, G
t
H disappear, and

Xdx+Ydy + Zdz = DM, (35)

whereM is the mutual potential of two closed circuits carrying unit

currents. The quantity M expresses the work done by the electro

magnetic forces on either conducting circuit when it is moved

parallel to itself from an infinite distance to its actual position. Any
alteration of its position, by which M is increased, will be assisted by
the electromagnetic forces.

It may be shewn, as in Arts. 490, 596, that when the motion of

the circuit is not parallel to itself the forces acting on it are still

determined by the variation of M, the potential of the one circuit on

the other.

522.] The only experimental fact which we have made use of

in this investigation is the fact established by Ampere that the

action of a closed current on any portion of another current is

perpendicular to the direction of the latter. Every other part of
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the investigation depends on purely mathematical considerations

depending on the properties of lines in space. The reasoning there

fore may be presented in a much more condensed and appropriate

form by the use of the ideas and language of the mathematical

method specially adapted to the expression of such geometrical

relations the Quaternions of Hamilton.

This has been done by Professor Tait in the Quarterly Mathe

matical Journal, 1866, and in his treatise on Quaternions, 399, for

Ampere s original investigation, and the student can easily adapt

the same method to the somewhat more general investigation given

here.

523.] Hitherto we have made no assumption with respect to the

quantities A, B, C, except that they are functions of r, the distance

between the elements. We have next to ascertain the form of

these functions, and for this purpose we make use of Ampere s

fourth case of equilibrium, Art. 508, in which it is shewn that if

all the linear dimensions and distances of a system of two circuits

be altered in the same proportion, the currents remaining the same,

the force between the two circuits will remain the same.

Now the force between the circuits for unit currents is -=
,
and

dos

since this is independent of the dimensions of the system, it must

be a numerical quantity. Hence M itself, the coefficient of the

mutual potential of the circuits, must be a quantity of the dimen

sions of a line. It follows, from equation (31), that p must be the

reciprocal of a line, and therefore by (24), B (7 must be the inverse

square of a line. But since B and C are both functions of r,BC
must be the inverse square of r or some numerical multiple of it.

524.] The multiple we adopt depends on our system of measure

ment. If we adopt the electromagnetic system, so called because

it agrees with the system already established for magnetic measure

ments, the value ofM ought to coincide with that of the potential

of two magnetic shells of strength unity whose boundaries are the

two circuits respectively. The value of M in that case is, by
Art. 423,

/&quot;/&quot;cos*
,M =

J
I- ds ds , (36)

the integration being performed round both circuits in the positive

direction. Adopting this as the numerical value of M, and com

paring with (31), we find

p = ,
and S-C=~. (37)
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525.] We may now express the components of the force on ds

arising from the action of ds in the most general form consistent

with experimental facts.

The force on ds is compounded of an attraction

1 /dr dr d2r \ . d2
. 7 , 1R = -H- l-y- -=-, 2r -7-77) ^^ dsds -f r -^j-,11 ds ds

rz ^ds ds dsds dsds

in the direction of r,

S = 77 i i ds ds in the direction of ds,
as

and S = ^ ii ds ds in the direction of ds .

ds
/NO

where Q / Cdr, and since C is an unknown function of r,
we

J r

know only that Q is some function of r.

526.] The quantity Q cannot be determined, without assump
tions of some kind, from experiments in which the active current

forms a closed circuit. If we suppose with Ampere that the action

between the elements ds and ds is in the line joining them, then

S and 8 must disappear, and Q must be constant, or zero. The

force is then reduced to an attraction whose value is

(39)

Ampere, who made this investigation long before the magnetic

system of units had been established, uses a formula having a

numerical value half of this, namely

1 A dr dr dr N .
.,

_

R = -
2 (- -7- -T7

- r -jr^Jjds ds . (40)f2 \9 fix Of d*njfJ** v

Here the strength of the current is measured in what is called

electrodynamic measure. If i, i are the strength of the currents in

electromagnetic measure, and j, j the same in electrodynamic mea

sure, then it is plain that

jf = 2ii
,

or j = ^i. (41)

Hence the unit current adopted in electromagnetic measure is

greater than that adopted in electrodynamic measure in the ratio

of /2 to 1.

The only title of the electrodynamic unit to consideration is

that it was originally adopted by Ampere, the discoverer of the

law of action between currents. The continual recurrence of &amp;lt;s/2

in calculations founded on it is inconvenient, and the electro

magnetic system has the great advantage of coinciding numerically
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with all our magnetic formulae. As it is difficult for the student

to bear in mind whether he is to multiply or to divide by \/2, we

shall henceforth use only the electromagnetic system, as adopted by
Weber and most other writers.

Since the form and value of Q have no effect on any of the

experiments hitherto made, in which the active current at least

is always a closed one, we may, if we please, adopt any value of Q
which appears to us to simplify the formulae.

Thus Ampere assumes that the force between two elements is in

the line joining them. This gives Q = 0,

(42)
r

Grassmann * assumes that two elements in the same straight line

have no mutual action. This gives

Q
1 R- 3 d*T 8- l dr

8 - l - (43)V =
~2~r ~Trdsds&quot; 2r* els

3
~

2r* ds
( }

We might, if we pleased, assume that the attraction between two

elements at a given distance is proportional to the cosine of the

angle between them. In this case

1 _ 1 1 dr , 1 dr , . .

=--&amp;gt; JZ = ^c, * = - F5p.
S =^ Ts

. (44)

Finally, we might assume that the attraction and the oblique

forces depend only on the angles which the elements make with the

line joining them, and then we should have

0- 2 R- 3
ldrdr

S -
2 - S -*~. (45)V* ~P * VS3? 1

~PdS&amp;gt;

~
r* ds

( }

527.] Of these four different assumptions that of Ampere is

undoubtedly the best, since it is the only one which makes the

forces on the two elements not only equal and opposite but in the

straight line which joins them.

*
Pogg., Ann. Ixiv. p. 1 (1845).

VOL. II. M



CHAPTER III

ON THE INDUCTION OF ELECTRIC CURRENTS.

528.] THE discovery by Orsted of the magnetic action of an

electric current led by a direct process of reasoning to that of

magnetization by electric currents, and of the mechanical action

between electric currents. It was not, however, till 1831 that

Faraday, who bad been for some time endeavouring to produce

electric currents by magnetic or electric action, discovered the con

ditions of magneto-electric induction. The method which Faraday

employed in his researches consisted in a constant appeal to ex

periment as a means of testing the truth of his ideas, and a constant

cultivation of ideas under the direct influence of experiment. In

his published researches we find these ideas expressed in language
which is all the better fitted for a nascent science, because it is

somewhat alien from the style of physicists who have been accus

tomed to established mathematical forms of thought.

The experimental investigation by which Ampere established the

laws of the mechanical action between electric currents is one of

the most brilliant achievements in science.

The whole, theory and experiment, seems as if it had leaped,

full grown and full armed, from the brain of the Newton of elec

tricity. It is perfect in form, and unassailable in accuracy, and

it is summed up in a formula from which all the phenomena may
be deduced, and which must always remain the cardinal formula of

electro-dynamics.

The method of Ampere, however, though cast into an inductive

form, does not allow us to trace the formation of the ideas which

guided it. We can scarcely believe that Ampere really discovered

the law of action by means of the experiments which he describes.

We are led to suspect, what, indeed, he tells us himself*, that he

* Theorie des Phenomenes Electrodynamiqucs, p. 9.
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discovered the law by some process which he has not shewn us,

and that when he had afterwards built up a perfect demon

stration he removed all traces of the scaffolding by which he had

raised it.

Faraday, on the other hand, shews us his unsuccessful as well

as his successful experiments, and his crude ideas as well as his

developed ones, and the reader, however inferior to him in inductive

power, feels sympathy even more than admiration, and is tempted
to believe that, if he had the opportunity, he too would be a dis

coverer. Every student therefore should read Ampere s research

as a splendid example of scientific style in the statement of a dis

covery, but he should also study Faraday for the cultivation of a

scientific spirit, by means of the action and reaction which will

take place between newly discovered facts and nascent ideas in his

own mind.

It was perhaps for the advantage of science that Faraday, though

thoroughly conscious of the fundamental forms of space, time, and

force, was not a professed mathematician. He was not tempted
to enter into the many interesting researches in pure mathematics

which his discoveries would have suggested if they had been

exhibited in a mathematical form, and he did not feel called upon
either to force his results into a shape acceptable to the mathe

matical taste of the time, or to express them in a form which

mathematicians might attack. He was thus left at leisure to

do his proper work, to coordinate his ideas with his facts, and to

express them in natural, untechnical language.
It is mainly with the hope of making these ideas the basis of a

mathematical method that I have undertaken this treatise.

529.] We are accustomed to consider the universe as made up of

parts, and mathematicians usually begin by considering a single par

ticle, and then conceiving its relation to another particle, and so on.

This has generally been supposed the most natural method. To

conceive of a particle, however, requires a process of abstraction,

since all our perceptions are related to extended bodies, so that

the idea of the all that is in our consciousness at a given instant

is perhaps as primitive an idea as that of any individual thing.

Hence there may be a mathematical method in which we proceed
from the whole to the parts instead of from the parts to the whole.

For example, Euclid, in his first book, conceives a line as traced

out by a point, a surface as swept out by a line, and a solid as

generated by a surface. But he also defines a surface as the

M 2
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boundary of a solid, a line as the edge of a surface, and a point

as the extremity of a line.

In like manner we may conceive the potential of a material

system as a function found by a certain process of integration with

respect to the masses of the bodies in the field, or we may suppose

these masses themselves to have no other mathematical meaning

than the volume-integrals of V 2
^? where ^ is the potential.

In electrical investigations we may use formulae in which the

quantities involved are the distances of certain bodies, and the

electrifications or currents in these bodies, or we may use formulae

which involve other quantities, each of which is continuous through

all space.

The mathematical process employed in the first method is in

tegration along lines, over surfaces, and throughout finite spaces,

those employed in the second method are partial differential equa

tions and integrations throughout all space.

The method of Faraday seems to be intimately related to the

second of these modes of treatment. He never considers bodies

as existing with nothing between them but their distance, and

acting on one another according to some function of that distance.

He conceives all space as a field of force, the lines of force being

in general curved, and those due to any body extending from it on

all sides, their directions being modified by the presence of other

bodies. He even speaks
* of the lines of force belonging to a body

as in some sense part of itself, so that in its action on distant

bodies it cannot be said to act where it is not. This, however,

is not a dominant idea with Faraday. I think he would rather

have said that the field of space is full of lines of force, whose

arrangement depends on that of the bodies in the field, and that

the mechanical and electrical action on each body is determined by
the lines which abut on it.

PHENOMENA OF MAGNETO-ELECTRIC INDUCTION f.

530.] 1. Induction by Variation of the Primary Current.

Let there be two conducting circuits, the Primary and the

Secondary circuit. The primary circuit is connected with a voltaic

*
Exp. Res., ii. p. 293 ; iii. p. 447.

t Read Faraday s Experimental Researches, series i and ii.
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battery by which the primary current may be produced, maintained,

stopped, or reversed. The secondary circuit includes a galvano

meter to indicate any currents which may be formed in it. This

galvanometer is placed at such a distance from all parts of the

primary circuit that the primary current has no sensible direct

influence on its indications.

Let part of the primary circuit consist of a straight wire, and

part of the secondary circuit of a straight wire near, and parallel to

the first, the other parts of the circuits being at a greater distance

from each other.

It is found that at the instant of sending a current through

the straight wire of the primary circuit the galvanometer of the

secondary circuit indicates a current in the secondary straight wire

in the opposite direction. This is called the induced current. If

the primary current is maintained constant, the induced current soon

disappears, and the primary current appears to produce no effect

on the secondary circuit. If now the primary current is stopped,

a secondary current is observed, which is in the same direction as

the primary current. Every variation of the primary current

produces electromotive force in the secondary circuit. When the

primary current increases, the electromotive force is in the opposite

direction to the current. When it diminishes, the electromotive

force is in the same direction as the current. When the primary

current is constant, there is no electromotive force.

These effects of induction are increased by bringing the two wires

nearer together. They are also increased by forming them into

two circular or spiral coils placed close together, and still more by

placing an iron rod or a bundle of iron wires inside the coils.

2. Induction
~by Motion of the Primary Circuit.

We have seen that when the primary current is maintained

constant and at rest the secondary current rapidly disappears.

Now let the primary current be maintained constant, but let the

primary straight wire be made to approach the secondary straight

wire. During the approach there will be a secondary current in

the opposite direction from the primary.

If the primary circuit be moved away from the secondary, there

will be a secondary current in the same direction as the primary.

3. Induction by Motion of the Secondary Circuit.

If the secondary circuit be moved, the secondary current is
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opposite to the primary when the secondary wire is approaching-

the primary wire, and in the same direction when it is receding-

from it.

In all cases the direction of the secondary current is such that

the mechanical action between the two conductors is opposite to

the direction of motion, being a repulsion when the wires are ap

proaching, and an attraction when they are receding. This very

important fact was established by Lenz *.

4. Induction by the Relative Motion of a Magnet and the Secondary

Circuit.

If we substitute for the primary circuit a magnetic shell, whose

edge coincides with the circuit, whose strength is numerically equal

to that of the current in the circuit, and whose austral face cor

responds to the positive face of the circuit, then the phenomena

produced by the relative motion of this shell and the secondary

circuit are the same as those observed in the case of the primary

circuit.

531.] The whole of these phenomena may be summed up in one

law. When the number of lines of magnetic induction which pass

through the secondary circuit in the positive direction is altered,

an electromotive force acts round the circuit, which is measured

by the rate of decrease of the magnetic induction through the

circuit.

532.] For instance, let the rails of a railway be insulated from

the earth, but connected at one terminus through a galvanometer,

and let the circuit be completed by the wheels and axle of a rail

way carriage at a distance x from the terminus. Neglecting the

height of the axle above the level of the rails, the induction

through the secondary circuit is due to the vertical component of

the earth s magnetic force, which in northern latitudes is directed

downwards. Hence, if b is the gauge of the railway, the horizontal

area of the circuit is bx, and the surface-integral of the magnetic
induction through it is Zbx

t
where Z is the vertical component of

the magnetic force of the earth. Since Z is downwards, the lower

face of the circuit is to be reckoned positive, and the positive

direction of the circuit itself is north, east, south, west, that is, in

the direction of the sun s apparent diurnal course.

Now let the carriage be set in motion, then x will vary, and

*
Pogg., Ann. xxi. 483 (1834.)
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there will be an electromotive force in the circuit whose value

, das
is Zb -=-.

dt

If x is increasing, that is, if the carriage is moving away from

the terminus, this electromotive force is in the negative direction,

or north, west, south, east. Hence the direction of this force

through the axle is from right to left. If x were diminishing, the

absolute direction of the force would be reversed, but since the

direction of the motion of the carriage is also reversed, the electro

motive force on the axle is still from right to left, the observer

in the carriage being always supposed to move face forwards. In

southern latitudes, where the south end of the needle dips, the

electromotive force on a moving body is from left to right.

Hence we have the following rule for determining the electro

motive force on a wire moving through a field of magnetic force.

Place, in imagination, your head and feet in the position occupied

by the ends of a compass needle which point north and south respec

tively ;
turn your face in the forward direction of motion, then the

electromotive force due to the motion will be from left to right.

533.] As these directional relations are important, let us take

another illustration. Suppose a metal girdle laid round the earth

at the equator, and a metal wire

laid along the meridian of Green

wich from the equator to the north

pole. /
Let a great quadrantal arch of r/A

metal be constructed, of which one

extremity is pivoted on the north

pole, while the other is carried round

the equator, sliding on the great

girdle of the earth, and following

the sun in his daily course. There

will then be an electromotive force

along the moving quadrant, acting

from the pole towards the equator.

The electromotive force will be the same whether we suppose

the earth at rest and the quadrant moved from east to west, or

whether we suppose the quadrant at rest and the earth turned from

west to east. If we suppose the earth to rotate, the electromotive

force will be the same whatever be the form of the part of the

circuit fixed in space of which one end touches one of the pole&
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and the other the equator. The current in this part of the circuit

is from the pole to the equator.

The other part of the circuit, which is fixed with respect to the

earth, may also be of any form, and either within or without the

earth. In this part the current is from the equator to either pole.

534.] The intensity of the electromotive force of magneto-electric

induction is entirely independent of the nature of the substance

of the conductor in which it acts, and also of the nature of the

conductor which carries the inducing current.

To shew this, Faraday
* made a conductor of two wires of different

metals insulated from one another by a silk covering, but twisted

together, and soldered together at one end. The other ends of the

wires were connected with a galvanometer. In this way the wires

were similarly situated with respect to the primary circuit, but if

the electromotive force were stronger in the one wire than in the

other it would produce a current which would be indicated by the

galvanometer. He found, however, that such a combination may
be exposed to the most powerful electromotive forces due to in

duction without the galvanometer being affected. He also found

that whether the two branches of the compound conductor consisted

of two metals, or of a metal and an electrolyte, the galvanometer
was not affected f.

Hence the electromotive force on any conductor depends only on

the form and the motion of that conductor, together with the

strength, form, and motion of the electric currents in the field.

535.] Another negative property of electromotive force is that

it has of itself no tendency to cause the mechanical motion of any

body, but only to cause a current of electricity within it.

If it actually produces a current in the body, there will be

mechanical action due to that current, but if we prevent the

current from being formed, there will be no mechanical action on

the body itself. If the body is electrified, however, the electro

motive force will move the body, as we have described in Electro

statics.

536.] The experimental investigation of the laws of the induction

of electric currents in fixed circuits may be conducted with

considerable accuracy by methods in which the electromotive force,

and therefore the current, in the galvanometer circuit is rendered

zero.

For instance, if we wish to shew that the induction of the coil

*
Rrp. fas., 195. f Ib., 200.
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A on the coil X is equal to that of B upon Y, we place the first

pair of coils A and X at a sufficient distance from the second pair

Fig. 32.

and Y. We then connect A and B with a voltaic battery, so

that we can make the same primary current flow through A in the

positive direction and then through B in the negative direction.

We also connectX and Y with a galvanometer, so that the secondary

current, if it exists, shall flow in the same direction through X and

Yin series.

Then, if the induction of A on X is equal to that of B on Y,

the galvanometer will indicate no induction current when the

battery circuit is closed or broken.

The accuracy of this method increases with the strength of the

primary current and the sensitiveness of the galvanometer to in

stantaneous currents, and the experiments are much more easily

performed than those relating to electromagnetic attractions, where

the conductor itself has to he delicately suspended.

A very instructive series of well devised experiments of this kind

is described by Professor Felici of Pisa *.

I shall only indicate briefly some of the laws which may be proved
in this way.

(1) The electromotive force of the induction of one circuit on

another is independent of the area of the section of the conductors

and of the material of which they are made.

For we can exchange any one of the circuits in the experiment
for another of a different section and material, but of the same form,

without altering the result.

* Annettes dc Chimie, xxxiv. p. G6 (1852), and Nuovo Cimento, ix. p. 345 (1859).
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(2) The induction of the circuit A on the circuit X is equal to

that of X upon A.

For if we put A in the galvanometer circuit, and X in the battery

circuit, the equilibrium of electromotive force is not disturbed.

(3) The induction is proportional to the inducing current.

For if we have ascertained that the induction of A on X is equal
to that of B on Y, and also to that of C on Z, we may make the

battery current first flow through A, and then divide itself in any

proportion between B and C. Then if we connect X reversed, Y
and Z direct, all in series, with the galvanometer, the electromotive

force in X will balance the sum of the electromotive forces in Y

(4) In pairs of circuits forming systems geometrically similar

the induction is proportional to their linear dimensions.

For if the three pairs of circuits above mentioned are all similar,

but if the linear dimension of the first pair is the sum of the

corresponding linear dimensions of the second and third pairs, then,

if A, B, and C are connected in series with the battery, and X
reversed, Y and Z also in series with the galvanometer, there will

be equilibrium.

(5) The electromotive force produced in a coil of n windings by
a current in a coil of m windings is proportional to the product mn.

537.] For experiments of the kind we have been considering the

galvanometer should be as sensitive as possible, and its needle as

light as possible, so as to give a sensible indication of a very
small transient current. The experiments on induction due to

motion require the needle to have a somewhat longer period of

vibration, so that there may be time to effect certain motions

of the conductors while the needle is not far from its position

of equilibrium. In the former experiments, the electromotive

forces in the galvanometer circuit were in equilibrium during
the whole time, so that no current passed through the galvano
meter coil. In those now to be described, the electromotive forces

act first in one direction and then in the other, so as to produce
in succession two currents in opposite directions through the gal

vanometer, and we have to shew that the impulses on the galvano
meter needle due to these successive currents are in certain cases

equal and opposite.

The theory of the application of the galvanometer to the

measurement of transient currents will be considered more at length
in Art. 748. At present it is sufficient for our purpose to ob-
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serve that as long- as the galvanometer needle is near its position

of equilibrium the deflecting force of the current is proportional

to the current itself, and if the whole time of action of the current

is small compared with the period of vibration of the needle, the

final velocity of the magnet will be proportional to the total

quantity of electricity in the current. Hence, if two currents pass

in rapid succession, conveying equal quantities of electricity in

opposite directions, the needle will be left without any final

velocity.

Thus, to shew that the induction-currents in the secondary circuit,

due to the closing and the breaking of the primary circuit, are

equal in total quantity but opposite in direction, we may arrange
the primary circuit in connexion with the battery, so that by

touching a key the current may be sent through the primary circuit,

or by removing the finger the contact may be broken at pleasure.

If the key is pressed down for some time, the galvanometer in

the secondary circuit indicates, at the time of making contact, a

transient current in the opposite direction to the primary current.

If contact be maintained, the induction current simply passes and

disappears. If we now break contact, another transient current

passes in the opposite direction through the secondary circuit,

and the galvanometer needle receives an impulse in the opposite

direction.

But if we make contact only for an instant, and then break

contact, the two induced currents pass through the galvanometer
in such rapid succession that the needle, when acted on by the first

current, has not time to move a sensible distance from its position

of equilibrium before it is stopped by the second, and, on account

of the exact equality between the quantities of these transient

currents, the needle is stopped dead.

If the needle is watched carefully, it appears to be jerked suddenly
from one position of rest to another position of rest very near

the first.

In this way we prove that the quantity of electricity in the

induction current, when contact is broken, is exactly equal and

opposite to that in the induction current when contact is made.

538.] Another application of this method is the following, which
is given by Felici in the second series of his Researches.

It is always possible to find many different positions of the

secondary coil
I&amp;gt;,

such that the making or the breaking of contact

in the primary coil A produces no induction current in 7?. The
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positions of the two coils are in such cases said to be conjugate to

each other.

Let BI and B2 be two of these positions. If the coil B be sud

denly moved from the position B to the position J3
2 , the algebraical

sum of the transient currents in the coil B is exactly zero, so

that the galvanometer needle is left at rest when the motion of B is

completed.

This is true in whatever way the coil B is moved from B
l
to B

2 ^

and also whether the current in the primary coil A be continued

constant, or made to vary during the motion.

Again, let B be any other position of B not conjugate to A,

so that the making or breaking of contact in A produces an in

duction current when B is in the position B .

Let the contact be made when B is in the conjugate position _Z?
1?

there will be no induction current. Move B to B
&amp;gt;

there will be

an induction current due to the motion, but if B is moved rapidly

to B
,
and the primary contact then broken, the induction current

due to breaking contact will exactly annul the effect of that due to

the motion, so that the galvanometer needle will be left at rest.

Hence the current due to the motion from a conjugate position

to any other position is equal and opposite to the current due to

breaking contact in the latter position.

Since the effect of making contact is equal and opposite to that

of breaking it, it follows that the effect of making contact when the

coil B is in any position B is equal to that of bringing the coil

from any conjugate position B
l
to B while the current is flowing

through A.

If the change of the relative position of the coils is made by

moving the primary circuit instead of the secondary, the result is

found to be the same.

539.] It follows from these experiments that the total induction

current in B during the simultaneous motion ofA from A
l
to A2J and

of B from B
l
to B.2 , while the current in A changes from ^ to y2 ,

depends only on the initial state AI} Bl , yl5 and the final state

A
2 ,
B

2 , y2 ,
and not at all on the nature of the intermediate states

through which the system may pass.

Hence the value of the total induction current must be of the

form F(A2 ,
B

2 , y2)
- F(Alf 19 7l ),

where F is a function of A, B, and y.

With respect to the form of this function, we know, by Art. 536,

that when there is no motion, and therefore A
l
= A

2
and B

l
= B

2 ,
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the induction current is proportional to the primary current.

Hence y enters simply as a factor, the other factor being a func

tion of the form and position of the circuits A and J9.

We also know that the value of this function depends on the

relative and not on the absolute positions of A and B, so that

it must be capable of being
1

expressed as a function of the distances

of the different elements of which the circuits are composed, and

of the angles which these elements make with each other.

Let M be this function, then the total induction current may be

written C {Ml7l-M2 y.2 },

where C is the conductivity of the secondary circuit, and M^ y1

are the original, and M
2 , y2

the final values ofM and y.

These experiments, therefore, shew that the total current of

induction depends on the change which takes place in a certain

quantity, My, and that this change may arise either from variation

of the primary current y, or from any motion of the primary or

secondary circuit which alters M.

540.] The conception of such a quantity, on the changes of which,

and not on its absolute magnitude, the induction current depends,

occurred to Faraday at an early stage of his researches*. He
observed that the secondary circuit, when at rest in an electro

magnetic field which remains of constant intensity, does not shew

any electrical effect, whereas, if the same state of the field had been

suddenly produced, there would have been a current. Again, if the

primary circuit is removed from the field, or the magnetic forces

abolished, there is a current of the opposite kind. He therefore

recognised in the secondary circuit, when in the electromagnetic

field, a peculiar electrical condition of matter, to which he gave
the name of the Electrotonic State. He afterwards found that he

could dispense with this idea by means of considerations founded on

the lines of magnetic force f, but even in his latest researches J,

he says,
(

Again and again the idea of an electrotonic state has

been forced upon my mind.

The whole history of this idea in the mind of Faraday, as shewn

in his published researches, is well worthy of study. By a course

of experiments, guided by intense application of thought, but

without the aid of mathematical calculations, he was led to recog
nise the existence of something which we now know to be a mathe

matical quantity, and which may even be called the fundamental

*
Exp. Res., series i. 60. % Ib., 3269.

t Ib., series ii. (242). Ib., 60, 1114, 1661, 1729, 1733.
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quantity in the theory of electromagnetism. But as he was led

up to this conception by a purely experimental path, he ascribed

to it a physical existence, and supposed it to be a peculiar con

dition of matter, though he was ready to abandon this theory as

soon as he could explain the phenomena by any more familiar forms

of thought.

Other investigators were long afterwards led up to the same

idea by a purely mathematical path, but, so far as I know, none

of them recognised, in the refined mathematical idea of the potential

of two circuits, Faraday s bold hypothesis of an electrotonic state.

Those, therefore, who have approached this subject in the way
pointed out by those eminent investigators who first reduced its

laws to a mathematical form, have sometimes found it difficult

to appreciate the scientific accuracy of the statements of laws which

Faraday, in the first two series of his Researches, has given with

such wonderful completeness.

The scientific value of Faraday s conception of an electrotonic

state consists in its directing the mind to lay hold of a certain

quantity, on the changes of which the actual phenomena depend.
Without a much greater degree of development than Faraday gave

it, this conception does not easily lend itself to the explanation of the

phenomena. We shall return to this subject again in Art. 584.

541.] A method which, in Faraday s hands, was far more powerful
is that in which he makes use of those lines of magnetic force

which were always in his mind s eye when contemplating his

magnets or electric currents, and the delineation of which by
means of iron filings he rightly regarded

* as a most valuable aid

to the experimentalist.

Faraday looked on these lines as expressing, not only by their

direction that of the magnetic force, but by their number and

concentration the intensity of that force, and in his later re

searches f he shews how to conceive of unit lines of force. I have

explained in various parts of this treatise the relation between the

properties which Faraday recognised in the lines of force and the

mathematical conditions of electric and magnetic forces, and how

Faraday s notion of unit lines and of the number of lines within

certain limits may be made mathematically precise. See Arts. 82,

404, 490.

In the first series of his Researches J he shews clearly how the

direction of the current in a conducting circuit, part of which is

*
Exp. lies., 3234. t Ib., 3122. $ Ib., 114.
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moveable, depends on the mode in which the moving
1

part cuts

through the lines of magnetic force.

In the second series* he shews how the phenomena produced

by variation of the strength of a current or a magnet may be

explained, by supposing the system of lines of force to expand from

or contract towards the wire or magnet as its power rises or falls.

I am not certain with what degree of clearness he then held the

doctrine afterwards so distinctly laid down by him f, that the

moving conductor, as it cuts the lines of force, sums up the action

due to an area or section of the lines of force. This, however,

appears no new view of the case after the investigations of the

second series J have been taken into account.

The conception which Faraday had of the continuity of the lines

of force precludes the possibility of their suddenly starting into

existence in a place where there were none before. If, therefore,

the number of lines which pass through a conducting circuit is

made to vary, it can only be by the circuit moving across the lines

of force, or else by the lines of force moving across the circuit.

In either case a current is generated in the circuit.

The number of the lines of force which at any instant pass through
the circuit is mathematically equivalent to Faraday s earlier con

ception of the electrotonic state of that circuit, and it is represented

by the quantity My.
It is only since the definitions of electromotive force, Arts. 69,

274, and its measurement have been made more precise, that we

can enunciate completely the true law of magneto-electric induction

in the following terms :

The total electromotive force acting round a circuit at any
instant is measured by the rate of decrease of the number of lines

of magnetic force which pass through it.

When integrated with respect to the time this statement be

comes :

The time-integral of the total electromotive force acting round

any circuit, together with the number of lines of magnetic force

which pass through the circuit, is a constant quantity.

Instead of speaking of the number of lines of magnetic force, we

may speak of the magnetic induction through the circuit, or the

surface-integral of magnetic induction extended over any surface

bounded by the circuit.

*
Exp. Res., 238. t Ib., 3082, 3087, 3113.

Ib., 217, &c.
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We shall return again to this method of Faraday. In the mean

time we must enumerate the theories of induction which are

founded on other considerations.

Lenz s Law.

542.] In 1834, Lenz* enunciated the following remarkable

relation between the phenomena of the mechanical action of electric

currents, as defined by Ampere s formula, and the induction of

electric currents by the relative motion of conductors. An earlier

attempt at a statement of such a relation was given by Ritchie in

the Philosophical Magazine for January of the same year, but the

direction of the induced current was in every case stated wrongly.
Lenz s law is as follows.

If a constant current flows in the primary circuit A, and if, by the

motion of A, or of the secondary circuit B, a current is induced in B, the

direction of this induced current wilt be such that, by its electromagnetic

action on A, it tends to oppose the relative motion of the circuits.

On this law J. Neumann f founded his mathematical theory of

induction, in which he established the mathematical laws of the

induced currents due to the motion of the primary or secondary
conductor. He shewed that the quantity M, which we have called

the potential of the one circuit on the other, is the same as the

electromagnetic potential of the one circuit on the other, which

we have already investigated in connexion with Ampere s formula.

We may regard J. Neumann, therefore, as having completed for

the induction of currents the mathematical treatment which Ampere
had applied to their mechanical action.

543.] A step of still greater scientific importance was soon after

made by Helmholtz in his Essay on the Conservation of Force J, and

by Sir W. Thomson
, working somewhat later, but independently

of Helmholtz. They shewed that the induction of electric currents

discovered by Faraday could be mathematically deduced from the

electromagnetic actions discovered by Orsted and Ampere by the

application of the principle of the Conservation of Energy.
Helmholtz takes the case of a conducting circuit of resistance R,

in which an electromotive force A, arising from a voltaic or thermo-

*
Pogg., Ann. xxxi. 483 (1834).

t Berlin Acad., 1845 and 1847.
Kead before the Physical Society of Berlin, July 23, 1847. Translated in

Taylor s Scientific Memoirs, part ii. p. 114.
Trans. Brit. Ass., 1848, and Phil. Mag., Dec. 1851. See also his paper on

Transient Electric Currents, Phil. Mag., 1853. .
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electric arrangement, acts. The current in the circuit at any
instant is /. He supposes that a magnet is in motion in the

neighbourhood of the circuit, and that its potential with respect to

the conductor is F, so that, during any small interval of time dt, the

energy communicated to the magnet by the electromagnetic action

is

The work done in generating heat in the circuit is, by Joule s

law, Art. 242, I 2
Belt, and the work spent by the electromotive

force A, in maintaining the current / during the time dt, is A Idt.

Hence, since the total work done must be equal to the work spent,

at

whence we find the intensity of the current

Now the value of A may be what we please. Let, therefore,

A = 0, and then
1

or, there will be a current due to the motion of the magnet, equal

dV
to that due to an electromotive force =-

dt

The whole induced current during the motion of the magnet
from a place where its potential is V^ to a place where its potential

is Fo, is

and therefore the total current is independent of the velocity or

the path of the magnet, and depends only on its initial and final

positions.

In Helmholtz s original investigation he adopted a system of

units founded on the measurement of the heat generated in the

conductor by the current. Considering the unit of current as

arbitrary, the unit of resistance is that of a conductor in which this

unit current generates unit of heat in unit of time. The unit of

electromotive force in this system is that required to produce the

unit of current in the conductor of unit resistance. The adoption
of this system of units necessitates the introduction into the equa
tions of a quantity ,

which is the mechanical equivalent of the

unit of heat. As we invariably adopt either the electrostatic or

VOL. II. N
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the electromagnetic system of units, this factor does not occur in

the equations here given.

544.] Helmholtz also deduces the current of induction when a

conducting circuit and a circuit carrying a constant current are

made to move relatively to one another.

Let Rlt R2
be the resistances, I19 I

2
the currents, Alt A2 the

external electromotive forces, and V the potential of the one circuit

on the other due to unit current in each, then we have, as before,

4 /! + A, I2 = I^R,+ L?R.&amp;gt; + /, 7,
~

If we suppose 7X
to be the primary current, and 7

2
so much less

than /u that it does not by its induction produce any sensible

^
alteration in 715 so that we may put 7

X
= -

,
then

a result which may be interpreted exactly as in the case of the

magnet.
If we suppose J2 to be the primary current, and I to be very

much smaller than /
2 , we get for Ilt

A-I^
T

AI L*
dt

This shews that for equal currents the electromotive force of the

first circuit on the second is equal to that of the second on the first,

whatever be the forms of the circuits.

Helmholtz does not in this memoir discuss the case of induction

due to the strengthening or weakening of the primary current, or

the induction of a current on itself. Thomson *
applied the same

principle to the determination of the mechanical value of a current,

and pointed out that when work is done by the mutual action of

two constant currents, their mechanical value is increased by the

same amount, so that the battery has to supply double that amount

of work, in addition to that required to maintain the currents

against the resistance of the circuits f.

545.] The introduction, by W. Weber, of a system of absolute

* Mechanical Theory of Electrolysis, Phil. Mag., Dec., 1851.

t Nichol s Cyclopaedia of Physical Science, ed. 1860, Article Magnetism, Dy
namical Relations of, and Reprint, 571.
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units for the measurement of electrical quantities is one of the most

important steps in the progress of the science. Having already, in

conjunction with Gauss, placed the measurement of magnetic quan
tities in the first rank of methods of precision, Weher proceeded

in his Electrodynamic Measurements not only to lay down sound

principles for fixing the units to be employed, but to make de

terminations of particular electrical quantities in terms of these

units, with a degree of accuracy previously unattempted. Both the

electromagnetic and the electrostatic systems of units owe their

development and practical application to these researches.

Weber has also formed a general theory of electric action from

which he deduces both electrostatic and electromagnetic force, and

also the induction of electric currents. We shall consider this

theory, with some of its more recent developments, in a separate

chapter. See Art. 846.

N 2



CHAPTER IV.

ON THE INDUCTION OF A CURRENT ON ITSELF.

546.] FARADAY has devoted the ninth series of his Researches to

the investigation of a class of phenomena exhibited by the current

in a wire which forms the coil of an electromagnet.

Mr. Jenkin had observed that, although it is impossible to pro

duce a sensible shock by the direct action of a voltaic system

consisting of only one pair of plates, yet, if the current is made

to pass through the coil of an electromagnet, and if contact is

then broken between the extremities of two wires held one in each

hand, a smart shock will be felt. No such shock is felt on making
contact.

Faraday shewed that this and other phenomena, which he de

scribes, are due to the same inductive action which he had already

observed the current to exert on neighbouring conductors. In this

case, however, the inductive action is exerted on the same conductor

which carries the current, and it is so much the more powerful
as the wire itself is nearer to the different elements of the current

than any other wire can be.

547.] He observes, however *, that the first thought that arises

in the mind is that the electricity circulates with something like

momentum or inertia in the wire. Indeed, when we consider one

particular wire only, the phenomena are exactly analogous to those

of a pipe full of water flowing in a continued stream. If while

the stream is flowing we suddenly close the end of the tube, the

momentum of the water produces a sudden pressure, which is much

greater than that due to the head of water, and may be sufficient

to burst the pipe.

If the water has the means of escaping through a narrow jet

*
Exp. Res., 1077-
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when the principal aperture is closed, it will be projected with a

velocity much greater than that due to the head of water, and

if it can escape through a valve into a chamber, it will do so,

even when the pressure in the chamber is greater than that due

to the head of water.

It is on this principle that the hydraulic ram is constructed,

by which a small quantity of water may be raised to a great height

by means of a large quantity flowing down from a much lower

level.

548.] These effects of the inertia of the fluid in the tube depend

solely on the quantity of fluid running through the tube, on its

length, and on its section in different parts of its length. They
do not depend on anything outside the tube, nor on the form into

which the tube may be bent, provided its length remains the

same.

In the case of the wire conveying a current this is not the case,

for if a long wire is doubled on itself the effect is very small, if

the two parts are separated from each other it is greater, if it

is coiled up into a helix it is still greater, and greatest of all if,

when so coiled, a piece of soft iron is placed inside the coil.

Again, if a second wire is coiled up with the first, but insulated

from it, then, if the second wire does not form a closed circuit,

the phenomena are as before, but if the second wire forms a closed

circuit, an induction current is formed in the second wire, and

the effects of self-induction in the first wire are retarded.

549.] These results shew clearly that, if the phenomena are due

to momentum, the momentum is certainly not that of the electricity

in the wire, because the same wire, conveying the same current,

exhibits effects which differ according to its form ; and even when
its form remains the same, the presence of other bodies, such as

a piece of iron or a closed metallic circuit, affects the result.

550.] It is difficult, however, for the mind which has once

recognised the analogy between the phenomena of self-induction

and those of the motion of material bodies, to abandon altogether
the help of this analogy, or to admit that it is entirely superficial

and misleading. The fundamental dynamical idea of matter, as

capable by its motion of becoming the recipient of momentum and

of energy, is so interwoven with our forms of thought that, when
ever we catch a glimpse of it in any part of nature, we feel that

a path is before us leading, sooner or later, to the complete under

standing of the subject.
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551.] In the case of the electric current, we find that, when the

electromotive force begins to act, it does not at once produce the

full current, but that the current rises gradually. What is the

electromotive force doing during the time that the opposing re

sistance is not able to balance it ? It is increasing the electric

current.

Now an ordinary force, acting on a body in the direction of its

motion, increases its momentum, and communicates to it kinetic

energy, or the power of doing work on account of its motion.

In like manner the unresisted part of the electromotive force has

been employed in increasing the electric current. Has the electric

current, when thus produced, either momentum or kinetic energy ?

We have already shewn that it has something very like mo

mentum, that it resists being suddenly stopped, and that it can

exert, for a short time, a great electromotive force.

But a conducting circuit in which a current has been set up
has the power of doing work in virtue of this current, and this

power cannot be said to be something very like energy, for it

is really and truly energy.

Thus, if the current be left to itself, it will continue to circulate

till it is stopped by the resistance of the circuit. Before it is

stopped, however, it will have generated a certain quantity of

heat, and the amount of this heat in dynamical measure is equal

to the energy originally existing in the current.

Again, when the current is left to itself, it may be made to

do mechanical work by moving magnets, and the inductive effect

of these motions will, by Lenz s law, stop the current sooner than

the resistance of the circuit alone would have stopped it. In this

way part of the energy of the current may be transformed into

mechanical work instead of heat.

552.] It appears, therefore, that a system containing an electric

current is a seat of energy of some kind ; and since we can form

no conception of an electric current except as a kinetic pheno
menon *, its energy must be kinetic energy, that is to say, the

energy which a moving body has in virtue of its motion.

We have already shewn that the electricity in the wire cannot

be considered as the moving body in which we are to find this

energy, for the energy of a moving body does not depend on

anything external to itself, whereas the presence of other bodies

near the current alters its energy.
*

Faraday, Eocp. Res. (283.)
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We are therefore led to enquire whether there may not be some

motion going
1 on in the space outside the wire, which is not occupied

by the electric current, but in which the electromagnetic effects of

the current are manifested.

I shall not at present enter on the reasons for looking in one

place rather than another for such motions, or for regarding these

motions as of one kind rather than another.

What I propose now to do is to examine the consequences of

the assumption that the phenomena of the electric current are those

of a moving system, the motion being communicated from one part

of the system to another by forces, the nature and laws of which

we do not yet even attempt to define, because we can eliminate

these forces from the equations of motion by the method given

by Lagrange for any connected system.

In the next five chapters of this treatise I propose to deduce

the main structure of the theory of electricity from a dynamical

hypothesis of this kind, instead of following the path which has

led Weber and other investigators to many remarkable discoveries

and experiments, and to conceptions, some of which are as beautiful

as they are bold. I have chosen this method because I wish to

shew that there are other ways of viewing the phenomena which

appear to me more satisfactory, and at the same time are more

consistent with the methods followed in the preceding parts of this

book than those which proceed on the hypothesis of direct action

at a distance.



CHAPTER V.

ON THE EQUATIONS OF MOTION OF A CONNECTED SYSTEM.

553.] IN the fourth section of the second part of his Mecanique

Analytique, Lagrange has given a method of reducing the ordinary

dynamical equations of the motion of the parts of a connected

system to a number equal to that of the degrees of freedom of

the system.

The equations of motion of a connected system have been given
in a different form by Hamilton, and have led to a great extension

of the higher part of pure dynamics *.

As we shall find it necessary, in our endeavours to bring electrical

phenomena within the province of dynamics, to have our dynamical
ideas in a state fit for direct application to physical questions, we
shall devote this chapter to an exposition of these dynamical ideas

from a physical point of view.

554.] The aim of Lagrange was to bring dynamics under the

power of the calculus. He began by expressing the elementary

dynamical relations in terms of the corresponding relations of pure

algebraical quantities, and from the equations thus obtained he

deduced his final equations by a purely algebraical process. Certain

quantities (expressing the reactions between the parts of the system
called into play by its physical connexions) appear in the equations
of motion of the component parts of the system, and Lagrange s

investigation, as seen from a mathematical point of view, is a

method of eliminating these quantities from the final equations.
In following the steps of this elimination the mind is exercised

in calculation, and should therefore be kept free from the intrusion

of dynamical ideas. Our aim, on the other hand, is to cultivate

* See Professor Cayley s Report on Theoretical Dynamics, British Association,
3 857 ; and Thomson and Tait s Natural Philosophy.
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our dynamical ideas. We therefore avail ourselves of the labours

of the mathematicians, and retranslate their results from the lan

guage of the calculus into the language of dynamics, so that our

words may call up the mental image, not of some algebraical

process, but of some property of moving bodies.

The language of dynamics has been considerably extended by
those who have expounded in popular terms the doctrine of the

Conservation of Energy, and it will be seen that much of the

following statement is suggested by the investigation in Thomson

and Tait^s Natural Philosophy, especially the method of beginning
with the theory of impulsive forces.

I have applied this method so as to avoid the explicit con

sideration of the motion of any part of the system except the

coordinates or variables, on which the motion of the whole depends.

It is doubtless important that the student should be able to trace

the connexion of the motion of each part of the system with that

of the variables, but it is by no means necessary to do this in

the process of obtaining the final equations, which are independent
of the particular form of these connexions.

The Variables.

555.] The number of degrees of freedom of a system is the

number of data which must be given in order completely to

determine its position. Different forms may be given to these

data, but their number depends on the nature of the system itself,

and cannot be altered.

To fix our ideas we may conceive the system connected by means

of suitable mechanism with a number of moveable pieces, each

capable of motion along a straight line, and of no other kind of

motion. The imaginary mechanism which connects each of these

pieces with the system must be conceived to be free from friction,

destitute of inertia, and incapable of being strained by the action

of the applied forces. The use of this mechanism is merely to

assist the imagination in ascribing position, velocity, and momentum
to what appear, in Lagrange s investigation, as pure algebraical

quantities.

Let q denote the position of one of the moveable pieces as defined

by its distance from a fixed point in its line of motion. We shall

distinguish the values of q corresponding to the different pieces

by the suffixes u 2 ,
&c. When we are dealing with a set of

quantities belonging to one piece only we may omit the suffix.
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When the values of all the variables (q) are given, the position

of each of the moveable pieces is known, and, in virtue of the

imaginary mechanism, the configuration of the entire system is

determined.

The Velocities.

556.] During the motion of the system the configuration changes
in some definite manner, and since the configuration at each instant

is fully defined by the values of the variables (q), the velocity of

every part of the system, as well as its configuration, will be com

pletely defined if we know the values of the variables
(q), together

with their velocities (- , or, according to Newton s notation, q)

The Forces.

557.] By a proper regulation of the motion of the variables, any
motion of the system, consistent with the nature of the connexions,

may be produced. In order to produce this motion by moving
the variable pieces, forces must be applied to these pieces.

We shall denote the force which must be applied to any variable

qr by Fr . The system of forces (F) is mechanically equivalent (in

virtue of the connexions of the system) to the system of forces,

whatever it may be, which really produces the motion.

The Momenta.

558.] When a body moves in such a way that its configuration,

with respect to the force which acts on it, remains always the same,

(as, for instance, in the case of a force acting on a single particle in

the line of its motion,) the moving force is measured by the rate

of increase of .the momentum. If F is the moving force, and p the

momentum,

whence p = / Fdt.

The time-integral of a force is called the Impulse of the force ;

so that we may assert that the momentum is the impulse of the

force which would bring the body from a state of rest into the given
state of motion.

In the case of a connected system in motion, the configuration is

continually changing at a rate depending on the velocities (q\ so
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that we can no longer assume that the momentum is the time-

intesral of the force which acts on it.o
But the increment bq of any variable cannot be greater than

qbt, where 8^ is the time during which the increment takes place,

and q is the greatest value of the velocity during that time. In the

case of a system moving from rest under the action of forces always
in the same direction, this is evidently the final velocity.

If the final velocity and configuration of the system are given,

we may conceive the velocity to be communicated to the system
in a very small time t, the original configuration differing from

the final configuration by quantities bqlt 2 , &c., which are less

than q^btj ^2 5^, &c., respectively.

The smaller we suppose the increment of time 8, the greater

must be the impressed forces, but the time-integral, or impulse,

of each force will remain finite. The limiting value of the impulse,

when the time is diminished and ultimately vanishes, is defined

as the instantaneous impulse, and the momentum p, corresponding
to any variable q, is defined as the impulse corresponding to that

variable, when the system is brought instantaneously from a state

of rest into the given state of motion.

This conception, that the momenta are capable of being produced

by instantaneous impulses on the system at rest, is introduced only
as a method of defining the magnitude of the momenta, for the

momenta of the system depend only on the instantaneous state

of motion of the system, and not on the process by which that state

was produced.

In a connected system the momentum corresponding to any
variable is in general a linear function of the velocities of all the

variables, instead of being, as in the dynamics of a particle, simply

proportional to the velocity.

The impulses required to change the velocities of the system

suddenly from yl9 q.2 ,
&c. to /, q2 ,

&c, are evidently equal to

Pi p\, Pz J2&amp;gt;
^ne cbaBgcs of momentum of the several variables.

Work done by a Small Impulse.

559.] The work done by the force F
l during the impulse is the

space-integral of the force, or

W =j
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If fa
is the greatest and

q&quot;
the least value of tlie velocity q-^

during the action of the force, W must be less than

2i&amp;lt;

Fdt or

and greater than q&quot;\Fdt or q\(p\p\)&amp;gt;

If we now suppose the impulse / Fdt to be diminished without

limit, the values of q{ and
q&quot;

will approach and ultimately coincide

with that of qlt and we may writep{p^ = pi, so that the work

done is ultimately 7ir

or, the work done by a very small impulse is ultimately the product

of the impulse and the velocity.

Increment of the Kinetic Energy.

560.] When work is done in setting a conservative system in

motion, energy is communicated to it, and the system becomes

capable of doing an equal amount of work against resistances

before it is reduced to rest.

The energy which a system possesses in virtue of its motion

is called its Kinetic Energy, and is communicated to it in the form

of the work done by the forces which set it in motion.

If T be the kinetic energy of the system, and if it becomes

T 4- 8 T} on account of the action of an infinitesimal impulse whose

components are 8^15 5j02 , &c., the increment 8T must be the sum
of the quantities of work done by the components of the impulse,

or in symbols, IT = &*& + js 8A + &c.,

= 2&8j). (1)

The instantaneous state of the system is completely defined if

the variables and the momenta are given. Hence the kinetic

energy, which depends on the instantaneous state of the system,
can be expressed in terms of the variables (q), and the momenta

(/&amp;gt;).

This is the mode of expressing T introduced by Hamilton. When
T is expressed in this way we shall distinguish it by the suffix

p)

thus, Tp .

The complete variation of T
p

is

^=2^+Ss ?
. (2)
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The last term may be written

which diminishes with 8, and ultimately vanishes with it when the

impulse becomes instantaneous.

Hence, equating- the coefficients of bp in equations (1) and (2),

we obtain
. =^ (s)

or, the velocity corresponding to the variable q is the differential

coefficient of Tp with respect to the corresponding momentum p.

We have arrived at this result by the consideration of impulsive

forces. By this method we have avoided the consideration of the

change of configuration during the action of the forces. But the

instantaneous state of the system is in all respects the same, whether

the system was brought from a state of rest to the given state

of motion by the transient application of impulsive forces, or

whether it arrived at that state in any manner, however gradual.

In other words, the variables, and the corresponding velocities

and momenta, depend on the actual state of motion of the system
at the given instant, and not on its previous history.

Hence, the equation (3) is equally valid, whether the state of

motion of the system is supposed due to impulsive forces, or to

forces acting in any manner whatever.

We may now therefore dismiss the consideration of impulsive

forces, together with the limitations imposed on their time of

action, and on the changes of configuration during their action.

Hamilton s Equations of Motion.

561.] We have already shewn that

dT
(4)

Let the system move in any arbitrary way, subject to the con

ditions imposed by its connexions, then the variations ofp and q are

(5)
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and the complete variation of T
p

is

But the increment of the kinetic energy arises from the work

done by the impressed forces, or

IT, = 2 (Fig). (8)

In these two expressions the variations bq are all independent of

each other, so that we are entitled to equate the coefficients of each

of them in the two expressions (7) and (8). We thus obtain

where the momentum^ and the force Fr belong to the variable qr .

There are as many equations of this form as there are variables.

These equations were given by Hamilton They shew that the

force corresponding to any variable is the sum of two parts. The

first part is the rate of increase of the momentum of that variable

with respect to the time. The second part is the rate of increase

of the kinetic energy per unit of increment of the variable, the

other variables and all the momenta being constant.

The Kinetic Energy expressed in Terms of the Momenta and

Velocities.

562.] Let pl9 p2 , &c. be the momenta, and ql} q2 ,
&c. the

velocities at a given instant, and let px , p2 , &c., q x , q2 ,
&c. be

another system of momenta and velocities, such that

Pi = *Pi&amp;gt; 4i = 0n &c -
(
10

)

It is manifest that the systems p, q will be consistent with each

other if the systems p, q are so.

Now let n vary by bn. The work done by the force F
l

is

Fi*h = 4i 8 Pi = Jiftntn. (11)

Let n increase from to 1, then the system is brought from

a state of rest into the state of motion (qp), and the whole work

expended in producing this motion is

-)/

But
ri
/ ndn = \,
Jn
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and the work spent in producing the motion is equivalent to the

kinetic energy. Hence

TP*= iC^ift+ ^fc + fcC
). (13)

where Tp$ denotes the kinetic energy expressed in terms of the

momenta and velocities. The variables ql , q% ,
&c. do not enter into

this expression.

The kinetic energy is therefore half the sum of the products of

the momenta into their corresponding velocities.

When the kinetic energy is expressed in this way we shall denote

it by the symbol Tp ^ . It is a function of the momenta and velo

cities only, and does not involve the variables themselves.

563.] There is a third method of expressing the kinetic energy,

which is generally, indeed, regarded as the fundamental one. By
solving the equations (3) we may express the momenta in terms

of the velocities, and then, introducing these values in (13), we shall

have an expression for T involving only the velocities and the

variables. When T is expressed in .this form we shall indicate it

by the symbol T^ . This is the form in which the kinetic energy is

expressed in the equations of Lagrange.

564.] It is manifest that, since T
p , T$ 9

and Tp ^ are three different

expressions for the same thing,

T
p+Tt-2Tp(l

= 0,

or Tp + Tt-Piii-toto-ke. = - (14)

Hence, if all the quantities jo, q, and q vary,

The variations 8jt? are not independent of the variations bq and

bq, so that we cannot at once assert that the coefficient of each

variation in this equation is zero. But we know, from equations

(3) that

g-ft
= o,fa, do)

so that the terms involving the variations bp vanish of themselves.

The remaining variations bq and bq are now all independent,
so that we find, by equating to zero the coefficients of bqlt &c

,
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or, the components of momentum are the differential coefficients of T^

with respect to the corresponding velocities.

Again, by equating to zero the coefficients of 8^15 &c.,

^+^ = 0; (.8)
dch d^

or, the differential coefficient of the kinetic energy with respect to any
variable ql

is equal in magnitude but opposite in sign when T is

expressed as a function of the velocities instead of as a function of
the momenta.

In virtue of equation (18) we may write the equation of motion (9),

p djiw,
dt dql

p i VtW (20)
at dql dql

which is the form in which the equations of motion were given by
Lagrange.

565.] In the preceding investigation we have avoided the con

sideration of the form of the function which expresses the kinetic

energy in terms either of the velocities or of the momenta. The

only explicit form which we have assigned to it is

TP* = 4 (PiJi + J 2 ?+ &c.), (21)

in which it is expressed as half the sum of the products of the

momenta each into its corresponding velocity.

We may express the velocities in terms of the differential co

efficients of Tp with respect to the momenta, as in equation (3),

This shews that T
p

is a homogeneous function of the second

degree of the momenta pl} p2 , &c.

We may also express the momenta in terms of T$ ,
and we find

*-*&+* +
*&quot;)

&amp;lt;

23
&amp;gt;

which shews that T$ is a homogeneous function of the second degree
with respect to the velocities

&amp;lt;?15 q2 , &c.

If we write

Pn for ^, P12 for
^-

&c.

and Qn for - ?
, Q12 for -^ /- ,

&c. ;
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then, since both T
(j
and T

p
are functions of the second degree of

q and of p respectively, both the P s and the Q s will be functions

of the variables q only, and independent of the velocities and the

momenta. We thus obtain the expressions for I\

2 TI = Pn tf + 2P12 q, q2+ &c., (24)

2T
p
= QuPi

2 + 2 Qi2PiP2 + &c -
(
25

)

The momenta are expressed in terms of the velocities by the

linear equations ^ = pn ^ +P12 ^+ &c., (26)

and the velocities are expressed in terms of the momenta by the

linear equations ^ = Qnp + Q 12p2 + &c. (27)

In treatises on the dynamics of a rigid body, the coefficients

corresponding to Pn ,
in which the suffixes are the same, are called

Moments of Inertia, and those corresponding to P
12 ,

in which

the suffixes are different, are called Products of Inertia. We may
extend these names to the more general problem which is now

before us, in which these quantities are not, as in the case of a

rigid body, absolute constants, but are functions of the variables

In like manner we may call the coefficients of the form Qn
Moments of Mobility, and those of the form Q12 , Products of

Mobility. It is not often, however, that we shall have occasion

to speak of the coefficients of mobility.

566.] The kinetic energy of the system is a quantity essentially

positive or zero. Hence, whether it be expressed in terms of the

velocities, or in terms of the momenta, the coefficients must be

such that no real values of the variables can make T negative.

We thus obtain a set of necessary conditions which the values of

the coefficients P must satisfy.

The quantities Pn , P22 , &c., and all determinants of the sym
metrical form

P P P12 22

p p p* 13 * 23 * q

which can be formed from the system of coefficients must be positive

or zero. The number of such conditions for n variables is 2
n

1.

The coefficients Q are subject to conditions of the same kind.

567.] In this outline of the fundamental principles of the dy
namics of a connected system, we have kept out of view the

mechanism by which the parts of the system are connected. We
VOL. n. o
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have not even written down a set of equations to indicate how

the motion of any part of the system depends on the variation

of the variables. We have confined our attention to the variables,

their velocities and momenta, and the forces which act on the

pieces representing- the variables. Our only assumptions are, that

the connexions of the system are such that the time is not explicitly

contained in the equations of condition, and that the principle of

the conservation of energy is applicable to the system.
Such a description of the methods of pure dynamics is not un

necessary, because Lag-range and most of his followers, to whom
we are indebted for these methods, have in general confined them

selves to a demonstration of them, and, in order to devote their

attention to the symbols before them, they have endeavoured to

banish all ideas except those of pure quantity, so as not only to

dispense with diagrams, but even to get rid of the ideas of velocity,

momentum, and energy, after they have been once for all sup

planted by symbols in the original equations. In order to be able

to refer to the results of this analysis in ordinary dynamical lan

guage, we have endeavoured to retranslate the principal equations
of the method into language which may be intelligible without the

use of symbols.
As the development of the ideas and methods of pure mathe

matics has rendered it possible, by forming a mathematical theory
of dynamics, to bring to light many truths which could not have

been discovered without mathematical training, so, if we are to

form dynamical theories of other sciences, we must have our minds

imbued with these dynamical truths as well as with mathematical

methods.

In forming the ideas and words relating to any science, which,
like electricity, deals with forces and their effects, we must keep

constantly in mind the ideas appropriate to the fundamental science

of dynamics, so that we may, during the first development of the

science, avoid inconsistency with what is already established, and

also that when our views become clearer, the language we have

adopted may be a help to us and not a hindrance.



CHAPTER VI.

DYNAMICAL THEORY OF ELECTROMAGNETISM.

568.] WE have shewn, in Art. 552, that, when an electric current

exists in a conducting circuit, it has a capacity for doing a certain

amount of mechanical work, and this independently of any external

electromotive force maintaining the current. Now capacity for

performing work is nothing else than energy, in whatever way
it arises, and all energy is the same in kind, however it may differ

in form. The energy of an electric current is either of that form

which consists in the actual motion of matter, or of that which

consists in the capacity for being set in motion, arising from forces

acting between bodies placed in certain positions relative to each

other.

The first kind of energy, that of motion, is called Kinetic energy,
and when once understood it appears so fundamental a fact of

nature that we can hardly conceive the possibility of resolving

it into anything else. The second kind of energy, that depending
on position, is called Potential energy, and is due to the action

of what we call forces, that is to say, tendencies towards change
of relative position. With respect to these forces, though we may
accept their existence as a demonstrated fact, yet we always feel

that every explanation of the mechanism by which bodies are set

in motion forms a real addition to our knowledge.

569.] The electric current cannot be conceived except as a kinetic

phenomenon. Even Faraday, who constantly endeavoured to

emancipate his mind from the influence of those suggestions which

the words electric current and electric fluid are too apt to carry

with them, speaks of the electric current as something progressive,

and not a mere arrangement *.

*
Exp. Res., 283.

O 2
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The effects of the current, such as electrolysis, and the transfer

of electrification from one body to another, are all progressive

actions which require time for their accomplishment, and are there

fore of the nature of motions.

As to the velocity of the current, we have shewn that we know

nothing about it, it may be the tenth of an inch in an hour, or

a hundred thousand miles in a second *. So far are we from

knowing its absolute value in any case, that we do not even know
whether what we call the positive direction is the actual direction

of the motion or the reverse.

But all that we assume here is that the electric current involves

motion of some kind. That which is the cause of electric currents

has been called Electromotive Force. This name has long been

used with great advantage, and has never led to any inconsistency

in the language of science. Electromotive force is always to be

understood to act on electricity only, not on the bodies in which

the electricity resides. It is never to be confounded with ordinary

mechanical force, which acts on bodies only, not on the electricity

in them. If we ever come to know the formal relation between

electricity and ordinary matter, we shall probably also know the

relation between electromotive force and ordinary force.

570.] When ordinary force acts on a body, and when the body

yields to the force, the work done by the force is measured by the

product of the force into the amount by which the body yields.

Thus, in the case of water forced through a pipe, the work done

at any section is measured by the fluid pressure at the section

multiplied into the quantity of water which crosses the section.

In the same way the work done by an electromotive force is

measured by the product of the electromotive force into the quantity
of electricity which crosses a section of the conductor under the

action of the electromotive force.

The work done by an electromotive force is of exactly the same

kind as the work done by an ordinary force, and both are measured

by the same standards or units.

Part of the work done by an electromotive force acting on a

conducting circuit is spent in overcoming the resistance of the

circuit, and this part of the work is thereby converted into heat.

Another part of the work is spent in producing the electromag
netic phenomena observed by Ampere, in which conductors are

made to move by electromagnetic forces. The rest of the work
*

Exp. Res., 1648.
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is spent in increasing the kinetic energy of the current, and the

effects of this part of the action are shewn in the phenomena of the

induction of currents observed by Faraday.
We therefore know enough about electric currents to recognise,

in a system of material conductors carrying currents, a dynamical

system which is the seat of energy, part of which may be kinetic

and part potential.

The nature of the connexions of the parts of this system is

unknown to us, but as we have dynamical methods of investigation

which do not require a knowledge of the mechanism of the system,

we shall apply them to this case.

We shall first examine the consequences of assuming the most

general form for the function which expresses the kinetic energy of

the system.

571.] Let the system consist of a number of conducting circuits,

the form and position of which are determined by the values of

a system of variables #15
x9) &c., the number of which is equal

to the number of degrees of freedom of the system.

If the whole kinetic energy of the system were that due to the

motion of these conductors, it would be expressed in the form

T = i (#! ffj a?!

2
-f &c. + (^ a?

2) ^ x2 -f &c.,

where the symbols (^15 a:lf &c.) denote the quantities which we have

called moments of inertia, and (#1} sc29 &c.) denote the products of

inertia.

If X is the impressed force, tending to increase the coordinate x,

which is required to produce the actual motion, then, by Lagrange s

equation, d dT dT _
dt dx dx

~

When T denotes the energy due to the visible motion only, we

shall indicate it by the suffix TO , thus, Tm .

But in a system of conductors carrying electric currents, part of

the kinetic energy is due to the existence of these currents. Let

the motion of the electricity, and of anything whose motion is

governed by that of the electricity, be determined by another set

of coordinates y^ y2 , &c., then T will be a homogeneous function

of squares and products of all the velocities of the two sets of

coordinates. We may therefore divide T into three portions, in the

first of which, Tm , the velocities of the coordinates x only occur,

while in the second, T
e , the velocities of the coordinates y only

occur, and in the third, Tme ,
each term contains the product of the

velocities of two coordinates of which one is as and the other y.
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We have therefore T T _L T -4- T* -L m-T--L e
r̂ L me)

where Tm = | (^ ^) ^2
-f &c. + (^ #

2) ^ #
2 + &c

-&amp;gt;

572.] In the general dynamical theory, the coefficients of every
term may be functions of all the coordinates, both x and y. In

the case of electric currents, however, it is easy to see that the

coordinates of the class y do not enter into the coefficients.

For, if all the electric currents are maintained constant, and the

conductors at rest, the whole state of the field will remain constant.

But in this case the coordinates y are variable, though the velocities

y are constant. Hence the coordinates y cannot enter into the

expression for T, or into any other expression of what actually takes

place.

Besides this, in virtue of the equation of continuity, if the con

ductors are of the nature of linear circuits, only one variable is

required to express the strength of the current in each conductor.

Let the velocities y^yz , &c. represent the strengths of the currents

in the several conductors.

All this would be true, if, instead of electric currents, we had

currents of an incompressible fluid running in flexible tubes. In

this case the velocities of these currents would enter into the

expression for T, but the coefficients would depend only on the

variables x, which determine the form and position of the tubes.

In the case of the fluid, the motion of the fluid in one tube does

not directly affect that of any other tube, or of the fluid in it.

Hence, in the value of T
6 , only the squares of the velocities y, and

not their products, occur, and in T^ any velocity y is associated

only with those velocities of the form x which belong to its own
tube.

In the case of electrical currents we know that this restriction

does not hold, for the currents in different circuits act on each other.

Hence we must admit the existence of terms involving products
of the form yy^ and this involves the existence of something in

motion, whose motion depends on the strength of both electric

currents y^ and y2 . This moving matter, whatever it is, is not

confined to the interior of the conductors carrying the two currents,

but probably extends throughout the whole space surrounding them.

573.] Let us next consider the form which Lagrange s equations
of motion assume in this case. Let X be the impressed force
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corresponding- to the coordinate a?, one of those which determine

the form and position of the conducting- circuits. This is a force

in the ordinary sense, a tendency towards change of position. It

is given by the equation

x/ _ cl_dT^_dT_
dt dx dx

We may consider this force as the sum of three parts, corre

sponding to the three parts into which we divided the kinetic

energy of the system, and we may distinguish them by the same

suffixes. Thus -% _ T

The part X m is that which depends on ordinary dynamical con

siderations, and we need not attend to it.

Since T does not contain x, the first term of the expression

for X
e

is zero, and its value is reduced to

J
dT

*~ ~

dx

This is the expression for the mechanical force which must be

applied to a conductor to balance the electromagnetic force, and it

asserts that it is measured by the rate of diminution of the purely

electrokinetic energy due to the variation of the coordinate x. The

electromagnetic force, Xe , which brings this external mechanical

force into play, is equal and opposite to it, and is therefore measured

by the rate of increase of the electrokinetic energy corresponding
to an increase of the coordinate x. The value ofX

e ,
since it depends

on squares and products of the currents, remains the same if we
reverse the directions of all the currents.

The third part of X is

d dTme dT^_
me ~

dt dx dx

The quantity Tme contains only products of the form xy, so that

dTme
is a linear function of the strengths of the currents

i/.
The

first term, therefore, depends on the rate of variation of the

strengths of the currents, and indicates a mechanical force on

the conductor, which is zero when the currents are constant, and

which is positive or negative according as the currents are in

creasing or decreasing in strength.

The second term depends, not on the variation of the currents,

but on their actual strength. As it is a linear function with

respect to these currents, it changes sign when the currents change
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sign. Since every term involves a velocity x, it is zero when the

conductors are at rest.

We may therefore investigate these terms separately. If the

conductors are at rest, we have only the first term to deal with.

If the currents are constant, we have only the second.

574.] As it is of great importance to determine whether any

part of the kinetic energy is of the form Tme , consisting of products
of ordinary velocities and strengths of electric currents, it is de

sirable that experiments should be made on this subject with great
care.

The determination of the forces acting on bodies in rapid motion

is difficult. Let us therefore attend to the first term, which depends
on the variation of the strength of the current.

If any part of the kinetic energy depends on the product of

an ordinary velocity and the strength of a

current, it will probably be most easily ob

served when the velocity and the current are

in the same or in opposite directions. We
therefore take a circular coil of a great many
windings, and suspend it by a fine vertical wire,

so that its windings are horizontal, and the

coil is capable of rotating about a vertical axis,

either in the same direction as the current in

the coil, or in the opposite direction.

We shall suppose the current to be conveyed
into the coil by means of the suspending wire,

and, after passing round the windings, to com

plete its circuit by passing downwards through
a wire in the same line with the suspending
wire and dipping into a cup of mercury.

Since the action of the horizontal component

pj 33 of terrestrial magnetism would tend to turn

this coil round a horizontal axis when the

current flows through it, we shall suppose that the horizontal com

ponent of terrestrial magnetism is exactly neutralized by means

of fixed magnets, or that the experiment is made at the magnetic

pole. A vertical mirror is attached to the coil to detect any motion

in azimuth.

Now let a current be made to pass through the coil in the

direction N.E.S.W. If electricity were a fluid like water, flowing

along the wire, then, at the moment of starting the current, and as
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long as its velocity is increasing, a force would require to be

supplied to produce the angular momentum of the fluid in passing

round the coil, and as this must be supplied by the elasticity of

the suspending wire, the coil would at first rotate in the opposite

direction or W.S.E.N., and this would be detected by means of

the mirror. On stopping the current there would be another

movement of the mirror, this time in the same direction as that

of the current.

No phenomenon of this kind has yet been observed. Such an

action, if it existed, might be easily distinguished from the already

known actions of the current by the following peculiarities.

(1) It would occur only when the strength of the current varies,

as when contact is made or broken, and not when the current is

constant.

All the known mechanical actions of the current depend on the

strength of the currents, and not on the rate of variation. The

electromotive action in the case of induced currents cannot be

confounded with this electromagnetic action.

(2) The direction of this action would be reversed when that

of all the currents in the field is reversed.

All the known mechanical actions of the current remain the same

when all the currents are reversed, since they depend on squares

and products of these currents.

If any action of this kind were discovered, we should be able

to regard one of the so-called kinds of electricity, either the positive

or the negative kind, as a real substance, and we should be able

to describe the electric current as a true motion of this substance

in a particular direction. In fact, if electrical motions were in any

way comparable with the motions of ordinary matter, terms of the

form Tme would exist, and their existence would be manifested by
the mechanical force Xm, .

According to Fechner s hypothesis, that an electric current con

sists of two equal currents of positive and negative electricity,

flowing in opposite directions through the same conductor, the

terms of the second class Tme would vanish, each term belonging
to the positive current being accompanied by an equal term of

opposite sign belonging to the negative current, and the phe
nomena depending on these terms would have no existence.

It appears to me, however, that while we derive great advantage
from the recognition of the many analogies between the electric

current and a current of a material fluid, we must carefully avoid
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making any assumption not warranted by experimental evidence,

and that there is, as yet, no experimental evidence to shew whether

the electric current is really a current of a material substance, or

a double current, or whether its velocity is great or small as mea

sured in feet per second.

A knowledge of these things would amount to at least the begin

nings of a complete dynamical theory of electricity, in which we
should regard electrical action, not, as in this treatise, as a phe
nomenon due to an unknown cause, subject only to the general

laws of dynamics, but as the result of known motions of known

portions of matter, in which not only the total effects and final

results, but the whole intermediate mechanism and details of the

motion, are taken as the objects of study.

575.] The experimental investigation of the second term of Xme ,

dT
namely --

r , is more difficult, as it involves the observation of
ax

the effect of forces on a body in rapid motion.

Fig. 34.

The apparatus shewn in Fig. 34, which I had constructed in

1861, is intended to test the existence of a force of this kind.
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The electromagnet A is capable of rotating about the horizontal

axis BB , within a ring which itself revolves about a vertical

axis.

Let A, J5, C be the moments of inertia of the electromagnet

about the axis of the coil, the horizontal axis BB , and a third axis

CC respectively.

Let 6 be the angle which CG makes with the vertical,
&amp;lt;/&amp;gt;

the

azimuth of the axis BB
,
and

\f/
a variable on which the motion of

electricity in the coil depends.

Then the kinetic energy of the electromagnet may be written

2 T = A & sin2 + B 6 2 +
&amp;lt;7&amp;lt;j&amp;gt;

2 cos2 +E
(&amp;lt;

sin 6+ ^)
2
,

where E is a quantity which may be called the moment of inertia

of the electricity in the coil.

If is the moment of the impressed force tending to increase 0,

we have, by the equations of dynamics,
d2Q . . .

= B -r^ {(A C)0
2 sm0cos0 + ^(cos0((/&amp;gt;sm&amp;lt;9 + \//)}.

(It

By making % the impressed force tending to increase
\j/ t equal

to zero, we obtain

&amp;lt; sin -f x//-
= y,

a constant, which we may consider as representing the strength of

the current in the coil.

If C is somewhat greater than A, will be zero, and the equi

librium about the axis BB will be stable when

Ey
sin = -

r

This value of depends on that of y, the electric current, and

is positive or negative according to the direction of the current.

The current is passed through the coil by its bearings at B
and B

,
which are connected with the battery by means of springs

rubbing on metal rings placed on the vertical axis.

To determine the value of 0, a disk of paper is placed at C,

divided by a diameter parallel to BB into two parts, one of which

is painted red and the other green.

When the instrument is in motion a red circle is seen at C
when is positive, the radius of which indicates roughly the value

of 0. When is negative, a green circle is seen at C.

By means of nuts working on screws attached to the electro

magnet, the axis CC is adjusted to be a principal axis having
its moment of inertia just exceeding that round the axis A, so as
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to make the instrument very sensible to the action of the force

if it exists.

The chief difficulty in the experiments arose from the disturbing

action of the earth s magnetic force, which caused the electro

magnet to act like a dip-needle. The results obtained were on this

account very rough, but no evidence of any change in 6 could be

obtained even when an iron core was inserted in the coil, so as

to make it a powerful electromagnet.

If, therefore, a magnet contains matter in rapid rotation, the

ang ular momentum of this rotation must be very small compared
with any quantities which we can measure, and we have as yet no

evidence of the existence of the terms Tme derived from their me
chanical action.

576.] Let us next consider the forces acting on the currents

of electricity, that is, the electromotive forces.

Let Y be the effective electromotive force due to induction, the

electromotive force which must act on the circuit from without

to balance it is Y = Y
t and, by Lagrange s equation,

Y= -r= .

dt dy dy

Since there are no terms in T involving the coordinate ^, the

second term is zero, and Y is reduced to its first term. Hence,

electromotive force cannot exist in a system at rest, and with con

stant currents.

Again, if we divide Y into three parts, Ym ,
Y

e , and Yme , cor

responding to the three parts of T, we find that, since Tm does not

contain^, Ym = 0.

W -C A V d dT
eWe also find F, = -

, : -=-*
dt dy

dT
Here -^-? is a linear function of the currents, and this part of

dy
the electromotive force is equal to the rate of change of this

function. This is the electromotive force of induction discovered

by Faraday. We shall consider it more at length afterwards.

577.] From the part of T, depending on velocities multiplied by

currents, we find Ymc = ^-
dt du

dT
Now -j^ is a linear function of the velocities of the conductors.

dy
If, therefore, any terms of Tme have an actual existence, it would

be possible to produce an electromotive force independently of all

existing currents by simply altering the velocities of the conductors.
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For instance, in the case of the suspended coil at Art. 559, if, when

the coil is at rest, we suddenly set it in rotation about the vertical

axis, an electromotive force would be called into action proportional

to the acceleration of this motion. It would vanish when the

motion became uniform, and be reversed when the motion was

retarded.

Now few scientific observations can be made with greater pre

cision than that which determines the existence or non-existence of

a current by means of a galvanometer. The delicacy of this method

far exceeds that of most of the arrangements for measuring the

mechanical force acting on a body. If, therefore, any currents could

be produced in this way they would be detected, even if they were

very feeble. They would be distinguished from ordinary currents

of induction by the following characteristics.

(1) They would depend entirely on the motions of the conductors,

and in no degree on the strength of currents or magnetic forces

already in the field.

(2) They would depend not on the absolute velocities of the con

ductors, but on their accelerations, and on squares and products of

velocities, and they would change sign when the acceleration be

comes a retardation, though the absolute velocity is the same.

Now in all the cases actually observed, the induced currents

depend altogether on the strength and the variation of currents in

the field, and cannot be excited in a field devoid of magnetic force

and of currents. In so far as they depend on the motion of con

ductors, they depend on the absolute velocity, and not on the change
of velocity of these motions.

We have thus three methods of detecting the existence of the

terms of the form Ttne , none of which have hitherto led to any

positive result. I have pointed them out with the greater care

because it appears to me important that we should attain the

greatest amount of certitude within our reach on a point bearing
so strongly on the true theory of electricity.

Since, however, no evidence has yet been obtained of such terms,

I shall now proceed on the assumption that they do not exist,

or at least that they produce no sensible effect, an assumption which

will considerably simplify our dynamical theory. We shall have

occasion, however, in discussing the relation of magnetism to light,

to shew that the motion which constitutes light may enter as a

factor into terms involving the motion which constitutes mag
netism.
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THEORY OF ELECTRIC CIRCUITS.

578.] WE may now confine our attention to that part of the

kinetic energy of the system which depends on squares and products

of the strengths of the electric currents. We may call this the

Electrokinetic Energy of the system. The part depending on the

motion of the conductors belongs to ordinary dynamics, and we

have shewn that the part depending on products of velocities and

currents does not exist.

Let Al , AD &c. denote the different conducting circuits. Let

their form and relative position be expressed in terms of the variables

a?!,
#
2 , &c., the number of which is equal to the number of degrees

of freedom of the mechanical system. We shall call these the

Geometrical Variables.

Let
j/x

denote the quantity of electricity which has crossed a given
section of the conductor A

1
since the beginning of the time t. The

strength of the current will be denoted by y^, the fluxion of this

quantity.

We shall call y^ the actual current, and y^ the integral current.

There is one variable of this kind for each circuit in the system.

Let T denote the electrokinetic energy of the system. It is

a homogeneous function of the second degree with respect to the

strengths of the currents, and is of the form

T=L
l yl

* + L
2^+&c. +Ml2yl y2 + &c. ) (1)

where the coefficients L, M, &c. are functions of the geometrical

variables #
15

#
2 ,

&c. The electrical variables yl} y2
do not enter

into the expression.

We may call Llt I/
2 ,

&c. the electric moments of inertia of the

circuits Alt A2 , &c., and M
12 the electric product of inertia of the

two circuits A^ and A
2 , When we wish to avoid the language of
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the dynamical theory, we shall call L^ the coefficient of self-induction

of the circuit Alt and M12 the coefficient of mutual induction of the

circuits A1
and A

2
. M

lZ
is also called the potential of the circuit

A^ with respect to Az . These quantities depend only on the form

and relative position of the circuits. We shall find that in the

electromagnetic system of measurement they are quantities of the

dimension of a line. See Art. 627.

By differentiating T with respect to y we obtain the quantity _p1 ,

which, in the dynamical theory, may be called the momentum

corresponding to y. In the electric theory we shall call p the

electrokinetic momentum of the circuit A
1

. Its value is

Pl = A ^1 + ^12^2 + &C &quot;

The electrokinetic momentum of the circuit A1
is therefore made

up of the product of its own current into its coefficient of self-

induction, together with the sum of the products of the currents

in the other circuits, each into the coefficient of mutual induction

of A
1
and that other circuit.

Electromotive Force.

579.] LetE be the impressed electromotive force in the circuit A,

arising from some cause, such as a voltaic or thermoelectric battery,

which would produce a current independently of magneto-electric

induction.

Let R be the resistance of the circuit, then, by Ohm s law, an

electromotive force Ey is required to overcome the resistance,

leaving an electromotive force E Ry available for changing the

momentum of the circuit. Calling this force Y
9
we have, by the

general equations, dp dT
JL = -j-

--
^

&amp;gt;

at ay

but since T does not involve y, the last term disappears.

Hence, the equation of electromotive force is

or - =,+
The impressed electromotive force E is therefore the sum of two

parts. The first, JRy, is required to maintain the current y against

the resistance R. The second part is required to increase the elec

tromagnetic momentum p. This is the electromotive force which

must be supplied from sources independent of magneto-electric
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induction. The electromotive force arising from magneto -electric

induction alone is evidently -j-, or, the rate of decrease of the
(A v

electrokinetic momentum of the circuit.

Electromagnetic Force.

580.] Let X be the impressed mechanical force arising from

external causes, and tending to increase the variable x. By the

general equations ^ d dT dT
dt dx dx

Since the expression for the electrokinetic energy does not contain

the velocity (#), the first term of the second member disappears,

and we find ^y
Ji. = --7

dx

Here X is the external force required to balance the forces arising

from electrical causes. It is usual to consider this force as the

reaction against the electromagnetic force, which we shall call X,

and which is equal and opposite to X .

v AT
Hence X = -

T
-

&amp;gt;

dx

or, the electromagnetic force tending to increase any variable is equal

to the rate of increase of the electrokinetic energy per unit increase of
that variable, the currents being maintained constant.

If the currents are maintained constant by a battery during a

displacement in which a quantity, W, of work is done by electro

motive force, the electrokinetic energy of the system will be at the

same time increased by W. Hence the battery will be drawn upon
for a double quantity of energy, or 2 W, in addition to that which is

spent in generating heat in the circuit. This was first pointed out

by Sir W. Thomson*. Compare this result with the electrostatic

property in Art. 93.

Case of Two Circuits.

581.] Let AI be called the Primary Circuit, and A2 the Secondary
Circuit. The electrokinetic energy of the system may be written

where L and N are the coefficients of self-induction of the primary

* Nichol s Cyclopaedia of Physical Science, ed. 1860, Article, Magnetism, Dy
namical Relations of.
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and secondary circuits respectively, and M is the coefficient of their

mutual induction.

Let us suppose that no electromotive force acts on the secondary

circuit except that due to the induction of the primary current.

We have then ci

E2
= B

2fa+ (My, + Ny2]
= 0.

Integrating this equation with respect to t, we have

Ry2 + Hjfi +Ny2
= C, a constant,

where
y.^

is the integral current in the secondary circuit.

The method of measuring an integral current of short duration

will be described in Art. 748, and it is easy in most cases to ensure

that the duration of the secondary current shall be very short.

Let the values of the variable quantities in the equation at the

end of the time t be accented, then, if y^ is the integral current,

or the whole quantity of electricity which flows through a section

of the secondary circuit during the time t,

If the secondary current arises entirely from induction, its initial

value
jr.2

must be zero if the primary current is constant, and the

conductors at rest before the beginning of the time t.

If the time t is sufficient to allow the secondary current to die

away, y y its final value, is also zero, so that the equation becomes

The integral current of the secondary circuit depends in this case

on the initial and final values

Induced Currents.

582.] Let us begin by supposing the primary circuit broken,

or y^ = 0, and let a current y{ be established in it when contact

is made.

The equation which determines the secondary integral current is

When the circuits are placed side by side, and in the same direc

tion, M is a positive quantity. Hence, when contact is made in

the primary circuit, a negative current is induced in the secondary

circuit.

When the contact is broken in the primary circuit, the primary
current ceases, and the induced current is y^ where

The secondary current is in this case positive.

VOL. II. P
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If the primary current is maintained constant, and the form or

relative position of the circuits altered so that M becomes M
,
the

integral secondary current is y2 ,
where

In the case of two circuits placed side by side and in the same

direction M diminishes as the distance between the circuits in

creases. Hence, the induced current is positive when this distance

is increased and negative when it is diminished.

These are the elementary cases of induced currents described in

Art. 530.

Mechanical Action between the Two Circuits.

583.] Let x be any one of the geometrical variables on which

the form and relative position of the circuits depend, the electro

magnetic force tending to increase x is

dL
. dM . dN

If the motion of the system corresponding to the variation of x

is such that each circuit moves as a rigid body, L and N will be

independent of %, and the equation will be reduced to the form

dx

Hence, if the primary and secondary currents are of the same

sign, the force X, which acts between the circuits, will tend to

move them so as to increase M.
If the circuits are placed side by side, and the currents flow in

the same direction, M will be increased by their being brought
nearer together. Hence the force X is in this case an attraction.

584.] The whole of the phenomena of the mutual action of two

circuits, whother the induction of currents or the mechanical force

between them, depend on the quantity Jf, which we have called the

coefficient of mutual induction. The method of calculating this

quantity from the geometrical relations of the circuits is given in

Art. 524, but in the investigations of the next chapter we shall not

assume a knowledge of the mathematical form of this quantity.
We shall consider it as deduced from experiments on induction,

as, for instance, by observing the integral current when the

secondary circuit is suddenly moved from a given position to an

infinite distance, or to any position in which we know that M= 0.



CHAPTER VIII.

EXPLORATION OF THE FIELD BY MEANS OF THE SECONDARY

CIRCUIT.

585.] We have proved in Arts. 582, 583, 584 that the electro

magnetic action between the primary and the secondary circuit

depends on the quantity denoted by M, which is a function of the

form and relative position of the two circuits.

Although this quantity M is in fact the same as the potential

of the two circuits, the mathematical form and properties of which

we deduced in Arts. 423, 492, 521, 539 from magnetic and electro

magnetic phenomena, we shall here make no reference to these

results, but begin again from a new foundation, without any

assumptions except those of the dynamical theory as stated in

Chapter VII.

The electrokinetic momentum of the secondary circuit consists

of two parts (Art. 578), one, Milt depending on the primary current

ilt while the other, Ni
z , depends on the secondary current i

2 . We
are now to investigate the first of these parts, which we shall

denote by j?, where n _

We shall also suppose the primary circuit fixed, and the primary

current constant. The quantity jt?,
the electrokinetic momentum of

the secondary circuit, will in this case depend only on the form

and position of the secondary circuit, so that if any closed curve

be taken for the secondary circuit, and if the direction along this

curve, which is to be reckoned positive, be chosen, the value of p
for this closed curve is determinate. If the opposite direction along
the curve had been chosen as the positive direction, the sign of

the quantity jo would have been reversed.

586.] Since the quantity p depends on the form and position

of the circuit, we may suppose that each portion of the circuit
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contributes something
1 to the value of p, and that the part con

tributed by each portion of the circuit depends on the form and

position of that portion only, and not on the position of other parts

of the circuit.

This assumption is legitimate, because we are not now considering

a current, the parts of which may, and indeed do, act on one an

other, but a mere circuit, that is, a closed curve along which a

current may flow, and this is a purely geometrical figure, the parts

of which cannot be conceived to have any physical action on each

other.

We may therefore assume that the part contributed by the

element ds of the circuit is Jds, where J is a quantity depending
on the position and direction of the element ds. Hence, the value

ofp may be expressed as a line-integral

(2)

where the integration is to be extended once round the circuit.

587.] We have next to determine the form of the quantity 7~.

In the first place, if ds is reversed in direction, / is reversed in

sign. Hence, if two circuits ABCE and AECD
have the arc AEG common, but reckoned in

opposite directions in the two circuits, the sum

of the values of p for the two circuits

Fl*g- 35 - and AECD will be equal to the value of p for

the circuit AJBCD, which is made up of the two circuits.

For the parts of the line-integral depending on the arc AEG are

equal but of opposite sign in the two partial circuits, so that they

destroy each other when the sum is taken, leaving only those parts of

the line-integral which depend on the external boundary of ABCD.
In the same way we may shew that if a surface bounded by a

closed curve be divided into any number of parts, and if the

boundary of each of these parts be considered as a circuit, the

positive direction round every circuit being the same as that round

the external closed curve, then the value of p for the closed curve is

equal to the sum of the values ofp for all the circuits. See Art. 483.

588.] Let us now consider a portion of a surface, the dimensions

of which are so small with respect to the principal radii of curvature

of the surface that the variation of the direction of the normal

within this portion may be neglected. We shall also suppose that

if any very small circuit be carried parallel to itself from one part

of this surface to another, the value of p for the small circuit is
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not sensibly altered. This will evidently be the case if the dimen

sions of the portion of surface are small enough compared with

its distance from the primary circuit.

If any closed curve be drawn on this portion of the surface, the

value ofp will be proportional to its area.

For the areas of any two circuits may be divided into small

elements all of the same dimensions, and having the same value

of p. The areas of the two circuits are as the numbers of these

elements which they contain, and the values ofp for the two circuits

are also in the same proportion.

Hence, the value of p for the circuit which bounds any element

dS of a surface is of the form IdS,

where / is a quantity depending on the position of dS and on the

direction of its normal. We have therefore a new expression for p,

(3)

where the double integral is extended over any surface bounded by
the circuit.

589.] Let ABCD be a circuit, of which AC is an elementary

portion, so small that it may be considered straight.

Let APB and CQB be small equal areas in the

same plane, then the value of p will be the same

for the small circuits APB and CQB, or

p (APB) = p (CQB).

Hence p (APBQCD) = p (ABQCD) + p (APB),
= p (ABQCD) + 1
= p (ABCD), Fig. 36.

or the value of p is not altered by the substitution of the crooked

line APQCfor the straight line AC, provided the area of the circuit

is not sensibly altered. This, in fact, is the principle established

by Ampere s second experiment (Art. 506), in which a crooked

portion of a circuit is shewn to be equivalent to a straight portion

provided no part of the crooked portion is at a sensible distance

from the straight portion.

If therefore we substitute for the element ds three small elements,

dx, dy, and dz, drawn in succession, so as to form a continuous

path from the beginning to the end of the element ds, and if

Fdx, G dy, and IIdz denote the elements of the line-integral cor

responding to dx, dy, and dz respectively, then

Jds = Fdse+ Gdy + Hdz. (4)
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590.] We are now able to determine the mode in which the

quantity / dep3nds on the direction of the element ds. For,

by (4), f=P %. + 0* +H %. (5)
ds ds ds

This is the expression for the resolved part, in the direction of ds,

of a vector, the components of which, resolved in the directions of

the axes of x, y^ and z, are F, G, and H respectively.

If this vector be denoted by 51, and the vector from the origin

to a point of the circuit by p, the element of the circuit will be dp,

and the quaternion expression for / will be

We may now write equation (2) in the form

(7)

The vector 51 and its constituents F, G, H depend on the position

of ds in the field, and not on the direction in which it is drawn.

They are therefore functions of x, y, z, the coordinates of ds, and

not of I, m} n, its direction-cosines.

The vector 51 represents in direction and magnitude the time-

integral of the electromotive force which a particle placed at the

point (x, y, z) would experience if the primary current were sud

denly stopped. We shall therefore call it the Electrokinetic Mo
mentum at the point (x, ?/, z}. It is identical with the quantity

which we investigated in Art. 405 under the name of the vector-

potential of magnetic induction.

The electrokinetic momentum of any finite line or circuit is the

line-integral, extended along the line or circuit, of the resolved

part of the electrokinetic momentum at each point of the same.

591.] Let us next determine the value of

p for the elementary rectangle ABCD, of

which the sides are dy and dz, the positive

direction being from the direction of the

axis ofy to that of z.

Let the coordinates of 0, the centre of

gravity of the element, be a?
, yQ , ZQ ,

and let

-p. 37
GQ &amp;gt;

H
Q be the values of G and of H at this

point.

The coordinates of A, the middle point of the first side of the
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rectangle, are yQ
and ZQ

- dz. The corresponding value of G is

(8)

and the part of the value of p which arises from the side A is

approximately i dG

1 rlTT

Similarly, for B, H
dz+--^- Ay dz.

For (7, -G,dy-\
d

^dydz.

For D, H dz+ -
Ay dz.

2 cly

Adding these four quantities, we find the value of p for the

rectangle m da

If we now assume three new quantities, #, b, c, such that

dH dG i
&amp;gt;

(A)

a -=-- -=-9
d dz

dF dH
-j
---

j-dz dx

dG dF
7

~~
7

dx dy J

and consider these as the constituents of a new vector 33, then, by
Theorem IV, Art. 24, we may express the line-integral of 51 round

any circuit in the form of the surface-integral of 33 over a surface

bounded by the circuit, thus

p = F~-^G +H~ds=(la+ mb + nc}dS, (11)
J ^ ds ds ds JJ

or p = JT 2t cose ds = f
j T&amp;lt;& cos TJ d8, (12)

where e is the angle between 5( and ds, and rj that between 33 and

the normal to dS, whose direction-cosines are I, m, n, and T 51, T 33

denote the numerical values of 51 and 33.

Comparing this result with equation (3), it is evident that the

quantity / in that equation is equal to 33 cos
r;,

or the resolved part

of 33 normal to dS.

592.] We have already seen (Arts. 490, 541) that, according to

Faraday s theory, the phenomena of electromagnetic force and



216 ELECTROMAGNETIC FIELD. [593-

induction in a circuit depend on the variation of the number of

lines of magnetic induction which pass through the circuit. Now
the number of these lines is expressed mathematically by the

surface-integral of the magnetic induction through any surface

bounded by the circuit. Hence, we must regard the vector 23

and its components a, b, c as representing what we are already

acquainted with as the magnetic induction and its components.
In the present investigation we propose to deduce the properties

of this vector from the dynamical principles stated in the last

chapter, with as few appeals to experiment as possible.

In identifying this vector, which has appeared as the result of

a mathematical investigation, with the magnetic induction, the

properties of which we learned from experiments on magnets, we

do not depart from this method, for we introduce no new fact into

the theory, we only give a name to a mathematical quantity, and

the propriety of so doing is to be judged by the agreement of the

relations of the mathematical quantity with those of the physical

quantity indicated by the name.

The vector 33, since it occurs in a surface-integral, belongs

evidently to the category of fluxes described in Art. 13. The

vector 51, on the other hand, belongs to the category of forces,

since it appears in a line-integral.

593.] We must here recall to mind the conventions about positive

and negative quantities and directions, some of which were stated

in Art. 23. We adopt the right-handed system of axes, so that if

a right-handed screw is placed in the direction of the axis of x,

and a nut on this screw is turned in the positive direction of

rotation, that is, from the direction of y to that of z, it will move

along the screw in the positive direction of x.

We also consider vitreous electricity and austral magnetism as

positive. The positive direction of an electric current, or of a line

of electric induction, is the direction in which positive electricity

moves or tends to move, and the positive direction of a line of

magnetic induction is the direction in which a compass needle

points with the end which turns to the north. See Fig. 24, Art.

498, and Fig. 25, Art. 501.

The student is recommended to select whatever method appears
to him most effectual in order to fix these conventions securely in

his memory, for it is far more difficult to remember a rule which

determines in which of two previously indifferent ways a statement

is to be made, than a rule which selects one way out of many.
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594.] We have next to deduce from dynamical principles the

expressions for the electromagnetic force acting on a conductor

carrying an electric current through the magnetic field, and for

the electromotive force acting on the electricity within a body

moving in the magnetic field. The mathematical method which

we shall adopt may be compared with the experimental method

used by Faraday
* in exploring the field by means of a wire, and

with what we have already done at Art. 490, by a method founded

on experiments. What we have now to do is to determine the

effect on the value of ji, the electroldnetic momentum of the

secondary circuit, due to given alterations of the form of that

circuit.

Let AA
,
BB be two parallel straight conductors connected by

the conducting arc (7, which may be of any form, and by a straight

Fig. 38.

conductor AB, which is capable of sliding parallel to itself along
the conducting rails AA and BB .

Let the circuit thus formed be considered as the secondary cir

cuit, and let the direction ABC be assumed as the positive direction

round it.

Let the sliding piece move parallel to itself from the position AB
to the position AB . We have to determine the variation of _p, the

electrokinetic momentum of the circuit, due to this displacement
of the sliding piece.

The secondary circuit is changed from ABC to A IfC, hence, by
Art. 587, p (AB C)-p (ABC) = p (AA B B). (13)

We have therefore to determine the value of p for the parallel

ogram AA BB. If this parallelogram is so small that we may
neglect the variations of the direction and magnitude of the mag
netic induction at different points of its plane, the value of p is,

by Art. 591, 33 cos
r\

. AA ffBj where 33 is the magnetic induction,

*
Exp. Res., 3082, 3087, 3113.
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and
77

the angle which it makes with the positive direction of the

normal to the parallelogram AA B B.

We may represent the result geometrically by the volume of the

parallelepiped, whose base is the parallelogram AA B B, and one of

whose edges is the line AM, which represents in direction and

magnitude the magnetic induction 33. If the parallelogram is in

the plane of the paper, and if AM is drawn upwards from the paper,

the volume of the parallelepiped is to be taken positively, or more

generally, if the directions of the circuit AB, of the magnetic in

duction AM, and of the displacement AA
,
form a right-handed

system when taken in this cyclical order.

The volume of this parallelepiped represents the increment of

the value of p for the secondary circuit due to the displacement

of the sliding piece from AB to A B .

Electromotive Force acting on the Sliding Piece.

595.] The electromotive force produced in the secondary circuit

by the motion of the sliding piece is, by Art. 579,

If we suppose AA to be the displacement in unit of time, then

AA will represent the velocity, and the parallelepiped will represent

~, and therefore, by equation (14), the electromotive force in the
Ctu

negative direction BA.

Hence, the electromotive force acting on the sliding piece AB,
in consequence of its motion through the magnetic field, is repre

sented by the volume of the parallelepiped, whose edges represent

in direction and magnitude the velocity, the magnetic induction,

and the sliding piece itself, and is positive when these three direc

tions are in right-handed cyclical order.

Electromagnetic Force acting on the Sliding Piece.

596.] Let i
2 denote the current in the secondary circuit in the

positive direction ABC, then the work done by the electromagnetic
force on AB while it slides from the position AB to the position

A B is (M M)il
i
2 ,

where M and M are the values of M12 in

the initial and final positions of AB. But (M M)^ is equal

to// p, and this is represented by the volume of the parallelepiped
on AB, AM, and AA . Hence, it we draw a line parallel to AB
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to represent the quantity AB.i2 ,
the parallelepiped contained by

this line, by AM, the magnetic induction, and by AA, the displace

ment, will represent the work done during- this displacement.

For a given distance of displacement this will be greatest when

the displacement is perpendicular to the parallelogram whose sides

are AB and AM. The electromagnetic force is therefore represented

by the area of the parallelogram on AB and AM multiplied by ?/
2 ,

and is in the direction of the normal to this parallelogram, drawn so

that AB, AM, and the normal are in right-handed cyclical order.

Four Definitions of a Line of Magnetic Induction.

597.] If the direction AA
,
in which the motion of the sliding

piece takes place, coincides with AM, the direction of the magnetic

induction, the motion of the sliding piece will not call electromotive

force into action, whatever be the direction of AB, and if AB carries

an electric current there will be no tendency to slide along AA.

Again,, if AB} the sliding piece, coincides in direction with AM,
the direction of magnetic induction, there will be no electromotive

force called into action by any motion of AB, and a current through
AB will not cause AB to be acted on by mechanical force.

We may therefore define a line of magnetic induction in four

different ways. It is a line such that

(1) If a conductor be moved along it parallel to itself it will

experience no electromotive force.

(2) If a conductor carrying a current be free to move along a

line of magnetic induction it will experience no tendency to do so.

(3) If a linear conductor coincide in direction with a line of

magnetic induction, and be moved parallel to itself in any direction,

it will experience no electromotive force in the direction of its

length.

(4) If a linear conductor carrying an electric current coincide

in direction with a line of magnetic induction it will not experience

any mechanical force.

General Equations of Electromotive Force.

598.] We have seen that E, the electromotive force due to in

duction acting on the secondary circuit, is equal to
j- , where
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To determine the value of E, let us differentiate the quantity
under the integral sign with respect to ^, remembering that if the

secondary circuit is in motion, as, y, and z are functions of the time.

We obtain

f(
dF tfa dG_dy dH dz.

J^dt ds
+

dt r&
+

&amp;lt;fc fr

C,dF dx dG dy dH
dz^

dx

J ^ dx ds dx ds dx ds dt

dF dx dG dy dHdz^ dy

dy ds dy ds dy ds dt

dF
dx_ dG_dy dH dz. dz

ds dz ds dz ds dt-/&amp;lt;

ds dt ds dt
,2,

Now consider the second term of the integral, and substitute

from equations (A), Art. 591, the values of and -7- . This term
dx dx

then becomes,

[( ^ 7)^
z dF dx dF dy dF

dz^dx
J\

C
di&quot; ds

&quot;f
das ds

+
^7 Ts

+
Hz ds di

which we may write

ff (ty 7 dz dF^ dx _

/ (
C / ^

7- + T-J -T7 ^-J ^ ds ds ds dt

Treating the third and fourth terms in the same way, and col-

i ,. .-,
. dx dy - dz

lectmg the terms m -
, ^ , and , remembering that

dx ^= F~ 7
-

, (3)
dt

~
dsdt&amp;gt;&quot;

L

dt

and therefore that the integral, when taken round the closed

curve, vanishes,

f( dz dx dG. dy
/ (a ^7

~ c ^7 7-^ 7J ^ dt dt dt ) ds

dx d dH dz
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We may write this expression in the form

Equations of

Electromotive (-B)
Force.

dy -.dz dF d^
where P = c -~

o-j
= =-

dz dx dG d^J

dt dt dt dy

_ dx dy dH d^

The terms involving the new quantity ^ are introduced for the

sake of giving generality to the expressions for P, Q, R. They

disappear from the integral when extended round the closed circuit.

The quantity ^ is therefore indeterminate as far as regards the

problem now before us, in which the total electromotive force round

the circuit is to be determined. We shall find, however, that when

we know all the circumstances of the problem, we can assign a

definite value to ^, and that it represents, according to a certain

definition, the electric potential at the point x, y, z.

The quantity under the integral sign in equation (5) represents

the electromotive force acting on the element ds of the circuit.

If we denote by T @, the numerical value of the resultant of P,

Q, and R, and by e, the angle between the direction of this re

sultant and that of the element ds, we may write equation (5),

JT&amp;lt;$

cost els. (6)fi
=JT&amp;lt;$

cost els.

The vector @ is the electromotive force at the moving element

ds. Its direction and magnitude depend on the position and

motion of ds, and on the variation of the magnetic field, but not

on the direction of ds. Hence we may now disregard the circum

stance that ds forms part of a circuit, and consider it simply as a

portion of a moving body, acted on by the electromotive force Q.

The electromotive force at a point has already been defined in

Art. 68. It is also called the resultant electrical force, being the

force which would be experienced by a unit of positive electricity

placed at that point. We have now obtained the most general

value of this quantity in the case of a body moving in a magnetic
field due to a variable electric system.

If the body is a conductor, the electromotive force will produce a

current ; if it is a dielectric, the electromotive force will produce

only electric displacement.
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The electromotive force at a point, or on a particle, must be

carefully distinguished from the electromotive force along an arc

of a curve, the latter quantity being the line-integral of the former.

See Art, 69.

599.] The electromotive force, the components of which are

defined by equations (B), depends on three circumstances. The first

of these is the motion of the particle through the magnetic field.

The part of the force depending on this motion is expressed by the

first two terms on the right of each equation. It depends on the

velocity of the particle transverse to the lines of magnetic induction.

If is a vector representing the velocity, and 33 another repre

senting the magnetic induction, then if (^ is the part of the elec

tromotive force depending on the motion,

^ = V. 33, (7)

or, the electromotive force is the vector part of the product of the

magnetic induction multiplied by the velocity, that is to say, the

magnitude of the electromotive force is represented by the area

of the parallelogram, whose sides represent the velocity and the

magnetic induction, and its direction is the normal to this parallel

ogram, drawn so that the velocity, the magnetic induction, and the

electromotive force are in right-handed cyclical order.

The third term in each of the equations (B) depends on the time-

variation of the magnetic field. This may be due either to the

time-variation of the electric current in the primary circuit, or to

motion of the primary circuit. Let ( 2 be the part of the electro

motive force which depends on these terms. Its components are

dF dG dH
-w ~w and -w

and these are the components of the vector, or 21. Hence,
dt

6, = -& (8)

The last term of each equation (B) is due to the variation of the

function ^ in different parts of the field. We may write the third

part of the electromotive force, which is due to this cause,

@3
= - V*. (9)

The electromotive force, as defined by equations (B), may therefore

be written in the quaternion form,

@= r. 33-21- V*. (10)
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On the Modification of the Equations of Electromotive Force when the

Axes to which they are referred are moving in Space.

600.] Let #
, y ,

/ be the coordinates of a point referred to a

system of rectangular axes moving- in space, and let #, ?/,
z be the

coordinates of the same point referred to fixed axes.

Let the components of the velocity of the origin of the moving

system be u, v, w, and those of its angular velocity w^ o&amp;gt;

2 ,
co
3

referred to the fixed system of axes, and let us choose the fixed

axes so as to coincide at the given instant with the moving ones,

then the only quantities which will be different for the two systems
of axes will be those differentiated with respect to the time. If

bx
denotes a component velocity of a point moving in rigid con-

o t

nexion with the moving axes, and - - and
-j- that of any moving

ci/t civ

point, having the same instantaneous position, referred to the fixed

and the moving axes respectively, then

dx
__

x duo ,

^

~di

=
bi
+

~di

with similar equations for the other components.

By the theory of the motion of a body of invariable form,

bx = + w
a
*

}&amp;gt; (2)

Since F is a component of a directed quantity parallel to x,

if r be the value of -=- referred to the moving axes,

dl&quot; (ZFbv dFby clFbz dF

Substituting for -=- and -y- their values as deduced from the
dy dz

equations (A) of magnetic induction, and remembering that, by (2),

d bx d ly d bz
= =

a&amp;gt;3

=~^
_b_x d^b^ d_by dffbz d bz

dt
~
dx U dx bt

+
dx U fy bt

+
~dx~ ~U

+
dx *i

b , bz dF
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Ifweaowput

dF dV * z dF

_^=j H
Of 01 Of

-.
The equation for P, the component of the electromotive force

parallel to a?, is, by (B),

referred to the fixed axes. Substituting the values of the quanti

ties as referred to the moving axes, we have

dy&amp;gt;
dz&amp;gt; dF d(*+ V)

(9)C
dt~^Tt&quot;~dt~ dx

for the value of P referred to the moving axes.

601.] It appears from this that the electromotive force is ex

pressed by a formula of the same type, whether the motions of the

conductors be referred to fixed axes or to axes moving in space, the

only difference between the formulae being that in the case of

moving axes the electric potential # must be changed into vI/ + 4//
.

In all cases in which a current is produced in a conducting cir

cuit, the electromotive force is the line-integral

taken round the curve. The value of * disappears from this

integral, so that the introduction of SP has no influence on its

value. In all phenomena, therefore, relating to closed circuits and

the currents in them, it is indifferent whether the axes to which we

refer the system be at rest or in motion. See Art. 668.

On the Electromagnetic Force acting on a Conductor which carries

an Electric Current through a Magnetic Field.

602.] We have seen in the general investigation, Art. 583, that if

a?
x
is one of the variables which determine the position and form of

the secondary circuit, and if X
L

is the force acting on the secondary
circuit tending to increase this variable, then

. ,-v

Since ^ is independent of xlf we may write
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(3)

and we have for the value of Xlf

ds

Now let us suppose that the displacement consists in moving

every point of the circuit through a distance b% in the direction

of #, b% being any continuous function of s, so that the different

parts of the circuit move independently of each other, while the

circuit remains continuous and closed.

Also let X be the total force in the direction of x acting on

the part of the circuit from s = to s = s, then the part corre-

7 ~V

spending to the element ds will be -=- ds. We shall then have the

following expression for the work done by the force during the

displacement,

/dX
^ f d / ~.dx ~dy -rTdz\r batk s= LI -j ( F-7

~ + G -f + J2V) 6# ds, (4)
ds 2J dbsn^ ds ds ds

where the integration is to be extended round the closed curve,

remembering that 80? is an arbitrary function of s. We may there

fore perform the differentiation with respect to bx in the same

way that we differentiated with respect to t in Art. 598, remem

bering that dx dy dz
-=- = 1, -y- = 0. and -= = 0. (5)dbx

We thus find

The last term vanishes when the integration is extended round

the closed curve, and since the equation must hold for all forms

of the function bas, we must have

dX . / dy -, dz\ /P, N=
|((?__._), (7)

ds 2V ds ds

an equation which gives the force parallel to x on any element of

the circuit. The forces parallel to y and z are

dT . f dz dx\ .= lAa --
C-=-)* (8)

d* 2V ds ds

dZ . ^dx dy^ ,
.

j- = 4f^-3 /! (
9

)
ds

2 \ ds dx

The resultant force on the element is given in direction and mag
nitude by the quaternion expression i

2 Vdp$$, where i
2 is the

numerical measure of the current, and dp and 53 are vectors

VOL. II. Q
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representing the element of the circuit and the magnetic in

duction, and the multiplication is to be understood in the Hamil-

tonian sense.

603.] If the conductor is to be treated not as a line but as a

body, we must express the force on the element of length, and the

current through the complete section, in terms of symbols denoting

the force per unit of volume, and the current per unit of area.

Let X, Y, Z now represent the components of the force referred to

unit of volume, and u, v, w those of the current referred to unit of

area. Then, if S represents the section of the conductor, which we

shall suppose small, the volume of the element ds will be Sds, and

n =
-^

- -
. Hence, equation (7) will become

S(vc-w6), (10)

(Equations of

Electromagnetic (C)

or X = vc wb.

Similarly Y= wa uc,
, r/ 7 Force.

and Z ub va.

Here X, J&quot;,
Z are the components of the electromagnetic force on

an element of a conductor divided by the volume of that element ;

n, v, w are the components of the electric current through the

element referred to unit of area, and #, b, c are the components
of the magnetic induction at the element, which are also referred

to unit of area.

If the vector represents in magnitude and direction the force

acting on unit of volume of the conductor, and if ( represents the

electric current flowing through it,

en)



CHAPTER IX.

GENERAL EQUATIONS OF THE ELECTROMAGNETIC FIELD.

604.] IN our theoretical discussion of electrodynamics we began

by assuming- that a system of circuits carrying electric currents

is a dynamical system, in which the currents may be regarded as

velocities, and in which the coordinates corresponding to these

velocities do not themselves appear in the equations. It follows

from this that the kinetic energy of the system, so far as it depends

on the currents, is a homogeneous quadratic function of the currents,

in which the coefficients depend only on the form and relative

position of the circuits. Assuming these coefficients to be known,

by experiment or otherwise, we deduced, by purely dynamical rea

soning, the laws of the induction of currents, and of electromagnetic

attraction. In this investigation we introduced the conceptions

of the electrokinetic energy of a system of currents, of the electro

magnetic momentum of a circuit, and of the mutual potential of

two circuits.

We then proceeded to explore the field by means of various con

figurations of the secondary circuit, and were thus led to the

conception of a vector 2[, having a determinate magnitude and

direction at any given point of the field. We called this vector the

electromagnetic momentum at that point. This quantity may be

considered as the time-integral of the electromotive force which

would be produced at that point by the sudden removal of all the

currents from the field. It is identical with the quantity already

investigated in Art. 405 as the vector-potential of magnetic in

duction. Its components parallel to x, y, and z are F, G, and H.

The electromagnetic momentum of a circuit is the line-integral

of $1 round the circuit.

We then, by means of Theorem IV, Art. 24, transformed the

Q 2
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line-integral of 1 into the surface-integral of another vector, 53,

whose components are a, d, c, and we found that the phenomena
of induction due to motion of a conductor, and those of electro

magnetic force can be expressed in terms of 53. We gave to 53

the name of the Magnetic induction, since its properties are iden

tical with those of the lines of magnetic induction as investigated

by Faraday.

We also established three sets of equations : the first set, (A),

are those of magnetic induction, expressing it in terms of the elec

tromagnetic momentum. The second set, (B), are those of electro

motive force, expressing it in terms of the motion of the conductor

across the lines of magnetic induction, and of the rate of variation

of the electromagnetic momentum. The third set, (C), are the

equations of electromagnetic force,, expressing it in terms of the

current and the magnetic induction.

The current in all these cases is to be understood as the actual

current, which includes not only the current of conduction, but the

current due to variation of the electric displacement.

The magnetic induction 53 is the quantity which we have already

considered in Art. 400. In an unmagnetized body it is identical

with the force on a unit magnetic pole, but if the body is mag
netized, either permanently or by induction, it is the force which

would be exerted on a unit pole, if placed in a narrow crevasse in

the body, the walls of which are perpendicular to the direction of

magnetization. The components of 53 are #, #, c.

It follows from the equations (A), by which a, b, c are defined,

that da M
(i^^

dx dy dz

This was shewn at Art. 403 to be a property of the magnetic
induction.

605.] We have defined the magnetic force within a magnet, as

distinguished from the magnetic induction, to be the force on a

unit pole placed in a narrow crevasse cut parallel to the direction of

magnetization. This quantity is denoted by ), and its components

by a, /3, y. See Art. 398.

If 3 is the intensity of magnetization, and A, B, C its com

ponents, then, by Art. 400,

a = a -f 4 TT A,

c = y+4-n C.

(Equations of Magnetization.) (D)
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We may call these the equations of magnetization, and they

indicate that in the electromagnetic system the magnetic induction

33, considered as a vector, is the sum, in the Hamiltonian sense, of

two vectors, the magnetic force .), and the magnetization 3 multi

plied by 47T, or 33 = + 4?r3.

In certain substances, the magnetization depends on the magnetic

force, and this is expressed by the system of equations of induced

magnetism given at Arts. 426 and 435.

606.] Up to this point- of our investigation we have deduced

everything from purely dynamical considerations, without any
reference to quantitative experiments in electricity or magnetism.
The only use we have made of experimental knowledge is to re

cognise, in the abstract quantities deduced from the theory, the

concrete quantities discovered by experiment, and to denote them

by names which indicate their physical relations rather than their

mathematical generation.

In this way we have pointed out the existence of the electro

magnetic momentum 1 as a vector whose direction and magnitude

vary from one part of space to another, and from this we have

deduced, by a mathematical process, the magnetic induction, 33, as

a derived vector. We have not, however, obtained any data for

determining either 51 or 33 from the distribution of currents in the

field. For this purpose we must find the mathematical connexion

between these quantities and the currents.

We begin by admitting the existence of permanent magnets,
the mutual action of which satisfies the principle of the conservation

of energy. We make no assumption with respect to the laws of

magnetic force except that which follows from this principle,

namely, that the force acting on a magnetic pole must be capable

of being derived from a potential.

We then observe the action between currents and magnets, and

we find that a current acts on a magnet in a manner apparently the

same as another magnet would act if its strength, form, and position

were properly adjusted, and that the magnet acts on the current

in the same way as another current. These observations need not

be supposed to be accompanied with actual measurements of the

forces. They are not therefore to be considered as furnishing
numerical data, but are useful only in suggesting questions for

our consideration.

The question these observations suggest is, whether the magnetic
field produced by electric currents, as it is similar to that produced
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by permanent magnets in many respects, resembles it also in being-

related to a potential ?

The evidence that an electric circuit produces, in the space sur

rounding it, magnetic effects precisely the same as those produced

by a magnetic shell bounded by the circuit, has been stated in

Arts. 482-485.

We know that in the case of the magnetic shell there is a

potential, which has a determinate value for all points outside the

substance of the shell, but that the values of the potential at two

neighbouring points, on opposite sides of the shell,, differ by a finite

quantity.

If the magnetic field in the neighbourhood of an electric current

resembles that in the neighbourhood of a magnetic shell, the

magnetic potential, as found by a line-integration of the magnetic

force, will be the same for any two lines of integration, provided

one of these lines can be transformed into the other by continuous

motion without cutting the electric current.

If, however, one line of integration cannot be transformed into

the other without cutting the current, the line-integral of the

magnetic force along the one line will differ from that along the

other by a quantity depending on the strength of the current. The

magnetic potential due to an electric current is therefore a function

having an infinite series of values with a common difference, the

particular value depending on the course of the line of integration.

Within the substance of the conductor, there is no such thing as

a magnetic potential.

607.] Assuming that the magnetic action of a current has a

magnetic potential of this kind, we proceed to express this result

mathematically.

In the first place, the line-integral of the magnetic force round

any closed curve is zero, provided the closed curve does not surround

the electric current.

In the next place, if the current passes once, and only once,

through the closed curve in the positive direction, the line-integral

has a determinate value, which may be used as a measure of the

strength of the current. For if the closed curve alters its form

in any continuous mariner without cutting the current, the line-

integral will remain the same.

In electromagnetic measure, the line-integral of the magnetic
force round a closed curve is numerically equal to the current

through the closed curve multiplied by 4 TT.
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If we take for the closed curve the parallelogram whose sides

are dy and dz, the line-integral of the magnetic force round the

parallelogram is ^y dp

^dy dz

and if u, vf w are the components of the flow of electricity, the

current through the parallelogram is

u dy dz.

Multiplying this by 47r, and equating the result to the line-

integral, we obtain the equation

dy dz

with the similar equations
do, dy ( (Equations of /-\

4 7T V = -= ~-
) Electric Currents.) W

dz dx

dp da

dx dy J

which determine the magnitude and direction of the electric currents

when the magnetic force at every point is given.

When there is no current, these equations are equivalent to the

condition that adx + fi dy+ y dz = Dl,
or that the magnetic force is derivable from a magnetic potential

in all points of the field where there are no currents.

By differentiating the equations (E) with respect to x, y, and z

respectively, and adding the results, we obtain the equation

du dv dw
.

I I . Q
dx dy dz

which indicates that the current whose components are u, v, w is

subject to the condition of motion of an incompressible fluid, and

that it must necessarily flow in closed circuits.

This equation is true only if we take #, v, and w as the com

ponents of that electric flow which is due to the variation of electric

displacement as well as to true conduction.

We have very little experimental evidence relating to the direct

electromagnetic action of currents due to the variation of electric

displacement in dielectrics, but the extreme difficulty of reconciling

the laws of electromagnetism with the existence of electric currents

which are not closed is one reason among many why we must admit

the existence of transient currents due to the variation of displace

ment. Their importance will be seen when we come to the electro

magnetic theory of light.
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608.] We have now determined the relations of the principal

quantities concerned in the phenomena discovered by Orsted, Am
pere, and Faraday. To connect these with the phenomena described

in the former parts of this treatise, some additional relations are

necessary.

When electromotive force acts on a material body, it produces

in it two electrical effects, called by Faraday Induction and Con

duction, the first being most conspicuous in dielectrics, and the

second in conductors.

In this treatise, static electric induction is measured by what we

have called the electric displacement, a directed quantity or vector

which we have denoted by ), and its components by/*, #, k.

In isotropic substances, the displacement is in the same direction

as the electromotive force which produces it, and is proportional

to it, at least for small values of this force. This may be expressed

by the equation i

&amp;lt;T\
-IT- rr, (Equation of Electric /-pry

4 IT Displacement.)

where ^is the dielectric capacity of the substance. See Art. 69.

In substances which are not isotropic, the components /, #, h of

the electric displacement 2) are linear functions of the components

P, Q, -K of the electromotive force (.

The form of the equations of electric displacement is similar to

that of the equations of conduction as given in Art. 298.

These relations may be expressed by saying that K is, in isotropic

bodies, a scalar quantity, but in other bodies it is a linear and vector

function, operating on the vector (.

609.] The other effect of electromotive force is conduction. The

laws of conduction as the result of electromotive force were esta

blished by Ohm, and are explained in the second part of this

treatise, Art. 241. They may be summed up in the equation

ft = C (, (Equation of Conductivity.) (G)

where ( is the intensity of the electromotive force at the point,

$ is the density of the current of conduction, the components of

which are p, q, r, and C is the conductivity of the substance, which,
in the case of isotropic substances, is a simple scalar quantity, but

in other substances becomes a linear and vector function operating
on the vector ($. The form of this function is given in Cartesian

coordinates in Art. 298.

610.] One of the chief peculiarities of this treatise is the doctrine

which it asserts, that the true electric current (, that on which the
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electromagnetic phenomena depend, is not the same thing as $, the

current of conduction, but that the time-variation of 2), the electric

displacement, must be taken into account in estimating the total

movement of electricity, so that we must write,

( = +2), (Equation of True Currents.) (H)

or, in terms of the components,

dt

dg
j

V

dk

(H*)

611.] Since both $ and 2) depend on the electromotive force ($,

we may express the true current ( in terms of the electromotive

force, thus

or, in the case in which C and K are constants,

w = CR+ - K C

-j-47T dt

612.] The volume-density of the free electricity at any point
is found from the components of electric displacement by the

equation ^f dg dk

613.] The surface-density of electricity is

where /, m, n are the direction-cosines of the normal drawn from

the surface into the medium in which f, g, li are the components of

the displacement, and / , m ,
n are those of the normal drawn from

the surface into the medium in which they aref , /, //.

614.] When the magnetization of the medium is entirely induced

by the magnetic force acting on it, we may write the equation of

induced magnetization, $$ = /*), (L)

where p is the coefficient of magnetic permeability, which may
be considered a scalar quantity, or a linear and vector function

operating on j, according as the medium is isotropic or not.
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615.] These may be regarded as the principal relations among
the quantities we have been considering. They may be combined

so as to eliminate some of these quantities, but our object at present
is not to obtain compactness in the mathematical formulae, but

to express every relation of which we have any knowledge. To

eliminate a quantity which expresses a useful idea would be rather

a loss than a gain in this stage of our enquiry.

There is one result, however, which we may obtain by combining

equations (A) and (E), and which is of very great importance.

If we suppose that no magnets exist in the field except in the

form of electric circuits, the distinction which we have hitherto

maintained between the magnetic force and the magnetic induction

vanishes, because it is only in magnetized matter that these quan
tities differ from each other.

According to Ampere s hypothesis, which will be explained in

Art. 833, the properties of what we call magnetized matter are due

to molecular electric circuits, so that it is only when we regard the

substance in large masses that our theory of magnetization is

applicable, and if our mathematical methods are supposed capable

of taking account of what goes on within the individual molecules,

they will discover nothing but electric circuits, and we shall find

the magnetic force and the magnetic induction everywhere identical.

In order, however, to be able to make use of the electrostatic or of

the electromagnetic system of measurement at pleasure we shall

retain the coefficient //, remembering that its value is unity in the

electromagnetic system.

616.] The components of the magnetic induction are by equa
tions (A), Art. 591, dH dG

n
a/ -y-

dy dz

dF dH
o ---

dz dx

dF
dx dy

The components of the electric current are by equations (E),

Art. 607, dy aft
4 77 U V- 7- &amp;gt;

0* &
da-
dz

d(B~
dx

dy
=

dx

da~~
dy
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According to our hypothesis a, b, c are identical with

respectively. We therefore obtain

If we write

235

i, fift /uy

tffo? dy dy
2 dz2

dF dG dH
J = -j- + -r + ~r &amp;gt;

ax dy dz

dzdx

we may write equation (1),

Similarly,

dJ

4 TT ja
v = -- + V 2 #

If we write F =-
fff

U- dx dy dz,
~|

-,
j

where r is the distance of the given point from the element xy z,

and the integrations are to be extended over all space, then

(7)

The quantity x. disappears from the equations (A), and it is not

related to any physical phenomenon. If we suppose it to be zero

everywhere, / will also be zero everywhere, and equations (5),

omitting the accents, will give the true values of the components
of 51.

* The negative sign is employed here in order to make our expressions consistent

with those in which Quaternions are employed.
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617.] We may therefore adopt, as a definition of 2[, that it

is the vector-potential of the electric current, standing
1 in the same

relation to the electric current that the scalar potential stands to

the matter of which it is the potential, and obtained by a similar

process of integration, which may be thus described.

From a given point let a vector be drawn, representing
1 in mag

nitude and direction a given element of an electric current, divided

by the numerical value of the distance of the element from the

given point. Let this be done for every element of the electric

current. The resultant of all the vectors thus found is the poten

tial of the whole current. Since the current is a vector quantity,

its potential is also a vector. See Art. 422.

When the distribution of electric currents is given, there is one,

and only one, distribution of the values of 31, such that 31 is every

where finite and continuous, and satisfies the equations

V21= 47Tf*&amp;lt;, fl.VSl = 0,

and vanishes at an infinite distance from the electric system. This

value is that given by equations (5), which may be written

Quaternion Expressions for tJie Electromagnetic Equations.

618.] In this treatise we have endeavoured to avoid any process

demanding from the reader a knowledge of the Calculus of Qua

ternions. At the same time we have not scrupled to introduce the

idea of a vector when it was necessary to do so. When we have

had occasion to denote a vector by a symbol, we have used a

German letter, the number of different vectors being so great that

Hamilton s favourite symbols would have been exhausted at once.

Whenever therefore, a German letter is used it denotes a Hamil-

tonian vector, and indicates not only its magnitude but its direction.

The constituents of a vector are denoted by Roman or Greek letters.

The principal vectors which we have to consider are :

Constituents.

The radius vector of a point .................. p x y z

The electromagnetic momentum at a point 2[ F G H
The magnetic induction ..................... 53 a I c

The (total) electric current .................. ( u v w
The electric displacement ..................... 2) f g h
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Constituents.

The electromotive force ..................... ( P Q R
The mechanical force ........................ g XYZ
The velocity of a point ........................ or p so y z

The magnetic force ........................... ) a /3 y
The intensity of magnetization ............ 3 ABC
The current of conduction .................. ft p q r

We have also the following scalar functions :

,The electric potential ^.

The magnetic potential (where it exists) 12.

The electric density e.

The density of magnetic matter m.

Besides these we have the following quantities, indicating physical

properties of the medium at each point :

(7, the conductivity for electric currents.

K, the dielectric inductive capacity.

fji,
the magnetic inductive capacity.

These quantities are, in isotropic media, mere scalar functions

of p, but in general they are linear and vector operators on the

vector functions to which they are applied. K and
JJL

are certainly

always self-conjugate, and C is probably so also.

619.] The equations (A) of magnetic induction, of which the

first is
&amp;gt; dH dG

a = -=---r-

dy dz

may now be written
sg
_ yyty

where V is the operator
. d . d -,

d
%-j- +7-7- + -7-1dx *

dy dz

and Vindicates that the vector part of the result of this operation
is to be taken.

Since 21 is subject to the condition $ V 2[ = 0, V[ is a pure

vector, and the symbol V is unnecessary.

The equations (B) of electromotive force, of which the first is

, . dF d*P = cyoz ------r- ,

dt dx

become @= F33 $ V*.
The equations (C) of mechanical force, of which the first is

v , d^&amp;gt; dil
JL = cv mv e --m -7 j

dx dx

become = 7 $ 33
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The equations (D) of magnetization, of which the first is

a a 4- 4 TT A,

become 33
&amp;lt;$

4- 4 TT 3.

The equations (E) of electric currents, of which the first is

dy d(3
4 TT u -/ --fi

dy dz

become 4 -n & =

The equation of the current of conduction is, by Ohm s Law,
=

&amp;lt;7&amp;lt;g.

That of electric displacement is

3) = -?-K.4 7T

The equation of the total current, arising from the variation of

the electric displacement as well as from conduction, is

&amp;lt;

- S+ 2X

When the magnetization arises from magnetic induction,

SB = M .

We have also, to determine the electric volume-density,

e = V$).

To determine the magnetic volume-density,

m = S V 3.

When the magnetic force can be derived from a potential

= - V 12.



CHAPTER X.

DIMENSIONS OF ELECTRIC UNITS.

620.] EVERY electromagnetic quantity may be defined with

reference to the fundamental units of Length, Mass, and Time.

If we begin with the definition of the unit of electricity, as given
in Art. 65, we may obtain definitions of the units of every other

electromagnetic quantity, in virtue of the equations into which

they enter along with quantities of electricity. The system of

units thus obtained is called the Electrostatic System.

If, on the other hand, we begin with the definition of the unit

magnetic pole, as given in Art. 374, we obtain a different system
of units of the same set of quantities. This system of units is

not consistent with the former system, and is called the Electro

magnetic System.
We shall begin by stating those relations between the different

units which are common to both systems, and we shall then form

a table of the dimensions of the units according to each system.

621.] We shall arrange the primary quantities which we have

to consider in pairs. In the first three pairs, the product of the

two quantities in each pair is a quantity of energy or work. In

the second three pairs, the product of each pair is a quantity of

energy referred to unit of volume.

FIRST THREE PAIRS.

Electrostatic Pair.

Symbol.

(
1
) Quantity of electricity . . . . e

(2) Line-integral of electromotive force, or electric po
tential E



240 DIMENSIONS OF UNITS. [622.

Magnetic Pair.
Symbol.

(3) Quantity of free magnetism, or strength of a pole . m

(4) Magnetic potential ...... H

ElectroJcinetic Pair.

(5) Electroldnetic momentum of a circuit . . p
(6) Electric current ....... C

SECOND THREE PAIRS.

Electrostatic Pair.

(7) Electric displacement (measured by surface-density) . 3)

(8) Electromotive force at a point . . . (

Magnetic Pair.

(9) Magnetic induction * ..... 33

(10) Magnetic force .; ..... $
Electrokinetic Pair.

(11) Intensity of electric current at a point . . . (

(12) Vector potential of electric currents . . .51

622.] The following relations exist between these quantities.

In the first place, since the dimensions of energy are , and

those of energy referred to unit of volume
,
we have the

following equations of dimensions :

(1)

(2)

Secondly, since e, p and 51 are the time-integrals of C, fi, and (

Thirdly, since E, 12, and p are the line-integrals of @, .&amp;gt;,
and 91

respectively,

Finally, since e
t C, and m are the surface-integrals of $), 6, and

respectively,
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623.] These fifteen equations are not independent, and in order

to deduce the dimensions of the twelve units involved, we require

one additional equation. If, however, we take either e or m as an

independent unit, we can deduce the dimensions of the rest in

terms of either of these.

(3) and (5) [j,]
=M=

(4) and (6)

(10)

624.] The relations of the first ten of these quantities may be

exhibited by means of the following arrangement :

e, 2), ), C and 12. E (, 33, m and p.

The quantities in the first line are derived from e by the same

operations as the corresponding quantities in the second line are

derived from m. It will be seen that the order of the quantities

in the first line is exactly the reverse of the order in the second

line. The first four of each line have the first symbol in the

numerator. The second four in each line have it in the deno

minator.

All the relations given above are true whatever system of units

we adopt.

625.] The only systems of any scientific value are the electro

static and the electromagnetic system. The electrostatic system is

VOL. II. ft
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founded on the definition of the unit of electricity, Arts. 41, 42,

and may be deduced from the equation

which expresses that the resultant force ( at any point, due to the

action of a quantity of electricity e at a distance L, is found by

dividing e by 7/
2

. Substituting the equations of dimension (1) and

(8), we find

whence \e\
= \L* If* T^} ,

m =
in the electrostatic system.

The electromagnetic system is founded on a precisely similar

definition of the unit of strength of a magnetic pole, Art. 374,

leading to the equation ^ m
* : =

L*
J/

whence e-] ri
^J -

\-^ J

and [e]
=

in the electromagnetic system. From these results we find the

dimensions of the other quantities.

626.] Table of Dimensions.
Dimensions in

c, , , Electrostatic Electromagnetic
Symbol

Sygtem System

Quantity of electricity .... e [Z* M* T~ l

] \L* M*\.

Line-integral of electro-
| ^ ^M- T~^ \ti H* T~*\.

motive force 3

Quantity of magnetism -\

Electrokinetic momentum t . $
m

I [tf M*\ \L* M* T~ 1

].

of a circuit ) *

Electric current C
[L* M* T

Magnetic potential ) {Q,

Electric displacement |
_ [T-^M^T~ l

~[ IT
Surface-density

Electromotive force at a point @ [^&quot;M/^
7
-

1

] [Z*Jtf* I7
&quot; 2

].

Magnetic induction 53 [IT^*] [i;-*^^-
1

].

Magnetic force [L* M* T~*] [L~* M* I 1

].

Strength of current at a point ( [Z~* If
*

T&quot;
2
] [^~^ If* T~ l

]
.

Vector potential 31 [Z-*!f*]
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627.] We have already considered the products of the pairs of

these quantities in the order in which they stand. Their ratios are

in certain cases of scientific importance. Thus

Electrostatic Electromagnetic
Symbol. System. System.

e l~T
2
~\

-=- = capacity of an accumulator . . q [Z] T~ I

/coefficient of self-induction *\

-^-
=

j
of a circuit, or electro- &amp;gt; L

\~T~\ \f\*

(. magnetic capacity J

2) _ ( specific inductive capacity | ^ r
_

=:
( of dielectric \

33 r^
72
!-- = magnetic inductive capacity . . ju y2 M-

4P L^ J
x? r- yr i p T 1

- = resistance of a conductor .... R -=-
&quot;TT

(S C specific resistance of a )

&quot;T

= :

| substance }

628.] If the units of length, mass, and time are the same in the

two systems, the number of electrostatic units of electricity con

tained in one electromagnetic unit is numerically equal to a certain

velocity, the absolute value of which does not depend on the

magnitude of the fundamental units employed. This velocity is

an important physical quantity, which we shall denote by the

symbol v.

Number of Electrostatic Units in one Electromagnetic Unit.

For*, C, 11, 5), , (, v.

Form,^ .0, 93, &amp;lt;, 21,
-
v

For electrostatic capacity, dielectric inductive capacity, and con

ductivity, v*.

For electromagnetic capacity, magnetic inductive capacity, and

resistance, 5-

p2

Several methods of determining the velocity v will be given in

Arts. 768-780.

In the electrostatic system the specific dielectric inductive capa

city of air is assumed equal to unity. This quantity is therefore

represented by -^ in the electromagnetic system.

R 2,
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In the electromagnetic system the specific magnetic inductive

capacity of air is assumed equal to unity . This quantity is there

fore represented by $ in the electrostatic system.

Practical System of Electric Units.

629.] Of the two systems of units, the electromagnetic is of the

greater use to those practical electricians who are occupied with

electromagnetic telegraphs. If, however, the units of length, time,

and mass are those commonly used in other scientific work, such

as the metre or the centimetre, the second, and the gramme, the

units of resistance and of electromotive force will be so small that

to express the quantities occurring in practice enormous numbers

must be used, and the units of quantity and capacity will be so

large that only exceedingly small fractions of them can ever occur

in practice. Practical electricians have therefore adopted a set of

electrical units deduced by the electromagnetic system from a large

unit of length and a small unit of mass.

The unit of length used for this purpose is ten million of metres,

or approximately the length of a quadrant of a meridian of the

earth.

The unit of time is, as before, one second.

The unit of mass is 10~~n gramme, or one hundred millionth

part of a milligramme.

The electrical units derived from these fundamental units have

been named after eminent electrical discoverers. Thus the practical

unit of resistance is called the Ohm, and is represented by the

resistance-coil issued by the British Association, and described in

Art. 340. It is expressed in the electromagnetic system by a

velocity of 10,000,000 metres per second.

The practical unit of electromotive force is called the Volt, and

is not very different from that of a DanielPs cell. Mr. Latimer

Clark has recently invented a very constant cell, whose electro

motive force is almost exactly 1.457 Volts.

The practical unit of capacity is called the Farad. The quantity

of electricity which flows through one Ohm under the electromotive

force of one Volt during one second, is equal to the charge produced
in a condenser whose capacity is one Farad by an electromotive

force of one Volt.

The use of these names is found to be more convenient in practice

than the constant repetition of the words electromagnetic units,
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with the additional statement of the particular fundamental units

on which they are founded.

When very large quantities are to be measured, a large unit

is formed by multiplying the original unit by one million, and

placing before its name the prefix mega.

In like manner by prefixing micro a small unit is formed, one

millionth of the original unit.

The following table gives the values of these practical units in

the different systems which have been at various times adopted.

FUNDAMENTAL

UNITS.



CHAPTER XL

ON ENERGY AND STRESS IN THE ELECTROMAGNETIC FIELD.

Electrostatic Energy.

630.] THE energy of the system may be divided into the Potential

Energy and the Kinetic Energy.
The potential energy due to electrification has been already con

sidered in Art. 85. It may be written

r=is(**), (i)

where e is the charge of electricity at a place where the electric

potential is ty, and the summation is to be extended to every place

where there is electrification.

If fj ffj
Ji are the components of the electric displacement, the

quantity of electricity in the element of volume dx dy dz is

where the integration is to be extended throughout all space.

631.] Integrating this expression by parts, and remembering
that when the distance, r, from a given point of a finite electrified

system becomes infinite, the potential ty becomes an infinitely small

quantity of the order r* 1
, and that/, g, h become infinitely small

quantities of the order r~2
, the expression is reduced to

where the integration is to be extended throughout all space.
If we now write P, Q, R for the components of the electromotive

dty d^ city
force, instead of --

,
-- and --=-

,
we find

dx dy dz

(5)
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Hence, the electrostatic energy of the whole field will be the same

if we suppose that it resides in every part of the field where elec

trical force and electrical displacement occur, instead of being

confined to the places where free electricity is found.

The energy in unit of volume is half the product of the electro

motive force and the electric displacement, multiplied by the cosine

of the angle which these vectors include.

In Quaternion language it is 4/9(5 3).

Magnetic Energy.

632.] We may treat the energy due to magnetization in a similar

way. If A, J5, C are the components of magnetization and a, /3, y
the components of magnetic force, the potential energy of the

system of magnets is, by Art. 389,

Cy]dxdydzt (6)

the integration being extended over the space occupied by mag
netized matter. This part of the energy, however, will be included

in the kinetic energy in the form in which we shall presently

obtain it.

633.] We may transform this expression when there are no elec

tric currents by the following method.

We know that da db do

Hence, by Art. 97, if

cm d& cm
f.

o ..
( R\

as is always the case in magnetic phenomena where there are no

currents,

=0, (9)

the integral being extended throughout all space, or

jjl{(a
+ lTtA)a + (P + lTtB)p + (y+ nC)y}dxdydz = 0. (10)

Hence, the energy due to a magnetic system
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Electrokinetic Energy.

634.] We have already, in Art. 578, expressed the kinetic energy

of a system of currents in the form

T=\^(pi\ (12).

where p is the electromagnetic momentum of a circuit, and % is

the strength of the current flowing round it, and the summation

extends to all the circuits.

But we have proved, in Art. 590, that p may be expressed as

a line-integral of the form

where F, G, H are the components of the electromagnetic mo-

mentum, C, at the point (xy z), and the integration is to be ex

tended round the closed circuit s. We therefore find

2 *&quot;

J \
?&amp;lt;$ ds ds

If ^, z;,
w are the components of the density of the current at

any point of the conducting circuit, and if S is the transverse

section of the circuit, then we may write

. dx .dy . dz
i = uS, i^ = vS, 2-v = ^, (15)
ds ds ds

and we may also write the volume

Sds = dxdydz,
and we now find _

T = i / // (Fu + Gv + Hw) dxdydz, (16)

where the integration is to be extended to every part of space

where there are electric currents.

635.] Let us now substitute for u, v, w their values as given by
the equations of electric currents (E), Art. 607, in terms of the

components a, /3, y of the magnetic force. We then have

where the integration is extended over a portion of space including
all the currents.

If we integrate this by parts, and remember that, at a great
distance r from the system, a, /3, and y are of the order of mag
nitude r~ 3

,
we find that when the integration is extended through

out all space, the expression is reduced to

/^7 dH\ f flG dF \] 7
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By the equations (A), Art. 591, of magnetic induction, we may
substitute for the quantities in small brackets the components of

magnetic induction a, b, c, so that the kinetic energy may be

written
1

/././.

T=
JJJ(aa

+ 6p+ cy)da!dydz 9 (19)

where the integration is to be extended throughout every part of

space in which the magnetic force and magnetic induction have

values differing from zero.

The quantity within brackets in this expression is the product of

the magnetic induction into the resolved part of the magnetic force

in its own direction.

In the language of quaternions this may be written more simply,

where 33 is the magnetic induction, whose components are
, b, c,

and JQ is the magnetic force, whose components are a, (3, y.

636.] The electrokinetic energy of the system may therefore be

expressed either as an integral to be taken where there are electric

currents, or as an integral to be taken over every part of the field

in which magnetic force exists. The first integral, however, is the

natural expression of the theory which supposes the currents to act

upon each other directly at a distance, while the second is appro

priate to the theory which endeavours to explain the action between

the currents by means of some intermediate action in the space

between them. As in this treatise we have adopted the latter

method of investigation, we naturally adopt the second expression

as giving the most significant form to the kinetic energy.

According to our hypothesis, we assume the kinetic energy to

exist wherever there is magnetic force, that is, in general, in every

part of the field. The amount of this energy per unit of volume

is -- S S3 $3, and this energy exists in the form of some kind
o 77

of motion of the matter in every portion of space.

When we come to consider Faraday s discovery of the effect of

magnetism on polarized light, we shall point out reasons for be

lieving that wherever there are lines of magnetic force, there is

a rotatory motion of matter round those lines. See Art. 821.

Magnetic and Electrokinetic Energy compared.

637.] We found in Art. 423 that the mutual potential energy
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of two magnetic shells, of strengths $ and $ ,
and bounded by the

closed curves s and / respectively, is

cos e ,
as as

,

where e is the angle between the directions of ds and ds
,
and r

is the distance between them.

We also found in Art. 521 that the mutual energy of two circuits

s and /, in which currents i and i flow, is

-if
cos e

7
.. f

ds ds .

If i, i are equal to
(/&amp;gt;,

&amp;lt;/&amp;gt; respectively, the mechanical action

between the magnetic shells is equal to that between the cor

responding electric circuits, and in the same direction. In the case

of the magnetic shells, the force tends to diminish their mutual

potential energy, in the case of the circuits it tends to increase their

mutual energy, because this energy is kinetic.

It is impossible, by any arrangement of magnetized matter, to

produce a system corresponding in all respects to an electric circuit,

for the potential of the magnetic system is single valued at every

point of space, whereas that of the electric system is many-valued.

But it is always possible, by a proper arrangement of infinitely

small electric circuits, to produce a system corresponding in all

respects to any magnetic system, provided the line of integration

which we follow in calculating the potential is prevented from

passing through any of these small circuits. This will be more

fully explained in Art. 833.

The action of magnets at a distance is perfectly identical with

that of electric currents. We therefore endeavour to trace both

to the same cause, and since we cannot explain electric currents

by means of magnets, we must adopt the other alternative, and

explain magnets by means of molecular electric currents.

638.J In our investigation of magnetic phenomena, in Part III

of this treatise, we made no attempt to account for magnetic action

at a distance, but treated this action as a fundamental fact of

experience. We therefore assumed that the energy of a magnetic

system is potential energy, and that this energy is diminished when
the parts of the system yield to the magnetic forces which act

on them.

If, however, we regard magnets as deriving their properties from

electric currents circulating within their molecules, their energy
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is kinetic, and the force between them is such that it tends to

move them in a direction such that if the strengths of the currents

were maintained constant the kinetic energy would increase.

This mode of explaining magnetism requires us also to abandon

the method followed in Part III, in which we regarded the magnet
as a continuous and homogeneous body, the minutest part of which

has magnetic properties of the same kind as the whole.

We must now regard a magnet as containing a finite, though

very great, number of electric circuits, so that it has essentially

a molecular, as distinguished from a continuous structure.

If we suppose our mathematical machinery to be so coarse that

our line of integration cannot thread a molecular circuit, and that

an immense number of magnetic molecules are contained in our

element of volume, we shall still arrive at results similar to those

of Part III, but if we suppose our machinery of a finer order,

and capable of investigating all that goes on in the interior of the

molecules, we must give up the old theory of magnetism, and adopt
that of Ampere, which admits of no magnets except those which

consist of electric currents.

We must also regard both magnetic and electromagnetic energy
as kinetic energy, and we must attribute to it the proper sign,

as given in Art. 635.

In what follows, though we may occasionally, as in Art. 639, &c.,

attempt to carry out the old theory of magnetism, we shall find

that we obtain a perfectly consistent system only when we abandon

that theory and adopt Ampere^s theory of molecular currents, as in

Art. 644.

The energy of the field therefore consists of two parts only, the

electrostatic or potential energy

W =
\jjj(Pf

+

and the electromagnetic or kinetic energy

T= ~

ON THE FORCES WHICH ACT ON AN ELEMENT OF A BODY PLACED

IN THE ELECTROMAGNETIC FIELD.

Forces acting on a Magnetic Element.

639.] The potential energy of the element dx dy dz of a body
magnetized with an intensity whose components are A, B, C, and
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placed in a field of magnetic force whose components are a, /3, y, is

Hence, if the force urging the element to move without rotation

in the direction of a? is X1 dxdydz,

and if the moment of the couple tending to turn the element about

the axis of x from y towards z is L dxdydz,

L = By-C($. (2)

The forces and the moments corresponding to the axes of y and

z may be written down by making the proper substitutions.

640.J If the magnetized body carries an electric current, of

which the components are u
3 v, w, then, by equations C, Art. 60S,

there will be an additional electromagnetic force whose components
are X2 , Y%, ZZ) of which X

2
is

X
2
= VG wb. (3)

Hence, the total force, X, arising from the magnetism of the

molecule, as well as the current passing through it, is

+vc-6. (4)dx dx

The quantities a, 6, c are the components of magnetic induction,

and are related to a, (3, y, the components of magnetic force, by
the equations given in Art. 400,

a = a -f 4 TT A,

=/3 + 477., (5)

C = 7+477(7.

The components of the current, u, v, w, can be expressed in terms

of a, /3, y by the equations of Art. 607,

dy d(34 TT u -

j-
dy dz

da dy
4;TTV = -= -~-

dz dx

dp da
TT 4/7rw = -f- -THence dx dy

(6)

_
dx } dx n dx

1 ( da -.da da 1 d 1= \a T +b+c~---- (a*+(3
2 +y 2

)}- (7)47T ( dx dy dz 2 dee. }



641.] THEORY OF STRESS. 253

Multiplying this equation, (8), by a, and dividing by 47i, we may
add the result to (7), and we find

(9)

also, by (2), i = ((J-/3) y-(c-y)/3), (10)

= ~(i v -eft), (11)

where X is the force referred to unit of volume in the direction of

#, and L is the moment of the forces about this axis.

On the Explanation of these Forces by the Hypothesis of a Medium
in a State of Stress.

641 .] Let us denote a stress of any kind referred to unit of area

by a symbol of the form Phk) where the first suffix, h , indicates that

the normal to the surface on which the stress is supposed to act

is parallel to the axis of h, and the second suffix, ft , indicates that

the direction of the stress with which the part of the body on

the positive side of the surface acts on the part on the negative
side is parallel to the axis of k.

The directions of h and k may be the same, in which case the

stress is a normal stress. They may be oblique to each other, in

which case the stress is an oblique stress, or they may be perpen
dicular to each other, in which case the stress is a tangential

stress.

The condition that the stresses shall not produce any tendency
to rotation in the elementary portions of the body is

P - P
^hk r

Wi

In the case of a magnetized body, however, there is such a

tendency to rotation, and therefore this condition, which holds in

the ordinary theory of stress, is not fulfilled.

Let us consider the effect of the stresses on the six sides of

the elementary portion of the body dx dy dz, taking the origin of

coordinates at its centre of gravity.

On the positive face dy dz, for which the value of % is \ dx, the

forces are
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Parallel to x,

dP.
Parallel to y, (Pxy + * -^f dx} dydz = Y+x ,

.

(12)

Parallel to (P+ 4

The forces acting on the opposite side, X_X9 Y_ x) and Z_x ,

may be found from these by changing the sign of dx. We may
express in the same way the systems of three forces acting on each

of the other faces of the element, the direction of the force being
indicated by the capital letter, and the face on which it acts by
the suffix.

If Xdxdydz is the whole force parallel to x acting on the element,

Xdxdydz = X
H

,P.

whence
d

dx dx

^ P + ^
dy

vx dz (13)

If Ldxdydz is the moment of the forces about the axis of x

tending to turn the element from y to 0,

Ldxdydz =

whence L = P
yg

P
zy

. (14)

Comparing the values of X and L given by equations (9) and

(11) with those given by (13) and (14), we find that, if we make

=
--_(aa-(&amp;lt;S

1

TTJ

1

p
-*-%* A ~

~k

= ~T- C ^

+r

i

4 77

1=
^v

a &quot;

/

I

(15)

the force arising from a system of stress of which these are the

components will be statically equivalent, in its effects on each
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element of the body, with the forces arising from the magnetization

and electric currents.

642.] The nature of the stress of which these are the components

may be easily found, by making the axis of x bisect the angle

between the directions of the magnetic force and the magnetic

induction, and taking the axis of y in the plane of these directions,

and measured towards the side of the magnetic force.

If we put &amp;lt;)
for the numerical value of the magnetic force, 33 for

that of the magnetic induction, and 2 for the angle between their

directions,
a = *y cos e, /3

= ) sin e, y =. 0,

a 33 cos e, b = 33 sin e, c

1 -
2 i 2

4 jf

(17)

p _ p p _ p _ o
yz

~~
zx zy

-* xz

Pxv
= - 33 &amp;lt;&amp;gt;

cos e sin e,

P
yx
= - 33 4p cos e sin e.

Hence, the state of stress may be considered as compounded of

(1) A pressure equal in all directions = - & 2
.

8 77

(2) A tension along the line bisecting the angle between the

directions of the magnetic force and the magnetic induction

-

(3) A pressure along the line bisecting the exterior angle between

these directions = 33 sin2
e.

(4) A couple tending to turn every element of the substance in

the plane of the two directions from the direction of magnetic

induction to the direction of magnetic force - - 33 &amp;lt;)
sin 2 e.

When the magnetic induction is in the same direction as the

magnetic force, as it always is in fluids and non-magnetized solids,

then e = 0, and making the axis of x coincide with the direction of

the magnetic force,
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(18)

and the tangential stresses disappear.

The stress in this case is therefore a hydrostatic pressure
- -

j
2
,

combined with a longitudinal tension 33 &amp;lt;) along the lines of
f 4 TT
force.

643.] When there is no magnetization, 33 = $3, and the stress is

still further simplified, being a tension along the lines of force equal

to -
&amp;lt;)

2
,
combined with a pressure in all directions at right angles

. 1

to the lines of force, numerically equal also to -
43

2
- The com

ponents of stress in this important case are

Pxx = (a*-(3*-y

P = (
2 -a2 -/3**

8 77
^

yz zy ^^

(19)

PX = Px = JL
al3t

4 7T

The force arising from these stresses on an element of the medium
referred to unit of volume is

d d
f -J-PVZ+ -rP&amp;gt;ay &quot; dz

Y_ d=

1 C da d/3 dyl 1 ( d(3 dal 1 C dy da)

^da d(3 dy\ 1 /da dy\__
dy fa dy

Now da d(3 dy
-7- + ~r + -Tdx dy dz

da. dy
-j- -y-dz dx

dft da
-j

=- = 4 77 W-
ax dy

where m is the density of austral magnetic matter referred to unit
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of volume, and v and w are the components of electric currents

referred to unit of area perpendicular to y and z respectively. Hence,

X = am+ vy wj3

Similarly Y = fim+ wa uy,
(Equations of

Electromagnetic (20)
Force.)

Zi = ym-i-vip va.

644.] If we adopt the theories of Ampere and Weber as to the

nature of magnetic and diamagnetic bodies, and assume that mag
netic and diamagnetic polarity are due to molecular electric currents,

we get rid of imaginary magnetic matter, and find that everywhere

* = 0,and
*? +

*0 + ?y =0
, (21)

dx dy dz

so that the equations of electromagnetic force become,

X = v y w /3,

Ywa-uy} (22)

Z = ujBva.
These are the components of the mechanical force referred to unit

of volume of the substance. The components of the magnetic force

are a, /3, y, and those of the electric current are u, v, w. These

equations are identical with those already established. (Equations

(C), Art, 603.)

645.] In explaining the electromagnetic force by means of a

state of stress in a medium, we are only following out the con

ception of Faraday&quot;*, that the lines of magnetic force tend to

shorten themselves, and that they repel each other when placed

side by side. All that we have done is to express the value of

the tension along the lines, and the pressure at right angles to

them, in mathematical language, and to prove that the state of

stress thus assumed to exist in the medium will actually produce

the observed forces on the conductors which carry electric currents.

We have asserted nothing as yet with respect to the mode

in which this state of stress is originated and maintained in the

medium. We have merely shewn that it is possible to conceive

the mutual action of electric currents to depend on a particular

kind of stress in the surrounding medium, instead of being a direct

and immediate action at a distance.

Any further explanation of the state of stress, by means of the

motion of the medium or otherwise, must be regarded as a separate

and independent part of the theory, which may stand or fall without

affecting our present position. See Art. 832.

*
Esrp. Res., 3266, 3267, 3268.

VOL. TT. S
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In the first part of this treatise, Art. 108, we shewed that the

observed electrostatic forces may be conceived as operating through

the intervention of a state of stress in the surrounding medium.

We have now done the same for the electromagnetic forces, and

it remains to be seen whether the conception of a medium capable

of supporting these states of stress is consistent with other known

phenomena, or whether we shall have to put it aside as unfruitful.

In a field in which electrostatic as well as electromagnetic action

is taking place, we must suppose the electrostatic stress described

in Part I to be superposed on the electromagnetic stress which we

have been considering.

646.] If we suppose the total terrestrial magnetic force to be

10 British units (grain, foot, second), as it is nearly in Britain, then

the tension perpendicular to the lines of force is 0.128 grains weight

per square foot. The greatest magnetic tension produced by Joule*

by means of electromagnets was about 140 pounds weight on the

square inch.

* Sturgeon s Annals of Electricity, vol. v. p. 187 (1840) ; or Philosophical Magazine,
Dec., 1851.



CHAPTER XII.

CURRENT-SHEETS.

647.] A CURRENT-SHEET is an infinitely thin stratum of con

ducting matter, bounded on both sides by insulating
1

media, so that

electric currents may flow in the sheet, but cannot escape from it

except at certain points called Electrodes, where currents are made

to enter or to leave the sheet.

In order to conduct a finite electric current, a real sheet must

have a finite thickness, and ought therefore to be considered a

conductor of three dimensions. In many cases, however, it is

practically convenient to deduce the electric properties of a real

conducting sheet, or of a thin layer of coiled wire, from those of

a current-sheet as defined above.

We may therefore regard a surface of any form as a current-sheet.

Having selected one side of this surface as the positive side, we
shall always suppose any lines drawn on the surface to be looked

at from the positive side of the surface. In the case of a closed

surface we shall consider the outside as positive. See Art. 294,

where, however, the direction of the current is defined as seen from

the negative side of the sheet.

The Current -function.

648.] Let a fixed point A on the surface be chosen as origin, and

let a line be drawn on the surface from A to another point P. Let

the quantity of electricity which in unit of time crosses this line

from left to right be $, then
&amp;lt;/&amp;gt;

is called the Current-function at

the point P.

The current-function depends only on the position of the point P,

and is the same for any two forms of the line AP, provided this

s z
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line can be transformed by continuous motion from one form to the

other without passing through an electrode. For the two forms of

the line will enclose an area within which there is no electrode, and

therefore the same quantity of electricity which enters the area across

one of the lines must issue across the other.

If s denote the length of the line AP, the current across ds from

left to right will be ds.

If
&amp;lt;/&amp;gt;

is constant for any curve, there is no current across it. Such

a curve is called a Current-line or a Stream-line.

649.] Let
\}f

be the electric potential at any point of the sheet,

then the electromotive force along any element ds of a curve will be

d^ ,

f-d*,ds

provided no electromotive force exists except that which arises from

differences of potential.

If \^ is constant for any curve, the curve is called an Equi-

potential Line.

650.] We may now suppose that the position of a point on the

sheet is defined by the values of
&amp;lt;/&amp;gt;

and
\[r

at that point. Let ds
l
be

the length of the element of the equipotential line ^ intercepted

between the two current lines &amp;lt; and
&amp;lt;j&amp;gt;

+
d&amp;lt;l&amp;gt;,

and let ds2 be the

length of the element of the current line $ intercepted between the

two equipotential lines ty and \fr+ d\lf. We may consider ds
}
and ds

z

as the sides of the element dty d\^r of the sheet. The electromotive

force d\l/ in the direction of ds2 produces the current
d&amp;lt;p

across dslf

Let the resistance of a portion of the sheet whose length is ds2t

and whose breadth is dsl} be ds2
(T .- J

0*1

where &amp;lt;r is the specific resistance of the sheet referred to unit of

area, then ds.2 7

*-*zf *
, ds-, ds.2whence

jj-
= &amp;lt;r yf

-

a&amp;lt;j) d\l/

651.] If the sheet is of a substance which conducts equally well

in all directions, ds
l
is perpendicular to ds2 . In the case of a sheet

of uniform resistance or is constant, and if we make
\jr
=

a\f/, we
shall have ds

: __ d(j&amp;gt;

d9t~~ d+
*

and the stream-lines and equipotential lines will cut the surface into

little squares.
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It follows from this that if fa and i/r/
are conjugate functions

(Art. 183) of
cj)
and \f/ t

the curves fa may be stream-lines in the

sheet for which the curves x/// are the corresponding equipotential

lines. One case, of course, is that in which fa = \f/
and

\j/i
= &amp;lt;.

In this case the equipotential lines become current-lines, and the

current-lines equipotential lines *.

If we have obtained the solution of the distribution of electric

currents in a uniform sheet of any form for any particular case, we

may deduce the distribution in any other case by a proper trans

formation of the conjugate functions, according to the method given

in Art. 190.

652.] We have next to determine the magnetic action of a

current-sheet in which the current is entirely confined to the sheet,

there being no electrodes to convey the current to or from the

sheet.

In this case the current-function has a determinate value at

every point, and the stream-lines are closed curves which do not

intersect each other, though any one stream-line may intersect

itself.

Consider the annular portion of the sheet between the stream

lines $ and
&amp;lt;j)-{-b&amp;lt;p.

This part of the sheet is a conducting circuit

in which a current of strength 8 $ circulates in the positive direction

round that part of the sheet for which
c/&amp;gt;

is greater than the given
value. The magnetic effect of this circuit is the same as that of

a magnetic shell of strength 8 $ at any point not included in the

substance of the shell. Let us suppose that the shell coincides with

that part of the current-sheet for which has a greater value than

it has at the given stream-line.

By drawing all the successive stream-lines, beginning with that

for which $ has the greatest value, and ending with that for which

its value is least, we shall divide the current-sheet into a series

of circuits. Substituting for each circuit its corresponding mag
netic shell, we find that the magnetic effect of the current-sheet

at any point not included in the thickness of the sheet is the same

as that of a complex magnetic shell, whose strength at any point
is C-{-(f), where C is a constant.

If the current-sheet is bounded, then we must make C 4- &amp;lt;

=
at the bounding curve. If the sheet forms a closed or an infinite

surface, there is nothing to determine the value of the constant C.

* See Thomson, Camb. and Dub. Math. Journ., vol. iii. p. 286.
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653.] The magnetic potential at any point on either side of the

current-sheet is given, as in Art. 415, by the expression

= ^-

where r is the distance of the given point from the element of

surface dS, and Q is the angle between the direction of r, and that

of the normal drawn from the positive side of dS.

This expression gives the magnetic potential for all points not

included in the thickness of the current-sheet, and we know that

for points within a conductor carrying a current there is no such

thing as a magnetic potential.

The value of H is discontinuous at the current-sheet, for if &j_

is its value at a point just within the current-sheet, and Q,2 its

value at a point close to the first but just outside the current-sheet,

&
2
= Hj + 4 TT $,

where
&amp;lt;/&amp;gt;

is the current-function at that point of the sheet.

The value of the component of magnetic force normal to the

sheet is continuous, being the same on both sides of the sheet.

The component of the magnetic force parallel to the current-lines

is also continuous, but the tangential component perpendicular to

the current-lines is discontinuous at the sheet. If s is the length

of a curve drawn on the sheet, the component of magnetic force

Tin the direction of ds is, for the negative side, T^J and for the

2
positive side, =-^ ^ + 4 -n -f

ds ds ds

The component of the magnetic force on the positive side there

fore exceeds that on the negative side by 4 TT
-~ - At a given point
ds

this quantity will be a maximum when ds is perpendicular to the

current-lines.

On the Induction of Electric Currents in a Sheet of Infinite

Conductivity.

654.] It was shewn in Art. 579 that in any circuit

where E is the impressed electromotive force, p the electrokinetic

momentum of the circuit, R the resistance of the circuit, and i the

current round it. If there is no impressed electromotive force and

no resistance, then ~ = 0, or p is constant.
tit
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Now 7;, the electrokinetic momentum of the circuit, was shewn

in Art. 588 to be measured by the surface-integral of magnetic
induction through the circuit. Hence, in the case of a current-

sheet of no resistance, the surface-integral of magnetic induction

through any closed curve drawn on the surface must be constant,

and this implies that the normal component of magnetic induction

remains constant at every point of the current-sheet.

655.] If, therefore, by the motion of magnets or variations of

currents in the neighbourhood, the magnetic field is in any way
altered, electric currents will be set up in the current-sheet, such

that their magnetic effect, combined with that of the magnets or

currents in the field, will maintain the normal component of mag
netic induction at every point of the sheet unchanged. If at first

there is no magnetic action, and no currents in the sheet, then

the normal component of magnetic induction will always be zero

at every point of the sheet.

The sheet may therefore be regarded as impervious to magnetic

induction, and the lines of magnetic induction will be deflected by
the sheet exactly in the same way as the lines of flow of an electric

current in an infinite and uniform conducting mass would be

deflected by the introduction of a sheet of the same form made

of a substance of infinite resistance.

If the sheet forms a closed or an infinite surface, no magnetic
actions which may take place on one side of the sheet will produce

any magnetic effect on the other side.

Theory of a Plane Current-sJieet.

656.] We have seen that the external magnetic action of a

current-sheet is equivalent to that of a magnetic shell whose strength

at any point is numerically equal to
c/&amp;gt;,

the current-function. When
the sheet is a plane one, we may express all the quantities required

for the determination of electromagnetic effects in terms of a single

function, P, which is the potential due to a sheet of imaginary
matter spread over the plane with a surface-density &amp;lt;. The value

of P is of course r (*&
&amp;lt;

(1)

where r is the distance from the point (x, y, z] for which P is cal

culated, to the point x
&quot;, y ,

in the plane of the sheet, at which the

element dx dif is taken.

To find the magnetic potential, we may regard the magnetic
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shell as consisting of two surfaces parallel to the plane of xy, the

first, whose equation is z = J &amp;lt;?, having
1 the surface-density , and

c

the second, whose equation is z =\c, having the surface-density

c

The potentials due to these surfaces will be

-P/ c \ and -- P/ cv-
c (*-g) c (*+?)

ft

respectively, where the suffixes indicate that z -- is put for z

s*

in the first expression, and z 4- - for z in the second. Expanding
2i

these expressions by Taylor s Theorem, adding them, and then

making c infinitely small, we obtain for the magnetic potential due

to the sheet at any point external to it,

657.] The quantity P is symmetrical with respect to the plane of

the sheet, and is therefore the same when z is substituted for z.

H, the magnetic potential, changes sign when z is put for z.

At the positive surface of the sheet

11 = - = 2770. (3)
dz

At the negative surface of the sheet

a = - d
f-
= -2v&amp;lt;

t&amp;gt;

. (4)
CIZ

Within the sheet, if its magnetic effects arise from the magneti
zation of its substance, the magnetic potential varies continu

ously from
2ir&amp;lt;p

at the positive surface to 2ir(p at the negative
surface.

If the sheet contains electric currents, the magnetic force

within it does not satisfy the condition of having a potential.

The magnetic force within the sheet is, however, perfectly deter

minate.

The normal component,

is the same on both sides of the sheet and throughout its sub

stance.

If a and ft be the components of the magnetic force parallel to
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x and to y at the positive surface, and a, j3 those on the negative

surface dd&amp;gt;
/&amp;lt;,%

a = 27T-^ = a , (6)

Within the sheet the components vary continuously from a and

/3 to a and /3 .

The equations -5 j
dii dz

i/

= _^, (8)
dz dx dy
,7 /~] 3 TJ! s7 (~\
(v \JT tt Jj Cu \L

dx dy dz j

which connect the components F, G, H of the vector-potential due

to the current-sheet with the scalar potential 12, are satisfied if

we make dP dP
-j- &amp;gt; Cr = =-

,
JLL = 0. (9)

dy dx

We may also obtain these values by direct integration, thus for F,

Since the integration is to he estimated over the infinite plane

sheet, and since the first term vanishes at infinity, the expression is

reduced to the second term ; and by substituting

d I d \--- tor -j-?
-

,

dy r ay r

and remembering that
(/&amp;gt; depends on x

f
and y

f

^
and not on HP, y, z

t

If H is the magnetic potential due to any magnetic or electric

system external to the sheet, we may write

F=-J& dz, (10)

and we shall then have

for the components of the vector-potential due to this system.
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658.] Let us now determine the electromotive force at any point

of the sheet, supposing the sheet fixed.

Let X and Zbe the components of the electromotive force parallel

to x and to y respectively, then, by Art. 598, we have

If the electric resistance of the sheet is uniform and equal to &,

X = au, Y= (TV, (14)

where u and v are the components of the current, and if &amp;lt; is the

current-function, ^&amp;lt;f&amp;gt; ^
u = -f- t v = ~ (15)

dy dx

But, by equation (3),

at the positive surface of the current-sheet. Hence, equations (12)

and (13) may be written

t (16)
dy at

*
d+ , .

c j
~

where the values of the expressions are those corresponding to the

positive surface of the sheet.

If we differentiate the first of these equations with respect to x,

and the second with respect to ^, and add the results, we obtain

The only value of
\jf

which satisfies this equation, and is finite

and continuous at every point of the plane, and vanishes at an

infinite distance, is ^ _ Q (19)

Hence the induction of electric currents in an infinite plane sheet

of uniform conductivity is not accompanied with differences of

electric potential in different parts of the sheet.

Substituting this value of ^, and integrating equations (16),

(17), we obtain ^ dP dP ciP

Since the values of the currents in the sheet are found by
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differentiating
1 with respect to as or y, the arbitrary function of z

and t will disappear. We shall therefore leave it out of account.

If we also write for
,
the single symbol R, which represents

277

a certain velocity, the equation between P and P becomes

4f-f+f- w
659.] Let us first suppose that there is no external magnetic

system acting on the current sheet. We may therefore suppose

P/= 0. The case then becomes that of a system of electric currents

in the sheet left to themselves, but acting on one another by their

mutual induction, and at the same time losing their energy on

account of the resistance of the sheet. The result is expressed

by the equation dP dP
-&quot;3T

=
&quot;77dz dt

the solution of which is

P=f(x,y,(z+Rty. (23)

Hence, the value of P on any point on the positive side of the

sheet whose coordinates are x,
y&amp;gt; z, and at a time #, is equal to

the value of P at the point #, y, (z+ Rt] at the instant when tf=0.

If therefore a system of currents is excited in a uniform plane

sheet of infinite extent and then left to itself, its magnetic effect

at any point on the positive side of the sheet will be the same

as if the system of currents had been maintained constant in the

sheet, and the sheet moved in the direction of a normal from its

negative side with the constant velocity R. The diminution of

the electromagnetic forces, which arises from a decay of the currents

in the real case, is accurately represented by the diminution of the

force on account of the increasing distance in the imaginary case.

660.] Integrating equation (21) with respect to t, we obtain

If we suppose that at first P and P are both zero, and that a

magnet or electromagnet is suddenly magnetized or brought from

an infinite distance, so as to change the value of P suddenly from

zero to P
, then, since the time-integral in the second member of

(24) vanishes with the time, we must have at the first instant

P = -P
at the surface of the sheet.

Hence, the system of currents excited in the sheet by the sudden
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introduction of the system to which Pf
is due is such that at the

surface of the sheet it exactly neutralizes the magnetic effect of

this system.

At the surface of the sheet, therefore, and consequently at all

points on the negative side of it, the initial system of currents

produces an effect exactly equal and opposite to that of the

magnetic system on the positive side. We may express this by

saying that the effect of the currents is equivalent to that of an

image of the magnetic system, coinciding in position with that

system, but opposite as regards the direction of its magnetization
and of its electric currents. Such an image is called a negative

image.
The effect of the currents in the sheet on a point on the positive

side of it is equivalent to that of a positive image of the magnetic

system on the negative side of the sheet, the lines joining corre

sponding points being bisected at right angles by the sheet.

The action at a point on either side of the sheet, due to the

currents in the sheet, may therefore be regarded as due to an

image of the magnetic system on the side of the sheet opposite

to the point, this image being a positive or a negative image

according as the point is on the positive or the negative side of

the sheet.

661.] If the sheet is of infinite conductivity, R = 0, and the

second term of (24) is zero, so that the image will represent the

effect of the currents in the sheet at any time.

In the case of a real sheet, the resistance R has some finite value.

The image just described will therefore represent the effect of the

currents only during the first instant after the sudden introduction

of the magnetic system. The currents will immediately begin to

decay, and the effect of this decay will be accurately represented if

we suppose the two images to move from their original positions, in

the direction of normals drawn from the sheet, with the constant

velocity R.

662.] We are now prepared to investigate the system of currents

induced in the sheet by any system, M, of magnets or electro

magnets on the positive side of the sheet, the position and strength
of which vary in any manner.

Let P
,
as before, be the function from which the direct action

of this system is to be deduced by the equations (3), (9), &c.,

dp
then

j-
b t will be the function corresponding to the system re-
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presented by -= 8 1. This quantity, which is the increment of M
(it

in the time bt, may be regardejl as itself representing a magnetic

system.

If we suppose that at the time t a positive image of the system

-
r b t is formed on the negative side of the sheet, the magnetic

clt/

action at any point on the positive side of the sheet due to this

image will be equivalent to that due to the currents in the sheet

excited by the change in M during the first instant after the

change, and the image will continue to be equivalent to the

currents in the sheet, if, as soon as it is formed, it begins to move

in the negative direction of z with the constant velocity E.

If we suppose that in every successive element of the time an

image of this kind is formed, and that as soon as it is formed

it begins to move away from the sheet with velocity E, we shall

obtain the conception of a trail of images, the last of which is

in process of formation, while all the rest are moving like a rigid

body away from the sheet with velocity E.

663.] If P/
denotes any function whatever arising from the

action of the magnetic system, we may find P, the corresponding
function arising from the currents in the sheet, by the following

process, which is merely the symbolical expression for the theory
of the trail of images.

Let PT denote the value of P (the function arising from the

currents in the sheet) at the point (x^y, z+ Er], and at the time

t T, and let PT denote the value of P (the function arising from

the magnetic system) at the point (#, y, (z-\-E,r}) } and at the

time*-T. Then dPr ^dPT dPT
-= = JK-j

---T^J [251
dr dz dt

and equation (21) becomes

dP, d^
lh

=
^u (26)

and we obtain by integrating with respect to T from r= to r= oo,

as the value of the function P, whence we obtain all the properties

of the current sheet by differentiation, as in equations (3), (9), &c.

664.] As an example of the process here indicated, let us take

the case of a single magnetic pole of strength unity, moving with

uniform velocity in a straight line.
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Let the coordinates of the pole at the time t be

The coordinates of the image of the pole formed at the time

t T are

= U(*-T), 17
= 0, ^-(c+ ttJtf-Tj + tfT),

and if r is the distance of this image from the point (a?, y, z),

To obtain the potential due to the trail of images we have to

calculate d r dr

7/7 7 7&quot;

If we write Q 2 = u2
4- (R- U&amp;gt;)

2
,

dr 1

the value of r in this expression being found by making r = 0.

Differentiating this expression with respect to t, and putting
t = 0, we obtain the magnetic potential due to the trail of images,

&quot;

~Q

By differentiating this expression with respect to x or 2, we

obtain the components parallel to x or respectively of the mag
netic force at any point, and by putting x = 0, z = c, and r 2c

in these expressions, we obtain the following values of the com

ponents of the force acting on the moving pole itself,

665.] In these expressions we must remember that the motion

is supposed to have been going on for an infinite time before the

time considered. Hence we must not take n&amp;gt; a positive quantity,

for in that case the pole must have passed through the sheet

within a finite time.

If we make u = 0, and ft) negative, X = 0, and

z- -1:&quot;^

* 9

or the pole as it approaches the sheet is repelled from it.

If we make
n&amp;gt;
= 0, we find Q

2 = u

Y-
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The component X represents a retarding force acting on the pole

in the direction opposite to that of its own motion. For a given

value of R, X is a maximum when u == 1.2772.

When the sheet is a non-conductor, R = oo and X = 0.

When the sheet is a perfect conductor, R = and X = 0.

The component Z represents a repulsion of the pole from the

sheet. It increases as the velocity increases, and ultimately becomes

- when the velocity is infinite. It has the same value when

R is zero.

666.] When the magnetic pole moves in a curve parallel to the

sheet, the calculation becomes more complicated, but it is easy to

see that the effect of the nearest portion of the trail of images

is to produce a force acting on the pole in the direction opposite

to that of its motion. The effect of the portion of the trail im

mediately behind this is of the same kind as that of a magnet
with its axis parallel to the direction of motion of the pole at

some time before. Since the nearest pole of this magnet is of the

same name with the moving pole, the force will consist partly of

a repulsion, and partly of a force parallel to the former direction

of motion, but backwards. This may be resolved into a retarding

force, and a force towards the concave side of the path of the

moving pole.

667.] Our investigation does not enable us to solve the case

in which the system of currents cannot be completely formed,

on account of a discontinuity or boundary of the conducting
sheet.

It is easy to see, however, that if the pole is moving parallel

to the edge of the sheet, the currents on the side next the edge
will be enfeebled. Hence the forces due to these currents will

be less, and there will not only be a smaller retarding force, but,

since the repulsive force is least on the side next the edge, the pole

will be attracted towards the edge.

Theory of Arago^s Rotating Disk.

668.] Arago discovered* that a magnet placed near a rotating
metallic disk experiences a force tending to make it follow the

motion of the disk, although when the disk is at rest there is

no action between it and the magnet.
This action of a rotating disk was attributed to a new kind

* Annales de Chimie et de Physique, 1826.
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of induced magnetization, till Faraday* explained it by means of

the electric currents induced in the disk on account of its motion

through the field of magnetic force.

To determine the distribution of these induced currents, and

their effect on the magnet, we might make use of the results already

found for a conducting sheet at rest acted on by a moving magnet,

availing ourselves of the method given in Art. 600 for treating the

electromagnetic equations when referred to moving systems of axes.

As this case, however, has a special importance, we shall treat it

in a direct manner, beginning by assuming that the poles of the

magnet are so far from the edge of the disk that the effect of the

limitation of the conducting sheet may be neglected.

Making use of the same notation as in the preceding articles

(656-667), we find for the components of the electromotive force

parallel to x and y respectively,

dy d\js

(1)

a- u = y
dt dx

dx d\lf
(TV = y-y;

--
f&quot;&amp;gt; j

dt dy J

where y is the resolved part of the magnetic force normal to the

disk.

If we now express u and v in terms of $, the current-function,

,._**, (2)
dx

and if the disk is rotating about the axis of z with the angular

velocity o&amp;gt;, dy dx
1=.*,

Jf. * (3)

Substituting these values in equations (1), we find

d&amp;lt;t&amp;gt; dty fA\
&amp;lt;T

!- =
ya&amp;gt;# -y-, (4)

dy dx

d(f) d\jf ,..
o- -- = y a) y --f-

-

(5)
dx * J

dy

Multiplying (4) by x and (5) by y} and adding, we obtain

Multiplying (4) by y and (5) by x, and adding, we obtain

f d&amp;lt;b dfh^ d\ls d\b
*(x-r- +y-r-} = -r- -V-r-V dx *

dy dy
J dx

/ /

*
Exp. Res., 81.
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If we now express these equations in terms of r and 0, where

x r cos d} y = r sin 6, (8)

they become a~ = y o&amp;gt; r2 r -^- &amp;gt; (9)
du dr

(10)

Equation (10) is satisfied if we assume any arbitrary function

of r and 0, and make d

* = ar
Tr-

Substituting- these values in equation (9), it becomes

Dividing by ar2
,
and restoring the coordinates SB and ^, this

becomes d\ d*x _ /i 4 \^ +
d/ -&amp;lt;r

y

This is the fundamental equation of the theory, and expresses the

relation between the function, x, and the component, y, of the mag
netic force resolved normal to the disk.

Let Q be the potential, at any point on the positive side of the

disk, due to imaginary matter distributed over the disk with the

surface-density x
At the positive surface of the disk

Hence the first member of equation (
1 4) becomes

dx2
dy

2
~

2 77 dz
*S iS

But since Q satisfies Laplace s equation at all points external

to the disk, d2
0. d2

0. d2
,

17)
dz*

and equation (14) becomes

j = coy.
2 TT dz*

Again, since Q is the potential due to the distribution
x&amp;gt;

the

potential due to the distribution $, or -^ ,
will be . From this

du clQ

we obtain for the magnetic potential due to the currents in the disk,

VOL. II.
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and for the component of the magnetic force normal to the disk

due to the currents,

*._*.. (20)71 dz dedz*

If f2
2

is the magnetic potential due to external magnets, and

if we write r

(21)

the component of the magnetic force normal to the disk due to

the magnets will be

We may now write equation (18), remembering that

y

&amp;lt;r d*Q

Integrating twice with respect to z, and writing R for -
,

2i TT

(24)

If the values of P and Q are expressed in terms of r, 6, and

where 7?

f=*--0, (25)
0)

equation (24) becomes, by integration with respect to (,

(2G)

669.] The form of this expression shews that the magnetic action

of the currents in the disk is equivalent to that of a trail of images
of the magnetic system in the form of a helix.

If the magnetic system consists of a single magnetic pole of

strength unity, the helix will lie on the cylinder whose axis is

that of the disk, and which passes through the magnetic pole.

The helix will begin at the position of the optical image of the

pole in the disk. The distance, parallel to the axis between con-
71

secutive coils of the helix, will be 2 IT . The magnetic effect of
CO

the trail will be the same as if this helix had been magnetized

everywhere in the direction of a tangent to the cylinder perpen
dicular to its axis, with an intensity such that the magnetic moment
of any small portion is numerically equal to the length of its pro

jection on the disk.
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The calculation of the effect on the magnetic pole would be

complicated, but it is easy to see that it will consist of

(1) A dragging force, parallel to the direction of motion of

the disk.

(2) A repulsive force acting from the disk.

(3) A force towards the axis of the disk.

When the pole is near the edge of the disk, the third of these

forces may be overcome by the force towards the edge of the disk,

indicated in Art. 667.

All these forces were observed by Arago, and described by him in

the Annales cle C/iimie for 1826. See also Felici, in Tortolinr s

Annals, iv, p. 173 (1853), and v. p. 35
;
and E. Jochmann, in Crelle s

Journal, Ixiii, pp. 158 and 329; and Pogg. Ann. cxxii, p. 214

(1864). In the latter paper the equations necessary for deter

mining the induction of the currents on themselves are given, but

this part of the action is omitted in the subsequent calculation of

results. The method of images given here was published in the

Proceedings of the Eoyal Society for Feb. 15, 1872.

Spherical Current-Sheet.

670.] Let $ be the current-function at any point Q of a spherical

current-sheet, and let P be the po

tential at a given point, due to a

sheet of imaginary matter distributed

over the sphere with surface-density

&amp;lt;p,

it is required to find the magnetic

potential and the vector-potential of

the current-sheet in terms of P.

Let a denote the radius of the

sphere, r the distance of the given

point from the centre, and p the

reciprocal of the distance of the given point from the point Q on

the sphere at which the current-function is (p.

The action of the current-sheet at any point not in its substance

is identical with that of a magnetic shell whose strength at any

point is numerically equal to the current-function.

The mutual potential of the magnetic shell and a unit pole placed

at the point P is, by Art. 410,

T 2
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Since p is a homogeneous function of the degree 1 mr and a,

dp dp
a-/- +r-f = p,da dr

Since r and a are constant during the surface-integration,

But if P is the potential due to a sheet of imaginary matter

of surface-density $,

and 12, the magnetic potential of the current-sheet, may be expressed

in terms of P in the form

a= _l-i(P,).
a dr

v

671.] We may determine F, the ^-component of the vector-

potential, from the expression given in Art. 416,

where f, ry, f are the coordinates of the element dS, and I, m, n are

the direction-cosines of the normal.

Since the sheet is a sphere, the direction-cosines of the normal are

dp . N o ^
and ^ = (y-,)y = -^,
sothat _*=---

_z dp y dp m

a dy a dz

multiplying by (/&amp;gt;
dS, and integrating over the surface of the sphere,

we find z (].p y dp
a dy a dz
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x (IP z dP
Similarly G = - -=---- 5

a dz a ax

--.
a dx a dy

The vector S(, wliose components are F, G, //, is evidently per

pendicular to the radius vector r, and to the vector whose com-

dP dP , dP TC
ponents are -7- &amp;gt; =- . and -=- . It we determine the lines 01 inter-

dx ay dz

sections of the spherical surface whose radius is r, with the series of

equipotential surfaces corresponding
1 to values of P in arithmetical

progression, these lines will indicate by their direction the direction

of [, and by their proximity the magnitude of this vector.

In the language of Quaternions,

21 = -7P VP.a

672.] If we assume as the value of P within the sphere

where Y
i
is a spherical harmonic of degree i, then outside the sphere

The current-function &amp;lt; is

2i+l 1= AXA.

47T tf

The magnetic potential within the sphere is

and outside &= i - A (
-
) Y, .

a \r

For example, let it be required to produce, by means of a wire

coiled into the form of a spherical shell, a uniform magnetic force

M within the shell. The magnetic potential within the shell is, in

this case, a solid harmonic of the first degree of the form

12, Mr cos 0,

where M is the magnetic force. Hence A = ^
2
J/, and

d&amp;gt;
= Ma cos 0.

Sir

The current-function is therefore proportional to the distance

from the equatorial plane of the sphere, and therefore the number

of windings of the wire between any two small circles must be

proportional to the distance between the planes of these circles.
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If N is the whole number of windings, and if y is the strength

of the current in each winding,

$ = \ Ny cos 0.

Hence the magnetic force within the coil is

47T NyM = ---

3 a

673.] Let us next find the method of coiling the wire in order

to produce within the sphere a magnetic potential of the form of a

solid zonal harmonic of the second degree,

Here &amp;lt;

= -A (f cos 2

If the whole number of windings is N, the number between the

pole and the polar distance is ^ j^sin2
0.

The windings are closest at latitude 45. At the equator the

direction of winding changes, and in the other hemisphere the

windings are in the contrary direction.

Let y be the strength of the current in the wire, then within

the shell 4 77

fl =
O

Let us now consider a Conductor in the form of a plane closed

curve placed anywhere within the shell with its plane perpendicular

to the axis. To determine its coefficient of induction we have to

find the surface-integral of -=- over the plane bounded by the
clz

curve, putting y = 1.

Now ^

Arand -=- = -= Nz.
dz 5 a 2

Hence, if S is the area of the closed curve, its coefficient of in

duction is o

If the current in this conductor is y, there will be, by Art. 583,

a force Z} urging it in the direction of 0, where

,dM 8

and, since this is independent of x, y, z, the force is the same in

whatever part of the shell the circuit is placed.

674.] The method given by Poisson, and described in Art. 437,
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may be applied to current-sheets by substituting- for the body

supposed to be uniformly magnetized in the direction of z with

intensity 7, a current-sheet having the form of its surface, and for

which the current-function is Xz. (1)

The currents in the sheet will be in planes parallel to that of xy,

and the strength of the current round a slice of thickness dz will be

Idz.

The magnetic potential due to this current-sheet at any point

outside it will be TdV (
.~

~dz

At any point inside the sheet it will be

rlV

a=-4V/*-/^-. (3)
dz

The components of the vector-potential are

F = -I cl

^, G = I~, 11=0. (4)
dy dx

These results can be applied to several cases occurring in practice.

675.] (1) A plane electric circuit of any form.

Let V be the potential due to a plane sheet of any form of which

the surface-density is unity, then, if for this sheet we substitute

either a magnetic shell of strength 7 or an electric current of

strength I round its boundary, the values of H and of F, G, H will

be those given above.

(2) For a solid sphere of radius a,

V= - when r is greater than a, (5)
o T

and 7= ~ (3a
2

r2
)
when r is less than a. (6)

o

Hence, if such a sphere is magnetized parallel to z with intensity

7, the magnetic potential will be

H = I
-3

z outside the sphere, (7)

and II = Iz inside the sphere. (8)
3

If, instead of being magnetized, the sphere is coiled with wire

in equidistant circles, the total strength of current between two

small circles whose planes are at unit distance being 7, then outside

the sphere the value of H is as before, but within the sphere

This is the case already discussed in Art. 672.
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(3) The case of an ellipsoid uniformly magnetized parallel to

a given line has been discussed in Art. 437.

If the ellipsoid is coiled with wire in parallel and equidistant

planes, the magnetic force within the ellipsoid will be uniform.

(4) A Cylindric Magnet or Solenoid.

676.] If the body is a cylinder having any form of section and

bounded by planes perpendicular to its generating lines, and

if F! is the potential at the point (a?, y, z) due to a plane area of

surface-density unity coinciding with the positive end of the

solenoid, and Vz the potential at the same point due to a plane area

of surface-density unity coinciding with the negative end, then, if

the cylinder is uniformly and longitudinally magnetized with in

tensity unity, the potential at the point (#,y, z) will be

fi=r
1
-r

2 . (10)

If the cylinder, instead of being a magnetized body, is uniformly

lapped with wire, so that there are n windings of wire in unit

of length, and if a current, y, is made to flow through this wire,

the magnetic potential outside the solenoid is as before,

but within the space bounded by the solenoid and its plane ends

12 = ny(47rz+ F! Fg). (12)

The magnetic potential is discontinuous at the plane ends of the

solenoid, but the magnetic force is continuous.

If rlt r2t the distances of the centres of inertia of the positive

and negative plane end respectively from the point (a?, y, z), are

very great compared with the transverse dimensions of the solenoid,

we may write
^_
A v _ A

where A is the area of either section.

The magnetic force outside the solenoid is therefore very small,

and the force inside the solenoid approximates to a force parallel to

the axis in the positive direction and equal to 4 it n y.

If the section of the solenoid is a circle of radius a, the values of

F! and Fg may be expressed in the series of spherical harmonics

given in Thomson and Tait s Natural Philosophy, Art. 546, Ex. II.,

V=2-n\ rQ l+ a + ^ Q2 ^&amp;lt;g4 -f

1 1 3

^Q6 + &

when r&amp;gt;a. (15)
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In these expressions r is the distance of the point (as, y, z) from

the centre of one of the circular ends of the solenoid, and the zonal

harmonics, Q l , Q2 , &c., are those corresponding to the angle 6 which

r makes with the axis of the cylinder.

The first of these expressions is discontinuous when 6 =
,
but

2

we must remember that within the solenoid we must add to the

magnetic force deduced from this expression a longitudinal force

4 TT n y.

677.] Let us now consider a solenoid so long that in the part

of space which we consider, the terms depending on the distance

from the ends may be neglected.

The magnetic induction through any closed curve drawn within

the solenoid is 4-nny A ,
where A is the area of the projection of

the curve on a plane normal to the axis of the solenoid.

If the closed curve is outside the solenoid, then, if it encloses the

solenoid, the magnetic induction through it is 4 TT n y A, where A is

the area of the section of the solenoid. If the closed curve does not

surround the solenoid, the magnetic induction through it is zero.

If a wire be wound ri times round the solenoid, the coefficient of

induction between it and the solenoid is

M 47rnn A. (16)

By supposing these windings to coincide with n windings of the

solenoid, we find that the coefficient of self-induction of unit of

length of the solenoid, taken at a sufficient distance from its ex

tremities, is L 4 Tin 2 A. (17)

Near the ends of a solenoid we must take into account the terms

depending on the imaginary distribution of magnetism on the plane

ends of the solenoid. The effect of these terms is to make the co

efficient of induction between the solenoid and a circuit which sur

rounds it less than the value 4^nA} which it has when the circuit

surrounds a very long solenoid at a great distance from either end.

Let us take the case of two circular and coaxal solenoids of the

same length L Let the radius of the outer solenoid be c19 and let

it be wound with wire so as to have % windings in unit of length.
Let the radius of the inner solenoid be c

2) and let the number of

windings in unit of length be n
2 ,

then the coefficient of induction

between the solenoids, neglecting the effect of the ends, is

M=G
ff , (18)

where G = 4 TTW, (19)

and g = TT e ln
z

. (20)
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678.] To determine the effect of the positive end of the solenoids

we must calculate the coefficient of induction on the outer solenoid

due to the circular disk which forms the end of the inner solenoid.

For this purpose we take the second expression for V, as given
in equation (15), and differentiate it with respect to r. This gives

the magnetic force in the direction of the radius. We then multiply
this expression by 2 TT r2

dp, and integrate it with respect to
ju,
from

pi
= to

jit
= ._ - . This gives the coefficient of induction
V ^

2 + C
l

2

with respect to a single winding of the outer solenoid at a distance

z from the positive end. We then multiply this by dz, and

integrate with respect to z from z = I to z = 0. Finally, we

multiply the result by % n.
2 ,

and so find the effect of one of the

ends in diminishing the coefficient of induction.

We thus find for the value of the coefficient of mutual induction

between the two cylinders,

M = 7i
2 n

1
n
z
c
2
2 (l2c1 ci), (21)

where r is put, for brevity, for \//
2 + c.

It appears from this, that in calculating the mutual induction of

two coaxal solenoids, we must use in the expression (20) instead of

the true length I the corrected length I 2 c^ a, in which a portion

equal to ac^ is supposed to be cut off at each end. When the

solenoid is very long compared with its external radius,

(23)
i \

679.] When a solenoid consists of a number of layers of wire of

such a diameter that there are n layers in unit of length, the

number of layers in the thickness dr is n dr, and we have

=4 Trfn*dr, and g = TT l\ n2 r2 dr. (24)

If the thickness of the wire is constant, and if the induction take

place between an external coil whose outer and inner radii are x and

y respectively, and an inner coil whose outer and inner radii are

y and z, then, neglecting the effect of the ends,

Gg = $**ln*n*(x-y)(y*-z*). (25)
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That this may be a maximum, x and z being given, and y

variable, z* , ,

* = *?-*;* (
2G

)

J
This equation gives the best relation between the depths of the

primary and secondary coil for an induction-machine without an

iron core.

If there is an iron core of radius z, then G remains as before, but

g = TT ifn2
(r

2 + 4 TT K z 2
) dr, (27)

-*)- (28)

If y is given, the value of z which gives the maximum value of g is

187TK ,,
z = 4 v- I

&quot;

J3y i87TK+l

When, as in the case of iron, K is a large number, z = f y, nearly.

If we now make x constant, and y and z variable, we obtain the

maximum value of Gg when

x \y\ z : : 4 : 3 : 2. (30)

The coefficient of self-induction of a long solenoid whose outer

and inner radii are x and
y&amp;gt;

and having a long iron core whose

radius is z, is

L = %7T
2
ln*(v-y)

2
(x

2 + 2xy + 3y
2 + 24;TTKZ2

). (31)

680.] We have hitherto supposed the wire to be of uniform

thickness. We shall now determine the law according to which

the thickness must vary in the different layers in order that, for

a given value of the resistance of the primary or the secondary coil,

the value of the coefficient of mutual induction may be a maximum.

Let the resistance of unit of length of a wire, such that n windings

occupy unit of length of the solenoid, be p n
2

.

The resistance of the whole solenoid is

E =
2iilJ*rdr. (32)

The condition that, with a given value of R, G may be a maximum
. dG n dR . .

is -T- =C~r- , where C is some constant.*
_

dr
l

This gives n 2
proportional to -

,
or the diameter of the wire of

the exterior coil must be proportional to the square root of the

radius.

In order that, for a given value of R, g may be a maximum

*.0, + lS.. (33)
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Hence, if there is no iron core, the diameter of the wire of the

interior coil should be inversely as the square root of the radius,

but if there is a core of iron having a high capacity for magneti

zation, the diameter of the wire should be more nearly directly

proportional to the square root of the radius of the layer.

An Endless Solenoid.

681.] If a solid be generated by the revolution of a plane area A
about an axis in its own plane, not cutting it, it will have the form

of a ring. If this ring be coiled with wire, so that the windings
of the coil are in planes passing through the axis of the ring, then,

if n is the whole number of windings, the current-function of the

layer of wire is $= n y 0, where 6 is the angle of azimuth about

the axis of the ring.

If 12, is the magnetic potential inside the ring and 12 that out

side, then 12-12 = 47T( + &amp;lt;?= 2ny0 + C.

Outside the ring 12 must satisfy Laplace s equation, and must

vanish at an infinite distance. From the nature of the problem

it must be a function of only. The only value of 12 which fulfils

these conditions is zero. Hence

12 = 0, 12 = 2ny8+C.
The magnetic force at any point within the ring is perpendicular

to the plane passing through the axis, and is equal to 2ny-

where r is the distance from the axis. Outside the ring there is

no magnetic force.

If the form of a closed curve be given by the coordinates z, r,

and of its tracing point as functions of s, its length from a fixed

point, the magnetic induction through the closed curve is

[ z dr
2ny -

-j- dsV r ds

taken round the curve, provided the curve is wholly inside the ring.

If the curve lies wholly without the ring, but embraces it, the

magnetic induction through it is

/&quot;

z dr _ ,
2 n y / -=-, ds = 2 n y a,

JQ T (IS

where the accented coordinates refer not to the closed curve, but to

a single winding of the solenoid.

The magnetic induction through any closed curve embracing the
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ring
1 is therefore the same, and equal to 2 n y a, where a is the linear

/*
z
f
dr
-Tjds . If the closed curve does not embrace the

/ ds

ring, the magnetic induction through it is zero.

Let a second wire be coiled in any manner round the ring, not

necessarily in contact with it, so as to embrace it n
f
times. The

induction through this wire is 2 n ri y a, and therefore M, the

coefficient of induction of the one coil on the other, is M= 2 n ri a.

Since this is quite independent of the particular form or position

of the second wire, the wires, if traversed by electric currents, will

experience no mechanical force acting between them. By making
the second wire coincide with the first, we obtain for the coefficient

of self-induction of the ring-coil

L = 2 n2
a.



CHAPTER XIII.

PARALLEL CURRENTS.

Cylindrical Conductors.

682.] IN a very important class of electrical arrangements the

current is conducted through round wires of nearly uniform section,

and either straight, or such that the radius of curvature of the axis

of the wire is very great compared with the radius of the transverse

section of the wire. In order to be prepared to deal mathematically
with such arrangements, we shall begin with the case in which the

circuit consists of two very long parallel conductors, with two pieces

joining their ends, and we shall confine our attention to a part of

the circuit which is so far from the ends of the conductors that the

fact of their not being infinitely long does not introduce any
sensible change in the distribution of force.

We shall take the axis of z parallel to the direction of the con

ductors, then, from the symmetry of the arrangements in the part
of the field considered, everything will depend on //, the component
of the vector-potential parallel to z.

The components of magnetic induction become, by equations (A),

m
dH

c 0.

For the sake of generality we shall suppose the coefficient of

magnetic induction to be p, so that a =
/a a, b

/u, /3, where a and (3

are the components of the magnetic force.

The equations (E) of electric currents, Art. GO 7, give

u = 0, v = 0. 4 KW = -^ (3)
dx dy
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683.] If the current is a function of r, the distance from the axis

of Zj and if we write

os = r cos 0, and y = r sin 0, (4)

and {3 for the magnetic force, in the direction in which 6 is measured

perpendicular to the plane through the axis of z, we have

4 =f + 10 = 1*08,). (5)dr r r dr ^

If C is the whole current flowing through a section bounded by
a circle in the plane gey, whose centre is the origin and whose

radius is r, /&amp;gt;

&amp;lt;?= /
2trrwdr = %(3r. (6)

JQ

It appears, therefore, that the magnetic force at a given point

due to a current arranged in cylindrical strata, whose common axis

is the axis of z, depends only on the total strength of the current

flowing through the strata which lie between the given point and

the axis, and not on the distribution of the current among the

different cylindrical strata.

For instance, let the conductor be a uniform wire of radius a,

and let the total current through it be C, then, if the current is

uniformly distributed through all parts of the section, w will be

constant, and C=7rwa 2
. (7)

The current flowing through a circular section of radius r, r being
less than a, is C = -nwr2

. Hence at any point within the wire,

C
Outside the wire 8 = 2 .

(9)
f

In the substance of the wire there is no magnetic potential, for

within a conductor carrying an electric current the magnetic force

does not fulfil the condition of having a potential.

Outside the wire the magnetic potential is

l = 2C0. (10)

Let us suppose that instead of a wire the conductor is a metal

tube whose external and internal radii are
a-j,

and a
2 , then, if (7 is

the current through the tubular conductor,

C = 7Tw(al

2 -a.2
2
). (11)

The magnetic force within the tube is zero. In the metal of the

tube, where ; is between
a-^

and a
2 ,

P= 2^-^--2
r--2

-

2

, (12)
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and outside the tube, c
/3=2-, (13)

the same as when the current flows through a solid wire.

684.] The magnetic induction at any point is b = p (3, and since,

by equation (2),
fi
- _^ (14)

dr

H^-jppdr. (15)

The value of // outside the tube is

A 2iJL Clogr, (16)

where JUQ
is the value of /x in the space outside the tube, and A is a

constant, the value of which depends on the position of the return

current.

In the substance of the tube,

a
\

~~ a
-2

a
i

In the space within the tube H is constant, and

#=^-2 Mo Clog 1 + M e(l +-logr ^). (18)
U-^ U&amp;gt;2 i*^

685.] Let the circuit be completed by a return current, flowing

in a tube or wire parallel to the first, the axes of the two currents

being at a distance b. To determine the kinetic energy of the

system we have to calculate the integral

T = \ fjJHw dx cly dz. (19)

If we confine our attention to that part of the system which lies

between two planes perpendicular to the axes of the conductors, and

distant I from each other, the expression becomes

T= \l Hivdxdy. (20)

If we distinguish by an accent the quantities belonging to the

return current, we may write this

^-!-=jJHw
dx dy +jJH wdxcly + jJHwdxdy+jJll

w dx dy . (21)

Since the action of the current on any point outside the tube is

the same as if the same current had been concentrated at the axis

of the tube, the mean value of H for the section of the return

current is A 2^C log I, and the mean value ofH for the section

of the positive current is A 2 /u GY/

log b.
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Hence, in the expression for T, the first two terms may be written

AC -2n ()
CC log6 )

and A C-2 n CC
logl&amp;gt;.

Integrating the two latter terms in the ordinary way, and adding
the results, remembering that C+ C = 0, we obtain the value of

the kinetic energy T. Writing this \LC 2
, where L is the co

efficient of self-induction of the system of two conductors, we find

as the value of L for unit of length of the system

L

If the conductors are solid wires, a.2 and a&amp;lt; are zero, and
T /,2

(23)a
i
a
i

It is only in the case of iron wires that we need take account of

the magnetic induction in calculating their self-induction. In

other cases we may make /x , /LI,
and // all equal to unity. The

smaller the radii of the wires, and the greater the distance between

them, the greater is the self-induction.

To find the Repulsion, X, between the Two Portions of Wire.

686.] By Art. 580 we obtain for the force tending to increase b,

*-&amp;lt;&quot;.

= 2 MO
|C&quot;&amp;gt;,

(24)

which agrees with Ampere s formula, when JUQ
= 1, as in air.

687.] If the length of the wires is great compared with the

distance between them, we may use the coefficient of self-induction

to determine the tension of the wires arising from the action of the

current.

If Z is this tension,

In one of Ampere s experiments the parallel conductors consist

of two troughs of mercury connected with each other by a floating

bridge of wire. When a current is made to enter at the extremity
of one of the troughs, to flow along it till it reaches one extremity

VOL. II. U
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of the floating wire, to pass into the other trough through the

floating bridge, and so to return along the second trough, the

floating bridge moves along the troughs so as to lengthen the part
of the mercury traversed by the current.

Professor Tait has simplified the electrical conditions of this

experiment by substituting for the wire a floating siphon of glass
filled with mercury, so that the current flows in mercury through
out its course.

Fig. 40.

This experiment is sometimes adduced to prove that two elements

of a current in the same straight line repel one another, and thus

to shew that Ampere s formula, which indicates such a repulsion

of collinear elements, is more correct than that of Grassmann, which

gives no action between two elements in the same straight line
;

Art. 526.

But it is manifest that since the formulae both of Ampere and of

Grassmann give the same results for closed circuits, and since we

have in the experiment only a closed circuit, no result of the

experiment can favour one more than the other of these theories.

In fact, both formulae lead to the very same value of the

repulsion as that already given, in which it appears that b, the

distance between the parallel conductors is an important element.

When the length of the conductors is not very great compared
with their distance apart, the form of the value of L becomes

somewhat more complicated.

688.] As the distance between the conductors is diminished, the

value of L diminishes. The limit to this diminution is when the

wires are in contact, or when b = a
l + a

2
. In this case

fiV (26)
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This is a minimum when a^
= a2t and then

= 2 /(log 4 + 1),

= 2^(1.8863),
= 3.7726^. (27)

This is the smallest value of the self-induction of a round wire

doubled on itself, the whole length of the wire being 2 I.

Since the two parts of the wire must be insulated from each

other, the self-induction can never actually reach this limiting

value. By using broad flat strips of metal instead of round wires

the self-induction may be diminished indefinitely.

On the Electromotive Force required to produce a Current of Varying

Intensity along a Cylindrical Conductor.

689.] When the current in a wire is of varying intensity, the

electromotive force arising from the induction of the current on

itself is different in different parts of the section of the wire, being
in general a function of the distance from the axis of the wire

as well as of the time. If we suppose the cylindrical conductor

to consist of a bundle of wires all forming part of the same circuit,

so that the current is compelled to be of uniform strength in every

part of the section of the bundle, the method of calculation which

we have hitherto used would be strictly applicable. If, however,

we consider the cylindrical conductor as a solid mass in which

electric currents are free to flow in obedience to electromotive force,

the intensity of the current will not be the same at different

distances from the axis of the cylinder, and the electromotive forces

themselves will depend on the distribution of the current in the

different cylindric strata of the wire.

The vector-potential //, the density of the current w, and the

electromotive force at any point, must be considered as functions of

the time and of the distance from the axis of the wire.

The total current, C, through the section of the wire, and the total

electromotive force, JE, acting round the circuit, are to be regarded
as the variables, the relation between which we have to find.

Let us assume as the value of H,
H= S+To + T^+bc. + T.r**, (1)

where S, T , Tlf &c. are functions of the time.

Then, from the equation

d 2H
,

1 dH
f

.

-J-H- H -=- = 47TW, (2)
dr2 r dr

we find -TIW = T
l + &c+ n*Tn r

Zn~ 2
. (3)

U 2
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If p denotes the specific resistance of the substance per unit of

volume, the electromotive force at any point is p w, and this may be

expressed in terms of the electric potential and the vector potential

H by equations (B), Art. 598,
dV dll ,

A
.

&amp;lt;&amp;gt;

w =-^-w
d3&amp;gt; dS dTQ clT^ dTn

-? w = T*
+ Tt+-W + -W T +^ + ^? T (5)

Comparing the coefficients of like powers of r in equations

&amp;lt;s) nd(5)

Hence we may write -=- = , (9)

T _,dT _ 1 d T
J 2

^--pTt&amp;gt;-
/B

&quot;?(iFaF

690.] To find the total current (7, we must integrate w over the

section of the wire whose radius is a,

ra

C=27T wrdr. (11)
^o

Substituting the value of itw from equation (3), we obtain

(12)

The value of H at any point outside the wire depends only on

the total current C, and not on .the mode in which it is distributed

within the wire. Hence we may assume that the value ofH at the

surface of the wire is A C, where A is a constant to be determined

by calculation from the general form of the circuit. Putting H=AC
when r = a, we obtain

2n
- (13)

If we now write - = a, a is the value of the conductivity of
P

unit of length of the wire, and we have

(15)
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Eliminating T from these two equations, we find

.dC dS, . dC

. = o. (16)

If I is the whole length of the circuit, R its resistance, and E the

electromotive force due to other causes than the induction of the

current on itself, dS E I

Tl=-J a = K
dC PcPC P fPC

The first term, RC&amp;gt;
of the right-hand member of this equation

expresses the electromotive force required to overcome the resist

ance according to Ohm s law.

The second term, l(A + \)-;- , expresses the electromotive force
dt

which would be employed in increasing the electrokinetic momentum
of the circuit, on the hypothesis that the current is of uniform

strength at every point of the section of the wire.

The remaining terms express the correction of this value, arising

from the fact that the current is not of uniform strength at different

distances from the axis of the wire. The actual system of currents

has a greater degree of freedom than the hypothetical system,
in which the current is constrained to be of uniform strength

throughout the section. Hence the electromotive force required

to produce a rapid change in the strength of the current is some

what less than it would be on this hypothesis.

The relation between the time-integral of the electromotive force

and the time-integral of the current is

(19)

If the current before the beginning of the time has a constant

value C0) and if during the time it rises to the value C
L ,

and re

mains constant at that value, then the terms involving the differ

ential coefficients of C vanish at both limits, and

,\ (20)

the same value of the electromotive impulse as if the current had

been uniform throughout the wire.



294 PARALLEL CURRENTS. [691.

On the Geometrical Mean Distance of Two Figures in a Plane.*

691.] In calculating the electromagnetic action of a current

flowing in a straight conductor of any given section on the current

in a parallel conductor whose section is also given, we have to find

the integral

where doc dy is an element of the area of the first section, dx dy an

element of the second section, and r the distance between these

elements, the integration being extended first over every element

of the first section, and then over every element of the second.

If we now determine a line R, such that this integral is equal to

where A
1
and A2 are the areas of the two sections, the length of R

will be the same whatever unit of length we adopt, and whatever

system of logarithms we use. If we suppose the sections divided

into elements of equal size, then the logarithm of R, multiplied by
the number of pairs of elements, will be equal to the sum of the

logarithms of the distances of all the pairs of elements. Here R
may be considered as the geometrical mean of all the distances

between pairs of elements. It is evident that the value of R must

be intermediate between the greatest and the least values of r.

If RA and RB are the geometric mean distances of two figures,

A and JB, from a third, C}
and if RA+B is that of the sum of the two

figures from C, then

(A + B) log RA+B =A log RA+ B log RB .

By means of this relation we can determine R for a compound

figure when we know R for the parts of the figure.

692.] EXAMPLES.

(1) Let R be the mean distance from the point to the line

AB. Let OP be perpendicular to AB, then

AB (logR + 1) = AP log OA +PB log OB+ OP AOB.

i /

Fig. 41.

* Trans. R. S. Edin., 1871-2.
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(2) For two lines (Fig. 42) of lengths a and b drawn perpendicu
lar to the extremities of a line of length c and on the same side of it.

(2 log 72 +3) = (c
2 - (a-b}

2
) log+/c

2 + (a- &)* + c2 log c

4- (a
2 c2

) log \/a
2 + c2 4- (b

2 c2
) log \/b

2
4- c2

/ z\ * i
a ^ ~u - -b

c(a o) tan&quot;
1

Fig. 42.

(3) For two lines, PQ and RS (Fig. 43), whose directions inter

sect at 0.

PQ.RS(2logR+3) = logPR(20P.ORsin
20-PR2

cosO)

+ logQS(20Q.OSsin
20-QS 2

cosO)
-

log PS (2 OP.OS sin2 - PS2 cos 0)

-sinO {OP
2

. SPR- OQ 2
. SQR+OR2

. PltQ-OS 2
. PSQ}.

Fig. 43.

(4) For a point and a rectangle ABCD (Fig. 44). Let OP,

OQ, OR, OS, be perpendiculars on the sides, then

AB.AD (2 log 72+ 3)
= 2.0P.OQ log OA + 2 .OQ. OR log OB
+ 2. OR. OS log OC + 2.0S.OP logOD

Fig. 44.
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(5) It is not necessary that the two figures should be different, for

we may find the geometric mean of the distances between every pair

of points in the same figure. Thus, for a straight line of length 0,

log 72 = log af,
or E = ae~%,

R = 0.223130.

(6) For a rectangle whose sides are a and d,

} gR = logvV+^-iJiog /y/i + ^-^gV 1 + &

+ ietan-i*+i-tan-i-.
o a a b

When the rectangle is a square, whose side is 0,

log 5 = Iog0+ i log 2 +
| -ff,

R = 0.447050.

(7) The geometric mean distance of a point from a circular line

is equal to the greater of the two quantities, its distance from the

centre of the circle, and the radius of the circle.

(8) Hence the geometric mean distance of any figure from a

ring bounded by two concentric circles is equal to its geometric
mean distance from the centre if it is entirely outside the ring, but

if it is entirely within the ring

a
l

a
2

where 0j and
2 are the outer and inner radii of the ring. R is

in this case independent of the form of the figure within the ring.

(9) The geometric mean distance of all pairs of points in the

ring is found from the equation

logR = ^0! 2 J^ log ^ 4- J *l ~\ .

For a circular area of radius 0, this becomes

logR = Iog0-i,

or R = ae~*,

R = 0.77880.

For a circular line it becomes

693.] In calculating the coefficient of self-induction of a coil of

uniform section, the radius of curvature being great compared with
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the dimensions of the transverse section, we first determine the

geometric mean of the distances of every pair of points of the

section by the method already described, and then we calculate the

coefficient of mutual induction between two linear conductors of

the given form, placed at this distance apart.

This will be the coefficient of self-induction when the total cur

rent in the coil is unity, and the current is uniform at all points of

the section.

But if there are n windings in the coil we must multiply the

coefficient already obtained by n2
,
and thus we shall obtain the

coefficient of self-induction on the supposition that the windings of

the conducting wire fill the whole section of the coil.

But the wire is cylindric, and is covered with insulating material,

so that the current, instead of being uniformly distributed over the

section, is concentrated in certain parts of it, and this increases the

coefficient of self-induction. Besides this, the currents in the

neighbouring wires have not the same action on the current in a

given wire as a uniformly distributed current.

The corrections arising from these considerations may be de

termined by the method of the geometric mean distance. They
are proportional to the length of the whole wire of the coil, and

may be expressed as numerical quantities, by which we must

multiply the length of the wire in order to obtain the correction

of the coefficient of self-induction.

Let the diameter of the wire be d. It is

covered with insulating material, and wound
into a coil. We shall suppose that the sections

of the wires are in square order, as in Fig. 45,

and that the distance between the axis of each

wire and that of the next is D, whether in

the direction of the breadth or the depth of

the coil. D is evidently greater than d.

We have first to determine th excess of

self-induction of unit of length of a cylindric wire of diameter d

over that of unit of length of a square wire of side D, or

, R for the square
Og

*

R for the circle

o
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The inductive action of the eight nearest round wires on the wire

under consideration is less than that of the corresponding eight

square wires on the square wire in the middle by 2x(.01971).
The corrections for the wires at a greater distance may be neg

lected, and the total correction may be written

2(loge
-=- + 0.11835).

The final value of the self-induction is therefore

L n2M+ 2/(loge
-j
+ 0.11835),

where n is the number of windings, and I the length of the wire,

M the mutual induction of two circuits of the form of the mean

wire of the coil placed at a distance R from each other, where R is

the mean geometric distance between pairs of points of the section.

D is the distance between consecutive wires, and d the diameter

of the wire.



CHAPTER XIV.

CIRCULAR CURRENTS.

Magnetic Potential due to a Circular Current.

694.] THE magnetic potential at a given point, due to a circuit

carrying a unit current, is numerically equal to the solid angle sub

tended by the circuit at that point ; see Arts. 409, 485.

When the circuit is circular, the solid angle is that of a cone

of the second degree, which, when the given point is on the axis

of the circle, becomes a right cone. When the point is not on

the axis, the cone is an elliptic cone, and its solid angle is

numerically equal to the area of the spherical ellipse which it traces

on a sphere whose radius is unity.

This area can be expressed in finite terms by means of elliptic

integrals of the third kind. We shall find it more convenient to

expand it in the form of an infinite series of spherical harmonics, for

the facility with which mathematical operations may be performed
on the general term of such a series z
more than counterbalances the trouble

of calculating a number of terms suffi

cient to ensure practical accuracy.

For the sake of generality we shall

assume the origin at any point on the

axis of the circle, that is to say, on

the line through the centre perpen
dicular to the plane of the circle.

Let (Fig. 46) be the centre of the

circle, C the point on the axis which

we assume as origin, H a point on the

circle.

Describe a sphere with C as centre,

and CH as radius. The circle will lie

on this sphere, and will form a small circle of the sphere of

angular radius a.

Fig. 46.
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Let CH = c,

OC = b c cos a,

OH= a = c sin a.

Let A be the pole of the sphere, and Z any point on the axis, and

let CZ=z.

Let R be any point in space, and let CR = r, and ACR = 6.

Let P be the point when CR cuts the sphere.

The magnetic potential due to the circular current is equal to

that due to a magnetic shell of strength unity bounded by the

current. As the form of the surface of the shell is indifferent,

provided it is bounded by the circle, we may suppose it to coincide

with the surface of the sphere.

We have shewn in Art. 670 that if P is the potential due to a

stratum of matter of surface-density unity, spread over the surface

of the sphere within the small circle, the potential due to a mag
netic shell of strength unity and bounded by the same circle is

* = ii(rP).c dr ^

We have in the first place, therefore, to find P.

Let the given point be on the axis of the circle at Z, then the

part of the potential at Z due to an element dS of the spherical

surface at P is $$
~ZP

This may be expanded in one of the two series of spherical har

monics, r],

or ++&c. + &amp;lt;

i + &c
.j&amp;gt;

the first series being convergent when z is less than c, and the

second when z is greater than c.

Writing dS = c2 dp dfa

and integrating with respect to &amp;lt; between the limits and 2?r,

and with respect to
//,
between the limits cos a and 1, we find

or P=2vQ dp+ to&amp;gt;.+ r Qi dp. (O

By the characteristic equation of Qi}
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Hence ^ = .
(2)

J^
^

^(^ + l) dp

This expression fails when i = 0, but since Q = 1,

As the function -~ occurs in every part of this investigation wed
//.

shall denote it by the abbreviated symbol Q/. The values of Q/

corresponding to several values of i are given in Art. 698.

We are now able to write down the value of P for any point R,

whether on the axis or not, by substituting r for z, and multiplying

each term by the zonal harmonic of 6 of the same order. For

P must be capable of expansion in a series of zonal harmonics of

with proper coefficients. When = each of the zonal harmonics

becomes equal to unity, and the point E lies on the axis. Hence

the coefficients are the terms of the expansion of P for a point on

the axis. We thus obtain the two series

(4)

(4 )

695.] We may now find
o&amp;gt;,

the magnetic potential of the circuit,

by the method of Art. 670, from the equation

We thus obtain the two series

(6)

!

C2 i

t? & ()&W + &c - +
J+

The series (6) is convergent for all values of r less than c, and the

series (6
r

)
is convergent for all values of r greater than &amp;lt;?. At the

surface of the sphere, where r c, the two series give the same

value for &amp;lt;o when Q is greater than a, that is, for points not

occupied by the magnetic shell, but when 6 is less than a, that is,

at points on the magnetic shell,

0/= CO+47T. (7)

If we assume 0, the centre of the circle, as the origin of co

ordinates, we must put a = -
,
and the series become
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-

[696.

. (8)

where the orders of all the harmonics are odd *.

0# the Potential Energy of two Circular Currents.

696.] Let us begin by supposing the two magnetic shells which

are equivalent to the currents to be portions of two concentric spheres,

their radii being c^ and &amp;lt;?

2 ,
of which c^ is the greater (Fig. 47).

Let us also suppose that the axes of the two shells coincide, and

that QJ is the angle subtended by
the radius of the first shell, and ez

2

the angle subtended by the radius

of the second shell at the centre C.

Let o^ be the potential due to the

first shell at any point within it, then

the work required to carry the second

shell to an infinite distance is the

value of the surface-integral

r/wco,

JJ dr

Hence

Fig. 47.

extended over the second shell.

4** sin* al(y&amp;lt;

or, substituting the value of the integrals from equation (2), Art. 694,

* The value of the solid angle subtended by a circle may be obtained in a more
direct way as follows.

The solid angle subtended by the circle at the point Z in the axis is easily shewn

i-* (a)) + &c.
C

Expanding this expression in spherical harmonics, we find

(cos a-l) + (Q, ^cosa-Qo (a))- +&c. +
(&amp;lt;& (a) coso-

C

for the expansions of cw for points on the axis for which z is less than c or greater
than c respectively. Remembering the equations (42) and (43) of Art. 132 (vol. i.

p. 165), the coefficients in these equations are evidently the same as those we have

now obtained in a more convenient form for computation.
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697.] Let us next suppose that the axis of one of the shells is

turned about C as a centre,, so that it now makes an angle with

the axis of the other shell (Fig. 48). We have only to introduce

the zonal harmonics of into this expression for M, and we find for

the more general value of M,

This is the value of the potential energy due to the mutual

action of two circular currents of unit strength, placed so that

the normals through the centres of the circles meet in a point C
in an angle 0, the distances of the circumferences of the circles from

the point C being &amp;lt;?

x
and c

2 , of which c is the greater.

If any displacement dx alters the value

of M, then the force acting in the direc

tion of the displacement is X = -=

For instance, if the axis of one of the

shells is free to turn about the point C,

so as to cause to vary, then the moment
of the force tending to increase & is 0,

where _ dM

Performing the differentiation, and remembering that

dB

where (j)/ has the same signification as in the former equations,

= 4 7T
2 sin2a1

sin2 a
2
sin c

2
&amp;lt; J $/(%) /(a2) Qi(Q) + &c.
^ 1

698.] As t
1

e values of Q{ occur frequently in these calculations

the following table of values of the first six degrees may be useful.

In this table /x stands for cos 0, and v for sin 6.
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699.] It is sometimes convenient to express the series for M in

terms of linear quantities as follows :

Let a be the radius of the smaller circuit, I the distance of its

plane from the origin, and c = \/a2
-\-b

2
.

Let A, B, and C be the corresponding- quantities for the larger

circuit.

The series for M may then be written,

A2

M= 1.2.7T
2 ^02 COS0
C 3

4- 2.3.7T
2

-y=-
a2

b (cos
2 6- i sin2

(9)

+ 3.4.7T
2
A2

(
2-* A^ a 2 (2_1 ^2)(COS30_

3 sin2
fl cog

tf)

-f &C.

If we make 0=0, the two circles become parallel and on the

same axis. To determine the attraction between them we may
differentiate M with respect to b. We thus find

dM
w=*

700.] In calculating the effect of a coil of rectangular section

we have to integrate the expressions already found with respect

to A, the radius of the coil, and _Z?, the distance of its plane from

the origin, and to extend the integration over the breadth and

depth of the coil.

In some cases direct integration is the most convenient, but

there are others in which the following method of approximation
leads to more useful results.

Let P be any function of x and ^, and let it be required to find

the value of P where

T+i* r+4y

Pxy = / / Pdxdy.J- J -

In this expression P is the mean value of P within the limits of

integration.

Let P be the value of P when x = and y = 0, then, expanding
P by Taylor s Theorem,

Integrating this expression between the limits, and dividing the

result by xy&amp;gt;
we obtain as the value of P,
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In the case of the coil, let the outer and inner radii be A + \ ,

and A \^ respectively, and let the distance of the planes of the

windings from the origin lie between JB+ ^rj and B\TI, then the

breadth of the coil is r\, and its depth these quantities being
small compared with A or C.

In order to calculate the magnetic effect of such a coil we may
write the successive terms of the series as follows :-^-

&C., &c.
;

ft= 2

= 277^

&c., &c.

The quantities G , G1 ,
G2 ,

&c. belong to the large coil. The

value of o&amp;gt; at points for which r is less than C is

a, = _27T + 2G - ^ r Ql (0)- G^r* Q2 ((9)-^-&c.

The quantities gl9 g^ &c. belong to the small coil. The value of

a/ at points for which r is greater than c is

The potential of the one coil with respect to the other when the

total current through the section of each coil is unity is

To find M by Elliptic Integrals.

701.] When the distance of the circumferences of the two circles

VOL. II. *
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is moderate as compared with the radii of the smaller, the series

already given do not converge rapidly. In every case, however,

we may find the value of M for two parallel circles by elliptic

integrals.

For let b be the length of the line joining the centres of the circles,

and let this line be perpendicular to the planes of the two circles,

and let A and a be the radii of the circles, then

M /&quot;/&quot;= / /

the integration being extended round both curves.

In this case,

r2 = A2 + a 2 + b2
-2Aacos((j&amp;gt;-(l&amp;gt; )

e = $ ,
ds =

27TM /

~J

where c ==

and F and E are complete elliptic integrals to modulus c.

From this we get, by differentiating with respect to b and re

membering that c is a function of b,

c

If fj and /2 denote the greatest and least values of r,

rf =(A + of + V, r* =(A- a)
2 + b 2

,

4*

and if an angle y be taken such that cos y = ,

where Fy
and Ey denote the complete elliptic integrals of the first

and second kind whose modulus is sin y.

If A a,j cot y = -
,
and

i Cb

-^-=

The quantity -^- represents the attraction between two parallel

circular currents, the current in each being unity.
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Second Expression for M.

An expression for M, which is sometimes more convenient, is got

by making ^ = --
, in which case

r
i + r2

M = 4

To draw the Lines of Magnetic Forcefor a Circular Current.

702.] The lines of magnetic force are evidently in planes passing

through the axis of the circle, and in each of these lines the value

ofM is constant.

Calculate the value of KQ ,-=
-=

r^ from Legendre s

(/sine A3in0)

tables for a sufficient number of values of 0.

Draw rectangular axes of so and z on the paper, and, with centre

at the point x = \ a (sin + cosec d), draw a circle with radius

\ a (cosec sin 0). For all points of this circle the value of e
l
will

be sin 0. Hence, for all points of this circle,

= ^ and A =

Now A is the value of x for which the value ofM was found.

Hence, if we draw a line for which x = A, it will cut the circle

in two points having the given value of M.

Giving M a series of values in arithmetical progression, the

values of A will be as a series of squares. Drawing therefore a

series of lines parallel to zy for which x has the values found for A,

the points where these lines cut the circle will be the points where

the corresponding lines of force cut the circle.

If we put m = 4 a a, and M = nm, then

A x = n2Ke a.

We may call n the index of the line of force.

The forms of these lines are given in Fig. XVIII at the end of

this volume. They are copied from a drawing given by Sir W.
Thomson in his paper on Vortex Motion*.

703.] If the position of a circle having a given axis is regarded
as defined by 6, the distance of its centre from a fixed point on

the axis, and
,
the radius of the circle, then M, the coefficient

of induction of the circle with respect to any system whatever

* Trans. R. 8. t Edin., vol. xxv. p. 217 (1869).

X 2
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of magnets or currents, is subject to the following equation

d2M d 2M I dM
fc

x-v

da 2 db2 a da

To prove this, let us consider the number of lines of magnetic

force cut by the circle when a or b is made to vary.

(1) Let a become a+ ba, b remaining constant. During this

variation the circle, in expanding, sweeps over an annular surface

in its own plane whose breadth is 8 a.

If V is the magnetic potential at any point, and if the axis of y
be parallel to that of the circle, then the magnetic force perpen-

dV
dicular to the plane of the ring- is -7-

dy
To find the magnetic induction through the annular surface we

have to integrate

where 6 is the angular position of a point on the ring.

But this quantity represents the variation of M due to the

variation of #, or -= 8 a. Hence
da

dM ^ f
2n

a
dT

d0 (2]

(2) Let 6 become 6 + 85, a remaining constant. During this

variation the circle sweeps over a cylindric surface of radius a and

length 8.

The magnetic force perpendicular to this surface at any point is

-s- where r is the distance from the axis. Hence
dr

dM PIT dV
JQ

...=
/ a-j-dB. (3)

db JQ dr

Differentiating equation (2) with respect to a, and (3) with

respect to I, we get

d*M Pd7 7 f* d z Y .- - =
/ -j-dO+l a- r de, (4)

da 2
JQ dy J dr dy

d*M r* d^v ....

(
.

- = a-f-j-dB, (5)
oar J dr dy

-jHence ^ + - - =
/ -j-dO, (6)

da* db2
JQ dy

\dM= a-da-^y^
Transposing the last term we obtain equation (1).
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Coefficient of Induction of Two Parallel Circles when the Distance

betiveen the Arcs is Small compared with the Hadlus of either

Circle.

704.] We might deduce the value of M in this case from the

expansion of the elliptic integral already given when its modulus

is nearly unity. The following method, however, is a more direct

application of electrical principles.

First Approximation.

Let A and a be the radii of the circles, and b the distance between

their planes, then the shortest distance

between the arcs is

We have to find M19 the magnetic
induction through the circle A, due to a

unit current in a on the supposition that

r is small compared with A or a.

We shall begin by calculating the

magnetic induction through a circle in

the plane of a whose radius is a c, c being a quantity small com

pared with a (Fig. 49).

Consider a small element ds of the circle a. At a point in the

plane of the circle, distant p from the middle of ds, measured in

a direction making an angle 6 with the direction of ds, the magnetic
force due to ds is perpendicular to the plane, and equal to

s sin 6 ds.

P
2

If we now calculate the surface-integral of this force over the

space which lies within the circle a, but outside of a circle whose

centre is ds and whose radius is c, we find it

*2asin0 j

g
sin 6 ds d0 dp = {log 8 a log c 2} ds.

If c is small, the surface-integral for the part of the annular space

outside the small circle c may be neglected.

We then find for the induction through the circle whose radius

is a c, by integrating with respect to ds,

Mac = ^ -n a (logStf logc 2},

provided c is very small compared with a.

Since the magnetic force at any point, the distance of which

from a curved wire is small compared with the radius of curvature,

/*JT /*

/ /J Jc
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is nearly the same as if the wire had been straight, we can calculate

the difference between the induction through the circle whose

radius is a c, and the circle A by the formula

MaAMac = 4: 7t a {logo log r}.

Hence we find the value of the induction between A and a to be

MAa = 4 77 a (log 8 a log r 2)

approximately, provided r is small compared with a.

705.] Since the mutual induction between two windings of the

same coil is a very important quantity in the calculation of ex

perimental results, I shall now describe a method by which the

approximation to the value ofM for this case can be carried to any

required degree of accuracy.

We shall assume that the value ofM is of the form

1 j . j vu j / ri j **/ A f w rf n
where A = a -f ^i# + A2 \- A2

- \-A3 -^-}-A3
-~ + &c.,

a a, a* a*

and B = 2a + B,uo+B9 +B ^- +B^+B^ +&c.,2 # 2 & 3 2 3 2

where and + o? are the radii of the circles, and y the distance

between their planes.

We
;
have to determine the values of the coefficients A and B.

It is manifest that only even powers ofy can occur in these quan

tities, because, if the sign of y is reversed, the value of M must

remain the same.

We get another set of conditions from the reciprocal property

of the coefficient of induction, which remains the same whichever

circle we take as the primary circuit. The value ofM must there

fore remain the same when we substitute a+ % for a, and a? for a?

in the above expression.

We thus find the following conditions of reciprocity by equating

the coefficients of similar combinations of x and y,

A . A A 7?__JLJL
^3 -

&quot;&quot;&quot;^2 ~~^3&amp;gt; -3 3
~

2 -&amp;lt;
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From the general equation of M, Art. 703,

d 2M d*M 1 dM
dx2

dy* a+ x dx

we obtain another set of conditions,

O // I O J .. A
2 l&quot;

*^ 2 ~&quot;~ ~^1 3

2 + 2A = 2A2

&c.;

4 A2+ A
l
=

Solving these equations and substituting the values of the co

efficients, the series for If becomes

M log +
&C.J

O ^^ 1. I

^5 2 -p + &c
]

To find the form of a coil for which the coefficient of self-in

duction is a maximum, the total length and thickness of the

wire being given.

706.] Omitting the corrections of Art. 705, we find by Art. 673

where n is the number of windings of the wire, a is the mean

radius of the coil, and R is the geometrical mean distance of the

transverse section of the coil from itself. See Art. 690. If this

section is always similar to itself, R is proportional to its linear

dimensions, and n varies as Rz
.

Since the total length of the wire is 2 TT an, a varies inversely

as n. Hence
dn _ dR , da dR- = 2-^-, and = 2 -^- ,

n R a R
and we find the condition that L may be a maximum
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If the transverse section of the coil is circular, of radius
&amp;lt;?, then,

by Art. 6 9 2, R
Iog7 =-i,

and log = ^,

whence a = 3.22 c ;

or, the mean radius of the coil should be 3.22 times the radius of

the transverse section of the coil in order that such a coil may have

the greatest coefficient of self-induction. This result was found by
Gauss *.

If the channel in which the coil is wound has a square transverse

section, the mean diameter of the coil should be 3.7 times the side

of the square section.

*
Werl-e, Gottingen edition, 1867, vol. v. p. 622.



CHAPTER XV.

ELECTROMAGNETIC INSTRUMENTS.

Galvanometers.

707.] A GALVANOMETER is an instrument by means of which an

electric current is indicated or measured by its magnetic action.

When the instrument is intended to indicate the existence of a

feeble current, it is called a Sensitive Galvanometer.

When it is intended to measure a current with the greatest

accuracy in terms of standard units, it is called a Standard Galva

nometer.

All galvanometers are founded on the principle of Schweigger s

Multiplier, in which the current is made to pass through a wire,

which is coiled so as to pass many times round an open space,

within which a magnet is suspended, so as to produce within this

space an electromagnetic force, the intensity of which is indicated

by the magnet.
In sensitive galvanometers the coil is so arranged that its

windings occupy the positions in which their influence on the

magnet is greatest. They are therefore packed closely together
in order to be near the magnet.

Standard galvanometers are constructed so that the dimensions

and relative positions of all their fixed parts may be accurately

known, and that any small uncertainty about the position of the

moveable parts may introduce the smallest possible error into the

calculations.

In constructing a sensitive galvanometer we aim at making the

field of electromagnetic force in which the magnet is suspended as

intense as possible. In designing a standard galvanometer we
wish to make the field of electromagnetic force near the magnet
as uniform as possible, and to know its exact intensity in terms

of the strength of the current.
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On Standard Galvanometers.

708.] In a standard galvanometer the strength of the current

has to be determined from the force which it exerts on the sus

pended magnet. Now the distribution of the magnetism within

the magnet, and the position of its centre when suspended, are not

capable of being determined with any great degree of accuracy.

Hence it is necessary that the coil should be arranged so as to

produce a field of force which is very nearly uniform throughout

the whole space occupied by the magnet during its possible motion.

The dimensions of the coil must therefore in general be much larger

than those of the magnet.

By a proper arrangement of several coils the field of force within

them may be made much more uniform than when one coil only

is used, and the dimensions of the instrument may be thus reduced

and its sensibility increased. The errors of the linear measurements,

however, introduce greater uncertainties into the values of the

electrical constants for small instruments than for large ones. It

is therefore best to determine the electrical constants of small

instruments, not by direct measurement of their dimensions, but

by an electrical comparison with a large standard instrument, of

which the dimensions are more accurately known ;
see Art. 752.

In all standard galvanometers the coils are circular. The channel

in which the coil is to be wound is carefully turned. Its breadth

Fig. 50.

is made equal to some multiple, n, of the diameter of the covered

wire. A hole is bored in the side of the channel where the wire is
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to enter, and one end of the covered wire is pushed out through
this hole to form the inner connexion of the coil. The channel is

placed on a lathe, and a wooden axis is fastened to it; see Fig. 50.

The end of a long string is nailed to the wooden axis at the same

part of the circumference as the entrance of the wire. The whole

is then turned round, and the wire is smoothly and regularly laid

on the bottom of the channel till it is completely covered by n

windings. During this process the string has been wound n times

round the wooden axis, and a nail is driven into the string at the

^th turn. The windings of the string should be kept exposed

so that they can easily be counted. The external circumference

of the first layer of windings is then measured and a new layer

is begun, and so on till the proper number of layers has been

wound on. The use of the string is to count the number of

windings. If for any reason we have to unwind part of the coil,

the string is also unwound, so that we do not lose our reckoning
of the actual number of windings of the coil. The nails serve

to distinguish the number of windings in each layer.

The measure of the circumference of each layer furnishes a test

of the regularity of the winding, and enables us to calculate the

electrical constants of the coil. For if we take the arithmetic mean
of the circumferences of the channel and of the outer layer, and

then add to this the circumferences of all the intermediate layers,

and divide the sum by the number of layers, we shall obtain the

mean circumference, and from this we can deduce the mean radius

of the coil. The circumference of each layer may be measured by
means of a steel tape, or better by means of a graduated wheel

which rolls on the coil as the coil revolves in the process of

winding. The value of the divisions of the tape or wheel must

be ascertained by comparison with a straight scale.

709.] The moment of the force with which a unit current in

the coil acts upon the suspended apparatus may be expressed in

the series ^ gin Q +^ gin Q^^ + &c^

where the coefficients G refer to the coil, and the coefficients g to

the suspended apparatus, being the angle between the axis of

the coil and that of the suspended apparatus ; see Art. 700.

When the suspended apparatus is a thin uniformly and longitud

inally magnetized bar magnet of length 2 1 and strength unity,

suspended by its middle,

^i = 2^, #2 = 0, #3 =2 3
,
&c.
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The values of the coefficients for a magnet of length 2 1 magnetized
in any other way are smaller than when it is magnetized uni

formly.

710.] When the apparatus is used as a tangent galvanometer,
the coil is fixed with its plane vertical and parallel to the direction

of the earth s magnetic force. The equation of equilibrium of the

magnet is in this case

m^HcosO = my sin0 {6^+ G
2$2 Q/^ + fec.},

where mg^ is the magnetic moment of the magnet, .7? the horizontal

component of the terrestrial magnetic force, and y the strength

of the current in the coil. When the length of the magnet is

small compared with the radius of the coil the terms after the first

in G and g may be neglected, and we find

TT

y = -= cot 0.
G

i

The angle usually measured is the deflexion, b, of the magnet
which is the complement of 0, so that cot = tan 8.

The current is thus proportional to the tangent of the deviation,

and the instrument is therefore called a Tangent Galvanometer.

Another method is to make the whole apparatus moveable about

a vertical axis, and to turn it till the magnet is in equilibrium with

its axis parallel to the plane of the coil. If the angle between the

plane of the coil and the magnetic meridian is 8, the equation of

equilibrium is

&c -l &amp;gt;

whence y = -^
-

5 .sin 8.

(G^-fec.)

Since the current is measured by the sine of the deviation, the

instrument when used in this way is called a Sine Galvanometer.

The method of sines can be applied only when the current is

so steady that we can regard it as constant during the time of

adjusting the instrument and bringing the magnet to equi
librium.

711.] We have next to consider the arrangement of the coils

of a standard galvanometer.
The simplest form is that in which there is a single coil, and

the magnet is suspended at its centre.

Let A be the mean radius of the coil, its depth, rj its breadth,

and n the number of windings, the values of the coefficients are
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4
= 0, &c.

The principal correction is that arising
1 from G3

. The series

becomes G^yt (
1 | -p

^
(cos

2
J sin2

0))
V 1

The factor of correction will differ most from unity when the

magnet is uniformly magnetized and when = 0. In this case it

I
2

becomes 1 2 ~^ It vanishes when tan = 2, or when the de-
.4

flexion is tan&quot;
1
4, or 2634 . Some observers, therefore, arrange

their experiments so as to make the observed deflexion as near

this angle as possible. The best method, however, is to use a

magnet so short compared with the radius of the coil that the

correction may be altogether neglected.

The suspended magnet is carefully adjusted so that its centre

shall coincide as nearly as possible with the centre of the coil. If,

however, this adjustment is not perfect, and if the coordinates of

the centre of the magnet relative to the centre of the coil are os, y, z,

z being measured parallel to the axis of the coil, the factor of

correction is
(l 4-

3
)

When the radius of the coil is large, and the adjustment of the

magnet carefully made, we may assume that this correction is

insensible.

Gaugavn?* Arrangement.

712.] In order to get rid of the correction depending on G
3

Gaugain constructed a galvanometer in which this term was ren

dered zero by suspending the magnet, not at the centre of the

coil, but at a point on the axis at a distance from the centre equal
to half the radius of the coil. The form of G is

and, since in this arrangement B = \ A, G3
= 0.

This arrangement would be an improvement on the first form

if we could be sure that the centre of the suspended magnet is
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exactly at the point thus defined. The position of the centre of the

magnet, however, is always uncertain, and this uncertainty intro

duces a factor of correction of unknown amount depending on G2 and

of the form (l -r) ,
where z is the unknown excess of distance

^4

of the centre of the magnet from the plane of the coil. This

correction depends on the first power of
-j . Hence Gaugain s coil

with eccentrically suspended magnet is subject to far greater un

certainty than the old form.

Helmholtz s Arrangement,

713.] Helmholtz converted Gaugain s galvanometer into a trust

worthy instrument by placing a second coil, equal to the first, at

an equal distance on the other side of the magnet.

By placing the coils symmetrically on both sides of the magnet
we get rid at once of all terms of even order.

Let A be the mean radius of either coil, the distance between

their mean planes is made equal to A^ and the magnet is suspended
at the middle point of their common axis. The coefficients are

& =

G3
= 0.0512 (31

2 -
36rj

2
),

G
B
= -0.73728

where n denotes the number of windings in both coils together.

It appears from these results that if the section of the coils be

rectangular, the depth being f and the breadth
17, the value of

6r3 , as corrected for the finite size of the section, will be small, and

will vanish, if is to 77
as 36 to 31.

It is therefore quite unnecessary to attempt to wind the coils

upon a conical surface, as has been done by some instrument makers,
for the conditions may be satisfied by coils of rectangular section,

which can be constructed with far greater accuracy than coils

wound upon an obtuse cone.

The arrangement of the coils in Helmholtz s double galvanometer
is represented in Fig. 54, Art. 725.
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The field of force due to the double coil is represented in section

in Fig. XIX at the end of this volume.

Galvanometer of Four Coils.

714.] By combining four coils we may get rid of the coefficients

G2 ,
G

3 , G, G
5 ,

and G
6

. For by any symmetrical combinations

we get rid of the coefficients of even orders Let the four coils

be parallel circles belonging to the same sphere, corresponding

to angles 6, (j&amp;gt;,

TT
&amp;lt;,

and TT 0.

Let the number of windings on the first and fourth coil be ny

and the number on the second and third pn. Then the condition

that G3
= for the combination gives

ft sin2 q; (0) + ^ft sin2
$ Q9 (c/&amp;gt;)

= 0, (1)

and the condition that G5
= gives

ft sin2 6
&amp;lt;25 (6) + pn sin2 &amp;lt; Q/ (&amp;lt;#&amp;gt;)

= 0, (2)

Putting sin2 = x and sin2 $ = y^ (3)

and expressing Q3 and Q5 (Art. 698) in terms of these quantities,

the equations (1) and (2) become

= 0, (4)

= 0. (5)

Taking twice (4) from (5), and dividing by 3, we get

6#2 -7#3 + 6j?y
2-7j^ 3 = 0. (6)

Hence, from (4) and (6),

_ x 5x 4_ x2 7# 6
P=

y I=5j
=
/6=7^

and we obtain

7 a? 6 32 7x 6= f
4

Both x and y are the squares of the sines of angles and must

therefore lie between and 1 . Hence, either x is between and -f,

in which case y is between
-f-

and 1, and p between co and ^%,
or else x is between f and 1, in which case y is between and

f, andp between and |f.

Galvanometer of Three Colls.

715.] The most convenient arrangement is that in which x = 1.

Two of the coils then coincide and form a great circle of the sphere
whose radius is C. The number of windings in this compound
coil is 64. The other two coils form small circles of the sphere.
The radius of each of them is \/ C. The distance of either of
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them from the plane of the first is \/i C. The number of windings
on each of these coils is 49.

1 20
The value of G1

is ~-^-
&amp;lt;

L&amp;gt;

This arrangement of coils is represented in Fig. 51,

Fig. 51.

Since in this three-coiled galvanometer the first term after G
1

which has a finite value is (r
7 ,

a large portion of the sphere on

whose surface the coils lie forms a field of force sensibly uniform.

If we could wind the wire over the whole of a spherical surface,

as described in Art. 627, we should obtain a field of perfectly

uniform force. It is practically impossible, however, to distribute

the windings on a spherical surface with sufficient accuracy, even

if such a coil were not liable to the objection that it forms a closed

surface, so that its interior is inaccessible.

By putting the middle coil out of the circuit, and making the

current flow in opposite directions through the two side coils, we

obtain a field of force which exerts a nearly uniform action in

the direction of the axis on a magnet or coil suspended within it,

with its axis coinciding with that of the coils; see Art. 673. For

in this case all the coefficients of odd orders disappear, and since

Hence the expression for the magnetic potential near the centre

of the coil becomes

^ QGW +
&C.J
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On the Proper Thickness of the Wire of a Galvanometer, the External

Resistance being given.

716.] Let the form of the channel in which the galvanometer
coil is to be wound be given, and let it be required to determine

whether it ought to be filled with a long thin wire or with a shorter

thick wire.

Let I be the length of the wire, y its radius, y+ b the radius

of the wire when covered, p its specific resistance, g the value of

G for unit of length of the wire, and r the part of the resistance

which is independent of the galvanometer.
The resistance of the galvanometer wire is

P i
Jt= --5

ity*
The volume of the coil is

7= 4l(y + b)
2

.

The electromagnetic force is y G, where y is the strength of the

current and G gl.

If E is the electromotive force acting in the circuit whose

resistance is R + r, E = y (R+ r).

The electromagnetic force due to this electromotive force is

G

which we have to make a maximum by the variation of y and I.

Inverting the fraction, we find that

_P_J_
r

TT&amp;lt;? f gl

is to be made a minimum. Hence

pdy rdl
& - o H 75

= 0.

7T^
3

I
2

If the volume of the coil remains constant

dl dy
-y- + 2 -*- = 0.
1 y + 6

Eliminating dl and dy, we obtain

p y + b _ r

r
or

R y
Hence the thickness of the wire of the galvanometer should be

such that the external resistance is to the resistance of the gal
vanometer coil as the diameter of the covered wire to the diameter

of the wire itself.

VOL. IT. Y
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On Sensitive Galvanometers.

717.] In the construction of a sensitive galvanometer the aim

of every part of the arrangement is to produce the greatest possible

deflexion of the magnet by means of a given small electromotive

force acting between the electrodes of the coil.

The current through the wire produces the greatest effect when

it is placed as near as possible to the suspended magnet. The

magnet, however, must be left free to oscillate, and therefore there

is a certain space which must be left empty within the coil. This

defines the internal boundary of the coil.

Outside of this space each winding must be placed so as to have

the greatest possible effect on the magnet. As the number of

windings increases, the most advantageous positions become filled

up, so that at last the increased resistance of a new winding
diminishes the effect of the current in the former windings more

than the new winding itself adds to it. By making the outer

windings of thicker wire than the inner ones we obtain the greatest

magnetic effect from a given electromotive force.

718.] We shall suppose that the windings of the galvanometer
are circles, the axis of the galvanometer passing through the centres

of these circles at right angles to their planes.

Let r sin Q be the radius of one of these circles, and r cos the

distance of its centre from the centre of the galvanometer, then,

if I is the length of a portion of wire coinciding with this circle,

and y the current which flows in it, the

magnetic force at the centre of the gal

vanometer resolved in the direction of

the axis is sin Q

y -p-
If we write r2 = x2 sin 0, (1)

this expression become^ y ^x

Hence, if a surface be constructed

similar to those represented in section

in Fig. 52, whose polar equation is

r2 = x* sin 0, (2)

where a?
x
is any constant, a given length

of wire bent into the form of a circular

g arc will produce a greater magnetic

effect when it lies within this surface than when it lies outside it.
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It follows from this that the outer surface of any layer of wire

ought to have a constant value of x, for if x is greater at one place

than another a portion of wire might be transferred from the first

place to the second, so as to increase the force at the centre of the

galvanometer.

The whole force due to the coil is y G, where

G n-
the integration being extended over the whole length of the wire,

x being considered as a function of I.

719.] Let y be the radius of the wire, its transverse section will

be 7r^
2

. Let p be the specific resistance of the material of which

the wire is made referred to unit of volume, then the resistance of a

length I is ^ } and the whole resistance of the coil is

*f
/* 77

(4)

where y is considered a function of I.

Let Y2 be the area of the quadrilateral whose angles are the

sections of the axes of four neighbouring wires of the coil by a

plane through the axis, then Y 2
l is the volume occupied in the coil

by a length I of wire together with its insulating covering, and

including any vacant space necessarily left between the windings
of the coil. Hence the whole volume of the coil is

r=jYdl,
where Y is considered a function of /.

But since the coil is a figure of revolution

V 2 TT
jjr

2 sin dr dO, (6)

or, expressing r in terms of x, by equation (2),

V = 2 TT Ij a? (sin 0)* dan dB. (7)

Now 27T / (sill 0)$ dO is a numerical quantity, call it JV, then
o

where F&quot; is the volume of the interior space left for the

magnet.
Let us now consider a layer of the coil contained between the

surfaces x and x+ das.

Y 2,
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The volume of this layer is

x = Y2
dl, (9)

where dl is the length of wire in this layer.

This gives us dl in terms of dx. Substituting this in equations

(3) and (4), we find

where f/(r and f/.S represent the portions of the values of G and of

It due to this layer of the coil.

Now if E be the given electromotive force,

where r is the resistance of the external part of the circuit, in

dependent of the galvanometer, and the force at the centre is

G

si

We have therefore to make -= a maximum, by properly ad-
JK -\- T

justing the section of the wire in each layer. This also necessarily

involves a variation of Y because Y depends on y.

Let G and JRQ be the values of G and of R+ r when the given

layer is excluded from the calculation. We have then

R +dR
and to make this a maximum by the variation of the value of y for

the given layer we must have

,*

(
13

&amp;gt;

.

ay
C1

Since dx is very small and ultimately vanishes, ^- will be sensibly,
**o

and ultimately exactly, the same whichever layer is excluded, and

we may therefore regard it as constant. We have therefore, by (10)

and (11), X2 Y dy. P R + r

f +
7 3r)

=
1-^-

= constant - (14)

If the method of covering the wire and of winding it is such

that the proportion between the space occupied by the metal of
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the wire bears the same proportion to the space between the wires

whether the wire is thick or thin, then

and we must make both y and Y proportional to x, that is to say,

the diameter of the wire in any layer must be proportional to the

linear dimension of that layer.

If the thickness of the insulating covering is constant and equal

to d, and if the wires are arranged in square order,

Y=2(y + b\ (15)
and the condition is

= constant. (16)

In this case the diameter of the wire increases with the diameter

of the layer of which it forms part, but not in so high a ratio.

If we adopt the first of these two hypotheses, which will be nearly

true if the wire itself nearly fills up the whole space, then we may
put y = ax, Y= $y,
where a and ft are constant numerical quantities, and

where a is a constant depending upon the size and form of the free

space left inside the coil.

Hence, if we make the thickness of the wire vary in the same

ratio as as, we obtain very little advantage by increasing the

external size of the coil after the external dimensions have become

a large multiple of the internal dimensions.

720.] If increase of resistance is not regarded as a defect, as

when the external resistance is far greater than that of the gal

vanometer, or when our only object is to produce a field of intense

force, we may make y and Y constant. We have then

N
G =

71 (*-&quot;)&amp;gt;

-p 1 Pf/*.3 n %\~ 3

Yf&amp;gt;
Jj

*
*

where a is a constant depending on the vacant space inside the

coil. In this case the value of G increases uniformly as the

dimensions of the coil are increased, so that there is no limit to

the value of G except the labour and expense of making the coil.
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On Suspended Coils.

721.] In the ordinary galvanometer a suspended magnet is acted

on by a fixed coil. But if the coil can be suspended with sufficient

delicacy, we may determine the action of the magnet, or of another

coil on the suspended coil, by its deflexion from the position of

equilibrium.

We cannot, however, introduce the electric current into the coil

unless there is metallic connexion between the electrodes of the

battery and those of the wire of the coil. This connexion may be

made in two different ways, by the Bifilar Suspension, and by wires

in opposite directions.

The bifilar suspension has already been described in Art. 459

as applied to magnets. The arrangement of the upper part of the

suspension is shewn in Fig. 55. When applied to coils, the two

fibres are no longer of silk but of metal, and since the torsion of

a metal wire capable of supporting the coil and transmitting the

current is much greater than that of a silk fibre, it must be taken

specially into account. This suspension has been brought to great

perfection in the instruments constructed by M. Weber.

The other method of suspension is by means of a single wire

which is connected to one extremity of the coil. The other ex

tremity of the coil is connected to another wire which is made

to hang down, in the same vertical straight line with the first wire,

into a cup of mercury, as is shewn in Fig. 57, Art. 729. In certain

cases it is convenient to fasten the extremities of the two wires to

pieces by which they may be tightly stretched, care being taken

that the line of these wires passes

through the centre of gravity of the

coil. The apparatus in this form

may be used when the axis is not

vertical
;
see Fig. 53.

722.] The suspended coil may be

used as an exceedingly sensitive gal

vanometer, for, by increasing the in

tensity of the magnetic force in the

field in which it hangs, the force due

to a feeble current in the coil may
be greatly increased without adding
to the mass of the coil. The mag
netic force for this purpose may beFig. 53.

produced by means of permanent magnets, or by electromagnets
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excited by an auxiliary current, and it may be powerfully concen

trated on the suspended coil by means of soft iron armatures. Thus,

in Sir W. Thomson s recording apparatus, Fig. 53, the coil is sus

pended between the opposite poles of the electromagnets N and S,

and in order to concentrate the lines of magnetic force on the ver

tical sides of the coil, a piece of soft iron, 1), is fixed between the

poles of the magnets. This iron becoming magnetized by induc

tion, produces a very powerful field of force, in the intervals between

it and the two magnets, through which the vertical sides of the

coil are free to move, so that the coil, even when the current

through it is very feeble, is acted on by a considerable force

tending to turn it about its vertical axis.

723.] Another application of the suspended coil is to determine,

by comparison with a tangent galvanometer, the horizontal com

ponent of terrestrial magnetism.
The coil is suspended so that it is in stable equilibrium when

its plane is parallel to the magnetic meridian. A current y is

passed through the coil and causes it to be deflected into a new

position of equilibrium, making an angle with the magnetic
meridian. If the suspension is bifilar, the moment of the couple

which produces this deflexion is I1

sin 0, and this must be equal to

HyffcosO, where His the horizontal component of terrestrial mag
netism, y is the current in the coil, and g is the sum of the areas of

all the windings of the coil. Hence

F
IIy tan0.

g
If A is the moment of inertia of the coil about its axis of sus

pension, and Tthe time of a single vibration,

FT2 = v*A,

Ti^A
and we obtain Hy = - tan 0.

If the same current passes through the coil of a tangent galva

nometer, and deflects the magnet through an angle 0,

y

whereG is the principal constant ofthe tangent galvanometer, Art. 710,

From these two equations we obtain

7T tr /AGkaxid TT /A tan tan rf&amp;gt;

:

~T A/Tte^T
= T V -oT

Tliis method wa^ given by F. Kohlrausch *.

*
r&quot;ogg.,

Ann. cxxxviii, Feb. 18G9.
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724.] Sir William Thomson has constructed a single instrument

by means of which the observations required to determine H and y

may be made simultaneously by the same observer.

The coil is suspended so as to be in equilibrium with its plane

in the magnetic meridian, and is deflected from this position

when the current flows through it. A very small magnet is sus

pended at the centre of the coil, and is deflected by the current in

the direction opposite to that of the deflexion of the coil. Let the

deflexion of the coil be 6, and that of the magnet 0, then the

energy of the system is

Hy g sm9 + my G sin (0 fy Hmcos Fcos 9.

Differentiating with respect to and 0, we obtain the equa

tions of equilibrium of the coil and of the magnet respectively,

Hyg cos + my (7 cos (0 0) +F sin Q = 0,

my G cos (6 0)-fHm sin = 0.

From these equations we find, by eliminating H or y} a quadratic

equation from which y or // may be found. If m, the magnetic
moment of the suspended mag-net, is very small, we obtain the

following approximate values

j_ IT / ^&amp;lt;?sin0cos(0 0) L mG cos (6 0)

~T V g cos 6 sin
2

g cos0

77 / ^4 sin sin ^m sin0
&quot;

~T V G g cos 6 cos (00)
~~

2

7 cos^
&quot;

In these expressions G and g are the principal electric constants

of the coil, A its moment of inertia, T its time of vibration, m the

magnetic moment of the magnet, H the intensity of the horizontal

magnetic force, y the strength of the current, the deflexion of the

coil, and that of the magnet.
Since the deflexion of the coil is in the opposite direction to the

deflexion of the magnet, these values of H and y will always be

real.

Weber s Electrodynanometer.

725.] In this instrument a small coil is suspended by two wires

within a larger coil which is fixed. When a current is made to

flow through both coils, the suspended coil tends to place itself

parallel to the fixed coil. This tendency is counteracted by the

moment of the forces arising from the bifilar suspension, and it is

also affected by the action of terrestrial magnetism on the sus

pended coil.
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In the ordinary use of the instrument the planes of the two coils

are nearly at right angles to each other, so that the mutual action

of the currents in the coils may be as great as possible, and the

plane of the suspended coil is nearly at right angles to the magnetic

meridian, so that the action of terrestrial magnetism may be as

small as possible.

Let the magnetic azimuth of the plane of the fixed coil be a,

and let the angle which the axis of the suspended coil makes with

the plane of the fixed coil be Q + fi, where (3 is the value of this

angle when the coil is in equilibrium and no current is flowing,

and&quot;* 6 is the deflexion due to the current. The equation of equi

librium is

Let us suppose that the instrument is adjusted so that a and j3

are both very small, and that Hgy^ is small compared with F.

We have in this case, approximately,

(r^y1 y2 cos/3 Zfyy2 sin(a-|-/3) HGg^y^y^ G2
y
2
yl

2
y2

2
smj3

If the deflexions when the signs of yl
and y2 are changed are

as follows : e when is , and ,

then we find

F
yl y2 J (tan 0J + tan 2 tan 3 tan 4 ).

If it is the same current which flows through both coils we may put

yl y2
= y

2
,
and thus obtain the value of y.

When the currents are not very constant it is best to adopt this

method, which is called the Method of Tangents.
If the currents are so constant that we can adjust /3, the angle

of the torsion-head of the instrument, we may get rid of the

correction for terrestrial magnetism at once by the method of sines.

In this method /3 is adjusted till the deflexion is zero, so that

0=_/3.
If the signs of y1

and y2 are indicated by the suffixes of /3 as

before,

Fsin& = -Fsin P3
= Gffyl y2 + Hg y2

sin a,

F sin )32
= ^sin /34

= Gg yl y^ Rg y2
sin a,

F
and Yl y2

= -
^
(sin fa + sin fa

- sin fa
- sin fa).
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This is the method adopted by Mr. Latimer Clark in his use

of the instrument constructed by the Electrical Committee of the

British Association. We are indebted to Mr. Clark for the drawing
of the electrodynamometer in Figure 54, in which Helmholtz s

arrangement of two coils is adopted both for the fixed and for the

suspended coil*. The torsion-head of the instrument, by which

the bifilar suspension is adjusted, is represented in Fig. 55. The

Fig. 55.

equality of the tension of the suspension wires is ensured by their

being attached to the extremities of a silk thread which passes over

a wheel, and their distance is regulated by two guide-wheels, which

can be set at the proper distance. The suspended coil can be moved

vertically by means of a screw acting on the suspension-wheel,

and horizontally in two directions by the sliding pieces shewn at

the bottom of Fig. 55. It is adjusted in azimuth by means of the

torsion-screw, which turns the torsion-head round a vertical axis

(see Art. 459). The azimuth of the suspended coil is ascertained

by observing the reflexion of a scale in the mirror, shewn just
beneath the axis of the suspended coil.

* In the actual instrument, the wires conveying the current to and from the coils

are not spread out as displayed in the figure, but are kept as close together as pos
sible, so as to neutralize each other s electromagnetic action.
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The instrument originally constructed by Weber is described in

his Elektroctynamiscke Maasbeslimmungen. It was intended for the

measurement of small currents, and therefore both the fixed and

the suspended coils consisted of many windings, and the suspended

coil occupied a larger part of the space within the fixed coil than in

the instrument of the British Association, which was primarily in

tended as a standard instrument, with which more sensitive instru

ments might be compared. The experiments which he made with

it furnish the most complete experimental proof of the accuracy of

Ampere s formula as applied to closed currents, and form an im

portant part of the researches by which Weber has raised the

numerical determination of electrical quantities to a very high rank

as regards precision.

Weber s form of the electrodynarnometer, in which one coil is

suspended within another, and is acted on by a couple tending

to turn it about a vertical axis, is probably the best fitted for

absolute measurements. A method of calculating the constants of

such an arrangement is given in Art. 697.

726.] If, however, we wish, by means of a feeble current, to

produce a considerable electromagnetic force, it is better to place

the suspended coil parallel to the fixed coil, and to make it capable

of motion to or from it.

The suspended coil in Dr. Joule s

current-weigher, Fig. 56, is horizontal,

and capable of vertical motion, and the

force between it and the fixed coil is

estimated by the weight which must

be added to or removed from the coil

in order to bring it to the same relative

position with respect to the fixed coil

that it has when no current passes.

The suspended coil may also be

fastened to the extremity of the hori-

56&amp;lt; zontal arm of a torsion-balance, and

may be placed between two fixed coils, one of which attracts it,

while the other repels it, as in Fig. 57.

By arranging the coils as described in Art. 729, the force acting

on the suspended coil may be made nearly uniform within a small

distance of the position of equilibrium.

Another coil may be fixed to the other extremity of the arm

of the torsion-balance and placed between two fixed coils. If the
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two suspended coils are similar, but with the current flowing in

opposite directions, the effect of terrestrial magnetism on the

Fig. 57.

position of the arm of the torsion-balance will be completely
eliminated.

727.] If the suspended coil is in the shape of a long solenoid,

and is capable of moving parallel to its axis, so as to pass into

the interior of a larger fixed solenoid having the same axis, then,

if the current is in the same direction in both solenoids, the sus

pended solenoid will be sucked into the fixed one by a force which

will be nearly uniform as long as none of the extremities of the

solenoids are near one another.

728.] To produce a uniform longitudinal force on a small coil

placed between two equal coils of much larger dimensions, we
should make the ratio of the diameter of the large coils to the dis

tance between their planes that of 2 to \/3. If we send the same

current through these coils in opposite directions, then, in the ex

pression for
o&amp;gt;,

the terms involving odd powers of r disappear, and

since sin2 a = -f and cos2 a = f, the term involving /-
4
disappears

also, and we have

~ Q2 (0) + V &c

which indicates a nearly uniform force on a small suspended coil.

The arrangement of the coils in this case is that of the two outer

coils in the galvanometer with three coils, described at Art. 715.

See Fig. 51.
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729.] If we wish to suspend a coil between two coils placed

so near it that the distance between the mutually acting wires is

small compared with the radius of the coils, the most uniform force

is obtained by making the radius of either of the outer coils exceed

that of the middle one by
-^ of the distance between the planes
v3

of the middle and outer coils.



CHAPTER XVI.

ELECTROMAGNETIC OBSERVATIONS.

730.] So many of the measurements of electrical quantities

depend on observations of the motion of a vibrating body that we

shall devote some attention to the nature of this motion, and the

best methods of observing it.

The small oscillations of a body about a position of stable equi

librium are, in general, similar to those of a point acted on by
a force varying directly as the distance from a fixed point. In

the case of the vibrating bodies in our experiments there is also

a resistance to the motion, depending on a variety of causes, such

as the viscosity of the air, and that of the suspension fibre. In

many electrical instruments there is another cause of resistance,

namely, the reflex action of currents induced in conducting circuits

placed near vibrating magnets. These currents are induced by the

motion of the magnet, and their action on the magnet is, by the

law of Lenz, invariably opposed to its motion. This is in many
cases the principal part of the resistance.

A metallic circuit, called a Damper, is sometimes placed near

a magnet for the express purpose of damping or deadening its

vibrations. We shall therefore speak of this kind of resistance

as Damping.
In the case of slow vibrations, such as can be easily observed,

the whole resistance, from whatever causes it may arise, appears
to be proportional to the velocity. It is only when the velocity

is much greater than in the ordinary vibrations of electromagnetic
instruments that we have evidence of a resistance proportional to

the square of the velocity.

We have therefore to investigate the motion of a body subject

to an attraction varying as the distance, and to a resistance varying
as the velocity.
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731.] The following application, by Professor Tait*, of the

principle of the Hodograph, enables us to investigate this kind

of motion in a very simple manner by means of the equiangular

spiral.

Let it be required to find the acceleration of a particle which

describes a logarithmic or equiangular spiral with uniform angular

velocity o&amp;gt; about the pole.

The property of this spiral is, that the tangent PT makes with

the radius vector PS a constant angle a.

If v is the velocity at the point P, then

v . sin a = co . SP.

Hence, if we draw SP parallel to PT and equal to SP, the velocity

at P will be given both in magnitude and direction by

v =
sin a

SP.

Fig. 58.

Hence P will be a point in the hodograph. But SP is SP turned

through a constant angle TT a, so that the hodograph described

byP is the same as the original spiral turned about its pole through
an angle TT a.

The acceleration of P is represented in magnitude and direction

by the velocity of P multiplied by the same factor, -.

Hence, if we perform on SP the same operation of turning it

* Proc. R. S. Win., Dec. 16, 1867.
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through an angle IT a into the position SP ,
the acceleration of P

will be equal in magnitude and direction to

- &,
where SP is equal to SP turned through an angle 2 IT 2 a.

If we drawPF equal and parallel to SP ,
the acceleration will be

9

PF, which we may resolve into
sin2 a

J?LpS*n& -4-P*.sm*a sin^a

The first of these components is a central force towards S pro

portional to the distance.

The second is in a direction opposite to the velocity, and since

_, sin a cos aPK = 2 cos a PS = - 2 - v,
0}

this force may be written

co cos a2. v.
sin a

The acceleration of the particle is therefore compounded of two

parts, the first of which is an attractive force /ur, directed towards S,

and proportional to the distance, and the second is 2 kv, a resist

ance to the motion proportional to the velocity, where

ft)
2

,
7

cos a
a = .

,
and k = o&amp;gt; -.

sin^ a sin a

If in these expressions we make a =
,
the orbit becomes a circle,

and we have JUG
= o)

2
,
and k = 0.

Hence, if the law of attraction remains the same, ju
=

/ut ,
and

co = o) sin a,

or the angular velocity in different spirals with the same law of

attraction is proportional to the sine of the angle of the spiral.

732.] If we now consider the motion of a point which is the

projection of the moving point P on the horizontal line XT, we

shall find that its distance from S and its velocity are the horizontal

components of those of P. Hence the acceleration of this point is

also an attraction towards S, equal to
/x,

times its distance from S
f

together with a retardation equal to k times its velocity.

We have therefore a complete construction for the rectilinear

motion of a point, subject to an attraction proportional to the

distance from a fixed point, and to a resistance proportional to

the velocity. The motion of such a point is simply the horizontal

VOL. II. Z
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part of the motion of another point which moves with uniform

angular velocity in a logarithmic spiral.

733.] The equation of the spiral is

r = Ce-$ CQia
.

To determine the horizontal motion, we put

&amp;lt;

= co ^, x = a-\-r sin
&amp;lt;/&amp;gt;,

where a is the value of x for the point of equilibrium.

If we draw BSD making an angle a with the vertical, then the

tangents BX&amp;gt; DY, GZ, &c. will be vertical, and X, Y, Z, &c. will

be the extremities of successive oscillations.

734.] The observations which are made on vibrating bodies are

(1) The scale-reading at the stationary points. These are called

Elongations.

(2) The time of passing a definite division of the scale in the

positive or negative direction.

(3) The scale-reading at certain definite times. Observations of

this kind are not often made except in the case of vibrations

of long period *.

The quantities which we have to determine are

(1) The scale-reading at the position of equilibrium.

(2) The logarithmic decrement of the vibrations.

(3) The time of vibration.

To determine the Reading at the Position of Equilibrium from
Three Consecutive Elongations,

735.] Let #!, #2 ,
#3 be the observed scale-readings, corresponding

to the elongations X, Y, Z, and let a be the reading at the position

of equilibrium, S, and let r^ be the value of SB,

#
j

a = /! sin a,

$
2

a = 1\ sin a e~* cot a
,

#3 a = r
l
sina- 27rcota

.

From these values we find

(*!-) 0*8-) = 0*2-)2

, X-,

whence a =
vU\

&quot;J~
2/o &quot; *

. &O

When a*
3
does not differ much from x^ we may use as an ap

proximate formula

a = }(a?1 + 2a?a+ a?
3).

* See Gauss, Resultate des Magnetischen Vereins, 1836. II.
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To determine the Logarithmic Decrement.

736.] The logarithm of the ratio of the amplitude of a vibration

to that of the next following is called the Logarithmic Decrement.

If we write p for this ratio

L is called the common logarithmic decrement, and A. the Napierian

logarithmic decrement. It is manifest that

A = L loge 10 = 77 cot a.

Hence a = cot&quot;
1 -

77

which determines the angle of the logarithmic spiral.

In making a special determination of A we allow the body to

perform a considerable number of vibrations. If c
1
is the amplitude

of the first, and cn that of the n^ vibration,

If we suppose the accuracy of observation to be the same for

small vibrations as for large ones, then, to obtain the best value

of A, we should allow the vibrations to subside till the ratio of c
1
to

cn becomes most nearly equal to e, the base of the Napierian

logarithms. This gives n the nearest whole number to - + 1 .

A

Since, however, in most cases time is valuable, it is best to take

the second set of observations before the diminution of amplitude
has proceeded so far.

737.] In certain cases we may have to determine the position

of equilibrium from two consecutive elongations, the logarithmic

decrement being known from a special experiment. We have then

_ #l + ^2

Time of Vibration .

738.] Having determined the scale-reading of the point of equi

librium, a conspicuous mark is placed at that point of the scale,

or as near it as possible, and the times of the passage of this mark

are noted for several successive vibrations.

Let us suppose that the mark is at an unknown but very small

distance as on the positive side of the point of equilibrium, and that

z 2
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tfj
is the observed time of the first transit of the mark in the positive

direction, and
2 ,

^
3 ,

&c. the times of the following transits.

If T be the time of vibration, and P
15 P2 ,

P
3 ,

&c. the times of

transit of the true point of equilibrium,

where v
lt

v29 &c. are the successive velocities of transit, which we

may suppose uniform for the very small distance SB.

If p is the ratio of the amplitude of a vibration to the next in

succession, 1 , as x
v9 --

#T , and. = p
P

l

/2 ^l

If three transits are observed at times ti3 t
2 , 3 ,

we find

The period of vibration is therefore

2

P+1
The time of the second passage of the true point of equilibrium is

P
2
= i

(^-f 2 ^
2+O ~i /

&quot;

\z (*i
2

^2+ ^)-

Three transits are sufficient to determine these three quantities,

but any greater number may be combined by the method of least

squares. Thus, for five transits,

The time of the third transit is,

739.] The same method may be extended to a series of any
number of vibrations. If the vibrations are so rapid that the time

of every transit cannot be recorded, we may record the time of

every third or every fifth transit, taking care that the directions

of successive transits are opposite. If the vibrations continue

regular for a long time, we need not observe during the whole

time. We may begin by observing a sufficient number of transits

to determine approximately the period of vibration, T, and the time

of the middle transit, P, noting whether this transit is in the

positive or the negative direction. We may then either go on

counting the vibrations without recording the times of transit,

or we may leave the apparatus unwatched. We then observe a
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second series of transits,, and deduce the time of vibration T and

the time of middle transit P , noting the direction of this transit.

If T and T f

,
the periods of vibration as deduced from the two

sets of observations, are nearly equal, we may proceed to a more

accurate determination of the period by combining the two series

of observations.

Dividing P P by T, the quotient ought to be very nearly

an integer, even or odd according as the transits P and P are

in the same or in opposite directions. If this is not the case, the

series of observations is worthless, but if the result is very nearly

a whole number n, we divide P P by n, and thus find the mean

value of T for the whole time of swinging.

740.] The time of vibration T thus found is the actual mean

time of vibration, and is subject to corrections if we wish to deduce

from it the time of vibration in infinitely small arcs and without

damping.
To reduce the observed time to the time in infinitely small arcs,

we observe that the time of a vibration of amplitude a is in general

of the form T - T^(l + *c2
),

where K is a coefficient, which, in the case of the ordinary pendulum,
is -g^. Now the amplitudes of the successive vibrations are c,

cp~
1
f cp~

2
,

... cp
l~ n

, so that the whole time of n vibrations is

where T is the time deduced from the observations.

Hence, to find the time T^ in infinitely small arcs, we have

approximately,

n p-!
To find the time T when there is no damping, we have

sn a

741.] The equation of the rectilinear motion of a body, attracted

to a fixed point and resisted by a force varying as the velocity, is

7 n j

.^ +2*^+*(*-)=s O, (1)

where x is the coordinate of the body at the time t, and a is the

coordinate of the point of equilibrium.
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To solve this equation, let

x-a = e-Vy; (2)

then gl +^.^^o; (3)

the solution of which is

y Ccos (\/oo
2 IP t-\-d), when k is less than &amp;lt;o

; (4)

y = A+ Bt, when k is equal to o&amp;gt; ; (5)

and y C cos h
( Vk* o&amp;gt;

2
1+ a), when k is greater than o&amp;gt;. (6)

The value of a? may be obtained from that of y by equation (2).

When k is less than
o&amp;gt;,

the motion consists of an infinite series of

oscillations, of constant periodic time, but of continually decreasing

amplitude. As k increases, the periodic time becomes longer, and

the diminution of amplitude becomes more rapid.

When k (half the coefficient of resistance) becomes equal to or

greater than
o&amp;gt;, (the square root of the acceleration at unit distance

from the point of equilibrium,) the motion ceases to be oscillatory,

and during the whole motion the body can only once pass through
the point of equilibrium, after which it reaches a position of greatest

elongation, and then returns towards the point of equilibrium, con

tinually approaching, but never reaching it.

Galvanometers in which the resistance is so great that the motion

is of this kind are called dead beat galvanometers. They are useful

in many experiments, but especially in telegraphic signalling, in

which the existence of free vibrations would quite disguise the

movements which are meant to be observed.

Whatever be the values of k and
o&amp;gt;,

the value of a, the scale-

reading at the point of equilibrium, may be deduced from five scale-

readings, p, q, r, s, t, taken at equal intervals of time, by the formula

(p-2+r) (r- 2s + 1)
- (q-

On the Observation of the Galvanometer.

742.] To measure a constant current with the tangent galvano

meter, the instrument is adjusted with the plane of its coils parallel

to the magnetic meridian, and the zero reading is taken. The

current is then made to pass through the coils, and the deflexion

of the magnet corresponding to its new position of equilibrium is

observed. Let this be denoted by $.

Then, if // is the horizontal magnetic force, G the coefficient of

the galvanometer, and y the strength of the current,

(I)
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If the coefficient of torsion of the suspension fibre is rMH (see

Art. 452), we must use the corrected formula

JT

y = -(tan$+r(j[&amp;gt;sec&amp;lt;). (2)

Best Value of the Deflexion.

743.] In some galvanometers the number of windings of the

coil through which the current flows can be altered at pleasure.

In others a known fraction of the current can be diverted from the

galvanometer by a conductor called a Shunt. In either case the

value of G, the effect of a unit-current on the magnet, is made

to vary.

Let us determine the value of
,
for which a given error in the

observation of the deflexion corresponds to the smallest error of the

deduced value of the strength of the current.

Differentiating equation (1), we find

dy H , .

4 = ^ sec *-

Eliminating G,
-~ = sin 2 $. (4)

This is a maximum for a given value of y when the deflexion is

45. The value of G should therefore be adjusted till Gy is as

nearly equal to H as is possible ;
so that for strong currents it is

better not to use too sensitive a galvanometer.

On the Best Method of applying the Current.

744.] When the observer is able, by means of a key, to make or

break the connexions of the circuit at any instant, it is advisable to

operate with the key in such a way as to make the magnet arrive

at its position of equilibrium with the least possible velocity. The

following method was devised by Gauss for this purpose.

Suppose that the magnet is in its position of equilibrium, and that

there is no current. The observer now makes contact for a short

time, so that the magnet is set in motion towards its new position

of equilibrium. He then breaks contact. The force is now towards

the original position of equilibrium, and the motion is retarded. If

this is so managed that the magnet comes to rest exactly at the

new position of equilibrium,, and if the observer again makes con

tact at that instant and maintains the contact, the magnet will

remain at rest in its new position.
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If we neglect the effect of the resistances and also the inequality

of the total force acting in the new and the old positions, then,

since we wish the new force to generate as much kinetic energy

during the time of its first action as the original force destroys

while the circuit is broken, we must prolong the first action of the

current till the magnet has moved over half the distance from the

first position to the second. Then if the original force acts while

the magnet moves over the other half of its course, it will exactly

stop it. Now the time required to pass from a point of greatest

elongation to a point half way to the position of equilibrium is

one-sixth of a complete period, or one-third of a single vibration.

The operator, therefore, having previously ascertained the time

of a single vibration, makes contact for one-third of that time,

breaks contact for another third of the same time, and then makes

contact again during the continuance of the experiment. The

magnet is then either at rest, or its vibrations are so small that

observations may be taken at once, without waiting for the motion

to die away. For this purpose a metronome may be adjusted so as

to beat three times for each single vibration of the magnet.
The rule is somewhat more complicated when the resistance is of

sufficient magnitude to be taken into account, but in this case the

vibrations die away so fast that it is unnecessary to apply any
corrections to the rule.

When the magnet is to be restored to its original position, the

circuit is broken for one-third of a vibration, made again for an

equal time, and finally broken. This leaves the magnet at rest in

its former position.

If the reversed reading is to be taken immediately after the direct

one, the circuit is broken for the time of a single vibration and

then reversed. This brings the magnet to rest in the reversed

position.
Measurement

l&amp;gt;y

the First Swing.

745.] When there is no time to make more than one observation,

the current may be measured by the extreme elongation observed

in the first swing of the magnet. If there is no resistance, the

permanent deflexion $ is half the extreme elongation. If the re

sistance is such that the ratio of one vibration to the next is p, and

if is the zero reading, and d
l
the extreme elongation in the first

swing, the deflexion, &amp;lt;, corresponding to the point of equilibrium is

0Q+P0!
9

1+p
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In this way the deflexion may be calculated without waiting for

the magnet to come to rest in its position of equilibrium.

To make a Series of Observations.

746.] The best way of making a considerable number of mea

sures of a constant current is by observing three elongations while

the current is in the positive direction, then breaking contact for

about the time of a single vibration, so as to let the magnet swing
into the position of negative deflexion, then reversing the current

and observing three successive elongations on the negative side,

then breaking contact for the time of a single vibration and re

peating the observations on the positive side, and so on till a suffi

cient number of observations have been obtained. In this way the

errors which may arise from a change in the direction of the earth s

magnetic force during the time of observation are eliminated. The

operator, by carefully timing the making and breaking of contact,

can easily regulate the extent of the vibrations, so as to make them

sufficiently small without being indistinct. The motion of the

magnet is graphically represented in Fig. 59, where the abscissa

represents the time, and the ordinate the deflexion of the magnet.

If
1

. . . 6
be the observed elongations, the deflexion is given by the

equation 8 = + 2 + 0_0_20 0.

Fig. 59.

Method of Multiplication.

747.] In certain cases, in which the deflexion of the galvanometer

magnet is very small, it may be advisable to increase the visible

effect by reversing the current at proper intervals, so as to set

up a swinging motion of the magnet. For this purpose, after

ascertaining the time, T, of a single vibration of the magnet, the

current is sent in the positive direction for a time T, then in the

reversed direction for an equal time, and so on. When the motion

of the magnet has become visible, we may make the reversal of the

current at the observed times of greatest elongation.

Let the magnet be at the positive elongation ,
and let the

current be sent through the coil in the negative direction. The
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point of equilibrium is then $, and the magnet will swing to a

negative elongation 0, such that

Similarly, if the current is now made positive while the magnet
swings to

2 , P 2
= -0

1 + (p+ 1) 0,

or P
2

2
= + (P+1)

2
4&amp;gt;;

and if the current is reversed n times in succession, we find

whence we may find &amp;lt; in the form

***FTf=7*-
If ^ is a number so great that p~

n
may be neglected, the ex

pression becomes n 1

The application of this method to exact measurement requires an

accurate knowledge of p, the ratio of one vibration of the magnet
to the next under the influence of the resistances which it expe
riences. The uncertainties arising from the difficulty of avoiding

irregularities in the value of p generally outweigh the advantages
of the large angular elongation. It is only where we wish to

establish the existence of a very small current by causing it to

produce a visible movement of the needle that this method is really

valuable.

On the Measurement of Transient Currents.

748.] When a current lasts only during a very small fraction of

the time of vibration of the galvanometer-magnet, the whole quan

tity of electricity transmitted by the current may be measured by
the angular velocity communicated to the magnet during the

passage of the current, and this may be determined from the

elongation of the first vibration of the magnet.
If we neglect the resistance which damps the vibrations of the

magnet, the investigation becomes very simple.

Let y be the intensity of the current at any instant, and Q the

quantity of electricity which it transmits, then

= \ydt. (1)
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Let M be the magnetic moment, and A the moment of inertia of

the magnet and suspended apparatus,
,72/9

A
&quot;L^

+MHsm = MGy cos 0. (2)
(It

If the time of the passage of the current is very small, we may
integrate with respect to t during this short time without regarding

the change of 0, and we find

=MG cos y dt+ C = MGQ cos + C. (3)

This shews that the passage of the quantity Q produces an angular

momentum MGQ cos in the magnet, where is the value of

at the instant of passage of the current. If the magnet is initially

in equilibrium, we may make = 0.

The magnet then swings freely and reaches an elongation 1
. If

there is no resistance, the work done against the magnetic force

during this swing is MR (I cosflj.

The energy communicated to the magnet by the current is

Equating these quantities, we find

lf = 2 ^(l-cos&amp;lt;y, (4)s-IJ- a ^ *

tf6- -^t

dO /MH .

whence -=- = 2 A / - sin J 0j^ \ A
i\/rn

Qby(3). (5)A
But if T be the time of a single vibration of the magnet,

T = &quot; A/ (6)

TT m
and we find Q = - - 2 sin \ Qlt (7)

where // is the horizontal magnetic force, Q- the coefficient of the

galvanometer, T the time of a single vibration, and Ol the first-

elongation of the magnet.

749.] In many actual experiments the elongation is a small

angle, and it is then easy to take into account the effect of resist

ance, for we may treat the equation of motion as a linear equation.

Let the magnet be at rest at its position of equilibrium, let an

angular velocity v be communicated to it instantaneously, and let

its first elongation be O
l

.
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The equation of motion is

(8)

= C^secpe-^t^Pcosfa t+ p). (9)
cl-t

,j
a

When t = 0, 6 = 0, and = C(d
l
= v.

dt

When
&amp;lt;*&amp;gt;!$

+ p = -&amp;gt;

Hence 0,
= -- e

v *
cos/3. (11)

ME
JNow = or =

o&amp;gt;i sec^/3, (12)
^4

x

tan = -, wj^^, (13)
7T jt-i

Hence *
1
= , (l.)

-

which gives the first elongation in terms of the quantity of elec

tricity in the transient current, and conversely, where T^ is the

observed time of a single vibration as affected by the actual resist

ance of damping. When A. is small we may use the approximate
formula TT T

Method of Recoil.

750.] The method given above supposes the magnet to be at

rest in its position of equilibrium when the transient current is

passed through the coil. If we wish to repeat the experiment
we must wait till the magnet is again at rest. In certain cases,

however, in which we are able to produce transient currents of

equal intensity, and to do so at any desired instant, the following

method, described by Weber *, is the most convenient for making
a continued series of observations.

* Rcsullate des Magnetisckcn Vereins, 1838, p. 98.
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Suppose that we set the magnet swinging by means of a transient

current whose value is QQ . If, for brevity, we write

G V^TT2 -itan-i

Jf~T~~ e n = jSr
(
18

)

then the first elongation

^ = KQ, = ^ (say). (19)

The velocity instantaneously communicated to the magnet at

starting is jfQ
v- ^rft- (20)

When it returns through the point of equilibrium in a negative

direction its velocity will be

v
1 =ve~^. (21)

The next negative elongation will be

6
z
= -6

1
e-* = b

1
. (22)

When the magnet returns to the point of equilibrium, its velocity

will be
V2
=

V()
e- 2\ (23)

Now let an instantaneous current, whose total quantity is Q,

be transmitted through the coil at the instant when the magnet is

at the zero point. It will change the velocity v
2 into v

2 v, where

If Q is greater than Q e~ 2
^, the new velocity will be negative and

equal to

^^ VH5 &quot;BO*

The motion of the magnet will thus be reversed, and the next

elongation will be negative,

3
= K(Q Q 6~ 2A

)
= c

1
= KQ + O^^. (25)

The magnet is then allowed to come to its positive elongation

and when it again reaches the point of equilibrium a positive

current whose quantity is Q is transmitted. This throws the

magnet back in the positive direction to the positive elongation

or, calling this the first elongation of a second series of four,

#
2
= KQ (1 &amp;lt;?~&quot;

2A
)-f a^e~^

K
. (28)

Proceeding in this way, by observing two elongations + and
,

then sending a positive current and observing two elongations
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and -f ,
then sending a positive current, and so on, we obtain

a series consisting of sets of four elongations, in each of which

and

(29)

(30)

If n series of elongations have been observed, then we find the

logarithmic decrement from the equation

and Q from the equation

. (32)

Fig, 60.

The motion of the magnet in the method of recoil is graphically

represented in Fig. 60, where the abscissa represents the time, and

the ordinate the deflexion of the magnet at that time. See Art. 760.

Method of Multiplication.

751.] If we make the transient current pass every time that the

magnet passes through the zero point, and always so as to increase

the velocity of the magnet, then, if
1} 2 ,

&c. are the successive

elongations, ^ = -KQ-e~* Olf (33)

Os =-KQ-e-^e2
. (34)

The ultimate value to which the elongation tends after a great

many vibrations is found by putting n = Qn-i &amp;gt;

whence we find

(
35

)

If A is small, the value of the ultimate elongation may be large,

but since this involves a long continued experiment, and a careful

determination of A, and since a small error in A introduces a large

error in the determination of Q, this method is rarely useful for
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numerical determination, and should be reserved for obtaining- evi

dence of the existence or non-existence of currents too small to be

observed directly.

In all experiments in which transient currents are made to act on

the moving
1

magnet of the galvanometer, it is essential that the

whole current should pass while the distance of the magnet from

the zero point remains a small fraction of the total elongation.

The time of vibration should therefore be large compared with the

time required to produce the current, and the operator should have

his eye on the motion of the magnet, so as to regulate the instant

of passage of the current by the instant of passage of the magnet

through its point of equilibrium.

To estimate the error introduced by a failure of the operator to

produce the current at the proper instant, we observe that the effect

of a force in increasing the elongation varies as

and that this is a maximum when = 0. Hence the error arising

from a mistiming of the current will always lead to an under

estimation of its value, and the amount of the error may be

estimated by comparing the cosine of the phase of the vibration at

the time of the passage of the current with unity.



CHAPTER XVII.

COMPARISON OF COILS.

Experimental Determination of the Electrical Constants

of a Coil.

752.] WE have seen in Art. 717 that in a sensitive galvanometer

the coils should he of small radius, and should contain many
windings of the wire. It would he extremely difficult to determine

the electrical constants of such a coil hy direct measurement of its

form and dimensions, even if we could obtain access to every

winding of the wire in order to measure it. But in fact the

greater number of the windings are not only completely hidden

by the outer windings, but we are uncertain whether the pressure

of the outer windings may not have altered the form of the inner

ones after the coiling of the wire.

It is better therefore to determine the electrical constants of the

coil by direct electrical comparison with a standard coil whose con

stants are known.

Since the dimensions of the standard coil must be determined by
actual measurement, it must be made of considerable size, so that

the unavoidable error of measurement of its diameter or circum

ference may be as small as possible compared with the quantity

measured. The channel in which the coil is wound should be of

rectangular section, and the dimensions of the section should be

small compared with the radius of the coil. This is necessary, not

so much in order to diminish the correction for the size of the

section, as to prevent any uncertainty about the position of those

windings of the coil which are hidden by the external windings *.

*
Large tangent galvanometers are sometimes made with a single circular con

ducting ring of considerable thickness, which is sufficiently stiff to maintain its form
without any support. This is not a good plan for a standard instrument. The dis

tribution of the current within the conductor depends on the relative conductivity
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The principal constants which we wish to determine are

(1) The magnetic force at the centre of the coil due to a unit-

current. This is the quantity denoted by G
1
in Art. 700.

(2) The magnetic moment of the coil due to a unit-current.

This is the quantity ff1
.

753.] To determine G
1

. Since the coils of the working galva

nometer are much smaller than the standard coil, we place the

galvanometer within the standard coil, so that their centres coincide,

the planes of both coils being vertical and parallel to the earth s

magnetic force. We have thus obtained a differential galvanometer

one of whose coils is the standard coil, for which the value of G

is known, while that of the other coil is /, the value of which we

have to determine.

The magnet suspended in the centre of the galvanometer coil

is acted on by the currents in both coils. If the strength of the

current in the standard coil is y, and that in the galvanometer coil

y , then, if these currents flowing in opposite directions produce a

deflexion 6 of the magnet,

#tan8= G^y -Gl7 , (1)

where H is the horizontal magnetic force of the earth.

If the currents are so arranged as to produce no deflexion, we

may find
&amp;lt;?/ by the equation

&amp;lt;?/= -, e,. (
2
)

We may determine the ratio of y to y in several ways. Since the

value of G
l

is in general greater for the galvanometer than for the

standard coil, we may arrange the circuit so that the whole current

y flows through the standard coil, and is then divided so that y

flows through the galvanometer and resistance coils, the combined

resistance of which is J?13 while the remainder y y flows through
another set of resistance coils whose combined resistance is E .

of its various parts. Hence any concealed flaw in the continuity of the metal may
cause the main stream of electricity to flow either close to the outside or close to the

inside of the circular ring. Thus the true path of the current becomes uncertain.

Besides this, when the current flows only once round the circle, especial care is

necessary to avoid any action on the suspended magnet due to the current on its

way to or from the circle, because the current in the electrodes is equal to that in

the circle. In the construction of many instruments the action of this part of the
current seems to have been altogether lost sight of.

The most perfect method is to make one of the electrodes in the form of a metal

tube, and the other a wire covered with insulating material, and placed inside the
tube and concentric with it. The external action of the electrodes when thus arranged
is zero, by Art. 683.

VOL. II. A a
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We have then, by Art. 276,

or = . (4)
V H

-i

and G;= ^+^ Gl . (5)
tf2

If there is any uncertainty about the actual resistance of the

galvanometer coil (on account, say, of an uncertainty as to its tem

perature) we may add resistance coils to it, so that the resistance of

the galvanometer itself forms but a small part of Hlt and thus

introduces but little uncertainty into the final result.

754.] To determine glt the magnetic moment of a small coil due

to a unit-current flowing through it, the magnet is still suspended

at the centre of the standard coil, but the small coil is moved

parallel to itself along the common axis of both coils, till the same

current, flowing in opposite directions round the coils, no longer

deflects the magnet. If the distance between the centres of the

coils is r, we have now

=24 + 3^+4^f +&c. (
6

)

^.O ^.4
&amp;gt;O

By repeating the experiment with the small coil on the opposite

side of the standard coil, and measuring the distance between the

positions of the small coil, we eliminate the uncertain error in the

determination of the position of the centres of the magnet and

of the small coil, and we get rid of the terms in g2) g, &c.

If the standard coil is so arranged that we can send the current

through half the number of windings, so as to give a different value

to G19 we may determine a new value of r, and thus, as in Art. 454,

we may eliminate the term involving g^ .

It is often possible, however, to determine gz by direct measure

ment of the small coil with sufficient accuracy to make it available

in calculating the value of the correction to be applied to g^ in

the equation i

where #3
= -ir0a (6

2
-f 3f

2
2j

2
), by Art. 700.

o

Comparison of Coefficients of Induction.

755.] It is only in a small number of cases that the direct

calculation of the coefficients of induction from the form and
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position of the circuits can be easily performed. In order to attain

a sufficient degree of accuracy, it is necessary that the distance

between the circuits should be capable of exact measurement.

But when the distance between the circuits is sufficient to prevent

errors of measurement from introducing large errors into the result,

the coefficient of induction itself is necessarily very much reduced

in magnitude. Now for many experiments it is necessary to make

the coefficient of induction large, and we can only do so by bringing

the circuits close together, so that the method of direct measure

ment becomes impossible, and, in order to determine the coefficient

of induction, we must compare it with that of a pair of coils ar

ranged so that their coefficient may be obtained by direct measure

ment and calculation.

This may be done as follows :

Let A and a be the standard

pair of coils, B and b the coils to

be compared with them. Con

nect A and B in one circuit, and

place the electrodes of the gal

vanometer, G, at P and Q, so

that the resistance of PAQ is

R, and that of QBP is S, K
being the resistance of the gal

vanometer. Connect a and b in

one circuit with the battery. Fig . 51.

Let the current in A be
,

that in B, y&amp;gt;

and that in the galvanometer, sc y, that in the battery
circuit being y.

Then, if M
l

is the coefficient of induction between A and , and

M
2
that between B and b, the integral induction current through

the galvanometer at breaking the battery circuit is

x-y - y
R&quot; S

1 +
(8)

.

R
&quot;&quot;

8

By adjusting the resistances R and 8 till there is no current

through the galvanometer at making or breaking the galvanometer

circuit, the ratio ofM2 to M
1 may be determined by measuring that

of S to R.

A a 2
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Comparison of a Coefficient of Self-induction with a Coefficient of

Mutual Induction .

756.] In the branch AF of Wheatstone s Bridge let a coil be

inserted, the coefficient of self-induc

tion of which we wish to find. Let

us call it L.

In the connecting wire between A
and the battery another coil is inserted.

The coefficient of mutual induction be

tween this coil and the coil in AF
is M. It may be measured by the

method described in Art. 755.

If the current from A to F is #, and

.p. 62
that from A to H is ^, that from Z
to A, through B, will be oc+y. The

external electromotive force from A to F is

The external electromotive force along AH is

A-H=Qy. (10)

If the galvanometer placed between F and H indicates no current,

either transient or permanent, then by (9) and (10), since I1 F=0,

whence L = -
(l + ~) M. (13)

^o

Since L is always positive, M must be negative, and therefore the

current must flow in opposite directions through the coils placed

in P and in B. In making the experiment we may either begin

by adjusting the resistances so that

PS=QR, (14)

which is the condition that there may be no permanent current,

and then adjust the distance between the coils till the galvanometer
ceases to indicate a transient current on making and breaking the

battery connexion
; or, if this distance is not capable of adjustment,

we may get rid of the transient current by altering the resistances

Q and S in such a way that the ratio of Q to S remains constant.

If this double adjustment is found too troublesome, we may adopt
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a third method. Beginning with an arrangement in which the

transient current due to self-induction is slightly in excess of that

due to mutual induction, we may get rid of the inequality by in

serting a conductor whose resistance is W between A and Z. The

condition of no permanent current through the galvanometer is not

affected by the introduction of W. We may therefore get rid of

the transient current by adjusting the resistance of W alone. When
this is done the value of L is

. (15).

Comparison of the Coefficients of Self-induction of Two Coils.

757.] Insert the coils in two adjacent branches of Wheatstone s

Bridge. Let L and N be the coefficients of self-induction of the

coils inserted in P and in R respectively, then the condition of no

galvanometer current is

(P* +l^)8y=Qy(X* + N%), (16)

whence PS = QJR, for no permanent current, (17)

and =
,

for no transient current. (18)
JT J-l/

Hence, by a proper adjustment of the resistances, both the per

manent and the transient current can be got rid of, and then

the ratio of L to N can be determined by a comparison of the

resistances.
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ELECTROMAGNETIC UNIT OF RESISTANCE.

On the Determination of the Resistance of a Coil in Electro

nic Measure.

758.] THE resistance of a conductor is defined as the ratio of the

numerical value of the electromotive force to that of the current

which it produces in the conductor. The determination of the

value of the current in electromagnetic measure can be made by
means of a standard galvanometer, when we know the value of the

earth s magnetic force. The determination of the value of the

electromotive force is more difficult, as the only case in which we
can directly calculate its value is when it arises from the relative

motion of the circuit with respect to a known magnetic system.

759.] The first determination of the resistance of a wire in

electromagnetic measure was made by Kirchhoff*. He employed
two coils of known form, A1

and A^ and calculated their coefficient

of mutual induction from the geo
metrical data of their form and

position. These coils were placed

in circuit with a galvanometer, 6r,

and a battery, B, and two points

of the circuit, P, between the coils,

and Q, between the battery and

galvanometer, were joined by the

wire whose resistance, R, was to be measured.

When the current is steady it is divided between the wire and

the galvanometer circuit, and produces a certain permanent de

flexion of the galvanometer. If the coil A
1

is now removed quickly

* *

Bestimmong Her Constanten von welcher die Intensitat inducirter elektrischer
Strome abhangt. Pogg. Ann., Ixxvi (April 1849).
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from A
2
and placed in a position in which the coefficient of mutual

induction between Al
and A.2 is zero (Art. 538), a current of induc

tion is produced in both circuits, and the galvanometer needle

receives an impulse which produces a certain transient deflexion.

The resistance of the wire, R, is deduced from a comparison

between the permanent deflexion, due to the steady current, and the

transient deflexion, due to the current of induction.

Let the resistance of QGAl
P be K, of PA2 Q, B, and of PQ, R.

Let Lj M and N be the coefficients of induction of A
l
and A

2
.

Let x be the current in (7, and y that in J3, then the current

from P to Q is x y.

Let E be the electromotive force of the battery, then

)= o, (l)

Rx+ (B+ R}y + -j- (Mx+ Ny} = E. (2)

When the currents are constant, and everything at rest,

(K+R}x-Ry = 0. (3)

IfM now suddenly becomes zero on account of the separation of

A
1
from A2 , then, integrating with respect to t,

J /
&quot;&quot;

\ /

Mx = lEdt = 0. (5)

whence x = M
(B \. R] ^ ml^2 (

6
)

Substituting the value ofy in terms of x from (3), we find

6
=

~R (B+R)(K+R}-R?
(7)

When, as in Kirchhoff s experiment, both B and K are large

compared with R, this equation is reduced to

x _M
~x~~R

Of these quantities, x is found from the throw of the galvanometer
due to the induction current. See Art. 768. The permanent cur

rent, at, is found from the permanent deflexion due to the steady

current; see Art. 746. M is found either by direct calculation

from the geometrical data, or by a comparison with a pair of coils,

for which this calculation has been made; see Art. 755. From
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these three quantities R can be determined in electromagnetic mea

sure.

These methods involve the determination of the period of vibra

tion of the galvanometer magnet, and of the logarithmic decrement

of its oscillations.

Weber s Method by Transient Currents*.

760.] A coil of considerable size is mounted on an axle, so as to

be capable of revolving about a vertical diameter. The wire of this

coil is connected with that of a tangent galvanometer so as to form

a single circuit. Let the resistance of this circuit be R. Let the

large coil be placed with its positive face perpendicular to the

magnetic meridian, and let it be quickly turned round half a revo

lution. There will be an induced current due to the earth s mag
netic force, and the total quantity of electricity in this current in

electromagnetic measure will be

where
ffl

is the magnetic moment of the coil for unit current, which

in the case of a large coil may be determined directly, by mea

suring the dimensions of the coil, and calculating the sum of the

areas of its windings. If is the horizontal component of terrestrial

magnetism, and R is the resistance of the circuit formed by the

coil and galvanometer together. This current sets the magnet of

the galvanometer in motion.

If the magnet is originally at rest, and if the motion of the coil

occupies but a small fraction of the time of a vibration of the

magnet, then, if we neglect the resistance to the motion of the

magnet, we have, by Art. 748,

// T
&amp;lt;2=^-2sinU (2)

Cr 7T

where G is the constant of the galvanometer, T is the time of

vibration of the magnet, and 6 is the observed elongation. From
these equations we obtain

* = *
15& .

(3)

The value of H does not appear in this result, provided it is the

same at the position of the coil and at that of the galvanometer.
This should not be assumed to be the case, but should be tested by

comparing the time of vibration of the same magnet, first at one of

these places and then at the other.

* ElcU. Moots*. ; or Pogg., Ann. Ixxxii, 337 (1851).
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761.] To make a series of observations Weber began with the

coil parallel to the magnetic meridian. He then turned it with its

positive face north, and observed the first elongation due to the

negative current. He then observed the second elongation of the

freely swinging magnet, and on the return of the magnet through
the point of equilibrium he turned the coil with its positive face

south. This caused the magnet to recoil to the positive side. The

series Was continued as in Art. 750, and the result corrected for

resistance. In this way the value of the resistance of the combined

circuit of the coil and galvanometer was ascertained.

In all such experiments it is necessary, in order to obtain suffi

ciently large deflexions, to make the wire of copper, a metal which,

though it is the best conductor, has the disadvantage of altering

considerably in resistance with alterations of temperature. It is

also very difficult to ascertain the temperature of every part of the

apparatus. Hence, in order to obtain a result of permanent value

from such an experiment, the resistance of the experimental circuit

should be compared with that of a carefully constructed resistance-

coil, both before and after each experiment.

Weber s Method by observing the Decrement of the Oscillations

of a Magnet.

762.] A magnet of considerable magnetic moment is suspended

at the centre of a galvanometer coil. The period of vibration and

the logarithmic decrement of the oscillations is observed, first with

the circuit of the galvanometer open, and then with the circuit

closed, and the conductivity of the galvanometer coil is deduced

from the effect which the currents induced in it by the motion of

the magnet have in resisting that motion.

If T is the observed time of a single vibration, and A. the Na

pierian logarithmic decrement for each single vibration, then, if we

write ,,

o&amp;gt;
=

^&amp;gt;

(1)

and a = ~ , (2)

the equation of motion of the magnet is of the form

$ = Ce- at
cos(o&amp;gt;t+ (3}. (3)

This expresses the nature of the motion as determined by observa

tion. We must compare this with the dynamical equation of

motion.
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Let M be the coefficient of induction between the galvanometer
coil and the suspended magnet. It is of the form

M = Giffi Qi TO + $222 $2W + &c., (4)

where G1} G2 , &c. are coefficients belonging to the coil, ffl3 gz , &c.

to the magnet, and Ql (0), Q.2 (Q), &c., are zonal harmonics. of the

angle between the axes of the coil and the magnet. See Art. 700.

By a proper arrangement of the coils of the galvanometer, and by

building up the suspended magnet of several magnets placed side by
side at proper distances, we may cause all the terms ofM after the

first to become insensible compared with the first. If we also put

(f&amp;gt;

= --
0, we may write

M = Gm sin$, (5)

where G is the principal coefficient of the galvanometer, m is the

magnetic moment of the magnet, and $ is the angle between the

axis of the magnet and the plane of the coil, which, in this ex

periment, is always a small angle.

If I/ is the coefficient of self-induction of the coil, and R its

resistance, and y the current in the coil,

0, (6)

or L~ -fj^y-f mcos( - = 0. (7)
U/t Cit

The moment of the force with which the current y acts on the

magnet is y r , or Gmy cos $. The angle &amp;lt;/&amp;gt;

is in this experiment
ct cp

so small, that we may suppose cos &amp;lt;
= 1 .

Let us suppose that the equation of motion of the magnet when
the circuit is broken is

where A is the moment of inertia of the suspended apparatus, S~-
Cvv

expresses the resistance arising from the viscosity of the air and
of the suspension fibre, &c., and

C&amp;lt;$&amp;gt; expresses the moment of the

force arising from the earth s magnetism, the torsion of the sus

pension apparatus, &c., tending to bring the magnet to its position
of equilibrium.

The equation of motion, as affected by the current, will be

A +sc
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To determine the motion of the magnet, we have to combine this

equation with (7) and eliminate y. The result is

a linear differential equation of the third order.

We have no occasion, however, to solve this equation, because

the data of the problem are the observed elements of the motion

of the magnet, and from these we have to determine the value

of E.

Let a and o) be the values of a and o&amp;gt; in equation (2) when the

circuit is broken. In this case R is infinite, and the equation is

reduced to the form (8). We thus find

B=2AaQ , C=A(a^ + ^). (11)

Solving equation (10) for R, and writing

we find

o),
where i=V I, (12)

Since the value of co is in general much greater than that of a,

the best value of R is found by equating the terms in i
o&amp;gt;,

2A(a a
)

a-a
We may also obtain a value of R by equating the terms not

involving i, but as these terms are small, the equation is useful

only as a means of testing the accuracy of the observations. From

these equations we find the following testing equation,

(co
2

-o&amp;gt;
2
)

2
}. (15)

Since LAv? is very small compared with G2m2
, this equation

a 2-a2
; (16)

and equation (14) may be written

E= GV_ L
2A(a-a )

r

In this expression G may be determined either from the linear

measurement of the galvanometer coil, or better, by comparison
with a standard coil, according to the method of Art. 753. A is

the moment of inertia of the magnet and its suspended apparatus,

which is to be found by the proper dynamical method.
o&amp;gt;,

&&amp;gt; , a

and a
,
are given by observation.
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The determination of the value of m, the magnetic moment of

the suspended magnet, is the most difficult part of the investigation,

because it is affected by temperature, by the earth s magnetic force,

and by mechanical violence, so that great care must be taken to

measure this quantity when the magnet is in the very same circum

stances as when it is vibrating.

The second term of R, that which involves L, is of less import

ance, as it is generally small compared with the first term. The

value of L may be determined either by calculation from the known

form of the coil, or by an experiment on the extra-current of in

duction. See Art. 756.

Thomson s Method by a Revolving Coil.

763.] This method was suggested by Thomson to the Committee

of the British Association on Electrical Standards, and the ex

periment was made by M. M. Balfour Stewart, Fleeming Jenkin,

and the author in 1863 *.

A circular coil is made to revolve with uniform velocity about a

vertical axis. A small magnet is suspended by a silk fibre at the

centre of the coil. An electric current is induced in the coil by
the earth s magnetism, and also by the suspended magnet. This

current is periodic, flowing in opposite directions through the wire

of the coil during different parts of each revolution, but the effect of

the current on the suspended magnet is to produce a deflexion from

the magnetic meridian in the direction of the rotation of the coil.

764.] Let H be the horizontal component of the earth s mag
netism.

Let y be the strength of the current in the coil.

g the total area inclosed by all the windings of the wire.

G the magnetic force at the centre of the coil due to unit-

current.

L the coefficient of self-induction of the coil.

M the magnetic moment of the suspended magnet.
the angle between the plane of the coil and the magnetic

meridian.

&amp;lt;/&amp;gt;

the angle between the axis of the suspended magnet and

the magnetic meridian

A the moment of inertia of the suspended magnet.
MHr the coefficient of torsion of the suspension fibre,

a the azimuth of the magnet when there is no torsion.

R the resistance of the coil.

* See Report of (he British Association for 1863.



765.] THOMSON S METHOD. 365

The kinetic energy of the system is

T=\Ly* -Hgy sm6-MGy sin (0 &amp;lt;f&amp;gt;)

+ MHcoaQ+b Atf&amp;gt;. (1 )

The first term, Jrj&y
2

, expresses the energy of the current as

depending on the coil itself. The second term depends on the

mutual action of the current and terrestrial magnetism, the third

on that of the current and the magnetism of the suspended magnet,
the fourth on that of the magnetism of the suspended magnet and

terrestrial magnetism, and the last expresses the kinetic energy of

the matter composing the magnet and the suspended apparatus
which moves with it.

The potential energy of the suspended apparatus arising from the

torsion of the fibre is

**-S*0. (2)

The electromagnetic momentum of the current is

clT
(6-&amp;lt;t)), (3)

dy
and if R is the resistance of the coil, the equation of the current is

or, since 6 = tot, (5)

&amp;lt;p)cos(0(})). (6)

765.] It is the result .alike of theory and observation that
&amp;lt;,

the

azimuth of the magnet, is subject to two kinds of periodic variations.

One of these is a free oscillation, whose periodic time depends on

the intensity of terrestrial magnetism, and is, in the experiment,
several seconds. The other is a forced vibration whose period is

half that of the revolving coil, and whose amplitude is, as we shall

see, insensible. Hence, in determining y, we may treat $ as

sensibly constant.

We thus find

y = j/^tftf (Hcos6+ La&amp;gt; sin 0) (7)

(

(8)

+ Ce *
. (9)

The last term of this expression soon dies away when the rota

tion is continued uniform.
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The equation of motion of the suspended magnet is

d*T _dT_ f!F_

d&amp;lt;j&amp;gt;

dt dfy dcf)

whence A$ MGy cos (0 c/&amp;gt;)-f
Jf# (sin c/&amp;gt;

+ r
(c/&amp;gt; a))

= 0. (11)

Substituting the value of y, and arranging the terms according

to the functions of multiples of 6, then we know from observation

that

&amp;lt;

r=
c/&amp;gt;

-f be~
lt cos nt+ c cos 2 (0 /3), (12)

where
c/&amp;gt;

is the mean value of
c/&amp;gt;,

and the second term expresses

the free vibrations gradually decaying, and the third the forced

vibrations arising from the variation of the deflecting current.

TT~\T

The value of n in equation (12) is j- secc/&amp;gt;.
That of c, the am-

A.

n2

plitude of the forced vibrations, is J 3- sin
c/&amp;gt;. Hence, when the

co

coil makes many revolutions during one free vibration of the magnet,
the amplitude of the forced vibrations of the magnet is very small,

and we may neglect the terms in (11) which involve c.

Beginning with the terms in (11) which do not involve 0, we find

MHGgu /z&amp;gt;

J v
5 CR cos cf&amp;gt; -f L co sin d&amp;gt; ) H------*-r- R
2 ^

(cl&amp;gt; -a)). (13)

Remembering that is small, and that L is generally small

compared with
Gg&amp;gt;

we find as a sufficiently approximate value of R,

766.] The resistance is thus determined in electromagnetic mea

sure in terms of the velocity co and the deviation
&amp;lt;/&amp;gt;.

It is not

necessary to determine H, the horizontal terrestrial magnetic force,

provided it remains constant during the experiment.
M

To determine we must make use of the suspended magnet to

deflect the magnet of the magnetometer, as described in Art. 454.

In this experiment M should be small, so that this correction be

comes of secondary importance.
For the other corrections required in this experiment see the

Report of tlie British Associationfor 1863, p. 168.
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Joule s Calorimetric Method.

767.] The heat generated by a current y in passing through a

conductor whose resistance is R is, by Joule s law, Art. 242.

(1)

where / is the equivalent in dynamical measure of the unit of heat

employed.

Hence, if R is constant during the experiment, its value is

(2)

This method of determining R involves the determination of ^,

the heat generated by the current in a given time, and of y
2

,
the

square of the strength of the current.

In Joule s experiments *, h was determined by the rise of tem

perature of the water in a vessel in which the conducting wire was

immersed. It was corrected for the effects of radiation, &c. by
alternate experiments in which no current was passed through the

wire.

The strength of the current was measured by means of a tangent

galvanometer. This method involves the determination of the

intensity of terrestrial magnetism, which was done by the method

described in*Art. 457. These measurements were also tested by the

current weigher, described in Art. 726, which measures y
2
directly.

The most direct method of measuring / y
2 dt

y however, is to pass

the current through a self-acting electrodynamometer (Art. 725)
with a scale which gives readings proportional to y

2
,
and to make

the observations at equal intervals of time, which may be done

approximately by taking the reading at the extremities of every
vibration of the instrument during the whole course of the experi

ment.
*

Report of the British Association for 1867.



CHAPTER XIX.

COMPARISON OF THE ELECTROSTATIC WITH THE ELECTRO

MAGNETIC UNITS.

Determination of the Number of Electrostatic Units of Electricity

in one Electromagnetic Unit.

768.] THE absolute magnitudes of the electrical units in both

systems depend on the units of length, time, and mass which we

adopt, and the mode in which they depend on these units is

different in the two systems, so that the ratio of the electrical units

will be expressed by a different number, according to the different

units of length and time.

It appears from the table of dimensions, Art. 628, that the

number of electrostatic units of electricity in one electromagnetic

unit varies inversely as the magnitude of the unit of length, and

directly as the magnitude of the unit of time which we adopt.

If, therefore, we determine a velocity which is represented nu

merically by this number, then, even if we adopt new units of

length and of time, the number representing this velocity will still

be the number of electrostatic units of electricity in one electro

magnetic unit, according to the new system of measurement.

This velocity, therefore, which indicates the relation between

electrostatic and electromagnetic phenomena, is a natural quantity
of definite magnitude, and the measurement of this quantity is one

of the most important researches in electricity.

To shew that the quantity we are in search of is really a velocity,

we may observe that in the case of two parallel currents the attrac

tion experienced by a length a of one of them is, by Art. 686,

F=
o

where (7, C are the numerical values of the currents in electromag-
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netic measure, and I the distance between them. If we make
b = 2 a, then p _ CC\

Now the quantity of electricity transmitted by the current C in

the time t is Ct in electromagnetic measure, or nCt in electrostatic

measure, if n is the number of electrostatic units in one electro

magnetic unit.

Let two small conductors be charged with the quantities of

electricity transmitted by the two currents in the time t, and

placed at a distance r from each other. The repulsion between

them will be CC n 2
t
2

F =
72-

Let the distance r be so chosen that this repulsion is equal to the

attraction of the currents, then

Hence r = nt-,

or the distance r must increase with the time t at the rate n.

Hence n is a velocity, the absolute magnitude of which is the

same, whatever units we assume.

769.] To obtain a physical conception of this velocity, let us ima

gine a plane surface charged with electricity to the electrostatic sur

face-density &amp;lt;r,

and moving in its own plane with a velocity v. This

moving electrified surface will be equivalent to an electric current-

sheet, the strength of the current flowing through unit of breadth

of the surface being- av in electrostatic measure, or - av in elec-
n

tromagnetic measure, if n is the number of electrostatic units in

one electromagnetic unit. If another plane surface, parallel to the

first, is electrified to the surface-density o- ,
and moves in the same

direction with the velocity v , it will be equivalent to a second

current-sheet.

The electrostatic repulsion between the two electrified surfaces is,

by Art. 124, 2 ir&amp;lt;r&amp;lt;r for every unit of area of the opposed surfaces.

The electromagnetic attraction between the two current-sheets

is, by Art. 653, 2 ituu for every unit of area, u and u being the

surface-densities of the currents in electromagnetic measure.

But u = - (TV. and u = -
&amp;lt;/v

,
so that the attraction is

n n

,vv
27TO-0- jr.

n 2

VOL. II. B b
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The ratio of the attraction to the repulsion is equal to that of

vv
f
to n2

. Hence, since the attraction and the repulsion are quan
tities of the same kind, n must be a quantity of the same kind as v,

that is, a velocity. If we now suppose the velocity of each of the

moving planes to be equal to %, the attraction will be equal to the

repulsion, and there will be no mechanical action between them.

Hence we may define the ratio of the electric units to be a velocity,

such that two electrified surfaces, moving in the same direction

with this velocity, have no mutual action. Since this velocity is

about 288000 kilometres per second, it is impossible to make the

experiment above described.

770.] If the electric surface-density and the velocity can be made

so great that the magnetic force is a measurable quantity, we may
at least verify our supposition that a moving electrified body is

equivalent to an electric current.

It appears from Art. 57 that an electrified surface in air would

begin to discharge itself by sparks when the electric force 2 TTO-

reaches the value 130. The magnetic force due to the current-sheet

v
is 2 TTCT - The horizontal magnetic force in Britain is about 0.175.

n

Hence a surface electrified to the highest degree, and moving with

a velocity of 100 metres per second, would act on a magnet with a

force equal to about one-four-thousandth part of the earth s hori

zontal force, a quantity which can be measured. The electrified

surface may be that of a non-conducting disk revolving in the plane

of the magnetic meridian, and the magnet may be placed close to

the ascending or descending portion of the disk, and protected from

its electrostatic action by a screen of metal. I am not aware that

this experiment has been hitherto attempted.

I. Comparison of Units of Electricity.

771.] Since the ratio of the electromagnetic to the electrostatic

unit of electricity is represented by a velocity, we shall in future

denote it by the symbol v. The first numerical determination of

this velocity was made by Weber and Kohlrausch *.

Their method was founded on the measurement of the same

quantity of electricity, first in electrostatic and then in electro

magnetic measure.

The quantity of electricity measured was the charge of a Leyden

jar. It was measured in electrostatic measure as the product of the

*
Elektrodynamische Maasbestimmungen ; and Pogg. Ann. xcix, (Aug. 10, 1856.)
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capacity of the jar into the difference of potential of its coatings.

The capacity of the jar was determined by comparison with that of

a sphere suspended in an open space at a distance from other

bodies. The capacity of such a sphere is expressed in electrostatic

measure by its radius. Thus the capacity of the jar may be found

and expressed as a certain length. See Art. 227.

The difference of the potentials of the coatings of the jar was mea

sured by connecting the coatings with the electrodes of an electro

meter, the constants of which were carefully determined, so that the

difference ofthe potentials, U, became known in electrostatic measure.

By multiplying this by c, the capacity of the jar, the charge of

the jar was expressed in electrostatic measure.

To determine the value of the charge in electromagnetic measure,

the jar was discharged through the coil of a galvanometer. The

effect of the transient current on the magnet of the galvanometer
communicated to the magnet a certain angular velocity. The

magnet then swung round to a certain deviation, at which its

velocity was entirely destroyed by the opposing action of the

earth s magnetism.

By observing the extreme deviation of the magnet the quantity

of electricity in the current may be determined in electromagnetic

measure, as in Art. 748, by the formula

// T
Q =

-^
- 2 sin

i&amp;lt;9,

where Q is the quantity of electricity in electromagnetic measure.

We have therefore to determine the following quantities :

U, the intensity of the horizontal component of terrestrial mag
netism ;

see Art. 456.

G, the principal constant of the galvanometer; see Art. 700.

T, the time of a single vibration of the magnet ;
and

6, the deviation due to the transient current.

The value of v obtained by MM. Weber and Kohlrausch was

v 310740000 metres per second.

The property of solid dielectrics, to which the name of Electric

Absorption has been given, renders it difficult to estimate correctly

the capacity of a Leyden jar. The apparent capacity varies ac

cording to the time which elapses between the charging or dis

charging of the jar and the measurement of the potential, and the

longer the time the greater is the value obtained for the capacity of

the jar.

B b 2
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Hence, since the time occupied in obtaining
1 a reading of the

electrometer is large in comparison with the time during which the

discharge through the galvanometer takes place, it is probable that

the estimate of the discharge in electrostatic measure is too high,

and the value of v, derived from it, is probably also too high.

II. v expressed as a Resistance,

772. J Two other methods for the determination of v lead to an

expression of its value in terms of the resistance of a given con

ductor, which, in the electromagnetic system, is also expressed as a

velocity.

In Sir William Thomson s form of the experiment, a constant

current is made to flow through a wire of great resistance. The

electromotive force which urges the current through the wire is mea

sured electrostatically by connecting the extremities of the wire with

the electrodes of an absolute electrometer, Arts. 217, 218. The

strength of the current in the wire is measured in electromagnetic

measure by the deflexion of the suspended coil of an electrodyna-

mometer through which it passes, Art. 725. The resistance of the

circuit is known in electromagnetic measure by comparison with a

standard coil or Ohm. By multiplying the strength of the current

by this resistance we obtain the electromotive force in electro

magnetic measure, and from a comparison of this with the electro

static measure the value of v is obtained.

This method requires the simultaneous determination of two

forces, by means of the electrometer and electrodynamometer re

spectively, and it is only the ratio of these forces which appears in

the result.

773.] Another method, in which these forces, instead of being

separately measured, are directly opposed to each other, was em

ployed by the present writer. The ends of the great resistance coil

are connected with two parallel disks, one of which is moveable.

The same difference of potentials which sends the current through
the great resistance, also causes an attraction between these disks.

At the same time, an electric current which, in the actual experi

ment, was distinct from the primary current, is sent through two

coils, fastened, one to the back of the fixed disk, and the other to

the back of the moveable disk. The current flows in opposite

directions through these coils, so that they repel one another. By
adjusting the distance of the two disks the attraction is exactly

balanced by the repulsion, while at the same time another observer,
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by means of a differential galvanometer with shunts, determines

the ratio of the primary to the secondary current.

In this experiment the only measurement which must he referred

to a material standard is that of the great resistance, which must

be determined in absolute measure by comparison with the Ohm.

The other measurements are required only for the determination of

ratios, and may therefore be determined in terms of any arbitrary

unit.

Thus the ratio of the two forces is a ratio of equality.

The ratio of the two currents is found by a comparison of resist

ances when there is no deflexion of the differential galvanometer.

The attractive force depends on the square of the ratio of the

diameter of the disks to their distance.

The repulsive force depends on the ratio of the diameter of the

coils to their distance.

The value of v is therefore expressed directly in terms of the

resistance of the great coil, which is itself compared with the Ohm.
The value oft?, as found by Thomson s method, was 28.2 Ohms* ;

by Maxwell s, 28.8 Ohmsf.

III. Electrostatic Capacity in Electromagnetic Measure.

774.] The capacity of a condenser may be ascertained in electro

magnetic measure by a comparison of the electromotive force which

produces the charge, and the quantity of electricity in the current

of discharge. By means of a voltaic battery a current is maintained

through a circuit containing a coil of great resistance. The con

denser is charged by putting its electrodes in contact with those of

che resistance coil. The current through the coil is measured by
the deflexion which it produces in a galvanometer. Let $ be this

deflexion, then the current is, by Art. 742,

H
TT = tan

&amp;lt;f&amp;gt;,

where H is the horizontal component of terrestrial magnetism, and

G is the principal constant of the galvanometer.
If R is the resistance of the coil through which this current is

made to flow, the difference of the potentials at the ends of the

coil is E= R-y,

*
Report of British Association, 1869, p. 434.

t Phil. Trans., 1868, p. 643; and Report of British Association, 1869, p. 436.
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and the charge of electricity produced in the condenser, whose

capacity in electromagnetic measure is C, will he

Now let the electrodes of the condenser, and then those of the

galvanometer, be disconnected from the circuit,, and let the magnet
of the galvanometer be brought to rest at its position of equili

brium. Then let the electrodes of the condenser be connected with

those of the galvanometer. A transient current will flow through
the galvanometer, and will cause the magnet to swing to an ex

treme deflexion 0. Then, by Art. 748, if the discharge is equal to

the charge, jj f
Q = 2sini0.

(JT 7T

We thus obtain as the value of the capacity of the condenser in

electromagnetic measure

C
2sin^

TT It tan
&amp;lt;p

The capacity of the condenser is thus determined in terms of the

following quantities :

Tt the time of vibration of the magnet of the galvanometer from

rest to rest.

R, the resistance of the coil.

0, the extreme limit of the swing produced by the discharge.

&amp;lt;,
the constant deflexion due to the current through the coil ~R.

This method was employed by Professor Fleeming Jenkin in deter

mining the capacity of condensers in electromagnetic measure *.

If c be the capacity of the same condenser in electrostatic mea

sure, as determined by comparison with a condenser whose capacity

can be calculated from its geometrical data,

c = v*C.

tan$Hence v2

T 2 sm

The quantity v may therefore be found in this way. It depends
on the determination of R in electromagnetic measure, but as it

involves only the square root of JR, an error in this determination

will not affect the value of v so much as in the method of Arts.

772, 773.

Intermittent Current.

775.] If the wire of a battery-circuit be broken at any point, and

*
Report of British Association, 1867.
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the broken ends connected with the electrodes of a condenser, the

current will flow into the condenser with a strength which dimin

ishes as the difference of the potentials of the condenser increases,

so that when the condenser has received the full charge corre

sponding to the electromotive force acting on the wire the current

ceases entirely.

If the electrodes of the condenser are now disconnected from the

ends of the wire, and then again connected with them in the

reverse order, the condenser will discharge itself through the wire,

and will then become recharged in the opposite way, so that a

transient current will flow through the wire, the total quantity of

which is equal to two charges of the condenser.

By means of a piece of mechanism (commonly called a Commu
tator, or wippe] the operation of reversing the connexions of the

condenser can be repeated at regular intervals of time, each interval

being equal to T. If this interval is sufficiently long to allow of

the complete discharge of the condenser, the quantity of electricity

transmitted by the wire in each interval will be 2 EC, where E is

the electromotive force, and C is the capacity of the condenser.

If the magnet of a galvanometer included in the circuit is loaded,

so as to swing so slowly that a great many discharges of the con

denser occur in the time of one free vibration of the magnet, the

succession of discharges will act on the magnet like a steady current

whose strength is 2 EC
~~T~

If the condenser is now removed, and a resistance coil substituted

for it, and adjusted till the steady current through the galvano
meter produces the same deflexion as the succession of discharges,
and if E is the resistance of the whole circuit when this is the case,

E _2EC.
~R- ~T~

R =
TC- (

2
)

We may thus compare the condenser with its commutator in

motion to a wire of a certain electrical resistance, and we may make
use of the different methods of measuring resistance described in

Arts. 345 to 357 in order to determine this resistance.

776.] For this purpose we may substitute for any one of the

wires in the method of the Differential Galvanometer, Art. 346, or

in that of Wheatstone s Bridge, Art. 347, a condenser with its com
mutator. Let us suppose that in either case a zero deflexion of the
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galvanometer has been obtained, first with the condenser and com

mutator, and then with a coil of resistance R
L

in its place, then

T
the quantity ^ will be measured by the resistance of the circuit of

2 L&amp;gt;

which the coil R
l
forms part, and which is completed by the re

mainder of the conducting system including the battery. Hence

the resistance, R, which we have to calculate, is equal to R
1 ,

that

of the resistance coil, together with R
2 , the resistance of the re

mainder of the system (including the battery), the extremities of

the resistance coil being taken as the electrodes of the system.

In the cases of the differential galvanometer and Wheatstone s

Bridge it is not necessary to make a second experiment by substi

tuting a resistance coil for the condenser. The value of the resist

ance required for this purpose may be found by calculation from

the other known resistances in the system.

Using the notation of Art. 347, and supposing the condenser

and commutator substituted for the conductor AC in Wheatstone s

Bridge, and the galvanometer inserted in OA, and that the deflexion

of the galvanometer is zero, then we know that the resistance of a

coil, which placed in AC would give a zero deflexion, is

* = J = *! (3)

The other part of the resistance, R2 ,
is that of the system of con

ductors AO, OC, AB} BC and OB, the points A and C being con

sidered as the electrodes. Hence

R - ^(g

In this expression a denotes the internal resistance of the battery
and its connexions, the value of which cannot be determined with

certainty ; but by making it small compared with the other resist

ances, this uncertainty will only slightly affect the value of R
2 .

The value of the capacity of the condenser in electromagnetic
measure is

^
=

777.] If the condenser has a large capacity, and the commutator

is very rapid in its action, the condenser may not be fully discharged
at each reversal. The equation of the electric current during the

discharge is

+SC = 0, (6)

where Q is the charge, C the capacity of the condenser, R2 the
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resistance of the rest of the system between the electrodes of the

condenser, and E the electromotive force due to the connexions

with the battery.

Hence Q = (QQ + EC)e~W-EC, (7)

where Q is the initial value of Q.

If T is the time during which contact is maintained during each

discharge, the quantity in each discharge is

\+e

By making c and y in equation (4) large compared with ft, a, or

a, the time represented by R2C may be made so small compared
with r, that in calculating the value of the exponential expression

we may use the value of C in equation (5). We thus find

- Ol (9)

RJG&quot; ~^T~ T
9

where R is the resistance which must be substituted for the con

denser to produce an equivalent effect. R2
is the resistance of the

rest of the system, T is the interval between the beginning of a

discharge and the beginning of the next discharge, and r is the

duration of contact for each discharge. We thus obtain for the

corrected value of C in electromagnetic measure

l+e *2 T
~
- 71 rri\e Rz T

IV. Comparison of the Electrostatic Capacity of a Condenser with

the Electromagnetic Capacity of Self-induction of a Coil.

778.] If two points of a conducting

circuit, between which the resistance is

R, are connected with the electrodes of

a condenser whose capacity is (7, then,

when an electromotive force acts on the

circuit, part of the current, instead of

passing through the resistance R, will

be employed in charging the condenser.

The current through R will therefore

rise to its final value from zero in a

gradual manner. It appears from the

mathematical theory that the manner in which the current through
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R rises from zero to its final value is expressed by a formula of

exactly the same kind as that which expresses the value of a cur

rent urged by a constant electromotive force through the coil of an

electromagnet. Hence we may place a condenser and an electro

magnet on two opposite members of Wheatstone s Bridge in such

a way that the current through the galvanometer is always zero,

even at the instant of making or breaking the battery circuit.

In the figure, let P, Q, R, S be the resistances of the four mem
bers of Wheatstone s Bridge respectively. Let a coil, whose coeffi

cient of self-induction is It, be made part of the member AH, whose

resistance is Q, and let the electrodes of a condenser, whose capacity

is C, be connected by pieces of small resistance with the points F
and Z. For the sake of simplicity, we shall assume that there is no

current in the galvanometer G, the electrodes of which are con

nected to F and //. We have therefore to determine the condition

that the potential at F may be equal to that at H. It is only when

we wish to estimate the degree of accuracy of the method that we

require to calculate the current through the galvanometer when

this condition is not fulfilled.

Let x be the total quantity of electricity which has passed

through the member AF, and z that which has passed through FZ
at the time t, then x z will be the charge of the condenser. The

electromotive force acting between the electrodes of the condenser

is, by Ohm s law, R ,
so that if the capacity of the condenser

. (i)

Let y be the total quantity of electricity which has passed through
the member AH, the electromotive force from A toH must be equal

to that from A to F, or

Since there is no current through the galvanometer, the quantity

which has passed through HZ must be also y, and we find

8% = X* (3)
dt dt

Substituting in (2) the value of x, derived from (1), and com

paring with (3), we find as the condition of no current through the

galvanometer
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The condition of no final current is, as in the ordinary form of

Wheatstone s Bridge, Qff
_ $p (5)

The condition of no current at making and breaking the battery

connexion is r
= RC. (6)

Here -~ and RC are the time-constants of the members Q and R

respectively, and if, by varying Q or R, we can adjust the members

of Wheatstone s Bridge till the galvanometer indicates no current,

either at making and breaking the circuit, or when the current is

steady, then we know that the time-constant of the coil is equal to

that of the condenser.

The coefficient of self-induction, L&amp;gt;
can be determined in electro

magnetic measure from a comparison with the coefficient of mutual

induction of two circuits, whose geometrical data are known

(Art. 756). It is a quantity of the dimensions of a line.

The capacity of the condenser can be determined in electrostatic

measure by comparison with a condenser whose geometrical data

are known (Art. 229). This quantity is also a length, c. The elec

tromagnetic measure of the capacity is

Substituting this value in equation (8), we obtain for the value

of v 2

v* = j QR, (8)

where c is the capacity of the condenser in electrostatic measure,

L the coefficient of self-induction of the coil in electromagnetic

measure, and Q and R the resistances in electromagnetic measure.

The value of v, as determined by this method, depends on the

determination of the unit of resistance, as in the second method,
Arts. 772, 773.

V. Combination of the Electrostatic Capacity of a Condenser with

the Electromagnetic Capacity of Self-induction of a Coil.

779.] Let C be the capacity of the condenser, the surfaces of

which are connected by a wire of resistance R. In this wire let the

coils L and L be inserted, and let L denote the sum of their ca

pacities of self-induction. The coil L is hung by a bifilar suspen

sion, and consists of two coils in vertical planes, between which
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passes a vertical axis which carries the magnet M, the axis of which

revolves in a horizontal plane between the coils L L. The coil L
has a large coefficient of self-induction, and is fixed. The sus

pended coil IS is protected from the

currents of air caused by the rota

tion of the magnet by enclosing the

rotating parts in a hollow case.

The motion of the magnet causes

currents of induction in the coil, and

these are acted on by the magnet,
so that the plane of the suspended
coil is deflected in the direction of

the rotation of the magnet. Let

us determine the strength of the

induced currents, and the magnitude
of the deflexion of the suspended
coil.

Let x be the charge of electricity

on the upper surface of the condenser C, then, if E is the electro

motive force which produces this charge, we have, by the theory of

the condenser, x CE. (1)

We have also, by the theory of electric currents,

d = 0, (2)

where M is the electromagnetic momentum of the circuit L
,
when

the axis of the magnet is normal to the plane of the coil,, and 6 is

the angle between the axis of the magnet and this normal.

The equation to determine x is therefore

-n

+CR-- +&amp;gt;==
at

-

at
(3)

If the coil is in a position of equilibrium, and if the rotation of

the magnet is uniform, the angular velocity being ,

6 = wt. (4)

The expression for the current consists of two parts, one of which

is independent of the term on the right-hand of the equation,

and diminishes according to an exponential function of the time.

The other, which may be called the forced current, depends entirely

on the term in 0, and may be written

x = A sin + cos 0. (5)
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Finding the values of A and B by substitution, in the equation (3),

we obtain RCn cos6-(l-CLn
2
)sm9

The moment of the force with which the magnet acts on the coil

L
,
in which the current x is flowing, is

= x~(Mcos0) = Jfsin*- (7)
dQ clt

Integrating this expression with respect to
t&amp;gt;

and dividing by t,

we find, for the mean value of 0,

-
1~ * R*

If the coil has a considerable moment of inertia, its forced vibra

tions will be very small, and its mean deflexion will be proportional

to 0.

Let D19 DD D3
be the observed deflexions corresponding to an

gular velocities n
lt

n
2 , n

3
of the magnet, then in general

, (9)D \&amp;gt;n

where P is a constant.

Eliminating P and R from three equations of this form, we find

/IJ

If n
2 is such that CLn^ = 1, the value of -=- will be a minimum

for this value of n. The other values of n should be taken, one

greater, and the other less, than n
2 .

The value of CL, determined from this equation, is of the dimen

sions of the square of a time. Let us call it r 2
.

If C
9
be the electrostatic measure of the capacity of the con

denser, and Lm the electromagnetic measure of the self-induction of

the coil, both C
9
and Lm are lines, and the product

C
8
Lm = v*C

s
L

8
= v*CmLm = vV ; (11)

and f!-*^, (12)

where r 2 is the value of C 2Z 2
,
determined by this experiment. The

experiment here suggested as a method of determining v is of the

same nature as one described by Sir W. R. Grove, PhU. Mag.,
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March 1868, p. 184. See also remarks on that experiment, by the

present writer, in the number for May 1868.

VI. Electrostatic Measurement of Resistance. (See Art. 355.)

780.] Let a condenser of capacity C be discharged through a

conductor of resistance R, then, if x is the charge at any instant,

_
Hence x = x

Q
e R. (2)

If, by any method, we can make contact for a short time, which

is accurately known, so as to allow the current to flow through the

conductor for the time t, then, if EQ and J
1
are the readings of an

electrometer put in connexion with the condenser before and after

the operation, RC(loge E -log, E^ = t. (3)

If C is known in electrostatic measure as a linear quantity, R
may be found from this equation in electrostatic measure as the

reciprocal of a velocity.

If R
s
is the numerical value of the resistance as thus determined,

and Rm the numerical value of the resistance in electromagnetic

measure, r&amp;gt;

&quot;

2 =
Sr (4)

Since it is necessary for this experiment that R should be very

great, and since R must be small in the electromagnetic experi
ments of Arts. 763, &c., the experiments must be made on separate

conductors, and the resistance of these conductors compared by the

ordinary methods.



CHAPTER XX.

ELECTROMAGNETIC THEORY OF LIGHT.

781.] IN several parts of this treatise an attempt has been made

to explain electromagnetic phenomena by means of mechanical

action transmitted from one body to another by means of a medium

occupying the space between them. The undulatory theory of light

also assumes the existence of a medium. We have now to shew

that the properties of the electromagnetic medium are identical with

those of the luminiferous medium.

To fill all space with a new medium whenever any new phe

nomenon is to be explained is by no means philosophical, but if

the study of two different branches of science has independently

suggested the idea of a medium, and if the properties which must

be attributed to the medium in order to account for electro

magnetic phenomena are of the same kind as those which we

attribute to the luminiferous medium in order to account for the

phenomena of light, the evidence for the physical existence of the

medium will be considerably strengthened.

But the properties of bodies are capable of quantitative measure

ment. We therefore obtain the numerical value of some property of

the medium, such as the velocity with which a disturbance is pro

pagated through it, which can be calculated from electromagnetic

experiments, and also observed directly in the case of light. If it

should be found that the velocity of propagation of electromagnetic

disturbances is the same as the velocity of light, and this not only

in air, but in other transparent media, we shall have strong reasons

for believing that light is an electromagnetic phenomenon, and the

combination of the optical with the electrical evidence will produce
a conviction of the reality of the medium similar to that which we

obtain, in the case of other kinds of matter, from the combined

evidence of the senses.
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782.] When light is emitted, a certain amount of energy is

expended by the luminous body, and if the light is absorbed by
another body, this body becomes heated, shewing that it has re

ceived energy from without. During the interval of time after the

light left the first body and before it reached the second, it must

have existed as energy in the intervening space.

According to the theory of emission, the transmission of energy
is effected by the actual transference of light-corpuscules from the

luminous to the illuminated body,, carrying with them their kinetic

energy, together with any other kind of energy of which they may
be the receptacles.

According to the theory of undulation, there is a material medium

which fills the space between the two bodies, and it is by the action

of contiguous parts of this medium that the energy is passed on,

from one portion to the next, till it reaches the illuminated body.

The luminiferous medium is therefore, during the passage of light

through it, a receptacle of energy. In the undulatory theory, as

developed by Huygens, Fresnel, Young, Green, &c., this energy
is supposed to be partly potential and partly kinetic. The potential

energy is supposed to be due to the distortion of the elementary

portions of the medium. We must therefore regard the medium as

elastic. The kinetic energy is supposed to be due to the vibratory

motion of the medium. We must therefore regard the medium as

having a finite density.

In the theory of electricity and magnetism adopted in this

treatise, two forms of energy are recognised, the electrostatic and

the electrokinetic (see Arts. 630 and 636), and these are supposed
to have their seat, not merely in the electrified or magnetized

bodies, but in every part of the surrounding space, where electric

or magnetic force is observed to act. Hence our theory agTees

with the undulatory theory in assuming the existence of a medium

which is capable of becoming a receptacle of two forms of energy *.

783.] Let us next determine the conditions of the propagation
of an electromagnetic disturbance through a uniform medium, which

we shall suppose to be at rest, that is, to have no motion except that

which may be involved in electromagnetic disturbances.

* For my own part, considering the relation of a vacuum to the magnetic force,

and the general character of magnetic phenomena external to the magnet, I am more
inclined to the notion that in the transmission of the force there is such an action,
external to the magnet, than that the effects are merely attraction and repulsion at a

distance. Such an action may be a function of the aether; for it is not at all unlikely
that, if there be an aether, it should have other uses than simply the conveyance of

radiations. Faraday s Experimental Researches, 3075.
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Let C be the specific conductivity of the medium, K its specific

capacity for electrostatic induction, and
//,

its magnetic perme

ability.

To obtain the general equations of electromagnetic disturbance,

we shall express the true current ( in terms of the vector potential

$[ and the electric potential *.

The true current ( is made up of the conduction current $ and

the variation of the electric displacement 5), and since both of these

depend on the electromotive force (, we find, as in Art. 611,

But since there is no motion of the medium, we may express the

electromotive force, as in Art. 599,

@ = -Sl-V*. (2)

Hence 6 =-(C+ K*$ (f + V*). (3)

But we may determine a relation between ( and 51 in a different

way, as is shewn in Art. 616, the equations (4) of which may be

written 47rM ( = V 2
2l + V/, (4)

T dF dG dH ,Mwhere / = -=- + -y- -f -7- (
5

)

das dy dz

Combining equations (3) and (4), we obtain

&amp;gt; (6)

which we may express in the form of three equations as follows

rf*x _ dJ

dy&amp;gt;

These are the general equations of electromagnetic disturbances.

If we differentiate these equations with respect to #, y, and z

respectively, and add, we obtain

If the medium is a non-conductor, (7=0, and V 2
^, which is

proportional to the volume-density of free electricity, is independent
of t. Hence / must be a linear function of ^, or a constant, or zero,

and we may therefore leave / and ^ out of account in considering

periodic disturbances.

VOL. n. re
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Propagation of Undulations in a Non-conducting Medium.

784.] In this case C~ 0. and the equations become

The equations in this form are similar to those of the motion of

an elastic solid, and when the initial conditions are given, the

solution can be expressed in a form given by Poisson *, and applied

by Stokes to the Theory of Diffraction f.

Let us write V= == - (10)

If the values of F, G, H, and of -=-
&amp;gt;

-j-
&amp;gt; are given at every

point of space at the epoch (t 0), then we can determine their

values at any subsequent time, t, as follows.

Let be the point for which we wish to determine the value

of F at the time t. With as centre, and with radius Tt, describe

a sphere. Find the initial value of J^at every point of the spherical

surface, and take the mean, F, of all these values. Find also the

j-pi

initial values of -=- at every point of the spherical surface, and let

dF
the mean of these values be -j-

dt

Then the value ofF at the point 0, at the time t, is

Similarly G = ^(Gt)+ t-jr &amp;gt; \ (11)

785.] It appears, therefore, that the condition of things at the

point at any instant depends on the condition of things at a

distance Vt and at an interval of time t previously, so that any
disturbance is propagated through the medium with the velocity V.

Let us suppose that when t is zero the quantities 1 and 21 are

* Mem. de I A cad., torn, iii, p. 130.

t Cambridge Transactions, vol. ix, p. 10 (1850).
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zero except within a certain space S. Then their values at at

the time t will be zero, unless the spherical surface described about

as centre with radius Vt lies in whole or in part within the

space S. If is outside the space S there will be no disturbance

at until Vt becomes equal to the shortest distance from to the

space S. The disturbance at will then begin, and will go on till

Vt is equal to the greatest distance from to any part of S. The

disturbance at will then cease for ever.

786.] The quantity V, in Art. 793, which expresses the velocity

of propagation of electromagnetic disturbances in a non-conducting

medium is, by equation (9), equal to

If the medium is air, and if we adopt the electrostatic system

of measurement, K = I and
jut
= -T &amp;gt; so that V v, or the velocity

of propagation is numerically equal to the number of electrostatic

units of
electricity in one electromagnetic unit. If we adopt the

electromagnetic system. K = ^ and \L
1

,
so that the equation

V= v is still true.

On the theory that light is an electromagnetic disturbance, pro

pagated in the same medium through which other electromagnetic
actions are transmitted, V must be the velocity of light, a quantity
the value of which has been estimated by several methods. On the

other hand, v is the number of electrostatic units of electricity in one

electromagnetic unit, and the methods of determining this quantity
have been described in the last chapter. They are quite inde

pendent of the methods of finding the velocity of light. Hence the

agreement or disagreement of the values of Fand of v furnishes a

test of the electromagnetic theory of light.

787.] In the following table, the principal results of direct

observation of the velocity of light, either through the air or

through the planetary spaces, are compared with the principal

results of the comparison of the electric units :

Velocity of Light (metres per second).

Fizeau 314000000

Aberration, &c., and)

Sun s Parallax )

308000000

Foucault .. .. 2983GOOOO

Ratio of Electric Units.

Weber 310740000

Maxwell ... 288000000

Thomson... 282000000.

It is manifest that the velocity of light and the ratio of the units

are quantities of the same order of magnitude. Neither of them
c c 2
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can be said to be determined as yet with such a degree of accuracy

as to enable us to assert that the one is greater or less than the

other. It is to be hoped that, by further experiment, the relation be

tween the magnitudes of the two quantities may be more accurately

determined.

In the meantime our theory, which asserts that these two quan

tities are equal, and assigns a physical reason for this equality, is

certainly not contradicted by the comparison of these results such

as they are.

788.] In other media than air, the velocity V is inversely pro

portional to the square root of the product of the dielectric and the

magnetic inductive capacities. According to the undulatory theory,

the velocity of light in different media is inversely proportional to

their indices of refraction.

There are no transparent media for which the magnetic capacity

differs from that of air more than by a very small fraction. Hence

the principal part of the difference between these media must depend
on their dielectric capacity. According to our theory, therefore,

the dielectric capacity of a transparent medium should be equal to

the square of its index of refraction.

But the value of the index of refraction is different for light of

different kinds, being greater for light of more rapid vibrations.

We must therefore select the index of refraction which corresponds

to waves of the longest periods, because these are the only waves

whose motion can be compared with the slow processes by which

we determine the capacity of the dielectric.

789.] The only dielectric of which the capacity has been hitherto

determined with sufficient accuracy is paraffin, for which in the solid

form M.M. Gibson and Barclay found *

K = 1.975. (12)

Dr. Gladstone has found the following values of the index of

refraction of melted paraffin, sp.g. 0.779, for the lines A, D and H :

Temperature

54C
A

1.4306

57C 1.4294

D
1.4357

1.4343

H
1.4499

1.4493

from which I find that the index of refraction for waves of infinite

length would be about
1 422

The square root of K is 1.405.

The difference between these numbers is greater than can be ac-

* Phil. Trans, 1871, p. 573.
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counted for by errors of observation, and shews that our theories of

the structure of bodies must be much improved before we can

deduce their optical from their electrical properties. At the same

time, I think that the agreement of the numbers is such that if no

greater discrepancy were found between the numbers derived from

the optical and the electrical properties of a considerable number of

substances, we should be warranted in concluding that the square

root of 7T, though it may not be the complete expression for the

index of refraction, is at least the most important term in it.

Plane Waves.

790.] Let us now confine our attention to plane waves, the front

of which we shall suppose normal to the axis of z. All the quan

tities, the variation of which constitutes such waves, are functions

of z and t only, and are independent of x and y. Hence the equa

tions of magnetic induction, (A), Art. 591, are reduced to

dG dF
a=-j-) b = -&amp;gt; c = 0, (13)

dz dz

or the magnetic disturbance is in the plane of the wave. This

agrees with what we know of that disturbance which constitutes

light.

Putting pa, m/3 and
/uty

for a, b and c respectively, the equations

of electric currents, Art. 607, become

db d*F
j- = --Y~9
dz dz2

da d*GL Y (14)

4 71U U = --
j- = 9
dz dz2

4:7TfJiW
= 0.

Hence the electric disturbance is also in the plane of the wave, and

if the magnetic disturbance is confined to one direction, say that of

x, the electric disturbance is confined to the perpendicular direction,

or that of y.

But we may calculate the electric disturbance in another way,

for iff, g, h are the components of electric displacement in a non

conducting medium

df dg dh
u =

7t
=! &quot; = 3r

If P, Q, R are the components of the electromotive force

-* - * (16)
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and since there is no motion of the medium, equations (B), Art. 598,

Q = -*, R=-d
-H.

(17)become P = =-
&amp;gt;

at

Hence u -^-=- ,

K K d 2F
, ,

(18)4 77 d 47T ^2

Comparing
1 these values with those given in equation (14), we find

&amp;gt; f (19)

J

The first and second of these equations are the equations of pro

pagation of a plane wave, and their solution is of the well-known

form F=A(z-Vt)+/2 (z+n),l
o=A(*-rt)+M*+rf).\ (20)

The solution of the third equation is

KpH=A + t, (21)

where A and B are functions of z. H is therefore either constant

or varies directly with the time. In neither case can it take part
in the propagation of waves.

791.] It appears from this that the directions, both of the mag
netic and the electric disturbances, lie in

the plane of the wave. The mathematical

form of the disturbance therefore, agrees

with that of the disturbance which consti

tutes light, in being transverse to the di

rection of propagation.

If we suppose G 0, the disturbance

will correspond to a plane-polarized ray of

light.

The magnetic force is in this case paral-

i ill?

lei to the axis ofy and equal to ,
,
and

the electromotive force is parallel to the

dF
axis of x and equal to

dt
The mag-

Fig. 66. netic force is therefore in a plane perpen

dicular to that which contains the electric force.

The values of the magnetic force and of the electromotive force at

a given instant at different points of the ray are represented in Fig. 66,
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for the case of a simple harmonic disturbance in one plane. This

corresponds to a ray of plane-polarized light, but whether the plane

of polarization corresponds ta the plane of the magnetic disturbance,

or to the plane of the electric disturbance, remains to be seen. See

Art. 797.

Energy and Stress of Radiation.

79.2.] The electrostatic energy per unit of volume at any point of

the wave in a non-conducting medium is

K, KdF i

1 / p _ P2 _2/
877 8 77 dt

(22)

The electrokinetic energy at the same point is

(23)
8 77 877/X

In virtue of equation (8) these two expressions are equal, so that at

every point of the wave the intrinsic energy of the medium is half

electrostatic and half electrokinetic.

Let j9 be the value of either of these quantities, that is, either the

electrostatic or the electrokinetic energy per unit of volume, then,

in virtue of the electrostatic state of the medium, there is a tension

whose magnitude is jo, in a direction parallel to #, combined with a

pressure, also equal to^, parallel to y and z. See Art. 107.

In virtue of the electrokinetic state of the medium there is a

tension equal to p in a direction parallel to y, combined with a

pressure equal to p in directions parallel to x and z. See Art. 643.

Hence the combined effect of the electrostatic and the electro-

kinetic stresses is a pressure equal to 2p in the direction of the

propagation of the wave. Now
2/&amp;gt;

also expresses the whole energy
in unit of volume.

Hence in a medium in which waves are propagated there is a

pressure in the direction normal to the waves, and numerically

equal to the energy in unit of volume.

793.] Thus, if in strong sunlight the energy of the light which

falls on one square foot is 83.4 foot pounds per second, the mean

energy in one cubic foot of sunlight is about 0.0000000882 of a foot

pound, and the mean pressure on a square foot is 0.0000000882 of a

pound weight. A flat body exposed to sunlight would experience
this pressure on its illuminated side only, and would therefore be

repelled from the side on which the light falls. It is probable that

a much greater energy of radiation might be obtained by means of
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the concentrated rays of the electric lamp. Such rays falling- on a

thin metallic disk, delicately suspended in a vacuum, might perhaps

produce an observable mechanical effect. When a disturbance of

any kind consists of terms involving sines or cosines of angles
which vary with the time, the maximum energy is double of the

mean energy. Hence, if P is the maximum electromotive force,

and /3 the maximum magnetic force which are called into play

during the propagation of light,
JET

P2 =
/3

2 = mean energy in unit of volume. (24)
8 7T 8 77

With Pouillet s data for the energy of sunlight, as quoted by
Thomson, Trans. R.S.E., 1854, this gives in electromagnetic mea
sure

P = 60000000, or about 600 Darnell s cells per metre
;

/3 = 0.193, or rather more than a tenth of the horizontal mag
netic force in Britain.

Propagation of a Plane Wave in a Crystallized Medium.

794.] In calculating, from data furnished by ordinary electro

magnetic experiments, the electrical phenomena which would result

from periodic disturbances, millions of millions of which occur in a

second, we have already put our theory to a very severe test, even

when the medium is supposed to be air or vacuum. But if we

attempt to extend our theory to the case of dense media, we become

involved not only in all the ordinary difficulties of molecular theories,

but in the deeper mystery of the relation of the molecules to the

electromagnetic medium.

To evade these difficulties, we shall assume that in certain media

the specific capacity for electrostatic induction is different in dif

ferent directions, or in other words, the electric displacement, in

stead of being in the same direction as the electromotive force, and

proportional to it, is related to it by a system of linear equations
similar to those given in Art. 297. It may be shewn, as in

Art. 436, that the system of coefficients must be symmetrical, so

that, by a proper choice of axes, the equations become

f=~K,P, ff
= X,Q, * = Kt R, (1)

where K
l ,
K

2 ,
and K

3
are the principal inductive capacities of the

medium. The equations of propagation of disturbances are therefore
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^F__^G^ d*H
(
d*F d 2*

~df^~dz*~ ~dx~dy dz~dx
~

1/X \ dt2
~

dxdt

d2F ,d2 G d2*
dz2 dxz

dy dz dxdy
2/ ^^ 2

dydt

d2F d2 G ,d
2ff d2*

dx2
dy

2 dzdx dydz
r
\dt2 dzdt }

795.] If I, m, n are the direction-cosines of the normal to the

wave-front, and V the velocity of the wave, and if

Ix+ my + nz~Pt = w, (3)

and if we write F&quot;, G&quot;, H&quot;,
V&quot; for the second differential coeffi

cients of F, G, //, ^ respectively with respect to w, and put

1 1 1

(4)

where a, ,
c are the three principal velocities of propagation, the

equations become

n*-F&quot;-lmG&quot;-nlH&quot;--rV = 0,

-ImF&quot; + (n
2 + 1*- ~G&quot;-mnH&quot;- VV = 0, (5)

-nlF&quot;- mn G&quot;+
(l

2 + m 2 -

796.J If we write

72

we obtain from these equations

rU(PF&quot;-W) =
0,)

(7)

Hence, either V = 0, in which case the wave is not propagated at

all ; or, U = 0, which leads to the equation for V given by Fresnel ;

or the quantities within brackets vanish, in which case the vector

whose components are
F&quot;,

G&quot;
,

H&quot; is normal to the wave-front and

proportional to the electric volume-density. Since the medium is

a non-conductor, the electric density at any given point is constant,

and therefore the disturbance indicated by these equations is not

periodic, and cannot constitute a wave. We may therefore consider

*&quot;= in the investigation of the wave.
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797.] The velocity of the propagation of the wave is therefore

completely determined from the equation U = 0, or

I
2 m 2 n 2

.

}

7* -a2 + T*^JP + F2 -c 2
=

There are therefore two, and only two, values of V2
correspondiDg

to a given direction of wave-front.

If A, jot,
v are the direction-cosines of the electric current whose

components are uy v, w&amp;gt;

A: M :,:::G&quot;:-&quot;, (9)

then l\ + mn + nv=0; (10)

or the current is in the plane of the wave-front, and its direction

in the wave-front is determined by the equation

l

-(b
2 -c2

} + (
c*-a*)+-(a*-6*) = 0. (11)A )U V

These equations are identical with those given by Fresnel if we

define the plane of polarization as a plane through the ray per

pendicular to the plane of the electric disturbance.

According to this electromagnetic theory of double refraction the

wave of normal disturbance, which constitutes one of the chief

difficulties of the ordinary theory, does not exist, and no new

assumption is required in order to account for the fact that a ray

polarized in a principal plane of the crystal is refracted in the

ordinary manner *.

Relation between Electric Conductivity and Opacity.

798.] If the medium, instead of being a perfect insulator, is a

conductor whose conductivity per unit of volume is C, the dis

turbance will consist not only of electric displacements but of

currents of conduction, in which electric energy is transformed into

heat, so that the undulation is absorbed by the medium.

If the disturbance is expressed by a circular function, we may
write -t-qz), (1)

for this will satisfy the equation

, v

provided q
2-pz = ^Kn2

, (3)

and 2p = 1-ny.Cn. (4)

* See Stokes Report on Double Refraction ; Brit. Assoc. Reports, 1862, p. 255.
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The velocity of propagation is

r=A (5)

2

and the coefficient of absorption is

p = 27T/ACT. (6)

Let R be the resistance, in electromagnetic measure, of a plate

whose length is /, breadth #, and thickness z,

*=-se- (7)

The proportion of the incident light which will be transmitted by
this plate will be

i_v_

e-*p*=. e rMb B
. (8)

799.] Most transparent solid bodies are good insulators, and all

good conductors are very opaque. There are, however, many ex

ceptions to the law that the opacity of a body is the greater, the

greater its conductivity.

Electrolytes allow an electric current to pass, and yet many of

them are transparent. We may suppose, however, that in the case

of the rapidly alternating forces which come into play during the

propagation of light, the electromotive force acts for so short a

time in one direction that it is unable to effect a complete separation

between the combined molecules. When, during the other half of

the vibration, the electromotive force acts in the opposite direction

it simply reverses what it did during the first half. There is thus

no true conduction through the electrolyte, no loss of electric

energy, and consequently no absorption of light.

800.] Gold, silver, and platinum are good conductors, and yet,

when formed into very thin plates, they allow light to pass through
them. From experiments which I have made on a piece of gold

leaf, the resistance of which was determined by Mr. Hockin, it

appears that its transparency is very much greater than is con

sistent with our theory, unless we suppose that there is less loss

of energy when the electromotive forces are reversed for every semi-

vibration of light than when they act for sensible times, as in our

ordinary experiments.

801.] Let us next consider the case of a medium in which the

conductivity is large in proportion to the inductive capacity.

In this case we may leave out the term involving K in the equa
tions of Art. 783, and they then become
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(1)

Each of these equations is of the same form as the equation of the

diffusion of heat given in Fourier s Traite de Chaleur.

802.] Taking the first as an example, the component F of the

vector-potential will vary according to time and position in the same

way as the temperature of a homogeneous solid varies according

to time and position, the initial and the surface-conditions being

made to correspond in the two cases, and the quantity 47r/u,Cbeing

numerically equal to the reciprocal of the thermometric conductivity

of the substance, that is to say, the number of units of volume of
the substance which would be heated one degree by the heat which passes

through a unit cube of the substance, two opposite faces of which differ

by one degree of temperature, while the other faces are impermeable to

heat*.

The different problems in thermal conduction, of which Fourier

has given the solution, may be transformed into problems in the

diffusion of electromagnetic quantities, remembering that F, G, H
are the components of a vector, whereas the temperature, in Fourier s

problem, is a scalar quantity.

Let us take one of the cases of which Fourier has given a com

plete solution t, that of an infinite medium, the initial state t)f

which is given.

The state of any point of the medium at the time t is found

by taking the average of the state of every part of the medium,
the weight assigned to each part in taking the average being

where r is the distance of that part from the point considered. This

average, in the case of vector-quantities, is most conveniently taken

by considering each component of the vector separately.

* See Maxwell s Theory of Heat, p. 235.

t Traite de la Chalewr, Art. 384. The equation which determines the temperature,
v, at a point (x, y, z) after a time t, in terms of /(a, 0, 7), the initial temperature at

the point (0,0,7), is

r C r do.d@ dy ( I

v=/// r=- e
*

*M J (**&
/// 23 \/^v3

t
3

/ j j
where k is the thermometric conductivity.
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803.] We have to remark in the first place, that in this problem

the thermal conductivity of Fourier s medium is to be taken in

versely proportional to the electric conductivity of our medium,

so that the time required in order to reach an assigned stage in

the process of diffusion is greater the higher the electric conduct

ivity. This statement will not appear paradoxical if we remember

the result of Art. 655, that a medium of infinite conductivity forms

a complete barrier to the process of diffusion of magnetic force.

In the next place, the time requisite for the production of an

assigned stage in the process of diffusion is proportional to the square

of the linear dimensions of the system.

There is no determinate velocity which can be defined as the

velocity of diffusion. If we attempt to measure this velocity by

ascertaining the time requisite for the production of a given amount

of disturbance at a given distance from the origin of disturbance,

we find that the smaller the selected value of the disturbance the

greater the velocity will appear to be, for however great the distance,

and however small the time, the value of the disturbance will differ

mathematically from zero.

This peculiarity of diffusion distinguishes it from wave-propaga

tion, which takes place with a definite velocity. No disturbance

takes place at a given point till the wave reaches that point, and

when the wave has passed, the disturbance ceases for ever.

804.] Let us now investigate the process which takes place when

an electric current begins and continues to flow through a linear

circuit, the medium surrounding the circuit being of finite electric

conductivity. (Compare with Art. 660).

When the current begins, its first effect is to produce a current

of induction in the parts of the medium close to the wire. The

direction of this current is opposite to that of the original current,

and in the first instant its total quantity is equal to that of the

original current, so that the electromagnetic effect on more distant

parts of the medium is initially zero, and only rises to its final

value as the induction-current dies away on account of the electric

resistance of the medium.

But as the induction-current close to the wire dies away, a new

induction-current is generated in the medium beyond, so that the

space occupied by the induction-current is continually becoming

wider, while its intensity is continually diminishing.

This diffusion and decay of the induction-current is a pheno
menon precisely analogous to the diffusion of heat from a part of
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the medium initially hotter or colder than the rest. We must

remember, however, that since the. current is a vector quantity.,

and since in a circuit the current is in opposite directions at op

posite points of the circuit, we must, in calculating any given com

ponent of the induction-current, compare the problem with one

in which equal quantities of heat and of cold are diffused from

neighbouring places, in which case the effect on distant points will

be of a smaller order of magnitude.

805.] If the current in the linear circuit is maintained constant,

the induction currents, which depend on the initial change of state,

will gradually be diffused and die away, leaving the medium in its

permanent state, which is analogous to the permanent state of the

flow of heat. In this state we have

V 2
I&amp;lt;

7 = V 2 = y 2#=0 (2)

throughout the medium, except at the part occupied by the circuit,

in which V 2F= 4wM ,

V 2
=47r^,&amp;gt; (3)

V 2//=477^J
These equations are sufficient to determine the values of F, G, R
throughout the medium. They indicate that there are no currents

except in the circuit, and that the magnetic forces are simply those

due to the current in the circuit according to the ordinary theory.

The rapidity with which this permanent state is established is so

great that it could not be measured by our experimental methods,

except perhaps in the case of a very large mass of a highly con

ducting medium such as copper.

NOTE. In a paper published in PoggendorfFs Annalen, June 1867,

M. Lorenz has deduced from Kirchhoff s equations of electric cur

rents (Pogg. Ann. cii. 1856), by the addition of certain terms which

do not affect any experimental result, a new set of equations, indi

cating that the distribution of force in the electromagnetic field

may be conceived as arising from the mutual action of contiguous

elements, and that waves, consisting of transverse electric currents,

may be propagated, with a velocity comparable to that of light, in

non-conducting media. He therefore regards the disturbance which

constitutes light as identical with these electric currents, and he

shews that conducting media must be opaque to such radiations.

These conclusions are similar to those of this chapter, though
obtained by an entirely different method. The theory given in

this chapter was first published in the PUL Trans, for 1865.



CHAPTER XXI.

MAGNETIC ACTION ON LIGHT.

806.] THE most important step in establishing a relation between

electric and magnetic phenomena and those of light must be the

discovery of some instance in which the one set of phenomena is

aifected by the other. In the search for such phenomena we must

be guided by any knowledge we may have already obtained with

respect to the mathematical or geometrical form of the quantities

which we wish to compare. Thus, if we endeavour, as Mrs. Somer-

ville did, to magnetize a needle by means of light, we must re

member that the distinction between magnetic north and south is

a mere matter of direction, and would be at once reversed if we

reverse certain conventions about the use of mathematical signs.

There is nothing in magnetism analogous to those phenomena of

electrolysis which enable us to distinguish positive from negative

electricity, by observing that oxygen appears at one pole of a cell

and hydrogen at the other.

Hence we must not expect that if we make light fall on one end

of a needle, that end will become a pole of a certain name, for the

two poles do not differ as light does from darkness.

We might expect a better result if we caused circularly polarized

light to fall on the needle, right-handed light falling on one end

and left-handed on the other, for in some respects these kinds of

light may be said to be related to each other in the same way as

the poles of a magnet. The analogy, however, is faulty even here,

for the two rays when combined do not neutralize each other, but

produce a plane polarized ray.

Faraday, who was acquainted with the method of studying the

strains produced in transparent solids by means of polarized light,

made many experiments in hopes of detecting some action on polar

ized light while passing through a medium in which electrolytic

conduction or dielectric induction exists *. He was not, however,
*

Experimental Researches, 951-954 and 2216-2220.
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able to detect any action of this kind, though the experiments were

arranged in the way best adapted to discover effects of tension,

the electric force or current being at right angles to the direction

of the ray, and at an angle of forty-five degrees to the plane of

polarization. Faraday varied these experiments in many ways with

out discovering any action on light due to electrolytic currents or

to static electric induction.

He succeeded, however, in establishing a relation between light

and magnetism, and the experiments by which he did so are de

scribed in the nineteenth series of his Experimental Researches. We
shall take Faraday s discovery as our starting point for further

investigation into the nature of magnetism, and we shall therefore

describe the phenomenon which he observed.

807.] A ray of plane-polarized light is transmitted through a

transparent diamagnetic medium, and the plane of its polarization,

when it emerges from the medium, is ascertained by observing the

position of an analyser when it cuts off the ray. A magnetic force

is then made to act so that the direction of the force within the

transparent medium coincides with the direction of the ray. The

light at once reappears, but if the analyser is turned round through
a certain angle, the light is again cut off. This shews that the

effect of the magnetic force is to turn the plane of polarization,

round the direction of the ray as an axis, through a certain angle,

measured by the angle through which the analyser must be turned

in order to cut off the light.

808.] The angle through which the plane of polarization is

turned is proportional

(1) To the distance which the ray travels within the medium.

Hence the plane of polarization changes continuously from its posi

tion at incidence to its position at emergence.

(2) To the intensity of the resolved part of the magnetic force in

the direction of the ray.

(3) The amount of the rotation depends on the nature of the

medium. No rotation has yet been observed when the medium is

air or any other gas.

These three statements are included in the more general one,

that the angular rotation is numerically equal to the amount by
which the magnetic potential increases, from the point at which

the ray enters the medium to that at which it leaves it, multiplied

by a coefficient, which, for diamagnetic media, is generally positive.

809.] In diamagnetic substances, the direction in which the plane
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of polarization is made to rotate is the same as the direction in which

a positive current must circulate round the ray in order to produce

a magnetic force in the same direction as that which actually exists

in the medium.

Verdet, however, discovered that in certain ferromagnetic media,

as, for instance, a strong solution of perchloride of iron in wood-

spirit or ether, the rotation is in the opposite direction to the current

which would produce the magnetic force.

This shews that the difference between ferromagnetic and dia

magnetic substances does not arise merely from the magnetic per

meability being in the first case greater, and in the second less,

than that of air, but that the properties of the two classes of bodies

are really opposite.

The power acquired by a substance under the action of magnetic

force of rotating the plane of polarization of light is not exactly

proportional to its diamagnetic or ferromagnetic magnetizability.

Indeed there are exceptions to the rule that the rotation is positive for

diamagnetic and negative for ferromagnetic substances, for neutral

chromate of potash is diamagnetic, but produces a negative rotation.

810.] There are other substances, which, independently of the

application of magnetic force, cause the plane of polarization to

turn to the right or to the left, as the ray travels through the sub

stance. In some of these the property is related to an axis, as in

the case of quartz. In others, the property is independent of the

direction of the ray within the medium, as in turpentine, solution

of sugar, &c. In all these substances, however, if the plane of

polarization of any ray is twisted within the medium like a right-

handed screw, it will still be twisted like a right-handed screw if

the ray is transmitted through the medium in the opposite direction.

The direction in which the observer has to turn his analyser in order

to extinguish the ray after introducing the medium into its path,

is the same with reference to the observer whether the ray comes

to him from the north or from the south. The direction of the

rotation in space is of course reversed when the direction of the ray is

reversed. But when the rotation is produced by magnetic action, its

direction in space is the same whether the ray be travelling north

or south. The rotation is always in the same direction as that of

the electric current which produces, or would produce, the actual

magnetic state of the field, if the medium belongs to the positive

class, or in the opposite direction if the medium belongs to the

negative class.

VOL. IT. D d
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It follows from this, that if the ray of light, after passing through

the medium from north to south, is reflected by a mirror, so as to

return through the medium from south to north,, the rotation will

be doubled when it results from magnetic action. When the rota

tion depends on the nature of the medium alone, as in turpentine, &c.,

the ray, when reflected back through the medium, emerges in the

same plane as it entered, the rotation during the first passage

through the medium having been exactly reversed during the

second.

811.] The physical explanation of the phenomenon presents con

siderable difficulties, which can hardly be said to have been hitherto

overcome, either for the magnetic rotation, or for that which

certain media exhibit of themselves. We may, however, prepare

the way for such an explanation by an analysis of the observed

facts.

It is a well-known theorem in kinematics that two uniform cir

cular vibrations, of the same amplitude, having the same periodic

time, and in the same plane, but revolving in opposite directions,

are equivalent, when compounded together, to a rectilinear vibra

tion. The periodic time of this vibration is equal to that of the

circular vibrations, its amplitude is double, and its direction is in

the line joining the points at which two particles, describing the

circular vibrations in opposite directions round the same circle,

would meet. Hence if one of the circular vibrations has its phase

accelerated, the direction of the rectilinear vibration will be turned,

in the same direction as that of the circular vibration, through an

angle equal to half the acceleration of phase.

It can also be proved by direct optical experiment that two rays

of light, circularly-polarized in opposite directions, and of the same

intensity, become, when united, a plane-polarized ray, and that if

by any means the phase of one of the circularly-polarized rays is

accelerated, the plane of polarization of the resultant ray is turned

round half the angle of acceleration of the phase.

812.] We may therefore express the phenomenon of the rotation

of the plane of polarization in the following manner : A plane-

polarized ray falls on the medium. This is equivalent to two cir

cularly-polarized rays, one right-handed, the other left-handed (as

regards the observer) . After passing through the medium the ray
is still plane-polarized, but the plane of polarization is turned, say,

to the right (as regards the observer) . Hence, of the two circularly-

polarized rays, that which is right-handed must have had its phase
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accelerated with respect to the other during its passage through the

medium.

In other words, the right-handed ray has performed a greater

number of vibrations, and therefore has a smaller wave-length,

within the medium, than the left-handed ray which has the same

periodic time.

This mode of stating what takes place is quite independent of

any theory of light, for though we use such terms as wave-length,

circular-polarization, &c., which may be associated in our minds

with a particular form of the undulatory theory, the reasoning is

independent of this association, and depends only on facts proved

by experiment.

813.] Let us next consider the configuration of one of these rays

at a given instant. Any undulation, the motion of which at each

point is circular, may be represented by a helix or screw. If the

screw is made to revolve about its axis without any longitudinal

motion, each particle will describe a circle, and at the same time the

propagation of the undulation will be represented by the apparent

longitudinal motion of the similarly situated parts of the thread of

the screw. It is easy to see that if the screw is right-handed, and

the observer is placed at that end towards which the undulation

travels, the motion of the screw will appear to him left-handed,

that is to say, in the opposite di

rection to that of the hands of a

watch. Hence such a ray has

been called, originally by French

writers, but now by the whole

scientific world, a left-handed cir

cularly-polarized ray.

A right-handed circularly-polar

ized ray is represented in like

manner by a left-handed helix.

In Fig. 67 the right-handed helix

A, on the right-hand of the figure,

represents a left-handed ray, and

the left-handed helix B, on the left-

hand, represents a right-handed

ray.

814.] Let us now consider two

such rays which have the same

wave-length within the medium.

67&amp;lt;

They are geometrically alike in

B d i
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all respects, except that one is the perversion of the other, like its

image in a looking-glass. One of them, however, say A, has a

shorter period of rotation than the other. If the motion is entirely

due to the forces called into play by the displacement, this shews

that greater forces are called into play by the same displacement

when the configuration is like A than when it is like B. Hence in

this case the left-handed ray will be accelerated with respect to the

right-handed ray, and this will be the case whether the rays are

travelling from N to S or from S to N.

This therefore is the explanation of the phenomenon as it is pro

duced by turpentine, &c. In these media the displacement caused

by a circularly-polarized ray calls into play greater forces of resti

tution when the configuration is like A than when it is like B.

The forces thus depend on the configuration alone, not on the direc

tion of the motion.

But in a diamagnetic medium acted on by magnetism in the

direction SN
9
of the two screws A and B, that one always rotates

with the greatest velocity whose motion, as seen by an eye looking

from S to N, appears like that of a watch. Hence for rays from S

to N the right-handed ray B will travel quickest, but for rays

from N to 8 the left-handed ray A will travel quickest.

815.] Confining our attention to one ray only, the helix B has

exactly the same configuration, whether it represents a ray from S

to N or one from N to S. But in the first instance the ray travels

faster, and therefore the helix rotates more rapidly. Hence greater

forces are called into play when the helix is going round one way
than when it is going round the other way. The forces, therefore,

do not depend solely on the configuration of the ray, but also on

the direction of the motion of its individual parts.

816.] The disturbance which constitutes light, whatever its

physical nature may be, is of the nature of a vector, perpendicular

to the direction of the ray. This is proved from the fact of the

interference of two rays of light, which under certain conditions

produces darkness, combined with the fact of the non-interference

of two rays polarized in planes perpendicular to each other. For

since the interference depends on the angular position of the planes

of polarization, the disturbance must be a directed quantity or

vector, and since the interference ceases when the planes of polar

ization are at right angles, the vector representing the disturbance

must be perpendicular to the line of intersection of these planes,

that is, to the direction of the ray.
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817.] The disturbance, being a vector, can be resolved into com

ponents parallel to x and y, the axis of z being
4

parallel to the

direction of the ray. Let f and
77
be these components, then, in the

case of a ray of homogeneous circularly-polarized light,

f = rcosO, rj
= rsmO, (1)

where = nt qz + a. (2)

In these expressions, r denotes the magnitude of the vector, and

the angle which it makes with the direction of the axis of x.

The periodic time, r, of the disturbance is such that

UT 27T. (3)

The wave-length, A, of the disturbance is such that

q\ = 27T. (4)

The velocity of propagation is -

The phase of the disturbance when t and z are both zero is a.

The circularly-polarized light is right-handed or left-handed

according as q is negative or positive.

Its vibrations are in the positive or the negative direction of

rotation in the plane of
(no, y}^ according as n is positive or negative.

The light is propagated in the positive or the negative direction

of the axis of z, according as n and q are of the same or of opposite

signs.

In all media n varies when q varies, and -=- is always of the same

sign with -

Hence, if for a given numerical value of n the value of - is

greater when n is positive than when n is negative, it follows that

for a value of q, given both in magnitude and sign, the positive

value of n will be greater than the negative value.

Now this is what is observed in a diamagnetic medium, acted on

by a magnetic force, y, in the direction of z. Of the two circularly-

polarized rays of a given period, that is accelerated of which the

direction of rotation in the plane of (#, y) is positive. Hence, of

two circularly-polarized rays, both left-handed, whose wave-length
within the medium is the same, that has the shortest period whose

direction of rotation in the plane of xy is positive, that is, the ray
which is propagated in the positive direction of z from south to

north. We have therefore to account for the fact, that when in the

equations of the system q and r are given, two values of n will
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satisfy the equations, one positive and the other negative, the

positive value being numerically greater than the negative.

818.] We may obtain the equations of motion from a considera

tion of the potential and kinetic energies of the medium. The

potential energy, F, of the system depends on its configuration,

that is, on the relative position of its parts. In so far as it depends

on the disturbance due to circularly-polarized light, it must be a

function of r, the amplitude, and q, the coefficient of torsion, only.

It may be different for positive and negative values of q of equal

numerical value, and it probably is so in the case of media which

of themselves rotate the plane of polarization.

The kinetic energy, T, of the system is a homogeneous function

of the second degree of the velocities of the system, the coefficients

of the different terms being functions of the coordinates.

819.] Let us consider the dynamical condition that the ray may
be of constant intensity, that is, that r may be constant.

Lagrange s equation for the force in r becomes

d dT dT

Since r is constant, the first term vanishes. We have therefore the

equation dT dV . .

Tr
+

~dr
=

(

in which q is supposed to be given, and we are to determine the

value of the angular velocity 0, which we may denote by its actual

value, n.

The kinetic energy, T, contains one term involving n2
;
other

terms may contain products of n with other velocities, and the

rest of the terms are independent of n. The potential energy, T
7

,
is

entirely independent of n. The equation is therefore of the form

An* + Bn+C = 0. (7)

This being a quadratic equation, gives two values of n. It appears
from experiment that both values are real, that one is positive and

the other negative, and that the positive value is numerically the

greater. Hence, if A is positive, both B and C are negative, for,

if % and n
2 are the roots of the equation,

^(% +O + -#=0. (8)

The coefficient, _Z?, therefore, is not zero, at least when magnetic
force acts on the medium. We have therefore to consider the ex

pression Bn, which is the part of the kinetic energy involving the

first power of n, the angular velocity of the disturbance.
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820.] Every term of T is of two dimensions as regards velocity.

Hence the terms involving- n must involve some other velocity.

This velocity cannot be r or q, because, in the case we consider,

r and q are constant. Hence it is a velocity which exists in the

medium independently of that motion which constitutes light. It

must also be a velocity related to n in such a way that when it is

multiplied by n the result is a scalar quantity, for only scalar quan
tities can occur as terms in the value of T, which is itself scalar.

Hence this velocity must be in the same direction as n, or in the

opposite direction, that is, it must be an angular velocity about the

axis of z.

Again, this velocity cannot be independent of the magnetic force,

for if it were related to a direction fixed in the medium, the phe
nomenon would be different if we turned the medium end for end,

which is not the case.

We are therefore led to the conclusion that this velocity is an

invariable accompaniment of the magnetic force in those media

which exhibit the magnetic rotation of the plane of polarization.

8.21.] We have been hitherto obliged to use language which is

perhaps too suggestive of the ordinary hypothesis of motion in the

undulatory theory. It is easy, however, to state our result in a

form free from this hypothesis.

Whatever light is, at each point of space there is something

going on, whether displacement, or rotation, or something not yet

imagined, but which is certainly of the nature of a vector or di

rected quantity, the direction of which is normal to the direction

of the ray. This is completely proved by the phenomena of inter

ference.

In the case of circularly-polarized light, the magnitude of this

vector remains always the same, but its direction rotates round the

direction of the ray so as to complete a revolution in the periodic

time of the wave. The uncertainty which exists as to whether this

vector is in the plane of polarization or perpendicular to it, does not

extend to our knowledge of the direction in which it rotates in right-

handed and in left-handed circularly-polarized light respectively.

The direction and the angular velocity of this vector are perfectly

known, though the physical nature of the vector and its absolute

direction at a given instant are uncertain.

When a ray of circularly-polarized light falls on a medium under

the action of magnetic force, its propagation within the medium

is affected by the relation of the direction of rotation of the light to
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the direction of the magnetic force. From this we conclude, by the

reasoning of Art. 821, that in the medium, when under the action

of magnetic force, some rotatory motion is going on, the axis of ro

tation being in the direction of the magnetic forces ; and that the

rate of propagation of circularly-polarized light, when the direction

of its vibratory rotation and the direction of the magnetic rotation

of the medium are the same, is different from the rate of propaga

tion when these directions are opposite.

The only resemblance which we can trace between a medium

through which circularly-polarized light is propagated, and a me

dium through which lines of magnetic force pass, is that in both

there is a motion of rotation about an axis. But here the resem

blance stops, for the rotation in the optical phenomenon is that of

the vector which represents^ the disturbance. This vector is always

perpendicular to the direction of the ray, and rotates about it a

known number of times in a second. In the magnetic phenomenon,

that which rotates has no properties by which its sides can be dis

tinguished, so that we cannot determine how many times it rotates

in a second.

There is nothing, therefore, in the magnetic phenomenon which

corresponds to the wave-length and the wave-propagation in the op

tical phenomenon. A medium in which a constant magnetic force

is acting is not, in consequence of that force, filled with waves

travelling in one direction, as when light is propagated through it.

The only resemblance between the optical and the magnetic pheno
menon is, that at each point of the medium something exists of

the nature of an angular velocity about an axis in the direction of

the magnetic force.

On the Hypothesis of Molecular Vortices.

822.] The consideration of the action of magnetism on polarized

light leads, as we have seen, to the conclusion that in a medium

under the action of magnetic force something belonging to the

same mathematical class as an angular velocity, whose axis is in the

direction of the magnetic force, forms a part of the phenomenon.
This angular velocity cannot be that of any portion of the me

dium of sensible dimensions rotating as a whole. We must there

fore conceive the rotation to be that of very small portions of the

medium, each rotating on its own axis. This is the hypothesis of

molecular vortices.

The motion of these vortices, though, as we have shewn (Art. 575),
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it does not sensibly affect the visible motions of large bodies, may
be such as to affect that vibratory motion on which the propagation

of light, according to the undulatory theory, depends. The dis

placements of the medium, during the propagation of light, will

produce a disturbance of the vortices, and the vortices when so dis

turbed may react on the medium so as to affect the mode of propa

gation of the ray.

823.] It is impossible, in our present state of ignorance as to the

nature of the vortices, to assign the form of the law which connects

the displacement of the medium with the variation of the vortices.

We shall therefore assume that the variation of the vortices caused

by the displacement of the medium is subject to the same conditions

which Helmholtz, in his great memoir on Vortex-motion *, has

shewn to regulate the variation of the vortices of a perfect liquid.

Helmholtz s law may be stated as follows : Let P and Q be two

neighbouring particles in the axis of a vortex, then, if in conse

quence of the motion of the fluid these particles arrive at the

points P Q ,
the line P Q will represent the new direction of the

axis of the vortex, and its strength will be altered in the ratio of

P Q to PQ.
Hence if a, /3, y denote the components of the strength of a vor

tex, and if f, 17, f denote the displacements of the medium, the value

of a will become

/ d d^ d ^

a = a + a -= f-p -= |-y -y- &amp;gt;

ax ay dz

We now assume that the same condition is satisfied during the

small displacements of a medium in which a, (3, y represent, not

the components of the strength of an ordinary vortex, but the

components of magnetic force.

824.] The components of the angular velocity of an element of

the medium are Wl = \ (* - ^?) , ]
dt V

dy dz

(2)

*
Crelle s Journal, vol. Iv. (1858). Translated by Tait, Phil. Mag., July, 1867.



410 MAGNETIC ACTION ON LIGHT. [8 2 5-

The next step in our hypothesis is the assumption that the

kinetic energy of the medium contains a term of the form

2&amp;lt;?(ao&amp;gt;1+ /3a&amp;gt;2 + y6&amp;gt;3 ). (3)

This is equivalent to supposing that the angular velocity acquired

by the element of the medium during the propagation of light is a

quantity which may enter into combination with that motion by
which magnetic phenomena are explained.

In order to form the equations of motion of the medium, we must

express its kinetic energy in terms of the velocity of its parts,

the components of which are f, 77, f We therefore integrate by

parts, and find

2 C 1 1 1 (acoj + /3a&amp;gt;2 -f
ya&amp;gt;3)

dx dy dz

+
cff(aC- yfl dz dx +

OJJ(ft- arj) dx dy

The double integrals refer to the bounding surface, which may be

supposed at an infinite distance. We may, therefore, while in

vestigating what takes place in the interior of the medium, confine

our attention to the triple integral.

825.] The part of the kinetic energy in unit of volume, expressed

by this triple integral, may be written

**C(t+iiv + tw), (5)

where u, v, w are the components of the electric current as given in

equations (E), Art. 607.

It appears from this that our hypothesis is equivalent to the

assumption that the velocity of a particle of the medium whose

components are f, r/,
is a quantity which may enter into com

bination with the electric current whose components are u, v, w.

826.] Returning to the expression under the sign of triple inte

gration in (4), substituting for the values of a, ft, y, those of

a
, /3 , /, as given by equations (1), and writing

d d d d

the expression under the sign of integration becomes

dr d ,d d d sdr

dk zdh Tz
&quot;&quot;

r/ dk dx dy
In the case of waves in planes normal to the axis of z the displace-
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ments are functions of z and t only, so that -77 = y -j- &amp;gt; and this
dfi dz

expression is reduced to

^

The kinetic energy per unit of volume, so far as it depends on

the velocities of displacement, may now be written

where p is the density of the medium.

827.] The components, X and Y9 of the impressed force, referred

to unit of volume, may be deduced from this by Lagrange s equa

tions, Art. 564.

(10)

&amp;lt;&amp;gt;

These forces arise from the action of the remainder of the medium
on the element under consideration, and must in the case of an

isotropic medium be of the form indicated by Cauchy,

828.] If we now take the case of a circularly-polarized ray for

which
f = rcos(ntqz), r]

= r sin (nt
-
qz\ (14)

we find for the kinetic energy in unit of volume

T \pr*n
2

Cyr
2
q*n , (15)

and for the potential energy in unit of volume

= r*Q, (16)

where Q is a function of q
2

.

The condition of free propagation of the ray given in Art. 820,

equation (6), is dT_dV
dr dr

which gives Pn
2 -2Cyq2 n = Q, (18)

whence the value of n may be found in terms of q.

But in the case of a ray of given wave-period, acted on by
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magnetic force, what we want to determine is the value of -, when n

is constant, in terms of~
,
when y is constant. Differentiating (1 8)

(2pn 2Cyf)dn {-j^
+ lCygnjdti ZCifndy = 0. (19)

We thus find -f = - ^ ~f (
2

)

ay pnCyq2 an

829.] If A is the wave-length in air, and i the corresponding

index of refraction in the medium,

q\ = 2ni, n\ = 2irv. (21)

The change in the value of q,
due to magnetic action, is in every

case an exceedingly small fraction of its own value, so that we may^
%, (22)

where
qt

is the value of q when the magnetic force is zero. The

angle, 0, through which the plane of polarization is turned in

passing through a thickness c of the medium, is half the sum of

the positive and negative values of qc, the sign of the result being

changed, because the sign of q is negative in equations (14). We
thus obtain

0=-cy^ (23)

4 TT C i
2

. di x 1

The second term of the denominator of this fraction is approx

imately equal to the angle of rotation of the plane of polarization

during its passage through a thickness of the medium equal to half

a wave-length. It is therefore in all actual cases a quantity which

we may neglect in comparison with unity.

Writing ~ = m, (25)
vp

we may call m the coefficient of magnetic rotation for the medium,
a quantity whose value must be determined by observation. It is

found to be positive for most diamagnetic, and negative for some

paramagnetic media. We have therefore as the final result of our

theory *2 j;-x, (26)

where 6 is the angular rotation of the plane of polarization, m a
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constant determined by observation of the medium, y the intensity

of the magnetic force resolved in the direction of the ray, c the

length of the ray within the medium, X the wave-length of the

light in air, and i its index of refraction in the medium.

830.] The only test to which this theory has hitherto been sub

jected, is that of comparing the values of for different kinds of

light passing through the same medium and acted on by the same

magnetic force.

This has been done for a considerable number of media by M.
Verdet

&quot;*,
who has arrived at the following results :

(1) The magnetic rotations of the planes of polarization of the

rays of different colours follow approximately the law of the inverse

square of the wave-length.

(2) The exact law of the phenomena is always such that the pro

duct of the rotation by the square of the wave-length increases from

the least refrangible to the most refrangible end of the spectrum.

(3) The substances for which this increase is most sensible are

also those which have the greatest dispersive power.

He also found that in the solution of tartaric acid, which of itself

produces a rotation of the plane of polarization, the magnetic rotation

is by no means proportional to the natural rotation.

In an addition to the same memoir f Verdet has given the results

of very careful experiments on bisulphide of carbon and on creosote,

two substances in which the departure from the law of the inverse

square of the wave-length was very apparent. He has also com

pared these results with the numbers given by three different for

mulae, f
2 Jj .

(i) 0-.

(II) e -.

(ill) e-.
w/v

The first of these formulae, (I), is that which we have already ob

tained in Art. 829, equation (26). The second, (II), is that which

results from substituting in the equations of motion, Art. 826, equa-
70 70 &amp;gt;&amp;gt; -70

cL t\ cL * f] YI

tions (10), (11), terms of the form -~ and -j^, instead of
-=-5-3-

cl/t dt dz dt

* Recherches sur leg proprie tes optiques developpees dans les corps transparents
par Faction du magn^tisme, 4me partie. Comptes JfawfttS, t. Ivi. p. 630 (6 April, 1863).

t Comptes Rendw, Ivii. p. 670 (19 Oct., 1863).
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and --j-A I am no^ aware that this form of the equations has
dz^dt

been suggested by any physical theory. The third formula, (III),

results from the physical theory of M. C. Neumann *, in which the

equations of motion contain terms of the form ~ and -- t.
dt dt

It is evident that the values of 6 given by the formula (III) are

not even approximately proportional to the inverse square of the

wave-length. Those given by the formulae (I) and (II) satisfy this

condition, and give values of 6 which agree tolerably well with the

observed values for media of moderate dispersive power. For bisul

phide of carbon and creosote, however, the values given by (II) differ

very much from those observed. Those given by (I) agree better

with observation, but, though the agreement is somewhat close for

bisulphide of carbon, the numbers for creosote still differ by quan
tities much greater than can be accounted for by any errors of

observation.

Magnetic Rotation of the Plane of Polarization (from Verdef).

Bisulphide of Carbon at 24. 9 C.

Lines of the spectrum C D E F G
Observed rotation 592 768 1000 1234 1704

Calculated by I. 589 760 1000 1234 1713

II. 606 772 1000 1216 1640

III. 943 967 1000 1034 1091

Rotation of the ray E = 25. 28 .

Creosote at 24. 3 C.

Lines of the spectrum C D E F
Observed rotation 573 758 1000 1241 1723

Calculated by I. 617 780 1000 1210 1603

II. 623 789 1000 1200 1565

III. 976 993 1000 1017 1041

Rotation of the ray E = 21. 58 .

We are so little acquainted with the details of the molecular

*
Explicare tentatur quomodo fiat ut lucis planum polarizationis per vires elec-

tricas vel magneticas declinetur. Halis Saxonum, 1858.

f* These three forms of the equations of motion were first suggested by Sir G. B.

Airy (Phil. Mag., June 1846) as a means of analysing the phenomenon then recently
discovered by Faraday. Mac Cullagh had previously suggested equations containing

terms of the form in order to represent mathematically the phenomena of quartz.

These equations were offered by Mac Cullagh and Airy, not as giving a mechanical

explanation of the phenomena, but as shewing that the phenomena may be explained

by equations, which equations appear to be such as might possibly be deduced from
some plausible mechanical assumption, although no such assumption lias yet been
made.
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constitution of bodies, that it is not probable that any satisfactory

theory can be formed relating to a particular phenomenon, such as

that of the magnetic action on light, until, by an induction founded

on a number of different cases in which visible phenomena are found

to depend upon actions in which the molecules are concerned, we

learn something more definite about the properties which must be

attributed to a molecule in order to satisfy the conditions of ob

served facts.

The theory proposed in the preceding pages is evidently of a

provisional kind, resting as it does on unproved hypotheses relating

to the nature of molecular vortices, and the mode in which they are

affected by the displacement of the medium. We must therefore

regard any coincidence with observed facts as of much less scientific

value in the theory of the magnetic rotation of the plane of polari

zation than in the electromagnetic theory of light, which, though it

involves hypotheses about the electric properties of media, does not

speculate as to the constitution of their molecules.

831.] NOTE. The whole of this chapter may be regarded as an

expansion of the exceedingly important remark of Sir William

Thomson in the Proceedings of the Royal Society, June 1856 : The

magnetic influence on light discovered by Faraday depends on the

direction of motion of moving particles. For instance, in a medium

possessing it, particles in a straight line parallel to the lines of

magnetic force, displaced to a helix round this line as axis, and then

projected tangentially with such velocities as to describe circles,

will have different velocities according as their motions are round

in one direction (the same as the nominal direction of the galvanic

current in the magnetizing coil), or in the contrary direction. But

the elastic reaction of the medium must be the same for the same

displacements, whatever be the velocities and directions of the par
ticles

;
that is to say, the forces which are balanced by centrifugal

force of the circular motions are equal, while the luminiferous

motions are unequal. The absolute circular motions being there

fore either equal or such as to transmit equal centrifugal forces to

the particles initially considered, it follows that the luminiferous

motions are only components of the whole motion
; and that a less

luminiferous component in one direction, compounded with a mo
tion existing in the medium when transmitting no light, skives an

equal resultant to that of a greater luminiferous motion in the con

trary direction compounded with the same non -luminous motion.

I think it is not only impossible to conceive any other than this
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dynamical explanation of the fact that circularly-polarized light

transmitted through magnetized glass parallel to the lines of mag
netizing force, with the same quality, right-handed always, or left-

handed always, is propagated at different rates according as its

course is in the direction or is contrary to the direction in which a

north magnetic pole is drawn
;
but I believe it can be demonstrated

that no other explanation of that fact is possible. Hence it appears

that Faraday s optical discovery affords a demonstration of the re

ality of Ampere s explanation of the ultimate nature of magnetism ;

and gives a definition of magnetization in the dynamical theory of

heat. The introduction of the principle of moments of momenta

(&quot;

the conservation of areas
&quot;)

into the mechanical treatment of

Mr. Rankine s hypothesis of &quot; molecular vortices,&quot; appears to indi

cate a line perpendicular to the plane of resultant rotatory mo
mentum

(&quot;the invariable
plane&quot;)

of the thermal motions as the

magnetic axis of a magnetized body, and suggests the resultant

moment of momenta of these motions as the definite measure of

the &quot;

magnetic moment.&quot; The explanation of all phenomena of

electromagnetic attraction or repulsion, and of electromagnetic in

duction, is to be looked for simply in the inertia and pressure of

the matter of which the motions constitute heat. Whether this

matter is or is not electricity, whether it is a continuous fluid inter-

permeating the spaces between molecular nuclei, or is itself mole-

cularly grouped ;
or whether all matter is continuous, and molecular

heterogeneousness consists in finite vortical or other relative mo
tions of contiguous parts of a body ;

it is impossible to decide, and

perhaps in vain to speculate, in the present state of science.

A theory of molecular vortices, which I worked out at consider

able length, was published in the Phil. Mag. for March, April, and

May, 1861, Jan. and Feb. 1862.

I think we have good evidence for the opinion that some pheno
menon of rotation is going on in the magnetic field, that this rota

tion is performed by a great number of very small portions of

matter, each rotating on its own axis, this axis being parallel to the

direction of the magnetic force, and that the rotations of these dif

ferent vortices are made to depend on one another by means of some

kind of mechanism connecting them.

The attempt which I then made to imagine a working model of

this mechanism must be taken for no more than it really is, a de

monstration that mechanism may be imagined capable of producing
a connexion mechanically equivalent to the actual connexion of the
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parts of the electromagnetic field. The problem of determining the

mechanism required to establish a given species of connexion be

tween the motions of the parts of a system always admits of an

infinite number of solutions. Of these, some may be more clumsy
or more complex than others, but all must satisfy the conditions of

mechanism in general.

The following results of the theory, however, are of higher
value :

(1) Magnetic force is the effect of the centrifugal force of the

vortices.

(2) Electromagnetic induction of currents is the effect of the

forces called into play when the velocity of the vortices is changing.

(3) Electromotive force arises from the stress on the connecting
mechanism.

(4) Electric displacement arises from the elastic yielding of the

connecting mechanism.

VOL. II.



CHAPTER XXII

FEBROMAQNETISM AND DIAMAGNETISM EXPLAINED BY

MOLECULAR CURRENTS.

On Electromagnetic Theories of Magnetism.

832.] WE have seen (Art. 380) that the action of magnets on

one another can be accurately represented by the attractions and

repulsions of an imaginary substance called *

magnetic matter.

We have shewn the reasons why we must not suppose this magnetic
matter to move from one part of a magnet to another through a

sensible distance, as at first sight it appears to do when we

magnetize a bar, and we were led to Poisson s hypothesis that the

magnetic matter is strictly confined to single molecules oi&quot; the mag
netic substance, so that a magnetized molecule is one in which the

opposite kinds of magnetic matter are more or less separated to

wards opposite poles of the molecule, but so that no part of either

can ever be actually separated from the molecule (Art. 430).

These arguments completely establish the fact, that magnetiza
tion is a phenomenon, not of large masses of iron, but of molecules,

that is to say, of portions of the substance so small that we cannot

by any mechanical method cut one of them in two, so as to obtain a

north pole separate from a south pole. But the nature of a mag
netic molecule is by no means determined without further investi

gation. We have seen (Art. 442) that there are strong reasons for

believing that the act of magnetizing iron or steel does not consist

in imparting magnetization to the molecules of which it is com

posed, but that these molecules are already magnetic, even in un-

magnetized iron, but with their axes placed indifferently in all

directions, and that the act of magnetization consists in turning

the molecules so that their axes are either rendered all parallel to

one direction, or at least. are deflected towards that direction.
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833.] Still, however, we have arrived at no explanation of the

nature of a magnetic molecule, that is, we have not recognized its

likeness to any other thing of which we know more. We have

therefore to consider the hypothesis of Ampere, that the magnetism
of the molecule is due to an electric current constantly circulating

in some closed path within it.

It is possible to produce an exact imitation of the action of any

magnet on points external to it, by means of a sheet of electric

currents properly distributed on its outer surface. But the action

of the magnet on points in the interior is quite different from the

action of the electric currents on corresponding points. Hence Am
pere concluded that if magnetism is to be explained by means of

electric currents, these currents must circulate within the molecules

of the magnet, and must not flow from one molecule to another.

As we cannot experimentally measure the magnetic action at a

point in the interior of a molecule, this hypothesis cannot be dis

proved in the same way that we can disprove the hypothesis of

currents of sensible extent within the magnet.
Besides this, we know that an electric current, in passing from

one part of a conductor to another, meets with resistance and gene
rates heat

;
so that if there were currents of the ordinary kind round

portions of the magnet of sensible size, there would be a constant

expenditure of energy required to maintain them, and a magnet
would be a perpetual source of heat. By confining the circuits to

the molecules, within which nothing is known about resistance, we

may assert, without fear of contradiction, that the current, in cir

culating within the molecule, meets with no resistance.

According to Ampere s theory, therefore, all the phenomena of

magnetism are due to electric currents, and if we could make ob

servations of the magnetic force in the interior of a magnetic mole

cule, we should find that it obeyed exactly the same laws as the

force in a region surrounded by any other electric circuit.

834.] In treating of the force in the interior of magnets, we have

supposed the measurements to be made in a small crevasse hollowed

out of the substance of the magnet, Art. 395. We were thus led

to consider two different quantities, the magnetic force and the

magnetic induction, both of which are supposed to be observed in

a space from which the magnetic matter is removed. We were

not supposed to be able to penetrate into the interior of a mag
netic molecule and to observe the force within it.

If we adopt Ampere s theory, we consider a magnet, not as a

E e 2
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continuous substance, the magnetization of which varies from point

to point according to some easily conceived law, but as a multitude

of molecules, within each of which circulates a system of electric

currents, giving rise to a distribution of magnetic force of extreme

complexity, the direction of the force in the interior of a molecule

being generally the reverse of that of the average force in its neigh

bourhood, and the magnetic potential, where it exists at all, being

a function of as many degrees of multiplicity as there are molecules

in the magnet.

835.] But we shall find, that, in spite of this apparent complexity,

which, however, arises merely from the coexistence of a multitude

of simpler parts, the mathematical theory of magnetism is greatly

simplified by the adoption of Ampere s theory, and by extending

our mathematical vision into the interior of the molecules.

In the first place, the two definitions of magnetic force are re

duced to one, both becoming the same as that for the space outside

the magnet. In the next place, the components of the magnetic

force everywhere satisfy the condition to which those of induction

are subject, namely, da dp, dy _
dx dy dz

~

In other words, the distribution of magnetic force is of the

same nature as that of the velocity of an incompressible fluid,

or, as we have expressed it in Art. 25, the magnetic force has no

convergence.

Finally, the three vector functions the electromagnetic momen

tum, the magnetic force, and the electric current become more

simply related to each other. They are all vector functions of no

convergence, and they are derived one from the other in order, by
the same process of taking the space-variation, which is denoted

by Hamilton by the symbol V.

836.] But we are now considering magnetism from a physical

point of view, and we must enquire into the physical properties of

the molecular currents. We assume that a current is circulating

in a molecule, and that it meets with no resistance. If L is the

coefficient of self-induction of the molecular circuit, and M the co

efficient of mutual induction between this circuit and some other

circuit, then if y is the current in the molecule, and y that in the

other circuit, the equation of the current y is

=-Sr, (2)
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and since by the hypothesis there is no resistance, R = 0, and we

get by integration

Ly +My = constant, = Lyot say. (3)

Let us suppose that the area of the projection of the molecular

circuit on a plane perpendicular to the axis of the molecule is A,

this axis being defined as the normal to the plane on which the

projection is greatest. If the action of other currents produces a

magnetic force, X, in a direction whose inclination to the axis of

the molecule is 0, the quantity My becomes XA cos0, and we have

as the equation of the current

Ly +XAco$e Ly , (4)

where y is the value of y when X = 0.

It appears, therefore, that the strength of the molecular current

depends entirely on its primitive value y ,
and on the intensity of

the magnetic force due to other currents.

837.] If we suppose that there is no primitive current, but that

the current is entirely due to induction, then
* XA

y = j cos 0. (o)
Jj

The negative sign shews that the direction of the induced cur

rent is opposite to that of the inducing current, and its magnetic
action is such that in the interior of the circuit it acts in the op

posite direction to the magnetic force. In other words, the mole

cular current acts like a small magnet whose poles are turned

towards the poles of the same name of the inducing magnet.
Now this is an action the reverse of that of the molecules of iron

under magnetic action. The molecular currents in iron, therefore,

are not excited by induction. But in diamagnetic substances an

action of this kind is observed, and in fact this is the explanation of

diamagnetic polarity which was first given by Weber.

Weber s Theory of Diamagnetism.

838.] According to Weber s theory, there exist in the molecules

of diamagnetic substances certain channels round which an electric

current can circulate without resistance. It is manifest that if we

suppose these channels to traverse the molecule in every direction,

this amounts to making the molecule a perfect conductor.

Beginning with the assumption of a linear circuit within the mo
lecule, we have the strength of the current given by equation (5).
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The magnetic moment of the current is the product of its strength

by the area of the circuit, or yA, and the resolved part of this in the

direction of the magnetizing force is yAcosO, or, by (5),

Y //2

-^-cos 2
0. (6)

If there are n such molecules in unit of volume, and if their axes are

distributed indifferently in all directions, then the average value of

cos2 will be J, and the intensity of magnetization of the substance

will be ^nXA* ,

?
.

L
Neumann s coefficient of magnetization is therefore

_

The magnetization of the substance is therefore in the opposite

direction to the magnetizing force, or, in other words, the substance

is diamagnetic. It is also exactly proportional to the magnetizing

force, and does not tend to a finite limit, as in the case of ordinary

magnetic induction. See Arts. 442, &c.

839.] If the directions of the axes of the molecular channels are

arranged, not indifferently in all directions, but with a preponder

ating number in certain directions, then the sum

Ju

extended to all the molecules will have different values according

to the direction of the line from which 6 is measured, and the dis

tribution of these values in different directions will be similar to the

distribution of the values of moments of inertia about axes in dif

ferent directions through the same point.

Such a distribution will explain the magnetic phenomena related

to axes in the body, described by Pliicker, which Faraday has called

Magne-crystallic phenomena. See Art. 435.

840.] Let us now consider what would be the effect, if, instead

of the electric current being confined to a certain channel within

the molecule, the whole molecule were supposed a perfect conductor.

Let us begin with the case of a body the form of which is acyclic,

that is to say, which is not in the form of a ring or perforated

body, and let us suppose that this body is everywhere surrounded

by a thin shell of perfectly conducting matter.

We have proved in Art. 654, that a closed sheet of perfectly

conducting matter of any form, originally free from currents, be-
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comes, when exposed to external magnetic force, a current-sheet, the

action of which on every point of the interior is such as to make

the magnetic force zero.

It may assist us in understanding this case if we observe that

the distribution of magnetic force in the neighbourhood of such a

body is similar to the distribution of velocity in an incompressible

fluid in the neighbourhood of an impervious body of the same form.

It is obvious that if other conducting shells are placed within

the first, since they are not exposed to magnetic force, no currents

will be excited in them. Hence, in a solid of perfectly conducting

material, the effect of magnetic force is to generate a system of

currents which are entirely confined to the surface of the body.

841.] If the conducting body is in the form of a sphere of radius

r, its magnetic moment is

and if a number of such spheres are distributed in a medium, so

that in unit of volume the volume of the conducting matter is Xf,

then, by putting ^=1, and /x2
= in equation (17), Art. 314, we find

the coefficient of magnetic permeability,
f\ n If

(9)

whence we obtain for Poisson s magnetic coefficient

t=-\tf, (10)

and for Neumann s coefficient of magnetization by induction

Since the mathematical conception of perfectly conducting bodies

leads to results exceedingly different from any phenomena which

we can observe in ordinary conductors, let us pursue the subject

somewhat further.

842.] Returning to the case of the conducting channel in the

form of a closed curve of area A, as in Art. 836, we have, for the

moment of the electromagnetic force tending to increase the angle 0,

n0
m (12)

=
^-sin0cos0. (13)

This force is positive or negative according as is less or greater
than a right angle. Hence the effect of magnetic force on a per

fectly conducting channel tends to turn it with its axis at right
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angles to the line of magnetic force, that is, so that the plane of the

channel becomes parallel to the lines of force.

An effect of a similar kind may be observed by placing a penny
or a copper ring between the poles of an electromagnet. At the

instant that the magnet is excited the ring turns its plane towards

the axial direction, but this force vanishes as soon as the currents

are deadened by the resistance of the copper *.

843.] We have hitherto considered only the case in which the

molecular currents are entirely excited by the external magnetic
force. Let us next examine the bearing of Weber s theory of the

magneto-electric induction of molecular currents on Ampere s theory

of ordinary magnetism. According to Ampere and Weber, the

molecular currents in magnetic substances are not excited by the

external magnetic force, but are already there, and the molecule

itself is acted on and deflected by the electromagnetic action of the

magnetic force on the conducting circuit in which the current flows.

When Ampere devised this hypothesis, the induction of electric cur

rents was not known, and he made no hypothesis to account for the

existence, or to determine the strength, of the molecular currents.

We are now, however, bound to apply to these currents the same

laws that Weber applied to his currents in diamagnetic molecules.

We have only to suppose that the primitive value of the current y,

when no magnetic force acts, is not zero but y . The strength of

the current when a magnetic force, X, acts on a molecular current

of area A, whose axis is inclined 6 to the line of magnetic force, is

and the moment of the couple tending to turn the molecule so as

to increase is X2A 2

y XAsm0 + sin 26. (15)

Hence, putting A

AyQ
= m, /- = *, (16)

^7o
in the investigation in Art. 443, the equation of equilibrium becomes

Xsin0 3X 2 sin0cos0 = Dsin(a-0). (17)

The resolved part of the magnetic moment of the current in the

direction of X is

XA 2

yA cosO = y Acos0 --^ cos 2
(9, (18)L

= mcosO(l-3XcoaO). (19)

* See Faraday, Exp. Res., 2310, &c.
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844.] These conditions differ from those in Weber s theory of

magnetic induction by the terms involving the coefficient B. If

BX is small compared with unity, the results will approximate to

those of Weber s theory of magnetism. If BX is large compared
with unity, the results will approximate to those of Weber s theory
of diamagnetism.
Now the greater y ,

the primitive value of the molecular current,

the smaller will B become, and if L is also large, this will also

diminish B. Now if the current flows in a ring channel, the value
T&amp;gt;

of L depends on log ,
where R is the radius of the mean line of

the channel, and r that of its section. The smaller therefore the

section of the channel compared with its area, the greater will be L,

the coefficient of self-induction, and the more nearly will the phe
nomena agree with Weber s original theory. There will be this

difference, however, that as X, the magnetizing force, increases, the

temporary magnetic moment will not only reach a maximum, but

will afterwards diminish as X increases.

If it should ever be experimentally proved that the temporary

magnetization of any substance first increases, and then diminishes

as the magnetizing force is continually increased, the evidence of

the existence of these molecular currents would, I think, be raised

almost to the rank of a demonstration.

845.] If the molecular currents in diamagnetic substances are

confined to definite channels, and if the molecules are capable of

being deflected like those of magnetic substances, then, as the mag
netizing force increases, the diamagnetic polarity will always increase,

but, when the force is great, not quite so fast as the magnetizing
force. The small absolute value of the diamagnetic coefficient shews,

however, that the deflecting force on each molecule must be small

compared with that exerted on a magnetic molecule, so that any
result due to this deflexion is not likely to be perceptible.

If, on the other hand, the molecular currents in diamagnetic
bodies are free to flow through the whole substance of the molecules,

the diamagnetic polarity will be strictly proportional to the mag
netizing force, and its amount will lead to a determination of the

whole space occupied by the perfectly conducting masses, and, if we

know the number of the molecules, to the determination of the size

of each,



CHAPTER XXIII.

THEORIES OF ACTION AT A DISTANCE.

On the Explanation of Ampere s Formula given by Gauss and Weber.

846.] The attraction between the elements ds and da of two

circuits, carrying electric currents of intensity i and i
t is, by

Ampere s formula,
ii ds ds dr dr\ ft\3--; (1)

zr _ .

r2 v ds ds ds ds

the currents being estimated in electromagnetic units. See Art. 526.

The quantities, whose meaning as they appear in these expres
sions we have now to interpret, are

dr dr . d2r
cos e, -jr- -7-7

&amp;gt; and -=
T&amp;gt;

;

ds ds dsds

and the most obvious phenomenon in which to seek for an inter

pretation founded on a direct relation between the currents is the

relative velocity of the electricity in the two elements.

847.] Let us therefore consider the relative motion of two par

ticles, moving with constant velocities v and v along the elements

ds and ds respectively. The square of the relative velocity of these

particles is U2 = v z _ 2 vv cos e + v 2
-, (3)

and if we denote by r the distance between the particles,

dr dr ,dr ...

v7
~ v 7~+ v

-r&amp;gt;&amp;gt;
(
4

)^ ds ds

.dr dr /9 /dr\
2

/e v

v 5
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where the symbol &amp;lt;) indicates that, in the quantity differentiated,

the coordinates of the particles are to be expressed in terms of the

time.

It appears, therefore, that the terms involving the product vv in

the equations (3), (5), and (6) contain the quantities occurring in

(1) and (2) which we have to interpret. We therefore endeavour to
~~

and
2

But in order toexpress (1) and (2) in terms of ^2
, i

do so we must get rid of the first and third terms of each of these

expressions, for they involve quantities which do not appear in the

formula of Ampere. Hence we cannot explain the electric current

as a transfer of electricity in one direction only, but we must com

bine two opposite streams in each current, so that the combined

effect of the terms involving v2 and v 2
may be zero.

848.] Let us therefore suppose that in the first element, ds, we

have one electric particle, , moving with velocity ?;, and another, e
lt

moving with velocity vl ,
and in the same way two particles, ef and

e\, in ds
t moving with velocities v and v

L respectively.

The term involving v 2 for the combined action of these particles

Similarly 2 (t/W) = (v
2e + v\

2
e\) (e + ^) ; (8)

and 2(vtfeS) = (ve + v^^v e + vYi). (9)

In order that 2 (o
2 ee

) may be zero, we must have either

/ + e\ = 0, or V 2 e + v
1

2 e
1
= 0. (10)

According to Eechner s hypothesis, the electric current consists

of a current of positive electricity in the positive direction, com

bined with a current of negative electricity in the negative direc

tion, the two currents being exactly equal in numerical magnitude,
both as respects the quantity of electricity in motion and the velo

city with which it is moving. Hence both the conditions of (10)

are satisfied by Fechner s hypothesis.

But it is sufficient for our purpose to assume, either

That the quantity of positive electricity in each element is nu

merically equal to the quantity of negative electricity ; or

That the quantities of the two kinds of electricity are inversely

as the squares of their velocities.

Now we know that by charging the second conducting wire as a

whole, we can make e -f e\ either positive or negative. Such a

charged wire, even without a current, according to this formula,

would act on the first wire carrying a current in which v
2e -j- r1

2e
l
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has a value differing from zero. Such an action has never been

observed.

Therefore, since the quantity e + e\ may be shewn experimentally

not to be always zero, and since the quantity v 2 e + v 2
1
e
l

is not

capable of being experimentally tested, it is better for these specu

lations to assume that it is the latter quantity which invariably

vanishes.

849.] Whatever hypothesis we adopt, there can be no doubt that

the total transfer of electricity, reckoned algebraically, along the

first circuit, is represented by
ve-\-v1

e
i
= dels;

where c is the number of units of statical electricity which are

transmitted by the unit electric current in the unit of time, so that

we may write equation (9)

2 (vv ee
}
= c2 ii ds ds . (11)

Hence the sums of the four values of (3), (5), and (6) become

2 (ee n
2
)
= -2 c^ii ds ds cos e ; (12)

^, (13)
ds ds

and we may write the two expressions (1) and (2) for the attraction

between ds and ds

850.] The ordinary expression, in the theory of statical electri-

PP

city, for the repulsion of two electrical particles e and e is -
,
and

which gives the electrostatic repulsion between the two elements if

they are charged as wholes.

Hence, if we assume for the repulsion of the two particles either

of the modified expressions

we may deduce from them both the ordinary electrostatic forces, and

the forces acting between currents as determined by Ampere.
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851.] The first of these expressions, (18), was discovered by
Gauss * in July 1835, and interpreted by him as a fundamental law

of electrical action, that Two elements of electricity in a state of

relative motion attract or repel one another, but not in the same

way as if they are in a state of relative rest. This discovery was

not, so far as I know, published in the lifetime of Gauss, so that the

second expression, which was discovered independently by W.Weber,
and published in the first part of his celebrated Elektrodynamische

Maasbe&timmungen^, was the first result of the kind made known
to the scientific world.

852.] The two expressions lead to precisely the same result when

they are applied to the determination of the mechanical force be

tween two electric currents, and this result is identical with that

of Ampere. But when they are considered as expressions of the

physical law of the action between two electrical particles, we are

led to enquire whether they are consistent with other known facts

of nature.

Both of these expressions involve the relative velocity of the

particles. Now, in establishing- by mathematical reasoning the

well-known principle of the conservation of energy, it is generally
assumed that the force acting between two particles is a function of

the distance only, and it is commonly stated that if it is a function

of anything else, such as the time, or the velocity of the particles,

the proof would not hold.

Hence a law of electrical action, involving the velocity of the

particles, has sometimes been supposed to be inconsistent with the

principle of the conservation of energy.

853.] The formula of Gauss is inconsistent with this principle,

and must therefore be abandoned, as it leads to the conclusion that

energy might be indefinitely generated in a finite system by physical

means. This objection does not apply to the formula of Weber, for

he has shewn J that if we assume as the potential energy of a system

consisting of two electric particles,

the repulsion between them, which is found by differentiating this

quantity with respect to r, and changing the sign, is that given by
the formula (19).

* Werke (G-ottingen edition, 1867), \ol.v. p. 616.

t Abh. Leibnizens Qes., Leipzig (1846).

J Pogg. Ann., Ixxiii. p. 229 (1848).
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Hence the work done on a moving particle by the repulsion of a

fixed particle is ^o~&quot;^i
where

\ITO and \//j
are the values of

\ff
at the

beginning and at the end of its path. Now
\j/ depends only on the

distance, r, and on the velocity resolved in the direction of r. If,

therefore, the particle describes any closed path, so that its position,

velocity, and direction of motion are the same at the end as at the

beginning, ^ will be equal to \^ ,
and no work will be done on the

whole during the cycle of operations.

Hence an indefinite amount of work cannot be generated by a

particle moving in a periodic manner under the action of the force

assumed by Weber.

854.] But Helmholtz, in his very powerful memoir on the Equa
tions of Motion of Electricity in Conductors at Rest *, while he

shews that Weber s formula is not inconsistent with the principle

of the conservation of energy, as regards only the work done during
a complete cyclical operation, points out that it leads to the conclu

sion, that two electrified particles, which move according to Weber s

law, may have at first finite velocities, and yet, while still at a finite

distance from each other, they may acquire an infinite kinetic energy,

and may perform an infinite amount of work.

To this Weber f replies, that the initial relative velocity of the

particles in Helmholtz s example, though finite, is greater than the

velocity of light ;
and that the distance at which the kinetic energy

becomes infinite, though finite, is smaller than any magnitude which

we can perceive, so that it may be physically impossible to bring two

molecules so near together. The example, therefore, cannot be tested

by any experimental method.

Helmholtz J has therefore stated a case in which the distances are

not too small, nor the velocities too great, for experimental verifica

tion. A fixed non-conducting spherical surface, of radius &, is uni

formly charged with electricity to the surface-density a. A particle,

of mass m and carrying a charge e of electricity, moves within the

sphere with velocity v. The electrodynamic potential calculated

from the formula (20) is

2l-, (21)

and is independent of the position of the particle within the sphere.

Adding to this Vt the remainder of the potential energy arising

* Crelle s Journal, 72 (1870).

t Elektr. Maasl). inlmondere liber das Princip der Erhaltung der Energie.

J Ikiiin Monatslericht, April 1872; Phil May., Dec. 1872, Supp.
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from the action of other forces, and \mv 2
,
the kinetic energy of the

particle, we find as the equation of energy

r* const. (22)

Since the second term of the coefficient of v3
may be increased in

definitely by increasing a, the radius of the sphere, while the surface-

density a remains constant, the coefficient ofv 2
may be made negative.

Acceleration of the motion of the particle would then correspond to

diminution of its vis viva, and a body moving in a closed path and

acted on by a force like friction, always opposite in direction to its

motion, would continually increase in velocity, and that without

limit. This impossible result is a necessary consequence of assuming

any formula for the potential which introduces negative terms into

the coefficient of v 2
.

855.] But we have now to consider the application of Weber s

theory to phenomena which can be realized. We have seen how it

gives Ampere s expression for the force of attraction between two

elements of electric currents. The potential of one of these ele

ments on the other is found by taking the sum of the values of the

potential \j/
for the four combinations of the positive and negative

currents in the two elements. The result is, by equation (20), taking

the sum of the four values of ,,
di

(23)
r ds ds

and the potential of one closed current on another is

_w /Yl
d
4-~ds ds = ii M, (24)

jj. r ds ds

i I r*o^ p

where M = 1 1
-

dsds*, as in Arts. 423, 524.

In the case of closed currents, this expression agrees with that

which we have already (Art. 524) obtained&quot;*.

Weber s Theory of the Induction of Electric Currents.

856.] After deducing from Ampere s formula for the action

between the elements of currents, his own formula for the action

between moving electric particles, Weber proceeded to apply his

formula to the explanation of the production of electric currents by

* In the whole of this investigation Weber adopts the electrodynamic system of

units. Tn this treatise we always use the electromagnetic system. The electro-mag
netic unit of current is to the electrodynamic unit in the ratio of A/2 to 1. Art. 526.
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magneto-electric induction. In this he was eminently successful,

and we shall indicate the method by which the laws of induced

currents may be deduced from Weber s formula. But we must

observe,, that the circumstance that a law deduced from the pheno

mena discovered by Ampere is able also to account for the pheno

mena afterwards discovered by Faraday does not give so much

additional weight to the evidence for the physical truth of the law

as we might at first suppose.

For it has been shewn by Helmholtz and Thomson (see Art. 543),

that if the phenomena of Ampere are true, and if the principle of

the conservation of energy is admitted, then the phenomena of in

duction discovered by Faraday follow of necessity. Now Weber s

law, with the various assumptions about the nature of electric

currents which it involves, leads by mathematical transformations

to the formula of Ampere. Weber s law is also consistent with the

principle of the conservation of energy in so far that a potential

exists, and this is all that is required for the application of the

principle by Helmholtz and Thomson. Hence we may assert, even

before making any calculations on the subject, that Weber s law

will explain the induction of electric currents. The fact,, therefore,

that it is found by calculation to explain the induction of currents,

leaves the evidence for the physical truth of the law exactly where

it was.

On the other hand, the formula of Gauss, though it explains the

phenomena of the attraction of currents, is inconsistent with the

principle of the conservation of energy, and therefore we cannot

assert that it will explain all the phenomena of induction. In fact,

it fails to do so, as we shall see in Art. 859.

857.] We must now consider the electromotive force tending to

produce a current in the element els
,
due to the current in ds, when

ds is in motion, and when the current in it is variable.

According to Weber, the action on the material of the conductor

of which ds is an element, is the sum of all the actions on the

electricity which it carries. The electromotive force, on the other

hand, on the electricity in dts
t
is the difference of the electric forces

acting on the positive and the negative electricity within it. Since

all these forces act in the line joining the elements, the electro

motive force on ds is also in this line, and in order to obtain the

electromotive force in the direction of ds we must resolve the force

in that direction. To apply Weber s formula, we must calculate

the various terms which occur in it, on the supposition that the



858.] WEBER S THEORY OF INDUCED CURRENTS. 433

element ds is in motion relatively to els
,
and that the currents in

both elements vary with the time. The expressions thus found

will contain terms involving* v2
, vv

,
v 2

, v, ?/, and terms not involv

ing v or v
,
all of which are multiplied by ee . Examining, as we

did before, the four values of each term, and considering first the

mechanical force which arises from the sum of the four values, we
find that the only term which we must take into account is that

involving the product vv ee .

If we then consider the force tending to produce a current in the

second element, arising from the difference of the action of the first

element on the positive and the negative electricity of the second

element, we find that the only term which we have to examine is

that which involves vee . We may write the four terms included in

2 (veef), thus

e (ve -f vl tfj)
and e\ (ve + v

l e^.

Since e -\-e\ = 0, the mechanical force arising from these terms is

zero, but the electromotive force acting on the positive electricity e

is (ve + v- e^, and that acting on the negative electricity e\ is equal
and opposite to this.

858.] Let us now suppose that the first element ds is moving

relatively to ds with velocity V in a certain direction, and let us
A A

denote by Yds and Yds , the angle between the direction of V and

that of ds and of ds respectively, then the square of the relative

velocity, u
9
of two electric particles is

u2 = v2 +v 2+7 2 -2vv cose+27vcosFds-27v cos7cti. (25)

The term in vv is the same as in equation (3). That in v, on which

the electromotive force depends, is

A
2 Fv cos Yds.

We have also for the value of the time-variation of r in this case

c) r dr f dr dr= v --- + &amp;gt;o + , (26)^t ds ds dt

where
^-

refers to the motion of the electric particles, and
^-

to

that of the material conductor. If we form the square of this quan

tity, the term involving vif, on which the mechanical force depends,
is the same as before, in equation (5), and that involving v, on which

the electromotive force depends, is

dr dr
2v-r -

rr
&amp;gt;

ds dt

VOL. ii. r f
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Differentiating (26) with respect to t, we find

dv dr , dv dr d2r
* v

~foTs
+ v ^di^di2

We find that the term involving vv is the same as before in (6).

The term whose sign alters with that of v is -=7- -=-
dt ds

859.] If we now calculate by the formula of Gauss (equation (18)),

the resultant electrical force in the direction of the second element

ds y arising from the action of the first element ds, we obtain

1 A A A A

-y dsds iV (2 cos Yds 3 cos Vr cos r ds) coerdi. (28)

As in this expression there is no term involving the rate of va

riation of the current i, and since we know that the variation of

the primary current produces an inductive action on the secondary

circuit, we cannot accept the formula of Gauss as a true expression

of the action between electric particles.

860.] If, however, we employ the formula of Weber, (19), we

obtain
\ drdi .drdr.dr

f
.

(29)., ,
r2 S ds dt ds dt&amp;gt; ds

dr dr d ,i\
7 7 , ,QA &amp;gt;.

or -Y -j-, -j- (-) dsds . (30)
ds ds dt\r

If we integrate this expression with respect to s and /, we obtain

for the electromotive force on the second circuit

d . CCl dr dr , .

s JJ;***?
Now, when the first circuit is closed,

d2r

ds ds
= 0.

/*! dr dr , f A dr dr d2r \ , /*cose T

Hence
/
- T -^ ds =

/ (- + ~-
7
-
7 )

ds = - I - - ds. (32)J r ds ds J V ds ds dsds J r

But
fj^^dsds

/= M, by Arts. 423, 524. (33)

Hence we may write the electromotive force on the second circuit

-*&amp;lt;
*&amp;gt; (34)

which agrees with what we have already established by experiment ;

Art. 539.
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On Weber s Formula^ considered as resultingfrom an Action transmitted

from one Electric Particle to the other with a Constant Velocity.

861.] In a very interesting letter of Gauss to W. Weber * he

refers to the electrodynamic speculations with which he had been

occupied long before, and which he would have published if he could

then have established that which he considered the real keystone
of electrodynamics, namely, the deduction of the force acting be

tween electric particles in motion from the consideration of an action

between them, not instantaneous, but propagated in time, in a

similar manner to that of light. He had not succeeded in making
this deduction when he gave up his electrodynamic researches, and

he had a subjective conviction that it would be necessary in the

first place to form a consistent representation of the manner in

which the propagation takes place.

Three eminent mathematicians have endeavoured to supply this

keystone of electrodynamics.

862.J In a memoir presented to the Royal Society of Gottingen
in 1858, but afterwards withdrawn, and only published in Poggen-
dorff s Annalen in 1867, after the death of the author, Bernhard

Riemann deduces the phenomena of the induction of electric cur

rents from a modified form of Poisson s equation

where Fis the electrostatic potential, and a a velocity.

This equation is of the same form as those which express the

propagation of waves and other disturbances in elastic media. The

author, however, seems to avoid making explicit mention of any
medium through which the propagation takes place.

The mathematical investigation given by Riemann has been ex

amined by Clausiusf, who does not admit the soundness of the

mathematical processes, and shews that the hypothesis that potential

is propagated like light does not lead either to the formula of Weber,
or to the known laws of electrodynamics.

863.] Clausius has also examined a far more elaborate investiga

tion by C. Neumann on the Principles of Electrodynamics J. Neu

mann, however, lias pointed out that his theory of the transmission

of potential from one electric particle to another is quite different

from that proposed by Gauss, adopted by Riemann, and criticized

* March 19, 1845, WerJse, bd. v. 629. Tubingen, 1868.

t Pogg., bd. cxxxv. 612. Mathematische Annalen, i. 317.
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by Clausius, in which the propagation is like that of light. There

is, on the contrary, the greatest possible difference between the

transmission of potential, according to Neumann, and the propaga

tion of light.

A luminous body sends forth light in all directions, the intensity

of which depends on the luminous body alone, and not on the

presence of the body which is enlightened by it.

An electric particle, on the other hand, sends forth a potential,

ed
the value of which, , depends not only on

&amp;lt;?,

the emitting particle,

but on e , the receiving particle, and on the distance r between the

particles at the instant of emission.

In the case of light the intensity diminishes as the light is pro

pagated further from the luminous body ;
the emitted potential

flows to the body on which it acts without the slightest alteration

of its original value.

The light received by the illuminated body is in general only a

fraction of that which falls on it ; the potential as received by the

attracted body is identical with, or equal to, the potential which

arrives at it.

Besides this, the velocity of transmission of the potential is not,

like that of light, constant relative to the aether or to space, but

rather like that of a projectile, constant relative to the velocity of

the emitting particle at the instant of emission.

It appears, therefore, that in order to understand the theory of

Neumann, we must form a very different representation of the pro

cess of the transmission of potential from that to which we have

been accustomed in considering the propagation of light. Whether

it can ever be accepted as the construirbar Vorstellung of the

process of transmission, which appeared necessary to Gauss, I cannot

say, but I have not myself been able to construct a consistent

mental representation of Neumann s theory.

864.] Professor Betti*, of Pisa, has treated the subject in a

different way. He supposes the closed circuits in which the electric

currents flow to consist of elements each of which is polarized

periodically, that is, at equidistant intervals of time. These polar
ized elements act on one another as if they were little magnets
whose axes are in the direction of the tangent to the circuits. The

periodic time of this polarization is the same in all electric cir

cuits. Betti supposes the action of one polarized element on an-

* Nuovo Cimento, xxvii (1868).
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other at a distance to take place, not instantaneously, but after a

time proportional to the distance between the elements. In this

way he obtains expressions for the action of one electric circuit on

another, which coincide with those which are known to be true.

Clausius, however, has, in this case also, criticized some parts of

the mathematical calculations into which we shall not here enter.

865.] There appears to be, in the minds of these eminent men,

some prejudice, or a priori objection, against the hypothesis of a

medium in which the phenomena of radiation of light and heat,

and the electric actions at a distance take place. It is true that at

one time those who speculated as to the causes of physical pheno

mena, were in the habit of accounting for each kind of action at a

distance by means of a special sethereal fluid, whose function and

property it was to produce these actions. They filled all space

three and four times over with aethers of different kinds, the pro

perties of which were invented merely to save appearances, so that

more rational enquirers were willing rather to accept not only New
ton s definite law of attraction at a distance, but even the dogma of

Cotes
&quot;*,

that action at a distance is one of the primary properties of

matter, and that no explanation can be more intelligible than this

fact. Hence the undulatory theory of light has met with much

opposition, directed not against its failure to explain the pheno

mena, but against its assumption of the existence of a medium in

which light is propagated.

866.] We have seen that the mathematical expressions for electro-

dynamic action led, in the mind of Gauss, to the conviction that a

theory of the propagation of electric action in time would be found

to be the very key-stone of electrodynamics. Now we are unable

to conceive of propagation in time, except either as the flight of a

material substance through space, or as the propagation of a con

dition of motion or stress in a medium already existing in space.

In the theory of Neumann, the mathematical conception called

Potential, which we are unable to conceive as a material substance,

is supposed to be projected from one particle to another, in a manner

which is quite independent of a medium, and which, as Neumann
has himself pointed out, is extremely different from that of the pro

pagation of light. In the theories of Riemann and Betti it would

appear that the action is supposed to be propagated in a manner

somewhat more similar to that of light.

But in all of these theories the question naturally occurs : If

* Preface to Newton s Principia, 2nd edition.
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something is transmitted from one particle to another at a distance,

what is its condition after it has left the one particle and before

it has reached the other ? If this something is the potential energy

of the two particles, as in Neumann s theory, how are we to con

ceive this energy as existing in a point of space, coinciding neither

with the one particle nor with the other ? In fact, whenever energy
is transmitted from one body to another in time, there must be

a medium or substance in which the energy exists after it leaves

one body and before it reaches the other, for energy, as Torricelli *

remarked, is a quintessence of so subtile a nature that it cannot be

contained in any vessel except the inmost substance of material

things. Hence all these theories lead to the conception of a medium

in which the propagation takes place, and if we admit this medium

as an hypothesis, I think it ought to occupy a prominent place in

our investigations, and that we ought to endeavour to construct a

mental representation of all the details of its action, and this has

been my constant aim in this treatise.

* Lezioni Accademiche (Firenze, 1715), p. 25.
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23,498, 501.

crcularly-polarized rays, 813.

Ritchie, W., 542.

Ritter s (J. W.) Secondary Pile, 271.

Rotation of plane of polarization, 806.

magnetism, a phenomenon of, 821.

Riihlmann, R.., 370.

Rule of electromagnetic direction, 477,

494, 496.

Scalar, 11.

Scale for mirror observations, 450.

Sectorial harmonic, 132, 138.

Seebeck, T. J., 250.

Selenium, 51, 362.

Self-induction, 7.

measurement of, 756, 778, 779.
coil of maximum, 706.

Sensitive galvanometer, 717.
Series of observations, 746, 750.

Shell, magnetic, 409, 484, 485, 606, 652,
670, 694, 696.

Siemens, C. W., 336, 361.

Sines, method of, 455, 710.

Singular points, 128.

Slope, 17.

Smee, A., 272.

Smith, Archibald, 441.

Smith, W. R., 123, 316.

Soap bubble, 125.

Solenoid, magnetic, 407.

electromagnetic, 676-681, 727.
Solenoidal distribution, 21, 82, 407.
Solid angle, 409, 417-422, 485, 695.

Space-variation, 17, 71, 835.

Spark, 57, 370.

Specific inductive capacity, 52, 83, 94,

111, 229, 325, 334, 627, 788.

conductivity, 278, 627.

resistance, 277, 627.
heat of electricity, 253.

Sphere, 125.

Spherical harmonics, 128-146, 391, 431.

Spiral, logarithmic, 731.
Standard electrometer, 217.

galvanometer, 708.

Stokes, G. G., 24, 115, 784.

Stoney, G. J., 5.

Stratified conductors, 319.

Stress, electrostatic, 107, 111.

electrokinetic, 641, 645, 646.

Strutt, Hon. J. W., 102, 306.

Surface-integral, 15, 21, 75, 402.

density, 64, 78, 223.

Surface, equipotential, 46.

electrified, 78.

Suspended coil, 721-729.

Suspension, bifilar, 45S.
Joule s, 463.

Thomson s, 721.

unifilar, 449.

Tables of coefficients of a coil, 700.
of dimensions, 621-629.
of electromotive force, 358.

of magnetic rotation, 830.
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Tables for magnetization of a cylinder,
439.

of resistance, 363-365.
of velocity of light and of electromag
netic disturbance, 787-

of temporary and residual magnetiza
tion, 445.

Tait, P. G., 25, 254, 387, 522, 687,

731.

Tangent galvanometer, 710.

Tangents, method of, 454, 710.

Telegraph cable, 332, 689.

Temporary magneti/ation, 444.

Tension, electrostatic, 48, 59, 107, 108.

electromagnetic, 645, 646.

Terrestrial magnetism, 465-474.

Thalen, Tobias Robert, 430.

Theorem, Green s, 100.

Earnshaw s, 116.

Coulomb s, 80.

Thomson s, 98.

Gauss
, 144, 409.

Theory of one fluid, 37.

of two fluids, 36.

of magnetic matter, 380.

of magnetic molecules, 430, 832-845.
of molecular currents, 833.

of molecular vortices, 822.

of action at a distance, 105, 641-646,
846-866.

Thermo-electric currents, 249-254.
Thickness of galvanometer wire, 716,

719.

Thomson, Sir William,
electric images, 43, 121, 155-181,
173.

experiments, 51, 57, 248, 369, 772.

instruments, 127, 201, 210, 211, 216-

222, 272, 722, 724.

magnetism, 318, 398, 400, 407-416,
428.

resistance, 338, 351, 356, 763.

thermo-electricity, 207, 242, 249, 252,
253.

theorems, 98, 138, 263, 299, 304,
652.

theory of electricity, 27, 37, 543, 831,
856.

vortex motion, 20, 100, 487, 702.

Thomson and Tait s Natural Philoso

phy, 132, 141, 144, 162, 303, 553,
676.

Time, periodic of vibration, 456, 738.

Time-integral, 541, 558.

Torricelli, Evangelista, 866.

Torsion-balance, 38, 215, 373, 726.

Transient currents, 232, 530, 536,* 537,

582, 748, 758, 760, 771, 776.

Units of physical quantities, 2.

three fundamental, 3.

derived, 6.

electrostatic, 41, 625.

magnetic, 374, 625.

electrodynamic, 526.

electromagnetic, 526, 620.

classification of, 620-629.

practical, 629.

of resistance, 758-767.
ratios of the two systems, 768-780.

Variation of magnetic elements, 472.

Varley, C. F., 210, 271, 332, 369.

Vector, 1 0.

Vector-potential, 405, 422, 590, 617, 657.

Velocity represented by the unit of re

sistance, 338, 628, 758.

by the ratio of electric units, 768-
780.

of electromagnetic disturbance, 784.
of light, 787.
of the electric current, 569.

Verdet, M. E., 809, 830.

Vibration, time of, 456, 738.

Volt, 629.

Volta, A., 246.

Voltameter, 237.

Vortices, molecular, 822-831.

Water, resistance of, 365.

Wave-propagation, 784, 785.

Weber, W., 231, 338, 346.

electrodynamometer, 725.
induced magnetism, 442-448, 838.

unit of resistance, 760-762.
ratio of electric units, 227, 771.

electrodynamic formula, 846-861.

Wertheim, W., 447.

Wheatstone s Bridge, 347-

electrostatic, 353, 756, 775, 778.

Whewell, W., 237.

Wiedemann, G., 236, 370, 446, 447.

Wind, electric, 55.

Wippe, 775.

Work, 6.

Zero reading, 735.

Zonal harmonic, 132.
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