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PKEFACE TO THE FIRST EDITION

rilHIS book is based on a course of lectures which I have

-L delivered to graduate students at Princeton University

during the last few years. My aim has been to exhibit the

extent to which the fundamental facts of physical science may
be coordinated by means of the conception of the electron and

tlie laws of electrodynamics. In developing the subject I have

started from the most elementary beginnings, and I have therefore

found it necessary to include much matter which is to be found in

any ordinarj'- text-book of the theory of electricity and magnetism.

It is hoped that the lack of conciseness thereby involved may be

more than atoned for by the wider circle to which the book may
appeal. The course of lectures at Princeton on which the book is

founded proved useful as an introduction to the methods of modern

mathematical physics in addition to forming a presentation of the

results of recent physical discovery.

The broad scope of the subject makes it imperative that a good

deal of selection should be exercised as to the nature and treatment

of the topics considered. In determining these, consideration has

been given to importance, interest, and instructiveness, roughly in

the order named. The necessary incompleteness is remedied to

some extent by references to scientific papers and to other works.

These references are intended to supplement the discussion in the

text rather than to exhibit the historical development of the

subject. Thus many important papers are not referred to. I have

tried, however, to be as accurate as possible in any statements

which deal specifically with historical matters.

For a variety of reasons the book has, unfortunately, suffered

considerable delay in passing through the press. I have, however,

found it possible to incorporate some account of the important

recent results while correcting the proofs; so that, with some

reservations, the book may be regarded as fairly representing the
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stftte of the subject up to the time of printing. The most serious

exception is in the piirt dealing with the electron theory of metallic

conduction, where the important theoretical papers of Keesom
{Communicationsfrom the Leiden Physical Laboratory, Supplement
Nos. 30 and 32 (1913)) and Wien (Columbia University Lectures

(1913) and Berlin Sitzungsber. p. 184 (1913)) sis well as the full ac-

count of Kamerlingh Onnes' experimental work at low temperatures

(Cumm.. Leiden, Supplement No. 34 (1913) and No. 139 (1914))

did not reach me in time to be dealt with. These papers lead one

to hope that the difficulties which beset the electron theory of

metallic conduction in its usual form may be overcome by the

application of the ideas underlying Planck's theory of radiation.

In any event the theories of Chapters xvii and xviii should be

valid at sufficiently high temperatures when the results of the

quantum theory coalesce with those of the continuous theory.

Many other branches of the subject are in a similar, though

possibly less aggravated, situation ; amongst these the questions

of atomic structure, spectroscopic emission. X-rays and the

magnetic properties of bodies are conspicuous examples. At the

present time this field is unquestionably a very fruitful one both

for the experimental and for the theoretical physicist.

I am indebted to the kindness of the publisheis of the

following journals and works for permission to reproduce various

diagrams, viz. Annalen der Fhysik, Figs. 25, 30 a, 82 and 42;

Journal de Physique, Figs. 35, 48 and 49 ; Philosophical Magazine,

Figs. 52 and 56 ; Lorentz' Theory of Electrons, Fig. 55 ; Stark's

PHncipien der Atomdynamik, Figs. 53 and 54.

I wish to express my thanks to Dr C. J, Davisson of the

Carnegie Institute, Pittsburg, and to Dr K. T. Compton of the

Reed College, Oregon, for the assistance I have received from the

notes they took of my lectures, as well as to Mr T. G. Bedford, the

Editor of the Cambridge Physical Series, for his valuable help and

suggestions in reading the proofs.

O. W. RICHARDSON.

King's College, London.

Mat/, 1914.
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PREFACE TO THE SECOND EDITION

IN this Edition I have made a considerable number of additions

and alterations, although the changes in the later chapters are

not so extensive as I should have desired were time and leisure

available. For example, I have contented myself with merely

giving references to the papers which have recently appeared

dealing with new and interesting theories of metallic conduction.

To have done more than this would have involved rewriting and

considerably extending Chapters xvii and xvill, which hardly

seems desirable at present. It seems not unreasonable to antici-

pate that the theory of this subject will be placed on a more

satisfactory basis in the near future. At the end of Chapter xx
I have added a very brief account of the interesting phenomena

which attend the absorption of light by gases. This field of

enquiry promises to clear up many important points affecting

the motion of molecules which are at present doubtful. I have

rewritten and greatly extended the account of Bohr's theory at

the end of Chapter xxi. The remarkable successes of this theory,

together with the continued development of the quantum ideas

generally, furnish the most striking features in the recent progress

of Physical Science. Where new experimental discoveries of

importance have appeared I have added descriptions or references

so as to bring the subject matter of the book up to date. In this

connection it is interesting to note that the gyroscopic rotational

effect due to magnetization which was described in the former

edition has been detected experimentally by Einstein and Haas
and found to agree to within a few per cent, of the value which I

calculated. Finally I have corrected a few errors, mainly algebraic,

which had crept into the first Edition. For pointing out some of

these I am glad to take this opportunity of thanking a number of

correspondents and critics.

O. W. R.

11 January, 1916.
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CHAPTER I

THE ORIGIN OF THE ELECTRON THEORY

The Electron Theory of Matter may be looked upon as a form

of atomic theory. It differs from the form of the atomic theory

with which chemistry is familiar, especially in that it makes

the ultimate atoms minute geometrical configurations of electric

charge, instead of particles of uncharged matter. A large number
of different lines of inquiry, often closely interwoven, have led to

the adoption of such a view of the structure of matter. Of these

different lines of inquiry, however, three may be considered

pre-eminently conspicuous.

In the first place, although the electron theory has made most

rapid progress in the last two decades, it is a logical development

of the views held a century ago by Davy* and Berzeliusf and

especially of the views to which Faraday J was led by his electro-

chemical discoveries made somewhat later. Davy concluded, from

a general review of the electrochemical phenomena known in hia

day, that the forces between the chemical atoms were of electrical

origin. Shortly afterwards a complete system of chemical structure

depending on the same idea was developed by Berzelius and,

although in its original form Berzelius's electrochemical theory was

insufficiently elastic, its main features have much in common with

the most modern views on the subject. The laws of electrolysis

discovered by Faraday led to an important advance by pointing

distinctly to an atomic constitution for electricity; for they

showed that each chemical atom invariably transported either a

definite quantity of electricity or an integral multiple of that

* Phil. Trans, p. 1 (1807).

t Mem. Acad. Stockholm (1812) ; Nicholson's Journal, vols, xxxiv. and xxxv^

(1813).

+ Exp. Res. §§ 377, 523, 661, 713, 821 and especially 852, 869.

R. E. T. X



2 THE ORIGIN OF THE ELECTRON THEORY

quantity, a multiple which was determined by the chemical

valency of the atom. This inference from Faraday's electrolytic

researches was strongly advocated much later by von Helmholtz*.

The second line of inquiry referred to dealt mainly with

optical phenomena. It would be impossible adequately to discuss

at this stage the complex questions which present themselves in

this connection. It may be permissible to recall that Maxwell's

electromagnetic theory had been found to account satisfactorily

for the behaviour of light, and electromagnetic waves in general,

in free space ; but that difficulties presented themselves when

phenomena like refraction and disperaion, which depend upon

transmission through material media, were considered. These were

found capable of removal by introducing the simple hypothesis

that the material media contained particles having appropriate

natural frequencies of vibration. Maxwell's electromagnetic theory

of light naturally suggested that these particles were electrically

charged, and the facts of dielectric polarisation were then found

to fall into line, approximately at any rate, with the optical

phenomena. The theory of the propagation of light in moving

media also made important advances under the influence of the

new views. A striking confirmation of the correctness of the

general position was furnished by Zeeraan's discoveiy of the

change of the frequency of spectral lines when the emitting source

was placed in a strong magnetic field. The magnitude of this

change enabled an estimate of the ratio of the charge to the

mass of the particles to be made. The resulting values were in

substantial agreement with those which were obtained at about

the same time by entirely different and more direct methods. In

the development of the theory along the lines just indicated the

ideas of H. A. Lorentzfand J. LarmorJ have had a preponderating

influence.

The third line of attack was furnished by the experimental

study of the phenomena accompanying the discharge of electricity

through gases and especially of the properties of the cathode rays,

the Roentgen rays and the rays emitted by radioactive substances.

The matter described in the ensuing paragiaph will serve to give

• " Faraday Lecture " (1881).

t Arch. SeerL vol xxv. p. 363 (1892). Theory of Electrons, Leipzig, 1909.

X Phil. Trans. A. toL clxxxv. p. 821 (1891). Aellier and Matter, Cambridge,

1900.
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a general idea of the kind of information which has been supplied

by these researches.

The Isolation of the Elementary Charge.

The electron theory may now be said to have developed far

beyond the region of hypothesis. Discovery after discovery during

the last fifteen years has established indubitably the existence of

a negative electron whose properties are independent of the matter

from which it originates. J. J. Thomson* and Wiechertf, in-

dependently, showed that the magnetic deflection of the cathode

rays present in a vacuum tube at a low pressure proved that they

consisted of negatively charged particles for which the value of

e/m, where e is the electric charge and m the mass of one of the

particles, was equal to about 1'8 x 10^ E.M. units. About the same

time Lorentzj showed that Zeeman's§ discovery of the shift of

the spectral lines of an emitting gas, produced by a magnetic

field, pointed to the existence, within the atom, of negatively

charged particles which had approximately the same value of e/m.

Now the value of ejm for the lightest known chemical atom, the

atom of hydrogen, can be obtained very accurately by electrolytic

experiments and is found to be equal to 9"577 x 10* E.M, units.

Hence it would follow that if the charge carried by a cathode

ray particle or by the particles which emit the spectral lines were

identical with the charge carried by a hydrogen atom in electro-

lysis, as, indeed, we should rather expect would be the case from

Faraday's electrolytic experiments, then the mass of these particles

must be very much less than that of a hydrogen atom.

This question was soon put to the test of experiment.

C. T. R. Wilson
1

1 had shown that when moist ionised gas is

subjected to sudden expansion, a cloud forms and the drops of

water condense on the ions in preference to the uncharged

molecules. J. J. Thomson IT utilised this phenomenon in order to

count the number of ions in a volume of gas containing a measured

Phil. Mag. V. vol. xliv. p. 298 (1897).

t Verhandl. der Physik.-okon. Gesellsch. zu Kdnigsberg.i. Pr. (1897).

+ Phil. Mag. V. vol. xliii. p. 232 (1897).

§ Zittingsversl. der Akad. van Wet. te Amsterdam, vol. v. pp. 181, 242 (1896).

II
Roy. Soc. Pioc. March 19, 1896.

H Phil. Mag. V. vol. xlvi. p. 528 (1898).

1—2



4i THE ORIGIN OF THE ELECl'RON THEORY

total charge. Stated briefly the method is as follows : The amount
of water condensed on the whole of the drops in the cloud may be

calculated from the degree of supersaturation produced by the

known expansion. The application of Stokes's formula for the

rate of fall of a sphere in a viscous fluid gives the average size of

each drop. Thus these data determine the total number 71 of the

drops. It is assumed, for sufficient reasons, that practically all the

drops contain one and only one ion. The total charge ue on all

the ions could be determined by sweeping them out of the chamber

into an electrometer before the expansion took place, the strength

of the source of ionisation being the same as in the condensation

experiments. Thus the charge on a single ion was obtained by

division. Proceeding in this way Thomson showed that the

negative ions liberated in air by Roentgen rays and by the y8 rays

from radium each carried the same charge as the hydrogen ion in

electrolysis.

The ions investigated in these experiments are rather compli-

cated structures and are not identical with the electron. In the

case of the ionisation produced by ultra-violet light falling on a

metal it was shown by Thomson that the particles when first

emitted have the same value of e/m as the cathode rays. These

would not be likely to aggregate together in the presence of gas

molecules, and C. T. R. Wilson* showed that the negative ions

from ultra-violet light behaved exactly like those from the other

ionising agents in his condensation experiments. The inference

from these experiments therefore is that the particles which form

the cathode rays and which are emitted during photoelectric

action carry a charge equal to that of the hydrogen atom in

electrolysis. Experiments by Townsendf, on the rate of fall of

the clouds produced when the gases evolved from chemical actions

occurring in the wet way are allowed to bubble through water,

had previously led him to conclude that the ions present in such

gases carry the same charge as a hydrogen ion in electrolysis.

This conclusion has been strengthened by other methods of

determining the charge on an electron. One of these depends on

the theory of the radiation of electromagnetic energy from hot

bodies. The theory of this method will be considered in the

Phil^ Tram. A. vol. cxcii. p. 403 (1899).

+ Phil. Mag. Feb. 1898.
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sequel*. One of the recent methods, which is due to Rutherford

f

and Geiger, depends upon the properties of radioactive substances.

These are found to emit positively charged bodies, called a particles,

which carry twice the charge e of an electron and are able to

produce a large number of new ions when they pass through a gas.

By magnifying this secondary ionisation by means of an auxiliary

electric field and also using a very sensitive electrometer, Rutherford

was able to detect the ionisation produced by a single a. particle.

When a very weak radioactive preparation was used the a particles

were emitted at times separated by rather wide and irregular

intervals, and as the effect produced by each one separately could

be detected, the number emitted by a given amount of the radio-

active substance in a given time could be measured. The only

other datum which is required to measure e is the quantity of

positive electricity which is carried away from the same quantity

of the preparation by the a rays. This had previously been

obtained by other experiments.

The filling drop method has recently been improved by

H. A. Wilsonj: and R. A. Millikan§. The former showed that the

charge on the drops could be deduced from the rate of fall under

gravitation combined with different electric fields, without making

use of the degree of supersaturation ; whilst the latter showed how

the drops of water could be replaced by drops of a non-volatile oil.

The drops of oil have the great advantage that they do not

evaporate : and by allowing a sufficient number of electrons to

combine with them and applying a supporting electric field which

just balances the gravitational force, they can be kept under

observation for an indefinite length of time. In this way Millikan

has shown that the method is capable of yielding results of very

great precision.

All the three methods last mentioned are quite accurate and

exhibit an excellent agreement. It is claimed that the charge

e on an electron is known to within 1 per cent. Millikan's|| latest

value is e = 4-81 x 10""i* E.s. unit or 1-60 x 10~^° e.m. unit.

* See chap. xv.

t Roy. Soc. Froc. A. vol. lxxxi. pp. 141, 163 (1908).

t Phil. Mag. VI. vol, v. p. 429 (1903).

§ Phil. Mag. VI. vol. xix. p. 209 (1910).

!1 Phys. Rev. vol. xxxiv. p. 399 (1912).
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Application to the Atomic Theoiy.

These experiments have led to other important consequences.

Since the charge carried by one gram atom of an element is

accurately known from electrolytic experiments, and the charge

carried by a monovalent electrolytic ion has been shown to be

equal to that of a gaseous ion, it follows that the number of atoms

in one gram atom of any substance is known to the same degree

of accuracy as e. Since the charge which is carried by one gram

atom of a monovalent element in electrolysis is 9*649 x 10' E.M.

units it follows that the number of atoms in one gram atom of any

element is 6*02 x 10'*. Also, since the charge required to liberate

half a cubic centimetre of H, at 0° C. and 760 mms. is 0*4327 E.M.

unit, it follows that the number of molecules in one cubic centi-

metre of any gas under standard conditions of temperature and

pressure is

Vl^ X 10=* = 2-70 X 10".
loO

These values are in agreement with the comparatively inaccurate

estimates which had previously been given by methods based on

the kinetic theory of gases and other considerations.

Millikan was also able to observe the changes produced by the

combination of single ions with the drops. These experiments, as

well as those of Rutherford with the a rays, furnish a veiy direct

and convincing proof of the atomic theory of matter and electricity.

The consequences of the atomic theory of matter have recently

been strikingly verified by experiments in other directions.

Perrin* has shown that the irregular motions of minute suspended

particles in fluids are in accordance with the requirements of the

kinetic theory of gases. A study of these motions also leads to a

determination of the number of molecules in one gram molecule of

any element and thus to a determination of e. The value obtained

by Perrin is in agreement with the other recent determinations.

An examination of the distribution of velocity and kinetic energy

among the electrons emitted by hot bodies, which has been carried

out by the writer, partly in collaboration with F. C. Brown •!•, has

shown that the motions of these electrons are in very close accord-

ance with those required by Maxwell's theory, for the molecules of

a gas of equal molecular weight.

Atmalu de Chim. et de Phys. 1909. t Phil. Mag. 1908 and 1909.
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Electromagnetic Inei'tia.

About thirty years ago J. J. Thomson* pointed out the

extremely important result that an electric charge possessed

inertia simply in virtue of the energy of its electromagnetic field,

and he succeeded in calculating the magnitude of the electrical

inertia, or electromagnetic mass, as it is usually called, of a charged

sphere. This additional mass does not play any important part in

ordinary electrostatic experiments, as it is always small compared

with the mass of the uncharged portion of the conductors and

insulators which are experimented with. The case is very

different when we are dealing with charged particles whose mass

is only one eighteen-hundredth of that of an atom of hydrogen. It

was obviously an important experimental problem to determine

how much of the inertia of the electron was of the type foreseen by

Thomson and how much, if any, was to be attributed to "ordinary"

mechanical mass. Fortunately the two kinds of mass differentiate

themselves rather clearly. The mechanical mass is supposed to

be independent of the velocity of the body, following the principles

of mechanics laid down by Newton, whereas the electromagnetic

mass is a continuous function of the velocity and approaches

infinity as the velocity of the electric charge approaches that of

light.

The experimental problem was resolved by Kaufmannf, who
measured the value of e/m for the electrons emitted by radium

bromide, some of which have velocities as high as 2-89 x 10'"

centimetres per second. He showed that the mass of these

electrons varied with the speed, and in fact in a manner very

similar to that predicted by Thomson. His final conclusion was

that if there was any part of the mass of an electron which was

ordinary mechanical mass it was very small in comparison with

the part which was of electromagnetic origin.

The Negative Electron.

We have now succeeded in the isolation of a charged particle

whose mass is much less than that of any known chemical

* Phil. Mag. V. vol. xi. p. 229 (1881).

+ Ann. der Pliys. vol. xix. p. 487 (1906) ; cf. also H. Starke, Ver. der Deutsch.

Physik. Ges. vol. v. p. 241 (1903).
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atom. So far as our experiments enable us to tell, the whole of

this mass arises from the electric charge the particle carries.

There can be no question but that this is the negative electron.

The structure of the positive electricity which goes to make up

the remainder of the uncharged chemical atom is still uncertain
;

but the results of experiments so far point to both the charge

and mass of the positive electrons being different from those

of the negative. There is no evidence, so far as the writer

is able to observe, which supports the view that the positive

electron is, as it were, a reflection of the negative.

The foregoing considerations enable us to define more precisely

the use of the word electron. In future we shall restrict the term

to particles \yhich consist of a geometrical configuration of

electricity and nothing else, whose mass, that is, is all electro-

magnetic. For a particle which is a charged molecule or atom,

that is to say, a molecule or atom which has lost or gained one or

more negative electrons, we shall use the term ion. A wider

meaning than this is currently attributed to the word ion, in the

sense of any charged particle which is considered to have a separate

existence or which behaves as a dynamical unit. Some of these

are comparatively large bodies and contain very many atoms or

molecules. To distinguish them from the smaller ions already

referred to. Stark has suggested the use of the terms molion and

atomion. As, however, we shall not have to consider the large

molions we shall simply use the word ion instead of atomioiL

According to the view we are developing, all interactions

between material systems result from the electrical charges

which make up their ultimate parts. The space in the neigh-

bourhood of an electric charge is to be looked upon as having

properties difierent from that some distance away, since an electric

charge of the same sign is repelled with a greater force in the

former case than in the latter. This state of things is described

by saying that the electric charge is surrounded by a field of

force.

It is often convenient to attribute this field of force to dis-

turbances produced by the electric charge in a medium, the aether,

which fills all space. Looked at in this way the real electron, the

part which acts, is the surrounding aether which is outside its

geometi'ical boundary; and the electron theory is the science of



THE ORIGIN OF THE ELECTRON THEORY 9

the properties of the aether, of which the electric charges are local

modifications.

Different Elements of Electricity.

Our ignorance of the geometrical distribution of the electri-

fication constituting an electron is almost complete, but this is not

a serious disadvantage in considering many applications of the

theory. It will often be sufficient to regard an electron as a point

charge having a definite inertia coefficient or mass. In such cases

the mode of distribution of the electric charge, whether it is a

point, line, surface or volume charge and whether it is distributed

with spherical or linear symmetry or not, is unimportant, provided

that it is confined to a minute region of space. Although this is

often true there are some investigations for which the ultimate

geometrical distribution of the electrification is important ; as for

instance in the case already mentioned of the calculation of the

electromagnetic mass. These two distinct classes of cases require

as a rule quite different methods of attack.

,

These remarks will make it clear why it is necessary to have

different elementary portions of electricity in different investi-

gations dealing with the electron theory. In the first place we
may have to consider the forces acting on or arising from a

small portion of the electron itself. The elementary quantity of

electricity concerned here may be denoted by p dr, where p is the

volume density of the electricity at the point of the electron under

consideration and dr is an element of volume of the latter, in-

finitesimal in comparison with the size of the electron. In other

investigations our element of electricity will be the charge on a

single electron whose value e is determined by the equation

:\llpdr.

where the volume integral extends over the volume occupied by

the electron. In still another class of investigations the volume

element of electric charge will occupy a region of space containing

an enormous number of electrons both negative and positive. In

this case also it is conveniently represented by p dr, or when

confusion is likely to occur with the first case by p dr. If n is the

number of negative electrons per unit volume at any point and

e is the charge carried by each, N and E being the corresponding

quantities for the positive electrons, then p dr = {NE + ne) dr.
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This is the kind of volume element which occurs in the usual

problems of electrostatics, where effects arising from the discrete

structure of the electrification and from the electronic structure of

matter are smoothed out. It will be observed that each of the

three elements of electricity is of a successively higher order of

magnitude, both as regards distribution in space and in reference

to the quantity of electricity it contains.

Force between Electncally Charged Masses.

On the electron theory the interaction between material bodies

carrying electric charges is to be pictured in a manner somewhat

different from that usual in electrostatics. The forces act on each

single electron present in the two bodies, irrespective of whether

it may be regarded as forming part of the free electric charge, or

whether it is simply one of the constituent electrons in the matter

which carries the electric charge. The field of force arising from

a single electron is assumed to obey the same laws as that arising

from a small charged particle in the theory of electrostatics.

Let us consider the forces acting between two charged material

particles situated at the points P and Q at a distance r apart.

Suppose that the matter at P consists of Ni positive electrons of

charge Ei and Wj negative electrons of charge gj, the matter at Q
being composed of iVj positive electrons of charge E^, and Ws nega-

tive electrons of charge e,. The force exerted by P on Q or vice

versa will consist of the algebraic sum of the repulsions between

all the like electrons and the attractions between all the unlike

electrons. It will thus be made up of the four items which follow :

1. The repulsion of the positive electrons. Any one electron

at Q exerts a force E^E^jr^ on each individual positive electron at

P. The total force arising in this way from each electron at Q
and acting on P will therefore be N^E-^E^Ir"^', hence the force due

to all the electrons at Q is NiN^ ' '
.

2. The repulsion of the negative electrons. This clearly

amounts to WiWo -^

.

3. The attraction of the positive electi'ons at P for the

negative electrons at Q. This is readily seen by similar reasoning

to amount to -^1^3-—.
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4. The attraction of the positive electrons at Q for the

negative electrons at P. This is evidently equal to N^rii -A-^.

Thus the total repulsion between P and Q amounts to

/y*^ A*& A*— A'^O

If g'l, q^ represent the magnitude and sign of the free electricity at

P and Q respectively, then

qi = JSfiEi + 71^61 and q.2 = KiE^ + n^e^,

so that the repulsive force is equal to qiq^/r'^, the usual electrostatic

law.

This result may easily be extended to the general case where

there are different kinds of electrons of the same sign provided

with different charges.

I£ Ni El = 71^61 and iV2-E'2 = »?2^2> the bodies are uncharged and

the force between them vanishes. Thus the above formulation

does not leave any room for the explanation of gravitational

attraction between uncharged material particles. This lacuna is

considered in Chapter xxii.



CHAPTER II

ELECTRIC INTENSITY AND POTENTIAL

That branch of electrical science which deals with the properties

of electrical charges when at rest is called electrostatics. It is the

oldest branch of electricity, some of the fundamental phenomena
of frictional electricity having been known qualitatively by the

ancients. By charges " at rest " we mean at rest relatively to one

another. We shall see that there is no evidence for the view that

the absolute motion of the charges affects their action on one

another. When the charges move relatively to one another,

important differences are observed which will be considered

later.

From the point of view of electrostatics the most interesting

properties of electrified bodies are their mutual repulsions and

attractions. It is found that all electrified bodies can be grouped

into two classes such that all the bodies of either class repel all

the other bodies in the same class but attract all the bodies in the

other class. A body is said to be positively or negatively electrified

according to the class to which it belongs. The distinction is not

merely one of sign, since, as we shall see in the sequel, there are

important qualitative differences between positive and negative

electricity.

In the previous chapter we have stated that the force between

two charged bodies of sufficiently minute size is proportional to

the product of their charges divided by the square of the distance

between them. This law of variation of force with distance was

discovered by Priestley in 1767 and rediscovered by Coulomb in

1785*. We may express it in the form F=k — , where A; is a

* Cf. Whittaker, History of Theories of the Aether and Electricity, Dublin,

1910, pp. 50, 66.
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constant quantity whose magnitude depends on our definition of

the unit of electric charge. In deah'ng with electrical phenomena

we shall assume that A; is a universal constant independent

of the sign or other quality of e or e', although we shall see that

if we are to account for gravitation on the electron theory this

cannot be the case. The omission will, however, make no practical

difference in the case of purely electrical effects : it is only

when gravitational effects are concerned that the difference is

important.

The magnitude of our unit of electric charge will depend on

how we determine the constant k which is of unknown dimensions

since the dimensions of e are unknown. The dimensions oiFr^ are

of course perfectly determinate and equal to MDT~\ We shall fix

our units by the convention that if the charges are separated only

by ordinary space, then F is in dynes and r in centimetres provided

k= l/47r. This is equivalent to defining our unit of electric charge

as that which repels an equal and similar charge at unit distance

with a force of l/47r dynes. This unit of charge was introduced

by Heaviside and differs from the ordinary electrostatic unit which

makes k = l and which we made use of in the last chapter. The
new unit has certain advantages in improving the symmetry of

formulae which we shall obtain later.

As the dimensions of k are unknown, it is sometimes inadvisable

to suppress it in our formulae even if we have given it a definite

numerical value. This is particularly true in investigations of a

very fundamental character. In such cases it is convenient to write

1 ee' 1 .

F=^r- TF-^i where K has the value -,- on the ordinary electro-
47r Kr^ 47r

^

static system of units, the value unity on Heaviside's electrostatic

system and may take other values on other systems of units. K is

fometimes called the dielectric coefficient or specific inductive

capacity of the aether.

In dealing with electrostatics it is not necessary for us to

determine how it comes about that two electric charges attract or

repel one another. Two entirely different attitudes towards this

and the cognate question in regard to gravitational attraction have

been adopted by different schools of thought. One school,

adopting the dogma of "action at a distance," holds that the

law of force between charges is the fundamental thing and that it
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ia useless to attempt to go beyond it. The other denies the

possibility of action at a distance and derives the law of force

between charges from the effect of the charged bodies on an

intervening medium, the aether. There is no a pnori reason for

adopting one view rather than the other, although most of the

great investigators have been ranged against the action at a

distance school. The great advantage of the medium view is that

it pictures the operation of a mechanism whose consequences

insist on foretelling themselves, whereas the other is mere dead

description. For this reason the medium view has been most

successful in leading the great advances in electrical science, whilst

the strength of the action at a distance formulation lies in its

mathematical simplicity. There is no absolute contradiction

between the two views; Maxwell has shown that a system of

possible stresses in the medium will give rise to the observed

attractions and repulsions. Which is the more desirable is largely

a matter of taste or convenience. This is particularly the case so

far as electrostatic phenomena are concerned. When we come to

the consideration of electromagnetic phenomena we shall see that

the medium view possesses important advantages, in certain

directions, at any rate.

Electric Intensity.

We shall now suppose that the space surrounding an electric

charge is different from that elsewhere. We do not need to

consider how this is brought about. It may be that the charge

produces a cliange in the state of the surrounding aether ; or the

charge may have parts which extend into the region about it ; or

it may be merely a manifestation of a hyperspatial mechanism

;

or it may even be something which is incapable of description in

mechanical terms. The important point is that if another charge

is placed at any point of such space it will be acted on by a force

and accelerated. The force acting on this second charge is

proportional jointly to its magnitude e and to a vector E deter-

mined by the first charge. This is true provided that there are

no other charges in the field. In that case E will be compounded

of the effects due to the various chai'ges other than e. The vector

E is called the electric intensity at the point of the field under

consideration.
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The function E is what is known as a vector point function

;

in other words it is a function which for each point of space has

both magnitude and direction. A function which has only one

magnitude at each point may be called a single-valued point

function. The electric intensity E is single-valued in this sense

;

but its direction is indefinite at the points where E vanishes.

Clearly the electric intensity at a point distant r from a point

charge e' is in Heaviside's units E = e'/4!'rrr\ This follows from the

inverse square law of force. The electric ntensity due to a

complicated distribution of charge may obviously be obtained by

the integration of the amount arising from each volume element.

In making the calculation it is necessary to integrate for each

component of the electric intensity separately and combine the

results according to the rule for the composition of forces. This

resolution and subsequent composition of vectors is often trouble-

some as well as clumsy, and it is not necessary for the calculation

of the electric intensity. It may be dispensed with by the intro-

duction of another function known as the Potential.

The Potential.

The Potential is defined as the work divided by the charge

when an infinitesimal electric charge is brought from some stan-

dard position to the point in question. The standard position is

usually taken to be a point at an infinite distance away from

charged bodies. The value of the potential calculated in this way
must be independent of the path of approach to the point under

consideration, otherwise an indefinite amount of work could be

obtained by making the charge move round a closed contour

passing through the point under consideration and the standard

position. This would be contrary to the law of conservation

of energy. The potential is a function of each point in space and

possesses magnitude but not direction. Such a function is known
as a scalar point function. The electrostatic potential is single-

valued.

Let P, Q be two points at an infinitesimal distance ds apart and

such that PQ is in the direction of the resultant electric intensity

E at P. Let dVhe the increase in the potential in passing from

Pto Q and let the direction P—» Q be considered positive. Then
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dVdV = — Eds, so that ^= — -7-. The value of the component of

electric intensity at P in any other direction whose inclination to

PQ is will be E0='Ecoa0. This will always be less than E.

If ds' denotes an infinitesimal length laid off in the direction

dV
making the angle B with PQ, we shall have Eg^ — -^-,. It is clear

08

from this that the direction of the resultant electric intensity is

the direction of quickest diminution of V. Starting out from

P let us lay off a length PQ in the direction of the resultant

intensity at P, then from Q a length QR in the direction of the

resultant intensity at Q and so on from point to point. In this

way we shall draw a curved line in space such that the tangent to

the curve at any point will give the direction of the resultant

electric intensity at that point. The curve will also represent the

path of a positive charge devoid of inertia which moves under the

influence of the field. Such a line is called a line of electric force.

If the direction cosines of the resultant electric intensity at any

point are I, m, n, we shall have E^= IE, Ey = mE, E^ = nE, where

Ex, Ey, Eg are the components of E. If d8 = {dx,dy,dz) is the

element of arc of the line of force at the same point,

1 _dx _ dy _ dz

ds' ~ ds' ds'

.(1).
^- , dx dy dz ds

80 that =- =— =-=^==
iia, Jiiy J^2 ^

These are the differential equations of a line of force.

If an electric charge moves always at right angles to the lines

of force, no work will be done on it, so that all the points on the

surface on which it moves will be at the same potential. A surface

traced out in this way is called an equipotential surface. It is

clear that the equipotential surfaces always cut the lines of force

normally and that the whole field may be divided up into a series

of right prismatic cells by means of a system of equipotential

surfaces intersecting orthogonally a series of tubular surfaces

containing the lines of force. The latter surfaces are called tubes

of force.

In general we may write the value of the potential at any

point P as V = — JE cos 6 ds, where E is the resultant electric

intensity at any point of the path {ds) of integration and is the
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angle that E makes with ds. The limits of integration are from

infinity to the point P. If I, m, n are the direction cosines of ds

we have E cos 6 = lEg; + mEy + nEg, so that

V=- {lE^ + mEy + nEg) ds = -\ {E^dx + Eydy+ E^dz),

taken between the same limits. For a point charge e the electric

intensity at a point distant r is radial and equal to e/47n'^; so that

the potential V is el4nTr, as is clear upon integrating along a

radial path from infinity to the point P.

The following considerations enable us to find the value of the

potential V due to a number of

point charges 60,61, e^, etc. Con-

sider the intensity at Q {x, y, z)

arising from one of the charges

Co at P (fto, &o> Co). The resultant

intensity is "
.^

, where

r,^ = {x- ao)^ + (y - 60)' + (^ - Co)^

The X component, Xq, of this is

gp x -a^ ^_'b_ / gp \

47r?-o'' n "bx K^irrJ

'

Fig. 1.

Similarly the x component of the intensity which arises from

any of the other charges e„ distant r„ from x, y, z may be written

^n — 'a

^ =-— /

47r? n^ r„ "bx V47r?-„;

But the X component X of the electric intensity due to all the

charges is

ex V47rro 47rri 'h7n\

dV
dx

'

So that the potential V due to a number of point charges is

1 e .

J— 2 - , and is equal to the sum of the potentials due to the

separate charges.

We may now deduce the differential equation which is satisfied

by the potential. Consider again the potential V^ at Qdne to the

charge e^ at P. Since

9 /1\_ 1 3?'o_ 1 x — Oq

dx \rj Vq^ dx Tq^ Vq

R. E. T. 2
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^^ ^'^^^
d^ (4^) + 8P (4^) + 8^ (4^3 =

^-

If we have charges ei, 63, etc. at points distant ?-, , r.j, etc. from Q,

similar equations will hold for each of them, and, by addition, we

have

(^
\

^\^]( ''
I

''
I

''
I ...Vo.

\9a;« 3y8 9^V V47rro 47rri 47rr2 *"/

But the potential V at the point Q is that due to all the charges

60, C], 62. etc. It is therefore equal to -r^—'"T"^'^!

—

- -^ ....

We thus find that the potential F must satisfy the equation

d^v a=F d^v ^ ,oN

3^+3^ +^ = ^ <'>•

This is often written V"F=0 and sometimes AF=0. This

result will clearly hold so long as Q lies outside all of the charges

Co. «ij etc. We shall see that when Q lies inside a charged body

the differential equation is modified. The equation V^V=Q is

9* 9* 9"
known as Laplace's equation, and the operator V" = x-5 +^ +^
as Laplace's operator.

1 e
The result V= -r—X - can readily be extended from the case

47r r ''

of a series of point charges to that of a continuous distribution of

electricity. For the space occupied by the latter can be split up

into an indefinitely large number of volume elements dr. The
charge on each of these is pdr, if p is the volume density of the

electrification. The potential due to the distribution, at a point

outside it, \vill clearly be equal to t~ / /I
^''"' ^'^^''^ ^^^ triple

integral extends over the whole of the electrified body and r is the

distance of any element p dr from the external point. If there are

also surface distributions of electricity these will evidently also
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add to the potential an amount j— n - dS, where cr is the surface

density of the charge at the elemtat dS and r its distance from

the external point.

The Potential at internal points.

Further consideration is necessary before we can apply the

foregoing expression to the potential at points inside the electrified

medium. At such points the denominator r becomes zero, and we

must be certain that this does not make the integral which

represents the potential infinite. The matter may be investigated

as follows. About the internal point Q describe a sphere of

infinitesimal radius e. We shall suppose the density p of the

charge to be everywhere finite and the radius e to be chosen

so small that the density of the charge varies continuously

throughout the volume of the sphere. This condition can always

be satisfied. The potential at Q will consist of two parts:

(1) Fi, arising from the charge outside the sphere, and (2) V^,

arising from the charge inside the sphere. The former is clearly

finite. Let pm be the maximum value of p inside the sphere.

Then ^2 -h t~ / /
/

^t. The element of volume dr in polar

coordinates is r^c^r sin ^cZ^d<^. So that

F, r^ ^ \\dr r sin Odd f
""

d«/, :|> ^ ^,^6^.

This vanishes when e is made sufficiently small ; so that we
conclude that the charge in the immediate neighbourhood contri-

butes nothing to the potential at any point. The formula

^='T~ r^(^T therefore holds generally both for points outside

and for points inside the electrified medium.

The Derivatives of V.

dV
The electric intensity — -^ and all higher derivatives of

F contain r to a higher order in the denominator than does F
itself. They are therefore all finite at external points.

The electric intensity is also finite at internal points. Consider

again the small sphere of radius e and divide F into two parts

2—2
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dV
F, and F, as before. As we have just shown, -^ is finite. We

or

have

dr " 47rjJj.Var"»4

By taking e small enough p/?-* can be made as large as we

please compared with -^ , so that the latter may be disregarded

in the limit. Thus

which vanishes when e=0. We conclude therefore that the

electnc intensity at internal points may be obtained by

differentiating the potential.

Gauss's Theorem.

The consideration of the distribution of the electric intensity

in relation to surfaces in space leads to interesting results.

Consider any surface whatever and let dS be an element of it.

Let N be the component of the electric intensity at dS, along the

normal to the element, N being reckoned positive if it is in the

direction of the normal drawn outward from the surface. We
shall now 'prove that the integral JjNdS taken over any closed

surface is equal to e, where e is the algebraic sum of the charges

enclosed within the surface.

Fig. 2.
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Consider first the intensity E^ at Q due to a charge ei at a

point P within the surface. We have Ei = ei/4<7rFQ^ and

where 9 is the angle between PQ and the normal to dS. Now

—p-^j— is the solid angle deoi subtended by dS at P. Thus, so

far as the single charge ej is concerned, we have JSfidS = -^ dcoi.

If there are a large number of point charges ei, e^, etc., the resultant

normal component of electric intensity

so that ^ttN dS = e^dwi + e^dw^ + eidw^ + ....

Now // ^1 c^twi = 4iirei , // ^2dw^ = ^ireo, , etc.

So that fjNdS= 61+62 + 63 + . .. = e (3).

This result can obviously be extended from a series of point

charges to a continuous distribution in the same manner as that

employed in dealing with the potential.

It remains to prove that charges outside the closed surface

contribute nothing to the surface integral. It is evident that

every conical element of solid angle do) arising from an external

charge will cut the closed surface an even number of times. The

value of NdS for the intersections of the cone by the surface will

be alternately positive and negative since the direction of the

electric intensity is constant in space but alternates in sign with

reference to the successive normals. The numerical* value of

NdS is the same for successive intersections, being equal to j- dco.

So that the surface integral is divided up into a series of pairs of

equal and opposite elements. Its value is therefore zero, and we

conclude that the value oi JJNdS over any closed surface is equal

to the charge inside.

This result is known as Gauss's Theorem.

The theorem is of great value as a means of calculating the

value of the electric intensity arising from various symmetrical

distributions of electric charge. Thus in the case of a uniformly

charged spherical shell the intensity at any point external to the

shell must be the same at every point on the spherical surface
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through the point and concentric with the shell. It also follows

from the symmetry of the problem that the intensity must be

radial. Since the area of a sphere of radius r is 47r?", the electric

intensity ^ at a distance r from the centre of the charged shell is

given by ^-ni^E = e ; so that

E= e/4^r'' (4).

In a similar way we may prove that the force vanishes inside

the shell. These results may be extended to the case of a sphere

charged throughout its volume so that layers equidistant from the

centre are charged to equal density. Thus we may show, for

example, that the force inside a solid uniform sphere of electricity

varies as the distance from the centre.

The application of Gauss's Theorem to the tubes of force

mentioned on p. 16, is instructive. As we have seen, a tube

of force is a tubular region bounded by a surface which is the

envelope of the lines of force. Let us apply Gauss's Theorem
to a portion of such a tube, terminated at each end by equi-

potential surfaces. The lines of force run along the tubular

surfaces so that at each point the component of the intensity

normal to these surfaces vanishes. Over the ends the resultant

electric intensity will be normal to the surfaces. Let it be ^,

at the end where the cross section is Si, E^ and S^ being the

corresponding quantities at the other end. The value of jjNdS
over the whole surface considered is clearly EiS^ — E^S^. If

the tube of force is in a region where there are no electric

charges this vanishes, so that EiSi = E2S2; thus the electric in-

tensity ixif any point is inversely as the area of cross section of

the tubes of force at that point.

Under the conditions contemplated in electrostatics the surface

of a conductor of electricity must be an equipotential surface ; other-

wise there would be currents of electricity flowing from one part

of the surface to another. The tubes of force must therefore start

normally from such a surface. Now apply Gauss's Theorem to

the region bounded by a tube of force and its continuation into

the substance of the conductor and terminated by equipotential

surfaces, one inside and the other outside the conductor. The

electric intensity vanishes over all the surface inside the conductor

and the normal component vanishes over the tubular surface

outside. The value of JJNdS is thus equal to the value EiSi of
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this quantity over the end section. This is equal to the charge

inside ; which is 0-^2, where o- is the surface density of the charge

on the conductor and S2 the area of its intersection by the tube of

force. We therefore have EiSi = o->S^2' If we make the end

section approach indefinitely near to the charged surface, 81 = 82,

so that

E=a- (5).

Thus the electric intensity at a point just outside a charged

conductor is normal to the surface and equal to the charge per

unit area of it. This result is known as Coulomb's Law.

We may express Gauss's Theorem analytically as a relation

between a surface and a volume integral. If p is the volume

density of the electrification at any point inside a closed surface

the total charge inside the surface will be jjjpdxdydz. The
normal component of the electric intensity outside the surface is

dVN= — j--. Gauss's Theorem may therefore be expressed in the

form

lllpd.d,d. = -lp-f^dS (6).

In a region where there are no charges, if I, m, n are the

direction cosines of the normal to any closed surface, we have

II
{lEa> + mEy + nE^) d8 = ffNdS = 0.

A vector E whose components Ex, Ey, Eg satisfy the relation

JJ{lEx + mEy -f nEz) d8=0 over any closed surface is said to be

solenoidal. Thus the electric intensity in free aether is a solenoidal

vector. We shall see that there are other solenoidal vectors in

the theory of electricity and magnetism whose properties are of

great importance.

Green's Theorem.

An important theorem discovered by George Green* in 1828

enables us to express a volume integral taken throughout an

enclosed space in terms of surface integrals over the boundaries of

the space. This theorem, which is named after the discoverer, is

a purely geometrical theorem, but it has many important appli-

cations in the theory of electricity.

* "An essay on the application of Mathematical Analysis to the theories of

Electricity and Magnetism," by George Green, pablished at Nottingham in 1828.
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Con8ider any closed space bounded by any number of closed

surfaces, which may be either internal or external. As a particular

case the external boundary may be a sphere of infinite radius.

Let u, V, w be any continuous point function. Then Green's

Theorem states that

/// |al "•" ai
"•

^J
^^^2/^^ = "^/j^^" *" *^^ *" "^^^ ^^'

where the volume integral is taken throughout the space between

the boundaries and the surface integral over the bounding surfaces,

and I, m and n are the direction cosines of the normals to the

surfaces drawn away from the space throughout which the volume

integral is taken.

I:

Fig. 3.

Let the two parallel lines PQRSTU represent the section, by

the plane of the paper, of a right prism whose section by the plane

yOz would be dydz. Consider the contribution to the integral

^ dxdydz throughout the space A arising from this prismatic

portion of it. This will clearly be

dydz (— ttp + wq — Mjj + % — Wr + ""<;)>

where Up, Uq, etc. are the values of m at P, Q, etc. Now

dydz = — lpdSp= + lQdSQ= — lRdSji = + lgdSg = —lxdSj<= + Ij^dSu,

where IpdSp are the values of / and dS at P, and so on. The

alternation of signs is due to the fact that the normals alternately
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make acute and obtuse angles with the positive direction of x. So

that

jJI~dxdi/dz=+jjludS (7).

Similar equations hold for v and w, so that, by addition,

ijj\^ +^ + ^\ dxdydz = + I {hi' + mv + nw] dS. . .(8).

XT 1 . rr^^ TT^^ it9^
ox dy cz

After substitution we have

///

+ ([[ \^J^JZ+^^Z+W^JL\dxd dz
jjj \dx dx dy dy dz dz\

ox dy dz ]

= + //^|^''« (9)'

dV
where ^r— denotes the rate of change of V alone: the normal at dS.

dn & &

If we substitute V ^r- hr u, V ^:— for v, and V -rr- for w, we
dx dy dz

obtain similar expressions in which U and V are interchanged.

Subtracting the two equations we have

jjji^^'y- V^'U} dxdydz

The three equations preceding, (8), (9) and (10), are all different

forms of Green's Theorem.

An important case arises when we put Z7= constant inequation

(9) or (10). We then have

le-'^-g-^^—//^"- (">

We may apply this result to a minute cavity of any shape

inside a charged body.
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We have seen (p. 23) that

Since this equality is independent of the shape and size of the

cavity it follows that

3^+83;^+ a? =
-^ ^^^^-

This equation is known as Poisson's equation. It is the

general form of the differential equation satisfied by the potential.

At points where there are no electric charges we have p = 0, so

that we get Laplace's equation V2F=0 as a particular case of it.

Ex,Ey, Ez, the components of E, are given by

This is often written E={Ex, Ey,E^ = —grSi^V. We may
write the equation V*F= — /j or in the form

^Ex dEy dEz _
dx dy dz

This equation is often abbreviated to div E= p, the operator

div acting upon any vector denoting the sum of the results of the

action of the operator grad on each of the corresponding com-

ponents of the vector.

Transformation of Laplace s Operator.

In dealing with certain problems, particularly in cases

possessing spherical or cylindrical symmetry, it is not desirable

to use Poisson's and Laplace's equations in rectangular coordinates.

Polar or cylindrical coordinates are much more suitable. The
transformation of the equations to these new coordinates can very

easily be effected by making use of the theorem that the surface

dV
integral of x— over any closed surface is equal to the volume

integral of the volume density inside (Gauss's Theorem, p. 23).

To illustrate the method we shall first apply it to the simpler case

of rectangular coordinates.
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Consider the element of volume dx dy dz, in rectangular

coordinates, whose centre is x, y, z. The coordinates of the

angular points of the element are x — \ dx, y — ^ dy, z — ^dz, etc

Let V be the value of the potential at x, y, z. Then the mean

ihj

Az/ /
dx y "j 2/ + i^y

\z-\-\dz

Fig. 4.

IdV
value of the potential over the right hand face will heV-\- ^dx

IdV
and that over the left hand face will be F— -^—dx. The mean

2 dx

value of the component of the electric intensity along the outward

drawn normal at the right hand face = —^ (
^ "* o "a" ^^ ) ^^^ ^*

the left hand face =-\- .— iV—-x^ dx\. The flux over these

faces, as we may call, for the sake of brevity, the surface integral

97
of the normal intensity, is dy dz x

dx
+

case and dy dz x
dx 2 dx^

dx

2a^n in the one

in the other. The total flux

over the pair of faces perpendicular to Ox is therefore

d'^V-^dxdydz.

Similar expressions hold for the Oy and Oz faces ; so that the total

flux for the whole cube is

{doc"

d-^v d^v a^Fi
, ^ ,

8^ + 8^+a?r'""^2/^^'
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By Gauss's Theorem this is equal to the charge inside or

d*V d'V d'V
pdxdydz. We thus derive V*V= — p =-^ + -^ + -^, which is

Poisson's Equation in rectangular coordinates.

Polar Coordinates.

Let r, 6, ^ be the polar coordinates of the centre of the element

of volume under consideration, ^ being the azimuth measured

from a fixed plane passing through the polar axis and d the angle

the radius makes with the polar axis Oz.

Fig. 5.

Let PQRSVWTU be the element of volume. It is formed

by the intersection of the following surfaces: (1) two spheres

centre and radii r — \dr and r-\-\dr; (2) two planes passing

through Oz making angles <}) — ^d(f) and
<f) +^d(f> with a fixed

plane passing through the same axis; (3) two cones described

coaxally about the axis Oz and of semi-angles — ^d0 and

+ ^dd respectively. The coordinates of the angular points of

the elements of volume are P = r — ^ dr, — \ dd,
<f>
— ^ d<f), and so

on. The radius of the circle formed by the intersection of the

cone of semi-angle d and the sphere of radius r is clearly r sin 0,

The volume of the element is

dr X rd0 xr8iD.0d<f> = r^dr sin d0 d^
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Consider first the flux over the faces which are perpendicular

to r. The potential at the centre being F, the mean potential

IdV
over the outer face will be V+^-;r-dr and over the inner face

2 cr

F — K -?,— dr, the normal intensities being — ^{V + -^r ^^ dr]
2 dr ° dr\ 2 d?- J

and + o~ ( ^ ~ 9 "^ drj . The areas of these faces are respectively

(r i I dr) sin 6 d((> x (r ± | dr) dd or r{r ± dr) sin 6 dd d<j> to the

first order. The fluxes are therefore

[ dV 1 d^V \
and

( + "5 9 "5^ ^^ ) >< (^ ~ dr) r sin ^ c?^ d(}).

The total flux over these two faces is thus

^r'dr sin 6 ded6\^-^+-^^\,
^ [dr' r or

)

The mean potentials at the conical surfaces P8VU and

QRWT are V-^j^dd and ^ + ||^^^ respectively. The

corresponding normal intensities are obtained by differentiation

with respect to the element of arc r dd, and are therefore equal to

P/SFf/ is

(irxr8in(^-|-fZ^)cZ^ = rdrd(f> x [sin ^ cos ^ c?^— cos ^sin^c?^]

= rdrd(f) (sin ^ — ^ cos Odd)

to the first order. Similarly,

QRWT=rdrd(f> [sin 6 + :^ cos 6del

The fluxes therefore are

/dV Id^V \
drd(f>{^-^ ^^ dd) (sin ^ - ^^ cos ^ dd)

fdV Id^V \
and —drd(pi7r^ + ^ ^^ ddj (sin ^ + ^ cos ^ dd\



30 ELECTRIC INTENSITY AND POTENTIAL

The total flux is therefore

^(r*a^» r« ddy

The mean potentials of the plane surfaces PQTU and RSVW
IdV IdV

are ^+9^^?^ and ^— h ^^4* respectively. The element of

arc normal to the planes being rsin^d^, the mean normal

intensities are

r sin 6d^\ 2 80 V r sin $ d(f)\ 2 d<f>

The areas of the surfaces are equal to each other and to

dr xr dd. The fluxes are therefore equal to

_drddfdV ld^..\
sin e[d<f>'^2 d<t>' '^'^J

. . drdd/dV la'F, \

their sum being

— r^dr sin 6d0d<f>x

d(t> 2 d<t>^

1 d'V

r^siD:'ed(f>''

We thus find for the total flux over all the six surfaces of the

element of volume

,j • zijzij^ 9'^ 2aF la^F cottar i d'V
01^ r or r* oa^ r* dff 7-^ s\n^ a d<p^

By Gauss's Theorem this is equal to the charge inside, which is

p dr = p X 7^ Q\xi.6 dr dd d(j>.

So that

a»F 2dv id^v cot_^aF 1 d'V^

This is therefore Poisson's Elquation in spherical coordinates,

and the operator

a« 2d Id' cot g 9 1 y .

ar« rar r*a6^« r» 9^
"^

r' sin'' <9 a<^«
^ ^

is the form which Laplace's operator V' takes in this system of

coordinates.
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Fls 6.

Cylindrical Coordinates.

Any other system of orthogonal coordinates may be treated

similarly. For instance in the case

of cylindrical coordinates r, 0, z

the element of volume is bounded

by (1) two coaxal cylinders of radii

r and r-¥dr with their axes coin-

cident with the axis of z, (2) two

planes inclined at an angle dQ

to one another and passing through the axis of z, (3) two parallel

planes perpendicular to the axis of z and at a distance dz apart.

The volume of the element is clearly dr x rdQ x dz. The

potential at the centre of the element being V, the flux over the

outer cylindrical surface will be

and over the opposite face

V^^-^^dr\

(r-{)dddz>,^^ V-^-^-^^dA

the total flux over the two faces being

- rdrdddz \-:r— + - —-
[or^ r dr

The area of the plane inclined faces is dr dz, the mean normal

intensity over them + ~ ^( 1^± oir ^^) ^^^ ^^^ total flux over

'la^F)

them

— rdrdO dz
dd-

The area of the faces perpendicular to Oz is dr x rdd and the

total flux over them =—rdr dd dz -^r—-

.

oz^

So that the flux over the whole six faces is

= p x rdrdOdz.-rdrdedz^^~^ + l^^+l^^^^+^-.

Thus the form which Poisson's Equation takes in cylindrical

coordinates is

= -p (16).
df +

^ 9y. + ^2 ^02 dz
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The Uniqueness of the Solutions.

Laplace's Equation in spherical, cylindrical and rectangular

coordinates is of the greatest importance in many branches of

mathematical physics. It is clear from the preceding discussion

that the first derivatives of the solutions of this equation represent

a vector which may be compounded from a set of vectors flowing

out from a series of points uniformly in all directions. Its

applicability to the theory of radiation, of conduction of heat

and electricity, to hydrodynamics and gravitational attraction as

well as to electi'ical and magnetic attractions is at once obvious.

The utility of the foregoing diflFerential equations arises from the

fact that if we can solve them we only need to be given the value

of V over certain surfaces in order to obtain the complete distri-

bution of electric force in the field. This result depends upon the

theorem, which we shall now prove, that if V satisfies the equation

^^V= — p throughout any region of space and has certain assigned

values over surfaces bounding the region, then it is the only

function which satisfies these conditions. For if not let V also

satisfy the same conditions and let us write U=V = V — V in

the expression for Green's Theorem in equation (9). Then

jjj{V-r)V'{V-V')dT

^^^jy-v,y
dr

.jj,r-v,^jy^.s.

and since V^V = V'V= — p throughout the space and V— V =
over the surfaces, we find

But this integral is a sum of squares ; so it can only vanish if each

term vanishes separately. We thus have

Hence F' — F= constant everywhere. But V=V' on the

surfaces; hence V==V' everywhere
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Since
j j
(V— V) ^ {V— V) dS also vanishes when ^ is

given over the surface S, it follows that V is unique except for an

additive constant when the value of p is assigned throughout the

dV
space and that of 7^— over the boundaries ; so that, in this case

on

also, the electric intensity is determined uniquely.

It would lead us too far afield to consider the functions

(Fourier's Series, Spherical and Zonal Harmonics and Bessel's

Functions) which are the solutions of Laplace's Equation appro-

priate to particular problems. For the development of this

interesting subject the reader may be referred to Byerly's Fouriei''s

Series and Spherical Harmonics.

Total Energy of a System of Charges.

We may find the total energy of a system of charged bodies

in terms of their charges and potentials as follows. Since the

potential at any point of the field is equal to \\\-dr+\\-dS

taken over all the charged bodies in the field, it will be reduced

to Ijn of its value if all the charges are reduced in the ratio n : 1.

Let n be any very large number, and suppose that initially all the

charges are at an infinite distance from one another. Bring up 1/n

of each element of charge to its final position. If V is the final

potential at any point the potential will change during this operation

V ... 1
from to — . The work done in bringing up the element ~ pdr

will lie between and — Vp dr. The work done in bringing up

1/n of all the charges will lie between and -7, 1 1 1 Vp dr. Now

bring up a second nth. part of all the charges. This will raise the

potential at any point from V/n to 2F//?, and the work done in

this second stage will lie between -i\li Vpdr and —
l

j
j
Vp dr.

If this process is continued the work done in the 5th stage will lie-

between

8-1
Vpdr and -jjl Vpdr.

R. E. T.
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The total work done in bringing up the whole of the charges from

a state of infinite dissemination will lie between

and 1 (1 + 2 + 3 + ... +n)jjj Vp dr.

This is equal to the total potential energy of the system, which

therefore lies between

n(n—l) ///r,..a„da(-l)///K,..

When n is increased indefinitely each of these values coincides

with ^JfJVpdr. This is the part due to the volume charges. If

there are surface charges we shall have to add ^fJaVdS. The

complete expression for the total energy of any system of charges

is therefore

W^lfjjVpdr + lfjv.dS (17X

The Energy in the Field.

In the preceding paragraph we have deduced an expression

for the energy in terms of the charges and their potentials. On
the view that electrical actions are transmitted through a medium,

we should expect that the energy would reside in the medium.

It is easy to obtain from the equation (17) an expression which

dV
admits of this interpretation. Since ^j = — VF and o- = —^ , we

have

But by Green's Theorem, allowing for the reversal of sign arising

from the fact that the normal is now drawn into the space

considered, this is equal to

^'WimKhm^^ <->

=1///E^dr (19).

So that the energy of the system is the same as if each

element of the field contained an amount of energy \ E^ per unit

volume.
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Stresses in the Field.

Maxwell showed that the forces acting on any system of

charged bodies could be attributed to a system of stresses in the

medium in which they are embedded. The necessary and

sufficient condition for this to be the case is evidently that the

resolved part, in any direction, of the resultant of all the forces

acting on the parts of the system, arising from systems external to

it, should be expressible in the form of an integral over any

surface which surrounds and isolates the system. The alternative

possibility would imply that part of the force was not transmitted

across the boundary, through the action of the parts of the medium
on one another, but arose from so-called action at a distance.

Consider any surface S surrounding and isolating the system

of static charges ei. Let Xi be the x component of the resultant

force acting on e^ arising from all external electrical systems.

Then if V is the potential and p the volume density at any point

X,= -
///l.^--///f--^.

where the integrations are extended throughout the volume

enclosed by S. The volume integrals will be capable of trans-

formation into integrals over the boundary surface aS* if we can

write

m the form ^r- +^ + ^^ •

ox dy oz

We have
dVd^_ll^dVy

^^^^""^
dx dx^~2dx\dx)'

dVd'V_ d /dVdV\ dv d'V

dx di/^ dy\dx dy ) dy dxdy

~dy\dx dy) 2dx\dy)'

dx dz^ ~dz\dx dz) 2dx \dz )
'

• Ct the proof of Green's Theorem, p. 24, Chap. n.

3—2
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Thus the integrand will be in the form desired if we put

^^d^dr^''^^"' ^
^'

^ = IV-^=P--P- ^22).

By considering the components of the resultant force parallel

to the y and z axes we should arrive at similar surface integrals

involving

^^--wm-m'-m (->.

^^=9^37=^"^ ' ^^^^'

p^ and p^^.

In the new notation in terms of the p% which will be familiar

to students of elasticity, we may write

=jj (Ipxx + mpy^ + np^^) dS (2G).

The last integral is taken over the enclosing surface, and I, m, n

are the direction cosines of dS, drawn away from the enclosed

volume. Similarly

+ Y,=ll(lp^y + mpyy + np^)dS.. (27)

and +Zi=
jj

{lpxz + mpyz + np„)dS (28).

If we adopt the standpoint that the action of the electric

charges on one another is transmitted by the intervening medium,

then pxx, pyy, pzz, 'Pyx, Pzx, Pzy are the six components of the stress

which transmits the action. From the point of view of action at

a distance these quantities, on the other hand, have no physical

significance.
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In order to obtain a more definite picture of the physical

nature of the supposed stresses let us consider the case in which

dS is part of an equipotential surface, so that its normal is

tangential to a line of force. Let the resultant electric intensity

at dS be E, then

- -7^ = tj^, - 7— = ^^^ and - X— = nE,
ax dy dz

and p^ = ^E^{P-m?-'n?\ py^= E'mn,

Pyy = \E^{m?-n^-l% p,^ = E'nl,

p,, = \E' {n' -I'- m'^l p^y = EHm.

The components of the force per unit area across dS are

respectively

lpxx + inpy^ + np^^ = ^lE^ \

lpxy+mpyy+npgy = ^7nE'\- (29).

Ipzz + mpy2 + np^z = ^ nE^ )

Thus the resultant traction is normal to dS. It is therefore

directed along the line of force and is a tension of amount ^E"^ per

unit area.

Next suppose that dS is at right angles to an equipotential

surface. Its direction cosines I', m', n' will then satisfy the

relation

„aF, ,dV ,dV ^
ox dy dz

The X component of the stress across dS is

Vpxx+in'pyx + n'pzy.

-iifr:y-(?y-(i?)V

=^-^l'E\

,dVdV ,dVdV
TO 1^— ^—h n ^-^—

ox oy ox dz

smce {''(ID-'(f)-'(e^--
In a similar manner we may show that the y and z components

are equal respectively to — ^ m'E^ and — ^ n'E^.

Thus when dS is at right angles to an equipotential surface

the resultant stress is again normal to it. Since the expressions
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now have a negative sign in front of them, they will represent a

pressure, not a tension. There is thus at every point in the field

a tension equal to ^ ^* along the lines of force and a pressure of

equal amount in every direction at right angles to them.

It may be shown that these stresses will keep the aether in

equilibrium. They are not the most general system of stresses

which are equivalent to the electric force on the system of charged

bodies e^. For we may clearly add to them any distribution of

stress whose resultant is equal to zero when integrated over any

closed surface surrounding gj. They are, however, the only system

in which the stress at any point is determined solely by the

electric intensity at that point*.

It is well to point out that this interpretation of the forces as

a system of stresses in the medium has only been shown to be a

possible, not a necessary one.

* Cf. Jeans, Electricity and Magnetism, p. 116, and Maxwell, Electricity and

Magnetism, 3rd ed. vol. i. p. 158.



CHAPTER III

DIELECTRIC MEDIA

Cavendish, and Faraday independently, showed that when

a condenser was charged so that the potential difference between

the plates had a certain fixed value, the charge on the plates

depended on the insulating medium between them. This proved

that the forces between electric charges depended not only on the

magnitude of the charges, but also on the nature of the material

separating them. These experiments are often regarded as dis-

proving the dogma of action at a distance. They are not capable,

however, of establishing this inference ; all that they prove with

certainty is that electric charges act on a material medium in such

a way as to make it affect other electric charges. The quantitative

experiments of the investigators mentioned showed that the charge

on condensers of different geometrical form to which a given differ-

ence of potential was applied always changed in a certain ratio

when any assigned insulating material was replaced by any other

assigned insulating material. Different insulators were therefore

said to be characterized by different " specific inductive capacities."

The specific inductive capacity of a vacuum is now universally

adopted as a standard, and its value is put equal to unity on the

electrostatic system of units. The specific inductive capacity of

air only differs very slightly from it. In this book, for reasons

which will appear, we shall use the term dielectric coefficient

instead of specific inductive capacity.

The potential difference between two electric charges is, by

its definition, determined by the distribution of the electric

intensity in the field surrounding them. It is clear, therefore,

that these experiments prove that the forces between charged

bodies are not determined solely by the magnitude of their

charges and their distance apart. Those of our previous results
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which are based upon the law of the inverse square will therefore

require modification if we are to account for the behaviour of

charged bodies in the neighbourhood of insulating materials.

The relation V=fEds is independent of the law of force, as

is also the device of mapping out the field by means of tubes

generated by the lines of electric force. The ideas underlying

them can therefore be applied even when dielectric media are

present. We shall suppose that a tube of force starts from each

element of area which embraces a unit of positive charge. These

tubes must either end on another charge or flow on to infinity.

This follows since two different equipotential surfaces cannot

intersect and since the lines of force are at right angles to the

equipotential surfaces. It is also necessary that the charge at the

negative end of a tube should be equal and opposite to the charge

at the positive end. This is required by the fact that the two

sides of a condenser acquire equal and opposite charges whatever

the nature of the intervening medium.

The tubes which are determined in this way we shall call tubes

of induction and we shall define the induction D at any point as

the number of tubes which cross a unit area drawn perpendicular

to the direction of the tubes at that point.

The induction is a vector quantity and its components are

given by the usual rule for the resolution of vectors. Thus if

Pig. 7.

De is the component of D along a line OQ making an angle 9

with the direction OP of the resultant D, it is clear that the

number of tubes which cross unit area perpendicular to OQ is
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the same as that of those which cross an area cos 6 perpendicular

to OP, so that

De^D cosd.

It is evident that the cross-sectional area of the tube of induction

passing through any point is the inyerse of the induction at that

point.

Gauss's Theorem.

We are now in a position to consider the form which Gauss's

Theorem takes when the field embraces dielectric media. Consider

the value of the integral JJDndS taken over any closed surface,

where Dn is the component of the induction along the outward

drawn normal at an element dS of the surface. If OPQ represents

the direction of the tubes crossing dS, and if the angle RPQ = 6,

then Dn = D cos d, where D is the resultant induction at dS. Now
dS cos 6 is the projection of dS on a plane perpendicular to the

direction of D, so that

D xdS cos d=DndS

is the number of tubes which cross dS fi-om the inside to the

outside of the surface. When the tubes cross from the outside

to the inside of the closed surface DndS will have a negative

value. Let us first consider the effect of those elements for which

DndS has a positive value. Each of the tubes crossing them will

start from a unit positive charge beyond dS on the internal side.

This unit charge may either be without or within the surface. If

it is without, the tube will first cross the surface at some other point,
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and it will give rise to an equal and opposite element Dn'dS'. The
total contribution of such tubes to the integral will be zero. Each

tube crossing an element dS in the positive direction and having

its origin within the surAice will start on a unit positive charge,

80 that the total contribution of all the elements BndS which are

positive will be equal to that part of the positive charge within

the surface which gives rise to tubes of force which do not end on

a negative charge inside. In a precisely similar manner we can

show that the total contribution of all the elements DndS which

are negative is equal to that part of the negative charge within

the surface on which tubes of force end which do not start from

positive charges inside the surface.

It follows that the value oi JJDndS=ffD cos 0dS taken over

any closed surface is equal to the algebraic sum e of all the

charges enclosed by the surface.

We thus see that Gauss's Theorem can be extended to

dielectric media provided the normal electric intensity is replaced

by the normal induction.

By applying Gauss's Theorem to a cylindrical region bounded

by a tube of force and by two equipotential surfaces, one just

inside and the other just outside a conductor, we find that the

induction just outside the surface of a conductor is along the

normal to the surface and equal to the charge per unit area of

it. This is the general form of Coulomb's Law.

Poisson's and Laplace's Equations.

Let us now apply Gauss's Theorem to the rectangular paral-

lelepiped whose angular points are the combinations of a; ± ^dx,

y ±\dy, z ±\dz. The induction at the centre of the element

being D (Bg., Dy, D^, the mean outward normal induction over

the faces perpendicular to the axis of x will be —iD^—^ -^\

and + yDg + -^ "9") ^y Taylor's Theorem. The corresponding

fiuxes of induction are

and + {Bx + -g-^ y) ^y^^'
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The total flux of induction over this pair of faces is therefore

f)T)

-^dxdydz. Treating the other two pairs of faces similarly, we

see that the total flux of induction over all the six faces is

This is equal to the charge inside, which is pdxdydz. We
therefore get

<''"'° = 17 + 17 + 17 = '' «
as the general form of Poisson's Equation. The general forui of

Laplace's Equation follows if we put p = 0.

Induction and Electric Intensity.

From the definition of the induction it follows that in geo-

metrically identical systems of conductors, furnished with identical

distributions of electric charge, the induction will be identical at

every point whatever the nature of the intervening dielectric,

provided it is homogeneous and isotropic. The experiments of

Cavendish and Faraday show that the intensities at corresponding

points are inversely as the dielectric coefficient, since for geometric-

ally identical systems the forces are as the differences of potential.

It follows that the relation between the induction and the electric

intensity at any point in a dielectric medium is

I) = kE (2),

where k is the dielectric coefficient. Since E = — grad V, we may
also write the preceding results in the following forms

:

Gauss's Theorem.

//^I^^«=-///'"^^ (^)-

Coulomb's Law.

''d^ = -^ (^>

Poisson's Equation.

or, when k is constant throughout the space under consideration,

a;V2F=-p (6).
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The Energy in the Field.

The theorem (equation (17), Chap, ii) that the potential

energy W of any system of charges is equal to

iijjjVpdT+isjjVadS

does not depend on the law of force between two elements of

charge, and is therefore true when dielectric media are present.

Since p = div D and <r = Dn, we have

Tr = W[[ Fdiv Ddr + \ jjVBndS.

where I is the x direction cosine of the normal to dS. Since

Dn = W^ + inDy + nD^,

we see, by similarly integrating the other components of

fJfV div Ddr by parts, that

Hence W^-l jff
{dJ-^^D^'-^ + D^'-T^ dr (7).

The energy per unit volume of the field is therefore

If Eg, Ey, Eg are the components of E, since j&= — grad V, this

may be written

i^{D,Eg + DyEy+D,E,] (8).

The sum of the products of the components of two vectors

taken in this way is called the scalar product of the vectors*.

It is often written {DE), so that in this notation the energy of

unit volume of the medium

= h{DE) (9).

• See Webster, Electricity and Magnetism^ Chap. i.
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In isotropic media D and E are in the same direction and

D = kE, so that the energy per unit volume of the medium

1 1 1)2

= 2'^' = 2ir (1»>-

This reduces to the result in Chapter ii when k = 1.

Conditions at the Boundary hetiueen Tiuo Dielectric Media.

It is very important to determine how the induction and the

electric intensity change as we pass across the surface separating

two different insulating media. Consider first of all an element of

area dS of the surface, so small that its curvature may be neglected.

Describe the prism generated by lines passing through the boundary

of d8 and at right angles to its plane. Let the prism be terminated

by planes parallel to dS, and let the height of the prism be a small

quantity of the second order, if the width of dS is of the first order.

Then one of the ends of the flat prism thus constructed will be in

the first medium and the other in the second, whilst the sides are

partly in one medium and partly in the other. Now apply Gauss's

theorem to the prism. The induction is necessarily finite, so that

the normal flux over the sides of the prism vanishes, since their

area is negligible compared with that of the ends. Let D^ be the

magnitude of the resultant induction at the boundary in the first

medium and let it make an angle 6^ with the normal, D» and 6^

being the corresponding quantities in the second medium. The

areas of the two ends being each equal to dS in the limit, the flux

of normal induction over the first will be DrndS=Di cos didS and

over the second Dn^dS= — D2 cos d^dS. The sum of these two is

equal to the total charge inside the prism, which is adS, if a- is the

charge per unit area of the boundary. We see therefore that the

induction at the boundary between two media will always satisfy

the relation

Di cos 61 — Da cos 02 = a-.

In the majority of cases there will be no charge on the boundary

surface, and thus the component of the induction normal to the

surface will have the same value on both sides of the boundary. In

other words :—when there is no charge on the surface of separa-

tion the normal component of the induction is continuous from
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one medium to the other; when this is not the case it is discon-

tinuous by an amount equal to the charge per unit area of the

surface.

A similar relation is satisfied by the tangential component of

the electric intensity. Consider the rectangle which forms a

central section through the axis of the prism just considered.

Let us calculate the work done in taking a unit electric charge

round the sides of such a rectangle. The force being finite every-

where, the work done along the short sides vanishes in comparison

with that done along the long sides. The long sides are of

equal length s in the limit, and if 7\, T, are the values of the

tangential components of the electric intensity in the two media,

the work done in taking a unit charge round the rectangle will

be TiS — T.jS. This must vanish, otherwise we could obtain an

indefinite amount of work by repeating the operation an indefinite

number of times. We therefore conclude that Ti= T^, or, in other

words, that the component of electric intensity tangential to the

surface is continuous in passing from one medium to the other.

It is clear that this result holds whether there is a charge on the

boundary or not.

These results enable us to obtain the law of refraction of the

tubes of induction at the boundary between the two media. Let

us suppose that the interface is uncharged and let k^, tc^ be the

dielectric coefficients of the two media. Then, since the normal

component of the induction is continuous, we have

Di cos 61 = i>2 cos ^2,

and, since the tangential electric intensity is continuous,

A „ Ax,— sm 0^ = — sm 02,

whence tan^i/tan ^2=«;i/f2 (11),

or the tangents of the angles which the tubes of induction make

with the normal to the surface are directly as the dielectric

coefficients of the media.

We see from the results of the last two sections that in dealing

with problems involving dielectric media the induction must be a

solution of the equation divZ) = p. The further condition has

to be satisfied that at the surface separating any two media the

components of the induction normal to the surface differ on the
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two sides of it, by an amount equal to the charge per unit area of

the surface at that point. In addition, the tangential component

of the electric intensity must have the same value on both sides

of the surface. There is only one solution of the differential

equation which satisfies the conditions in any assigned case ; so

that any particular solution of the differential equation which can

be made to satisfy the boundary conditions will determine the field

uniquely. The boundary conditions which we have established for

dielectric media include those relating to conductors in a vacuum,

or in any dielectric, as particular cases.

Poisson's Theory of Dielectric Media.

There is a certain view of the behaviour of dielectric media

the mathematical development of which is largely due to the

French physicist Poisson. According to this view the modification

of the electric field arising from the presence of dielectrics is due

to the substance of the dielectric being thrown into a peculiar

electrical condition by the external field. This condition arises

fi:om the displacement of electricity in the ultimate particles of

the medium in such a way that each particle acquires a positive

charge at one end and a negative charge at the other. When this

occurs the medium is said to be polarized and we shall see that the

polarization is measured by the product of the displacement and

the charge per unit volume.

We shall first of all consider the nature of polarization as it

presents itself from the point of view which regards electricity as

continuously distributed, after the manner of a fluid, throughout

all bodies. Consider two equal spheres, and let one of them be

filled with a uniform distribution of positive electricity and the

other with a distribution of negative electricity, identical with the

first except for the difference of sign. Imagine the two spheres

coincident in position; we shall then have an uncharged body

which will give rise to no electrical effects. Now suppose that,

whilst one of the spheres is fixed, every point of the other is given

a certain equal displacement, so that this sphere moves a small

distance after the manner of a rigid body. The region of space

where the spheres overlap will still be free from electric charge, but

there will be a layer of positive electricity over the surface of the

sphere on that side towards which the positive electricity has been
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displaced, and a similar distribution of negative electricity over the

opposite face. The thickness of the layer measured parallel to the

axis of displacement will be the same at every point of the surface,

so that the thickness measured parallel to the normal at any point

is equal to the magnitude of the displacement multiplied by the

cosine of the angle that the normal makes with the direction of

the displacement. This result will clearly hold whatever the

shape of the -body may be. By making the density of the

charges indefinitely big and the displacement indefinitely small,

in such a way that their product remains finite, the same result

may be obtained without altering the shape of the body. A body

Fig. 9.

whose electrical behaviour can be represented in this way is said

to be uniformly polarized. The direction of the axis of polarization

is the same as that of the relative displacement of the positive

to the negative distributions. To facilitate discussion the charges

which are imagined to arise in the dielectric in this way will be

referred to as " fictitious" in contradistinction to the "real" charges

which occur for example on the surface of conductors. The

legitimacy of this distinction will be considered more fully later.

Another way of regarding polarization is to suppose the body

divided into equal cellular elements with the axis of each element

parallel to the direction of the polarization. To represent uniform

polarization we then suppose each cell to develop a positive charge

on one face and an equal and opposite charge on the opposite face,

the faces affected being those normal to the axis of polarization.
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A body constructed in this way is identical electrically with a body

made up of two uniform distributions of positive and negative

electricity which have undergone relative displacement. This is

clear, because in the interior of the body equal and opposite

charges coincide at the contiguous surfaces of opposite elements,

so that there is no volume charge at any point; whilst at the

external boundary there is a charge, positive at one end of the

body and negative at the other end, whose magnitude is the same

for each portion of the surface in which it is intersected by the

sides of a cell. But the area of this intersection is inversely as the

cosine of the angle that the normal to the surface makes with the

axis of the cells. Thus the density of this fictitious surface layer

varies as the cosine of the angle that the normal makes with the

axis of polarization, and the distribution is completely identical

with that obtained by displacing originally coincident electric

charges.

Fig. 10.

In some problems it is more convenient to regard polarized

media as displaced charges which were originally coincident, whilst

in others the point of view which considers them as made up of

cellular elements having opposite charges on opposite faces has

advantages.

If we suppose a polarized body to be intersected by any surface,

the two resulting portions of the body will still be polarized. It is

necessary therefore that there should be developed at any such

surface of separation a double distribution of electric charge, of

equal amount and opposite sign at any point of the interface.

K. E. T. 4
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This development is required in order to make the algebraic sum
of all the charges on each part of the body zero. We see that the

cellular elements which we have considered previously can be

regarded as arising in this way by a series of fractures of the body

along surfaces parallel and perpendicular to the axis of polarization

at any point.

So far we have not defined polarization in a manner sufficiently

precise to admit of numerical expression. We shall now define

the intensity of polarization, or the polarization, as we shall, for

the sake of brevity, usually call it, as the electric moment per unit

volume of the medium at any point. Consider one of our cellular

elements of length Bx ; let the area of the normal end faces be 8S

and let ± o- be the surface density of the charge over them. Then
the charge on each end ia ±a-8S and the electric moment of the

element is a-8xBS = a-ST, where St is the volume of the element.

The electric moment is therefore proportional to the volume of the

element, and the electric moment per unit volume is equal to the

surface density cr. Clearly a- is also equal to the charge which

develops per unit area over an intersection of the body at the

point under consideration by a plane perpendicular to the axis of

polarization. Thus' the polarization may be defined either as the

electric moment per unit volume of the body or as the charge per

unit area of an interface perpendicular to the direction of polariza-

tion. This interface may include the external surface of the

polarized body as a special case.

The statement in the preceding paragraph is to be regarded

as the definition of the resultant polarization. The polarization,

however, is a vector quantity and this aspect of the case can be

provided for by a slight modification of the definition. We now

define the polarization in any direction at any point as the

moment per unit volume of a thin slab of the polarized medium

described about the given point and witlj its faces perpendicular

to the given direction. The slab can conveniently be regarded as

made up of a series of the prismatic elements already considered

(see Fig. 11). If AS is the area of each face of the slab the charge

on them will clearly be + a-AS cos 0, where is the angle

between the normal to the slab and the direction of the resultant

polarization. The perpendicular distance between the two layers
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of electric charge is cos 6 8a;, if Sx is the length of a cell. The

electric moment (perhaps strength would be a better term) of the

slab is therefore o-cos^ OASSx. The volume of the slab is

cos 6AS 8w,

so that the polarization along the direction normal to the slab is

clearly

Pg = <rcose = Pcos0 (12),

where P is the resultant polarization. The components of the

polarization are therefore obtained by the usual rule for the resolu-

tion of vectors.

Fig. 11.

Polarization, Induction and Electric Intensity.

We are now in a position to determine the relation between

these three vectors. Let us first consider the nature of the electric

field between the plates of a parallel plane condenser filled with a

dielectric of specific inductive capacity k. Then the induction

D and the electric intensity E are both normal to the plates and

kE = D = cr, where a is the charge per unit area of the plates.

We shall make the hypothesis that the polarization is caused

by the electric intensity in the dielectric, and that the two vectors

are coincident in direction. This standpoint will be found to be

fully justified when we come to consider the phenomena fi-om

the point of view of the electron theory, according to which the

polarization arises from an actual displacement of the ultimate

electrified particles in the direction of the field. The hypothesis

is undoubtedly true for isotropic dielectric substances. In the

case of crystalline substances the electric intensity does not in

4—2
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general coincide in direction with the polarization, and a similar

statement holds with regard to the magnetic behaviour of crystal-

line media. These exceptions are due to complications which it

would lead us too far out of our way to discuss, and their existence

does not, in any way, vitiate the general principles involved.

Now on the theory of polarized media the electric intensity is

supposed to arise partly from the external charged bodies and

partly from the charges arising from the polarization at the boundary

of the medium. In the present case the amount of this charge

will be + P per unit area of the plates. It will be negative where

a is positive and vice versa. We therefore have

E=a-P = D-P (13),

and kE=D;

whence P = (k-1)E = ''-^D (14).

As we shall see (p. 57) these relations between P, E and

D are perfectly general, although we have only deduced them

from a very special case, that of a parallel plate condenser. E and

D are equal to the forces which would be exerted on a unit charge

at a point in cavities of certain shapes made in the dielectric.

Taking the case of E first, we observe that E is the force which

would be exerted on a unit positive charge, placed at the point

where E is measured, by the so-called real charges in the field

together with the Poisson distribution to which the polarization

of the dielectric medium is equivalent. This will be the actual

force on a unit charge ia an actual cavity of indefinite length and

infinitesimal cross section, whose axis follows the direction of the

lines of force at every point. For the charges which develop on

the walls of such a cavity, owing to the existence of polarization,

will be confined to the two ends, and the contribution from these

to the force inside the cavity will vanish in the limit, when the

cross section is made to diminish indefinitely. The force will

therefore be determined solely by the real and fictitious charges in

the field and will be identical with E.

Next consider a cavity whose cross section is great compared

with its length, although both are infinitesimal. Let the end

faces of this cavity be normal to the direction of the polarization.

Then there will be, on each of the faces, a distribution of electric
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charge due to the polarization and equal to + P per unit area.

The force on a unit charge in such a cavity will arise partly from the

charge on the walls and partly from the charges, real and fictitious,

in the rest of the field. The former part is equal to P and the

latter to E. The total force is therefore P + E — D. The resultant

induction D at any point is therefore equal to the force which

would act on a unit positive charge placed in a very flat cavity cut

perpendicular to the direction of the lines of force at that point.

It is easy to show that the component of the induction in any

direction is the component, in that direction, of the force which

would be exerted on a unit positive charge placed in a similar flat

cavity with its end faces normal to the direction in question.

The foregoing specifications of the induction and electric

intensity satisfy the conditions which we have already laid down

for them (p. 45) at the interface between two media K^ and K.^

of different dielectric coefiicients. For, consider two flat cavities A
and B parallel to the interface G and indefinitely near to it. The

normal component of the induction just inside Ki will be equal to

the force on a unit charge in A and that just inside R^^ will be

equal to the force acting on a similar charge in B. If the resultant

intensities in the two media are E^ and E^, and the resultant

polarizations are Pj and Pa, and if they make angles ^i and 6^ with

the normals to the surface, then it follows from the results of the

preceding paragraph that the normal force in ^ is {Ei + Pi) cos 6^,

and that in £ is {E^ + Pa) cos 6^. That these forces are equal to one
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another can be seen by considering the charges, real and fictitious,

from which they arise. The force inside A arises from

(1) charges at a distance,

(2) the polarization charges on the ends of A,

(3) the fictitious charge over the boundary G.

The last is made up of a positive charge arising from the

polarization of Ki and a different negative charge arising fi*om the

polsirization of K,. The positive charge on is equal to the

negative charge on an equal area of the left face of A, and the

negative charge on C is equal to the positive charge on an equal

area of B. The total force in ^ is thus the same as that which

would arise from

(1) charges at a distance,

(2) the positive charge on the right of A,

(3) the negative charge on the left of G.

In a similar way we can show that the force in B arises fi:om

(4) charges at a distance,

(6) the positive charge on the right of C,

(6) the negative charge on the left of B.

But (1)= (4), (2) = (5) and (3) = (6). It follows that our

specification of the induction makes its normal component

continuous.

The tangential component of the electric intensity is con-

tinuous in crossing the boundary, since the only change in the
*

electric intensity which occurs is that which arises firom the change

in position relative to the fictitious charge on the boundary, and

this gives rise only to a force normal to the interface.

Variable Polarization.

So far we have confined our attention to uniformly polarized

media, i.e. to cases in which the polarization P has the same

magnitude and direction at all points. The number of such cases

is strictly limited, and it is very important to study the behaviour

of media in which the polarization varies firom point to point.

Bodies polarized in this way are generated by the sliding of
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oppositely charged coincident distributions, if the original distri-

butions of electric charge are not uniform. We shall, however,

look at the matter from the point of view that the polarization

arises from the development of charges on the faces of the ultimate

elements of the body in the manner which we have already

considered. Consider any elementary rectangular parallelepiped

of the material whose sides are 8x, hy, 8z, and the coordinates of

whose centre are x, y, z. Let the resultant polarization at the

centre be P and let its components parallel to the coordinate axes

be Px, Py and Pg- l^he charges which develop over the faces of

the parallelepiped owing to the polarization P of the parallelepiped

itself will be

+ Px 8yhz, + PySxSz, and + P^ SxBy

respectively. These are the mean values taken over the whole of

each respective face of the parallelepiped. If we consider any one

of these faces, for instance that which is determined hj x — x + ^8x,

we see that the next element, in this case the one to the right,

will give rise to a charge over it =— iPx + -^ 8xj SySz, since

Px + -^— Sx is the mean value of the x component of the polariza-

tion in the next element of volume. This face is therefore to be

regarded as carrying a charge due to polarization equal altogether

to —^ SxByhz. One half of this is to be considered as belonging

to the next element of volume, so that only — - -^-? SxSySz belongs

to the element under consideration. The face for which x = x — ^Bx

gives rise to an equal amount, so that the total charge arising
op

from the faces perpendicular to the axis of a; is — -^ BxSySz. In

a similar manner we can show that the pairs of faces perpendicular

to Oy, Oz cany charges which contribute

—^ BxByBz and — -~ BxByBz

respectively. Thus when the medium is polarized non-uniformly,

there is associated with each element of volume a charge equal to
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This charge is a fictitious charge like the charge which

develops on the surface of dielectric substances on the polarization

theory of the behaviour of dielectric media. It is to be definitely

distinguished from the true charge earned by conductors and other

electrically charged bodies in the field.

We shall now consider the relation between the fictitious

volume and surface charges which arise in a polarized body when

the polarization is not uniform. Denoting the fictitious charges

by dashes we have

jljp'd.dyd. = -///f^'
+ '-^ +f) d.dyd>.

We can evaluate the integral on the right, taken throughout the

polarized body, by the method of Green's Theorem. If I, m, n are

the direction cosines of the external normal at any point, we
see that

fjj^-^dxdydz = jjlP,d8,

with similar expressions for the remaining constituents of the

integral. We therefore have

jjjpdxdydz = -jhPx + mPy + nP^) dS

= -jjPr,dS (16),

where P„ is the component of the polarization along the outward

normal to the surface at dS. This is equal to a', the surface

density of the fictitious charge arising fi:om the polarization at

that point. Hence

\\L'dxdydz + \\a'dS = (17),

or the algebraic sum of the volume and surface charges arising

fi:om polarization is zero. This result would have been obvious

had we developed the properties of non-uniformly polarized media

by the sliding of originally coincident equal and opposite distri-

butions of charge.

According to the polarization theory of dielectric media the

field of force which arises when such media are present is the

same as that which would arise if the medium were all aether,

provided the true charges p and a are accompanied by the fictitious
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charges p' and o-' of the polarized distribution. The electric

intensity will therefore obey the form of Poisson's equation which

obtains in the free aether, provided the density at any point is

supposed to be equal to p + p. We therefore have

"bE^ dEy dEg

a^ +^ + "87 = ^ + ^ ^i^>-

XT / ^^Px dPy dP,\

so that ^(^, + P.) + |(^, + P,) + |(^, + P,) = p ....(19).

Comparing this with equation (1), we see that the vector

whose components are Ex-{- Px, Ey-\- Py, Ez-\- P^ is identical with

the induction D, so that the identification from a particular case

on p. 52 is perfectly general.

By integrating both sides of equation (19) throughout any
enclosed volume we see that the true charge inside is equal to

JJDndS over the bounding surface, in agreement with p. 42.

The Fictitious Charges on the Electron Theory.

Although it is necessary, in discussing the results of electro-

static experiments, to distinguish between "true" charges like

those which are communicated from a conductor to the plates of a

condenser and the "fictitious" charges which appear to reside

in the dielectric, there is no very profound difference between

them. According to the electron theory one is just as true a

charge as the other, although its reality is not so readily made

obvious by experiment. The electron theory regards a dielectric

as a certain type of distribution of electrons in space, and in this

space the true electric intensity satisfies the equation div E = p.

This equation is assumed to be true when the element of volume

is a small part of an electron. When the element of volume is

enlarged so as to contain a great many electrons the equation will

become div E = p, where the bars denote average values. Thus p
is equal to the p + p' of equation (18) and p' is just as real a part

of the average density of electrification as p. This point will be

considered more fully in the sequel.



CHAPTER IV

THE ELECTRON THEORY OF DIELECTRIC MEDIA

Potential due to a Doublet.

Consider the doublet formed by equal positive and negative

charges ± e placed at Q and respectively, where OQ = s. Let V be

the potential at a distant point P, where QP = r is large compared

with s. Then

OQ cos e

^""^'QP 0P~^ QP'

es H'= — cos ^ = ^ cos ^ (n

in the limit when * vanishes compared with r.
fj.

ia called the

moment of the doublet OQ.

This result may be written rather differently. Let the axis of

the doublet be given a small displacement parallel to its length,

so that Q moves to Q, where QQ' = 8s. We have

PQ'i=PQ^+ QQ^ - 2PQ . Qq cos 6,

or (r + Zrf = »•' + Zs" -2r.Bs. cos 0,
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SO that to the first order

2r8r= — 2rBs cos 0,

dr
and cos ^ = —

ds'

47rF=- fidr

r^ ds

9

Q .(2),

where ^- denotes differentiation along the direction of the positive

axis of the doublet. In this differentiation the moment of the

doublet is supposed to be constant, so that the increment 8s will

be determined by the displacement of the centre of the doublet.

Let the coordinates of the centre be a, h, c, then s is to be regarded

as a function of a, h and c ; whence it follows that

d a\db . d n\dc)
,rj ds]47r

da db dc

1/1
da \r.

da

ds'^db

1 \ 86 a

rj ds dc
.(3).

Now ^ , r-
ds' ds' ds

of the doublet. So that

are the direction cosines I, m, n of the axis s

F=
4̂7r da >-m-4M c^>-

. If we resolve the moment /i of the doublet into components

parallel to the axes, these will be /i^ = ^yu., /^ = mfi, m = nfjb and

= -— iUi^- 1 — 14- ZLo^^ l-l4- iL«^- I
—

^-^^'^k^r} + '^Tb(cr47r ['
+ /*3

dc Vr
.(5).

-^Q

Thus the potential, and therefore also the field of force, arising

from the doublet is the same as that due to the sum of the effects

of its components. This result is at once obvious geometrically

(see Fig. 14). For the resolution of the doublet OQ into its

components OS, 8R and RQ parallel to the axes is equivalent to
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the placing of two equal and opposite charges at each of the points

R and S. This is clearly incapable of changing the field in any

way, so that the field due to the three components must be the

same as that due to the original doublet.

Potential due to Polarization.

We have seen that a polarized medium can be regarded as

being built up of a series of cells having equal and opposite

charges spread over opposite faces. When the axis of the cells is

parallel to the direction of the polarization, only one pair of the

faces, those which are normal to the direction of the polarization,

will be charged, and each cell will behave like a single doublet.

The moment of this doublet, being equal to the product of the

length of the cell by the charge on its end faces, is clearly equal

to the product of the resultant polarization by the volume of the

cell. When the faces of the cells, supposed to intersect orthogo-

nally, do not bear any simple directional relation to the axis of

polarization, charges will develop over all the faces of the cells.

These will be equal and opposite for each opposite pair of faces,

and will be equal in magnitude to the area of each face multiplied

by the component of polarization normal to it. The moment of

the doublet to which the cell is equivalent will thus be equal to

that of the doublet whose components are the components of the

polarization normal to the faces of the cell, each multiplied by the

volume of the cell

Since every element of volume of a polarized medium is

equivalent to a doublet, this result enables us to write down the

expression for the potential arising fi:om an element of volume of

a polarized medium. Let a, 6, c be the coordinates of the centre

of the element of volume, its sides being equal to da, db, dc. Let

/, m, n be the direction cosines of P, the resultant polarization.

Then the polarized element is equivalent to a doublet, the

components of whose moment are (IP, mP, nP) dadbdc. The

contribution of this element to the potential at a distant point

a:, y, z ia therefore

where r'= {x-ay + (y-by+{z-cy.



DIELECTRIC MEDIA 61

It follows that the potential arising from the whole of the

polarized medium is

In these expressions P^, Py and P^ are the components of the

polarization at the point a, b, c, and not at os, y, z.

The preceding formula can also be obtained by a transformation

of the usual expression for the potential of a distribution of electric

charge

4nrjjj r 47r Jj r

If this is applied to the case of a polarized medium, p and a will

represent what we have called the fictitious charges of polarization.

Thus

P~ [da '^
db ^ dcj'

and <T = — (Px cos nia + Py cos w^S + P- cos riic),

where coswia, cos Uib, cosWjC denote the direction cosines of the

internal normal to the bounding surface, referred to axes parallel

to a, b, c. Thus

— 1
1

7— (Pa; COS riia + Py cos ?if 6 + Pz cos Wj-c) dS.

Integrating the volume integral by parts, we have

= —11 jPx p- (-) dadbdc —II — cos nta dS.

Since similar expressions are obtained from the other two terms of

the integral it follows that

47rhi!IH(^>^'!-^(^h^4M'^^'''-
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Polarized Shells.

A polarized shell is a superficial distribution of polarization.

It may be regai-ded as a region bounded by two surfaces at an

infinitesimal distance apart and carrying opposite charges on the

two sides. In general the direction of the polarization at any

point may be orientated in any manner with reference to the

normal to the surfaces, but the only case which is of any impor-

tance is that in which the resultant polarization is always directed

along the normal to the shell at every point. Such shells are

said to be normally polarized, and we shall confine our attention

to them. They are of great importance in the theory of electro-

magnetism.

Let AD, BG be a section of the surfaces bounding the nor-

mally polarized shell, AD being

positively and BG negatively

charged. Let P be a distant

point, OP being equal to r.

is any point in the substance

of the shell and ON is the nor-

mal. AD, QR, AB, DG, etc.

are infinitesimal. The angle

PON=e.

Let t be the thickness and

P the polarization of the shell at 0. Denote the element of area

AD = QR = BGhy dS. Then the element of the shell ADGB is

equivalent to a doublet whose moment is PtdS. In dealing with

shells it is convenient to introduce a new quantity called the

strength of the shell.

The strength of a shell at any point is equal to the product of

the intensity of the polarization of the shell by the thickness of

the shell at that point.

We shall denote it by <}>. Then
<f>
= Pt. Since PtdS is the

moment of a portion of the shell whose area is dS, the strength

^ is equal to the moment of -the shell per unit area.

Now consider the potential at P arising fi^m the shell.

We have seen (p. 58) that the potential at a point distant r

Fig. 16.
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due to a doublet of moment im is -r- k-\-], where ;r- denotes
47r OS \rj ds

differentiation along the axis of the doublet. In the case of the

element of the shell a = (bdS and 7r = ^r-, where :r- denotes'^ ^ as an dn

differentiation along the direction of the outward normal to the

positive face of the shell. Thus the potential due to the element

dS is

47r dn \rj '

and that due to the whole shell is

^-litM)'' («)-

where the surface integral is extended over the whole of the

positive surface of the shell.

The most important case which arises is that in which the

strength ^ has the same value at every point of the shell. The

shell is then said to be uniform or of uniform strength. In such

a case
<f>
may be taken outside the integral, and

-llh-t («)'

where « is the solid angle subtended by the entire shell at the

point P.

We shall next calculate the potential energy of the shell in the

field. First consider the potential energy of a doublet OQ which

carries a charge + e at Q and — e at 0. Let Vq, Vq be the

potentials at and Q respectively. Then the potential energy of

the doublet is

= ^(^a^ +^3^+^37) ^i^>'

where /ti is the moment of the doublet and I, m, n the direction

cosines of its axis s. Now apply this result to the case of the
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polarized shell. Considering the element of area dS of the shell

II -J—
= <f>dS X TT— , 80 that the potential energy of the whole shell

//
^^^'^^ (")•

dV .

Since —^ is the force outward along the normal from the

positive side of the shell, the surface integral represents the

number of lines of force which thread the surface from the positive

to the negative side. It is thus equal to — (f)N, where N is the

number of tubes of force which leave the shell by the positive

side.

Polarization on the Electron Theory.

The electron theory furnishes a very natural explanation of

polarization. The chemical atoms out of which matter is built

are regarded as consisting of a large number of electrified particles.

The behaviour of these particles is considered to be quite dififerent

according to whether the substance is a conductor or an insulator

of electricity. In conductors, part, at any rate, of the electrons are

so loosely held that the very smallest electric field is sufficient to cause

them to move about in the substance from one atom to another.

In fact, as we shall see later, it is extremely probable that in

conductors many of the electrons are always moving about inside,

much in the same way as the molecules of a gas are believed to be

in a state of continuous motion. The effect of an external field is

simply to superpose on this haphazard motion an average flow in

the direction of the field. This flow is what constitutes the electric

current.

When an electric field is applied to an insulating substance

the phenomena are different. The constituent electrons must, of

course, be affected by the electric field, but none of them are able

to move from one atom of the substance to another. In the

absence of an electric field we regard the electrons as distributed

about the atoms in positions of stable equilibrium. Under these

circumstances the material exhibits no electric polarity. When an

electric field is applied, ^e ultimate positive charges are pulled in

the direction of the field, and the negative charges in the opposite

direction. The displacement of the charges, however, is small, for
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they are pulled back by forces of the same nature as those which

held them in equilibrium before the external field was applied.

In the position of equilibrium which finally results, the force

exerted on the electron by the external field will just balance the

force tending to restore it to its original position of equilibrium.

It is clear from what has been said that the displacement of

the ultimate electrified particles, which occurs in a dielectric when

it is exposed to the action of an electric field, is equivalent to the

creation of so many doublets, one for each particle. We have

seen that the polarization which occurs in the dielectric under the

same circumstances can be represented as due to the development

of doublets in each element of volume. We shall now consider the

whole matter from a more quantitative standpoint ; as a result of

our investigation we shall see that the results of the polarization

theory can be obtained just as well from the properties of the

doublets which develop from the displacement of the- electrons.

Actual and Mean Values.

W^e have already pointed out (p. 9) that in the electron

theory we have to deal with different elements of electric charge

in different classes of problems which arise. A somewhat similar

distinction arises in connection with many other physical quantities

which determine the nature of the electric field. For instance in

the discussion of this and the preceding chapter we have regarded

the induction, the polarization and the electric intensity as vectors

whose magnitudes changed only very gradually as we moved from

one part of the field to another. We have always thought of them

as though any alterations in their magnitudes which might occur, in

a distance comparable with the distance between two molecules,,

could safely be considered as negligible, provided the two points

compared were both in the same medium. This method of treatment

obviously becomes inadequate when our view of the phenomena is

so highly magnified as to take into account the effects of individual

electrons or even atoms. So far, we have considered the space

between two parallel planes filled with dielectric, when the planes

are maintained at different potentials, as a region in which

the electric intensity has the same magnitude and direction at

every point. It is clear, however, that the actual electric intensity,
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the force exerted on a unit charge occupjdng an infinitesimal

volume, will constantly change in both magnitude and direction

from one part of this space to another. At places which are

sufficiently close to an electron the actual force will be enormous

compared with what we have called the electric intensity, and it

may have any direction whatever.

One is tempted to ask what can be the use of a conception of

the electric intensity which is so much at variance with what we
believe to be the reality. The answer is, of course, that most of

our methods of experimenting are so coarse, compared with the

atomic scale, that they do not detect these enormous differences

which occur within distances of the order of atomic magnitudes.

Our experimental arrangements for the most part measure only the

average values over spaces containing a large number of atoms.

The reason why our average values possess validity is not because

they are the true values but because, so far as such experimental

arrangements enable us to detect, everything happens as if the

average values were the true values.

It remains to specify the average values we have been dealing

with more accurately than we have done hitherto. Let
(f>

repre-

sent one of the scalar functions or a component of one of the

vectors, which determine the state of the electric field. For

example,
<f>
may be the electrostatic potential at a point. Let t

be any small volume so chosen that its linear dimensions are large

compared with atomic distances but small compared with the

distances within which changes in
(f)

are perceptible by the usual

experimental methods. Then the average value of
<f>

may be

defined as the value of

^ = ljfjc},dr (12),

where the integral is taken throughout the small volume t. We
evidently have

i=;///|-=;a»^^=i <->.

where f is any independent variable such as time, distance, etc. of

which
<f)
may be a function.

Since the actual potential V satisfies the relation V^V= — p, it

follows that V* V= - p : and since ^=—grad V, E=—gra.d V. Thus
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the average forces and potentials are the same as those which

would obtain if the actual charges were replaced by a distribution

of density equal to the average density at every point.

It is clear that the induction, polarization and electric intensity

in a dielectric are average values in the sense indicated, and that

the results that we have deduced are valid if this is understood.

Potential due to the Displaced Electrons.

We have seen that in the presence of an electric field the electrons

are displaced, the positive in the direction ofthe field and the negative

in the opposite direction. We shall see that the displacement thus

produced is equivalent, for each electron, to the creation of a doublet

of moment (i = es, where e is the charge and s the displacement,

of that electron. This doublet will contribute to the potential at

7\ /I \

a distant point P an amount t~ ^ []> ^^^ i^ there are v such

doublets per unit volume the total potential to which they will

give rise at the point P will be

47rj jj ^^ ds \rl

In general the different electrons in the atom will be variously

situated so that they will not all undergo the same displacement

s in a given electric field. We may divide them up into classes,

all the electrons in a class being characterised by a given value of

s for a given field. Suppose there are n such classes and let Vp,

fip and Sp denote the values of v, fi, s for the electrons of the pth.

class. Then it is clear that

'-""--TJii^'^'kQ)"^
<!*>

We shall now consider the relation between the moment /Ap of

the doublets and the electric field which produces them. The

exact form of the relation between the restoring force and the

displacement will depend on the arrangement of the electrons in

the atom. At present our knowledge of this arrangement is very

limited but, in any event, the restoring force must be a function of

the displacement, which vanishes when the displacement is zero

and is opposite in sign to the displacement to which it corresponds.

5—2
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It follows from Taylor's Theorem that for small displacements the

restoring force must be proportional to some odd power of the

displacement ; and since the frequency of the natural vibrations of

bodies, as exemplified by their optical properties, is independent of

the amplitude, it is natural to suppose that this power is the first.

We shall assume, therefore, that when an electron of the pth class

is displaced a small distance Sp the restoring force is equal to

+ — Sp, where Xj, is a positive quantity which is constant and

characteristic of this class of electrons. When the state of equi-

librium is attained, the pull of the external electric field on the

electron is balanced by the restoring force. The a; component of

dV
the force on the electron is — e« ;r— , where V is the actual part of

the potential at the electron whose charge is Cp which arises from

the presence of the external field. If Xp is the x component of Sp

then, provided the reaction to the displacement is independent of

its direction in space, the a; component of the restoring force

measured in the positive direction of x is —r-Xp and the equi-

librium value of this displacement is

a!p = -\ep^ (1.5).

Now a moment's consideration shows that when a charge Cp is dis-

placed a distance Xp the electrical effect is exactly the same as

that which is produced by the creation of a doublet whose moment
is BpXp. For the displaced system is absolutely identical with that

which is obtained when a doublet consisting of charges + e^ at a

distance Xp apart is superposed on the original system, in such

a way that Xp coincides with the displacement a'p and the charge —ep

coincides with the original charge +ep. Thus the displacement (15)

is equivalent to the creation of a doublet whose moment is

dV
epXp = -\pep'^ (16).

In the absence of an electric field the medium is unpolarized

and the potential due to the distribution of charges fonning the

atomic systems is zero. Thus the potential Vp due to the polarized

medium is that which arises fi-om the totality of the doublets which

correspond to (16).
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From equation (5) for the potential due to a single doublet we

see that ^Vp, the part of Vp which arises from the doublet the x

component of whose moment is given by (16), is

=_^^»PJ: A(l) +3ZA (1) +fA (1)1
47r [dXpdXpXr/ oypdyp\r/ 0ZpdZp\rJ)

Now in addition to being made up of electrons the matter with

which we are dealing possesses a coarser type of structure which

we may term molecular. Each unit of molecular structure, which

we may refer to as a molecule without necessarily thereby identi-

fying it with the more definite chemical molecule, is characterized

by the fact that, referred to its axes of symmetry, similarly situated

electrons satisfy identical structural conditions. In considering a

structure of this kind it is clearly absurd to endow the electrons,

as we have done, with the property of suffering a hypothetical

restoring force which, for a given displacement, is independent of

the direction of that displacement in space. As we are confining

ourselves to the case of non-crystalline substances this difficulty

may be overcome by taking Sp = Xp, yp, Zp to be the average

displacement of all the electrons which belong to the class ^ in a

given small region and recollecting that all directions for the axes

of symmetry of the molecules are equally probable. Suppose that

each molecule contains n electrons, so that 'p has all the values

from 1 to n, then AFp the average contribution to Vp which arises

from a molecule at the point a, b, c is

AF,
47r p=i ^ ^ [dttp dap \?v dbp dbp \rj dcpdcp \rj}

'

If the dimensions of the element of volume dr are small com-

pared with r = {(x-ay + (y— by + (z — cf]^, where x, y, z are the

coordinates of P and if it, nevertheless, contains a large number of

molecules, the part dVp of Vp which arises from the element of

volume dr is clearly

dVp = v^VpdT

"^
" " " ^

'p \r) dbp dbp \rj dCp dcp \rj} '

idV d^ n\ . dV d

^TTpTi"'^''-^ \dap da
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where v is the number of molecules in unit volume. Thus

^^^(S)]dadhdc (17).
dv a

9cb

By comparison with equations (7) and (16) we find that the

components of the polarization P are

~ dV "
Pg.=-v 2 XpCp*^— = 1/ S epXp

i>=i

P, = -Z/ 2 XpBj

dbp p=i

= v z e„Zv

.(18)

= i;2
^P p=i

The polarization is thus equal to tlie sum of the moments of all

the equivalent doublets in unit volume. The dielectric coefficient

K is given by the relation

» dV dV"\

j^=i dop

Thus

da

.(19)

dVp^i

da

For crystalline media, \p will take different values for the different

directions a, b and c because the axes of the molecules are definitely

orientated in such substances.

dVNow if we average over a large number of molecules, -— under

the sign of summation in (19) does not become equal to the value of

dV

.

-r- in the same region. There are two reasons for this. The first

of these depends upon the definiteness of the arrangement of the

electrons in the molecule. The electron whose type we have

indicated by the suffix p is always subject, owing to the definite

structure of the molecule, to certain geometrical relationships with

"the other electrons in the same molecule. This fact is not taken

The second reason is

— dV
account of in the definition of V and of -?.—

.

da

independent of the arrangement of the electrons within the

molecule and is caused by the molecular rather than by the
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electronic structure of matter. The nature of this second factor

can be most readily brought out by considering the dielectric

properties of an ideal kind of matter whose imaginary molecules

are so simply constituted that the first factor does not occur. We
shall therefore consider the case of a substance whose molecules

are monatomic and whose atoms give rise only to a single doublet

each, under the influence of the electric field.

Case of the Ideal Simple Substance.

We suppose each molecule of the substance to consist of a

single atom, and that, under the influence of the external field, each

atom develops a single doublet placed at its centre. The forces

acting on one of the electrons whose displacement gives rise to this

doublet consist of

(1) the restoring force called into play by its displacement,

(2) the force arising firom the charges in the field, including

the doublets of the polarized medium not situated in its immediate

neighbourhood,

(3) the force arising from the doublets in the immediate

neighbourhood of the atom.

When equilibrium is established

(l) = (2) + (3).

It is clear fi-om our discussion of the electric intensity in dielectric

dV
media that (2) is equal to the electric intensity E = — ^ . It

remains to discover the nature of (3). About the doublet under

consideration as centre describe a sphere whose radius is so

dV
small that the value of -^ does not vary appreciably in a distance

comparable with it. At the same time the sphere must be big

enough to contain a large number of molecules. The force (3) will

be equal to the force exerted by the doublets in this sphere on the

electron under consideration. This will only be true provided the

dimensions of the sphere are within the assigned limits ; otherwise

this force will not be independent of the radius of the sphere.

To calculate the magnitude of (3) we suppose the spherical

portion of the medium to be removed. The doublet now lies at
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the centre of a small spherical cavity. On account of this, and

owing to the fact that the doublets behave on the average like

the equivalent polarization P, the doublet at the centre will be

acted on by a force, additional to E, whose amount is determined

by the equivalent polarization charge on the walls of the cavity.

This is equal to — P cos 6 per unit area at any point, on the surface

of the sphere, the radius to which makes an angle d with the

direction of P. The resultant force due to the whole distribution

over the spherical surface is thus / / j -^ cos' ddS, where the integral

extends over the surface of the sphere whose radius is r. This is

equal to ^Pe and is independent of the radius of the sphere.

The remaining part of (3) consists of the force which would be

caused by the doublets which we have removed, if they had not

been removed. This will depend very much on the geometrical

arrangement of the atoms among one another. In certain par-

ticular cases this force vanishes. A doublet situated at a point

whose coordinates are x, y, z, with respect to the centre as origin,

and whose moment has components equal to /Xj,, /^, /*^, will give rise

to a force at the centre, whose x component is

/Xj; Sa?^ — 7'*
ixy ^xy fi2 Sxz

4nr r* 47r r* 47r r*
*

where r^ = ai^ + y^ + z\

If the atoms are arranged fortuitously so that any one position

in the sphere is as likely as another the mean values xy = xz =
and

3a;' -r^ _ 3y'-r' _ Sz^-r'
«J> ifA Y^

^ 3(ir' + y'-t-g')-3r' ^~
3?-' ~ '

It follows that the force arising from the doublets which we
have removed out of the cavity vanishes on the average, if the

atoms are arranged fortuitously. The same is true if they are

arranged in regular ctibical order*. It follows, in either case, if

the atoms have the simple constitution we have imagined, that the

* H. A. Lorentz, Theory of Electrons, p. 306,
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force (3) = ^Pe. When the molecules have a less symmetrical

distribution, the additional force arising from the molecules which

we took out of the spherical cavity will still be proportional to the

polarization P, so that we can represent the more complex cases if

we replace the factor ^ by an unknown factor a depending on the

configuration of the molecules.

Returning to the more symmetrical distribution, we see that

the total force acting on the electron at the centre of the atom

under consideration is, on the average.

'e^^^.= {E + iP)e (20),

so that comparing with formulae (16), (18) and (19), since n= 1,

vXe'{E + ^P) = P=(k-1)E

^=i"-^^. (^1)'

^.hence ^2 =^ (^^>-

If we apply this formula to the case of a gas, we see that the

only one of the quantities on the right hand side which varies

with the density of the gas is v, the number of molecules per cubic

centimetre. This is proportional to the density, so that for a gas

K — 1
^ should be proportional to the density. The results of ex-

periments are in agreement with this formula within the limits of

experimental error, although the experimental measurements of

the dielectric constants of gases are not very exact.

When we come to consider the phenomena of refraction and

dispersion of light, we shall see that a very similar formula, in

which K is replaced by n^, connecting the refractive index n with

the density, can be developed along similar lines. It seems

advisable to postpone the detailed discussion of the experimental

evidence for and against these formulae until the optical phenomena

are considered, as the evidence will then be much more complete.

We shall now return to consider the first of the two reasons
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dV

.

dV
why the average value of z— is not equal to -^ . This one depends

on the complexity of the atomic structure itself and not on the

mere fact that matter possesses an atomic constitution. The
nature of this factor can best be realized by considering a very

exaggerated case. Suppose an atom to contain a very large

number of electrons all very loosely held. If such an atom is

placed in an electric field it will behave like a conductor of the

same size and shape ; so that there will be no field acting on the

electrons in the interior. The electrons towards the outside of the

atom will move so as to shield those inside fi'om the action of the

external electric force. The same effect will also occur to a smaller

extent even when the number of electrons is comparatively small

and their displacements are inconsiderable. It is clear that the

average value of the force throughout a small volume of the

material is different fi'om the average value taken over a particular

type of electron.

The force acting on an electron inside a molecule will arise

partly from the charges outside the molecule and partly fi'om the

doublets inside the molecule itself. We can regard each molecule

as equivalent to a simple atom possessing the same average electric

moment, so that the force acting on an electron inside a molecule

arising from external causes will he e(E + aP) : where the constant

a will depend on the geometrical configuration of the molecules,

taking the value ^ when the distribution is a fortuitous one as

in a fluid. The way in which the second part of the force on the

internal electron depends upon the external field may be realized

by considering the conditions which are necessary in order to

change the displacements of all the electrons in a given ratio.

The displacements are proportional to the forces acting, so that

this means that the force acting on an electron in the field will be

changed in the same ratio at every point. Now the force arising

from a given doublet is proportional to the moment of that doublet,

so that the part ot the force acting on the given electron which

arises firom other doublets in the same atom will be altered in the

same ratio as the total force at any point in the field. It follows

that the difference between this and the total force, which is the

part of the force which is of external origin, must be changed in

the same ratio. It follows fi-om these considerations that however
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the external field may change, the force acting on any assigned

electron will always be changed in the same proportion. This

result may be represented by putting

-.ep''^ = Lpep{E + aP) (23),

where Lp is a constant characteristic of the ^th class of electrons.

Comparing with p. 73 we see that

J3= n

V X \pLpep'{E + aP) = P = (K-l)E,

so that P =
, ^^Y^'f .

E ; (24)

and
« — 1 _ "XvXpLpBp^

yLp

1 /I - aSN

1 — a 1 — aXv XpLpCp
K T

a

• \l-aX'^ a\l-at))

= (ivl!\pLpe^ (25).

\p, Lp and e^ may vary for different electrons in the same molecule

but they will have the same value for corresponding electrons in

different molecules of the same substance. The expression on the

right hand side may therefore be represented by a summation over

each molecule multiplied by the number of molecules of the sub-

stance in unit volume. We therefore find that

""^
=hp (26),1-a

where A; is a constant and p is the density of the substance.

We shall find that the coefficients \p have an important

significance when we come to consider the phenomenon of optical

dispersion. The investigation leading up to formula (25) will not

apply to optical problems without modification, as the displacement

of the electrons in such cases is not necessarily always in phase

with the corresponding " force."

When we are dealing merely with the electrostatic behaviour

of dielectrics we can afford to neglect the complications just alluded
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to, which arise from the mode of arrangement of the electrons in

the molecules. It is clear fit)m the considerations which have been

brought forward that instead of (16) we might have put

ep^p = -apV(|^-aP,) (27),

where Oj, is a new constant, and thus obtained

K-l— = av
,
- « p=i
^—^= av 2 «rpep» (28),

so that 2 a-p€p*= 2 "SpLpCp^
p=i p=i

However, the relation between Op and the natural frequencies of

the material is not an obvious one without further investigation.

This point is of importance in dealing with the corresponding

optical phenomena.



CHAPTER V

MAGNETISM

We are not yet in a position to enter into the theory of mag-

netism in any fundamental way. We shall have to defer that

until we have considered the phenomena which are grouped under

the head of electromagnetism. It seems desirable, however, at

this stage to enumerate some of the elementary facts and prin-

ciples of magnetostatics, and to consider to what extent they

resemble or differ from the corresponding phenomena of electro-

statics.

One of the most striking of magnetic phenomena, and the

first to be discovered, is the occurrence of intrinsic magnetization.

A body exhibiting this phenomenon, usually called a permanent

magnet, possesses polar properties. When two magnets are com-

pared it is found that the ends A, A' of the first always exert forces

of a certain kind on the ends B, B' of the second. Thus if A and

B repel one another so do J.' and B', whereas A' attracts B and A
attracts B'. These relations between the two magnets are in fact

the same as those between two similar portions of matter endowed

with electric polarization.

Although this formal resemblance between magnetization and

electrification exists, it is to be borne in mind that there is no

static reaction between a magnet and an electric charge.

It is clear that the behaviour of magnets enables us to speak

of the magnetism at the one end as positive, and that at the other

end as negative. And here, at the outset, we meet one of the

most striking differences between magnetization and electrification.

It is impossible to separate the magnetic charges from one another.

Every magnet carries equal and opposite magnetic charges. There

is no force acting between two small magnets which varies inversely



78 MAGNETISM

as the square of their distance apart except gravitational attrac-

tion. Thus a magnet is a body which is intrinsically polarized.

Although polarization is a common phenomenon in electro-

statics, and occurs in every dielectric under the action of an
external electric field, intrinsic polarization is comparatively un-

important. It probably occurs in crystals ; where it appears to be

required to explain the production of electrified surfaces by fracture

and the phenomena of pyroelectricity. It is possible, however, that

intrinsic dielectric polarization is commoner than is generally

supposed. For unless a substance is a good insulator, it will

always cover itself with a distribution of electric charge which

is just such as is required to annul the external action of any

intrinsic polarization it may possess. In all but a few cases, there-

fore, the existence of such a property would be difficult to

detect.

On account of the fact that we are unable to separate the

opposite magnetic charges, the investigation of their mutual forces

is not so simple, in theory, as the corresponding electrical problem.

In a very elaborate investigation Gauss examined the interaction

between two magnets and showed that the forces were such as

would arise if each element of magnetic charge repelled each like,

and attracted each unlike, element with a force proportional to

the product of the charges on each element, and inversely as the

squares of their distances apart. This result was established with

considerable accuracy.

We are now in a position to define our unit of magnetism.

Consistently with our definition of the unit of electric charge we
shall define it as that charge which repels an equal and similar

charge at unit distance from it with a force equal to l/47r dynes.

To avoid the difficulty which is created by the inseparability of

the magnetic charges fi'om the opposite poles we may suppose

that those between which the forces are measured are at the

ends of infinitely long uniformly polarized magnets. The other

ends will then be so far away that they will exert no influence.

Magnetic intensity is defined, in an analogous way to electric

intensity, as the force exerted on a unit pole at any point of the

field. It is convenient to use the term magnetic force rather than

magnetic intensity in order to avoid confusion with intensity of
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magnetization, which is the name usually given to the quantity in

magnetism which corresponds with intensity of polarization in

electrostatics. The magnetic potential at a point is the work

done in bringing a unit pole from a point at an infinite distance

up to the point in question.

Just as in electrostatics we have to deal with dielectric media,

so in magnetism there are media which, without being themselves

permanently magnetized, have the power of modifying the distri-

bution of magnetic force in their neighbourhoods. There is there-

fore a vector called magnetic induction analogous to the electric

induction D. We shall denote the magnetic induction by the

symbol B and its components by B^, By, B^. The coefficient

which corresponds to the dielectric coefficient k we shall call the

permeability and denote by fi.

The behaviour of different media towards magnetic force

furnishes more variety than the corresponding electrostatic phe-

nomena. For a few substances jx may have very large values, and

usually these are the substances which are capable of being per-

manently magnetized. Since iron is the typical example of this

class of substances they are often called ferromagnetic. For all

other substances jx does not differ greatly from unity, on the electro-

magnetic system of measurement. It is found that, in addition

to the substances for which fx is greater than unity, and whose

behaviour is analogous to that of dielectrics, there is another large

class for which fi is less than unity. The former are said to be

paramagnetic and the latter diamagnetic. It is very probable

that paramagnetism and diamagnetism arise from the operation of

separate causes. We shall, however, postpone the consideration of

the physical causes which underlie the varied magnetic behaviour

of substances until a later chapter. At present we are concerned

with the formal relationship between magnetism and electrostatics.

If ff = Hx, Hy, Hz is the magnetic force it follows from the

foregoing considerations, combined with the results of preceding

chapters, that the following propositions are true for magnetism

:

(1) The force between two poles of strengths m, m embedded
in a medium of permeability /x at a distance r apart is

F=^^ (1).
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(2) The field of magnetic intensity can be mapped out by
means of lines of force whose equations are

dx

Hx Hy Hz H
dy _dz _ ds

.(2).

(3) The magnetic potential fl at any point is

n = -j{lH^ + mHy + nH,)ds = -l{H^dx + Hydy+Hzdz)...(S).

(4) The equation satisfied by fl in firee space is

Vm = (4).

(5) If dS is an element of any closed surface not intersecting

a magnetic medium, that is to say, one which lies entirely in a

medium of permeability unity, and if I, m, n are the direction

cosines of the normal to this element, then

jj(lH^ + mHy + nH,)dS

taken over the whole of the closed surface is equal to zero. This

is the magnetic analogue of Gauss's Theorem for the fi*ee aether,

and is true since each magnetic substance contains equal and

opposite magnetic charges. It follows that in fi:ee space the

magnetic intensity H is a. solenoidal vector.

(6) The energy of a system of magnets may be obtained, as

in the case of the system of electric charges, by bringing up equal

fractions of the final system, one at a time, from a state of infinite

dissemination. As we do not wish to contemplate the existence of

separate magnetic charges it is desirable to regard the disseminated

elements as magnets and not charges. This introduces the in-

tensity of magnetization {Ig, ly, Iz) instead of the density of

charges into the final expressions. In this way the energy of

a system of magnets is found to be

^=lllK''f.-'''S^'''i)'^'y'^ (^)'

the integral being taken throughout the magnetized matter. It

follows from this expression, by a calculation similar to that carried

out in the similar electrostatic case, that the energy per unit

volume of the field in the fi-ee aether is

^H^ (6).

The points involved here are discussed at length by Jeans,

Electricity and Magnetism, pp. 384—388.
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(7) The magnetic forces can be represented as arising from

the following system of Maxwell stresses in the aether;

1 (/aa\=^ /dny /an\^)v

^^^~2\\dy) \dz) \dx)

qzz
= 1 )Y?^V _ (^X - /— Y'l

{(2\\dzJ dx j

_anan

an an
dz dx

anaa
dy dz

qxz-qzx-
^^ aa;

%z — 9.zy
~

.(7).

These are equivalent to a tension \H'' per unit area along the

lines of force and an equal pressure at right angles.

(8) The potential at a point, at distance r, due to a small

magnet at a, h, c whose moment is fi = fix, fiy, fi^ is

n = /*

\rj 47r
(

a /I

''^d^[r^-^^y

d a
© + fJ'Z

'('-
.(8).

4>7rds\rJ 47r I'^'^aa VW ' '^'>dh\r) ' '^'dc\rj

(9) If / = Ix, ly, Tz is the intensity of magnetization (not

magnetic intensity) the potential to which it gives rise at a point

at distance r= {{x- ay + (y- bf + (z - cf]^ is

" = rJ#.a-„(^a.e + h
dc[rj\

dadbdc,...(9),
dc\rj}

I being the value at the point a, b, c.

(10) The potential due to a uniformly magnetized shell at a

point at which it subtends a solid angle co is

4>Q)a =
4nr

(10).

where
<f)

is the strength, or magnetic moment per unit area, of the

shell.

(11) The potential energy of the shell in the magnetic field is

''=lhfn'^ (")

taken over one surface of the shelL

R. E. T. 6
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(12) The behaviour of the magnetic induction calls for rather

more detailed consideration. From the electronic standpoint it is

undesirable to define the induction as a vector flowing out in

tubes from the magnetic charges. The reason for this, as will be

clearer later, is that the conception of a magnetic charge is more

artificial than that of an electric charge. We are on safer ground if

we define the magnetic induction as the force in a flat cavity of the

kind considered in Chapter iv, since we know that, when magnetized

substances are fractured, opposite polarities develop on the new

surfaces. It is clear from the reasoning in Chapter iv that the

two modes of defining the induction are consistent with each

other. It would be unfortunate were it otherwise, as we have to

make use of the conception of a magnetic pole as the foundation

of all our magnetic measurements.

It is clear that the whole of the theorems which we have

grouped under the heading of Poisson's Theory of polarized media

may be transferred bodily to magnetism if we replace polarization

by magnetization. In fact the theory was originally developed by

Poisson as a theory of magnetostatics. It follows that when the

magnetization is uniform there are surface charges but no volume

charges, and that in any event the algebraic sum of all the charges

of any distribution of magnetization is zero. Also if H, B and /

are the magnetic force, the magnetic induction and the intensity

of magnetization at any point of any medium,

B=^H+I = fiH (12),

and I = (fx-1)H (13).

These are vector equations and are each equivalent to three

equations between the corresponding components of the vectors.

Let us now describe any closed surface 8 intersecting the

magnetic media B, C, etc. in D, E, etc. Let us cut away an

infinitesimal layer of each of the magnetic media at both sides of

the intersection. Then the surface lies entirely in the medium

whose permeability is unity, so that if F^t Fy, Fg are the com-

ponents of the force on a unit magnetic pole at any point of

the surface

//
{lF^^-mFy + nFg)dS = 0,

since the total magnetic charge inside the surface is zero (Pro-

position (5)). But since the cavities are cut parallel to the



MAGNETISM 83

surface, Fx, Fy, Fz are actually the components of the induction

Bx, By, Bg. It follows that over any closed surface in space

\lBx + mBy + nBz) dS = (14)./I

It follows that
dBx

dx

Fig. 16.

^

^By
^

dBz

dy dz
= .(15)

and the magnetic induction B is solenoidal everywhere. The
corresponding result only holds for the electric induction in regions

which do not contain any electric charges. Where there are "true"

charges of volume density p

^_B. _^_dD^ _^dD,

dx By dz
= p.

Force on a Magnetic Shell.

We have seen that the potential energy of a uniform magnetic

shell of strength <^ is — N(}>, where N is the number of lines of

magnetic force threading it in the positive direction. This result

enables us to calculate the force on the shell in the field, and we
shall see that it may be represented as so much per unit length of

the boundary of the shell. Let the shell be displaced so that N
becomes N + BN. The diminution of the potential energy due to

the displacement will be (f)8]SF, and this will be equal to the work

done on the shell by the magnetic forces. The value of SN is

easily calculated. Consider the prismatic figure, bounded by the

original and displaced positions of the shell, which is traced out by

6—2
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the edge of the shell during the displacement. We shall suppose

the displacement to be small and rectilinetir ; let us denote it by Bx.

Since there are no magnetic charges inside this figure the total

flux of force over its boundary is zero. Hence

N+8N-N + cos nH sin xsdsBa; = 0.

Fig. 17.

where H is the magnetic force at any point s of the boundary,

xs is the angle between the direction of the displacement 8x and

the element ds of the boundary, and nH is the angle between the

direction of H and the normal to the element of area dsSx sin xs.

f ^ . ^
BN = — 8x \H cos nH sin xsds.Thus

But if X is the force acting on the whole shell in the direction 8x

X8x = <f)8N,

f ^ . ^
and X = —

<f>
\H cos nH sm xsds.

Thus the force X is equivalent to a set of forces of amount
A. , A

— ^H cos nH sm xs

per unit length of the edge of the shell. Since x is arbitrary this

gives the force in any direction. To find the direction of the

resultant force we notice that when x and s are in the same

direction sin ars = 0, so that the resultant force is at right angles
A

to ds. It is also normal to H, since it vanishes when nH = 7r/2.

It is therefore along the common normal to H and ds. To find

the magnitude of this resultant let us suppose that the displace-
A

ment 8a; is in the direction of this common normal Then xs = 7r/2
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A A A. ,

and nH = 7r/2 — Hs, where Hs is the angle between H and ds.

Thus the force on a length ds of the edge of the shell is

— <f)H sm Hsds,

and is at right angles both to H and ds. In vector notation this

result may be written more briefly as

-<f>[H.ds].

If the force H arises from a single magnetic charge m placed

at a point P distant r from ds, then H acts along r and is equal to

T—-. Thus the force exerted by m on an element ds of the

(bm , ^
boundary of the shell is equal to —~—^smi^sds. This must be

equal and opposite to the force exerted by the element of the shell

on m. Hence the force on the pole is equivalent to a series of forces of

amount j—^ sin rsds arising from each element ds of the boundary

of the shell. The magnetic intensity at F due to each element ds

of the boundary is thus

7-^ sm rsd^,

and is perpendicular to both r and ds.

These results have important applications in the theory of

electromagnetism.



CHAPTER VI

ELECTROMAGNETISM

The Magnetic Potential due to an Electric Current.

In 1820 Oersted showed that an electric current gave rise to

forces acting on the poles of a magnet placed in its neighbour-

hood. Thus an electric current gives rise to a distribution of

magnetic intensity. Since the difference in the magnetic potential

between two points is the work done in taking a unit pole from

one point to the other, it follows that the magnetic intensity is

the space derivative of the magnetic potential. The potential is

essentially a scalar quantity. It is clear therefore that the mag-

netic potential at any point due to an electric current is a quantity

which possesses magnitude but not direction, and which depends

only on the position of the point relative to the circuit canying

the current and on the magnitude of the current. If we can deter-

mine the potential at every point of space arising from the electric

current, we can deduce from it the distribution of magnetic

intensity. We shall now consider how the magnetic potential may
be calculated.

We shall base our demonstration on two empirical generaliza-

tions which are the result of experiment. They are :

—

(1) That the magnetic force arising from an electric current

flowing round a given circuit is proportional to the magnitude

of the current.

(2) That any circuit carrying a given current can be replaced

by one which carries the same current and continually zig-zags

across it to a small distance on each side, without altering the

magnetic force to which it gives rise.

The first generalization was established by the experiments of

Faraday and the second by those of Ampere. It follows from (1)
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that two equal and opposite currents flowing in the same circuit

or in the same branch of a circuit give rise to no magnetic force.

This must be the case since the total current is then zero.

Let us take a large number of pairs of points on the

boundary of any circuit and join each pair by a line. Suppose

that along each of the lines there are two opposite currents

flowing, each equal in magnitude to that flowing round the

boundary. The lines we have drawn have divided the entire

circuit into a series of small areas bounded by the lines. Round
each small area there will be a current flowing equal in magni-

tude to the original current and circulating in the same sense

about the normal to the circuit. It follows that the magnetic

effect of any circuit is the same as that of any number of small

circuits, bounded by the same contour, into which it may be

completely subdivided, provided each circuit carries the same

current as the original circuit, and that all the currents flow in the

same sense about the normal to the imaginary surface in which

they lie. The potential due to the whole circuit must therefore

be equal to the sum of the potentials due to the constituent

circuits.

We shall now show that the potential due to any circuit lying

in a plane is zero at every point

in its own plane. First consider

the potential at the point due to

thecircuitJ.5Ci)(Fig. 18)bounded

by arcs of circles whose centres are

at 0, and by radii passing through

0. Since all the forces in the

field are reversed when all the

currents are reversed, it follows

that the potential at every point

will reverse when all the currents

reverse. The potential at the point will therefore reverse if the

current ABCD is reversed in direction. But the direction of the

current can be reversed by simply rotating the circuit ABCD
through the angle tt about the line of symmetry through lying

in the plane of the paper. But since potential has only magnitude

and not direction, there is nothing which enables the potential at

the point 0, as it were, to tell which way up the circuit ABCD

Fig. 18.
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lies. The potential must therefore have the same value after it

is reversed as before. Its value must therefore be zero.

Now if ABCD is replaced by a coplanar circuit of atiy shape,

by drawing a large number of radii from it can be replaced by

equivalent circuits bounded by radii and its original contour. The

contour can be replaced by a series of concentric arcs since the

original circuit will give rise to the same field if it is caused to

zig-zag about its original path. Each of these constituent circuits

gives rise to zero potential at the point 0, so that the whole circuit

gives rise to zero potential at 0.

Now consider anycircuitABOD(Fig. 1 9)lying in space. Describe

the cone on which the circuit lies and whose apex is at 0. Also

describe a sphere of unit radius about 0. Let this cut the cone in

the curve EFOH. Let i be the current round ABCD. From
draw a series of lines OEA, OFB, etc. intersecting the curves in

E, F, A, B, etc. Imagine equal and opposite currents i to flow

Fig. 19.

along each of these lines. Suppose also that a current i flows

around the curve GFEH in the direction firom F to E. This is

•the only new current that has been added; since the equal and

opposite currents along FB, etc. cancel each other. The system

now contemplated resolves itself into a series of currents i round

circuits such as ABFE. Since lies in the plane of each of these

circuits the potential at due to the system of currents is zero.

The potential at due to i round F—^EHG is thus equal and

opposite to that round A—*BCD. The potential due to i round
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A—>BCD is therefore the same as that due to the same current

round E—^FGH. Now let us fill up the whole of the surface, cut

off from the sphere of unit radius by the curve EFGH, with equal

contiguous and superposable small areas. Imagine a current

equal to i to flow round the boundary of each area. This will

leave the original current i flowing round the boundary, and two

equal and opposite currents along every line inside it. The

potential due to the original circuit will therefore be equal to the

potential due to the sum of the small circuits. Since all the

small circuits are equal and have the same geometrical relation to

0, the potential due to each one of them must be the same. It

must be proportional to the current i since the force due to any

system of currents changes in the same ratio as the currents when

all the currents are changed in equal proportion. The argument

is independent of the shape of the small circuits, and the only

other condition to be satisfied is that the potential due to the

whole circuit is the sum of those due to its parts. It follows that

the geometrical factor to which the potential of each constituent

circuit is proportional is Sw, the solid angle it subtends at 0.

We therefore conclude that the potential due to each elementary

circuit is Aihw, where J. is a constant which depends neither on

the magnitude of the current nor on the geometry of the circuit.

It follows that when the current subtends a finite solid angle <»

the potential to which it gives rise is Aiw. This is universally

true since we have proved that all circuits carrying equal currents

and lying on the same cone whose apex is at 0, give rise to equal

potentials at 0. The magnitude of the constant A depends on

the unit in which we measure the current. The usual electro-

magnetic unit of current is defined by making .4 = 1. In the

units used in this book A = (47rc)~^, where c is the velocity of

light. (See later, p. 112.)

In our study of the properties of polarized shells we saw that

the potential of a shell of strength cf) was equal to <^a)/47r, where a
was the solid angle subtended by the shell at the point where the

potential was measured. An electric current is thus equivalent in

its magnetic action to a magnetic shell whose strength is equal to

4i7rA times the intensity of the current.

There is an important difference between the field due to an

electric current and that arising from the equivalent magnetic
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shell. In the latter case the work clone in taking a unit pole

round a closed curve which passes once through the shell is zero,

since the work done against the forces outside the shell is just

equal to the work done by the forces inside the shell. In the

case of the electric current there is nothing which fixes the

position of the equivalent shell in space except the current which

forms its boundary. It follows that there cannot be any region in

which the force has the peculiar distribution characteristic of the

interior of an actual magnetic shell. The force due to a current

will therefore be continuous everywhere, and the work done in

going round any closed path which embraces the current once will

be equal to AnrAi. If the path followed by the unit pole circulates

round the current m times in the positive sense and n times in

the negative sense, the work done on it will be 4nrA(m — n)i.

Thus the magnetic potential due to a current is determined not

solely by the relative position of the current and the point, but

also by the number of times the path of the point has previously

encircled the current circuit. It is what is known as a multiple-

valued function of space. The complete expression for the mag-

netic potential at any point due to a current may be written

Ai [47r (w — n) + &>].

The force due to a current does not, of course, depend on w orn

but only on co, so that it will be single-valued and will depend

only on the intensity and geometrical distribution of the current

and the position of the circuit relative to the point.

The foregoing result that the work done in taking a unit

magnetic pole once round any closed path embracing a current is

proportional to the current embraced is not confined to linear

currents, but is true if the cun-ents occupy a finite volume. This

is obvious if we divide up the whole current i into linear con-

stituents Si bounded by tubes of flow. Then the work done in

taking a unit pole round a path enclosing one of the constituents

will be 4nrABi and if the path encloses the whole cuirent i it

will be

4nrA S Si = 4<TrA i (1).

The consideration of non-linear currents enables us to express

this result in rather dilBFerent analytical form. Consider any

surface S in space, traversed by currents and bounded by a closed
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contour s. If the current is flowing in any specified direction at

any point, the amount of electricity transported across unit area

perpendicular to that direction in unit time is called the current

density at that point. It is a vector quantity; let us denote it

by ^'. Let H=(Hx, Hy, Hz) be the magnetic intensity at any

point. Then the work done in taking a unit magnetic pole around

the boundary s will be

=
I
{H^dx + Hydy + H^dz).

J s

What is the total current i across the area SI If ^ is the angle

between the normal to an element dS of the surface, and j the

resultant current density at that element, the current 8i across the

element is jxdS cos 6. But j cos d=jn the component of the

current density normal to the element. The total current i through

the entire area may therefore be written * = I jn<iS' Hence

UE^dx + Hydrj + H^dz) = ^iTA{[jndS (2).

Before discussing this equation further we shall prove an

important geometrical theorem, due to Stokes, connecting the line

and surface integrals of vector point functions.

Stokes's Theorem.

Let R be any vector point function which is continuous

throughout the region considered. Consider the value of the

line integral /= I jK cos Rsds taken along any path PTQ from P
J p

to Q. Rs is the angle between jR and the tangent at a point of

the path. Let us find the variation of the integral when the

path of integration is changed by an infinitesimal amount, so as

to lie along the curve PUQ. PUQ is only slightly displaced

from PI'Q, and the terminal points P and Q are not varied.

Then
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BI = BJ R cos nsds

if X, Y and Z are the components of R, since

Pig. 20.

Let us integrate / X ^ (8x) ds by parts. The integrated part

and the unintegrated part is / {^^ "^j da.

IS

Xhx

9s 8a; §5 By ds dz ds'

/>|,(a.)*=|-H:-/>fafMI-il)^'-
We obtain precisely similar expressions for

F/V|(8y)&and/Jzi(8.)<fe.
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Now 8X = ^:— 8x + ^:— 8y + -7r~ Bz, so that
dx oy oz

^ -jp. 9a; _ dX dx ^ ^
dX dx » dX dx

^
ds dx ds dy ds " dz ds '

• dv oz
and similar expressions are obtained for SF^ and 8Z ~ .

Collecting together all the terms which contain Sa; as a factor, and

similarly those which contain Sy and bz, we have

BI = X8x+YBy + Z8z\
\p

g {^_^^,^J^^J/,^dz_^_^d^_dYdy_dZdz]
[dx ds By ds dz ds dx ds dx ds dx ds)-i:[

+ ^y{ }
+ s^|

I

da.

The terminal points P and Q are fixed, so that 8x, By and 8z are

zero at P and Q. Thus the integrated part vanishes, and arranging

the terms rather differently we get

:

To find the value of Bxdy — Bydx consider the parallelogram of

which ds in its original and displaced positions forms two opposite

sides. The angular points of this parallelogram are defined by

s, s+ ds, Si{=s + 8s) and Si+dsi{= s + 8s + ds). Let ABDG
(Fig. 21) be the projection of this parallelogram on the plane

of xOy. AB corresponds to ds and CD to ds^. Draw DK, BH
parallel to Oy and BK, AH parallel to Ox, OF parallel to AH, GO
perpendicular to AH, and produce DB to meet AH in E. Then

DK = By, BK = Bx, BH ^ dy and AH = dx.

Also the parallelogram

ABDG = AEFG = AExGG = CGx {AH - EH)

= Bydx -GG.EH = Bydx -BK.BH= Bydx - Bxdy.

Now if dS is the area of the original parallelogram, the parallelo-

gram ABDG = — dS cos nz, where nz is the angle between the
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normal to the original parallelogram dS and the axis of z, the

normal being drawn downwards. So that

Bydx — hxdy = — dS cos nz.

Similarly Bzdy — Bydz = — dS cos nx, and so on. Thus

jp\\dy dz
joosnx+\^-^-~jcosny

-^ j cos nzidS.

Next consider any closed contour PRQ8 (Fig. 20) and let P and

Q be any two points on it. From P to Q draw an indefinitely large

number of paths such as PTQ, PUQ an ipfinitesimal distance apart.

The difference between the value of the integral / taken along

PSQ and along PRQ will be the sum of the differences along the

infinitesimal paths. This is clear, since integration fi-om P to Q
and back again from Q to P along the same path adds nothing to

the integral. The difference between the integral along PSQ and

that along PRQ, starting at P and ending at Q in each case, is

equal to the same integral taken all round the circuit in the

direction PSQ ; since the value of / fi:om P to ^ along PRQ is

equal to — / taken fi-om Q through R to P.

Hence for the entire closed contour we have

I=jXdx-{-Ydy + Zdz

= S8/
r[{/dz dY\

,
fdX dZ\

+ (IJ-S)--^}^^-(^^'
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where the surface integral extends over any surface bounded by

the contour, and where the cosines are the direction cosines of the

normal to the surface at the point of integration. It will be

observed that the positive direction of the normal is towards that

side of the surface from which a right-handed screw would move

if it were turned in the same sense as that of the integration

round the contour.

Tlie First Law of Electrodynamics.

Let us apply Stokes's Theorem to the case in which R is the

magnetic intensity H whose components are H^y Hy, Hz. We
then have

/
{H^dx + Hydy + H^dz)

But we have seen that

I Hxdx + Hydy + H^dz = ^ttA
j

I j cos nj dS,

where j is the current density at any point of any surface bounded

by the contour and nj is the angle between the resultant cuiTent

density and the normal to the surface at the point. Now

j COS nj = jx cos nx + jy cos ny + jz cos nz,

where cos nx, etc. are the direction cosines of the normal. It

follows that

dH, dHy . ..\

dHx dHg . .

V (4)

dHy dHx .

everywhere.

These differential equations are the most general expression

of the distribution of the field of magnetic intensity due to a
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distribution of electric currents. They are one form of the first of

Maxwell's two famous electromagnetic equations. To distinguish

them fix)m the second equation we shall sometimes refer to them

as the statement of the First Law of Electrodjmamics.

Like many of the formulae with which we have already become

familiar, these three equations represent relations between com-

ponents and derivatives of vectors. We shall fi'equently find it

convenient to represent them by the abbreviated notation

rot H = ^ttAj,

where by rot J? we mean the vector whose components are the

quantities on the left hand side of equations (4), taken in succes-

sion. This equation is a vector equation, that is to say, it holds

independently for each of the components of rot H and j
respectively.

The Electric Curreni,

The electron theory regards the electric current which flows

along a wire as a convection current. It supposes that in a con-

ductor there are a number of charged particles which do not

execute small displacements about a position of equilibrium, as in

the case of those electrons which we considered when we were

discussing the behaviour of dielectric media, but which are able

to move fi*eely from one part of the conductor to another. In a

metallic conductor these particles are believed to be electrons and

are called " firee. electrons " to distinguish them fix)m the bound

electrons, which only • undergo small displacements from their

position of equilibrium when an electric field is made to act on

them. The free electrons in a metal are believed to be in much
the same condition as the molecules of a gas. When we come,

later on, to consider the evidence for this belief, we shall see that

it is very strong and that the resemblance is a very close one. In

the case of liquid electrolytes the charged particles are of atomic

or molecular dimensions, and in many cases of electric conduction

through gases this is the case also.

In all these cases the charged particles, of whatever natiu-e,

are believed to be moving about irregularly in all directions, even

when they are not subjected to the action of an electric field.

This motion does not cause any transportation of electricity since
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on the average, the particles are just as likely to be moving in any

one direction as in any other. The effect of an external electric

field is to superpose on the irregular motion a definite drift, so

that on the average the positively charged particles move in the

direction of the electric field, and the negatively charged particles

move in the opposite direction. In general there may be different

kinds of ions of one sign present. Suppose that in the unit of

volume there are Np positive ions of type p, that their average

velocity of drift under the applied field in the direction of the

field is Up, and that their charge is Ep. Let the corresponding

quantities for the negatively charged carriers be denoted by small

letters. The current density at any point will be the total amount

of positive electricity transported across unit area perpendicular to

the direction of the field at that point, in the positive direction,

plus the total amount of negative electricity transported in the

opposite direction. This is clearly

j='ZNpEpUp + 'ZnpepUp (5 ),

since Up is the volume of a cylinder whose axis is parallel to the

field, whose sectional area is unity and whose height is Up, the

velocity of drift of the particles under consideration. In the case

of solid and liquid conductors the N's and ^'s are independent of

the electric intensity whilst the U's are proportional to it, so that

the current in these cases obeys Ohm's Law. The same is true in

the case of very small currents in gases at moderate pressures.

In general, however, in the case of gases both the N's and the ^'s

may vary in a complicated way with the applied electromotive

force. It is for this reason that the relation between the electro-

motive force and the current in gaseous conduction is, generally

speaking, quite intricate.

The current whose properties we have been discussing is often

called the true current. There is another kind of electric current

called the displacement current, for the conception of which we are

indebted to the constructive imagination of Maxwell.

The Displacement Current.

Consider an electric circuit consisting of a battery A, a con-

denser B and a one-way switch G. When the key C is depressed,

a current flows through the wires from the battery into the plates

R. E. T. 7
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of the condenser B. This current is not, however, continuous all

the way round the circuit, in the same way that it would be if the

condenser were replaced by a wire, since there is no actual trans-

portation of electricity across the dielectric between the plates of

the condenser. Maxwell put forward the hypothesis that the

magnetic effect of such a circuit was identical with that arising

when the condenser is replaced by a suitable conductor, and there

is the same current flowing along the wires in the circuit. This

comes about owing to the existence, when the field is changing, of

what Maxwell called a displacement current in the dielectric.

The displacement current density at any point is equal to -y-

,

where D is the electric induction.

This value for the displacement current makes the current round

the circuit continuous. For if o- is the charge per unit area of the

plates of the condenser at any point, the current i in the wires is

equal ^ \\-ji dS, the integral being taken over a plate of the

condenser. But, if i) is the value of the induction, the displace-

ment current close to the plates is \\-^dS taken over the same

surface. We have seen that D = a; so that the displacement

current is equal to i and the current is continuous all round the

circuit.

This result may be proved to be quite general as follows

:

Consider any closed surface in space. By Gauss's Theorem

the charge e inside this surface is equal to

jj{lD^ + mDy+nD,)dS.

The current flowing into the surface is

But if jx, jy, jz are the components of the true current density

~ = - jj(ljx + mjy + n jz) dS.
de

Hence

Ii(i*f)"(>.*t)"{i*t)]'"-« »
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on
So that the vector *=i +^ is solenoidal everywhere. Like the

tubes of magnetic induction, the tubes of flow of the total current

are always closed regions of space. They have no free ends, unless

at infinity.

It would be very difficult to devise a direct experimental proof

of the magnetic effect of displacement currents. The best proof

of it is an inductive one. The hypothesis of displacement currents

forms the basis of the electromagnetic theory of light, and the

extraordinary way in which the requirements of this theory have

been fulfilled by experiment shows that it is built upon a solid

foundation.

It is often desirable to Consider the displacement current

density -r- as made up of two parts, (1) the aethereal displace-

ment current -7- and (2) the polarization current -3-. Since

D = E + P, ;i7- is always equal to the sum of the aethereal current

and the polarization current. On the electron theory, as is obvious

from the discussion in Chapter v, the polarization current corre-

sponds to an actual displacement of charged electrons, and is to

that extent very similar to the true current.

Convection Currents.

The kinds of electric currents which flow in wires, electrolytic

cells and so forth, and which are carried by extremely minute

particles, are not the only ones whose magnetic effects can be

detected. Rowland* showed in 1876 that an electrostatically

charged disc when made to revolve at a sufficiently high speed

affected a suspended magnet in the same way as a current flowing

round the disc. Effects of this kind, that is to say, effects

depending on the movement of electricity on a large scale, may
easily be summarized by means of a very simple formula. Let p

be the net volume density of the electrification at any point, and

let its velocity be given in magnitude and direction by V. Then

pV ia the current density of the electricity at the point in

• Ann. tier Fhys. vol. clviii. p. 87 (1876).

7—2
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question. This expression may be made to include not only cases

where the motion of a single charge or a small number of charges

is coBtemplated, but also those like the flow of electricity along a

wire in which the number of carriers is enormous. In such cases

we have to take the average value of p V, and it is quite clear that

this is equal to the magnitude of the true electric cun-ent as

specified on p. 97.

When it is necessary or advisable to distinguish between the

different kinds of electric current which may occur, we may write

equations (4) in the form

roti/=47r^(pF+^) (7).

Where we are dealing with material systems we shall require the

average, not the actual, values of these vectors just as in the

theory of the behaviour of dielectric media.

Induction of Currents.

In an electrostatic field the work done in taking a unit charge

round any closed path, to the point fi:om which it started, vanishes.

The electrostatic potential is a single-valued function of the space

coordinates, and the electromotive force roimd any closed circuit is

zero. This is no longer true in a region in which the magnetic

induction is changing. Faraday* showed that when the magnetic

field inside a closed conducting circuit was made to change, a

current was caused to flow round the circuit. He also showed that

the electromotive force round the circuit was equal to the rate of

diminution of the flux of induction through the circuit in the

positive direction, multiplied by a universal constant. This state-

ment is very similar in form to that in which we expressed the

First Law. If we put it into analytical form we shall see that the

resemblance is very close indeed.

The electromotive force round any closed circuit is equal to the

work done in taking a unit positive charge round the circuit. If s

denotes length measured along the circuit this is

I E cos Esds=\ {E^dx + Eydy -h Ezdz)^

* Exp. Ees. § 116.
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where E{=Ex,Ey,E^ is the electric intensity. Let B be the

magnetic induction at any point of any surface bounded by the

circuit. The flux of induction through an element of area dS of
A A

this surface will be B cos nBdS, where nB is the angle between the

resultant induction B and the normal to the surface at dS. But
A

B cos nB = Bg, cos nx + By cos ny + B^ cos nz,

where cos nx, cos ny and cos nz are the direction cosines of the

normal. The total flux of induction through the surface is therefore

//'
(Bg. COS nx + By cos ny + B^ cos 7iz) dS,

and the rate of diminution of this is proportional to the electro-

motive force round the circuit, so that

/(
\{Exdx + Eydy + E^dz)

= — Aj-j-
j
j{Bx cos nx + By cos ny + B^ cos nz) dS.

But by Stokes's Theorem

UE^dx + Eydy + E^dz)

=//{(f-t)™(t-f)--^

Since these relations are true for any surface bounded by the

contour, the surface integrals must be identically e(^ual ; so that

dE,

dy

dEy ^ dB^

dz
~ ^^

dt

dEx

dz

dE, dB,

dx ' dt

dEy

dx

dEx ^ dBi

dy ~ ^' dt

rot^=-^,for rotjE^=-^i^ (8).

The value of the constant Ai is determined by the units in

which E and B are measured (see p. 111). These three equations

represent the second group of Maxwell's equations. When it is
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necessary to give them a name we shall refer to them as the ex-

pression of the Second Law of Electrodynamics. Compai'iug them

with the First Law,

rot H = 4i7rA ("^4?)-

we see that, since B is proportional to H and D to E, there is a

kind of reciprocal relation between them. Also they are not quite

the same in form on account of the negative sign in front of -^

.

Not only do these equations enable us to deduce the whole of

the phenomena of electromagnetism, but, as we shall see, they are

the basis of the science of optics as well.

The Dynamical Theory of Electromagnetism.

The Second Law of Electromagnetism may be looked upon

from two different standpoints according to the attitude we take

towards electrical science. If we regard electrodynamics as more

fundamental than dynamics proper, then we must regard the

Second Law as a fundamental law of nature empirically given.

We may however take the standpoint that the aether, which we
postulate as a medium in which all electrical actions occur, will in

the last analysis prove to be a mechanical system subject to the

basal laws of dynamics. Provided we make this assumption, even

though we know nothing of the nature of the mechanism, we can

show that the Second Law is a consequence of the First Law.

The view that electrical actions are ultimately dynamical is one

whose development in the hands of Maxwell led to notable

advances in the science, and it is the view towards which,

at any rate until quite recently, most authorities have leaned.

Nevertheless it is equally logical to accept the Second Law as an

ultimate fact and then, later on, to consider what we can make of

the laws of dynamics from the standpoint thus adopted.

We shall now proceed to consider some of the consequences

which follow from the assumption that every electrodynamical

system is a dynamical system subject to the operation of the first

law and of the fundamental laws of electrostatics and magneto-

statics. The energy of the field is equal to

\k{E^- + E^' + E,^) + \fi{H^^-\- H^^-\- Hi) (9)
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per unit volume. Since a change in the electric intensity is

accompanied by a corresponding change in the magnetic force, it is

natural to assume that one of these terms represents potential and

the other kinetic energy. Moreover the presence of magnetic

energy is always associated with charges in motion whereas electro-

static energy is present when all the charges are at rest. The

obvious conclusion therefore is that magnetic energy should be

identified with kinetic energy and electrostatic with potential

energy. A more rigorous proof of the necessity for identifying

magnetic with kinetic energy will be found in Jeans's Electricity

and Magnetism, p. 483.

Assuming that the magnetic energy of the electrodynamic

field represents the kinetic energy of a dynamical system, let us

consider the behaviour of a system of n circuits 1, 2, 3, etc. carrying

currents i^, i^, i^, etc. In this case the magnetic energy can be

written as a quadratic function of the n variables ii, i^, is, etc. For

the number of tubes of magnetic induction which flow through

any one, let us say the mth, circuit, is the sum of n terms each

representing a contribution from one circuit. This follows since

the magnetic force at any point due to a current depends only on

the relative geometry of the point and the current, the nature of the

intervening medium, and the magnitude of the current, to which

it is proportional. Thus if Nm is the number of tubes of magnetic

induction which traverse the mth circuit in the positive direction

'^m ^ J^im'^i • L'tm'^2 "T -^3rn*3 + . • • + L'mm'^m "T • • • + L'nm'^n • • •{ J-"^.

The coefficients Lim, etc. depend only on the geometry of the

circuits and the nature of the material in which they lie. They

are called coefficients of self-induction when the suffixes are like,

and of mutual induction when they are unlike.

The magnetic energy of any system, including that of a system

of currents, is equal to ^JJjfiH^dT, taken throughout the volume

of the system. Let us suppose that the space is mapped out by

means of unit tubes of induction. These are closed tubes which

completely fill the space and never intersect. If SS is the normal

sectional area of a unit tube at any point, the element of volume

dr may be replaced by BS ds, where ds is an element of length of

the tube and is normal to 8S. But 8S is the area over which the

flux of induction is unity, so that

lxHBS==l.
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The part of the volume integral which belongs to any one tube is

Thus if we indicate by S a summation over all the unit tubes,

the magnetic energy T of the system becomes

T= ijjj^H'dr = ^xJHds,

Now by the first law of electrodjmamics jHds = AnrAX'i, where

2'» is the algebraic sum of the currents which are embraced by

the tube along which the integration is taken. Thus in the case

of a system of linear currents T is equal to the sum, over all the

tubes, of 2irA times the algebraic sum of the currents with which

they are linked. This is equal to the sum, over all the current

circuits, of 2irA times the number of tubes which are linked

with each circuit. Hence

= 2irA [Lni^^ + "11^2 + . . . + X„„4«} (11),

where N^ is the algebraic sum of the number of tubes which

thread the mth circuit in the positive direction.

At first sight this result appears to be inconsistent with the

conclusions which we formerly reached as to the equivalence of

currents and magnetic shells. We see from equation (11), Chap, v,

that the energy of the shell which is equivalent to the mth circuit

N
is — <^m

—^ , where Nm is the number of tubes of induction,

supposed invariable, which thread it, <^m is its strength, and /a is

the permeability of the medium. For a medium of unit per-

meability <^m = 4nrAim
',
so that for a medium of permeability fx,,

<f)„
= 4nrA fjdm- This result follows since the magnetic /orce which

a. given current produces is independent of the medium, while it

is the indiiction due to a shell which is independent of the

permeability of the medium. Thus for a single equivalent shell

in a fixed field the energy is — 4!7rA im^m- To find the total

energy of the system of equivalent shells we have to imagine

them created in infinitesimal steps, so that each increment

is proportional to the final magnitude of the corresponding

circuit. The calculation is precisely similar to that followed in
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Chap. II, p. 33, in obtaining the total energy of a system of electro-

static charges, except for the difference in the form of the expression

for the potential energy of the system. This calculation introduces

a factor |-, so that the energy of the system of shells which produces

the same magnetic field as the system of currents is

- 27rA XimJ^m = - ^ttA (Lnii" + 2Zi2tit2 + . . . + X„n^V)-

The difference between this expression and (11) arises from the

energy which lies within the volume of the shell itself*. This

quantity, which is equal to — 2T in the case of the equivalent shells,

is zero in the case of the currents.

The method of Lagi-ange's equationsf enables us to find out a

great deal about the behaviour of a mechanical system even when

we have no means of discovering the precise nature of the

mechanism. We shall therefore apply that method to the problem

under consideration. As a preliminary we have to express the

kinetic energy T and the potential energy W as functions of the

generalized coordinates cci, x^, etc. and the corresponding velocities

iPj, x^, etc. We have seen that if we identify T with the magnetic

energy in the field we get

T=-\- 2'irA (Lnh^ + L^^ii% + Xi3ti?3 -I- . . .),

and this will be a quadratic function of the velocity coordinates

Xi, X2, etc. if we make ii = Xi, % = oc^, i^ = x3, etc. Thus the

generalized displacement Xg becomes Jigdt and is equal to the

quantity of electricity which has flowed round the circuit after

some fixed instant. In the present case W = since the system

does not possess electrostatic energy, the capacity being regarded

as negligible. We also notice that the L's are functions only of

the geometrical arrangement of the circuits and of the nature of

the intervening medium. They do not involve the generalized

displacements x.

If Xg is the component of generalized external force coire-

sponding to the generalized displacement Xg, we have

dt[dxg)~dxg~^' ^^'^^'

* Cf. Jeans, Electricity and Magnetism, p. 433.

t For an account of the part of generalized dynamics which is germane to the

present discussion the reader may be rcfencd to Jca.ua'sJ']lecliicity and Magnetism,
Chap. XVI.
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the motion being unconstrained. An equation of this type holds

good for each generalized coordinate x, whether the system is a

conservative one or not.

[It may perhaps be worth while pointing out for the benefit

of those readers who are unfamiliar with this branch of dynamics

that the A"s are not actually forces nor the x's actually displace-

ments. The condition that they have to satisfy is that the work

W done during a small change in the state of the system due to a

change, let us say hxg, of the value of the generalized coordinate

a;, is = X,hx,. Thus in the present case, since hx, means a change

in the quantity of electricity which has flowed round the circuit,

Xg will be the effective electromotive force in the circuit.]

Since T = + 2itA [LnX^ + L^iX^x^ + Li,XiXi +...],

rr-j = + 4nrA ^ (LigXi + LisXi + LzsOCz + ... + LgsXg + ...)

= + 47r^^' (13),

where Ng is the number of tubes of induction which thread the

sth circuit. As T does not contain the x'&, ,r— = 0, so that
OXg

Suppose that in this circuit there is an intrinsic electromotive

force Eg ; the work done during a small change hxg in the quantity

of electricity which has flowed roimd the circuit will be

Z,8a;, = EgZx, - Rgi,'dt,

where Rg is the resistance of the circuit and ig is the current

round it. The last term represents the reaction of the matter in the

circuit on account of the Joule heating effect. Since igdt = Sxg,

Xg = Eg — Rgig.

Thus Eg-4>-rrA-^ = Rgig (14).

If there is no intrinsic electromotive force. Eg, in the circuit, the

current is all due to the electromagnetic induction. From Ohm's

Law we see that the electromotive force which arises fi'om the
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electromagnetic induction is i^s^s = — 47rJ. -^ . Thus reverting

to our former notation

l(E\dx +Eydy +E,dz) = - 4>7rA
| jjilB^ + mBy + nB,) dS.

It follows that the Second Law is a consequence of the First

Law provided we admit that the magnetic energy in the field

can be identified with the kinetic energy of a mechanical system

;

and provided also that A^ = 4nrA.

The following investigation which leads directly to the second

of Maxwell's equations is instructive. We shall suppose that

there axe both electrostatic and magnetic forces in the field, so

that if T is the kinetic energy, and W the potential energy, per

unit volume of the system, we have

and F=i/c(^^2 + ^/+£'/).

We shall restrict our proof to cases in which there are no free

charges. Our system has to satisfy the first law of electrodynamics,

so that

rotH = 4i7rA ^r- = 47rJ./c ^- ,
ot at

and we also have div D = 0.

Now the changes occurring in every dynamical system are

subject to the principle of Least Action, which may be put in

the form

Bl*\T-W)dt = (15).
Jt,

This means that in any natural motion of the system, from a

given configuration at time ti to another given configuration at

time ti, the actual motion is such as to make the time integral of

T—W a. minimum, and that any slight variation from the actual

motion of the system, subject to the conditions being unchanged

for the initial and final configurations (t = ti and < = ^ respectively),

must be such that the variation of the integral is zero. We shall

see that this is sufficient to establish the Second Law.

Since T is the kinetic energy, the H'b will be velocity co-

ordinates. Let us put H = 6 so that Hx= 6x> Hy = dy, Hg= 6g,

where the ^'s are generalized coordinates. We may now write the
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First Law in the form rot ^ = ^A -^r- , and we shall extend this
ot dt

equation so as to make it true of any change of the dependent

variables and D whether in respect to the time or not. Thus if

varies by Bd we shall suppose the variation to be conditioned by

a variation BD of D according to the formula rot Bd = 4nrA BD.

We have, if dr is an element of volume,

BJdrj *Tdt = jdTJ fiiO^Bd^c + ^^8^^ 4- ^^8^^) dt

=j\fi{ejd^ + 0yBey+ d,Be,) '' x dr

-//^ {/* 0ccB0a> + OyBdy + e^Be,)} drdt,

and bU Wdrdt={dT{ k(EJE^ + EyBEy+ E,BE^)dt

=^j j''dtjdS \S0^ (nE,- mE,) + hO, {IE, - nE,)

+ Be.(mE,-lB,)^\

Thus

B^dr^\T-W)dt = = \dr\fi{§^Bd^ + eyBey+6,B9,)'f'

+ Bez{mE^-lEy)\dt
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The present analysis is restricted to the case where the media

are at rest and where there are no free charges. Moreover the

actual and the varied system are to be identical at i = ^ and ^ = ^.

This makes the first volume integral vanish, since at both time

limits 86x = 8dy = S0z = 0. The surface integral will vanish if we
suppose the surface to be a closed surface at an infinite distance from

the region in which the actions are going on. For although dS is

proportional to r* both E and 6 are of the order - at most. It

follows that the second volume integral must vanish. And since

the Bd's are perfectly arbitrary both for each element of volume

and for each element of time (except for the limits of time) the

coefficients of each of them must always be zero. We therefore find

dEx dEz 4 A /i A 4 ^B,,

das cy ct

or rot ^ = - 47rJ. -^ .

at

Thus the Second Law follows if we assume the truth of the

First Law, and make the further assumption that the electro-

dynamic field is a mechanical system.

The foregoing deduction is practically identical with one given

by Larmor {Aether and Matter, Chapter vi), who has shown that

the laws of electrodynamics can be built up by giving the aether

a mechanical constitution. For the further development of this

theory, including the natural extension to the case where the

presence in the field of electric charges is contemplated, the reader

may be referred to Larmbr's Aether and Matter, Chaps. VI, vii,

and X.

Electncal Units.

We have seen that the work done in taking a unit magnetic

pole round a path situated in free space which encii'cles a current

of strength * once, is given by

/
Hds = 4t7rAi,
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The value of the universal constant A will clearly depend on the

magnitude of the units in which H and i are measured. It also

depends on the imits of length and time.

We have already defined our units of magnetic pole strength

and electric charge. From either of these units, although not

from both, the units of all other electric and magnetic quantities

may be derived unequivocally provided we keep to the same

units of mass, length and time. Thus, to determine our unit

of magnetic intensity H we only need to remember that mH
is the force in dynes on a pole of strength m, so that the unit of

H is determined by the unit of m and of force. It is evident

that the dimensions of the product mH are independent of the

dimensions which, since they are unknown, may arbitrarily be

assigned to m; the product must always have the dimensions

of a mechanical force. The dimensions of many other combina-

tions of electric and magnetic quantities are predetermined in the

same way ; for instance, Ee has the dimensions of force and /mH^

and kE^ have the dimensions of energy per unit volume, and so

on. The unit of current i clearly only involves the units of electric

charge and time, and is therefore determined in our case since we
have already fixed the units of electric charge and time.

When H and i are measured in this way, the value of the

constant factor is 4}'jrA = 1/c, where c = 3 x 10^" cms. per sec. The
quantity c, which has the dimensions of a velocity, and thus has a

numerical value which depends only on the units of length and

time, is one of the most important physical quantities. As we
shall see, it is equal, among other things, to the velocity of light

and other forms of electromagnetic radiation in empty space.

When the stipulation above as to the character of the derived

units is understood we can write equation (7) in the form

It remains to consider the value of the constant Ai which

enters into the expression for the second law. This may be

discovered by making use of the principle of the conservation of

energy, and for this purpose the simplest possible example of the

induction of currents will suffice as well as another. Consider a

single circuit carrying a current i, the self-induction of the circuit
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being L. Then the magnetic or kinetic energy of this circuit is

lirA Li^ = ^ tX If the current i changes, the amount of this

energy will alter and it is a known physical fact that there will be

in consequence a self-induced electromotive force acting round the

circuit. In general the circuit may lose energy by radiation or in

other ways, but under suitable conditions these losses are negligible.

In such cases the rate of loss of magnetic energy will be equal to

the work done against the resistance of the circuit less the work

supplied by the battery of electromotive force E. Thus

or —;r- = E— Ri.
c dt

The electromotive force due to induction is therefore

E'=--- = --^-
c dt~ c^dt

'

where N is the number of tubes of induction, measured in our

system of units, which thread the circuit in the positive direc-

tion. It follows by comparison with the equations on p. 101 that

Ai= - = 4nrA, when the electrostatic quantities are measured in
c

the modified electrostatic units and the magnetic quantities in the

modified electromagnetic units.

The following example is also instructive, since it brings out

quite clearly that it must be the magnetic induction and not the

magnetic intensity whose rate of change determines the magnitude

of the induced currents. Consider the behaviour of a bar of

magnetizable material encircled by a solenoid having n turns of

wire per unit length. The bar is of uniform cross section a, and

of indefinite length I. A current i flows in the solenoid and

maintains a magnetic field of intensity H in the bar. The

relation between H and i is

H=ATrAni = -i (16).

The work done in establishing the magnetic field in the bar

consists of two parts, (1) laJHdl, which, if / is the intensity of

magnetization, represents the actual work in magnetizing the bar,
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and (2) lajHdH, which represents the energy of the magnetic

field in the aether of the space occupied by the bar. In a small

interval of time dt the increment in the magnetic energy in the

bar is thus

laH(^l + ^]dt.fdl dH_

\dt
"^

dt

This must be equal to the work done against the back electro-

motive force of induction. This work is

Axula -J- . idt = laH . AiC . -rr dt
at at

So that |^(/ + ir) = ^.cf.

Thus B =H + 1 in accordance with Chap, vi and ^i = - = 4'7rA.
c

It is well to understand clearly the difference between the

system of units we are using and the two systems, the electrostatic

system and the electromagnetic system respectively, which are

most frequently used in books dealing with the theory of electricity.

The unit of electric charge in the electrostatic system • is V47r

times our unit of electric charge ; but it is not this difference so

much as the difference in the units in which the magnetic

quantities are measured which it is desirable to emphasize at the

moment. On the electrostatic system the unit of current is

obtained jfrom the unit of electric charge, and the magnetic

quantities are then obtained by giving A the arbitrary value

unity in the equation

Hds = 4i7rAi.1^

This fixes the unit of magnetic force and so determines the unit

of magnetic charge. In our units the measure of i is V'47r times

greater and A is 47rc times less than in the electrostatic system, so

that our unit of magnetic force is 0^/4^ times greater than the

electrostatic unit. Since mH has the same value on all systems

which have the same unit of mechanical force our unit of pole

strength is cV47r times smaller than the electrostatic unit.

The electromagnetic system of units also makes .4 = ] , but it

sets out by defining the unit magnetic pole as that which repels

an equal pole at unit distance with a force of one dyne. On this
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system the unit of pole strength is therefore \/47r times our unit

and 1/c times the electrostatic unit. The electrostatic unit of pole

strength is thus greater than the electromagnetic unit by the

factor 3 x 10^" cms. per sec. It follows that the measure of H on

the electromagnetic system is 1/c times its measure on the electro-

static system. Whence, by considering the equation ^Hds = ^iri,

which is true on both these systems, it follows that the measure of

e on the electrostatic system is c times greater than on the electro-

magnetic system. Thus the electromagnetic unit of electric charge

is c times the electrostatic unit, and cV47r times our unit of

electric charge.

It follows that when the unit of electric charge is defined as

that which repels an equal and similar charge at unit distance

with a force equal to l/47r dynes, and the quantities which can be

derived from it without making use of the two laws of electro-

magnetism are measured in terms of units which are based on

this unit of electric charge: and when in addition the unit of

magnetic pole strength is defined as the strength of that pole

which repels an equal and similar pole at unit distance with a

force of l/47r dynes, and when the quantities which can be derived

from this without making use of the two laws of electromagnetism

are measured in units which are based on this unit of magnetic

pole strength; then the two laws of electromagnetic induction

become

:

CD rotif = ^(.F+f) (17),

(2) 'o*^"-"! (18)-

In the sequel we shall always use (17) and (18) rather than (7)

and (8).

Magnetic Force due to an Element of Electric Current,

We have seen (Chap, v, p. 85) that the force due to a magnetic

shell of strength ^ at a distant point P can be represented as

arising from each element of the boundary of the shell. Since a

current of strength i placed in a medium whose permeability is fi

causes the same distribution of magnetic intensity as a shell of

R. E. T. 8
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strength
<f}
— ^Afii = fiijc, it follows that eaxjh element ids of an

electric current can be regarded as giving rise at every point in

space to a magnetic intensity of amount

t sm rs ds

z;rc^^ <i9).

where r is the radius from the point P to ds and rs is the angle

between r and cfe. The direction of the intensity is normal to r

and ds. This result is true whether the space is empty or filled

with homogeneous matter, and ia independent of the per-

meability fJL.

Force on an Element of Current in a Magnetic Field.

We have seen that the force on a magnetic shell of strength
<f>

when placed in a magnetic field where the intensity is H can be

represented as the resultant of forces equal to — ^ [Hds^ acting

on each element ds of the boundary of the shell. It follows that

the force exerted on an element ids of electric current i by a field

H ia

-\h.[H.f^'j = -l[B.ids] (20).

Where the current is due to the motion of an electric charge

of volume density p with velocity v, the current per unit area

is pv, and the force on unit volume due to the field H is

(21).

If the charge is carried by a particle whose volume is t the charge

€ will be given by e = I / 1 pdr, and the force acting on it is

-[^•?] .(22).

The components Fx, Fy, F^ of this force are

Fx = -{B,v,-B,v,)\
C

e
Fy = - (B^v, - B,v») ). (23).

F,=l{ByVx-BxVy)\



CHAPTER VII

ELECTROMAGNETIC WAVES

The Equations of Propagation,

Let us for the moment confine our attention to the application

of Maxwell's equations to regions in which there are neither electric

nor magnetic charges. Strictly speaking, from the point of view

of the electron theory, this should restrict us to the case of the

free aether, since all matter is supposed to be made up of electrically

charged particles. In material media, however, the mean density

of the charge at any point, if we average over a volume containing

an enormous number of particles, is in most cases zero; so that we
shall examine the consequences, incidentally, of supposing that

with material media the peculiarities of the individual electrons

can be left out of consideration. We shall soon see that the results

at which we arrive, while exact for the free aether, are the

crudest kind of approximation when applied to material media.

The equations to which we have been led in the preceding

chapter in the case in which /o = are

, „ IdD KdE
c dt c dt

^„ 1 95 fidE
c dt c dt

We have seen that the two foregoing equations are really an

abbreviation for six equations between the six components of H
and E. These equations can therefore be solved for each one of

8—2
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the dependent variables H^, H^, H„ E^y Ey and E,. Writing

them out in fiill, we have

dH, __ dHy _ K dEg ,- .

'By 'dz'~c^ ^ ^'

dz dx c dt
^ ^'

dffy BSg. _ K dEj .„,

"8^ ~ "ay"
~

c "aT ^ ^'

8^» _ "^^
t. ^M^ (4,\

dy dz c dt ^ ^'

dEx _ dEg _ _ /f
dHy .>.

dz dx ~
c dt ^ ^'

8^ _ 9^ _ _ /1. 9/^ -g.

dx dy G dt ^
^*

From (1), (5) and (6) we have

c dt* dy\ dt ) dz\ dt )

fjk [dy \dy dx J dz\ dx dz J)

/i ]\da? ^ dy-" dzV ' dx\dx ^ dy dz )\

'

XT ^^x dEy dEg _^o' l^ + l/ + 17 -'' = <'>

since there are no chaj-ges in the medium. Thus

_Kfid'E\

In the same manner we may show that each of the variables

Ex, Ey, Eg, Hx, Hy, Hg satisfies the same equation.

We shall now investigate the solution of the equation

^=«'^'" w-

and show that it is the general equation of propagation of waves

with velocity a. Let us take the integral of both sides of equation

(7) throughout a closed volume, then

iir^>'^--jji^"^'^—ijfn'^''- («>
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by Green's Theorem (Chap, ii, p. 24), where the surface integral

extends over the surface enclosing the volume. Let S be the

surface of a sphere of radius r whose centre is at the point P, and

let dci) be the solid angle subtended by dS at the point P, then

Differentiating both sides of (8) by the upper limit r.

Now ffurdm is 47r times the mean value of u over the surface

of the sphere whose centre is P and radius r. Let us denote this

by Ur, then

or. ^2{rur) = a^^^(rur).

Now let rur = v and introduce new independent variables

p = at-\-r and q = at— r, then

dv _ dv dp dv dq _ fdv dv\

di~d^di'^dqdi~^[dp'^dqJ'

dv dv d}j dvdq dv

dr dp dr dq dr dp

dv

-dq'

d^v _ d'v d^v d^'v

di'^ dp^ dpdq dq^'

dpdq
SO that

The general solution of this equation is clearly

=/i (at + r) +/2 (at -r) = rur,

where /i and/^ are arbitrary functions.

Since Ur is never infinite, v = when r = 0, so that

/a (at) = — /i (at) for all values of t
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Therefore /, and /, are not entirely arbitrary, but one is opposite

in sign to the other. Thus

ru^ =fi{cU + r) -fi{at - r) (9).

Differentiating by r

^ + '-^'=//(a« + r) + //(a<-r).

When r.= 0, u, = 2/,' {at).

But t^ is the mean value of u over a sphere of infinitesimal

radius about the point P ; it is therefore equal to the value up at

P itself. So that

up = %f;{at).

Again we have from (9)

|;(rw,)=//(crf + r)+//(a«-r),

2 ^
and

adi^'^^^^ ^^
^^* + r)- fi {at - r).

Thus |. {TUr)+
^I (r^r) = 2// {oi + t)

and for i =

Suppose that for a certain instant, which we shall take as the

origin of time, the values of w^ and ~ are given for every point

in space. Let

(w)t=o = P (a', y, «) and [^ =F'{x,y,z),

Then 2/(r) = ^(£//f,<i.) + j^//f,'A„.

But when r = at, 2/' (r) = Up, so that

tll^''^)*Llh'''' (i«>-^' 8(aOV

Thus the value of up at any time t subsequent to the time

< = 0, at which the values of F and F' are given throughout space,

is obtained by describing a sphere of radius at about the point P.
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The value of up will then be determined, provided we know the

average value of ^ over the surface of this sphere at ^= 0, as well

as the rate at which the average value of u over this sphere at time

^ = changes as the radius is increased.

The meaning of this solution is perhaps seen more clearly if we
consider a case in which the value of w at i= is zero everywhere

except in a certain limited region of space t. Consider the value

of u at some external point P. Let the shortest line from P to t be

h and the longest line c. Then until t = b/a, the value of up will

be zero since the sphere of radius at will not intersect the region

for which u was not equal to zero at * = 0. For similar reasons

when t is greater than c/a the value of Up will again be zero.

Thus u represents a disturbance which is propagated in all direc-

tions with the velocity a. The foregoing solution, which is due to

Poisson, shows that electromagnetic effects are propagated with

finite velocity, like waves. In fact the equation

is the general equation of wave motion and contains the mathe-

matics underlying all the different kinds of wave motion contem-

plated in physics.

Before leaving Poisson's solution it may be well to consider a

very simple concrete example to which

it may be applied. Suppose that by

means of two current sheets AB and

CD perpendicular to the plane of

the paper, we produce a uniform

magnetic field H in the direction of

the arrow. Suppose that at a certain

time t = the currents are stopped.

What will be the value of the magnetic

intensity at the point P afterwards ?

Clearly there will be no field at P until

t = = - , where a is the velocity of
a a ''

propagation; that is to say, until the

sphere of radius at cuts the plane CD.

To find the value after the sphere has

I3

/ V ^
H

B

R P

VT

<— (i—

>

^^—

Fig. 22.
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cut the plane CD but not the plane AB, let the points of inter-

section with CD be S and T. Then at <= 0, -^ = everywhere

except in a circular strip of infinitesimal width of which ST is the

diameter. Even in this infinitesimal strip -^ is finite, so that the

integral in (10) which involves F' is zero when t = 0. Also

H = constant = ^ at every point of the spherical cap of which

cn/r- *• J 1 i{w^ ExQR „at-PR ^,SQT IS a section, and j- jjFda} ~ aprf =^ —<o~f
— • ^"^^

XT

from equation (10) Hp = -^ , and is independent of the position of

Q so long as it lies between the planea When the sphere of

1 ^ /• XJ J

radius at intersects both planes 7— ljFda> = — — , where d is the

distance between the planes, aiid

It is clear that the slab of thickness d in which the magnetic

intensity is H splits into two slabs of equal thickness in which the

magnetic intensity is H/2, and these are propagated in opposite

directions normal to the faces of the slab with the velocity a.

The moving slabs of magnetic force form only part of the

solution of the problem. This is clear because the energy of the

magnetic field in the two moving slabs taken together is only half

of the energy of the original magnetic field. It is necessary

to consider the electric intensity E as welL

dE .

At t= 0, E = everywhere, but -^ is not zero. Consider any

rectangle Sx, 8y in the plane of the paper such that 8x crosses CD
to which By is parallel. Then, by the first law of electrodjmamics,

confining ourselves to the case of propagation in fi:ee space for

which ic = 1, /x = 1 and a = c.

or
aj Bt

'
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since everything is independent of y and the work HZy vanishes

along the right-hand side of the rectangle where H = 0. But if

the angle SPQ = 6,

dE , dE27rat sin aide
c.

dE,, .. ^ir dE ,

-^ d(o=^ -^2
— = - 27r 3- d (cos ^) = —r -^. dx.

dt dt d-t^ dt ^ ^ at dt

Thus
/

1 "oT ^® =^ I 07' S^ ^"^d, from (10),

„ ^ t ffdE , 1 [dE ,

When the sphere of radius PQ cuts both planes we see that

the value of \-^^x contributed by the second plane is equal

and opposite to that from the first, so that Ep again becomes

zero. Thus the slab of moving magnetic force H is accompanied

by an equal electric force at right angles to and of equal magnitude

with H. The electric force in the slab w^hich moves to the right

is in the opposite direction to that in the slab which moves to the

left, whereas the magnetic force is in the same direction in both

cases.

Velocity of Propagation.

We have seen that the components of the electric and magnetic

... . dhi
mtensities satisfy the equation ^ =a^^^u, so that their changes

in time and space are such as would arise if they were propagated

from every point with velocity V= c/s/fiK. For a vacuous space

fi=l and K = l,so that it follows that electromagnetic disturbances

are propagated in vacuo with a velocity which is equal to c, the

ratio of the electromagnetic unit of charge to the electrostatic

unit. At the time that this conclusion was first reached (by

Maxwell) it had not been shown that electromagnetic disturbances

were propagated with finite velocity, so that there was no experi-

mental material available, by means of which the conclusion could

be quantitatively tested. Maxwell however put forward the view,

which Faraday's instinct had previously led him to express

although his mathematical limitations had probably prevented

him from being able to deduce adequate experimental evidence

in favour of it, that light itself was really an electromagnetic
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phenomenon. In that event, Maxwell predicted, its velocity of

propagation should be equal to the ratio c of the two kinds of

units. Maxwell himself carried out a determination of the value

of c and found it to be equal to the velocity of light through

space, within the limits of his experimental error. At a much
later date (1888) Maxwell's Theory was put in a much stronger

position by the researches of Hertz* who showed that vibrating

electrical systems such as could be set up in the laboratory

emitted electromagnetic waves. Hertz investigated the principal

properties of these waves and showed that they were analogous

to waves of light, from which they differed principally in the

possession of much longer wave-lengths.

More recent determinations have shown a continually increasing

agreement between the values of (1) the ratio of the two units

of electric charge, (2) the velocity of electric waves and (3) the

velocity of light in space. The agreement of the results of

different observers is well exhibited by the following numbers

which are taken from Jeans's Electricity and Magnetism, p. 506.

For the value of c, the ratio of the two units, the following

results have been collected by H. Abraham •{• as likely to be most

accurate

:

Himstedt 30057x10" Abraham 29913x10"
Rosa 30000 xlO'o Pellat 30092x10"
J. J. Thomson 29960 x 10" Hurmuzescu 30010 x 10"

Perot and Fabry 29973 x 10"

The mean of these quantities is

c = 30001 X 10" cms./sec.

For the velocity of propagation of electromagnetic waves in

air the following values are collected by Blondlot and Guttonj:

Blondlot 3022*x 10", 2964 x 10", 2980 x 10"

Trowbridge and Duane 3003 x 10"

MacLean 2-9911 x 10"

Saunders 2-982x10" 2-997 x 10"

The mean of these quantities is

2-991 X 10" cms./sec.

• Ann. der Phys. vol. xxxiv. p. 551 (1888).

+ liapporU du Gongres de Physique, Paris, 1900, vol. n. p. 267.

X Rapports du Congris de Phygique, Paris, 1900, vol. n. p. 283.
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For the velocity of light in free aether Comu* gives as the

most probable value 3-0013 ± '0027 x 10'" cms./sec. Dividing by

1*000294 the refractive index of air referred to a vacuum, this

gives for the velocity of light in air

8-0004 + -0027 X lO'" cms./sec.

The velocity of electric waves is known with much less ac-

curacy than the other two quantities but they are undoubtedly

all three identical in value within the limits of experimental

error involved in each case.

Since the velocity of propagation is c/V/a/c, the velocity of

light in magnetic and dielectric media should be inversely

proportional to the square root of the product of the magnetic

permeability and the dielectric constant. Since it follows from the

wave theory of light that the refractive index w of a medium is

inversely as the velocity of propagation of the light through it,

it follows that for different media of the same magnetic per-

meability

n^ oc K.

This law has not been found to be even approximately verified

for the waves which constitute light. In fact, a moment's con-

sideration shows that it must be wrong, since it would make n

constant, whereas the phenomenon of dispersion shows that n is

a function of the wave-length. The fact that n" is not proportional

to K is not to be regarded as an objection to the electromagnetic

theory of light. The theory on which it has been deduced is

exact when applied to the free aether but its scope is not wide

enough properly to account for the optical behaviour of material

media. The reason for this is that material media contain

electrically charged particles which are set into motion by the

electric and magnetic forces of the light waves, and it is necessary

to consider the dynamics of these particles to account satisfactorily

for the optical behaviour of such media.

If we turn from light waves to the electrical vibrations of

much lower frequency emitted by the Hertzian oscillator the state

of affairs is very different. The period of these vibrations is, as a

rule, great compared with the natural periods of the electrons

in the molecules of the substance, so that the motion of the

Loc. cit. p. 246.
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electrons is much the same as it would be under a steady field

of the same magnitude as the instantaneous value of that

due to the light wave. Under these circumstances the material

can be treated as a continuous medium of definite dielectric

coefficient k, and for waves of this character the velocity of propa-

gation in different media should be inversely as the square roots,

of the dielectric coefficients. This conclusion is substantiated by

the results of experiments. Thus A. D. Cole* found the refi:^ctive

index of water to be 8'9 whereas its dielectric coefficient k = 80.

With other substances the agreement appears to be satisfactory

within the rather considerable limits of error of the determinations

of the dielectric coefficientsf

.

We shall defer to the next chapter the consideration of the

causes which make the behaviour of bodies towards light different

fi:om that predicted by the simple form of the electromagnetic

theory which we have been discussing. There are, however, a

number of phenomena exhibited by electromagnetic waves in

their relation to matter which are partly true for light waves

and strictly true for very long waves. The rest of this chapter

will be occupied with an account of some of these.

Properties of a Plane-Polarized Electromagnetic Wave.

dt'
A solution of the equation -^ = a* VHt is

w = «oe*¥^''*^'*-""'""**^ (11)

provided ? + m' + w' = 1. The expression on the right-hand side

is a complex quantity, being equal to

"o '
cos — {at — tx — my — nz) -\- % sin — {at — Ix — my — nz)

The real part of u therefore represents a disturbance of wave-

length \ and amplitude u^ which is propagated along the straight

line xjl = yjm = z/n with constant amplitude Wq and constant

velocity a. It is thus the appropriate specification of a mono-

chromatic train of plane waves of wave-length X. If we take

the direction of propagation to be along the axis of z we shall

Wied. Ann. vol. Lvn. p. 290 (1896).

t Fleming, Principles of Electric Wave Telegraphy, p. 320.
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have n = l and u will be equal to u^e i:^'^*'"^ and its real

part to

Wo cos — {at — z) (12).

Let the real part of u represent E^, the x component of the

electric intensity in the wave front, and consider the train of

waves for which Ey = E2= 0. The electric intensity in this train

will be completely specified by the equations

E^ = real part oi E,e"^
^"^ '"^

27r
or Ex = Eo cos -— (at-z) Cl3).

A-

It is clear that any equation between functions of complex vari-

ables such as, for example,

Fi (u, iv) = Fo{x, iy)

involves the separate truth of the two equations

Real part of Fi — Real part of F.^

and Imaginary part of F^ = Imaginary part of F^,

otherwise i = V— 1 would be equal to a real quantity, which is

absurd. This principle effects considerable simplification in the

working out of problems arising in connection with the propa-

gation of waves, as it enables us to work with the complex solution

and then pick out the real parts at the end of our calculations.

The advantage of this lies in the fact that the complex equations

are usually simpler than their real equivalents.

Suppose that we are dealing with the train of plane waves

propagated along the axis of z. Each of the vectors E,., Ey, E^,

Hx, Hy, Hg which serve to specify the state of the medium at any

point at any instant must be of the form u^e a i*^~^^. The values

however are not independent but have to satisfy the six equations

on p. 116, viz.

dHz ^Hy _ K dE^

dy dz c dt
'

dHx dHg K dEy

dz dx c dt
'

dHy dHx _ /< dEg

dx dy c dt
'
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dEt dEy _ fi dITj,

"ay '*~ar~~c"ar'

dEg dEf fjL dffff

ds ~'dx ~~'c ~dt'

dEy dEg ^ PL dH,
dw dy c dt

*

As each of the dependent variables is of the form

const. X e > ""

_ V 8 . 27r 9 9-9 . 27r ,- .

.

we have
eF-'T"' a5 = ei;

= »-
aJ
=-T (i*>-

sothat —E, = Hy, -^H.= E^

'»
c

The equations above may all have a constant of integration

added to them, but this would mean merely the superposition

of a state of things independent of the time. This can have

no relation to wave motion, so that we may leave the constants

of integration out of account. We observe that both Eg and Hg
are equal to zero, so that there is no component either of electric

or magnetic intensity in the direction of propagation of the wave.

The resultant electric intensity and also the resultant magnetic

intensity lie in the wave front. Also Eg,Hx-\- EyHy = so that

the resultant electric intensity is at right angles to the resultant

magnetic intensity. In addition /i (ZTj* + Hy^) = k {E^ + E^) so

that the electric energy in the wave is equal to the magnetic

energy. In the free aether yu, and k are each equal to unity in our

units so that the electric and magnetic intensities are equal.

If we choose the axis of a; so that the electric intensity lies

along it, then the vectors which specify the wave are

Eg^E, Ey = Q, E,^0, ff, = 0, Hy =— E=-E, ^, = 0.
^Ct c

The electric intensity will always remain along the axis of os and

the magnetic intensity along the axis of y. The wave is thus

plane polarized ; since its properties are not the same in reference
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to two planes at right angles to each other passing through the

direction of propagation. We shall see that the plane which

is usually called the plane of polarization in optics is that which

contains the direction of the magnetic vector and is perpendicular

to the direction of the electric vector. (See p. 132.)

It is evident that as the wave moves past any fixed point

0, the electric and magnetic intensities always remain propor-

tional to one another and both vanish and also both have their

maximum values simultaneously.

In the case of waves of sound the kinetic energy is measured

by the squares of the time rate of change of the displacement of

the particles constituting the medium, and the potential energy by

the squares of the strains which depend upon the rate of change

of the same displacements in space. Both the velocities and the

strains travel together or are in phase just as the magnetic energy

and the electric energy in electromagnetic waves are in phase.

This may be regarded as another reason for identifying magnetic

and electric energy with kinetic and potential energy respectively.

The following elementary method of deducing the velocity of

an electromagnetic wave is instructive. Let the wave be pro-

pagated along the line Oz and let E^ be the x component of the

electric intensity in the wave front. Consider the state of things

when the wave front lies in the plane perpendicular to Oz which

passes through the point 0. Then the lines OQ and U (Fig. 23) are

in the wave front. Describe the rectanglesTOPRUS andTOPVQ W,

TP being small compared with PR and PV. TP, 8R and WV
are perpendicular to the wave front, PR and ST are parallel to

U, the axis of sc, and PV and 2^W are parallel to OQ, the axis of y.

Consider the work done in taking a unit magnetic pole round

the rectangle PTWV. The work along the part QVPO of the

path vanishes ; for the electrical disturbance which constitutes the

wave has not yet reached this part of the path. The work along

OT is equal and opposite to the work along WQ by symmetry.

The net amount of work is equal to TW x Hy. But this is equal

to 1/c times the total current embraced by the path. In the

present case the current is all of the displacement variety, so that

it must be equal to the rate of increase of the flux of induction

through the circuit, in the units we have been using. The
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change in the amount of induction through the circuit arises

entirely from the forward motion of the wave so that, if a is the

velocity of propagation, it will be equal to kEx xax TW per unit

time. Thus

TWxHy = TWx—E„,

or ff.^'^E,

-^

Fig. 28.

By considering the work done in taking a unit electric charge

round the circuit TPRS we find

E.= fia
ffy.

It follows that a = cl\^. We also see that if the electric force

at any instant is along any particular direction, let us say the axis

of X, it will always remain parallel to the axis of x, and the

magnetic force will also always be parallel to the axis of y.
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Reflexion wnd Refraction.

We shall now consider the behaviour of a train of plane waves

incident on the boundary TFU between two insulating media

whose dielectric constants and magnetic permeabilities are «i, yiti

and K2, 1^2 respectively. The conditions which have to be satisfied

by the components Ex, Ey, E^ of the electric intensity and the

components Hxt Hy, Hz of the magnetic intensity at the surface of

separation are

:

(1) The tangential component of the electric intensity must

be continuous in the two media.

(2) The normal component of the electric induction must be

continuous in the two media.

(3) The tangential component of the magnetic force must be

continuous in the two media.

(4) The normal component of the magnetic induction must be

continuous in the two media.

Let us take the bounding surface to be perpendicular to the

axis of z; then these conditions will be satisfied if, at every instant

of time,

Ex^ = Ex^, Ey^ = Ey^., K-^Eg^ = K^Ez^]

IIx=Hx^, Hy=Uy^, fllHz^= fl^Hz^l
.(16),

V

R

/Ci fl^ ^\^^l h^^
"^ y////////////Mmmy/w///y'W///W//^M^/^^////^^^^

^2 H h\

S Q>

Fig. 24.

R. E. T.
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where the suffixes 1, 2 refer to the two media. These six

equations are not independent. For if the first two are satisfied

the sixth follows since the equation

dJSy dEx f^ diJg

dx dy c dt

must always hold in each medium. The third equation follows

similarly from the fourth and the fifth by means of the relation

dHy dHx fc dEg

dx dy c dt
'

Thus only four of the six boundary equations of condition are

really independent. '

Wave polarized in the Plane of Incidence.

We shall now consider a wave propagated along OP and such

that the resultant electric force E^ in the wave front is per-

pendicular to the plane of the paper. If the angle OPV is 6^,

PV being the normal to the boundary, the vectors which define

this wave will all be proportional to

giPi(ait-y ainOi—zcbsOi)

where Oj is the velocity and ySi = — . They may therefore be

represented by

^, = Z,e'^>(«'*-J'«5"'''-^«««»'», Ey = 0, E, = 0;

Hx = 0, Hy=-^ COS ^,Xie'^i<«'^-J'«"<''-*«»«t>,

Hx= ~ sin ^iZje'^' (a.^-VsinOi-aooe*,)^

since these expressions satisfy equations (1)—(6).

The simplest way in which we can hope to satisfy the boundary

conditions that the tangential electric intensity and the normal

electric induction should be continuous is to make the y and z

components of the electric intensity vanish for the refi-acted and

reflected as well as the incident wave. The refracted wave will

therefore be given by
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EJ = 0, HJ = -^ COS e^ Xje'^^(«2^-»sin9,-«cos9J

and the reflected wave by

E/ = X3e'^»(«=i^-2'«»"'''-^«°^H Ey" = 0, ^/' = 0;

E^" = 0, iT/ =— cos 0,X^e'Ma,t-ysme,-zcose,)

Ez"= — sin ^3X3e'^»(*s'^-2'si°^3-«cos9g)_

Since the boundary conditions have to be satisfied at all values

of the time, the time factor in these expressions must be the same

for all of them. Thus ^iai = ^2a<i= ^^a^. Also the velocity a is

determined by the medium, so that o^ = a%- Hence ySj = /Sj and

/S2 =— ySi. The boundary conditions must be satisfied also for all

values of y, so that the exponential factor in y must be common
to each of the vectors. Thus ^i sin 6^ = ySa sin 6^ = ySs sin ^3= /3i sin 6^.

Therefore sin ^3 = sin^i, so that the angle of reflexion must be

equal in magnitude to the angle of incidence. Also

sin 61 ^2 (h

sin ^2 A «2
.(17).

Thus the refractive index or the ratio of the sine of the angle

of incidence to the sine of the angle of reflexion is equal to the

ratio of the velocities of propagation of the light in the two

media. Also with the convention as to the signs of aj and a^ and

of sin 01 and sin 63 which is here adopted, in conformity with

general usage, cos ^3 = — cos di. ^r

The boundary conditions will now be satisfied if

X, + Xs = X, (18),

— cos e, (Z, - X3) = -^ cos e. X, (19),

- sin d, (Z, + Z3) = ^- sin 6^ X^' (20).

9—2
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Since sin ^j/sin O^^ai/a,, equations (18) and (20) are identical.

Solving equations (18) and (19) we find

Z.=
2.\n9,cos0, ^-

^21).

sin 6. cos di + ~ sin 6i cos tf,

cos 6i sin $2-— sin ^, cos 0,

X, = ^^2- X, (22).

cos 01 sin ^2 + — sin 0i cos 6^a

/*«

For all media on which experiments have been made which

would serve to test these equations we may put /Xi = fh, so that

Y _ sin (0, - e, )

sm (<7j + Ui)

Since the intensity of the waves is equal to the energy per unit

volume multiplied by the velocity of propagation, and since the

magnetic energy in a wave is always equal to the electric energy,

the ratio of the intensity of the reflected to that of the incident

wave will be

/X,ylsm (0,-0,y\*

\XJ |_sin(^»+^0j
'

where sin ^,/sin 0^ = 0-^10^. The values given by these expressions

for the intensities of the reflected and the refracted ray in terms

of the intensity of the incident ray agree satisfactorily with those

found experimentally when the light is polarized in the plane of

incidence. This shows that the plane of polarization is the plane

which contains the magnetic force and not that which contains the

electric intensity.

Wave polarized in a Plane perpendicular to the Plane of
Incidence.

In this case the magnetic force is to be perpendicular to the

plane of incidence (the plane of yPz). We may therefore repre-

sent the incident wave by

Eg = 0, Ey= — cos ^je'^i(«i«-l' «'n h-zcos »i)

Ez=-\- -^ sin 0.e^('^^t-y »"» ^i-" «>s *i).
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The expressions for the refracted and reflected waves are obtained

by replacing the suffix 1 by the suffixes 2 and 3 respectively.

As before, the exponential factors must be identical when z =
since the boundary conditions are to hold for all values both

of t and y. It follows that

tts = tti, sin ^3 = sin 6^ and aj/ag = /Sa/A = sin 6j/sm Oo.

From the condition that the tangential magnetic force is con-

tinuous, we have

The continuity of the tangential electric force gives

K-y Oil ACy ttg

and the continuity of the normal electric induction

sin di .rr , rr X
sin ^2

As before, the first and last of these equations are identical. For

^j = ^2 = 1 we have Ki/k^ — a^i-ja^ so that the second equation may

be written

sin By cos ^1 (iTi - H^ = sin 6^ cos 6^ . if,.

Solving for i/g and H^ we find

jT _ 2 sin 26, .

and

jj _( 2 sin 2^, \

•°«~Un2^i + sm26'2 7 '

sin ^1 cos ^1 — sin 6^ cos ^a
"

sin 6^ cos ^1 + sin ^a cos 6^

tan (^1—^2) TT /c)K\

'tan(dV+d,)^' ^ ^'

When 01 + 02 = 7r/2, tan (^1 + ^2) = 00 ; so that for the particular

value of 0i = 0p = 'irl2 - 0^, the intensity of the reflected wave is

zero. This angle is known as the polarizing angle. When 0^

exceeds 0p, H^ becomes negative so that there is a sudden change

of phase at the polarizing angle.
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These formulae are found to be obeyed by light waves polarized

perpendicularly to the plane of incidence for all angles except those

in the immediate neighbourhood of the polarizing angle. It has

been shown by Airy* and Jaminf that although the amount of

reflected light becomes very small in the neighbourhood of the

polarizing angle it never actually vanishes, and the change of

phase which takes place in that neighbourhood is gradual and

not sudden. DrudeJ has pointed out that these differences

between theory and experiment disappear if we suppose that

the transition from the one medium to the other is gradual and

not discontinuous. If there is a layer of very small but finite

thickness in which the properties of the medium gradually change

from those of the first to those of the second substance, the amount

of reflected light never quite vanishes and the change of phase

becomes a gradual one. The layer of transition may be small

compared with the wave-length of light. It is probable from

the existence of other physical phenomena, such as surface tension

.and the tenacious retention of surface films of gas by solid

substances, that such transition layers do occur.

Conducting Media.

In those cases in which the medium affected by an electro-

magnetic disturbance possesses electrical conductivity, the dis-

placement current will not be the only current which is set up.

There will also be the true current of density j. Thus the

Maxwellian equations suitable for this case are

(2) :»t^=-lf.

Now if the medium is isotropic and <r is its specific conduc-

tivity, j = aE, so that the first equation may be written

rot U = ^((y\-Kj^E (26).

• Camh. Phil. Tram. vol. iv. p. 219 (1832).

t Ann. Chem. Phys. (3), vol. xiix. p. 263 (1850) ; ibid. vol. xxxi. p, 166 (1850).

X Lehrbuch der Optik, Leipzig, 1900, p. 266.
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Let us suppose that waves of frequency p impinge on the

boundary of such a medium. We shall see that the boundary

conditions of the problem can be satisfied by means of a trans-

mitted and a reflected wave both of which have the same frequency

p. The time variation of all the vectors can therefore be appro-

priately represented by the common factor e'^'.

Let us first consider the propagation of a wave of this frequency

inside the conducting medium. The electric and magnetic forces

have to satisfy the equations

and rot E = -- ^r-.
c dt

Since — = tp for the waves under consideration, these equations

are equivalent to

c \ip Jdt c dt

and rot £, = — ^ —-

.

c at

Thus the results which we have obtained for a non-conducting

medium will still hold if we replace the dielectric constant of

the medium k by the complex quantity Ki = k + a/ip. The com-

ponents of the electric and magnetic vectors still satisfy the

equation

dt'
'

but the constant a' is now complex and equal to c^/fi (k + o-jtp).

Confining ourselves to the case in which the waves are propagated

along the axis of z, since everything is proportional to e*', the

equation of propagation for this case reduces to

^^{ipa-p''K)u =^.

The solution of this, appropriate to plane waves, is

where (o + i^y = -^ (ipa- — p'^k),
c
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90 that a*-^ =-^
.(27).

2o/9 = fipa/d'

Restoring the time factor e***, the complete expression for u

is e*** e'^pt^Pz), This will represent two waves, one projmgated

in the positive and the other in the negative direction along

the axis of z. Confining ourselves to the one propagated in

the positive direction we see that the vectors which determine

it are given by u = e~'^ e'^P*'^' . This shows that the wave is

periodic in time t = 2'ir/p and distance z = 27r//9. Thus if A, is the

wave-length in the conductor /8 = ^ir/X. The occurrence of the

real exponential term e""^ shows that the amplitude diminishes

as the wave progresses, the law of diminution, or "absorption,"

being that the amplitude falls off in equal ratios whilst the

distance covered suffers equal increments. The quantity a is

usually called the coefficient of absorption, but sometimes also the

coefficient of extinction. 1/a is the distance in which the amplitude

falls off to l/e of its initial value.

Solving (27) for a and y8 we have

'' =^vf ^t^^^' + '^'i^'-'^i^l

(28).

and /3=^^

The formula for a shows that the coefficient of absorption is

higher the higher the conductivity a of the material. Li other

words, the higher the conductivity of the medium the more rapidly

is it able to transform the energy of the electromagnetic waves

traversing it into energy of other forms. If in (28) we put for

a the value of the electrical conductivity deduced fi-om measure-

ments with direct currents, the values of o which result are higher

than those which would be obtained from measurements of the

transparency of metals for light in the visible spectrum. Thus
in the case of copj)er, and, sodium light, we have approximately

:

c = 3xl0^», ;t=l, ^ = 3x 10", o- = 47rc» X 6 X 10-*, « = 1 and

a = 3*3 X 10* cms.-^ whereas the value of a deduced from optical

measurements* is 28 x 10* cms.-^ The particular value assigned

* Cf. Drude, Lehrbuch der Optik, Ist ed., p. 33&
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to K in calculating a from (28) does not exert any important

influence on the result. The formula also does not suggest the

observed difference in colour between the incident and transmitted

light. These discrepancies arise from the fact that the current

is carried by discrete electrons, with the consequence that both

<r and k are functions of p. The reason for this will be made
clearer in the sequel ; we shall now consider the phenomena which

attend the reflexion of light at a conducting surface.

Metallic Rejleocion.

The problem of metallic reflexion is very similar to that

furnished by the case of reflexion at the boundary between two

insulating media. The same conditions as to continuity of the

tangential electric and magnetic forces and of the normal electric

and magnetic inductions have to be satisfied in both cases. The

difference arises from the conducting power of the metallic medium,

and we have seen that the type of theory proper to an insulating

medium accounts for the propagation of waves in a conducting

medium if we replace the dielectric constant by the complex

quantity k^ — la-^/p, where o-g is the conductivity of the medium,

K2 its dielectric coefiicient and p the frequency of the waves. It is

natural therefore to see if the boundary conditions cannot be fitted

by the method previously adopted, the only change made being

that the real quantity k^ in the former problem is replaced by

the complex quantity k^' — 10-2/p, where k^' is the real dielectric

coefficient. We shall consider here only the case of waves polarized

in the plane of incidence. A more complete discussion may be

found in Drude's Lehrbuch der Optik, p. 334

The incident wave being

E^ = X^e '^1 («»< -» sin fli - ^ COS 90, Ey = 0, E^=0;

H»=-0, Hy= ~ cos ^iZie'^i (ai<-2/sin9i-a.09fli)

Hz = — sin ^iZie'A {a,f-yam0i-zoos0i)^

the refracted and reflected waves will be given by similar ex-

pressions with the suffix 1 replgiced by the suffixes 2 and 3
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respectively. We have ai'= a,'= c'/fi,*, and a^ — c^jtiiKt. Thus

since k^ is complex so also is a,. Since

/8,a, = /3i Oi and ySi sin d^ = /Sj sin ^„

/S, and sin 6^ are also complex. The factors involving y and t being

common, the two independent equations yielded by the boundary

conditions become

, cos ^, . ^ ^ , COS ^2 Vand (Ai — Aj;= A^.

Thus Z, = ^^^^
Tj (29),

Oa/L^ COS ^1

_ Oi/t] COS 0q

and X,= ^[±i£2l|i X, (30).
^ ttj/ti cos t/j

O^/i-: COS ^i

T-T OittiCOS^s //LtiACjCOS^a

a,/j^co8a^ y fi^Ki COS 01

IS complex, and may be put in the form a + tyQ, where a and y3 are

real. Then
Z, ^ 1 - (g -f t/3)

Z, 1 + a + 1/3

(l+a)* + /i^ •

The complex fraction may be put into the form

pe*' = p (cos 6 + t sin e),

where ^ sin e= ^-^^^^^

,

-that p. = (l^|^=l_^-^_^ (31),

and tan6= ^_~ff^ (32).

Thus ^jb" will be the real part of

pX,e'^'{'''*-''^^+''^^+w) (33),
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where pX-i, /9i , ^i, ai, and e are all real quantities. There will there-

fore be a difference of phase e between the incident and reflected

waves.

Experimental measurements of the ratio of the intensity of the

reflected to the intensity of the incident radiation for infra-red

radiation, in the case of normal incidence, have been made by

Hagen and Rubens*. In this case ^^ = ^2 = 0, so that

tti/^l cos ^2 _ /fhK^

a^fia cos 61 \/ jx^Kx'

and /^/'^'_,^') = (a+,y3)a.

Hence 0?-^'=^'^,

fi^pKi

Even in the visible part of the spectrum a-^/p is a large quantity,

although p is of the order 10^® and fjui, fji^, k^ and k^ are all com-

parable with unity. Thus a^ is much larger than a^ — ^'K To a

first approximation we may therefore put

2
and, from (31), p2=i--

—^V^^. (^*>'

^-^_2 /t^!^ll^ (35).

The results of Hagen and Rubens are expressed in terms of

the reflecting power i2 of a metal. This is defined as the per-

centage of the incident intensity which is found in the reflected

beam. Thus in terms of our notation

R = 100/^^

R=200xa/^^^^^ (36).and 100
/ilO-2

The following table exhibits a series of values of (100 — R) x v'o'2

found by Hagen and Rubens for a number of metals. We observe

* Sitz. der Kon. Akad. der IVissensch. Berlin, p. 269 and p. 210 (1903) ; Ann. der

Fkys. vol. XI. p. 873 (1903) ; Phil. Mag. [6] vol. vii. p. 157 (1904).
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that for all the metals investigated, although there is a consider-

able range in the value of 100 — R, the product (100 — R) \/o"2 is

very nearly constant for each particular wave-length. The con-

stancy is, on the whole, more marked the longer the wave-length \.

Metals v/<rj
\ =4x10-* cm.
(100-ii) V<^a

X = 8xl0-*cm.
(100 - R) ^ff2

(100 -ii)
X=12xl0-*cm.
(100-R)^(ra

Silver 7-85

7-66

6-43

3-04

2-92

2-24

0-916

1-95

1-71

1-43

1-44

1-22

14-9

20-6

21-9

25-8

23-9

27-3

(22-7)

15-4
• 14-8

16-7

16-6

15-7

9-8

10-6

17-4

140
13-6

15-7

(16-9)

14-6

111
10-6

130

12-3

116
1-6

2-15

3-5

4-1

4-9

(17-8)

5-7

7-0

60
71

91

9-0

121
13-8

106
12-0

11-0

(lG-3)

11-1

120
8-6

10-2

111

Copper
Gol(

Platinum
Nickel
Steel

Bismuth

Patent Nickel P
Patent Nickel M
Constantan
Rosse's Alloy
Brandes and Schii-I

nemann's Alloy.../

The values of o-j are those at 18° C, which was approximately the temperature

at which the experiments were carried out.

The numbers in the preceding table were obtained by a direct

comparison of the reflected and the incident radiation. This was

furnished by a Nernst filament and the different wave-lengths

were obtained by dispei-sion through a fluorite prism for the

range from 10~* cm. to 8 x 10~* cm. and a sylvite prism for the

range 8 x 10~* cm. to 14 x 10~^ cm. For longer wave-lengths this

method was unsatisfactory owing to the small intensity of the

radiation thus obtained. An indirect method was therefore used

instead. This consisted in comparing the radiation, emitted

normally, from surfaces of the different substances with the radi-

ation from a " perfectly black body " at the same temperature (see

Chap. XV). The theory of the emission of radiation from hot

bodies shows that the radiation emitted by any surface is to the

radiation emitted by a similar surface of a perfectly black body

at the same temperature as the radiation absorbed by the same

body is to the radiation incident upon it. Since the reflected

radiation is equal to the incident radiation less the radiation

absorbed, this method enables the reflecting power of metals to

be determined with accuracy.
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The following table gives the values of the product (100 — R)cr^,

obtained by this method for the residual rays of wave-length

25"5 X 10~* cm. which remain after successive reflexions from sur-

faces of fluorite. Considering the smallness of 100 — i2 the agree-

ment of the experimental and computed values is remarkably good.

Metals

Emission-power 1= (100 - R)
for \=25-5 X 10-4 cm. and 170°

1

Product

(100-ii)Vcri7o

Computed by
Formula (36)

Observed

taken from
column 2

Silver 1-15

1-27

1-39

1-60

2-27

2-53

2-96

3-1

G

323
3-99

7-55

1009

2-73

4-69

5-05

3-77

4-28

1-13

1-17

1-56

1-97

2-27

2-55

2-82

3-20

3-27

3-66

7-66

(25-6)

2-70

4-63

5-20

4-05

4-45

7-07^

6-67

810
8-91

7-24

7-29

6-88

7-33

7-32

6-62

7-33J
(18-3)

7-16)
7-16

7-43

7-77

7-53;

Mean
7-33

Mean
' 7-41

Copper
Gold
Aluminium
Zinc
Cadmium
Platinum
Nickel
Tin
Steel

Mercury
Bismuth

"Rotguss"
Manganin
Constantan
Patent Nickel P
Patent Nickel Jd

There are two results of this investigation which are of special

interest. In the visible part of the spectrum it is known

that the reflecting power of metals does not agree with the

predictions of Maxwell's Theory in its simple form, so that the

present experiments determine the boundary of the region where

other considerations have to be taken into account. The experi-

mental results are in accordance with the simple theory when the

wave-length of the radiation is equal to 25"5 x 10"* cm.

The other point relates to the magnetic qualities of metals.

The computed values in the tables have been obtained by putting

A*] = /*2 = 1 a-nd k^ = «/ = 1 for all the metals. We see that the

agreement in the case of the magnetic metals and alloys such as

nickel, steel and so on is just as good as in the case of the non-

magnetic metals. It follows that for oscillations of the frequency

of those experimented with, the magnetic metals behave as though

they were non-magnetic.



CHAPTER VIII

DISPERSION, ABSORPTION AND SELECTIVE REFLEXION

Medium containing Electrons.

In the last chapter we have seen that there are a number of

consequences of Maxwell's Electromagnetic Theory which are

satisfied by electromagnetic waves of very long period, but which

are far from being borne out by the waves of much higher fre-

quency which constitute the visible and ultra-violet regions of the

spectrum. We shall now show that the reason for this is that we

have neglected the part played by the inertia of the electrons.

When that is taken into account we shall see that the results of

the experiments, even on waves of very high frequency, are in

very satisfactory agreement with the consequences of electro-

magnetic theory.

We shall suppose the matter under consideration to be made
up of a large number of similar units which we shall call

molecules. Each molecule contains a considerable number of

electrons. In the absence of external electric force the electrons

are to be regarded as establishing themselves in fixed positions of

stable equilibrium, or in configurations of stable orbital motion.

In the presence of an external electric field the electrons will be

drawn away from the positions of undisturbed equilibrium in a

manner similar to that discussed in Chap. IV. Owing to the

inertia of the electrons their behaviour in a field which varies

with the time is not so simple as that in the case of a steady field,

which we have already considered.

Our first concern will be with the behaviour of an ideal

substance which in all probability is somewhat simpler in its con-

stitution than any real substance occurring in nature. We shall
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suppose that under the action of an electric intensity E the

different electrons in the molecule denoted by the suffixes 1, 2,... n,

undergo displacements x^^, x^, ... Xn from the equilibrium configura-

tion. These displacements are supposed to be all in the same

direction, which is that of the applied intensity E. We shall

suppose that when a displacement Xi, for example, takes place,

there is a force of restitution called into play which is proportional

and parallel to Xi, and independent of X2, x^,... a?„. This assump-

tion that the force of restitution, which we shall denote by xj\i,

is independent of x^, X3,...Xn, can only be justified as a rough

approximation, since it is clear that each of the displacements

X2, ... Xn is equivalent to a doublet of moment 62X2, 63X3, ... e„a7„,

where the e's are the charges of the respective electrons, and it is

evident that each of these doublets will give rise to a force on the

electron Ci proportional to its moment. The case in which this

approximation is not made will be considered later (p. 169).

In addition to the forces of restitution each of the displaced

electrons may, in general, be acted on by one or more forces of

each of the following types:

(1) The external impressed force. This arises from the

external electric intensity E, and it might be thought at first

sight that its magnitude would be given by Eei, Ee^, ... Een. The
case here is, however, identical with that discussed at the end of

Chapter IV, and the argument pursued there shows that the value

of the actual force of external origin acting on the electrons is

given by {E + aP) ei ...(E + aP) e„, where P is the polarization of

the medium, and a is a constant, which, if the medium is suffi-

ciently symmetrical, is equal to one-third.

(2) There will also be forces of frictional type tending to

oppose the motion. These forces may be represented by a term

proportional to the velocity, which in the case of the sth electron

for example we may denote by — ySgijg where ^g is a constant.

The precise mechanism of these forces is not yet properly

understood. We shall see later that when an electrified particle

is accelerated it emits radiation, and the emission of this radiation

g2
gives rise to a reaction ^

—

^ x (see p. 266). For a simple

harmonic vibration proportional to e'^' this is equivalent to a force
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— ^-^i, and may therefore be represented as a frictional term

provided yS, = ~-^ . It is likely enough that forces of this character

will always be present in the case of vibrating electrons. In most

cases however they seem to be incapable of accounting for more

than a minute part of the term — /9«a:«, as the observed absorption

is, in general, much greater than that to which the frictional force

— rr^, X would give rise.
OTTC*

Lorentz* has suggested that the frictional term arises through

the disturbance of the motion of the oscillating particles caused

by the impacts of the molecules. At each collision the molecule

is regarded as so profoundly shaken up that the regular forced

oscillations are converted into irregular motions. The average

result will clearly be of the nature of an absorption of energy;

In fact Lorentz finds {loc. cit) that if t is the average in-

terval between two collisions, the average result is the same as

if there were a frictional force equal to x acting on the

electrons, where m is their mass. Unfortunately this cause does

not seem to be large enough to account for the observed eflfects.

It is found that the values of t calculated from absorption phe-

nomena are much smaller than those deduced from the kinetic

theory of gases.

It seems to the writer that the following view of the mechanism

of the absorption of light has much to recommend it. In the

majority of cases it is probable that the resistance to the motion

due to radiation, and to the effect of intermolecular collisions is

small and comparatively unimportant. It is probable that in the

neighbourhood of one of the principal periods of the substance

the absorption of energy by the electrons continues until the

equilibrium of the vibrating system becomes unstable. If the

energy absorbed is sufficiently great, the electron will be emitted

from the molecule and photo-electric phenomena will be exhibited.

Nevertheless this need not necessarily be the case. All that is

necessary is that there should be a temporary rearrangement

among the electrons inside the molecule. In either event the

• Theory of Electroru, p. 141.
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energy of the resonating system will be converted into energy of

other types, and that particular degree of freedom will possess

comparatively little energy when the original system is reformed.

The general results of this view are in qualitative agreement with

those which follow from the assumption of a retarding force pro-

portional to X. They show the same gradual change in phase in

passing through an absorption band, and indicate a maximum
absorption and a refractive index equal to unity, when the period

of the light is approximately coincident with the natural period

of the substance.

In view of the facts that absorption does occur, and that its

mode of occurrence is still doubtful, we shall for the present

content ourselves with the assumption of a term, in the expression

for the force, proportional to — x. This term is to be regarded, not

as the expression of a fundamental truth, but as a simple and

convenient mathematical approximation whose consequences simu-

late the observed effects.

(3) In general we shall have to take account of the effect of

the presence of a magnetic field. We have seen (Chap, vi, p. 68)

that a magnetic field of intensity H acting on a moving electron,

charge e«, gives rise to a force whose components are

G

^ {HJ, - H,Xs),
c

^-^{H.x.-H^ils).

The total force acting on the electron will be compounded of

all the forces mentioned, and, in the most general case, its equations

of motion will be

(1).

R. E. T. 10
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There will be three equations similar to these, but with different

coefficients, for each of the n classes of electrons. The solution

of these equations under the most general conditions leads to

very complicated expressions, and does not lead to any results of

physical importance which cannot be obtained more simply other-

wise. We shall therefore consider the operation of the different

forces separately, in so far as they can be separated physically,

and thus find out the kind of effect which arises from each cause.

In particular the effect of the last two terms, which depend on

the presence of a magnetic field, will be deferred to a later

chapter, which deals with magneto-optical and spectroscopic

phenomena. We shall also confine ourselves to the case in which

plane waves, polarized in the plane of yOz, are propagated along

the axis of z, since all other cases may be made to depend on this,

if necessary.

No Friction.

It seems desirable to treat this case separately, although of

course the same results are obtained if we include friction and

then in the final expressions put the coefficients /8 equal to zero.

The chief advantage of thus lengthening the treatment is that

effects due to resonance are then sharply marked off from those

due to absorption and are brought out more simply than when
the two effects are considered together. In the case under con-

sideration the equation of motion of the sth tj^ of electron is

7n.^ = e.(£',+a,P,)-^ (2),

or, dropping the subscripts for the present,

if the frequency of the electric waves is p and -D = ^. E and P are

constants which represent the maximum electric intensity and

electric polarization in the wave. Our equation is a linear

differential equation of the second order and the complementary

function is

j^gVAtA J^A^e V'^ (3)
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where A^ and A^ are arbitrary constants and pQ = (\m)~^ is the

frequency of the natural vibrations of this electron. The particular

integral is

.(4).m po^ — p'^

The complete solution is the sum of the expressions (3) and

(4). The arbitrary constants A^ and A2 are to be determined, in

any particular case, by the given initial conditions. If x and cc

are zero when the waves begin to fall on the electron the natural

vibrations ^je'^o' + ^ac'^"' have the same initial amplitude as the

forced vibrations of frequency p, and in any event the amplitudes

of the vibrations of frequencies po and p are initially comparable.

There is however a very marked difference in the behaviour of

the two vibrations as time progresses. The energy of the .vibra-

tions of frequency po will gradually disappear owing to radiation

and after a time their amplitude will become negligible. On the

other hand any loss of energy from the vibrations of frequency p
is continually made good by the action of the waves which have

the same period and the same or opposite phase. These con-

clusions can be established quite strictly if a small coefficient y8

of frictional type is introduced into the equations. It is then found

that the complementary function contains a factor e"*** where a is

a positive constant, whereas there is no such term in the particular

integral. This shows that after the lapse of a sufficient interval

the vibrations will be represented by this particular integral only.

The student is recommended to work out in detail the case in

which there is a small frictional term and the initial conditions

are, let us say, x = and a; = 0.

It follows that when sufficient time has elapsed for the system

to have got into a steady condition, the value of Wg is given by

es (E + olP) e'P*

Wg pg^ - p^

_ es E^ + aPg.

mt Pt^-p""'
10—2
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Let Vf represent the number of particles of type « per unit

volume. Then the polarization

v,e»

Therefore

1-at

and D^ = E^ + P^ =

1 tntipt^-p')

1 +
1 >n,{pi'-p*)

1-a^ vse.
E..

1 w,(p,*-p2)_

From the symmetry of equations (1) it is clear that in general

^ = ^y =^ = ^ = K
Ex Ey Ez E

Now the equations which determine the propagation of the waves

are

^ „ IdD KdE
rot ii = - -^ = - -57-,

c dt c dt

^ „ IdB fidH
rot E = --^- = ^-^.

c dt c dt
and

The velocity of propagation is cjs/fiK and the refractive index

m = ^fiK. Since we may put fjk = l for practically all dispersive

media, we have

m'=l+- 1 tnAVs-p")

1-aS

or
77?-— 1

1 fn^iPs^-p")

w' —
a-1 1 wi«(K-pO

.(5).

For substances which are sufficiently isotropic (see p. 72,

Chap, iv) the value of a is one-third. Formula (5) then becomes

v.e.m'-l 1
^

7n« + 2"3 im,{p,'-^y
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As the density of the medium is made to change, by compressing

it for example, the only quantities on the right-hand side which

are altered are the v's, each of which is proportional to the density.

The right-hand side may therefore be written in the form Cp,

where p is the density and (7 is a quantity which is constant for

any given substance and wave-length, but which varies from one

substance and wave-length to another. The formula

S—2 = ^" («)

was first deduced empirically by L. Lorenz* and was subsequently

shown to be a consequence of the electromagnetic theory by

H. A. Lorentzf. The most exacting test to which the formula

has been put is that of calculating the refractive index of vapours

from that of the corresponding liquids. The following figures,

given by Lorentz, show the extent of the agreement which may be

obtained in some cases :

—

Material

Liquid Vapour

Density
Refractive

Index
Density

Befractive Index

Observed
Calculated
from (6)

Water -9991

1-2709

•7200

1-3337

1-6320

1-3558

-000809
•00341

•00332

1-000250
1-00148

1-00152

1-000250
1-00144

100151
Carbon Bi-sulphide

Ethyl Ether

It is to be borne in mind that comparisons of the kind here

discussed are always to be made with light of the same wave-

length.

It will be observed that in the deduction of formula (5)

there is nothing which compels us to consider the medium as

a chemically simple substance. Provided a has the same value

• Ann. Phys. Ghem. vol. ii. p. 70 (1880). A rather similar formula (see p. 155)

had been derived from theoretical considerations much earlier by Maxwell,

Cambridge Calendar (1869). Of. Lord Bayleigh, Phil. Mag. vol. xlviii. p. 151

(1899), and Sellmeier, Ann. der Phys. vol. cxlv. pp. 399, 520 (1872).

t Arch. Nierl. vol. xxv. p. 525 (1892).
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for the electrons in all the dififerent kinds of molecules present

the value of

. a-1
a

will consist of the sum of a series of terms each of which consists

of the product of two factors. The first factor is the number of

particles of given type per unit volume and the second is a

function of the frequency which has a definite value for each

type of particle. Thus the value of

, a-1
a

for a mixture may be calculated by multiplying the value of this

fraction which is characteristic of each of the substances present,

by the proportion of the substance present in the mixture. Putting

a = i this result may be written

m' -

1

1 yyjj' -

1

mJ'-\ . m^-l .

where w,, p, denote the values of m and p for the sth constituent

present and /, is the mass of it in unit mass of the mixture. This

formula has been found to be fairly satisfactory for mixtures of

different liquids.

It is found that this additive law of refractivity is not confined

to merely physical mixtures. Something of the same kind holds

for the individual atoms of which different bodies are composed.

Supposing that a has the same value (J) for every electron no

matter in what atom it may happen to be, expression (5) may be

written

m«-l Ifv" «»e/ _^^ b,e.

2 3LT
where a,, bg, etc. represent, for each atom A, B, etc, the number
of electrons of given type per unit volume, and the separate

summations are for each distinct kind of atom present. Thus

"« a e^"^ * * is to be taken over all the electrons in an atom of
1 rn,{ps^-j^)

the first element A. If wio is the refi:active index of the element
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A (supposed liquid) then, if the refractive power is independent of

the state of chemical combination,

w„2 - 1 ^ 1 J a.'e,^

where a/ is now the number of electrons of type s present in unit

volume of the liquid element. If M is the molecular weight of the

compound, A, B, G ... are the atomic weights of the elements, and

if a molecule ofM contains q atoms oi A, r oi B, s oi G and so on,

then M=qA+rB + sG+ ....

If the density of the compound is pm and the densities of the

elements are pa, pb, Pc> etc., then

«£ _ PmA ^_ Pm^
ar^M Pa,' &;~''^P6'

^, m'-lM ma^-\A m^^-lB
m«+2/3^ ^ma^ + ^Pa mi^ + 2pi""

m"^ — \ M .

The quantity —^

—

- — is called the molecular refractivity of the

J J .1 X-.- ma^'-l A TUb^-l B
compound and the quantities —-—^r • — ,

—-—^— , etc., are
ma^ + 2 Pa mt,^ + 2 pb

called the atomic refractivities of the elements.

The fact that the molecular refractivity of different substances

can be calculated from the atomic refractivities is quite important.

It shows that the mechanism which gives rise to refraction is an

atomic property and is so deep-seated in the atom that it is almost

uninfluenced by the changes of configuration of the atomic con-

stituents which take place during chemical combination. This

certainly seems to be fairly true in a large number of cases

of chemical combination. It is not, however, universally true.

Thus in the case of the compounds of carbon, the carbon atom

is found to have a sufficiently constant atomic refractivity in

all the so-called saturated compounds. If, however, two of the

carbon atoms are united by a "double bond" it is necessary to

assign to them a quite different atomic refractivity. Again, the

value of the atomic refractivity of oxygen is quite different for

hydroxyl oxygen and carbonyl oxygen. These several differences
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are so distinctive that the magnitude of the molecular refractivity

is regarded as a valuable aid in determining the constitution of

organic compounds. On the whole, the general constancy of the

atomic refractivities, and the definiteness of the changes when

changes do take place, supply us with striking evidence that

the structure of the atoms is not very profoundly disturbed by

chemical combination.

IHsperston.

We shall now consider the way in which, according to our

formulae, the refractive index depends upon the frequency or wave-

length of the incident vibrations. Formula (5) may be written

somewhat more simply, in the form

m' — 1 _ 1 * v,e,*

m« + a~a+l i wi, (;?,«- p»)

'

1 u
where a = . Now since the incident vibrations vary as e^^*,

and the natural vibrations as e'^'', e'^«', etc., they are respectively

periodic in times 27r/p, ^tr/pi, ^-n-jp^, etc. If \, \, \„ etc., denote

the corresponding wave-lengths measured in the free aether (not

in the substance traversed by the waves)

\ = 2'rrc/p, \i = 27rc/pi, Xa = lirclp^, etc.

Thus
OT»+ a 47r»c*(l + a) i m,(X,»- X*)'

8"' ^r^'^>^'
^'^*^

m-^ + a-47rV(l + a)t1'"^r iM^^^^^V)]'

Now when \ is infinite 2 —~~—^-Tv = 0, since every term in the

summation vanishes. But when the wave-length is infinitely long

and the period is infinitely slow, the case under consideration

approaches continuously to that of an electrostatic field. The
quantity k, which enters into "the equations of propagation, must
therefore become identical with the dielectric coeflScient as measured

by electrostatic methods. Hence for infinitely long waves m* = k,

the dielectric coefficient of the medium. We therefore have

<g -

1

^ 1 ^ i/,e«'

V

^
K + a 47r2c*(l + a)7 m, ^ ^'
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Vg, eg, Xg and lUg are constants characteristic of the material under

consideration, so that (8) may be written in the form

where Ci, Ca, ...C„ are constant quantities characteristic of the

substance. There will be one of the terms Cj, Ca, etc., correspond-

ing to each of the natural periods.

In the case of transparent colourless substances the natural

periods must be either in the infra-red or in the ultra-violet part of

the spectrum. If they are in the infra-red the synchronous wave-

lengths Xr will be large compared with A,, and if they are in the

ultra-violet the X^'a will be small compared with X. Thus, as an

approximation, we may write (9) in the form

m^— l_/e — 1 ^ Or y Cy

rn^+a ~ K + a~^Xr^ X^

G= Constant+ 2 —j, approx (9a).

In these formulae we have neglected the fractions — and —

^

A. Xf

compared with unity. Since the refractive index m changes

77i^ ~ 1
roughly in the same way as —^ , it follows from (9 a) that for

these substances the refractive indox will increase continuously

as X diminishes, in this region. Since the transparent colourless

substances were the first to have their dispersion investigated,

this type of dispersion is said to be normal. As we shall see, it

can only be said to be normal provided we are a long way from

the natural frequencies of the substances.

The behaviour of formulae (8) and (9) in the case of light

whose frequency is close to that of the natural vibrations of the

substance is most interesting. When p = Ps for example, then

X = Xg, and the corresponding term in (9) becomes infinite. If X

is slightly less than Xg, then 0«/(X2-V) has a large negative

value ; and if X is slightly greater than Xg, then Cg/(V — X/) has a

large positive value. As X approaches X, from smaller values of
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»»•— 1
X, ~ approaches — go , and as \ approaches \, from larger

m*— 1
values of X, —r approaches + c» . There is thus a sudden

m*— 1
chancfe in the value of —r from — oo to + oo at each of the

m' — 1
synchronous frequencies. If we plot —^— as ordinates against X

as abscissae the curve will have two branches, one extending to

minus infinity, and the other returning from plus infinity at each

of the values X = Xi, X = Xj, etc. Thus in crossing an absorption

band in the direction of increasing wave-length, the refractive

index will suddenly increase, and the rays close to the band on

the red side will be more deviated than those on the violet.

This kind of dispersion is said to be anomalous. It was dis-

covered by Leroux* in experimenting with a prism filled with

iodine vapour. The later investigations of Kundtf showed that

it was related to the presence of absorption bands in the way

indicated by the type of theory now under consideration. We
also observe that if X is less than every one of the values

Xi, Xg, ... X„, all of the terms Ci/(X' — Xj''), etc., are of the same

sign. Moreover in all the cases known at present 1 + a is

positive, and all the other quantities which make up the G's are

essentially positive, so that each of the terms Ci/(X' — Xi% etc.

is negative when X is less than each of the values Xi, Xj, etc.

Also if X is greater than each of the quantities X,, Xj, ... X„, all

of the quantities Ci/CX" — Xj''), . . . C„/(X' — Xn") are positive. It

follows that for sufficiently short waves m* is always less than k,

and for sufficiently long waves m' is always greater than k. In

the case of the latter assertion it is necessary to make one reserva-

tion, since m' clearly approaches the value w} = k when X becomes

infinite. On the other hand, it follows from equation (5) that

as X becomes zero and p becomes infinite m? approaches the value

unity. This is in accordance with experimental results, since

the Roentgen Rays, which, as we shall see, may be looked upon as

electromagnetic waves of very high frequency, are not deviated

in passing through a prism.

A great many dispersion formulae, that is to say, formulae

• C. R. Yol. Lv. p. 126 (1862).

t Ann. der Phys. vol. cxlii. (1871), and later papers in the same joarnal.
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which connect the refractive index with the wave-length or

frequency of the transmitted light, have been in vogue from time

to time. Cauchy's formula

was the first to have a theoretical justification, Cauchy developed

it from general considerations of wave theory on the hypothesis

that the distance between the vibrating particles of the medium

could not be regarded as completely negligible when compared

with the wave-length. The formula thus obtained gives a fairly

satisfactory representation, when three terms are used, of the

dispersion of a number of substances. As it makes the refractive

index increase continuously with diminishing wave-lengths (the

constants are all positive), it fails absolutely to account for

anomalous dispersion.

The idea that time rather than length was the determining

common factor of the light and the matter which gave rise to

dispersion, appears to have occurred first to Maxwell*. Maxwell

supposed that when the atoms (we should now say electrons) were

displaced, forces of restitution were called into play, and that

there was also a resistance to their motion. A similar idea

occurred somewhat later to Sellmeier, after whom the formula to

which this theory gives rise is usually named. In the case of a

single mode of vibration and in the absence of friction, the case

contemplated by Sellmeier, the formula is

A, — A,^

where X is the wave-length of the light, and X^ that corresponding

to the natural vibration of the substance. In the case in which

a (p. 73) = 0, formula (5) becomes

n V P^

1 nisips'-p')

so that Sellmeier's formula can be regarded as the particular case

of formula (5) which arises when we put a = and n = l.

It is still an open question whether the best dispersion formula

* Lord Rayleigh's Coll. Papers, vol. iv. p. 413.
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is the Lorentz formula (5), or a generalized Sellmeier formula

(see p. 176). It is however pretty clear that formula (10) is

unsatisfactory, since, other things being equal, it makes m'—

1

vary as the density of the medium, and this is a great deal further

m*—l
from the truth than —^ « p. Both (5) and (10) give the same

general kind of behaviour of m" when any one of the zeros \ = \i,

X = X,, etc., is crossed. The infinities of m' are however in different

positions in the two cases. Thus in a formula of type (10), viz.

in the neighbourhood of, let us say \ = X„ we may put

A, — A,j

the rate of variation of the terms not involving X, being com-

paratively negligible. We observe that wi" is negative from X = X,

/ A I \ A \
to X = A/ X,' ^ = X, ( 1 — 5 —^ ) approx. Thus there is a range

of wave-length ^g-^AJIq^^ for which m is imaginary. In the

case of a formula of type (5) we may write in the neighbourhood

of an absorption band

m«-l _ A

_^_(l +aq)(X'-\') + Aa
'^- \l-q){\'-X.^)-A

= r:.f-^^4^>^--') (^^)'

where X/« = X,« + A/{1 - q).

It is clear from (11) that m? changes from -I- oo to — oo as X

crosses from X > X/ to X < X/. m^ then becomes continuously

smaller numerically, but remains negative as to sign until it

reaches the value zero, which is determined by

A(l + a) _

^ + °^+(i-,)(v-V)'"-

or X^= \g' — A aj(\ + aq). Thus m is imaginary from

X = (X/ + Al{\ - q)]^ to X = {X,'' - Aajil + aq)]\
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Except in the immediate neighbourhood of an absorption band

the value of the refractive index is practically the same whether

we assume a dissipation term or not. Moreover the general

character of the behaviour in the neighbourhood of an absorption

band, as outlined above, is the same in both cases. It is import-

ant to bear in mind that the quantitative results are not the same,

and many of the foregoing formulae are therefore to be taken as

illustrative rather than representative. The same caution is to

be observed in regard to the following treatment of residual rays,

which neglects absorption. The more complete theory will be

considered later.

The Residual Rays.

It is now necessary to interpret the imaginary value of m
which, as we have seen, arises in a certain range of wave-lengths.

If m is the refractive index of the material, the vectors in a plane

wave propagated along the axis of z may be represented by

i-T- [ct-mz)
e "

If m is imaginary, let us suppose it to be equal to + 1^ where /3 is

a real quantity. The expression now becomes

—2tttZ -l — Ct

e 6 ,

If /S is positive this represents a disturbance periodic in time

which falls off indefinitely in amplitude as z increases. If j3 is

negative it increases indefinitely. As the latter case would

require infinite energy to maintain it, it may be left out of con-

sideration. As /8 varies from oo to zero and X, is small, yS/A. will

be large over most of the range, so that the obvious interpretation

of our result is that light of the wave-lengths for which the value

of m is imaginary is incapable of entering the medium. It is not

merely that the light is absorbed by the medium when it gets

inside, as is the case for example in most coloured liquids which

show body colour. It is almost unable to enter the surface.

In fact all the light of the wave-length under consideration is

totally reflected from the surface of the substance, even when the

incidence is normal. For light of this particular range of wave-

length the body behaves like a perfect reflector.



158 DISPERSION, ABSORPTION AND SELECTIVE REFLEXION

Many of the aniline dyes exhibit phenomena of this character

in the visible spectrum. In fact something similar arises when-

ever the medium possesses intense absorption ; so that it will be

more convenient to consider the case of the aniline dyes when the

theory of absorbing media has been discussed. It is clear from

the considerations which have been urged that it is not necessary

to have absorption of the type which is accompanied by degrada-

tion of energy for the rays to be unable to traverse the medium.

It is only necessary that the period of the light vibrations should

agree with one of the natural periods of the medium.

The best examples of this type of phenomenon have been

found in the behaviour, in the infra-red region of the spectrum,

of a number of insulators which are quite transparent to light in

the visible spectrum. The most conspicuous examples are quartz,

rock-salt, sylvite and fluorite. If the reflecting power of quartz, for

example, is examined, it is found to be small, for normal inci-

dence, for all wave-lengths from the visible spectrum up to about

7-6 /A (1/^ = 10-* cm.).

It then begins to increase rapidly as X, increases, until at a wave-

length in the neighbourhood of 8'1 fx quartz is almost as good a

reflector of radiation as a metal. This state of things continues

up to about 9 /A, when the reflecting power begins to diminish.

The transparency varies in the opposite way to the reflecting

power. In fact between S'l and 9 /a quartz is so opaque that

Nichols* was unable to detect any radiation through a layer of it

only 2'5 wave-lengths in thickness. The relation between the

reflecting power and the transparency of quartz is exhibited in the

accompanying diagram (Fig. 25), which represents the results of

Nichols's experiments.

Since the rays which correspond to the natural periods of

substances are incapable of entering them, and so are always

almost totally reflected, we are furnished with a new means of

investigating the optical periods of substances. This method, due

to Rubens, consists in submitting a beam of radiation from some

source, such as a Nernst glower, to a series of successive reflexions,

at incidences as nearly normal as possible, from surfaces of the

material under investigation. The rays which are obtained after

• Ann. der Phyt. vol lx. p. 401 (1897).'
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a sufficient number of reflexions will consist only of those which

correspond to the natural periods of the substance. These rays

have been named by Rubens, Reststrahlen or Residual Rays.

The wave-lengths of the residual rays for a number of substances

are given in the following table

:

Substance
Wave-length of

Residual Hays
in 10~* cm.

Authority

Quartz (SiOg) 8-1—9, 20-75
[Nichols •*

(Rubens and Nichols -f-

Fluorite (CaFg) 24-4 Rubens and Nichols t

Sylvite (KCl)

Rock-salt (NaCl)

Wulfenite (PbMoOO

62, 70

45—48, 50—56
10-8—14

Rubens and Hollnagel J

Rubens and Hollnagel J

Coblentz §

Scheelite (CaWO*)

Corundum (AI2O3)

Potcxssium Bromide (KBr)

10-8—13-2

10-6—16

76, 87

Coblentz §

Coblentz §

Rubens and Hollnagel J

We have seen that according to the theories of dispersion with

which we are concerned, the refractive index between certain

* Loc. cit.

t Ann. der Phys. vol. lx. p. 418 (1897).

X Sitz. Preuss. Akad. Wiss. p. 26 (1910).

§ Jahr. der Bad. vol. v. p. 1 (1908).
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limits of wave-length is an imaginary quantity. We shall con-

sider the phenomenon of reflexion under these circumstances a

little more fully, limiting ourselves to the comparatively simple

case of normal incidence. Referring to Chapter vii, p. 132, we see

that if the electric intensities in the incident, reflected and

refi-acted waves are respectively X^, X, and X^, then

y _ 2 sin ^j cos ^1 _
' sin 6.i cos 6i -h sin di cos 6,

'

'

, TT cos 0j sin 9i — sin 0^ cos do ^and -A 3= 2 ;

25
: TT Xi,

cos 01 sin 0a -f sm 0i cos 0^

where 0i and 0^ are the angles of incidence and refraction, and

the magnetic permeabilities yxj, /ij are taken as unity. In the

case of normal incidence all the angles are vanishingly small, so

that we may put sin 0i = 0i = m sin 0^ = m02. Hence

X, = -^X^ \m + 1

^_1 (12).

and X,= r Xi, when ^ =m + 1 I

When m is real the intensities of the light in the incident

reflected and refracted waves are cXi', cX^ and mcX^ respectively,

and we observe that mcX^ + cXj* = cX^, as is required by the

principle of the conservation of energy. Calling the corresponding

intensities /j, I^ and /j we have

Let us consider the change in the ratio of the reflected to the

incident light as w travels over the range we are considering.

When m is real and of the order unity, as in most cases of refrac-

tion in the laboratory, /j is of the same order as /, but is always

less than /j. As m increases to the value + oo , /,//i becomes

equal to unity. When m becomes zero, I^ is still equal to /j.

Now consider what happens when m has the imaginary values

which it takes between + oo and zero. We may put m = i^

where y8 is real. Then

V _ ^-1 1- _^1-*^ y l-2t/3- yg^
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Let us put this into the form p(coa0+ {smO) = pe^, then p"

will represent the ratio of the corresponding intensities, and will

measure the difference of phase of the two beams under com-

parison. We have

1 _ pa 28

Thus the intensity of the reflected light is equal to that of the

incident light for all the imaginary values of m which intervene

between + oo and 0. It is clear that the intensity of the trans-

mitted light must be zero throughout the same range of wave-

length. This is at once evident for the limiting values -i- oo and 0,

from the expression

I^ _ 4m

The width of these regions appears to be quite considerable

and is different according to the type of dispersion formula used*.

For a formula of the Sellmeier type, we have seen (p. 156) that m

is imaginary from \ = >g to \= k/ \^—'^ . Thus the residual

rays range from Xg to \g — AgjIq^Kg approximately. Using the

Lorentz type of formula (p. 156), m is imaginary from

=\/^«'+r4^ ^ox=Jx^-j
Aa

l-q - - V • 1 + aq

Thus the width of the residual rays is approximately

A(l+a)
2XAl-q){l + aqy

We shall illustrate these results by considering the example

furnished by rock-saltf. Paschen;|: has shown that the refractive

index of rock-salt can be represented over the range from '18/* to

22 fi by the following dispersion formula of the Sellmeier type:

• Havelock, Roy. Soc. Proc. A. vol. lxxxiv. p. 515 (1911).

+ The numerical values are taken from the paper by Havelock (Joe. cit.)^

t Ann. der Phys. vol. xxvi. p. 130 (1908).

B. £. T. II
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where 6'= 5-680137,

if, = -01278685, V = -0148500/i«,

i/, = 005343924, V = 025474 14/a»,

if, = 12059-95, X,«=3600/tt«.

[In the expressions above, and in the remaining formulae of

this section, the values of the constants which are given are such

that the values of the wave-lengths \ in terms of the unit

fi = l X 10~* cm. have to be substituted.]

This gives two natural periods in the extreme ultra-violet and

one in the infi-a-red at about \j = 60fi. In the immediate neighbour-

hood of the latter we find m« = 5680142 -t- 12059-95/(V- 3600).

This gives for the lower limit of \ which corresponds to an

imaginary value of m, the wave-length 38-4//,. Thus the residual

rays from rock-salt should extend from 60//, to 38-4/*; since the

value 60fi corresponds to the natural vibrations of that substance,

according to the dispersion formula given by Paschen.

A dispersion formula of the Lorentz type has been given by

Maclaurin*, which shows an even better agreement with the

experimental values of the dispereion from -48/* to 22/4. This is

m»-l _ K-1 Cj C,

m'* -H a ~ /c -h a
"^

X^ -V ^ >-' -V
where a = 5-51, k = 59,

0,= 00191605, Xj = 012652/4,

C2= 683-816, X2 = 51-3/4.

In the neighbourhood of Xi, 3^' = 0169652, and the upper

limit of \ which gives an imaginary refractive index is

\/{V + Ci/(1 - q')} = 01353/4.

The lower limit is ^JlXi' - aC, /(1 +aq')} = 0-1027 fi. Thus in this

region the residual rays would cover a range of 0226/1. In the

infra-red the value of q^ is 0429449 and the upper limit is

\ = V{X2« + Cj/(1 - q^')] = 61-9/4.

The lower limit is

X = VfX^" - aO,!(l + aq^')} = 38-9 /u

In this case total reflexion should occur over a range of 23/*.

• Roy. Soc. Proc. A. voL lxxxi. p. 367 (1908).
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The experimental results on the distribution of the energy

among the different wave-lengths in the residual rays are not in

accordance with the theoretical conclusions which we have just

deduced. There is no evidence of the existence of finite stretches

of spectrum in which the reflecting power is equal or nearly equal

to unity. In every case the curves show a very sharp rise to

a definite maximum, which is sometimes followed by a rather

similar second maximum. The reflecting power at the maximum
is generally comparable with 75°/^. There is no evidence of the

existence of an extended region showing a reflecting power near

to unity. It is probable, as we shall see, that this difference arises

from the fact that we have omitted to consider the resistance

term in the equations of motion, which corresponds to absorption.

Absorbing Media.

We have seen (p. 144) that absorption can be accounted for

in a general way by the introduction of a fictitious retarding force

proportional to the velocity of the vibrating particles. If the

component, parallel to the axis of x, of the force of this type

which acts on the sth particle is — ^gXg the equations of motion

become

m,^-^' = e,(E, + asP.)-^^-^s^-^ (13),

with similar equations for the displacements parallel to the axes

of 2/ and 2. We shall suppose as before that the impressed electric

intensity E is parallel to the axis of w. We shall leave out of

account the displacements along the y and z axes, since in an

isotropic medium, if Ey and Ez are equal to zero, the mean values,

averaged in space, of yg, Zg and their time derivatives will also be

zero. Dropping the suffixes for the moment the equation of

motion may be written

mD'+/3D + ^x = e(E^ + aP^).

If E^ = E€^P^ and P^ = Pe^P^ the forced vibrations (see p. 147)

will be given by

a; = fmi)2 + |8D + iV e (£; + aP) 6*P«

^ e{E + aP)
^„,^

m{po''-p') + i^p
11—2 •
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Thus the displacement of the «th electron is

'''-m.{pj>-p^) + i^.p'
^'^^'

n

The polarization Pc*^* is equal to 2 VgegX,, where v, is the

number of electrons of type « per unit volume, and the summation

is extended over all the electrons in the molecule. Proceeding in

exactly the same way as before (p. 148), we find that the square

of the refractive index is now given by

5 vsej"

m' = 1 H —
1-aS Vge/

1 ms(pi'-p') + i^sP

or
m'— 1 _^ VgBg

ims^ps^-p^r+^s'p' img^ip^-p'T+^s'P' '"^ ^'

In all the important cases ^sP is small compared with ing{p^ - p^)

except when p is very nearly equal to pg. So that except in the

immediate neighbourhood of the natural frequencies of the

1 . 1111 m' — 1 2, i/.gg''
,

substance we shall have :;
—-—r-r = z—-.—

r

rr very nearly.
l + a(m2-l) xmg{pg^-p') ^ ^

This is the same formula as we obtained previously on the

assumption that there was no damping. Thus the introduction

of a dissipative force has practically no influence on the phenomena

save in the immediate neighbourhood of an absorption band.

In tracing the phenomena in the immediate neighbourhood of

the natural frequencies, it is desirable to effect a simplification,

otherwise the formulae become too cumbersome to manage. We
shall suppose that in the immediate neighbourhood of pg we can

treat the contribution to the right-hand side of (15), which arises

from electrons other than the sth one, as a constant quantity q
independent of the frequency p. This will be legitimate if^ varies

over only a small range in the neighbourhood of jo,. It would

probably lead to erroneous results if it were applied to a very

broad absorption band. This difficulty, however, might be avoided

if q were replaced by a few terms of an expansion in powers of
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p, sufficient to take account of the normal dispersion caused by

the more distant natural frequencies.

With this restriction then, we shall have in the neighbour-

hood of p — po, putting nio for the refractive index and dropping

unnecessary suffixes

Thus m «= ye'(l-«) + ^W-P')(l + g-«g) + ^'^i>(l+9-«g)
" m ipo^—p^) (1 — aq) — ave^ + i^p (1 — aq)

and is complex. Let us put mo = n (1 — Ik), so that

rriQ = w^ (1 — K^) — 2iri?K.

Both n and k are real. The vectors which specify a plane wave

jjropagated along the axis of z will be proportional to e ^ '^ '""^

where X is the wave-length measured in vacuo, c is the velocity of

light in the free aether, and 2iTCJ\ = p. Thus the vectors will be

proportional to

e ^ e ^
(17).

As in the previous cases in which it has occurred, the real ex-

ponential represents a decay factor. The extinction coefficient

27r
is therefore equal to -— uk, and the medium exhibits absorption.

The second factor shows that the phenomena are periodic in a

distance equal to \/n, so that the medium behaves otherwise as

though its refractive index were equal to n. It is clearly of con-

siderable importance to deduce the values of n and w/c from

equation (16).

After rationalizing the denominator in the expression for rrio^

and then equating real and imaginary parts we find

n'(l-K')^A+;^ (18),

2»«- =^. <19)-

OiV€/

.(20).
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Feeble Absorption,

There is one particular case, which is of importance in nature,

in which a considerable simplification of these formulae may be

effected. A large number of substances exhibit absorption in

varying degree throughout their volume, and are said to possess

body colour. This is the case with most coloured solutions and

minerals, and in fact with most coloured substances which are

transparent to a considerable proportion of the visible spectrum.

In these cases the absorption is small in a distance comparable

with the wave-length of light, although it may be considerable in

a distance comparable with 1 centimetre.

Consider the behaviour of waves for which p has a value such

as to make 7 = 0. We see from p. 165 that the absorption causes
UK

the amplitude* of the light to fall off as e * . In a distance

^ = ^ it will therefore diminish in the proportion of e~"" to unity.

Since the absorption in distances of this order is very small it

follows that e~"* must be very nearly equal to unity ; so that nic

must be a very small quantity. Turning to formula (22) we see

that riK will only be small when 7 = 0, provided that Bjh is a small

quantity. It follows that S is a large quantity compared with B,

and also that it is large compared with 7 within a reasonable

distance of the value of p corresponding to 7 = 0. In this region

we may use, as an approximation, the formula

fiK ^ (23).

2^*(7«+S8)

At the frequency for which the absorption is a maximum

TT- (tik) and therefore ;r- (-^—s,) vanishes. Hence
dp^ ^ dp\'f+ G^J

mpo' — mp^ = ^^^
1 — ao ^ „ ai/e** mp^ — -:r— l-3m^

• Jhe intentity will be proportional to exp. - 4ir — «.
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By putting p=Po on the right-hand side as an approximation we

see that the absorption maximum lies close to

^lP^^-:z.ml — aq

Near the natural frequencies of a gaseous substance we can

put ^ = 1, a = and q = 0. In this case it may be shown* that

satisfactory approximations for n and uk are

» = i + 2(|¥F) (2*«>'

and 2m* =y^ (2*'')-

If we neglect the variation of 8 compared with that of 7 in

(24 b), we see that the maximum absorption is given by 7 = or,

to this order of approximation, by ^ = po. These relations have

been utilized in interpreting certain spectroscopic and magneto-

optical experiments. (Cf. Chap. XX.)

The Residual Rays from Absorbing Media.

If we are to discuss the phenomena which characterize the

residual rays it is evidently necessary to consider the behaviour of

the formulae for n and k when BjS is not small. Solving for k

we find

^Vl
and, treating 8 as constant

dK

dy
B^/{^.[^^^^^£^)'\

This vanishes when 7 = — B/2A and when 7 = + 00 . Treating

n^ and ii^k^ similarly we find that the maximum and minimum
values of both n^ and n^k^ are roots of the cubic equation

4^7^ + ^Brf - 4>A8''y - B8^ = 0.

• Cf. H. A. Lorentz, Theory of Electrons, pp. 154, 310.
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Let US now turn our attention to the intensity of the light

reflected at the surface of the medium under consideration.

Confining ourselves to the case of normal incidence and following

the method of Chapter vii, p. 138, we see that the ratio of the

reflected to the incident electric intensity is

Xt 1 - e ^ Oi/xicos^, Oj/tj

V- = ^ri~ » where e = rr- = .

Ai 1 + € Oa/Xi COS c/j OffjUi

For all the reflecting media that we have to deal with /ti = /iaj = 1,

and since Oj = c/V/aj/Ci and a, = c/V/i^/ea, we have

= — = A / - = TO,

, X3 m — 1 n — rVn — 1
so that v~ — r^i

— '• rr •A
J

m + 1 n- iKU + 1

Putting this into the form pe^ we get

n«+ wV2-l
pCOBd= —

and p sin ^= +

^ *^^*
^ = [{n + ir+n^K^r ^

^^'

and tan^=-—-?^^^, (27).
w^' +nV-l ^ ^

As before, measures the change of phase on reflexion, and

/j" is the ratio of the intensity of the reflected and incident rays.

The expressions which result on substituting from equations (21)

and (22) are very complicated, and there does not appear to be

any suitable approximation of a general character. The value of

p* can only be obtained satisfactorily by numerical computation

after the constants in the formulae have been determined. The

character of the graph of p^ as a. function of p will be discussed

after the theory of dispersion has been considered from a rather

more general standpoint. In the same place we shall also review

a number of the preceding results for absorbing media, using a

rather simpler dispersion formula. (See p. 178.)
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' Generalized Theory/ of Dispersion.

In order properly to realize the limitations and approximations

to which the foregoing theory of dispersion is subject, it is desirable

to consider it briefly from a somewhat wider standpoint. From

what has been said it is clear* that dispersion is essentially a

dynamical problem in which the machinery is determined by the

fundamental structure of the atom. Unfortunately we know very

little about this structure, so that the necessary data cannot be

stated very explicitly. Fortunately the methods of generalized

dynamics enable us to find out a good deal about the behaviour of

such a system even when we do not know much about its exact

constitution.

In order to determine the motion it is necessary that certain

functions of the state of the system should be known or, at least,

be capable of definite specification. These are the Kinetic Energy,

the Potential Energy, the Dissipation Function and the function

which is equal to the work of the external forces. Let us consider

these briefly in order.

Regarded as a dynamical system the optical medium consists

of a system of electrons which may be treated as point charges

subject, when undisturbed, to unknown conditions of equilibrium.

The equilibrium is not necessarily a static one but may involve

motion in orbits.

In any event the expression for the kinetic energy is quite

simple, since it is equal to the sum of the energies of the individual

electrons. If there are w electrons in any sufficiently large element

of volume of the medium the kinetic energy 8T which belongs to

this element is

Sr = iTm.(*.>+ y.« + i/) (28),

where Wg is the mass and Xg, y, and i, denote the components of

the velocity of the sth electron.

To obtain an expression for the potential energy is much more

complicated. If the equilibrium state involves steady motion, the

* This is only true provided dynamics is adequate completely to account for the

behaviour of atoms in this respect. This point is now doubtful, but, at least, it is

of interest to examine the results to which generalized dynamics leads.
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potential energy will involve the velocity as well as the space

coordinates. This makes the analysis considerably more com-

plicated. As the present discussion is intended to be purely

illustrative we shall forgo generality to the extent of supposing

the undisturbed equilibrium to be a static one or at least one

which can be treated as though it were static on the average.

The effect of orbital motions has been considered to some extent

by Larmor*.

Under these conditions the most important term in the

expression for the potential energy of any particular electron

(suffix s) will undoubtedly be of the form

where a is a constant and Xg, y« and Zg are the components of the

displacement of the electron from the equilibrium position. This

term represents the work done by the force of restitution con-

templated by the former theory. If all the electrons always

moved similarly and preserved similar geometrical relations in all

the motions contemplated, the whole of the potential energy could

probably be represented by a single constitutive term of this kind.

But even when forced oscillations alone are considered, the relative

displacement of the different kinds of electrons is affected by the

frequency of the vibrations, so that it is necessary to consider the

influence of the separate electrons on each other. Now each

electron lies in the field of force of the doublets which are

equivalent to the displacements of the other electrons, so that the

complete expression for the potential energy of any particular

electron will contain terms depending on the displacements of all

the other electrons which lie within some considerable distance of

it. Consider the part of the potential energy of the sth electron

which arises from the displacement of some other specified electron

which we may denote by the suffix a. Let the line joining e^ to

the undisplaced position of e, be r, where

r'^x' + y^ + zK

When e, is displaced an amount x,, r will become

r' = {(x + x,y -\-
y^ + z^]K

• Phil. Trans. A. vol. cxc. p. 236 (1897).
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The potential energy of eg in its undisplaced position, due to the

doublet arising from e^ the moment of which is CaOOa, is

_a_/l\_ as

The corresponding quantity for the displaced position of eg is

Jb I* woa /I \ _ x^j-.

There will therefore be a term in the potential energy of eg, due to

any other electron, which is of the form egeaXgXaf{r, 6) where /(r, 6)

depends upon the undisplaced positions of the electrons in space.

Similar remarks apply to the y and z components of the

displacements of the electrons, so that the complete expression for

the potential energy of the element of volume may be written

r=ns=n
8 Tf= 2 2 [ArsXyXg + Brsyryg + GrsZ^Zg

+ FrgXrys + OrsOOrZii + 'B-nVrZ^ • • -(29),

where the coefficients A, B, G, F, G, H involve the fundamental

structure of the medium, but are independent of the displacements

^n yr ••• ^s-

The nature of this expression for the potential energy calls for

a little fuller consideration. The cross coefficients Arg etc. are

proportional to the inverse cube of the mutual distance of the

electrons involved, so that they are small except for pairs of

electrons which are quite near one another. On the other hand

the number of electrons at a distance between r and r + dr varies

as r^dr : but, on account of the periodic character of the phenomena,

the distant electrons are in layers which exert opposite and

approximately equal effects. Thus the contribution to the potential

energy of a particular electron, which arises from the cross terms,

will come almost entirely from other electrons in its immediate

neighbourhood ; in other words the whole of this potential energy

may be considered to arise from local causes. It is therefore

legitimate to express it as a summation over the element of volume

if this is taken fairly large. Unfortunately the size of the

appropriate element will depend to some extent on the period of

the vibrations, so this process can only be regarded as an approxi-

mation after all.
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The summation in (29) can be split into two parts, one involving

electrons in the same molecule and the other representing the

influence of the electrons in the external molecules. The effect of

the last named part is represented by the term aP in equations (1).

This part of the summation will clearly vary with changes in the

density of the medium. The eflfect of the part of the summation

which depends on the other electrons in the same molecule is not

considered in equations (1). It is not likely to be influenced much,

if at all, by changes in the density of the medium.

The discussion on p. 1 43 shows that we do not know much about

the nature of the forces leading to dissipation of energy in systems

of this kind. It is therefore desirable to make some fairly general

assumption about it and we shall suppose that the dissipation

function BF is a quadratic function of the velocities of the electrons.

The consequences of such a supposition have not, as yet, been

shown to be incompatible with the results of experiments.

An expression for the work function BU may be found by

considering the energy of a dielectric medium in which an electric

field resides. If the electric intensity is E the energy per unit

volume is ^DE = ^E(E + P). The term ^E' can be interpreted

as the energy per unit volume of the space occupied by the

dielectric, leaving ^EP as the work done by the field on the

electrons. The work function is therefore

BU^'^TeriE^Xr + Eyyr + E^Zr] (30).
r=l

If we consider only plane polarized waves in which the electric

intensity is parallel to the axis of x we can put

Ex = ^, Ey = Eg=
r=n

and BU= 2 CrXxr (31).
r=l

The equations of motion become greatly simplified when the

functions T, W and F (dropping the 8's) become sums of squares.

It is well known that by means of a linear transformation of

coordinates any two of the functions T, W and F can be trans-

formed into sums of squares of the new variables each multiplied

by an appropriate coefficient. But we are unable to do this

simultaneously for all three even when two of them are already
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sums of squares, as is the case now with T and possibly also F.

For instance suppose we replace the 3/i variables x^, y-^^ ... Znhy '^n

new variables, qi, q^ ... qm which are linear functions of x^, yi ... Zn-

Let

Xr = dr^qx + a^q^i + a/^3 + • • • + <^r'^q%n

Vr = hr"- 9i + hr^q^ + ^/(/s + . . . + Wq.n ' (32),

Zr = Cr^qi + Cr^q-i + c/^s + ... + Or'^q^n'

where the i^nf coefficients a^ ... c^'^ are constant quantities. The

condition that this transformation should reduce the expression for

T to a sum of squares is that the —^-^ ^ equations between

the 9//^ quantities a-^, a^ etc., which arise when the coefficients of

the cross terms in the new expression for T are equated to zero,

should be satisfied. In a similar manner the functions W and F

will lead to——^ equations each. As soon as we have more

than two functions to reduce, the number of equations exceeds the

number of variables, and the transformations will only be reducible

if a number of the equations happen, on account of relations

inherent in the original coefficients, to become identical. In the

present case where we have three functions, -^—^ of the

equations would have to be alike. There is no reason to expect

that this condition can be accurately satisfied with the kind of

systems under discussion, so that we really ought to consider the

general case in which T, W and F are any homogeneous quadratic

functions. We shall do this very briefly later (p. 177).

Nevertheless there is one case of simultaneous reduction which

is well worth considering,—that in which the kinetic and potential

energies are converted into sums of squares by an appropriate

linear transformation and F is assumed to be equal to a sum of

squares of the velocity coordinates so obtained. There are two

reasons why this treatment may be considered plausible. In the

first place we are quite in the dark about the real nature of F, and

in assuming it to be expressible as a sum of squares of the

coordinates which enter into the normal forms of T and W we are

really making the simplest possible assumption about it. Secondly

there are a large number of cases in which the dissipation is small,
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and in these cases the assumption outlined will probably give a

close approximation to the truth.

Introducing the variables 7,, q^.-.q-tn which satisfy equations

like (32) the kinetic energy becomes

1 «=3n

T= ^ 2 ^4»' (33),

n

where /8,= 2 m^ (0^'* + fer** + Cr*^,
r=l

provided that for all values of I and m between 1 and 3m, excepting

when l = m,
n

3n
There are -^ (3n — 1) such relations between the 9n^ coefficients.

Turning to W we see that since

XrX, = (ar^q, + ar% +...+ a/^qsn) (a,' q, + a,^q, + . . . + a.'^q^)

and

Xry,= {Or^qx + ttr'^a + . . . + a^'^'^sn) {Wq^ + 6/^., + . . . + 6,=^5s„)

etc., we shall have

Tr=|l7,^,« (34),

where

r-l»-l

provided that for all values of t and u, except t = u, between 1 and
3n,

2 2 M„(a,*tt.« + a/a,«) + £„(6/6.« + 6.*6,«) + a,(c/c,» + c,V)
r=l «=1

+ ^„ (a.'t," + a/6,«) + (?„ {o^'c,'' + a/cr"") + IT,, (6/c,« + ft/c^")} = 0.

There will again be -^ (3n — 1) of these equations.

We also have
n #=3n

U=lXerXr= 2 8.9, (35),
r=l «=1

n
where 8, =X 2 e^o^^
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2 3/1

and we assume •^=o ^ ^s?«^ ('^^)>

where the e's are constant coefficients.

The equations of motion are given for each g- by the extended

Lagrange's equation*

l(^1\JT ^'^Z j^'^ljl (37)
aA^gJ 9?* 8(is S^s 9g8

They are therefore

yS«gs + 7s?g + esg« = Sg (38),

and if X varies as e*-**^ the forced vibrations are given by

^*"^=A?+77+^
^'^^^*

The natural vibrations will be obtained when the external

electric intensity X is equal to zero. Those corresponding to the

displacement g« will therefore be determined by the equation

i8,g,+.7s2'« + es^s=0 (40).

They will be proportional to e*'^"* where tt, is a root of

— ySsTT^ + iegTT + 7g = 0.

Evidently ttj is complex and if we put tt* = ps + *^s, p^ will be

the frequency of the corresponding principal period and kg its

decay factor. Since

TTs = V» - ^«' + 2^>«/i^s

we have — y3« (p/ - ki) — €sks+ys = 0,

and eg = 2;5s^g.

Hence P'^l'm <">'

and 7« = ^«p«' + -^V •

Thus qg = ,

Sn 3w a *S
and Wr='Za/qs='^ ^—^—

j

(42).

* Lord Eayleigh, Theory of Sound, vol. i. chap. V.
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The summations in the expressions above are to be extended

over all the n electrons in any sufficiently large element of volume.

If V is the number of such elements in unit volume the polarization

will be
M

r=l

n 3» /T '^V ^ V "r Og

%(p>'-p'') + -^+^esp

«Z X ^i—^ =(/c- 1)X ...(43),

n

where XS,' = v8g 2 erttr'.

r=l

Thus for a medium of unit magnetic permeability the complex

refractive index m is given by

m»=l+2 ^

'^.(P.'-p'') + ^0^^+i^sP

8» ^

where
(n n \ n

,

S e^a/ 1 Bra/ )
-^ S to, (a^** + K^ + c/')

r=l r=l / r=l

W45).

d), = €,-hX nir (a/ + 6/ + Cr")
r=l '

It is evident that the refractive index must be independent of

n and v except in the combination nv. The particular values of

n and v are arbitrary except that n has to be a sufficiently large

number. The product nv is equal to the number of electrons in

unit volume of the substance and is therefore a characteristic

constant. The requisite independence is secured by the fact that

when n is large the constants which enter into (44) keep on

repeating themselves for different values of s. Thus the summation

in (44) is really a summation over the different principal modes of
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vibration in which each mode is multiplied by the number of times

it occurs in unit volume. The total number of terms, coincident

or otherwise, is equal to three times the number of electrons

present in unit volume.

Formula (44) is of the Sellmeier type except for the inclusion

of the dissipation term. With energy functions of the type now

under consideration, the relation between the refractive index

and the density of the substance is not an obvious one, since

the constants Ag, i/r," and
<f)s

will involve the density in virtue of

the relations on pp. 173—175. A formula of the Lorentz type

would, however, arise if we assume that the only part of the force

on an electron which depends on the density of the medium is

= aP, where a is a constant and P is the polarization. Formula (44)

then becomes

= s .,, ::,..'^ (46),l-a(m^-l) s=i^s''-p^+2<l>Jp'

where the constants are now somewhat different. A,' is pro-

portional to the density of the substance and yjrg' and <ps are nearly

independent of it.

In the general case in which the functions T, W and F are not

simultaneously reducible to sums of squares the values of Xg etc.

are the solutions of Sn simultaneous linear equations and can be

written down in the form of determinants. Consequently these

determinants enter into the expression for the refractive index and

make it difficult to handle except by approximate methods. In

general the symmetrical coefficients which lie along the axes of

the determinants are large compared with the remaining unsym-

metrical coefficients; so that the determinants can be expanded

as a series of sums of products which decrease progressively in

magnitude. In this way it can be shown that the Lorentz and
Sellmeier types of formulae result in virtue of approximations

which are equivalent to the physical assumptions which have

already been made in deducing them.

We shall now return to the behaviour in the neighbourhood of

an absorption band and the residual rays, using the simpler formula

(44) instead of (15).

R. E. T. 12
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Absorption and Reflexion near the Critical Frequencies.

In the neighbourhood of one of the natural periods, say p = Pt

we shall have, as a suflficiently close approximation,

*»' = g«+
, ,

^'..
(47).

Putting m = n(l — ck) where n and k are real and positive we
find, as on p. 165,

By )

y + ^ (48),

2w»/e = £8/(7» + 5^)J

where A=q„ B=Ag \

7 = ^.' - P". ^ = <f>sP j

.(49),

Zn -^ A +_^_g^ + ^+_^_^
r

.(50).

7* + 8- 7* + i

When the absorption is small in a distance compared with one

wave-length we get, as before, to a first approximation

Bh
nK =

2A^(rf + B^)'

Substituting the values of A, B, y and B we find —^

—

^ vanishes

if
^

In the fraction we may put '>^^=p^, as a sufficient approxima-

tion. Thus the value of^ for which the absorption is a maximum
is given by

p' =V^/-t-=J'«' (51)-
max. ' 4 •*

Thus the corresponding true natural fi'equency is the frequency

for which the absorption is a maximum. It is somewhat less than

the constant i/r,' which enters into the dispersion formula.

We shall now turn to the problem of the intensity of the

radiation reflected fi:om a surface of the substance under con-
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eideration at normal incidence. Denoting this by p^, considerations

already brought forward show that it is given by

^ _ {n''-\-n^K'-\y^^n^K^ _ n'' (1 + k") - 2w + 1

Substituting the values of n and uk found previously, we

get

.(52),

.(53).^^^^^ <^ = \/^'+ y + g.
-

We have seen that for substances which exhibit the pheno-

menon of body colour u^k^ is small compared with unity, and for

this to be the case for the particular value 7 = it is necessary

that S should be large compared with B. There is no guarantee

that this will be the case with substances which give rise to the

residual rays, since Nichols has shown that in the case of quartz

the amount of the residual rays which are transmitted through

a slab of the substance only two to three wave-lengths thick is

incapable of experimental detection. The value of the extinction

coefficient, riK, for such substances, may therefore be of the order

unity or greater, and this corresponds to a value of B at least

comparable with that of 8. It does not seem likely that there

is any approximation of general application in the case of the

residual rays which leads to any very marked simplification of

the formulae. It is therefore necessary to evaluate the formulae

in each particular case and this is a troublesome process. The

constants A and B involved are obtainable from the correspond-

ing constants in the usual Sellmeier dispersion formulae and so

also is y}ra^ {= y + p^). Determinations of S from the experimental

results do not seem to have been carried out as yet, but the value

of 8 is the most important factor in determining the maximum
proportion of the incident energy reflected.

12—2
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The precise nature of the curves which express p* as a function

of 7 or A, depends upon the values of the various constants.

Nevertheless they always possess certain common features which

are exhibited by the example in the accompanying figure. The

ordinates represent the percentage of the incident energy which

is reflected, ie. they are the values of 100 p* ; and the abscissae

5-5 6 65 7 7S 8 frS 3 9^5 lO ia5

Wave-lengths in 10~* cm.

Fig. 26.

are the wave-lengths (\ = lirclp) of the incident radiation. All

the constants except </>, have the same value in each of the graphs

1, 2 and 3. The common constants are:—g, = 2*05, A« = 2"563 x 10**

and ^/r,»=4•53x 10*8. In graph 1, </),=0: in graph 2, </),=l-42x 10'*:

and in graph 3, ^,= 1'42 x 10". The vertical line at X,= 8855

indicates the value \, of \ which corresponds to the critical
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frequency i/^g. The points marked thus : x, are Nichols's experi-

mental measurements of 100 p^ for quartz. If we call \g the

wave-length corresponding to -^^g and to the value 7 = 0, Xg will

be equal to the constant wave-length whose square enters into the

denominator in the usual Sellmeier dispersion formula. It is

usually assumed that \g is identical with, or, at any rate, very

close to the wave-length for which the energy is a maximum
in the residual rays. It is evident from the figure that this

assumption may be far from being justified.

Starting with values of \ which are less than \, (7 negative)

p^ has a small value which gradually decreases to a very small

minimum. From this it rises very sharply to a maximum beyond

which it again diminishes, but more slowly than it rose. Thus

the curves are far from being sjnnmetrical about the position for

which p* is a maximum. The maximum value corresponds to

a value of A, which is distinctly less than \g. The positions of the

maximum and minimum may of course be obtained by differen-

tiating the expression for p^ with respect to 7, but the equation

which results is of too high an order to be of much practical use.

It happens, however, that the position of the minimum is very

easily obtained with sufficient approximation, since it is practically

coincident with the minimum value of the numerator in p"^. If

we multiply the top and bottom by 7" -\- 6^ the numerator re-

maining is

The minimum value of this is at 7 = — -. z . The corre-
' A —1

spending minimum value of p^ is given very approximately,

provided B^ is rather small, by

Thus the position of this minimum and the corresponding

value of p^ should give an important check on the constants in the

dispersion formulae.



CHAPTER IX

THE FUNDAMENTAL EQUATIONS

The fundamental equations of the electron theory may be

regarded as a generalization or abstraction from the results of

Chaps. Ill, V and vi. The electron theory assumes that matter is

nothing hut a distribution of electrified elements of volume in

space. There are thus no magnetic charges in the sense in which

there are ultimate electric charges or electrons. The magnetic

fields which occur in nature arise entirely from the motion of the

electrons. The simplest assumption which we can make as to the

nature of the universal equations of the field is that they are

identical with those which we have derived for the free aether

containing electric charges. It is important to realize that this

is an assumption, as it is sometimes regarded as self-evident.

What we can be sure of is that the fundamental equations must

degenerate into those for the free aether at points not in the

immediate neighbourhood of material particles; but this is a

very different thing from being sure that they are valid in the

interior of an atom or an electron. The assumption of their

universality is a hjrpothesis which will only be justified if the

conclusions to which it leads are in agreement with deductions

from experiments.

We therefore assume for the universal equations

:

div^ = p (1),

divir = (2).

-'^=-r# <^>'

'"'•^=Kf+''^)
^*'>-
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where the mechanical force on an electric charge whose velocity

is V relative to the measuring system is, per unit charge,

F = E + \[VH] (5).

It is necessary to show that these equations, which are asso-

ciated with the name of Lorentz, are not inconsistent with any

of our previous results. Looked at superficially they do appear

to be inconsistent; since, by simply writing average values in

equations (1) to (5) we do not arrive at equations which are

obviously identical with those which we found to comprise the

behaviour of dielectric and magnetic media in Chaps, ill, v and vi.

It is to be remembered, however, that the vectors defined as the

electric and magnetic intensities and inductions respectively, in

those chapters, were all average values of the true electric and

magnetic intensities but formed in different ways. When this

difference is taken into account the discrepancy will be seen to

disappear. We shall now consider the equations in order from this

point of view.

Equation (1) is supposed to apply to any element of volume

however small. The corresponding equation div D = p is an

equation between average values, and only applies to an element

of volume which contains a very large number of electrons. In

order to compare them let us integrate (1) over any sufficiently

large volume. We have

where En represents the normal component of E at any point of

the surface. But we have seen that the induction jD^ is the

average value of the force in the flat cavity perpendicular to i)„,

so that the normal induction is nothing else than the average

value of the intensity E taken over a surface perpendicular to it.

This identification is only strictly true provided the surface is so

large that the excess of polarization charges of a given sign

inside it is negligible. In other words, of the doublets whose

axes are cut in two by the surface the difference between the

number which leave their positive and those which leave their

negative ends inside must be negligible. On the other hand, if



184 THE FUNDAMENTAL EQUATIONS

the surface is not big enough to satisfy this condition, the meaning

of the induction becomes indefinite.

In any event we saw at the end of Chap, ill, that div E=p
always, provided that p represents the total average density of the

charge whether it arises from conduction or polarization electrons

or both. The apparently inconsistent equation div D = p \s only

true provided the part of the volume density of the electrification

which arises fi'om the polarization electrons is left out of account.

Equation (15) of Chap. V, viz. divJ5 = 0, is an equation over

average values, and is consistent with div jBT = for precisely the

same reasons as those which establish the consistency of (1) and

div D = p. In this case we do not need to consider the possibility

of an excess of magnetic poles of a given sign being situated

inside the surface. For as the elementary magnets consist of

electric charges in motion, it is impossible to cut them in two in

such a way as to separate the equivalent charges. The detailed

formulation of the magnetic properties of bodies from this point

of view will be left to a later chapter.

The equations obtained in Chapter VI also refer to average

values of the dependent variables. The equation which is equi-

valent to (3) is

rot^=-i|? (3a).
c at

In order to show that these equations are consistent it is necessary

to consider their geometrical interpretation. Elach of them is an

analytical expression of the fact that the line integral of the

component, parallel to the contour, of the vector on the left, round

any contour, is equal to the integral of the normal component of

the vector on the right over any surface bounded by the same

contour. Thus the E of (3 a) is the average value of the tan-

gential component of the electric intensity taken round the

contour. It is evidently equal to the average value of the E of

(3) because E when derived from F as in Chapter iv is equal to

the average value of ^ in a filamentous cavity. We have already

seen that the average value of Bn over any surface is equal to the

average value of Hn over the same surface. The equations (3)

and (3 a) are therefore consistent with one another.
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Quite similar considerations apply to (4) and equation (17) of

Chap. VI, which we may write

^°*-^=Kf+''^) ('">•

The average of the tangential component ofH round a contour

is evidently H, and the average of En over the corresponding

surface is clearly Z>„, so that these equations are also consistent.

There is one point which is worth remarking in this case. In

interpreting (4 a) it is desirable so to choose the surface bounded

by the contour that none of the electrons cross it during the

interval under consideration. Otherwise there is a contribution

to the pV term owing to the motion of the electron. (4a) then

becomes inconsistent with itself since the surface integral does

not have the same value over all surfaces terminated by the same

contour. This difficulty may be overcome either by choosing the

surface so that the polarization electrons do not cross it, or by

taking the element of time large enough to include the average

value of effects arising from such translation. This is zero because

the motion of an electron across the bounded surface is equivalent

to the creation of a separate doublet with its like charge in the

new position of the electron, and its unlike charge in the old

position. The creation of this doublet introduces a local term

in the force which just wipes out the effect of the motion of

the charge across the boundary. These remarks are pertinent

to equation (4a) only. Equation. (4) is always consistent with

itself, and is consistent with (4a) when the latter is self-consistent.

In comparing equation (5) with the corresponding equation

F^E+l[V.B-\ (5a),

the agreement of the first term on the right is clear enough, but

the second requires fuller consideration. Here we have to deal

with the average value of H taken along a line to which H is

normal. It is difficult to see how this may be done directly, but

an indirect method may be employed. Considering the case

where E =0 (at least so far as average values are concerned) let

us apply the universal equation F=-[V . H] to find the force
c

acting on any circuit carrying an electric current embedded in a
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material medium. If the strength of the current is i, (5) gives

for the resultant force on the circuit the value -
|
[ids . H] taken

round the circuit s. By an argument similar to that in Chap, v,

p. 83, it follows that the force is equal to i/c times the rate of

change of jJHndS over any surface having the same contour.

The Hn in this integral is, of course, the normal component of the

universal magnetic intensity. But, as we have seen,

jJHndS==jJBndS.

Thus it follows that (5) and (5 a) are consistent and, incidentally,

that the average value of H taken along a line normal to the

direction of H is fiH = B. From this the analogy between the

electric and magnetic vectors would lead us to expect that

En = -
I
Ends = kE = D, the suffix n denoting that the vector is

perpendicular to the direction of integration.

By dividing the space up by means of tubes of induction, it

is clear that the average values of the universal expressions ^E*

and ^H'^ for the electric and magnetic energy densities respec-

tively are equal to ^kE^ and \fiH\ This is only true provided

we neglect constant terms which may be regarded as representing

the intrinsic energy of the electrons and of the molecular magnets.

The Differential Equations satisfied hy the Vectors when

Charges are present.

In Chapter Vll we were concerned with the solution of equa-

tions (1) to (4), and the extensions of them, which have just been

considered, in the cases in which the density p of the charges was

everywhere zero. The results thus obtained naturally applied to

the propagation of electromagnetic effects in insulators, including

the free aether as a particular case. We shall now consider the

nature of the solutions in the more general case, when electric

charges are present and contribute to the resulting phenomena by

their motions and the forces they exert.
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The new equations, analogous to V2^=-^— , which are

satisfied by E and H, may be obtained rather more easily than

would otherwise be the case if we first prove the general theorem

grad div A — ^^A = rot rot A,

which is true if A is any vector point function. The components

of rot A are

8^2 dAy

dy dz
'

Mx dA,

dz dx *

dAy dAx
dx dy

'

.

So that the (c component, for example, of the rotation of the

rotation of A is

cy \dx dy ) dz\ dz dx ) dx \dy dz ) dy^ dz^

^ d (dA^ dAy dA,\ fd^A^ d'A^ d'AA
dx\dx '^ dy dz ) \da^ dy'' dz^ )'

Since a similar result follows for the other two components we have

grad div J. — V2^ = rot rot^ (6).

In order to obtain the differential equation satisfied by E we
differentiate equation (4) with respect to t and obtain

^^E d . ,.- ,dE_ + -(pF) = crot-^.

Substituting the value of B. from (3) we get

|| + |(,K)=-c'rotrotS,

whence, from (6) and (1),

^'^-^^ = gradp4|(,F) (7).

In a similar manner, starting with (3) we find
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Each of these equations is a vector equation and is equivalent

to three separate equations between each of the three components.

Thus if the components of E, H and F are E,^, Ey, Ez, H^, Hy, H^,

Vx, ^y, Vz respectively, the x components are given by the

Cartesian equations

^'^'--/-^-'iAl^o'^''^ <»)>

.(10).and V'H.-l?^' =-im^-'-^
(f dt* c [ dy dz

There are four other similar equations for the other components.

The nature of the solutions of equations (9) and (10) may be

discovered by considering the equation

^•^-^^^ (").

where o) is a function of x, y, z and t. In the electrical problems

which we shall have to consider &> is a given function of these

variables. The solutions of (11) have a certain degree of resem-

blance to the potential in the theory of attractions. The potential

y satisfies the equation ^^Y= p, where p is the density of the

attracting matter, measured in suitable units. As is well known

the integral of this equation is

4r7r JJJ r
dr (12).

Thus the potential at any point P is obtained if we take the

element, pdr, of mass at any point, divide by 47rr where r is the

distance from P, and integrate throughout space. We shall see

that a precisely similar result holds for the functions -^ which are

the solutions of (11). The only difference lies in the fact that in

calculating the values of i/r we replace p in (12), not by the

instantaneous value of w, the function on the right-hand side of

(11), but by the value which this function had at the point of

integration at an instant r/c previously, where r is the distance

from the point at which E or H is to be calculated.

If in (11) we introduce a new independent variable u= ict the

equation becomes

3*->|r ^^^}r ^'^fr d'yjr _



I THE FUNDAMENTAL EQUATIONS 189

The left-hand side would be the value of Va^ in rectangular

coordinates in a four-dimensional space ; so that the problem of

finding the solutions of (11) can be looked upon as the problem of

finding the potential in a four-space. (11) is an example of a

number of electromagnetic equations whose symmetry is improved

when the time t is replaced by the imaginary variable u = ict.

Kirchhoff's Solution.

A very complete discussion of the solution of (11) was given

in 1883 by Kirchhoff* in connection with the theory of the pro-

pagation of light. As a preliminary to solving (11) let us introduce

an auxiliary function ;^ which satisfies the equation

8^ 23^^13^
dr^ rdr c" df ^ ^'

This is the equation to which (11) reduces when the right-

hand side is put equal to zero and y\r is, a. function only of t

and the distance r from a fixed point. If we put
(f)
= r'x^, (13)

becomes

dr^
~

c'dt' ^ ^^•

The most general solution of this equation is (see p. 117)

<^ = F{t-¥rlc)-F{t-rlc),

where F is any function whatever. The two terms correspond

physically to disturbances propagated in opposite directions with

velocity c. We shall only consider one of them and take

^=F{t + rlc)

giving ^ =^^(^+9 ^^^^'

where F is a. perfectly arbitrary function.

Next consider the integral

• Ann. der Phys. und Chemie, vol. xviii. p. 663 (1883).
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taken throughout a closed volume limited by an internal surface

a and an external surface S. By Green's Theorem

Fig. 27.

the normals being directed into the enclosed volume. We also

have from (15), (11) and (13)

From (16) and (17)

This is true for all values of t. Let us integrate it with respect

to dt between limits ti and t^. We then get

-mm-^m: (->•
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Let us now return to the consideration of the function F.

This may be any function of the argument t + rjc. We shall

suppose that it is such a function that it takes the value zero

for all values of the argument except those in the immediate

neighbourhood of the particular value zero. We shall then have

F{x) = unless x lies between, let us say, + e where e is a very

small quantity. We shall also suppose that

'F{x)dx=\ (19).
/;

Since F {x) is zero unless x is between i e we evidently also

have

[ F(x)dx = [ 'F{x)dx=l,
J —tx> J -e

If the value of r is fixed

F(t+-)dt= F(x)dx = l

provided fg+ f/o > e and ti + rjc < — e. Moreover, if we make e in-

finitesimal but still suppose F to have the property I F {x) dx = 1

we shall have, if w is any function of r and t,

j a)F(t + '^)dt=o)'j 'FU + -\dt = (o' (20),

where w is the value of to at the instant t = — rjc. This follows

since, except when t lies between ±e, F = 0, and throughout this

infinitesimal interval «d may be considered constant.

Now let ^2 have a definite positive value and ti a very large

definite negative value, — tx being so large that for all points in the

enclosed volume ti + r/c < — e. Then the values of % which occur

in the integrated part of (18) all vanish. So also do the values of

-~, since the derivatives of ^ are also zero except between + e.

We may write the term containing a in (18) in the form

-///-dr j '<oF(t + -]dt.

This is equal to — jlj — dr where m has the same meaning as

in (20). In a similar way
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where [•^] denotes the value of -^ at the point of integration

(distant r from P) at the instant t = — r/c. The corresponding

integral with respect to da may be similarly treated.

We also have

dn dn \rc \ cJ r^ \ cj)

Thus
_
M-^t'S

where •^' is the value of -i/r at the point of integration at the

instant t =— . The right-hand integral may be integrated by
c

parts, giving

since FU + -j vanishes at the limits. Here (-^) denotes the

9-\fc< ... . T .

value of
--J-

at the point of integration at the instant t=— , in

accordance with our former notation.

The left-hand side of (18) may be treated similarly, giving

rise to

Jj\r\dnJ dn\r)^ crdnKdtJ)

Now let the surface a become coincident with a sphere of

infinitesimal radius p about the point P. Then ^r- =— and the'^ ^ en dp

left-hand side becomes
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When p is made to become very small the terras in - become

infinitesimal compared with -^ . So that the left-hand side

becomes identical with ^ir^, where "^ is the value of i/r at the

point P at the instant ^ = 0. Hence, we have

(21).

Now let the surface S recede to an infinite distance and

suppose that at infinitely distant points the functions -v/r, -^, and

-J-, all have the value zero until a definite time T, then when
ot

r becomes infinite the time t=— , to which ^fr', i^), and (^)
in the surface integral refer, is always less than T, so that every

element of the integral is zero. This supposition is legitimate

physically since we always presuppose that physical phenomena

are independent of past or present occurrences at an infinite

distance. We thus see that the value ^ at the point F at the

time t is equal to

47r JiJ r
dr (22),

where the integral is taken throughout space, and the value of

<u for each element of volume is that which it possessed at

T
the instant t—

.

c

The Propagated Potentials.

The physical interpretation of the result we have just obtained

is very simple. It means that the values of the electric and

magnetic intensities at any particular point P at any instant are

not, in general, determined by the state of the rest of the field at

that particular instant, but by its previous history. The effects

at P, in so far as they are due to a particular element of volume

distant r from P, depend upon the state of that element of volume

R. E. T. 13



194 THE FUNDAMENTAL EQUATIONS

at a time r/c earlier than the instant considered. This time r/c is

equal to the time which would be required for light to travel from

the distant element to the point P. The nature of the field

is therefore such as would arise if each portion of it were constantly

emitting disturbances which were propagated from it in all direc-

tions with the velocity of Light.

When we come to the actual calculation of the values of E
and H in particular cases it is found that equations (7) and (8)

are unsuitable owing to the values of a, given by the right-hand

sides of them, being somewhat complicated. The calculations may
be simplified by the introduction of two new functions, the scalar

potential <^ and the vector potential JJ, from which E and H may
afterwards be derived by appropriate operations. We shall now
prove that

fr = rot U (23),

and ^=-J^^-grad<^ (24.)

if ^ and U satisfy the equations

^"^-V^-o (2«).

""1 ^'^-M—]^^ (2«)-

We shall prove first of all that a function U always exists such

that H = rot U. This function is in fact

^-LW-^^^ (^^>-

For if (27) is true we have

Now the values of H in the integral refer to the different

points of integration and not to the point at which U is measured.

Let X, y, z be the coordinates of the point at which JJ is required

and a, 6, c the coordinates of the element of volume dr. Then

r* = (a; — a)** + (y — 6)'+ {z — cy and the equation above may be

written more clearly as

^ _1_ {{{ (^_tb _ Vi^\ dadhdc

db dc J ^/{js-af+{y-bf + {z-cy
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47r \dvjjj \da db J r dz

do Jdy\rJ JJJ \dc dajdz\rj
j

47r ijjj [ da

= Surface Integrals

.M///.47r |j ji 86 V 3a db J r jJJ dc\ dc da J r

after an integration by parts. The surface can always be chosen

so that the surface integrals vanish, and thus

1 /•/•/• grad div H - V'ff ,

Now the divergence ofH is always zero so that

-'^=-s;///^^^ (2«)-

By comparing this with the equation for the potential

we see that the right-hand side of (28) is equal to H. This

proves the theorem, which is seen to be true for any vector whose

divergence is always zero.

Having proved that a vector U such that H = rot U can

always be found, we substitute the new value of £r in the equation

c dt

and obtain rot f £" + - -^j = 0.
ldU\ = u.

13—2
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This equation is satisfied if E •] rv is the gradient of some

scalar quantity —
<f}.

So that we may put

This is the same as equation (24). It will be observed, however,

that U and ^ are not completely determined by the considerations

which have been brought forward. The only condition we have

imposed on U except (24) is that it should satisfy the equation

H = rot U. Also <^ may be any scalar quantity. If U^ and <^o

are particular values of U and which satisfy the equations under

consideration, they will also be satisfied by

J/-=[^„-grad^|r and ^ = <j>,+ l^-^ (29),

where i/r is some scalar function. We shall determine -y^ by making

it satisfy the condition

div[7=-l^J (30).
cdt ^

'It is necessary to show that this condition can always be

satisfied. Substituting the values (29) in equation (30) we get

There is always some value i/r which will satisfy this equation,

so that (30) can always be satisfied.

We have
1 7)

p = div E=— ^ (div U) — div grad ^,

whence making use of (30)

We also have

Substituting from (23) and (24)

rot rot Z7= grad div U-V^U
If Id'U ,d<f> ^}
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and div U = -^^
c dt

so that V'U- -„—- = -- pV.

Thus (25) and (26) are the equations satisfied by the scalar and

vector potentials respectively. Conversely if
<f>
and U satisfy (25)

and (26) the vectors E and H will be given by (23) and (24).

In the light of our discussion of equations (7) and (8) it is clear

that the values of the potentials are

where the dashes denote that in carrying out the integrations the

values of p and pV, respectively, at the instant t = —r/c, previous

to that for which the integrals are being evaluated, have to be

substituted.

Electron at Rest and in Uniform Motion.

As an illustration of the results which we have just obtained

we shall consider the case of a single electron. If the electron

has always been at rest then V is always zero ; so that the vector

potential U vanishes. Moreover p' becomes identical with p for

every point, since the position at any previous instant is the same

as the instantaneous position. Thus the scalar potential is identical

with the ordinary static potential, the electric intensity is identical

with the usual value of electrostatics and the magnetic force

vanishes. The solution in this case is identical with the results

of the usual electrostatic theory.

Next consider an electron which is moving and has always

moved with a uniform velocity w in a straight line parallel to the

axis of z. Consider the values of the two potentials at any point

Pi at an instant ti. They will not be determined by the instan-

taneous state of the electron, but by its state at some previous

instant t^'. t^ will in fact be given by the equation

t^ = ti- ri'/c,
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where r/ may be called the retarded radius. It is of course a

definite function of the instantaneous radius r^, the velocity w and

the velocity of light c. It is not, however, necessary for our present

purpose that we should evaluate r/ explicitly. Let iis consider

the potentials at a point Pg such that PiPj is parallel to the axis

of z, and at a time t^, such that PiPi — w{ti — ti). Both the

electron and the point P have moved forward in space a distance

equal to ly (^ — ti), and nothing else in the problem has changed.

The potentials will have the same values at Pa at the instant t^ as

they had at Pi at the instant ti ; since they must be determined

by the relative positions of P and the moving charge and cannot

depend on their absolute positions in space. Thus the field due

to a uniformly moving electron is carried along with it as though

it were fixed to it by a rigid firamework.

Fig. 28.

If QiO represents the direction of motion it is clear from

symmetry that the potentials will have identical values at all

points such as P which lie on a circle of given radius about

a point on the line of motion. Let Q^O = z and QiP = ri,

Qi being the instantaneous position of the electron at the time t for

which the potentials at P are being calculated. The potentials

will be functions of z, r^ and t only. Moreover the resultant

velocity lies along the axis of z, so that the x and y components

of the vector potential vanish. We may therefore put

U,^F(z, n, t),
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where / and F are functions which it is not necessary for us to

evaluate more explicitly at present.

We have E=— "oT ~ g^^^ ^,
c dt

so that E,=
dx

xdf
ndr/

Ey = _d<f>_

dy ndvi*

E^ =
IdF
c dt

'
d<f>

dz

=
IdF
c dt

~
_df_zdf^
dz Vi dri

*

Thus the electric intensity may be regarded as made up of two

components, the first parallel to the axis of z (the direction of

J OCT Cif

motion of the electron) and equal to — ^ —~ and the second

df
directed along the instantaneous radius r^ and equal to — f^

,

The components of the magnetic intensity are

dUy_ ydF
dz ri dvi

'

^'<- dU, xdF
dx r^ 3r,

*

^'=f:- dy
and

Thus the magnetic intensity is tangential to circles whose

centres lie on the axis of motion and whose planes are perpendi-

cular to that direction. The distribution of magnetic force is to

this extent similar to that arising from a straight current lying on

the axis of motion.

Accelerated Electron.

We shall next take an illustration in which the nature of the

motion alters during the interval under consideration. Let the

particle be at rest at the point Qj until the instant ty ; let it then

be suddenly accelerated so that it acquires a finite velocity in an
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infinitesimal interval of time; then let it move with uniform

velocity in a straight line until it reaches the point Q^; at Q^ it is

stopped as suddenly as it was started at Qi ; let the stoppage be

complete at the instant ^. After the instant t, the particle

remains for ever at rest in the position Q,. Consider the field at

F and let FQ^ = r, and PQ, = r,.

The field at F at any time t is not determined by the instan-

taneous position of Q but by its position at the time

1f=.t- r'/c,

where r' is the retarded radius. Up to the instant when Q began

to move r' was fixed and equal to ?'i, so that provided t satisfies

the inequality

or t<ti + rjc,

the field at P will be that due to a static charge at Qi. After

the instant ^ the radius r becomes permanently equal to r^ so

that if

or t>t2 + r^/c,

the field at P is that due to a static charge at Qj. In the interval

between t = ti+ Vi/c and t = t2 + r^jc the field at F passes through

three stages: (1) that due to a particle moving with a positive

acceleration, (2) that due to a particle moving with uniform

velocity, and (3) that due to a particle moving with a negative

acceleration.

We shall see in the sequel that the field due to an accelerated

electric charge possesses novel features of great interest.



CHAPTER X

THE ACTIVITY OF THE FORCES

We shall next consider the rate at which work is done by the

forces in the field, or, if we prefer this mode of expression, by the

aether, on the charges in any given enclosed volume t. The

mechanical force on a unit charge is jE^ + - [FiT], where V is the
c

velocity of the charge relative to the instrument used in measur-

ing H. The force acting on the electric charge in an element of

volume dr is therefore

p{E + l[VH]yr,

and the rate at which work is being done by this force at any

instant is equal to the scalar product of the resultant velocity of

the element by the resultant force acting on it. The rate of

working of the forces in the field on all the charges present in it

is therefore

A=fJlp(v.B + llVHi)dr.

Now the part of the electromotive intensity - [ FfiT] is always
c

perpendicular to the plane containing V and H and is therefore

always perpendicular to V. Thus (F [VH']) is always zero, so

that the activity of the forces reduces to

-IWipy.E) dr.

But oF= c rot 5 — ^r- ; so that
at

A ^\l\[o(.o,H.E)-E^dr.
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Replacing rot H by its Cartesian equivalents this becomes

///fh(f-f")^-'("- dx J

20 s)

If we collect together the terms containing ^, r- and ^ re-

spectively and integrate each term by parts this becomes

- cjjdydz {EyH, - E,Hy) + dzdx (E,H^ - E^H^)

+ dxdy {E^ ffy - Ey H^)

--^^-
If I, m, n are the direction cosines of an element of surface dS

of the boundary of the volume t we have dydz = IdS, dzdx = mdS,

dxdy = ndS, and EyH^-E^Hy, E^Hx-E^H^, ExUy-EyHx are

the x, y and z components respectively of the vector [^i?]. Thus

the integrated part is equal to

-cJI[EH]r.dS,

where [EH]n denotes the resolved part of the vector [EH] along

the normal to the element dS. The volume integral, after re-

arrangement, becomes

and, since rot i^ = - - -^ and H^= Hj> + Hy^ + H^\ this may be
c 01

written

Thus A clkEB-i„dS-^IJj{iH' + iE'')dT ...(1).
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Now ^H^ is the magnetic energy per unit volume of the

aether and ^ JS"^ is the electrostatic energy per unit volume. It is

to be borne in mind that the E and H of this investigation are

the universal values of the forces introduced in the last chapter

and are not the same inside material media as either of the

average values which we have previously defined as the intensities

and inductions in such media. The mean value, over a region of

the appropriate dimensions, of the present ^H^ is identical with

the former ^fiH^ or ^HB or B^/2/j,, and the mean value of the

present ^E^ is identical with the former ^kE^ or ^EI) or D^J2k.

When E and H are the universal functions

-lillh("'*^'^'^

represents the rate at which energy is lost by the aether, or space,

within the limited region r. Thus the whole of the work done by

the forces of the field on the electric charges is not covered by

the energy lost by the aether in the immediate neighbourhood.

In general we have also to consider the quantity represented by

the surface integral. Since the left-hand side of the activity

equation is the rate at which work is done on the electric charges,

and the volume integral represents the rate of loss of energy by

the electromagnetic field in the enclosed volume, the surface

integral which is equal to their difference must represent the rate

at which energy flows into the region t from outside. Any
possible alternative to this conclusion would involve a denial of

the principle of the Conservation of Energy.

Poynting's Theorem.

The occurrence of the surface integral cJJ[EH'\ndS in the

equation of activity of the forces was first remarked by Poynting*,

who gave to it a very definite physical interpretation. He pointed

out that the behaviour of the field could be explained by the

supposition that at every point there was a stream of energy equal

per unit area to c[E . H], the direction of the stream being coin-

cident with that of this vector, and therefore normal to the plane

containing E and H. The Poynting Flow of Energy thus

vanishes when E and H are coincident in direction, and has a

Phil. Trans. A. vol. clxxv. p. 343 (1884).
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maximum value, other things being equal, when they are at right

angles to one another. This interpretation is, of course, consistent

with the equation of activity, and is, in fact, the most obvious

interpretation of it. It is, however, not the only interpretation.

For we may evidently add to c[E . H] any vector R which satisfies

the condition that the surface integral of its normal component

over any closed surface vanishes : and the equation of activity will

still be satisfied. We know from Gauss's Theorem that this con-

dition will hold if we have div R = everywhere ; so that there

are an infinite number of vectors in addition to Poynting's which

satisfy the equation of activity.

It is interesting to consider to what picture of the flow of

energy we are led in typical instances on the supposition that it

coincides with Poynting's vector. In the case of a straight wire

carrying a current, for example, the electric force is parallel to the

length of the wire, and the magnetic force is in circles about its

axis. Thus the electric and magnetic forces are at right angles to

one another, and the flow of energy is at right angles to both.

That is to say, it flows perpendicularly into the wire from the

insulating medium which surrounds it.

Probably the most convincing case of the flow of energy in

accordance with Poynting's vector is that furnished by the propa-

gation of electromagnetic waves. Consider a parallel beam of

plane polarized light. We have seen that in such a beam the

electric and magnetic vectors may be represented by

E=H= Aco8{pt—x).

It is important to notice that the two vectors are always in

phase, and that they are equal in magnitude when expressed in

the units used in this book. They are also at right angles to one

another. Thus the resultant flow of energy is perpendicular to

both E and H ; that is to say, it is along the direction of propa-

gation of the light. It is equal at any instant to

cA' cos^ (pt — a;)

per un t area. Its average value over a single period, or over any

very large interval of time, is

1 T'
cA^ - cos" {pt -x)dt= ^cA\

T Jo
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Now 1^^ is the mean energy present in unit volume of the

wave, so that Poynting's Theorem represents this energy as flowing

along with the velocity c. Since this is in accordance with the

results of observation the application of Poynting's Theorem to

questions relating to radiation evidently rests on very solid

grounds.

Forces exerted on the Charges.

In the last section but one we have considered the rate ofworking

or " activity " of the forces acting on an enclosed electrical system.

We shall now consider the value of the resultant force acting on

a similar system. On the electron theory of matter the results

will be applicable to any material system since, on this theory, the

force acting on a material system is the aggregate effect of the

electric and magnetic forces which act on the electrons which

constitute it. The force exerted on a unit charge is ^ + - [F^],
c

where V is the velocity of the charge relative to the system of

instruments used to measure the forces. The reason for this

particular specification of V will be clearer later (see Chaps, xiii

and xiv). It will be observed that it is not inconsistent with

the deduction from the magnetic properties of electric currents

which led us to include the term -[VH] in the expression for the
c

force on a charged body (p. 114). So far as any evidence which

has been, considered up to the present is concerned, we might as

well have taken V to be the velocity of the charge relative to the

aether, which we might suppose to be absolutely fixed in space.

When we come to consider the electrical and optical properties of

bodies in very rapid motion, we shall see that the assumption

that V refers to the velocity relative to the measuring system

effects very important simplifications.

The charge present in the element of volume dr being pdr,

the force exerted on this element of volume will be

dF=p(E+^[VH]\dT,
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and the force on the whole volume will be given by the vector

equation

= fjj\divE.E + ^ipV.H]\dT,

since p = divE. But

hence /oF= c rot i/ — -xr-

,

cz

and F=jjjUiy E. E+ ^[c rotH .H] -
J
l^. h\\ dr.

= ^^[EH] + c[E. rot E],

and

[^.rot^] = -[rotj&.£],

divi2' = 0;

hence F=- jjj^^^[EH] dT + ///{div^ .
£' + [rot ^ . E]] dr

+ ///{divH.H + [rot H.H]]dT .. .(2).

This is the total force on the volume t. Consider the x com-

ponent of F due to the third term of (2). Call it Xjj. Then

-^Adx
m. ^s^\\^^

-///I

9y /)

" dx ^ dx " dx * 9y " ^y
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where I, m, n are the direction cosines of the outward drawn

normal to the element of area dS of the enclosing surface.

The third term of (2) will give rise to similar expressions for the

components of force parallel to the y and z axes. If we treat the

second term in (2) in the same way we shall get similar ex-

pressions except that the components of the magnetic intensity

are replaced by the corresponding components of the electric

intensity. If we put

Pyy=hW-Ei-E,' + H--H,^-H^%p,,, =p^=E,E^^H,H,,

Pzz =ilE,^-E^^-E^^ + Hj^-H:,'-Hy% p^=py,=E^E,+H,H„

the components of the last two terms of (2) may be written,

selecting the x component as an example, in the form

jj(^P=cx + '>npyx + np,^) dS.

The last two terms therefore reduce to surface integrals over the

boundary and are, in fact, identical with the forces due to the

Maxwell stresses discussed in Chap, ii, except for the addition

of the magnetic terms which were not then being considered.

We now notice a very important difference between our

present problem and the static case considered in Chap. ii. The
resultant of the forces acting on the volume from without, as

calculated from the Maxwell stresses across the boundary, is no

longer equal to the force tending to accelerate the charges en-

closed by the boundary, the former being the greater by

///
\l[EH}dr.

Thus, in the absence of electric charges, the resultant force

due to the stresses over the boundary does not vanish unless the

value of this volume integral is zero. The most natural inter-

pretation would seem to be the following. In static cases, con-

sidering the action between the charges enclosed and the region

external to the bounding surface, the resultant force on the

external region, given by the Maxwell stresses, is equal and

opposite to the resultant force on the charges enclosed. In

general, however, the action and reaction between the charges

and the external region are not equal and opposite; but part of
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the reaction to the force exerted on the external region falls on

the aether enclosed by the surface, the amount of this reaction

per unit volume being - ^ [SH]. There are two other possibilities

which are deserving of consideration. We may either deny the

applicability of the Newtonian law of action and reaction to

electrodynamic systems or we may deny the physical reality

of the Maxwell stresses. Of these two alternatives the latter is

to be preferred, at any rate from the standpoint of the electron

theory of matter. For if we are to regard material systems as

electrodynamic systems (which is the electron theory in a nut-

shell) it is essential that the Newtonian laws should be true

for them to the extent that they are true for material systems.

That is to say, they must be exceedingly close approximations to

the truth in the case of systems the parts of which have velocities

which are small compared with that of light.

It happens that we can retain the law of action and reaction and

also the physical existence of the Maxwell stresses if we interpret

the vector [EE]/c as momentum per unit volume of the medium.

In that case equation (2) shows that the stresses acting across the

boundary of the region are equal to the force tending to move the

charges within the region plus the rate at which momentum is

communicated to the enclosed medium. The idea of electro-

magnetic momentum was first suggested by J. J. Thomson*. The

momentum per unit volume is very closely related to Poynting s

vector, c [EH], being, in fact, equal to the latter divided by the

square of the velocity of light.

We shall see that this idea of electromagnetic momentum is

extremely useful in enabling us to make calculations about the

mechanical effects of light and of moving electrons. At the same

time it suffers from a serious disadvantage in so far as we have no

satisfactory conception of any mode of motion of the aether to

which it corresponds. Thomson has suggestedf that it represents

the inertia of tubes of electric force. These are supposed by him

to have a definite concrete physical existence. Each tube is

supposed to be anchored at one end to the electron to which it

* Recent Researches in Electricity and Magnetism, p. 13 (1893).

+ Loc. ciL



THE ACTIVITY OF THE FORCES 209

belongs, whilst the other end extends to an indefinite distance.

In a recent paper Thomson has examined the consequences which

would follow if the number of such tubes attached to each electron

were quite small*. It will be observed that this theory attaches

the inertia in reality to the electrons rather than to the medium

in which they move.

The most important application of the idea of electromagnetic

momentum is to the dynamics of a moving electric charge. We
shall, however, defer that question until the next chapter and

occupy ourselves for the present with the question of the pressure

exerted by light and other electromagnetic waves. This subject

affords excellent illustrations of the application of the ideas both

of electromagnetic momentum and of the aethereal stresses.

The Pressure of Radiation.

We shall consider the pressure of radiation first of all fi-om the

point of view of the Maxwell stresses. Let us apply equation (2)

to any closed surface containing matter or electrons and consider

the average value of the quantities occurring in the equation,

taken over a considerable interval of time T. The average value

of the left-hand side will be the average force exerted on the

matter or electrons. There are important cases in. which the

average effect of the Maxwell stresses can be very easily calculated

and in which the volume integral vanishes. Considering the last-

named term first, its average value over an interval of time T is

This expression is equal to zero when either of the following

conditions holds :

—

(1) The volume integral has the same value at both the

time limits. This will be the case when the electromagnetic

actions are periodic and T is an integral multiple of the periodic

time.

(2) The volume integral JJJ[EH] dr is finite throughout

• Phil. Mag. vol. xix. p. 301 (1909).

R. E. T. 14
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the time considered and 2' is an interval of time so great that it

may be regarded as infinitely large.

It is evident that the electromagnetic momentum is relatively

unimportant except when rapid changes are taking place in the

state of the electromagnetic field.

Let us now apply our results to the case of a plane polarized

wave of monochromatic light

incident normally on a surface

which absorbs it completely.

Let ABCD represent the ab-

sorbing substance, the light

being incident on it in the di-

rection of the arrow which is

parallel to the z axis. Let the

electric intensity in the lightPig. 29.

wave lie along the axis of x and be equal to Eq cos pt Then the

components of the electric and magnetic intensities are

Ex= E ^Eocos pt, Ey = 0,Ez = 0,

H^ = 0, Hy=^ E^= Eocospt= H = E, H^ = 0.

Applying equation (2) to the cylinder whose cross section by

the plane of the paper is EFGH and integrating over a complete

period, we =ee that the part coming from the volume integral on

the right-hand side vanishes. The left-hand side is equal to the

average force exerted by the light on the matter in ABCD by

which it is absorbed. The components of the Maxwell stresses

are:

—

p^= h{Ex--Ey*-Ei + H^'-H,'-m] = 0,

p^= h[Ey'-Ei-E^^^-H,'-Hi-H^'] = 0,

p^^=\[E,^-E,'-E,'-\-H,'-H^--Hy^] = -E\

Pxy =Pyx = ExEy+ Hx Hy = 0.

Similarly pyz = Pxz = 0.

Thus there is no stress on the cylindrical surface of which Eff

and FG are sections, since this surface is everywhere parallel to

the axis of z. The stress vanishes over GH since there is no

light there. The only part of the surface over which the Maxwell

stresses are effective is the end EF, and they are here equivalent
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to a pressure E^ per unit area. Thus the force exerted by the

light on the opaque surface is a pressure which is equal per unit

area to

If 1 r

^ E^dt = j, Eo^ cos"" pt dt =

The energy per unit volume of the beam of light is

^ {E^ + H'} = E',

so that the intensity of the light, which is equal to the average

amount of energy transported across unit area in unit time, is

cE,^1 f^cE^dt= .

Thus in the case of light incident normally on a perfectly

absorbing surface the radiation pressure is equal to the intensity

of the light divided by its velocity of propagation.

It is clear that in the case of a perfectly reflecting surface

the value of the radiation pressure will be doubled since the

intensity of the light at EF will be twice as great as with a

perfectly absorbing surface, when the incident intensity is the

same. Since these results are independent of the plane of polari-

zation of the light they will also be true, at normal incidence,

when the light is unpolarized. It follows, on similar grounds, that

they are also true for light of mixed frequencies.

Isotropic Radiation.

Next consider a perfectly reflecting enclosure filled with isotropic

radiation. By isotropic radiation we mean radiation which is being

propagated in all directions in such a manner that the probability

of the direction of propagation of any ray, selected at random, being

found within a given solid angle is proportional to that solid angle.

The thermal radiation which would fill the enclosure in the final

state of equilibrium which ensues when there are material bodies

within it is of this character (see Chap. xv). Consider an in-

finitesimal area dS of the reflecting enclosure and apply equation (2)

to a cylinder, similarly situated to that in Fig. 29, but whose height

is infinitesimal compared with the dimensions of its ends. As
before, let dS be perpendicular to the axis of z. We may now
neglect the tractions on the sides of the cylinder on account of

14-2
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the smallness of their dimensions. The components of the force

arising from the Maxwell stresses therefore vanish everywhere

except on the front face of the cylinder, and are there equal

respectively to

p^,dS={E^E, + H^H,]dS,

Py,dS^[EyE,-\-HyH,]dS.

Since by hypothesis the trains of waves which constitute the

radiation are as likely to be travelling in any one direction as in

any other, the electric and magnetic intensities are as likely to

lie in any one direction as in any other and, incidentally, are as

likely to be positive as negative. We therefore have the following

relations among the average values of these quantities, taken over

a long interval of time, for the radiation which crosses the end

of the cylinder :

—

E} = E^^ = 1} ^iEj" + Ey^ + E,^ = :^E^,

H,- = Uy^=Hi^:^H^- + Hy- + Hi=^li\

ExEg = EyEi = Ux Hz = HyHg = 0.

Hence the mean values of the tractions are

p„dS = pyzdS = 0,

and ^^dS = -^[E'^-vW\dS=-:^~E^dS.

Here E^{=H^) is the mean square of the electric intensity in

the radiation in the enclosure. Thus in the case of isotropic

radiation the pressure is equal to one-third of the energy in unit

volume of the radiation. This result has an important application

to the Thermodynamics of radiation.

Radiation Pressure and Momentum.

Let us now consider the pressure of radiation from the point

of view of the electromagnetic momentum. Confining our atten-

tion first of all to a plane wave of plane-polarized monochromatic

radiation, we observe that this consists of an alternating electric

and magnetic field which travels forward with the uniform velocity

of light. As we have seen, the electric and magnetic intensities

are always at right angles to each other and to the direction

of propagation of the beam. In our units they are also equal in
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magnitude at any particular point at any instant, and for the same

point in space they are harmonic functions of the time. If E and

H are the values of the two intensities at any instant it follows

that the electromagnetic momentum per unit volume is

^\Em=^ EH = - E^ = ^ E.^QOB^pt
c c c c

^

Thus a plane wave (whether polarized or not) of light of frequency

jB/27r may be regarded as a stream of momentum which moves

through the medium with the velocity of light. At a fixed point

in the medium the momentum per unit volume is - Eq^ cos^ pt

This momentum is always in the direction of propagation of the

light, since E and H always have the same sign.

Now suppose that a train of plane waves, such as we have been

considering, falls normally on a perfectly absorbing surface. All

of the radiation disappears so that there is a constant stream

of momentum flowing into the absorbing surface. But interchange

of momentum implies the existence of a stress. The radiation will

therefore exert a pressure on the surface which will be equal to the

rate of change of momentum per unit area per unit time. The

average pressure is therefore

if cx-Eo^ cos"ptdt = \E^\
, 1 J Q C

in agreement with the value found previously. In the case where

the surface is perfectly reflecting the forward momentum will not

merely be destroyed but an equal and opposite momentum will be

given to the reflected wave. Thus in this case there is twice as

great a rate of change of momentum ; so that the pressure will be

twice as great as with a perfectly absorbing surface, for the same

intensity in the incident light.

In the case when a plane wave is incident in a direction

making an angle d with the normal to a perfectly reflecting surface,

it is convenient to resolve the momentum in the incident and

reflected waves into two parts, one normal to the reflecting surface,

and the other parallel to it. The momentum parallel to the

normal which falls on unit area in unit time is {l/c)S cos'' 6, where S
is Poynting's vector c [EH]. The momentum in the same direction,

which leaves unit area in unit time owing to the reflected wave, is
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— (1/c) S cos'^. The factor cos enters twice because, in the first

place, the resultant momentum is along the direction of propaga-

tion of the wave and we are dealing with the component at

an angle with this direction and, in the second place, on account

of the radiation falling obliquely on the surface, unit area of the

wave front will be spread over an area 1/cos of the surface. . The

rate of change of momentum normal to the surface is evidently

(2/c) S cos* per unit area. Thus there is a normal pressure whose

average value is (2/c) cos* S = E^ cos* 0.

The momentum parallel to the surface lies in the plane of

incidence. The amount of it which is incident on unit area in unit

time is clearly (1/c) S sin cos 0. The amount leaving unit area

in unit time is also equal to this, since the direction of this part of

the momentum is unchanged on reflexion. The rate of change of

the tangential component of the momentum is therefore zero, so

that there is no tangential stress, even when the radiation is inci-

dent obliquely, at the surface of a perfect reflector. It is evident

that this conclusion is no longer true when part of the radiation is

absorbed at the reflecting surface. There will then bo a tangential

stress which is proportional to the difference between the in-

tensities of the incident and the reflected waves.

When light is incident at a transparent surface, we have to deal

with a refracted as well as a reflected beam. Let 0^ denote the

angles of incidence and reflexion and 0^ the angle of refraction.

In this case we are no longer dealing with the free aether, so that

we have to use the expression for the momentum per unit volume

appropriate to a material substance. By making the changes in the

argument on p. 205 which are necessary when dealing with media

whose dielectric constant and magnetic permeability are not equal

to unity, we see that the general expression for the momentum per

unit volume is [i)5]/c, where D is the electric and B the magnetic

induction. Denoting the values of this quantity for the incident^

refracted and reflected waves by Gi, O, and 0^ respectively, it is-

clear that the instantaneous value of the normal pressure is

Vi (Gi + 0,) cos* 0, - V^G, cos" 0^,

where Fj and Fj are the velocities of radiation in the two media.

The instantaneous value of the tangential stress is

Fi {Gi — G3) sin 01 cos 0i — V^G^ sin 63 cos 0^.
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Here sin ^i/sin 0^ = V-^jV^ and the values of G^, G^ and G^ are pro-

portional to the respective instantaneous intensities of the beam.

The ratios of the average values of these can therefore be

obtained from the expressions for the reflected and refracted

intensities found in Chap, vii, and will depend on the plane of

polarization of the light.

It remains to add that the pressure due to electromagnetic

radiation was predicted by Maxwell*, as a consequence of his

theory of stresses in the medium, in 1873. It was first demon-

strated by experiment by Lebedewf in 1899, and later inde-

pendently by Nichols and Hull J in 1901. Several of the more

complex cases of the effect of light pressure have recently been

examined by Poynting §.

Isolated System.

An interesting application of the theorem expressed in equation

(2) arises in the case of an isolated system. Take any surface

surrounding the system, the dimensions of the enclosing surface

being so great that the field at any point of it may be considered

negligible. Then the Maxwell stresses vanish over the boundary

and we have

///-'
E+\[VHi^dr=-l^\\\Gdr.

But the left-hand side is the force acting on the charged bodies in

the system and is, therefore, equal to the rate of increase of (sup-

posedly) material momentum of this part of the system. Calling

this momentum M we therefore have

f = -|///-^-

or the momentum gained by the material part of the charged

system is equal to the momentum lost by the electric field. We shall

see in the next chapter that if matter is made up solely of electrons,

* Treatise on Electricity and Magnetism, § 792 (1873).

t Arch, des Sciences Phys. et Nat. (4), vol. vin. p. 184 (1899) ; Ann. der Phys.

vol. VI. p. 433 (1903).

t Phys. Rev. vol. xin. p. 293 (1901).

§ Phil. Mag. vol. ix. pp. 169, 475 (1905).
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M consists of a distribution of momentum in the field of the same

type in reality as Q. From this point of view the effect of the

forces on the parts of the system may be regarded as giving rise

to a rearrangement of the electromagnetic momentum in the field,

the total amount remaining constant throughout the changes

which take place. This result is only true provided the motions

may be regarded as quasi-stationary (see p. 262) ; otherwise

momentum will be lost by radiation over the boundary.

At present we can only be certain that matter is made up in

part of electrons. If this should turn out to be ultimately true we
should have to say that during quasi-stationary dynamical actions

the electromagnetic momentum of the field is converted partly into

the electromagnetic momentum of the individual electrons and

partly into material momentum, the total momentum being

unaltered.



CHAPTER XI

CHARGED SYSTEM IN UNIFORM MOTION

We have seen that a charged system in uniform motion

carries its field along with it as though it were rigidly attached to

it and that the potentials and forces are given by the equations

V^<f>-

1 920
= -p>

V^U-
1 d-'U V

--P-C'

E=- idu
- grad <^,

H=rotU.

We shall suppose the charged system to be moving along the

axis of z with the uniform velocity w, and that it is symmetrical

about the axis of motion. The equations above refer to axes

fixed relatively to the observer, past whom the system is moving

uniformly with velocity V=w. If we consider axes which move

along with the system we can take advantage of the fact that the

field is invariable relative to points measured along these axes.

If -jy denotes the rate of change of any quantity with respect to

time at a point w, y, z fixed with respect to the moving axes, then

D d d d d

where "djdt denotes differentiation at a point fixed with respect to

the fixed axes, and m, v, w are the velocity components of the

moving axes. In the present case there is no change with time
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Dt
for a point moving with the moving axes, so that 7^ = 0. We

also have u= v = 0. So that

a a

and
9" .a«

Thus the fact that the field is carried along by the moving system

as though it were rigidly attached to it enables us to eliminate

tha time from the equations for ^ and U. On substituting for

^, the equations for ^ and U become

where /S= wic. By changing the variables to x^, y^, z^, where

a^i = a;, 2/1 = y> -sr, = ^/Vl - ^,

these equations may be written

These equations are of the same form as Poisson's equation.

Thus the scalar and vector potentials due to a moving charged

system may be obtained from the scalar potential for a slightly

different system at rest. The transformed system is obtained

from the moving system by stretching all the lengths in the

moving system parallel to the direction of motion in the ratio

1 to Vl — y8^. This type of transformation was first obtained by

J. J. Thomson* by a different method and also, independently, by

Heavisidef.

It will be noticed that the scalar and vector potentials are

* Phil. Mag. April 1881, also Recent Researches in Electricity and Magnetism,

p. 19.

t Phil. Mag. April 1889.
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proportional to one another, differing only by the constant factor yS.

It will therefore be necessary for us to calculate only one of them.

Let us now denote our moving system by S and suppose that

corresponding to S there is a fixed system Si which is obtained by

enlarging the dimensions of the moving system S in the ratio

1 : Vl — /3^ in the direction of motion. Every point w, y, z in the

moving system will correspond to a point x^, y^, z^ in the fixed

system, where the relation between x, y, z and x^, y^, z^ is that

already given. Also, corresponding elements of volume will

contain equal charges, since straining the dimensions does not

alter the quantity of electricity present. Thus, if p is the volume

density in the moving system and p^ the corresponding quantity in

the corresponding element of volume in the fixed system, we have

the equation

pdxdydz — p^dx^dyidzi.

But dx = da>i, dy=dyi, and dz = dzi'^l — ^;

hence dxdydz = dx^dy^dz^ Vl — ^,

and p^ = psJl-^^ (3).

The potential <^i of the distribution in the fixed system must

satisfy Poisson's equation

But the scalar potential ^ which we are seeking, satisfies the

equation

3^ 3^0 a^ _ _
dxi^ 'dy^ 'dzi^

~ P'

whence ^i = Vl-yg^.^ (5).

Thus the scalar potential in the moving system is equal to

1/Vl - yS^ times the electrostatic potential in the corresponding

fixed system.

It is desirable to emphasize at this point that the fixed system

which we have imagined is simply a mathematical device to

facilitate the calculations. We are not supposing that the moving

system is transformed physically in any way into the corresponding

fixed system. What we have proved is that the scalar and
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vector potentials of the moving system are related in a certain

way to the electrostatic potential of the corresponding fixed

system, and it is comparatively easy to calculate the value of the

latter. I have mentioned this because I find that students who
have a little knowledge of the principle of relativity are apt to

become confused as to the point at issue.

We are now in a position to express the energy and the

electromagnetic momentum in the moving system S in terms of

the potential ^i and the coordinates Xi, yi, z^ of the corresponding

fixed system Si, The electric energy per unit volume is

We notice that

dx dxi Vl — /S^ dxi ' dy

1 g^
Vl - /32 dyi

'

d<i> 1 a<^,a^^ :

dz Vl-yS^ dzi 1- ^ dzi

'

We have seen that the resultant vector potential is parallel to the

direction of motion. We thus have

Hence E^ = 90
dx

lf^=U^ = and U, = /30.

1 a<^i

^l-^dxi'
E,^- 1 a^

1 a

cdt
^» = -7^.(?7.)-^=r.-.W)-

8^
dz

w 9

c dz dz

dz dzj

The electric energy of the moving system S is

W ^ljjj{E.'+ E,-+ ^/} dxdydz

.(6).
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The components of the magnetic intensity are

* di/ dz dy v'l - Id^ 9^1
*

^ dz dx ^ dx v'l _ yg2 ^a;j

'

' dx dy '

The magnetic energy of S is therefore

T=\\\\ [Hi + iT/ + Hi] dxdydz

=L-i^/«:y-^(a^^ (^)-

The components of Poynting's vector S = c [£^H] are

Sx = c (EyH^ - E^Hy)

„_o_J_3*i3/i
(8),

Sy = c(E,H^-E^H,)

^-o^^^'^f^ (9),

S,^G{EJly-E,H,)

We have seen that the momentum per unit volume is — S, so that

the components of the, total electromagnetic momentum of the

system S are

=-!///!'
I'''-*''^- <">
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The results we have obtained are true for any electrical system

in uniform motion. We shall apply them to two simple cases

which we shall select partly on the ground of their simplicity,

but also because we may reasonably expect that they will give us

an insight into the behaviour of the electron. The case that we
shall consider first is that of a rigid thin spherical shell of uniform

electrification.

The Rigid Electron.

We shall now suppose that the moving system consists of a

spherical shell of radius R which is uniformly electrified. The

thickness of the shell will be supposed to be negligible compared

with its radius. It follows from the results that have already

been established, that the energy, momentum, etc. of the field

due to such an- electrified shell when in motion may be obtained

if we can calculate the static potential ^j of the corresponding

system which arises when the actual space of the problem is

strained so that all lengths parallel to the direction of motion are

increased in the ratio 1 : Vl — /S^, whilst lengths at right angles

to this remain unchanged. The moving sphere will evidently

strain into an ellipsoid of revolution in the corresponding fixed

system. The axis of revolution of the ellipsoid coincides with

the direction of motion of the sphere. The major axis of any of

the principal elliptic sections is equal to iJ/Vl — ^, whilst the

minor axis is equal to the radius R of the moving sphere.

It is to be observed that these results will only be true

provided the electrified sphere is rigid. Certain experiments,

which will be discussed later, have led physicists to suspect that

the lengths of bodies depend on their velocities relative to that of

the observer engaged in measuring them. If this kind of change

affects the electron itself, as well as. the aggregate of electrons

which we suppose constitutes the material substance, the figure

in the fixed system which corresponds to the moving sphere will

no longer be the ellipsoid which we have described. This follows

because the moving system which we suppose to be spherical

when at rest becomes distorted, and is no longer spherical when

in motion. We shall see later that if the shape of the charged

sphere does change, and if the changes are such as would naturally

be suggested by the results of the experiments, the calculations
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become much simpler than those which we are now carrying out

for the rigid spherical shell.

In order to make our notation agree better with that usual

in the geometry of ellipsoids we shall suppose the motion to be

parallel to the axis of x instead of that of z. The appropriate

changes in the formulae of the last section may easily be made on

inspection. The equation of the ellipsoid into which the moving

sphere distorts is

a^^ 62
^^*^'

where a = 22/Vl — /3^ and h = R are the semi-axes major and

minor respectively. The equation of the family of ellipsoids which

are confocal with (14) may be written

.(15),

if j^^ = a? — h^= the square of half the distance between the foci.

The spheres which bound the rigid electrified shell will transform

into two infinitely near, similar and similarly placed ellipsoids, one

of which is given by the equation (14). The space between the

similar ellipsoids is filled with a distribution of electrification of

uniform density. The potential due to such a distribution is

constant within the region bounded by the ellipsoidal shell, the

distribution being equivalent to that on an ellipsoidal conductor

maintained at a constant potential. Outside the shell the equi-

potential surfaces are the confocal ellipsoids given by equation

(15)*. The difference of potential between two confocal ellipsoids

whose equations are given by

8 A,3 —

is F.-F, = .'^-^^M

where 7 =

(

cdXa

and e is the charge on the inner ellipsoid. Applying this result

* Cf. Webster, Electricity and Magnetism, Chap. v.

t Maxwell, Electricity and Magnetism, 2nd ed. vol. i. p. 237, equation (28).
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to the ellipsoids (14) and (15) we have Xg = ^J^+ X corresponding

to (15), V = a corresponding to (14), c = p = Va*^ - 6^ and

1 f, \/«« + \-p , a-p

By removing the outer ellipsoid to an infinite distance and

introducing a factor l/47r on account of the difference between our

units of electric charge and those used by Maxwell, we find that

the potential at any point in any ellipsoid confocal with (14) and

given by equation (15) is

e , \/ p^ + \ +p
*-=8^'"Sv^Txr^ <i«>-

Since the potential is the same at every point of the ellip-

soidal shell, the total energy of its electrostatic field is

A e<Po = log
,

.

This must also be equal to

We have seen that the energy and momentum of the moving

system depend upon the integrals

•''-III^J'^"'^^'''
<">'

We therefore have one simple relation between them, namely

i (/. + J.) = i ef. = j^^^^^^,
log ^-3^=^ . . .(19).

It is necessary to obtain one of them separately by direct inte-

gration.

To obtain the value of i/, we use confocal coordinates. The
level surfaces are

(1) the system of ellipsoids

-^;^ + Y = 1» rotated through 7r (20),
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(2) the system of hyperboloids

-^=1, rotated through ir (21),F + /* /x

and

(3) a series of planes passing through the axis of x which

make an angle <\) with the standard plane. The coordinates are

then \, /i and ^. As the problem is one of revolution we only

need to consider a section by the plane of xy. Let dS be an

element of area in this plane included between the two ellipses

characterized by X and \ + d\ and the hyperbolas characterized by

/A and
fj,
+ dfi. Solving the ellipse and hyperbola equations simul-

taneously we find that the Cartesian coordinates of the points of

intersection are

Let ABCD represent dS magnified.

Let^ == ^1, Vi, then

B:
( »• [y-t'-)'

D--= (^1 +|.x).(,..|.4

AB--= {(rf/^)"m-mT
AD-.= \{.d\]im-mii
dS = AB. AD smz BAD.

Let the direction cosines of AD and AB be I, m and V, m' re-

spectively. Then

so that d& = AB. AD (Im' - I'm)

R. K. T. IB
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From the expressions for oc^, y^ad, intersection

9a;, _ '^p^-fjb dxj Vp' + A.

d\ '2pV X* dfi 2py fi'

Whence dS = dXdfi
4>'\/fix{p^+\){p^-fjiy

The element of volume dr is obtained by rotating dS about

the axis of motion. It is therefore given by

dr' = 2Try'dS

X + fi= ^irdXdfi
4,p'J(p'' + X)(p^-fjL)'

'To calculate the value of ^ we remember that ^i is constant

for any of the confocal ellipsoids and therefore depends only on \.

Thus — = — —
dxi dX dxi'

From the equation —r—z- +^ = 1,
p' + A. A,

dX 2x^ ( X* yy*\

V

2X ,

-^ ^-///(a5^-

The limits of X are X = 6' to X = oo . With the limits fjk.=

and fi=p^ we cover half the space, so that

J b* \oX/ p^ ./ /* + X

By changing the variable to x, where a^^p"^— fi, and turning

into partial jfractions we find

/:
-^--!^dfx = 2p+\/p^-\-X log ^- -^.
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Since
e 1 V«2 + X + p

<^i = Ti
log r-

—^

e

and ^1 =

8ax
=-8^^^^^ + ^'

167rp' fA'"^
2p

'\/p' + X-p \/p- + X

Xlog'^^±P-2p^^Tl

dX

By expanding

log
^/p'^ +X-p

Vp^ + X —

^

r-J

it can be shown that this vanishes when X, = x . On substituting

p = \/a^ —¥,h = R and a = i2 -i- Vl — /3^ we find

From (19) we have

(1-W ^--logl-±-^

H-/3

.(22).

'^^ + '^^=8.i^(l-^^>* 1^^1-/3'

whence

/,= (1 _ ^f
1^

_ 2^ + (1 + ^^) log ^4|] • • -(23).

We have seen that the potential (electric) energy is

and the kinetic (magnetic) energy is

The components of the electromagnetic momentum are

G, = --/3(l-/3^)-*J3,

and

15—2
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For a system which is symmetrical about the axis of motion

the last two integrals are equal to zero. For, corresponding to

any point in the field for which ^-* and :^ have certain values,

there is another point, which is the reflexion of the first in the

plane xOz, for which ~- has the same value but -^ an equal
oxi 01/1

and opposite value. Similar considerations apply to the integral

containing -~ . If we substitute the values of Ji and t/j in the

other formulae we get the values of W, T and Gx- For Qx we find

The electromagnetic momentum in the field of the rigid

electron was first calculated by Abraham*. The present calcula-

tion, which is practically identical with Abraham's, is taken firom

Lorentz's Theory of Electrons.

Electromagnetic Mass.

By expanding the logarithm in the last formula it may be

shown that for small values of y8 the value of G^ reduces to

QirRc'
'

where u is the velocity of the moving charge. Again, the corre-

sponding expression for T reduces to ^9—n^ ^'^ when /8 = - is

small. It will be noticed that these expressions are respectively

of the form vi^u and ^w^o^t^ where

^^"=6^^ (25)

is a constant quantity. The nature of these expressions leads us

to a very important result. For they show that the electrified

sphere, which we have supposed to be devoid of mass in the

ordinary sense, behaves as though it had a mass m^. Thus it

follows from the principles of electromagnetism, alone that such a

* " Prinzipien der Djuamik des Elektrona," Ann. der Fhysik^ IV. vol. x. p. 105

(1903).
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charged body, when it moves with the velocity u, carries along

with it an amount of electromagnetic momentum rrioU and of electro-

kinetic energy ^m^v?. Moreover this momentum and energy

remain unaltered so long as the velocity of the body is unaltered.

But this behaviour is precisely what characterizes the motion of a

so-called material particle whose mass is TOq. It is true that our

results would have to be modified for particles moving with

velocities comparable with the velocity of light. But they would

nevertheless be exact, within the limits of accuracy of measure-

ment, for such relative velocities as have been imparted to any

considerable material masses in the universe. On the other hand

the differences should be perceptible in the case of the very rapidly

moving charged particles emitted by the radioactive substances,

and, as we shall see, it is precisely the properties of these particles

which have confirmed the results of the electromagnetic theory.

The idea of electromagnetic inertia, which is due to J. J.

Thomson*, is fundamental to the electron theory of matter. For

it opens up the possibility that the mass of all matter is nothing

else than the electromagnetic mass of the electrons which certainly

form part, and perhaps form the whole, of its structure. It

obviously opens up the possibility of an electrical foundation for

dynamics. This will be considered later.

Our calculations so far have presupposed that the moving

charged body possesses and has always possessed a constant

velocity in a straight line. A fuller discussion of electromagnetic

mass involves the consideration of bodies undergoing acceleration

and for such cases the results which we have obtained are not

strictly true. This difficulty is one which is peculiar to the electro-

magnetic theory and arises from the fact that when a charged body

is accelerated part of its energy travels off to infinity in the form

of electromagnetic radiation.

Longitudinal and Transverse Mass.

We shall, however, see in the next chapter that, provided the

acceleration of the body is sufficiently small compared with its

velocity, the values for the energy in the field and for the electro-

* Phil. Mag. vol. xi. p. 229 (1881). The idea that the mass of ordinary matter

is of this character on account of the electrons it contains appears to have been

first suggested by Larmor (P/ui. Tram. vol. ciiXxxvi. p. 697, 1895).
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magnetic momentum, which we have calculated above, will only

dififer from the true values by amounts which are exceedingly

small. Under these circumstances, which will be stated more

precisely later, the formulae which we have obtained for constant

velocities may be applied to systems moving with varying velocities.

The state of systems which satisfy this condition has been called

by Abraham* quasi-stationary.

Assuming that the quasi-stationary condition is satisfied we

shall now consider the behaviour of the moving electrical system

under the influence of an accelerating force.

There are two cases to consider: (1) when the force is in the

direction of motion and (2) when it is perpendicular to it. Any
other case may be compounded from these two. We shall suppose

the moving charge to be placed in an external field whose action

gives rise to the accelerations under consideration. If we consider

any infinitely distant surface enclosing the whole electrical system,

the Maxwell stresses over it will vanish, so that the force exerted

by the external field on the moving charge will be equal to the

rate of diminution of the electromagnetic momentum of the ex-

ternal field. But the total momentum of the whole system

remains constant, so that the external force must be equal to the

rate of increase of the momentum of the moving charge. Since

this is, by hypothesis, massless it follows that the force exerted on

the moving charge by the external field is equal to the rate of

increase of the electromagnetic momentum of the charge. This

equality is clearly a vectorial one and is therefore true for the

different components of the force and the momentum independently

of one another.

In the case of a force acting in the direction of motion we

evidently have

rr _^/n ._dOxdx

since G^ only contains t implicity through cb. Comparing this

with the equation .Fa, = w ^ we see that the mass for longitudinal

accelerations is

dGx_ldG .„^.

~dA-~cd^
^'^^^'

* Loc. cit.
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When the force is transverse to the direction of motion the

body will begin to describe a circular orbit with constant speed.

If r is the instantaneous radius of curvature of the path, the rate

of change of the momentum G is always directed along r and, by

the principle of the hodograph, is equal per unit time to Oujr,

where u is the instantaneous velocity. Hence

jP« = — M.
y r

But the instantaneous acceleration is also along r and equal

to u^jr, whence it follows that the electromagnetic mass for trans-

verse accelerations is equal to

G V? G IG .„^-

r r u cp

The mass for transverse accelerations is therefore different from

the mass for longitudinal accelerations. This difference was first

pointed out by Abraham*. It happens, as may easily be verified,

that the difference between the longitudinal and the transverse

electromagnetic mass becomes vanishingly small for small velocities.

The properties of an electrically charged body which we have

been considering have a close analogy in hydrodynamics. Any
geometrical figure moving in a fluid sets the surrounding fluid in

motion. In the steady state when the figure moves uniformly in

a straight line the fluid motion is carried along by the moving

figure as though it were rigidly attached to it ; when the state of

motion changes, waves are set up and part of the energy of the

system is radiated away to great distances. We shall see in the next

chapter that this also has its counterpart in the electrical case.

Confining ourselves to the case of uniform motion, in the steady

state it is foundf that if the moving figure is intrinsically massless

it nevertheless possesses inertia and behaves as though it had a

certain mass coefficient which is a function of the mass of the fluid

displaced by it. In the case of a massless sphere moving in a

perfect fluid this apparent mass is one-half of that of the fluid

displaced by the sphere. When a circular cylinder moves at right

angles to its length the apparent mass is equal to that of the fluid

displaced by the cylinder. In the case of unsymmetrical figures

• Loc. cit.

t Lamb's Hydrodynamics, pp. 85, 130.
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the apparent mass is no longer the same for motions in different

directions. The hydrodjoiamical cases differ from the electrical

ones in one important respect ; the apparent mass is always in-

dependent of the velocity of the moving figure.

This analogy was very clearly seen by J. J. Thomson in the

original memoir* in which he developed the idea of electromag-

netic mass. We shall take the liberty of quoting his- exact words:

"The charged sphere will produce an electric displacement through-

out the field; and as the sphere moves, the magnitude of this

displacement at any point will vary. Now, according to Maxwell's

theory, a variation in the electric displacement produces the same

effect as an electric current ; and a field in which electric currents

exist is a seat of energy ; hence the motion of the charged sphere

has developed energy, and consequently the charged sphere must

experience a resistance as it moves through the dielectric. But as

the theory of the variation of the electric displacement does not

take into account anything corresponding to resistance in conductors,

there can be no dissipation of energy through the medium ; hence

the resistance cannot be analogous to an ordinary fi-ictional resist-

ance, but must correspond to the resistance theoretically experienced

by a solid in moving through a perfect fluid. In other words, it

must be equivalent to an increase in the mass of the charged

moving sphere."

The Contractile Electron.

We have seen that the determination of the field due to a rigid

spherical shell of electrification in motion can be reduced to the

determination of the electrostatic potential due to a certain

ellipsoid. We have pointed out already that the particular

ellipsoid which we have been led to consider as the equivalent

fixed system depends upon our supposition that the spherical shell

is rigid. Now the negative results which have been obtained in

a number of optical experiments on moving systems, instituted

largely in order to try to detect relative motion between the

system and the luminiferous medium, seem incapable of explana-

tion except on the hypothesis, suggested by FitzGeraldf, that, on

account of the motion, the matter of the testing system undergoes

* Phil. Mag. V. vol. ii. p. 230 (1881). f Nature, June 16 (1892).
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contraction in the direction of motion. The negative results are

immediately accounted for if this contraction is in the ratio of

1 to Vl - ^, where /3 is the ratio of the velocity of the system to

the velocity of light. The dimensions transverse to the direction

of motion are supposed to be unchanged (see Chap. xiii).

Let us suppose that this contraction affects the electrons as

well as the material as a whole. The resolution of the problem is

due to Lorentz*. It is in reality much simpler than that of the

rigid spherical shell. For the shell which was spherical when at

rest becomes an oblate spheroid when in motion, the polar axis

coinciding with the direction of motion and being equal to

i2 Vl — ^^, where R is the original radius of the shell. The equa-

torial radius is unchanged and equal to R. The question now

arises as to what is the corresponding fixed system S^. This will

be obtained if we multiply all lengths parallel to the direction of

motion by 1/Vl — ^, leaving the perpendicular directions un-

changed. Thus the corresponding fixed system is simply a sphere

of radius R. The potential ^j is symmetrical in the distorted

space of the fixed system and equal to e/4nrrj, where r\ is the

distance fi:om the centre of the sphere in this systero. The elec-

trostatic energy is thus

=*///ltt)'-(|)'-(|-)]-'-
But everything is symmetrical about the centre of the sphere

in the fixed system, so that

///(ty--=///(l:)"-.=///(t)'--

^13

67rc72\/l-yS»'

also Oy = Gg — 0, as before.

• Theory of Electron!, p. 210.
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For longitudinal accelerations we have

so that the longitudinal mass

m, = 1- -^- (28>,

where m,, is the value of the mass for small velocities.

For transverse accelerations

_ Ctx _ Ctu _ ^
^ c^ GirRc'il-^')^

(29).

Thus the ratio of the longitudinal to the transverse mass is

^ = (1-^V (30).

These formulae are all simpler than the corresponding ones for

the rigid electron.

The Experimental Evidence.

We saw in Chapter l that the experiments of Thomson,

Wiechert and others had established the existence of particles

whose charge per unit mass e/m had a value some 1800 times as

great as that for an atom of hydrogen in electrolysis. The small-

ness of the mass of these particles together with the relative

largeness of their charge suggested them as a likely field in which

to look for experimental evidence of the existence of electromag-

netic mass. A means for the detection of the latter is furnished

by the fact that electromagnetic mass is a function of the velocity

of the moving charge, whereas the ordinary mass of the Newtonian

scheme is assumed to be independent of the velocity of the particle.
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It is true that the alteration in the mass is small except when the

velocity is comparable with the velocity of light ; but it happens,

fortunately, that in the yS-rays from radioactive substances we

have moving electrons whose velocities vary widely but extend

almost up to the velocity of light.

The first successful experiments in this direction were made
by Kaufmann*. Working with the yS-rays from radium bromide

he made use of a device similar to that of crossed prisms in

experiments on dispersion. His apparatus is shown in Fig. 30 a.

A speck of radium bromide was placed at the point immediately

below the parallel plate condenser of

which P1P2 represents a section by

the plane of the paper. Immediately

above P1P2 was a minute hole D in a

thick metal plate. The line OD was

vertical, and in the plane midway

between the condenser plates. At

some distance above D was a hori-

zontal photographic plate. A suitable

difference of electrostatic potential

was established between the plates of

the condenser, and the whole system

was placed between coils designed

to produce a uniform magnetic

field and lying in planes at right

angles to that of the paper. Thus

the particles were acted upon, during

their passage between the plates, by

a horizontal electric force lying in the

plane of the paper. If this field alone

were operative the particles passing

through the points and D would

pursue parabolic paths when between

the condenser plates Pj Pa, the para-

bolas lying in the plane of the paper. After escaping from the

plate condenser the subsequent path would be rectilitiear and along

the tangent to the parabola at the point of escape. Thus under

p^'

• Gott. Nachr. 1901, Heft 1 ; 1902, Heft 5 ; 1903, Heft 3 ; Phys. Zeits. p. 55,

1902 ; Ann. der Phys. IV. vol. xix, p. 487, 1906 (complete account).
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the influence of the electrostatic field alone, a group of particles

all having the same velocity would be deflected to the right or to

the left according to the direction of the field. The spot would be

shifted from the centre of the photographic plate. Since the

deflection depends upon the velocity, if the group consisted of

particles having different velocities the spot would be spread out

into a line lying in the plane of the paper. Each point on this

line would correspond to a particular velocity.

The lines of force of the magnetic field run from left to right

in the plane of the paper, so that if it alone were operative it would

cause the particles which pass through and D to describe circles

in a plane perpendicular to the plane of the paper. Owing to the

magnetic field, then, the spot would be displaced in the plane

perpendicular to the plane of the paper, if all the particles had

the same velocity, and would be drawn out into a line in this

plane, if the particles had different velocities. When both fields

are operative at once we should expect to get a curved line on the

photographic plate, each point of which represents the point of

impact of particles having a certain velocity. The position of each

point gives us, of course, the magnetic and electrostatic deflection

of a particle with a definite but unknown velocity. It remains to

be seen how we may deduce firom the measured displacements the

value of the mass as a function of the velocity of the moving

particle.

For the sake of simplicity we shall suppose a uniform electric

field to extend, from left to right, all the way from to D and

then to cease absolutely. The magnetic field H is uniform and

parallel to this electric field all the way from to the photographic

plate P.

Taking as the origin, let the coordinates of D be 0, 0, z, and

those of points on the plate P be x, y, z' Let the axis of y
lie in the plane of the paper, T denoting the electric intensity.

Assuming that the deflections may be treated as small, we have,

so far as the motion in the plane of the paper is concerned,

m :r- = and m^ = Ye, from to D,
ot o"

and »n v^ = 0, from D to P.
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Thus
dz
•5- = const. = Wq,
ot

where Wq is the component along OD of the velocity of projection,

and z = wjj + const. = wji

if ^ = when the particle leaves 0.

Hence t = zjWq and

Thus mw^^y = \ Yez^ + Az + B.

Since y = when z = and also when z = Zi

B=0 and A = -^Yezi

Thus mwo'^y = |-Fe^^ (z — Zj),

dz mwo'

and
\d^K=z, mw^

(Yez-^Yez,),

(^ Yezi) = tan ^,

where d is the angle which the tangent to the parabolic path at

D makes with OD. Since the subsequent path is rectilinear the

displacement y' at the photographic plate is

2/' = (z' - z,) tan d = ^^^ Yez, (z' - z,).

The projection of the path on the plane of xOz is controlled by

the magnetic field and is a circle passing

through and D to the degree of approxima-

tion of this calculation. Let r be the radius

of this circle and S^DlPl (Fig. 30 b) the tan-

gent to it at the point >S^i which is symmetrical

with respect to and D. D^ and Pj are the

intersections with horizontal planes through

D andP respectively. P' {x', 0, z') is the inter-

section of the projected trajectory on the

photographic plate. ;Si' is the intersection

of a vertical line P'8' and a horizontal line

S^SS'. S is the mid-point of OD. Then

OS^
P^P = S,S =

2r-SS^ 8r'
Fig. 30 6.
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neglecting SSi compared with r, and

neglecting P^P' compared with r. Thus

x' = PP' = P,P' - P,P =^~—

.

The radius of curvature of the circular path is determined by

the balancing of the centrifugal force by the force exerted by the

magnetic field on the moving particle. Thus

= Hewo,

when r is sufficiently large. Hence

, _ Hez

2mWo

Comparing this with the electrostatic deflection y\ we have

and eliminating w^

, Hez . .

2mw„ ^ ^'

-»=fJ? (^^>'

• m_y'H' z''{z'-z,)

7~^^T 2^r~ ^
^'

These equations are only to be taken as illustrating the prin-

ciple of the method. Owing to the fact that the electric field does

not extend all the way from the point to the point D and that

the electric and magnetic fields are not quite uniform, the actual

treatment of the experimental data is somewhat different. For

these refinements the reader must consult the original paper.

The experiments are earned out with certain values of H and

Y. We see from equation (31) that if we take the undeflected

spot as origin and the axes of magnetic and electric displacement

respectively as the x and y axes, then the ratio of the coordinates

of any point on the curve on the plates determines a certain value

of the velocity Wq of the particles. Substituting the same values

of x' and y' in equation (32), we obtain the value of mje possessed

by the particle whose initial velocity had the particular value

previously found. We can thus find the value of mje for all the

velocities present among the y8-ray particles. Since it is highly
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probable from other considerations that e is constant we are in this

way able to find m as a function of Wf^.

From the results of Kaufmann's experiments it was immedi-

ately clear that the mass of these particles increased with increasing

velocity and that the variation was in good agreement with the

formulae which had been developed on the supposition that the

whole of the mass was ofelectromagnetic origin. A careful re-exami-

nation of his plates led Kaufmann to the conclusion that his

results agreed better with the formula of Abraham for the rigid

electron than with that of Lorentz for the contractile one. The

graphs of the two formulae are however not very different for the

range of velocities embraced by the /8-rays used, and it seemed at

the time very questionable whether the experiments did not agree

with the results predicted by both formulae within the limits of

experimental error. It is to be borne in mind that this experi-

ment tests only the transverse mass and tells nothing about the

mass for longitudinal accelerations.

Bucherer's Experiment

A very ingenious experiment to test the different theories of

the constitution of the electron has been carried out by Bucherer*.

D

C

A

Fig. 81.

A speck ofradium fluoride, which contains more radium per gramme

than any other available compound of radium, is placed at the point

R (Fig. 31), which lies at the centre of the lower plate of a circular

parallel plate condenser AB. The distance between A and B is

very small compared with the dimensions of the plates. The plates

A and B are maintained at a suitable difference of potential and

are placed, so that their planes are horizontal, in the centre of a

vertical cylinder. CD is a section of the walls of the cylinder by

• Ann. der Phys. IV. vol. xxvm. p. 613 (1909).



240 CHARGED SYSTEM IN UNIFORM MOTION

tBi'

Fig, 32.

the plane of the paper. A photogiaphic film

extends all the way round the inside of the

cylinder. The whole apparatus is exhausted

and is placed in a uniform magnetic field H
perpendicular to the plane of the paper.

To simplify the discussion of the experi-

ment we shall suppose the distance between A
and B to be so small that it is quite negligible.

In the absence of the electric and magnetic

fields the )8-rays travel in straight lines all the

way from R and their trace on the photographic

film is a circle in the plane of the condenser.

This circle becomes a straight line, of course,

when the film is unrolled. When the fields

are applied the paths become more complex.

Between the plates they are still horizontal

straight lines, but after escaping they describe

circular spirals with their axes along the

direction of the magnetic force. The rays will

only be able to escape from the plates provided

the downward pull of the magnetic force is

equal to the upward pull of the electric field.

If we consider a particle starting out with

velocity w in a direction making an angle a

with that of the magnetic field, the condition

for compensation is

Xe = Hew sin a,

where X is the electric intensity between the

plates. Thus for the particles to escape fi-om

the condenser

c He sin a

'

In Bucherer's experiments this formula was

tested by taking X and H so that XJHc = j[,

Under these circumstances

sin a = 1/2^.

After leaving the plates the particles follow

a spiral path of which ST may be regarded as
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the projection on the plane of the figure. Consider the position

of the point T as a function of the angle a. When w is equal

to the velocity of light, /3 has the maximum value unity. For

particles moving with this speed the theoretical magnetic de-

flection is zero on account of the electromagnetic mass being

infinite. This follows from the formula for the radius of curvature

r= 17110/He. We should therefore expect the trace on the film

to coincide with the undeflected trace (i.e. the rectilinear trace

obtained in the absence of the fields) when

sina = ^ or a =30° or 150°.

This was immediately verified. The maximum deflection occurs

when a = 7r/2 or ;8 = | with the eledtric and magnetic fields used.

The form of the experimental trace is shown in Fig. 32, the very

dark line being the undeflected position. None of the rays escape

fi-om the plate except when the value of a lies between 30°

and 150°.

The values of the maximum deflection when a = 7r/2 enable us

to distinguish between the different formulae for the mass of an

electron. Since these particular particles always move at right

angles to the magnetic field, their paths are circles. Let r be the

radius, let a be the difference between the radii of the cylinder CD
and the plates of the condenser AB and let z be the perpendicular

deflection from the undeviated trace. Then

z = aY(2r - z),

and therefore r = ^(z + — j.

Thus m = = «— -2 +— .w 2w \ z J

If m^ is the mass of the moving electric charge for zero

velocity (w = 0), then for the contractile electron suggested by

Lorentz, we have

./mo=£ (1-/3^)-*

and substituting the value of m given above we find

e ^cz /8 2cz . . ^, .

R. E T. 16
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.(34),

With Abraham's rigid electron, on the other hand,

e Icz ( 3 28-tanh25
]

mo ~ if (a» + z'') i4yS tanh 2S

where /9 = tanh Z.

The relative constancy of the values of e/wio calculated from the

experimental deflections by means of equations (33) and (34)

respectively should enable us to distinguish between the two

formulae. The data yielded by the experiments are given in the

accompanying table

:

^'1 H «/mm8.)
- (10-')

"o
(Lorentz) (Abraham)

•3173 104*55 1637 1752 1-726

•3787 115-78 14-45 1-761 1-733

•4281 127 37 13-50 1-760 1-723

•5154 127-55 1018 1-763 1-706

•5154 127-55 10-35 — —
•6870 127-55 6-23 1-767 1-642

In the case of the Lorentz electron the value of e/mo is constant

within the limits of experimental error, whereas in the case of the

rigid electron the deviation is much greater than can be accounted

for in this way.

These experiments appear to dispose effectually of the rigid

electron and they may be regarded as making it reasonably certain

that Thomson's corpuscles are devoid of mass except such as is due

to the charge that they carry. For this reason we shall always

refer to them in the sequel as negative electrons.

We shall find later on that the relation between m and m^

characteristic of the Lorentz contractile electron is true of all

electrical systems according to the principle of relativity. Bucherer's

experiment may therefore be regarded as evidence in favour of

that principle. A remarkable confirmation of the relativity

expression for the mass of a mo-ving particle has recently been

obtained by N. Bohr* from a consideration of the decrease of

velocity of a and yS rays in passing through matter.

Phil. Mag. vol xxx. p. 581 (1915).



CHAPTER XII

CHARGE MOVING WITH VARIABLE VELOCITY

In the case of a charged body moving with variable velocity

the field is no longer carried along as though it were rigidly

attached to the moving system. That is a state of things which

is characteristic of uniform rectilinear motion. In order to deter-

mine the state of the field in other cases our only recourse is to

evaluate the potentials

"^^-^jjj^r
dr and U==^jfj^-^dr

by direct integration. We shall see how this may be done in the

case of a point charge, that is to say of a charged body all of whose

dimensions are negligible compared with the other dimensions

entering into the problem.

Let us seek the values of the potentials at the point P
(Fig. 33) at a certain instant, t. It will be remembered that

the values p' and (Vp)' which enter into the integration are not

the values at the element dr at the instant t for which we are

seeking the potentials at P but at a certain instant, say t— 6,

which differs from t by the time which is required for a disturbance

travelling with the velocity of radiation to pass from the element

of volume dr to the point P. Clearly r = cO, if r is the distance

fi:om dr to P and c is the velocity of light. We shall suppose the

coordinates f, tj, ^ of the moving charged body to be given

explicitly as a function of the time t — 6 at which the disturbance

leaves it. If B denotes partial differentiation when t and 6 are

considered as independent variables, we have

Be d{t-d)' dd d{t-d)~ Bt
^'

Bl ^ dj d(t-e)^ dj ^ 8g^ «;

Bd~d{t-e)' dd ~ d{t-d)~ Bt
*'

with similar equations involving 77, ij, ij and ^, ^, ^.

16—2
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At the outset we are face to face with a new difficulty which

arises from the fact that the charge pdr which enters into the

integrals expressing the potentials is not all present in the

element of volume at the same instant. Thus the charge pdr
which occurs in this element of the integral is not equal to the

true charge which would occur in this element if it were at rest.

Consider the truncated cone TOSR whose apex is at P and which

is terminated by the spherical surfaces AOSG and BTRD whose

radii are cO and c{d + d6) respectively. The sphere AG represents

the instantaneous position of contributing charges at the instant

t — d and the sphere BD the instantaneous position &t t — 6 — dd.

Thus the part of the charge which contributes to the potential at

P from the front-end OS of the element of volume dr is present

there at a later time than that which contributes from the back-

end TR. All the charges are, however, present in the displaced

element dr = O'S'RT at the one instant t— 6 — dd provided

00' = Vdd. Hence the true charge de which is effective in the

element dr is, if X is the angle between r and F,

de = pdr = pdr (1 — ^ cos A,)*.

• This result is due to Wiechert, Arch, Neerl., (2) vol. v. p. 549 (1900). Cf. also

A. Lienard, L'Eclairage eiectrique, vol. xvi. pp. 5, 53, 106 (1898).
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For, since dr and dr' have the same base,

dr _ 0T- Vdd cos

\

VdO cos \
dT~ OT

~
cdd '

We therefore obtain the following expressions for the potentials

:

'^"4^iii(r(l-^cosX)j' ^"4;;^jjJir(l-^cos\)j""^^^'

and for a point charge e

JL _ ^ 7T_ ( ^^) /n\
^ 47rr(l-/Scos\)' 47rrc(l -/ScosX) ^

''

The dashes denote that the values are not the instantaneous ones

but those at a time 6 = r/c previous. We have assumed in this

investigation that the effect of any real change in p may be re-

garded as negligibly small during the time d6.

Having obtained
(f)

and U, the electric and magnetic vectors

are now to be obtained from the equations

^=-grad</>--^,

and H= rot U.

The differentiations which enter into these equations are at

the point P fixed with respect to the axes of reference. The

independent variables are now x, y, z and t. The potentials

involve x, y, z partly through r and partly through B, which is

a function of x, y, z when t is fixed and involves ^, t], ^ which are

functions of (t — 6). They also depend on t both directly through

f, 7}, ^ and also indirectly through 6. We have

r = cd=^ ^(x - ^y +(y- vf + {z- ?)»,

r(l-^cosX) = r-l{(x-^)l + (y-v)v + (z-Ot}-
c

Let us seek the value of

* dx dt



246 CHARGE MOVING WITH VARIABLE VELOCITY

We have

^'^cd--J{x-^)l + (i/-v)v + {^-Oi{

d4>

dx

But 8|_ d^ d(t-6)d0^ .dd

dx d{t-d) d0 dx ^dx'

Similarly

dx dx' dx dx' dx ^ dx'

?^ = --- and ^=-i:-
dx dx dx dx'

Hence

dx
riff

and

dO 1

dx

dO _ X — ^or ^ ^.

Thus

[c^{{x-^)-e^} + l{(x-^)l + (y-V)v + (z-^)i}

dx 47r {c'd-[{x-^)l+{y-n)i,+{z-OK\y

The expressions for —^ and —^ may be written do^vn from

inspection, on interchanging the axes.
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4
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+i
sf

.
.a^

. tar
dt

r^^-^l^+e^^- (-i)l4-(,-.)g
ai c<J7

dt ^dt r ^' dt ' ^"^ '" dt

^[c'»^_{(^_^)^ + (2/_^)^ + (^_^)^}p,

d (^ - ^) 3^ 8t8i d (t - ^) a«

Similarly

dt

dd\

dtJ'

=-J(i-|){(*-f)i+(2/-'?)^+(^-nft,

1_^ =

Hence

^

and

E.= -
ec
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The expressions for Ey and Eg may be written down by inter-

changing the axes.

It will be observed that of the three terms in the expression

for Ex the first does not involve the acceleration ^, t/, ^. Let us

consider this part of the electric intensity separately. Its com-

ponents are proportional to

{x-^-eh {y-n-ei,) and {z-K-e};)

respectively. The resultant of this part of the electric intensity

is therefore proportional to and directed along OiP, where 0, is

the position which the moving charge would occupy if it con-

tinued from the instant t— to move uniformly during the

following interval 6 with the velocity |, ij, ^ which it had at that

instant. We may therefore write the resultant E^ of the part of

the electric intensity which does not depend upon the acceleration

in the form

^^ = 4^W^^^^^^^ ^^^-

If we work out the value of the magnetic intensity from the

expression H = Tot U we find that there is a part of that also

which is independent of the acceleration Denoting this by Hi
we find

Hi = ^Eism\ (4),

where Xi is the angle between OiP and the direction of V. Hi is

tangential to the circle passing through P in the plane perpen-

dicular to V and whose centre is on the direction of V
In the case of a particle which moves with a uniform velocity,

the expressions just given will represent the whole of the electric

and magnetic intensities. In that case it is convenient to express

Ei = E in. terms of the instantaneous radius rj and the angle it

makes with the direction of motion, rather than in terms of r and
X. The change is easily made. We have

r,/sin A, = r/sin X^

and since OOi =Y0- y8r,

ri^ = r^ + ^r" _ 2y3r2 cos \

= r^ (1 - /8 cos X)» + yS^r^ sin«\

= ?'= (1 - ^ cos \J -h ^r^ sin^ X^;
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hence r ( 1 - /8 cos \) = n ( 1 - jS" sin^ Xj)^,

and E=E,= <^-^")
(5)^

47rri2(l-;3^sin'''Xi)2

These formulae were first given by Heaviside*.

In the case of uniform rectilinear motion the resultant electric

intensity at any point P is directed along the radius from P to

the instantaneous position Oi of the moving charge. It is a

maximum where sin Xj is a maximum, that is, in the equatorial

plane, and is a minimum where sinXi = 0, that is, along the polar

axis. The same thing is true of the magnetic force, which how-

ever vanishes in the neighbourhood of the polar axis. This state

of affairs has been described by J. J. Thomson in the statement

that the lines of force due to an electric charge in motion tend

to concentrate in the equatorial plane. In the case when the

velocity becomes equal to the velocity of light the concentration

is complete. Since y8 is then equal to unity the force vanishes at

every point outside of the equatorial plane. It will be observed

that this part of the force varies inversely as the square of the

distance from the moving charge and is therefore inappreciable at

big distances.

Acceleration.

Turning to E^, the part of E which involves the acceleration,

we see that there are two terms in this, and their components are

proportional respectively to

{x-^-et), {y-v-e-n), {z-K-ei)

and |, if), ^'. Thus E^ may be regarded as being made up of a

part which is directed along O^P together with a component

parallel to the acceleration. If we call the acceleration (^, rj,}^) = T
this result may be written

p el cos /A Q-p e p ,„.

' 47rcV (1-/8 cos Xf ' 47rcV (1-/3 cos Xf '"^ ''

where /^ is the angle between r and V.

Ei obviously lies in the plane of the radius O^P and the

• Electrician, Dec. 7, 1888, p. 148 ; Phil. Mag. V. vol. xxvn. p. 332 (1889).
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acceleration. It is also at right angles to the radius r = OP. For

if we multiply each componeut of A', in turn by the corresponding

direction cosine

r r r

of OP, we find, for the numerator of the sum,

[{x-m + iy-v)v^{^-K)K\{{<^-^r-\-{y-v)' + {^-Ky

-e[{x-^)^ + {y-'n)ri + {z-K)t'\]

X i{x - ^y + {y-^y + {z - 0' - c^^]

= 0.

Thus E^ is at right angles to OP and in the plane containing O^P

and the acceleration.

If we work out the value H^ of the part of the magnetic

intensity H which involves the acceleration we find that this is

at right angles both to OP and to E^ and is equal to ^3 in

magnitude.

Thus the part of the electromagnetic field which depends on

the acceleration of the particle is specified by two vectors, the

electric and magnetic intensities. These are mutually perpen-

dicular and, in our units, are equal to one another in magnitude.

They are both at right angles to the radius from the point P to

the position of the particle at the instant at which the state of

its motion determined the field at P. The vectors may thus be

said to be at right angles to the line of flight of the electro-

magnetic disturbance.

There is another very important difference between the part of

the field which depends on the acceleration and that which does

not. We saw that the electric and the magnetic intensity in

the latter were both inversely proportional to the square of the

distance from the moving charge. In the former both the

intensities are inversely as the first power of this distance. So

that at great distances from the moving charge the part of the

field which depends on the acceleration will become very great
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compared with the part which does not depend upon it. The

importance of this will be clearer after we have considered the

distribution of the energy in the field.

Energy in the Field.

We know that the electromagnetic energy per unit volume of

the field at any point is

= i [H,- + E,-] + {HA) + (E,E,) + i [Hi + ^.^'l,

where {H^H^ and {E^E^ denote the scalar products of the vectors.

The energy per unit volume may thus be split up into three

parts,

U, = i [H,^ + E^], U, = {H,H,) + {E,E,\

and U, = \[Hi + Ei].

Following Langevin* we shall consider these three parts of the

energy separately.

Fig. 84.

• Journal de Physique, voL iv, p. 171 (1905).
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We have seen that the field at the point P at the time t is

determined by the state of the moving charge at the instant t— 6,

when it was at a point distant r from P, where OP = r = cd.

The same statement is true of the field at all points on a sphere

through P with as centre. The field may thus be regarded as

spreading out from the moving charge in all directions with the

imiform velocity o. If we consider another point Pg on OP the

field at Pi will no longer be determined by the state of the

moving charge when at 0, because the disturbance initiated at

has already passed over Pg and reached P. The field at Pg at the

instant t will be determined by the state of the particle when at

some point Og at a time later than t — 0, let us say t — + dd.

The locus of the points at which the field at the time t is

determined by the state of the particle at the time t — 6 + dO ia

the sphere Pgi^ whose centre is Og and whose radius is

02P2=c(e-dd).

At the time t the state of the field in the excentric shell bounded

by the two excentric spheres whose radii are

0P = ce and O^P2=c(0-d0)

will be determined, at every point, by the state of the moving

charge at some instant bet\yeen the times t— and t — + d0.

We shall now consider the energy of each of the three types

?7i, U2 and U^ which is present at the instant t inside the

excentric shelL

The energy of the first type per unit volume is

U, = \ [E,^ + m] =^Ei^{l+^ sin'' \,)

_ e'(l-l3^y l+/3'sin^\i

3277-^ r^* (1 - /8^ sin» \y

"
327r« ?« (1-/3 cos X)«

_ e' (1 - ^'y riM-_^r^ sin^X

32^3^^ r« (1 - )8"cos \)«

^ e^(l-^y 1 + 2)8^ - 2y3 cosX- /g' cos'A.

327r-^r* (l-/8cos\)«

by making use of the various relations on pp. 248 and 249.

The energy of this type within the excentric shell is JfJUidr
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taken throughout the volume of the shell. Using polar coordi-

nates r, X,
<f>

the annular element of volume is

27rr sinX X rdX X PP^.

Now OP = cd, O2P2 = c(d- dO), and if Q is the foot of the per-

pendicular from O2 on OP,

OQ = 00^ cos X = Vdd cos X = c/3 cos XdO.

In the limit when dO is made to vanish, QP^ = O^P^. Thus

PP^ = cd-c{d-de)- c^ cos \dd

= cd0{l -/8cosX).

Hence

[ffn^ e'Ci^-^'y ,. r- 1 + 2/3'^ -2yS cos X-yS^cos^X . ^ .

UidT= —~—-^ cde /To v\^ smXdX
JJj IQjrr^ Jq (1— yScosX)'

_ e^ (1 - I3y cdO n+^ 2/3"- 2 + 4a; -a^

(where a; = 1 — yS cos X),

- ^' ^ + ^%(Z^ (7).
247rr2 1 - yS^

This is the value of the part of the energy, which does not

depend upon the acceleration, which is found at the time t between

the excentric spheres whose radii are cd and c{d — dd). It will

be observed that for a constant value of cdd this part of the energy-

varies inversely as the square of r. It is therefore negligible at

a great distance and is practically all concentrated in the imme-
diate neighbourhood of the moving charge.

In the case in which the charge has always been in motion

with the uniform rectilinear velocity V= ^c, all the energy is of

this type. The formula we have just obtained enables us to

calculate the total energy of this type which lies outside a

small sphere of radius R described about the moving charge.

The smallest of the excentric spheres will have the instantaneous

position of the moving charge, that is to say its position at the

time t, as centre.

All the other spheres, see Fig. 35, are external to this one and

their centres behind its centre Oo, since we are supposing that the

charge is moving with a velocity which is smaller than that of

light. We may now, in imagination, displace all the spheres so
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that they have the point Oq as centre. When this is done the

volume of the shell between any two spheres is the same as when
they were excentric. The total energy in the field is clearly the

same as if the energy of each excentric shell was spread uniformly

over the volume of the corresponding concentric shell. It is

therefore

2^'jrRl-^ SttR li + r(i^)}-(8)-

Fig. 86.

In our units the potential (electrostatic) energy outside the

sphere of radius R is e'/S-TrR. 'The remainder must therefore be

the energy of the magnetic field of the moving charge. Since

the electrostatic energy is the same whether the particle is at rest

or in motion, the magnetic energy is the same thing as the kinetic

energy of the moving charge. The kinetic energy is thus

67ri2 1-/S^ ^
^'
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This may be regarded as the part of the kinetic energy of the

moving point charge which lies outside the sphere of radius

R described about it as centre. In the case of an extended

distribution of electric charge such as the spherical shell con-

sidered in the last chapter, it is necessary to calculate the combined

effects of the superposed fields due to the different elements. The

calculations are very complicated and can only lead to the results

obtained previously, so that we shall not pursue the matter further

in this direction.

It is important, however, to emphasize at this stage the two

main features of the part of the energy of the field of the moving

charge which does not involve the acceleration. In the first place

the whole of this energy is located in the immediate neighbour-

hood of the moving charge and is carried along with it in its

motion. In the second place its magnitude is a function of the

geometrical distribution of the charge. Both are clearly estab-

lished by the discussion immediately preceding and by the results

of the last chapter. This part of the field has been called by

Langevin the velocity wave of the moving charge.

We shall now consider the pai-t of the energy which depends

only on Us and H^. The amount of this which is present be-

tween the two excentric spheres whose radii are cd and c{0 — dd)

may be calculated as follows. Since E2 = H^ the energy per unit

volume is

Now Ez is the resultant of two components, one along OiP and

eT cos fi

47rcV-'(l -/3cos\y

and the other parallel to F and

0,P,

47rC"r(l-yScos\)"

Using the polar coordinates r, X and 0, take the line OOi as

the polar axis and choose the plane ^ •= so that it contains OOi
and a line through parallel to the acceleration F (Fig. 36).

To find the value of i^V resolve E^ into three components,

(1) X parallel to 00^, (2) Y perpendicular to OO^ and parallel
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to the plane
<f>
= 0, and (3) Z perpendicular to OOi and also to the

plane
<f>
= 0. Then since 00i = ^r we have

eV (cos /J. (cos \- 0)
4i7rc^r {1-0 cos X)" \ 1-^8 cos\

eV [cos /JL sin \ cos ^

— cose

4>Tr(^r{l-0cosXy { l-/3cos\

eP cos /jl sin \ sin <^

47rcV(l-y3cos\)*
~~1

— sin e y ...(10),

/8 cos X,

where e is the angle between F and OOj. We have now to

evaluate the integral

///'

where dT'= r^ (1 — /8 cos \) sin \d\d<f)cd0.

The limits of integration are : for \, from to tt and for
(f>,

from

to 217.

Since

and

and

cos /i = cos X COS e + sin X sin e cos ^,

/•2ir r2ir

I
d(f) = 27r, j cos<f)d(f>=0,

Jo Jo

f2v

I
COS**^ d(b = TT,

^0

after changing the other variable from X to a; = 1 — ^ cos X, we
find, for the energy of this type between the excentric spheres,

the value

du.= ^^Z^'^^:'de .(11).
GTrc* (1-W

This result is extremely important. Since it does not involve

r it shows that the energy between the spheres remains constant
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provided they always correspond to the same instants t— 6 and

t—6+d6. Thus as the spheres travel outwards with the velocity c

they always enclose the same amount of this energy. The total

energy of this type which is emitted by the accelerated charged

particle travels off, in undiminished amount, in all directions to

infinity with the uniform velocity c. This energy can no longer be

regarded as belonging to the moving system. It is transferred to

the surrounding space and is in fact the energy radiated by the

particle.

Since dU^ is proportional to T^ we see that there is no radia-

tion except when the moving charge is accelerated. There is no

radiation from a particle in uniform motion. Moreover the radiation

has the same value whether F is positive or negative. A retardation

has the same effect as an acceleration. This is true not only for

small velocities but also for velocities which are comparable with

that of light.

Our results may readily be extended from a point charge to

any finite geometrical distribution. By considering two spheres

such that both r and dr{=cdd) are large compared with the

dimensions of the charged system, it is clear that the radiation is

independent of the distribution of the charge within the system,

provided the acceleration is the same for all parts of the system.

This establishes an important difference between the radiant

energy and the part of the energy which is independent of the

acceleration. For we saw that the latter part depended very

directly on the geometrical distribution of the electrification, being

in fact a linear function of the electromagnetic mass of the system.

On the other hand, the energy radiated by a charged system does

not involve the electromagnetic mass of the system.

When the system contains charges of both signs, and also when

different parts have different accelerations, the radiation will in

general depend on the geometrical distribution; but, in any event,

the influencing factors are not those which determine the electro-

magnetic mass. It is clear that so far as the radiation which

escapes to a great distance is concerned each electron in any

material system may be treated as a point charge. When the

velocities are small the energy in the shell does not involve the

angle e and it may be shown, in a manner rather similar to the

R. B. T. 17



258 CHARGE MOVING WITH VARIABLE VELOCITY

foregoing calculations, that the radiation is proportional to (SeF)',

taken over all the electrons or charged particles in the system.

It follows from this result that a material system which is

electrically neutral will not emit radiation when it is uniformly

accele»'ated, even though it is made up of electrons. This result

is otherwise obvious since it is clear that any system which is

arranged so as to have no external field will not radiate. The

result that the radiation is proportional to (XeTf enables us to

see at a glance whether a given system will be an efficient radiator

or not. For instance, we may take the case of two equal and

opposite charges revolving in a circular orbit about the mid-point

of the line joining their centres. Here both the charges and the

accelerations have opposite signs ; so that the sum of the products

is additive and the system is a good radiator. In the case of two

equal negative charges revolving in the same orbit about a positive

charge at its centre the charges have the same sign, and their

accelerations opposite signs. The value of (SeF)'^ is therefore zero

and there is no radiation from this system. There will of course

be radiation emitted if the negative charges get out of phase

with each other. It is well to observe that the vanishing of

i^eVy will be the condition for no radiation only provided that

the summation is taken over a sufficiently small element of volume.

The result that the rate of radiation of energy from a point charge

is equal to

l;S
(i2>

for small velocities was first given by Larmor*.

Some of the properties of the radiation waves will be considered

in later chapters.

The Wave of Reorganization.

The part dU^, of the energy in the shell, which involves the

geometrical products of Ei and E^, and of Hi and Hf^ may be

obtained in a manner similar to that used in calculating the value

of dU^. Taking the same Cartesian axes as before, we find the

values of the components X^, Yi, Z^ of E^ and Pi, Qi, Rx of H^

from the expressions on p. 248. We have already found X^, F,, Z^

* Phil. Mag. V. vol. XLiv, p. 503 (1897). Of. aiso Aellier ana MutUr, p. 227.
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the components of E^, and P^, Q^, R2 may readily be obtained

since we know that E^ and H^ are equal to each other and are

also perpendicular both to each other and to OP. The value of

this part of the energy per unit volume is

[X,X, + Y,Y, + Z,Z, + P,P, + Q1Q2 + RiR2l

Introducing the element of volume in polar coordinates we in-

tegrate this throughout the region between the two shells and

find

This energy is a maximum when 6 = and is zero when e = 7r/2.

Since Tdd is the change of velocity in the interval dd we see that

Tdd cos 6 is equal to the resolved part of the change of velocity in

the direction of motion. Calling this c8/8 we have

^'^'-
3^r(t-m' ^''^ (I*)-

This part of the energy contains r in the denominator, so that

it falls to zero as the two spheres proceed to infinity.

There is a rather simple and important relation between the

energy dUz and the energy in the field when the charge is in

uniform motion. In considering this, in order to fix our ideas,

we shall suppose that the motion is uniform except during the

infinitesimal interval between t — and t — 6 + dd. Before t —
the charge moves in a straight line with uniform velocity Vj and

after t— + d0 it again moves uniformly in a straight line but

with a different velocity v^. Consider the energy in the field

outside of the two excentric spheres. Up to the instant t this is

that which is proper to the case of a charge moving with the

uniform velocity Vi. At the instant t this begins to be altered.

A new field begins to be established, namely that which is proper

to a particle moving; with the uniform velocity v^. The new field

is evidently left behind it as the excentric shell travels outwards

with the velocity c. The relation referred to is that the energy

dUz is just what is required to change the field outside of the

excentric sphere from the state corresponding to the uniform

velocity Vi to the state corresponding to v^. For this reason the

energy dU^ has, very appropriately, been called by Langevin the

wave of reorganization.

17—2
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The proof of this assertion is a very simple matter. We have

seen (p. 254) that for a point charge moving with uniform velocity

Vi = c^ the energy fT, (/9) of the field outside a sphere of radius

r about the position of the particle aX t — 6 is

If the speed instead of being Vj were Vg = c (/S + 8y9), let us say, the

value of Ui would be

t^x (^ + S/3) = g^- (^1 + 3 ^—^^-pg^,j

= _^ h ,4/3' 8 y38/3 \

STrrV 31-/3=^ 3(1-/8')V'

neglecting higher powers of 8fi than the first. The difference

Ui{^ + Sfi)— Ui{^) is equal to the value of dUi given by (14).

The extension to a finite change of velocity spread over a finite

interval of time is obvious.

Acceleration and Force.

Let us consider the work done by an external force on an

electric charge. The law of conservation of energy requires that

this should be equal to the gain in the energy of the system, and

we have seen that the whole energy of the system can be expressed

as energy of the electromagnetic field. The increment of energy

consists in fact of two parts: the first dUz which is required to

change the state of the electric field to the condition permanently

appropriate to the new state of motion, and the second dU$ which

represents the energy transformed into radiation. li Xe is the

force acting on the charge we have therefore

XeSx=8U,+ 8U,

- r cos edO H—— ^„,,
-—

- r* d0

37rcV(l-y9»)* (1-W GTrc'oQcose

since Bx = cyS cos e dO. The right-hand side of this equation would

represent the whole work of the force in the hypothetical case of

an electron whose properties were those arising from that part of



CHARGE MOVING WITH VARIABLE VELOCITY 261

the field due to a point charge e, which lay outside a sphere of

radius r about the charge. It is very unlikely that an electron

possesses this constitution, and where the electrification has an

extended geometrical configuration the equation has to be modified.

We have seen that the second term on the right-hand which

arises from the energy radiated is not affected by the geometrical

arrangement of the charge. With the first term it is different.

The new value of this may be found by considering the difference

in the energy in the steady fields corresponding to the velocities

before and after the action of the force. Proceeding in this way we
find, in the case of any distribution possessing spherical symmetry,

that r is replaced by the radius of the sphere multiplied by a

numerical factor. The precise value of the factor depends on the

configuration of the distribution, whether superficial or throughout

the volume of the sphere and, if so, whether uniform or not. Thus

the form of the equation is unaltered even when the electric

charge is not concentrated at a point.

Our equation differs from the corresponding Newtonian Equa-

tion F = mV in two important respects. In the first place we
have the additional term depending upon P and in the second

place m is never constant, although it is approximately so when

fi is very small. This aspect of the question has already been

considered. When the acceleration is small the second term con-

taining V^ will be relatively unimportant, so that the Newtonian

law is an approximation which is true for small accelerations and

small velocities.

For the form of the Newtonian law to be preserved it is

necessary that the second term should be negligible compared

with the first. Thus if a is the radius of the electron it is necessary

that

hU,_ (l-;g^sin^6)ra

SC/a 2(l-^^)c='/Scose ^^
should be small compared with unity. Since 1 — ^ may in all

practical cases be taken to be of the order unity, the order of

magnitude of this fraction is

Va 1 a _lp a _Tr .^
2c'*y8 cos e 2c c^ cos e 2c v cos e 2c

'

where t is the time necessary for the charged sphere to move
in the direction of the acceleration through a distance equal to
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its own radius. It is therefore necessary that the change in the

velocity of" the body during this time t should be small compared

with the velocity of radiation.

If this condition is satisfied the motion will be the same as

that calculated on the supposition that radiation does not occur.

Abraham * has suggested that the term quasi-stationary be applied

to states of motion which satisfy this condition. Since the calcu-

lation of the motion when the state is not quasi-stationary' is

extremely complicated, it is important to inquire whether such

states are likely to occur in nature or not. There is one case

which is of very frequent occurrence in which the condition is

violated, and that is the case in which the velocity of the particle

and yS are zero. This state, however, only lasts for an insignificant

interval of time in the case of an electron. We know from the

value of the electromagnetic mass of these particles that a is about

10~" cm. If the particle has moved fi'om rest for a time t the

velocity v = Tt, and since c = 3 x 10" cms. per sec. the j&uction
p

g will be comparable with 10-^7(6 x lO'" x t). This will
itCV cos 6

clearly be negligible compared with unity for any measurable

interval of time. Even after 10~* sec. it will have fallen almost

to 10~*. Thus even in the case of a charged particle starting from

rest it seems unlikely that serious error will arise if the motion is

treated as though it were quasi-stationary.

Another case in which one might expect the quasi-stationary

condition to be departed from arises when the acceleration is very

great. Probably the greatest acceleration with which we are

familiar is that which occurs during the impact of a ;8-ray particle

on an atom. There is some evidence that in favourable cases

a y8-ray particle may be completely stopped within a distance

d equal to the diameter of an atom, let us say 10~^ cm. Assuming

uniform acceleration as an illustration, the equation of energy in

this case is

^mv^ = mTd.

Thus r = i;V(2 X lO""),

and I^^.i(10-»)^ = ixlO-»

* Ann. der Phys. loc. cit.
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when V has its maximum possible value c. Even in this case the

ratio has a value which is quite small, so that it does not seem

likely that the assumption of quasi-stationary motion will lead to

serious error in practical cases.

The Reaction of the Radiation.

Although the part of the force which is neglected by the

assumption of quasi-stationary motion is practically always small

compared with the remaining part, there are cases in which it

might exert important effects through its persistency. For example

in the case of periodic motions, if the reaction of the radiation

always tended to stop the motion, it would in time exert an

appreciable effect. For this reason it is desirable to calculate the

reaction on an accelerated electron without assuming, as we did at

the beginning of this chapter, that the increase in the velocity

during the time required by the electron to move over its own

radius is small compared with the velocity of radiation. Owing

to the difficulties which arise in a more general treatment we shall

content ourselves with the case in which the velocity, though

variable, is rectilinear, and in which the squares and higher powers

of the ratios of the velocity of the electron, and the derivatives of

the velocity, to the velocity of light may be neglected.

Let us seek the force acting on an element of volume dr of

the moving charged sphere at the point P whose coordinates are

x', y', z' at the instant t. Let the variable velocity u of the sphere

be parallel to the axis of x. Let Q (x, y, z) be the position of

some other point of the sphere at the time t. The part of the

potentials at P which arises from the element dr — dxdydz which

is at the point Q at the time t will be determined, not by the

instantaneous state and position Q of the element of volume, but

by its state and position QQ = Xe, y, z at a time t — 0, where

PQb = {{^B - ^J + (2/ - yj + (^ - ^J]^ = cd.

We also have

PQ = [{x - xj + (y- yJ -\-{z- gff]^ = r,

and a>e = x--e+-^-^-^^,Q+...

= x-ue + ^ue^-^u6<' + ....
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Since c0 and r differ only by terms involving u and its

derivatives as a factor we can put r = c6 in the equation for cc^.

mi u u u
Thus «;, = a;--r + 2^,r«-g^r- + ....

Substituting this value of a?^ in PQe, we obtain

= ,-2(.-.')(^-^.^+^.-...)

+ terms involving squares of small quantities.

Thus cd = r \l-2 --o:^»' + ^»''-

X — X (u u u „

r \G 1& or

+ higher terras.

We also have

"bx^ _ w 9r M _ 9r it „ 9r

8a; c 8a; c^ 8a; 1& dx

r, ,
dr x — x'

ox r

so that

dx, = {\-~^^- + -{x-x')--^^^r{x-x)+...'jdx.

Thus to every element of volume dT{=dxdydz) of the charge

at the time t there will be the corresponding element

dTg(—dxedydz)

at the time seconds previously, where

The velocity of this charge at the time * — ^ is

u-uB^ \uef - ^lid^ + ...

= u - u - + ^U - - ^ii - + ...

.

In integrating for the scalar and vector potentials we must
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replace — by —^ . On substituting the values already obtained,

we find to the first order of small quantities that

The scalar potential

is evidently

The vector potential

contains w as a factor, so that the replacement of — by —~ will

only introduce small quantities of the second order and may be

omitted. It is, however, necessary to substitute in Ug. the value

of u at the instant t — d. Thus

Uy= Uz — 0, since the resultant velocity is parallel to the axis of x.

The X component of the force on a unit charge at P is

The magnetic force jEr(=rot U) is derived by differentiating the

vector potential with respect to the coordinates. It thus contains

w as a factor, so that the lowest term in \uir\ will involve squares

of small quantities. This term may therefore be neglected.

Evidently

dx ~
47r Jjj r' dx'

'^'^ "*"

STTcVii ^ 1
~~^ daf

~ r]
'^'^
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and

Thus

This is the force on a unit charge at P arising from the whole

sphere. The force on an element of volume cIt at P is therefore

u
]

since e= jjj
pdr. The total force on the whole moving charge

due to itself is

The value of the first term when integrated over the whole

sphere is zero, by symmetry. Transforming to polar coordinates

the second term reduces, on integfration, to — r in the case of°
67rac*

a uniformly charged spherical shell of radius a and total charge e,

eHi
whilst the third term is ^—i . Thus

OTTC^

The term in u appeared in the case of quasi-stationary motion.

The term in it is new and is therefore due to the fact that the

quasi-stationary condition is not satisfied. The fact that it is

independent of the geometrical distribution of the electrification

at once suggests that it is due to the reaction of the radiation on

the moving charge, since we have seen that the radiation itself

possesses a similar property. This is made clearer if we consider

the work done by the force F^ during a displacement udt.
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This is Fs^u dt = — ;^ , uu dt + ^—i uii dt

— (Xv^\ dt. A \ —
Qirac^ dt

e^ (d )

i^u') dt + g^- 1^ (uu) -M dt.

e^ d
The term — „ -r- (hu^) dt represents the diminution of the

electromagnetic energy {\rmf) of the steady part of the field of

the moving charged body. The term — ^—^ v?dt is equal to the

energy radiated.

The work done by the second term in F^ in a finite time, say

from tx to t<i, is

uu,

h

The integrated part vanishes if either -u or m is zero at the limits.

In the case of periodic motions this term will vanish when the

limits are the recurrent zero values of u and u. Even if these

limits are not chosen its value over a long period of time will

be small, being comparable with the maximum value within a

single period. The value of it?, however, is always positive, when

not zero, so that the integral / v?dt will increase indefinitely as
Jh

<2 increases. It will evidently tend continuously to diminish the

kinetic energy of the vibrating electrified particle, and thus to

stop its motion. It is, in fact, very similar in effect to the action

of a frictional force on a dynamical system.

Planck* has suggested that this force may account for the

frictional term which it is necessary to introduce in order to

account for absorption in optics. Whilst there is no doubt that

this force must be operative it is, I think, far too small to account

for any of the observed effects. The kind of action in which the

frictional term is smallest is found in the case of substances which

give rise to the residual rays. We have seen in Chapter viii

that even in these cases the coefiicient which ' enters into the

resistance term is of the order 10'^ in the units employed, whereas

the term -x—, would lead to onlv about lO"' of this amount. The

main part of what appears to be a damping force in optical

radiators must evidently be sought elsewhere.

* Vorlesungen iiber die Theorie der Wdriiiestrahluvg, p. 109. Leipzig (1906).



CHAPTER XIII

THE AETHER

In our discussion of electromagnetic action so far we have

always, explicitly or implicitly, considered the medium, in which

the actions take place, to be at rest. It is true that in Chapters

XI and XII we have considered in detail the effects produced by

moving charges, and we have seen that changes in the state of

the electromagnetic field are propagated through the surrounding

medium with finite velocity. Without having specified the matter

very definitely we have implicitly assumed that the bodies, whose

motional effects were being investigated, were moving relatively

to a fixed system. The fixed system embraces the observer and

his instruments, and we have treated the question as though the

medium through which the electromagnetic effects are propagated

was rigidly attached to the observing system. This assumption

is clearly, however, an arbitrary one; so far as anything which has

yet been brought forward is concerned, we might just as well

have considered the medium to be moving along with the moving

system. It is necessary, then, to consider what effects we should

expect to arise from the motion of the medium, in order to decide

which, if either, of the foregoing alternatives is true. It may

even happen that it is impossible to form a consistent scheme

of electromagnetic phenomena, without discarding the idea of a

medium altogether.

The main question at issue relates to the hypothetical non-

material medium—the aether—which has long been supposed

to be the seat of optical and electrodynamic actions in space.

Although the question of the effects which are peculiar to moving

material media is intimately connected with this, nevertheless

the two questions are essentially different. If the first question is

settled, we shall see (p. 285) that we have already accumulated all



THE AETHER 269

the material which is necessary to determine the specific effects

which are caused by the motion of material media.

It appears to the writer to be impossible to acquire a true

perspective of the matter at issue without considering it in its

historical development. We shall therefore take it up from that

point of view, at the risk perhaps of lengthening the treatment.

Naturally, optical effects will be treated as a particular case of

electrodynamic actions.

The Aberration of Light.

The study of this subject arose out of a discovery by Bradley

in 1728, made during an investigation whose object was to detect

annual parallax in certain fixed stars near the zenith. Such a

parallax was found. It was not, however, directed towards the

sun as it would have been if it were ordinary stellar parallax,

but it was in a direction perpendicular to this in the plane of the

earth's orbit. The magnitude of the "aberration" was found to be

proportional to the sine of the inclination of the star, but was

constant for stars of equal inclination. The results were found to

be capable of complete explanation on the view that the light was

propagated in space with a finite velocity in a direction which was

fixed relatively to the star and which was uninfluenced by the

earth's motion.

The problem is one of relative motion and can be made quite

clear by considering an analogous material case. Suppose an

observer to be in an open carriage which is moving with uniform

velocity in a horizontal plane. He wishes to determine the

direction of motion of the drops which fall into the carriage in

a rain storm. To do this he is provided with a long tube which

can rotate about a horizontal axis perpendicular to the length of

the tube, and the inclination can be read off on a circle in a

vertical plane. The direction is then determined by adjusting

the tube so that the drops fall through without reaching the sides.

The direction of the rain as thus determined will evidently depend

on the direction of the rain relative to axes fixed in the gfound,

on its velocity and on that of the carriage relative to the same

axes. Let us consider the comparatively simple case when the
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direction of the rain is in a vertical plane containing the direction

of motion of the carriage.

Let OP be the direction of the tube, i.e. the apparent direction

in which the rain reaches the carriage, and let the angle OPP' = a.

Then if OP':PP'= V: v, where F is the velocity of the rain relative

to the axes fixed in the earth, and v is the velocity of the carriage

referred to the same axes, then OP' will represent the position of

the path of the rain relative to axes fixed in the earth. For P' is

then determined by the condition that the time required by the

rain to move from to P' is equal to that required by P to

reach P'. Thus

V _PP' _8m POP'
V~OP'~ sina *

The angle between the true and apparent directions is called the

angle of aberration; denoting it by /3 we have

/8 = Z POP' = sin-^ (y sin aj .

The analogy between this illustration and the optical case is

complete. OP has to be replaced by the direction of the telescope

and OP' by that of the light passing through it—relative to axes

fixed in space. V becomes c the velocity of light in free space,

and V is the velocity of the earth in its orbit. Thus

sm yS = T^ sin a,

and is therefore proportional to the sine of the apparent inclina-

tion of the star, as Bradley found, vjV is often referred to as the

aberration constant.

If we make use of the hypothesis of the aether the most

obvious interpretation of Bradley's observations is that the aether

is at rest in space and is entirely uninfluenced by the motion of

the earth through it. On this view, as was first pointed out by

Boscovich, the angle of aberration will depend on the velocity of

light in the medium in which the aberration takes place. If V is

the velocity of light in this medium the angle of aberration will

be given by

sm p =yr, Sin 0.
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It should therefore vary directly as the index of refraction of the

medium. An experiment to test this conclusion was carried out

long afterwards by Airy who used a telescope filled with water.

He was, however, surprised to find that under these circumstances

the constant of aberi'ation had the same value as in an ordinary

telescope.

An experiment based on somewhat similar reasoning had

occurred independently to Arago, who argued that since the de-

viation of a ray of light produced by a dense prism depends on

the ratio of the velocity of light in the prism and in the surrounding

medium, its magnitude ought to be different according to whether

the passage of the light through the prism is helped or retarded

by the motion of the earth. With this experiment it is evidently

unnecessary to use light from extra-terrestrial sources. Arago

found that no effect due to the earth's motion could be detected,

although the expected effect was comparatively large.

An explanation of the experimental results of both Airy and

Arago was given in a general way by Fresnel, who suggested

that the aether was carried along by moving material media in

such a way as to compensate exactly for the difference between

the velocities of the light in the medium and in vacuo. It is

necessary that the aether should be carried along with a velocity

which is only a fraction of that of the medium, for if it were

carried with the same velocity there would be no aberration at

all. Fresnel's suggestion was worked out more completely, later,

by Maxwell and Stokes. We shall now calculate with what

fraction of the velocity of the transparent medium it is necessary

that the aether should be carried along in order to give the result

required by Arago's experiment that refraction is independent of

the earth's motion.

The path of a ray of light in any medium is determined by

the fact that the time required to pass from any one point of the

path to any other has a stationary value. This extension of

Format's Principle of Least Time follows on the undulatory theory

of light from the fact that if A and B are any two points in a ray

the disturbance arising from points in the wave front in the

immediate neighbourhood of A must all reach B in the same

phase. This condition will evidently be satisfied when the time
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from A to B has either a stationary or a maximum value as well

as when the value is a minimum. Thus if ds is an element of the

path of the ray and V the velocity at any point, then

# = 0. .(1).

Consider the case of any optical system, including the observer,

which moves through space with the velocity whose components

are u, v, iv. Let I, m, n be the direction cosines of the ray at any

point. Suppose that in any refracting medium the velocity of the

light passing through it is increased by the amount d multiplied

by the velocity of this medium through the aether. If V is the

standard value of the velocity of light in this medium when the

system is at rest, the velocity relative to axes fixed in space for

the moving system will be

V+6(lu+mv+ nw).

But the observer is moving relative to the fixed axes with a

velocity whose components are u, v, tv, so that the resolved part of

his velocity along the direction of the ray is lu + mv + nw and

the velocity of the ray relative to him is

F - (1 - ^) (III + mv + nw).

The equation of the relative ray paths is therefore

g f
ds ^

J V-{l-e){lu + mv + nw) '

or to the first order of (m, v, w)/V

^
I
TT + ^

j -yT (^^^ + vdy + wdz) = 0.

To be in agreement with Arago's experimental result it is neces-

sary that the relative paths to this order should be independent of

u, V, w. This will be the case if the quantity under the second

integral sign is a perfect differential ; since the value of the

integral will then depend only on the terminal points which are

not varied. If m is the refractive index of the medium and c is the

velocity of light in free aether w? = c^/ VK It is therefore necessary

and sufficient that

7)1^(1 — 6) , , , , .—^ {uaw + vdy 4- wdz)
c

be a perfect differential. Since the relation between m and u, v, w
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is arbitrary and udx + vdy + wdz satisfies this condition as a rule,

it follows that

—^ = a constant A,
(r

so that 6=1- Ac'^lml

It is clear that 6 must vanish for empty space for which m = 1,

so that A = lid" and 6=1- l/m^.

It follows therefore that there will be no effect, due to the

motion of a refracting medium through space, of the order of

magnitude of the first power of the ratio of the velocity of the

medium to that of light
;
provided the velocity of light through

the medium is increased by {m\— 1)1m? times the velocity of the

medium. If we regard the optical disturbance as being propagated

in an aether capable of flowing we may say that the aether is

carried along by moving matter with (w^— l)/w^ times the velocity

of the latter. This was Fresnel's interpretation of Arago's result.

It can also be shown that the hypothesis that the velocity

of light in the moving medium is increased by 1 — l/m** of the

velocity of the medium in space is sufficient to account for the fact

that the aberration constant is independent of the refractive index

of the medium filling the telescope which is used to measure

it. For the discussion of the problem which is here involved the

reader may be referred to Campbell, Modern Electrical Theory,

First Edition, p. 293.

Fizeaus Experiment.

The conclusion that the velocity of light in a moving refracting

medium is increased by 1 — Ijm^ of the velocity of the medium was

put to the test of direct experiment by Fizeau. The apparatus

he used for the purpose was similar to that shown in Fig. 37

Two parallel tubes c c' were set up so that a stream of water

could be made to run continuously through them in the directions

indicated. A ray of light / was divided by the thinly silvered

mirror a. The reflected portion travelled along the path f ah c e

c' h' a g. The transmitted portion on the other hand followed the

path f a h' c e c b a g. The two beams thus combined in the

direction of g and gave rise to interference bands which were

observed with a telescope. It will be noticed that when the

B. E. T. 18
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water is flowing one of the beams of light is always in the

direction of flow of the water and the other against it. The
position of the bands is first observed with the water at rest.

The stream of water is then turned on and the displacement of

the bands, caused by the resulting difference of velocity of the

two beams, measured. Fizeau found that the shift of the bands

thus caused was in complete accordance with Fresnel's hypothesis.

The experiment has since been repeated with improved apparatus

by Michelson and Morley, whose results were also in complete

accordance with the view that the velocity of light in a moving
material medium is increased by 1 — l/m" of the velocity of the

medium.

The foregoing experimental results led to two rival views as to

the relation between the motion of matter and that of the aether

Fig. 37.

in its neighbourhood. The first view, which was championed by

Fresnel, held that the aether outside material bodies was at rest,

and matter moved through it without setting it in motion. Thus

the aether was supposed to be able to flow freely through matter

like water through a sieve. We have seen, however, that it is

necessary to suppose that the relative velocity of moving refracting

matter and the aether in its interstices depends on the refractive

index as well as on the velocity of the matter relative to

the stasrnant aether. This was in agreement with Fresnel's

optical ideas, according to which the density of the aether in

material bodies depended on the refractive index. The relative

velocity would therefore have to be different in order to pre-

serve continuity of the medium. On this view aberration is the

simplest possible problem in relative motion, and it is ciear Irora
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the foregoing discussion that Fresnel's views are in harmony

with the experiments of Arago and Airy.

Stokes was unwilling to accept the view that matter could pass

freely through the aether without setting it in motion, and he

therefore undertook to investigate whether it would not be possible

for the aether in its immediate neighbourhood to be carried along

by the earth and still give the well-known results for terrestrial

aberration. The problem is to find what distribution of velocity

may be imparted to the aether so as to leave the paths of the rays

in space unchanged. If c is the velocity of light in the stagnant

aether in a direction whose cosines relative to fixed axes in space

are I, m, n and the components of the supposed velocity of the

aether are u, v, w at any point, then the velocity of the ray in space

at that point will be c + lu + 'mv + nw. Applying the principle

of stationary time the equations of the ray path will be deter-

mined by

sf J^ =0,

or, to the first order in {u, v, w)/c,

B I ^
I
~2 (udx + vdy + wdz) = 0.

If udx + vdy -\- wdz is, Si perfect differential the second integral

will depend solely on the values of u, v, w at the terminal points

and will therefore be independent of the motion of the medium in

between. The condition that udx + vdy + wdz should be a perfect

differential is the condition that the motion of the medium should

be what is known in hydrodynamics as differentially irrotational *.

It means that there is to be no whirling motion. Provided this

condition is satisfied the path of the ray passing between two

points whose velocities are given is determined solely by the values

of those velocities and does not depend on the motion of the

medium in between.

As an illustration of Stokes's result we may consider the

particular case of light propagated from a fixed point x^, y-^, z^

to a fixed point x^, y^, z^, the space between being filled with a

* Cf. Lamb's Hydrodynamics, 1st ed., chap. in.

18—2
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uniform stream of aether flowing with uniform velocity having

components u, v, w. The path is determined by

ftPt'tds ^
/%»««» 1

Bj 8 1 -(udx + vdy + wdz)=0,

ftetVi't ri
"I

or B ds-S\-{u{x3-Xi) + v{y2-yi) + w(z2-Zi)}\=0,
J XtVyZl \_^ J

or Si ds=^0,
J XiViZi

SO that the path s is obviously a straight line from x^, yi, z^ to

x^, y^, Zz, just as if there were no motion.

The condition that the distribution of velocity communicated

to the aether, by the motion of the earth through it, should be

differentially irrotational is that the aether should behave like

a perfect fluid for slow disturbances, such as the motion of material

bodies through it would give rise to. This seems a natural con-

dition of affairs, so that thus far Stokes was able to give a

satisfactory account of aberration and still retain the view that

the earth carried the aether in its immediate neighbourhood along

with it, in the manner of a solid moving in an ordinary material

fluid.

If the aether is an incompressible fluid it is not possible for it

to be at rest relative to the surface of the earth and to have

a velocity equal and opposite to that of the earth at distant points

if its motion is continuous and irrotational* Ways in which this

difficulty could be overcome have been pointed out by Lorentzf

and PlanckJ. They seem, however, rather artificial. In order to

explain Fizeau's experiment it is necessary, on Stokes's theory as

well as Fresnel's, to suppose that a moving refracting medium
imparts a velocity equal to (1 — mr^) of its own velocity to the

aether within it. If the earth carries the aether with it in its

immediate neighbourhood, as Stokes supposed, other moving

bodies would be expected to have the same effect. An experiment

to test this point has been made by Lodge §, who tried to find

* See Whittaker, History of Theories of the Aether, p. 412.

t Arch. Neerl. vol. xxi. p. 103 (1896).

X Cf. Lorentz, Proc, Amsterdam Acad. vol. i. p. 443 (1899).

§ Phil. Trans. A, vol. clxxxiv. p. 727 (1893).
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a change in the velocity of light in the region around the periphery

of a massive iron flywheel when it was made to rotate rapidly.

The results were entirely negative. A way of escape from most of

the objections to Stokes's theory has recently been suggested by

H. A. Wilson* (see p. 283).

The Michelson and Morley Experiment.

So far those who held the view of an aether which is undis-

turbed by the motion of matter through it appeared to have

much the better of the argument. The foregoing account repre-

sents the state of the question when Michelson and Morley carried

out the famous experiment by which they hoped to obtain positive

evidence of the relative motion of the earth and the aether.

Before describing this experiment we shall first consider the

problem of the reflection of light at a moving surface.

Fig. 38.

The plane mirror AB is moving towards the right with the

uniform velocity v. A plane wave of light bounded by the rays

DA, EB falls on it. Let us find the relation between the angle

of incidence l and the angle of reflection. When a wave meets

the mirror at A on the ray DA, it has reached the point G on the

ray EB. If the mirror were at rest this wave would afterwards

meet it at B, but as the mirror is moving, the wave will meet it

at W, where BB'jB'G = vjc, c being the velocity of light. The

mirror thus behaves as though it were turned through an angle e

given by

tan (t — e) _ B'G c 1 tan t — tan e

tan I, BG c + v tan il + tan t tan e

'

• FhU. Mag. VI. toL xix. p. 809 (1910).
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whence - = tan e (
: H tan i ]

,

C \tan t, /

neglecting -—— . Hence to the first order in e/*
tan* I

e = tan e = p: - sin Zi.
2c

The effect of the mirror on the reflected wave is therefore the

same as if it were rotated through an angle € = -^ySia2i,. The

reflected light will be turned, relatively to a similarly situated

fixed mirror, through twice this angle.

s

Pig. 39.

The arrangement of apparatus used in the Michelson and

Morley experiment is shown in the accompanying diagram. Light

from a source S passes through a half-silvered mirror B inclined

at 45° to the direction of propagation. The reflected ray is

reflected back by the plane mirror A so as to pass through the

half-silvered mirror and thus reach the observing telescope E.

The transmitted ray is reflected back by the plane mirror D
and again by the half-silvered mirror, and so it also reaches the

telescope E. The paths of the rays in space will depend on the

magnitude and direction of the velocity of the apparatus. The

figure has been drawn for the case in which the apparatus is carried

along by the earth's motion in the direction of the ray SD. Let the

velocity of the earth in its orbit be v, that of light in the undisturbed
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aether being c. Then the ray BA will not be perpendicular to

SB, on account of the motion of the mirror, but will be inclined

to this direction at an angle which is equal, to the first order, to

6 = tan~^ vjc, by the preceding theorem, since l = 7r/4. Since A is

moving parallel to itself, AG will be inclined to the normal at an

equal angle on the other side of it. In an exactly similar way the

ray CE produced by the reflection of CD at the moving mirror

will be inclined at the same angle to CD as the ray AC. The

two rays will therefore coincide in direction when they reach the

observing telescope. If AB = BD=l when the apparatus is at

rest, the construction when it is in motion will be as shown, if C
represents the position that B has moved into while the light

moves from B to D and back. BC is evidently equal to 2vl/c. The

position of the interference fringes seen in the telescope will

depend on the difference of time taken by the light to reach it

along the two rays from B. This is equal to the difference of

time along the two paths from B to C. If Ti is the time along

the path BAG this is given by

cr.= 2(^(1+1).

If T is the time required for the other ray to go from B to D, we
have

cT=l + vT,

and if T' is the time required for it to get back from D to G

cT' = l-vT'.

So that 2"=—,
c — v

T' —

andr.r-r.=-'{(i-^)%(i.r-(^-^3}

I {^ V V^ ^ V v^= -n +- + -+... + 1 -- + - + ...
C I C C- G C

= - -
, neglecting higher powers of -

.
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The corresponding difference of path is

If the fringes were adjusted when the apparatus was station-

ary a displacement corresponding to this path difference should

be observed if the whole apparatus were moving with uniform

velocity v in the direction indicated. If the motion were with

uniform velocity in a direction perpendicular to this the path

difference is found to be equal but in the opposite direction;

thus if the apparatus is adjusted so that SD coincides with the

earth's motion relative to the sun, the effect of turning it through

a right angle should be to cause the fringes to shift by an amount

corresponding to a path difference equal to 2^ —

.

Michelson and Morley set up their apparatus on a stone slab

which floated in mercury. It could thus be rotated without

causing strains to be set up in the apparatus. As the rotation

was made to take place the fringes were observed continuously

but no displacement of their position could be detected. The

investigators were able to show conclusively that the relative

motion of their apparatus and the aether could not amount to

as much as one sixth part of the velocity of the earth in its

orbit.

The result of the Michelson and Morley experiment was to

place the problem of the relative motion of matter and aether in

an apparently impossible position. On the one hand the view

maintained by Stokes that the aether was carried along by the

earth in its motion appeared to be full of inconsistencies, on the

other hand the consequences of the stagnant aether hypothesis

were flatly contradicted by experiment. An escape from the

dilemma was pointed out by Fitzgerald who suggested that the

null effect in the Michelson and Morley experiment was due to

a change in the dimensions of the apparatus in the direction of

the earth's motion, just sufficient to counterbalance the expected

effect. The required change would evidently be produced if the

matter of the apparatus contracted in the direction of the earth's

motion in the ratio 1 —iP/2c^ to 1, the lengths in planes perpendi-

cular to this direction being unaltered. This change would be
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too small to be capable of direct measurement in any case ; but

even if it were not, the operation could not be carried out ; as any-

material scale which might be used would also contract, in the

same ratio as the material to be measured.

This hypothesis seems a wild speculation at first sight, but

it appears, on further inquiry, that it is rather what might be

expected to occur if matter is made up of electrons. In that case

the question at once suggests itself as to why a given portion of

solid matter preserves its shape. If the matter were made up of

superposable elements of positive and negative electrification,

capable of infinitesimal subdivision, the only state of stable

equilibrium would be one in which any excess of charge of one

sign would be dissipated to infinity and the remaining equal and

opposite charges would be superposed on each other. The matter

would thus annihilate itself and disappear. In order that matter

should be stable enough to preserve its identity it is necessary

that the ultimate elements of electrification should be finite, and

it is also necessary that the superposition of opposite elements

should not result in annihilation. To ensure this it is necessary

that the ultimate elements of opposite sign should not have

exactly equal geometrical distributions. We conclude, in fact,

that the positive and negative electrons are essentially different.

The simplest assumption we can make as to the nature of the

forces which keep them in equilibrium is to suppose that they are

under the influence of equal and opposite forces of ultimately

electrical character, but it may be that this supposition is in-

adequate and that the electrical forces are balanced by forces of

non-electrical type. In any event, in static cases the equilibrium

configuration of the electrons will be determined by the positions

in the matter at which the resultant force is zero.

We know from the results of Chapter XI that the field due to

an electric system in motion differs from that due to the same

system at rest, in such a way as would result if all the lengths

parallel to the direction of motion were changed in the ratio of

(1 — v^l&)^ to 1. Thus for the electrical forces to have the same

value in the moving as in the fixed system it is necessary that all

lengths in the former which are parallel to the direction of motion
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should be reduced in the ratio of (1 — v'^jd^)^ to 1. If the forces are

all electrical it follows that the positions of the balancing points

where the force vanishes will all be nearer together in this ratio

and a contraction in length of this amount, in the direction of

motion, will have to occur, in the moving matter, if equilibrium

is to be maintained. Since

(1 - v'ld'f = 1 - 'y2/2c«

as far as the fourth order in vjc, we see that this contraction is of

the right magnitude to account for the absence of an effect in

the Michelson and Morley experiment. Another mode of explana-

tion will be developed later.

An attempt has been made by Trouton and Rankine {R. 8.

Proc. A, vol. Lxxx. p. 420, 1908) to detect and measure the

Fitzgerald shrinkage by measuring the resistance of a metal strip

when (a) parallel, and (h) perpendicular, to the earth's motion.

The experiment showed that if any shrinkage occurs it is com-

pensated to within 2 per cent, of the expected value by some

counterbalancing effect of the motion on the resistance. Trouton

and Rankine were able to show that on the electron theory of

metallic conduction the changes in the mass, mean free path and

velocity of the electrons would exactly compensate the effect of

the expected shrinkage. It is interesting to note that according

to their calculation the Lorentz change of electromagnetic mass

with velocity gives the desired compensation, whereas the value

found by Abraham does not.

Besides those which have already been discussed, there are a

number of other cases, where effects due to motion through the

aether might be expected to arise, which have engaged the atten-

tion of physicists. As is well known, the phenomenon of ordinary

double refraction can be fully accounted for solely by the fact that

the media which exhibit it transmit the disturbance which con-

stitutes light with different velocities in different directions. We
have seen that in order to explain Arago's experimental result it

is necessary to suppose that the velocity of light relative to the

medium, through a refracting medium which is isotropic when at

rest, depends on the motion of the latter through the aether. The
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relative velocity of the wave will therefore be different in different

directions, and we might expect double refraction to occur when

the medium is moving. Such an effect has been very carefully

sought for but always with negative results.

Another effect which has been looked for is a change in the

rotation of the plane of polarization of plane polarized light pro-

duced by its passage through a quartz plate, due to change in the

relative direction of the apparatus and the earth's motion. The

rotation of the plane of polarization of light produced by its

passage through quartz in a direction near that of the optic axis

is believed to be due to the difference of velocity of circularly

polarized rays when travelling in that direction. Thus the quartz

is able to increase the velocity of one of the two oppositely

directed circularly polarized rays, into which the plane polarized

ray may be resolved, relatively to the other. The emergent ray,

produced by their recombination, is thus polarized in a plane

different from that of the incident ray. Since the velocity of

either of the circularly polarized rays in the moving quartz

depends on a function of its refractive index for that ray multi-

plied by the velocity of the quartz through the aether, and the

refractive index is different for the two rays, an effect should arise

which is proportional to vjc. Experiment shows that there is no

effect which is comparable with that to be expected on this view.

The reader will find a number of other experiments and observa-

tions, which bear upon the subject under discussion, described

in the last chapter of Whittaker's History of the Aether and

Electricity.

A method of reconciling Stokes's theory of the optical pro-

perties of moving bodies with the experimental facts, without

assuming the Fitzgerald contraction, has recently been indicated

by H. A. Wilson*. Wilson points out that the problem of the

motion of a body like the earth, through the aether, may be solved,

in such a way that the motion of the incompressible aether is

everywhere continuous and irrotational, provided that the tan-

gential relative velocity vanishes at the surface of the body. All

the conditions may be satisfied by an appropriate flow of the aether

* Phil. Mag. VI. vol. xix. p. 809 (1910).



284 THE AETHER

along the normal to the surface of the body. All the experiments

to detect relative aether flow which have been made deal only with

the velocity component parallel to the earth's surface and, owing

to strains, etc., caused by the gravitational action, it would be

almost impossible to execute delicate tests for motion in the

vertical direction.

Relativity of Effects.

In reviewing the outcome of the experiments which have been

undertaken with the object of discovering the relation between

the motion of matter and aether, the most striking feature appears

to be the small number of experiments which have led to a

positive effect. The only cases where motion of matter appears

to influence optical phenomena are

1. Astronomical aberration

;

2. Relative motion of a refracting medium as in Fizeau's

experiment; and

3. The Doppler effect.

It can hardly be a coincidence that all these cases entail the

relative motion of matter. There is no experimental evidence of

any optical effects arising from the motion of matter relative to

aether or to space. One is therefore tempted to inquire whether

it is really necessary to postulate an aether for the propagation of

optical and electrical effects ; it may appear that a more consistent

set of relations would be obtained solely by the relative motion of

matter. We shall have more to say about this question later.

The Propagation of Light in a Moving Refracting Medium.

The efiect of the motion of a refracting medium on the

propagation of light through it may be calculated on the electron

theory, as follows :

—

We shall consider the case of a plane polarized beam of light

which is propagated along the z axis.
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Referring to Chapter viii, p. 148, we see that the polarization

P is related to the electromotive intensity E' by the equation

P = {'m?-\)E'

When the medium is in motion, with velocity F,

E'=E^\\y.H],

if the magnetic permeability of the medium. is unity, in accordance

with equation (5), Chapter ix. In the present case, therefore.

P, = {ni^-l){E,--^Hy) (2),

if we take the axis of x parallel to the electric intensity and

that of y parallel to the magnetic intensity and the motion of the

medium parallel to the axis of z with velocity w. The current

n P
density is JD^ + w—^ , the latter term arising from the convection

of the polarization by the moving medium. Thus the funda-

mental electromagnetic equations become

dE 1 •

Eliminating P and H from (4) by means of (2) and (3) we have

If V is the velocity of light in the moving dielectric with

respect to the fixed aether we shall have Ex = Ae'P^^~'l^\ where

A and p are constants. Substituting this value and neglecting

w^Jc^ we have

(f = m^V^ - 2w (m2 - 1) V,

or V=^+(l-^]w (5).

This is Fresnel's formula (p. 273). This deduction shows that

the convection of the polarized dielectric through the fixed aether

produces the same change in the velocity of the light as is required

by the experiments of Airy and Fizeau and by Fresnel's hypo-

thesis. Those experiments therefore do not prove that the aether
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is carried along by the moving matter. The substance of this

calculation was first given by Lorentz* and somewhat later by

Lannorf.

Moving Axes and Correlated Systems.

We have seen that the behaviour of an electromagnetic system

at the earth's surface may be represented by the system of

differential equations :

—

div^ = p (I),

divif = (II),

rot H={E + pV)/c (Ill),

rotE=-H/c (IV),

where the force ^ on a unit charge is given by

F=E + [V.H]/c (V),

and V is the velocity of an element of charge relative to the

earth's surface. If matter has a purely electrical constitution this

system of equations will also describe the changes which material

systems undergo.

A method, for which we are indebted to H. A. Lorentz, of

investigating the effect on electrodynamic actions of the motion

of the medium, is to transform the equations so that they refer to

axes moving relatively to the material system instead of being

fixed in it. As an illustration, and to fix our ideas, let us suppose

that the above equations are true when the coordinates x, y, z

and t are measured along axes fixed in space. Then K= (wi, t'l, W\)

will be the velocity of an element of charge relative to the fixed

axes. We shall now examine how the differential equations are

changed when they are made to refer to axes moving with uniform

velocity u along the positive direction of the x axis, relative to the

origin of the fixed axes Ox, Oy, Oz. Let the coordinates referred

to the moving axes be denoted by x', y', z'\ we shall also distin-

guish the time for events described with reference to the moving

system by t. Let the two systems of axes coincide at i = 0. Then

af = x — ut, y —y, z' = z, i! = t,

• Arch. Neerl. vol. xxv. p. 525 (1892).

t Phil. Trans. A, vol. clxxxv. p. 821 (1894).
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X, y, z, t and x, y', z, t' being respective sets of independent

variables we have

l = i_ 1 =A ! = -?_

dx dx" dy dy" dz dz"

but in virtue of the principle illustrated in dealing with the

convection of the polarization charges on p. 285 we see that

df'dt'^'^dx'

mi ^^x ,
^^x ^^x

,Thus _+„.^ = ^-„_H-,^p

oy

from (I), and

-^ + (tti -u)p=^, (cHg - uEy) - gp {cHy + uE^\

from (III).

dE,,
.

dE,j
.

dEy
Smnlarly -^ ^^^p^^ + u-^ + v,p

= —,{cH^)-^,(cR,-uEy),

and —^ + w,p = ^, {cHy + uE^) - —, (cH^).

Also ^r = -57- + W -K- I

c dt c\dy dz Jdy

Thus from (IV)

Similarly

-W = ai
("-^^ + "^"^ - 57 ^'^^ - "^'>-



288 THE AETHEE

Thus if we put

H' = {H^, Hy', H:) = (h„ Hy-\-^ E,, H,--^ EyJ

E' = {E^, Ey', E;) ^{e,, Ey-\ H,, E,^lHy)\.. .(6),

V' = {u', v', w') = (ui — u, Vi, Wi)

the equations may be written

c\dt

IdH^^ dE/ dEy'^

c dt' dy' dz'

1 dHy dEx dEz

c dt'
~

dz' dx'

IdH.^dEy' dEx'

c dt' dx dy'

...(7).
L , A dHx dHz

IfdE, ,A dHy' dHx'

The unaccented symbols in the left-hand members of (7) may be

eliminated by means of the equations (6). We have, for example

Ey'=Ey-'^^H, = Ey(l-'^)-^H,';

thus if ^' = {l-u^/c')-\

Ey = ^{Ey' + ^H/),

and similarly

(Hx, Hy, F,) = ^^(/3-ff;. Hy'-'^E;, H/+'^Ey^,

(Ex, Ey, E,) = fi^(p-^Ex', Ey+'^H;, E.'-'^Hy'].

Substituting in (7) we find

1 dHx' ^ dE, dEy'

c dt' dy' dz'

c^ dt'
~

dz' W'^^ d'dt') '

-o^^-W^^d^dt')^^--dy'\

•(8).
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The differences between the values of H' and H and E' and E,

respectively, required by equations (6), are in accordance with the

experimental values of the magnetic force due to a changing

electric field and the force on an electric charge moving in a

magnetic field. These terms would therefore be expected to

arise if the electromagnetic system under investigation were

in motion relative to the measuring instruments employed to

investigate it. Equations (8) show, however, that if rapid changes

with time are occurring the state of the moving system will be

different from that of the fixed system on account of the terms

involving ^ — ^, and of terms of the second order in - depending

onyS^

We have seen in Chap, xti that the effects due to a moving

charge are not established instantaneously but are propagated

through space with the constant velocity c which, we have reason

to believe, is independent of the velocity of the matter at which

the effects originate. It may be that on account of this finite

velocity of propagation c the hypothesis (t = t') that the time of

an event when referred to the fixed axes is the same as that of

the same event when referred to the moving axes, is leading to

inconsistent results. Just as, according to "Fitzgerald's hypothesis,

the lengths of all material bodies change when the system is in

motion, it may be that all the clocks change in a similarly definite

manner. In such a case the local time t' might be a function of

X, y, z B& well as t. Without pursuing this discussion further for

the present (we shall return to it later, p. 298), we shall provisionally

admit the possibility that t' is different from t, and see to what

conclusions we are led thereby.

In order to avoid altering the notation in the preceding

equations we shall still retain t' = t and introduce a new variable

t" for the local time. Following Lorentz, to whom the conception

of local time is due, let us assume that

Then just as in changing from x to x =x — ut we have -—, = :r-

ox ox

K. E. T. 19
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and —, = 5- + w ;r- we now have, in changing to the new variable t",

ot ot ox

d _ d , a _±,o,ui

Thus the equations of the field become

dt"
+ «>') =

dy' dz ^

c\r dt"
^""Pj

dz' dx"

1

c dt"

dx"

djl
dy'

dH^^dEl
dt"~

dHl
dt"

dz

~ dx"

dH,'

dy

d_El

dz'

dE;

dai'

dE'
dy' I

.(9).

If we overlook the dashovS these equations only differ from (III)

and (IV) by the inclusion of the factor /S^ when it occurs on the

left-hand side. Since /3^ = (1 — u^jc^Y^ the two sets of equations are

identical in form as far as the first order in ujc. This leads to an

important principle which we have established to this order of

accuracy.

Lorentz's Principle of Correlation.

If we can solve (III) and (IV) for any one of the variables

Eg;, Ey, Ez, Hx, Hy, Hz, let us say E^, and then express the solu-

tion in the form

Ex =^f{!c, y, z, t),

this means that E^, the x component of the electric intensity in

the fixed system, is a certain function / of x, y, z and t, the space

and time coordinates referred to the fixed axes. It follows from

the identity up to the order - of the equations (9) with (III) and

(IV) that

E^=f{x",y\z',t")
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is precisely the same function of

x" = x-ut, y' = y, zf = z, t" = t-^^-x"

that Ex is of x, y, z, t. Thus in comparing a moving and a fixed

system, which are identical with one another when at relative

rest, for any event in the fixed system characterised by a certain

set of values of E and H, there is in the moving system a corre-

sponding event characterised by values of E' and H', which are

the same functions of x", y', z and ^' that E and H are of x, y, z

and t. It follows that within a self-contained system, to the order

of w/c, the electromagnetic effects are independent of the velocity

of the system, since E' and H' are the values of the electric and

magnetic forces which would be actually measured by instruments

moving along with the system. This is only true, however, pro-

vided the time recorded by clocks in the moving system is the

local time and not the " true " time recorded by clocks in the fixed

system.

The principle of correlation is due to Lorentz. In the first

instance he only succeeded in establishing it to the first order of

ujc after the manner of the discussion above. A little later Larraor

by including a contraction along the axes of motion, to accord

with Fitzgerald's hypothesis, showed that the principle held to

the order v?jc^. In 1903 Lorentz showed that a very similar trans-

formation enabled the correlative principle to be established with

exactness for all values of the velocity u less than that of light.

We shall now investigate what is the necessary transformation of

the electromagnetic equations in order to establish correspondence

up to any order of ujc.

Since the differential equations are linear the transformation

we are seeking will be a linear one and the preceding investigation

at once suggests the form which is most likely to be successful.

Let X, y, z, t be the coordinates referred to the first set of axes

and x', y\ z, t' those referred to the second, which are in motion

relatively to the first. Assume that both x' and i are linear

functions of both x and t whilst y' and / involve only y and z

respectively. Let us put

x =i{x-\-jt), y' = ky, z' = lz, t' = m{t+nx) (10),

19—2
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where i,j, k, I, m, n are constants to be determined. Then

.(11).

dx dx dt dx dt'

A: — =-
ay dy

d/ dz

d__d__ .d_ ^^_ ..^
^dt'~dt ^ dx dt '^hx'

Since the axes are moving in the a; direction, A;=^ by symmetry.

We shall now transform the equations (III) and (IV) in which

X, y, z and t are the independent variables, to new equations in

terms of the independent variables x\ y, z and ^.

We have -^^ + Mj/j = m 3^ + i; ^^ + t«ip
6t dt'

-"'{dy dA'

Hence

Similarly

dE^
J
dHg , dHy ..dEx

dE, dEy ..dEy

dt
+'^P = '^W-^'^d^^''P

, dH, .dH, dU,

Thus

dt'
m ^,(Ey + cnH,) + v,p = ck^-^-d^, (H, + ^^Eyj .

dH,
dz'

d_

dx

Similarly

m^, {E, - cnHy) + w^p = ct^, (^y "^ ^^) - ok
djh
dy'

Also, from (I)

dx oy dz '^ ox dt dy oz

Hence
.dE^ dE^ ,dEy ,dE,

7\'v! " nt. nti oz .Ot oy
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Hence the three equations may be written

m ^-, {Ey + cnH,) + v,p = ck -^^ - ci^, (h^ + ^ Ey^

m^^,{E,-cnHy)+ w,p=ci^,{Hy-^-E^-ck^

(12).

Turning to the other three equations

and from (II)

ex Cy dz ox dt dy 8^

Hence

-Ml-nJ)^-§-ck'[E.-iH,)-ck?^,(B,^iH.)\
dy'

-m^^,(ffy-cnE,) = ck-^-ci^,(E,-^-Hy'j

-ml{H,^cnEy) = ci^,{Ey^lH)-ck^-^

(13).

The problem is to determine the values of the constants i ...n

and the functions E^ ... H^ which will make equations (12) and

(13) take the same forms as (III) and (IV). One obvious requirement

is that terms such as Hg+ -^ Ey and Hg + cnEy should be identical.

Hence n =j/c^. Making this substitution we have

(14),
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(16).

Now put j z= — u, k=l,

and . =. = x/|»(l-i:)} = l/(l-|f=l/(l-'^/ = ,.

Then

.(16),

Idff,

c 3f

Thus if we put

u'=Ui — U, V = Vif/3, W = Wil^, p = yS/O,

the equations for the new dependent variables in terms of the inde-

pendent variables x = fi{x — ut), •}/= y, z' = z and t' = ^{t — uxjc^)

are accurately identical with the diflferential equations (III) and

(IV) connecting the corresponding undashed variables. It follows

that the correlation previously established to the first order is true

to any order provided the electromagnetic quantities have the
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values given above and the time and space coordinates in the

second system are the functions given above of those in the first

system. The space in the second system is contracted in the

direction of motion by a factor (1 — u'^jc^Y as compared with that

in the first system, whilst the time is contracted by a similar

factor and, in addition, is a linear function of the x distance.

We shall postpone the further consideration of the physical

consequences of this result, which was first given by Lorentz,

until we have considered another method, which we owe to

Einstein, of arriving at the same transformation.



CHAPTER XIV

THE PRINCIPLE OF RELATIVITY

As is well known, the Newtonian equations of motion retain

their original form when the space and time coordinates are

changed from x, y, z and t to x' = x — vt, y' = y, z —z and t' = t

corresponding to a uniform translatory motion of the axes with

velocity v in the x direction. We have seen that this is no longer

the case with the fundamental equations of electrodynamics. For

the original form of the differential equations to be retained it is

necessary that the x' coordinates should undergo a uniform con-

traction given by x' = ^{x — vt) and that If should be similarly

modified and also depend in a linear manner on x, being in fact

given by t' = ^(t — vx/c^). If therefore the units of space and

time have the same values in two systems moving relatively to

one another we should expect differences in similar phenomena

occurring in them depending, at any rate, on the square of the

ratio of their relative velocity to the velocity of light. All the

experiments which have been made, however, lead to the con-

clusion that the actions taking place in any system depend only

on the relative velocities of the parts of that system and are in-

dependent of the velocity relative to any other system which the

system may have as a whole. We shall now attempt to see

if, by changing our mode of defining time, we cannot make all

phenomena independent of the state of motion of the system as a

whole in which they occur. So far as matter consists of electrons

and the phenomena in question are electromagnetic the problem

has been solved in the last chapter ; but the following treatment,

due mainly to Einstein, is insti'uctive and leads to results which

are easier of application to many important problems.

In order to describe any physical phenomenon it is necessary to

locate it m time and space. To locate it in space we must have three
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undeformable axes of reference and an equally rigid unit of length.

We may then fix the time of the occurrence by having a series of

similar clocks distributed at infinitesimal distances apart in space

and arranged so that when brought together they register equal

times. So far we have not indicated any method by which the

clocks may be correlated when they are not in the same place.

We shall now assume that this can be done in such a way that

the velocity of light in a vacuum measured by means of the

system of axes and the clocks is equal to a universal constant c,

which is independent of the state of rest or of uniform motion

of the system. Thus if A and B are two material points whose

distance apart is r, a ray of light emitted fi:om A at the instant

t^ will reach B at the instant ts, where

r = c(tB-tA);

t^ and ts are the readings of the clocks at A and B respectively.

We shall assume, what is not of course a priori obvious, that this

is true whatever the state of motion of the axes of reference may
be, provided it is not accelerated. The assumption here involved

has been called by Einstein the Principle of the Constancy of

the Velocity of Light. It is a particular case of the Principle of

Relativity which may be stated in the words : The laws of nature

are independent of the state of motion of the system of reference

provided this is unaccelerated.

Now consider two equivalent systems of axes S and S'. By
equivalent we mean here such as possess equal units of length and

clocks running at equal rates, when the two systems are at rest

relatively to each other. Suppose that S' is in uniform motion

relatively to ^S'. It follows from the fundamental assumption

that the velocity of light must have the same value when measured

with reference to both S and S'. Consider any event occurring

at the point x, y, z at the time t when referred to the system S.

Referred to the system 8' this event will be described by the

corresponding variables x', y', z' and *'. It is required to deter-

mine the relations between x, y, z and i and x
, y\ z' and i.

On account of the homogeneity of time and space we Should

expect these relations to be linear. It follows that the coordinate

planes of 8' will be in uniform motion when referred to those of

>S. In general they will not be perpendicular to each other. Let
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US, however, choose the direction of the x and x' axes so that it

coincides with the direction of relative motion of 8 and S'. Then

by symmetry the coordinate planes of S' when referred to S
will remain parallel to one another. We shall also choose the

origin of time and the directions of the y and z axes so that the

two systems 8 and 8' coincide at the instant ^ = 0. Then the two

following sets of equations have identical meanings

:

x — vt = x =0,

y = and y' = 0,

z = z' = 0.

Three of the desired transformations are therefore of the form

x' = ai{x-vt), y' = hiy, z' = CiZ.

Since the velocity of light has the same value c in reference to

both systems and since they coincide at t = t' = the following

equations also have identical meanings

:

ari + 2/2 + ^' = (^t\

and x''' + y''' + z''' = cH'\

Substituting in the last equation we have

^^{a^-2vxt-\-'iPt^) + y^ + c,^~=G'^^,

On comparing with the first we see that h^ = c^, since x, y and

z are independent and there is nothing to distinguish between y
and z. This is obvious and we might have written 6i = Ci originally.

Hence

?^' (a? - 2vxt + vH^) -a?=Pt'^- (?t^

bi Oi

must be an identity. From the homogeneity of this equation t'

must be of the form a{t-\- ^x), where a and y8 are constants.

Hence

^(a? - 2vxt + vH^) - a^ + cH^ - ^,{o.H^ + ^oi'^oct + a^^a^) = 0,

for all values of t and x.

Hence |i- 1 - ^ «'/? = (1),

-2''|'-2a.^|, = (2),
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^'.^ + ,._i!„.=0 (3)..

So that a2^o» = - va^^ from (2).

Eliminating a^ and a from (1) and (3) we find

l+/3v + - 02 + 0=^/3^= 0,
V

V
so that £ =—

-

,

since the other root ^ = — v~^ leads to inconsistent results, and

' " l+/3v l-t;Vc^'

Now &i cannot involve either x, y, z or t. It must therefore be a

function of v only. We may denote it by ^ (v). We have there-

fore determined all the coefficients except ^ iv). Our results so

far may be written

i' = <^(^)^(i-|a;), y' = 4>{v)y,

CC' =
(f)

(v) fi{x — Vt), z' = (ji (v) z,
.

where yS is now written for 1 /\/ 1
^

To determine <}> (v) consider a third system of reference S"
similar to 8 and S' but moving relatively to S' with the velocity

— V along the w axis. For the time t" referred to S" we evidently

have

t" = <l>(-v)^{t' + ^x''^

= <}>{v)<l>(-v)t.

Similarly oc" =
<f>

(v)
<f>
(- v) x,

y" = (]>(v)<f>(-v)y,

z" = ^{v)^(—v) z.

But since the systems S and S" are always coincident, t'\ etc. are

identical with t, etc. So that

<f>{v)<l>(-v) = l.
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Moreover, since the relation between y and y' or z and g^ cannot

depend on the sign of v,

,^(«) = <^(-t,),

and therefore <^ (v) = 1, ^ (w) = — 1 being obviously untrue.

We therefore obtain finally

x' = ^(x-vt) ^
^^^

2/' = y, z' = z

It will at once be observed that these values are the same as those

which we obtained in the last chapter by the direct transformation

of the electromagnetic equations.

If these equations are solved for t in terms of tf, etc., we obtain

showing that the system 8 is moving with respect tp the system

/S' with velocity — v along the axis of «'.

It follows from these equations that when a body originally at

rest is set in motion, its dimensions, measured relative to axes in the

original position of rest, are contracted in the direction of motion

and unchanged in planes perpendicular to this. Let x(, y(, z( and

x^, y^, z^ be the coordinates of any two points in the body referred

to axes moving with it (system &'\ x^, yi,Zi and x^, y^ z^ being the

coordinates of the same point referred to the system S relative to

which the body is moving parallel to the x axis with velocity v.

Then at any time t which is constant with reference to the system

S we have

X,- x^ = {\- v-^jcrf^ {x^ -x^y

2/1-2/2 = 2/1 -2/2

Z-l Zo^^Z-i Zn

.(6).

Thus a length equal to V parallel to the axis of x' is reduced

/ ^m the ratio a/ 1—^ : 1 when measured with reference to axes
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with regard to which the body is moving with velocity y at a

constant time t referred to these axes.

If instead of t constant we take if the time referred to the axes

moving with the body as constant, then

x,'-a:^' = (l-vyc')^{x,-x^) (7).

It follows that a body at rest with respect to ^S as measured

from S' undergoes the same change of dimensions as a body at rest

with respect to S' when measured from S. This result is required

of course by the symmetry of the motion.

A similar set of relations holds with respect to the time.

Suppose we have a clock moving with uniform velocity v along the

axis of X when referred to the system S. Let us take the position

of this clock as the origin of coordinates for the system S\ Then
a/ = always and x = vt. Let ti\ t^ be the times of two consecu-

tive events as recorded on the moving clock and ^, t^ the times

for the same events as registered in the fixed system S. Then

SO that ^ = /9^' and ^ = /S^/.

Hence «2-^ = y3(^'-0 (8)-

We may take t^, t( to represent two consecutive strokes of the

clock. It is then clear from the equation above that the moving

clock as observed from the fixed system will appear to have its

/ v^
periodic time increased m the ratio 1 : a/ 1 — t^ • The frequency

will be decreased in the inverse ratio.

This case may be realised physically by considering the line

spectrum emitted by a moving molecule or ion. Measured with

reference to axes at rest with respect to the ion the frequency of

the emitted light in the case of many lines is confined within very

narrow limits. The period of the light may thus be taken to

represent that of the reference clock and ti, t^, etc. may be taken

as the times at which the emitted vibrations are consecutively in

the same phase. The above result shows that in addition to the

well-known Doppler effect the frequency v of the light given out by

an ion or molecule moving with velocity v relative to the axes of
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observation will be less than v that observed with reference to axes

at rest relatively to the ion or molecule in accordance with the

/ 'v^

equation v = sj 1—^v.

Addition of Velocities.

Let any point move with a velocity, having components v/, Vy,

v/, relative to the system of axes S', then

{w'-xo')=v,'(tf-to'), {y'-y:)=vy'it'-t:), (z'-z:)=v^'(t'-t:).

Substituting for x\ etc. in terms of x, etc. from equations (4) we

find for the velocity components referred to the system S the

values

Vx =
- x. vJ + V

t-t.
1 +

v« =_ y^zJb -

VccV

<
t-t^

/8(l +

V, =
Z— Zn

.(d).

It follows that the parallelogram of velocities is only true as

a first approximation. If we put

V/ = Vai' +V + ^/»

and v/2 = V:,'' + Vy' + v/^

and let the angle between the x' axis measured with reference to

the system S' and v/ be denoted by a,

v,=

// 2 . /a . o ' \ f'"^i sin a\2
A / (f +Vi^ + 2vv-^ cos a) — (

—~
j

1 +
vvi cos a

If V and Vi are in the same direction

V + Vi
v,= .(10).

It follows from this equation that the resultant of two velocities
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each of which is less than that of light is also less than the velocity

of light. For let v = c — X and V = c — /i, where X, and /* are positive

and smaller than c, then the resultant velocity

_ 2c — \ — fi

^~ 2c-X-fM+ Xfi/c
'

and this is always less than c. Also the addition of any velocity

to the velocity of light gives rise to a velocity which is still equal

to the velocity of light.

Another interesting consequence of the foregoing results is that

it is impossible for any signal to be transmitted from one point A
to another B with a velocity W greater than c the velocity of light.

Let the point A be taken at the origin of coordinates and the

point B lie on the x axis at a distance I from A. Observers trans-

mitting and receiving the signal are fixed at A and B respectively.

Let the signal be transmitted by means of a material strip relatively

to which it travels with velocity W in the direction A —>B. Now
let the material strip carrying the signal be itself moving along

the X axis with the velocity — v, where v < c, the velocity of light.

The velocity of the signal relative to the transmitting and the

observing system is evidently

W-v
1- Wv/c^'

The time required for the signal to be transmitted is thus

1-Wv/c^

Since v can have any value < c, T can always be made negative

provided W > c. This would imply that the effect would be

perceived before the cause had commenced to act. Although this

may not necessarily involve any logical contradiction it is opposed

to the whole character of our experience. The truth of the

theorem therefore follows.

Some of the preceding results differ so considerably from those

which follow from the generally accepted notions of space and

time that many readers will probably regard them as serious

objections to the views here developed. If, however, the principle

of relativity is accepted they appear to follow with logical certainty.

The a priori argument in favour of the principle of relativity will

be considered later.
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Application to Optics.

Let the vectors which describe a wave of light when referred

to the system S be proportional to

sin / Ix + mi/ + nzS

cos \ c /*

I, m, n being the direction cosines referred to S of the directions

of propagation. Referred to the system S' let the vectors be

proportional to

sin ,A, ZV +mV + ?iV\
0) t =^ ,

cos V c J

It follows from the principle of relativity that if f', x', y', z' are

replaced by their values in terms of t, x, y, z drawn from equa-

tions (4) the two functions of t, x, y, z will be identically equal.

Thus

sin , / , I'af + mV + nV
ft) t

cos

Hence

sm ,= ft)

cos

^{I'-^-'^x^-m'y^n'z'^^

c

sm A Ix + my + rtzX ., ^. ,,= ft) U identically.
cos \ c J

a) = ^{l + r^|ft)

=^(r+^)ft,',

mft) = m'ft)',

So that l-
V =

l-'-l
m = m

n =

^{^-W

K-3')

a>' = fi{l-l-]a>

.(11).

The last formula is the complete expression for the Doppler

efifect. If an observer is moving with velocity v relative to

a source of light (system S), so that referred to the system S
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(i.e. the system of coordinates at rest with reference to the source)

the velocity v makes an angle cf) with the line joining the

source and the observer, the frequency v of the light perceived

by the observer is related to the frequency of the light as measured

by reference to an observing system at rest with respect to the

source by the relation

, , 1— cos <p

^=gi= ;_j (12).

If on the other hand the angle is given with reference to the

system S' moving with the observer, and is denoted by 0', we have

V \ c J V c l + l v/c

11 V ^ ~^2

(13).

^ \-\-l' - 1 + - cos <f)

c c

If we regard the source of light as being in motion and the

observer as fixed and if the frequency of the light when measured

with reference to axes moving with the source is Vq, if also the

source is moving relative to the observer with velocity v making

an angle <p with the line joining the source and the observer when

referred to axes at rest with reference to the observer, then the

frequency v of the light perceived by the observer is given by

V _ (O _ \ &
Vo W V

'

1— cos <p
c

If our reasoning is correct this formula should also be given by

substituting — t; for t; and
(f>'

for
<f)

in the first equation for v'/v. For

the change from moving observer to moving source is equivalent

to a change of sign in the relative velocity ; and the axes to which

(f>
was referred have now become the moving axes. We thus get

_ 1 1

which agrees with the last formula if v^ = v, v = Vq and I' = cos
<f>.

R. E. T, 20
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Aberration.

If the relative velocity v is parallel to the x axis and if
<f)

is the

angle between the direction of the ray and that of the relative

motion when referred to the S system of axes, and
<f/

the same

quantity when referred to the S' system, then

cos 9—
. cos<6' = Z'= (14).

1 — cos <f>

c ^

This formula embraces the whole of the theory of astronomical

aberration. Its relation to the formulae previously obtained may
be left as an exercise to the student.

Fizeaus Experirrvent.

Suppose the light is travelling in a moving medium. Let

this be at rest with respect to S', the axes of x and x' being

chosen so as to coincide with the direction of relative motion,

sin / x' \
Then the light vectors will be proportional to a [if - ^r^\ ov to

a (< — Tr) according to the axes of reference chosen. Since the

system S is moving with velocity —v when referred to 8' we

obtain

m = P(o' \\ + yA >

® q"^' (^^ '^''A

Hence 7 = y^= V [1 + pj {\ -~j approx.

= '^' |l +
(
]7> - -^) « } approx.

= V' + (l - —) V approx (15).

This gives Fizeau's result to the order of accuracy with which

it is capable of being verified.
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Electromagnetic Equations.

The transformation ofthe electromagnetic equations of Maxwell

to variables referred to the system 8' has already been made in

the last chapter. The equations assume the form

daf

dH'

c U/ "^

c V dif

dHJ

•H

18^'
c dH

dEl dEJ\

1 dHy _ dE^ dEg I

c dt:

IdHl
c dtf

dEydEy

dx

dEJ

•(h),

dy I

where

E^ = Ex, Ey'^^i^Ey-'^H^, E: = ^{E,+ '^^Hy

Sx=Hx, Hy=fi(Hy + -Ez\, Hz = ^{Hz — - Ey

1- UiV
V =

'J

w —• w.

fiu-J
U.V

..(c),

..(e),

Previously we wrote m' = i^ — -y, p = ^p, etc., but the above

values of the velocities relative to S' are the values required by

the theory and are consistent with the equations in the last

chapter, provided we put p' = /3 f 1—\) p- This value of p' is

thus the value required by the principle of relativity.

Since according to the principle of relativity the physical laws

are independent of the motion of the system as a whole it follows

that E'{Ex, Ey, Ei) is the value of the electric intensity in

20—2
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the system as measured by an observer who with his apparatus

is moving with it. If the system is moving relatively to the

observer the forces will have a different value from the above in

accordance with equation (c). It follows that the so-called electro-

motive forces acting on a moving charge in a magnetic field are

nothing but electric forces when measured by an observer moving

with the charge. From this standpoint the distinction between

electric and magnetic forces becomes indefinite. By a suitable

change of moving axes either may be made to vanish, involving

a corresponding change in the other. For instance with a

uniformly moving point charge there are important magnetic

forces if the motion is relative to the observer, but if the observer

moves with the charge the forces are all electric.

It follows from equation (/) that if a body is at rest relative

to <S' its total charge e' measured in reference to the system 8' is

the same as its total charge e measured in reference to B at

a definite instant t referred to S. For the total charge e' referred

to S' ia

e'=\\l p'dx'dy'dnf.

Now at any particular instant t referred to S it follows from

equations (4) that

dx'dy'dz' = y8 dxdydz.

Also since the body is at rest referred to S', u' = 0, and therefore

Ml = V. Hence

So that ^'
~i\j P dx'di/d/ = \\\ p dxdydz = e.

It follows that if any material system is set in motion the

magnitudes of the charges, as determined from axes at rest

with reference to the initial state of motion of the system, are

unchanged.

The equations (a)—(/) suffice for the solution of all problems

in the electromagnetics and optics of moving systems in which

accelerations do not play an important part. As an illustration

we shall use them to determine the amplitude A' relative to the
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system S' of a wave of light which is specified relatively to S by
the equations

E = EoSm<f); H = Ho sin
(f>

; </, = a, (^ - ^^i-^^^^t^V

Let Ex, Ey, Ez denote the components of E and E^, E^, E^ the

components of Eq, with a similar notation for the components of

H and Ha.

Referring to the equations on p. 307 we see that the values of

the vectors referred to S' are

Ex' = E, sin
<f>\ Hx = H, sin

(f)',

Ey' = ^(E\-^-H,ymc}y', Hy' = ^(^H, + -^E,yin<l>\

E,' = ^(E, + -^H,ymcf>', H; = ^(H,--^E,ym<l>',

, , ( , I'x' + wly' + riz
9 = ft) ( 5 —

c

The values of w , V, m', n' have already been determined in

terms of m, I, m, n and v, and the consequences which follow from

them have been discussed.

Let us determine the amplitude A' referred to S' for the case

in which the electric vibration in the wave referred to S is parallel

to the jz axis. Then in free space (or in any isotropic medium)

the direction of the ray will be in the plane of xy, and, if 6 is the

angle between this direction and that of the x axis,

E, = 0, E, = 0, E, = A,

H^ = -Aamd, H^=-A cos 0, H^ = 0.

Thus

EJr^O, Ey' = 0, Ez' = /3(l-^co3e^Asm(i,',

HJ=-A sin d sin <^', Hy' = ;g (- cos ^ + ^)
^ sin <\>', H^ = 0.

Therefore A', the amplitude referred to the system S', is

given by

1 — cos 9

A'=A
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smce 8m'<^ +
(co8<^-^y

1-

(1 COS <j>

.7^
As the direction of the z axis is arbitrary this formula must be

true generally.

Mechanics of an Electron or Material Point

Let an electric charge e, of infinitesimal dimensions, move
under the influence of an electromagnetic field. We shall assume,

in accordance with the principle of relativity, that its equations of

motion, referred to the system of axes S' with reference to which

it is instantaneously at rest, are

d?y(_
dt

,- =ehy,

where fi is a constant which we shall call the mass of the electron.

The suffix is introduced to indicate that the moving point is

instantaneously at rest with reference to the S' axes.

Let us now deduce the equations of motion of the point charge

when referred to the system S relative to which S' is moving

with velocity v. We have

dt^ = yS {dt, -
^^ dx^i = ;9 (l -^) dt„

dxo=^{dxo—vdto) = ^ (sbo — v) dto,

dyo = di/o, dzo = dzo.

Hence -^ =dxo Xo--V
dt: 1-

dW
dt:*

'

d

~dt,'(r
— V

1
(^l--^j^o+-,(^o-v)a:o

)S

(l-fj
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dto „ /-, vxo\ dto

'

d'yo' _ 1 1 d^ / yo \

s(l- —^] l3dtol^_vxo]dt'^

(

/s»(i-$"J

with a similar equation for
d^l
dto''

If S' is instantaneously at rest with reference to the moving

point Xq = v,yQ = 0, Zq = 0, so that

d'xo' _ I V' X, ..

dC ^ cHl-^Vc'')'" "'

dC' 13' (1 - v'Jc^y

= ^Zo.
dto' 13' (1 - v'/c^y

Referring to equation (c), p. 307, we therefore get

fi/S'^Xo = eEx,

fi^Zo='e(E, + ^-ffX
\ c /

These are the equations which hold for the instant when
Xq = v, yo = 0, io = 0. We may on the left-hand side replace v by

q = \/x^ + yo^ + z^ and on the right-hand by Xo. Leaving out the

suffix and adding the other terms -E^, — Hy, the above
c c

equations may be written as a particular case of the symmetrical

equations

dt (Vl - ^Vcr']

d
f

A*y

dt IVl - q'lc'

d { fiz

dtX^/TZTgy^i

K,.

= K.

.(16),
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where K^^e

Ky = e

Kr=e

E^ + ^H,--H,

c c

E,+^Hy-^H,

(17).

/i. is a constant coefficient in all three equations and since

d { fix /* ^^ 1-^ + y^ + z\ .XX + yji + zz
^) + x

with similar expressions for the terms in y and z, it will be seen at

once that equations (16) reduce to the equations on p. 310 for the

particular case when y = z = 0. Since the equations (16) and

(17) retain their form when transformed to any new set of axes

at rest referred to the first but differently directed in space, if

they are true for any one set they will be true for any other.

But we have seen that they are true when y = z=0\ they are

therefore true in general.

The vectors K^, Ky, K^ we shall call the components of the

force acting in the electron. When g-^c* is negligible the equations

of motion are identical with those of Newton; otherwise they

are not.

We shall extend the scope of equations (16) so as to embrace

the case in which the forces are of gravitational origin. As their

applicability in this case is a sheer assumption they can only be

regarded as a definition of force.

Energy and Momentum.

If we multiply each component of the universal equations (III)

and (IV), Chap, xiii, p. 286, in turn by E^, Ey,... H^, add them

together and integrate over a space at whose boundaries the

electric and magnetic forces vanish, we obtain

h
dL

w

p {E^ui + EyVi + E^Wi) dT + -^ = 0,

here L=j^ [{EJ^ + Ey^ + E,^) + ^ (iT/ + Hy^ + ^/)] dr

is the electromagnetic energy of the space considered. If the

electric density p is due to electrons of charge e, the integral is

equivalent to 2 e (E^x + Eyy + E^z), where E^, Ey, E^ are the

components of the external electric force (i.e. the part not arising
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from the electron itself) acting on the electron. Thus, if the

conservation of energy is to hold, the rate of working of the

electric field on the electron is e (Ej^x -i: Ey^ + Egz). It will be

seen from equations (17) that this is equal to KxX + Kyy + K^z.

Thus the force as above defined has the same relation to the rate

of working as in the Newtonian Mechanics.

The equations (16) may be written in the form

with similar expressions in y and z. Multiplying each of these in

turn by x, y and z, and adding, we get

{xK^ + yKy + zK;)dt

Vv 1 - g'Ycv

The kinetic energy being equal to the work done by the external

forces will therefore be

HxKx + yKy + zK^dt = ,

^^ + const.r ^ ^ ^' Vi-gVc'*

The constant will of course have to be determined by the initial

conditions. If the kinetic energy was zero when g- = we should

have const. = — ^k?. The value of the kinetic energy for the

system whose velocity is g is therefore

'^\l^,-^) <^«>-

For small values of q this is equal to \ii'(f in agreement with the

value of ordinary mechanics.

If we multiply the second and third of equations (a) and (6),

p. 307, in turn hy Hz, — Hy, E^ and - Ey and add, we obtain, as in

Chapter x, omitting the dashes,

-r - {H^Ey - HyEz) +p[-^Hz--' Hy

TT ^Hx TT ^Hz TT ^Hy „ dEx

, 171 ^^x rr dEg „ dEy dEx
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Integrating throughout a closed space over the boundaries of

which the forces vanish, and remembering that div H = and

div E = p, the whole of the right-hand side vanishes except

/\̂Expdr,

and we obtain

d
dt
|i (H,Ey - E,E,) dr +jp [e, + -^H,- '^ F,) dr = 0,

hence ĴJ
(H,Ey - HyE,) dr + ^K^ = 0,

'jl(H.Ey-EyE.)dr^^-^-.^=0 (19).

so that

d
dt

with similar equations in y and z.

Since - (HgEy^HyEg) is the x component of electromagnetic
c

momentum per unit volume of the system, the equations above

express the law of conservation of momentum if

g= ,
^^ (20)

is the momentum attributed to a point charge whose mass is fi.

dt
We have as in mechanics ^i^f = Kg.

These values of the kinetic energy and momentum enable

the equations of motion of an electron to be written in the

Hamiltonian form. The student who finds any difficulty with

this may be referred to Einstein (Jahrbuch der Radioakiivitdt

und Elektronik, vol. iv. p. 435 (1907)).



THE PRINCIPLE OF BELATIVITY 315

Eayperimental Test.

For small values of q the laws of motion deduced from the

principle of relativity are identical with the Newtonian Laws, but

this is no longer the case when q^ is comparable with c^ By
observing the effect of externally applied forces on electrons

moving with very high velocities we might expect to make a

test of the principle of relativity. There are three functions of

the velocity q relative to the observing apparatus which might

under favourable conditions be capable of affording observations

for this purpose. These are (1) the potential difference required

to produce the velocity q, (2) the deflection of the path of the

moving electron by a stationary electric field, and (3) the corre-

sponding deflection produced by a magnetic fiald. If e is the

charge on an electron, the potential difference V required to

increase its velocity relative to the observing system from zero

to q is given by the equation (see p. 313)

Ve = /[ic' -7=i==-ll (21).

For the electric and magnetic deflections, consider the case

in which the direction of q is instantaneously along the so axis.

If a magnetic force M along the y axis and an electric force Z
along the z axis act on the electron, its equation of motion will be

The path is therefore curved in the xz plane and the instan-

d^z
taneous radius of curvature R is given by q-jR = -^j . The

electric and magnetic deflections are therefore measured respec-

tively by

IjR e Vl - q^jc^

Z~-,i q' '

1/R_e \/l- q-'/c^

M ~
fi c'q

These deflections vary with q in exactly the same way as

those calculated in Chapter XI, for Lorentz's contractile electron.

They have been tested, in the manner already described, by the
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experiments of Kaufraann and Bucherer. As the results of these

experiments support Lorentz's calculations they are equally in

favour of the relativity theory.

So far it has not been possible to test the relation between

Y and q experimentally. With the radium rays used by Kauf-

mann V is not under the control of the experimenter ; and with

cathode rays it is not possible to get values of q high enough to

make the difference between formula (21) and the usual formula

Ve = ^fiq^ capable of being measured.

The Inertia of Energy.

Consider a physical system surrounded by an imaginary non-

material enclosure which is impervious to radiation. The object

of this is to prevent the energy of the system from escaping in the

radiant form. Let external electric forces whose components are

Xg, Ye, Zg act on the system. These enable any desired amount

of energy to be introduced into the system from outside. The

energy gained by the system when referred to the system of

reference S, in accordance with our previous results, will be given

by the expression

jdE = fdt jp (Xe Ml + F, Vi + ZeW^) cIt,

where p is the density of the electricity at any point in the enclosed

space. Let us transform this equation so that the right-hand side

is referred to variables proper to the system S\ We have

and 1f = p{t-'^x\, x' = ^(x-vt).

„ vf + v if v/
Now, Mi = r, Vi = 7-r, «'i

=
uv1+^

and p
-£l_ = ^(l+^)p

Also X = Z'. Y = fi(Y'+^-N'y Z^^[z'-^-M'^.
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So that jdt jp (^e^i + YeVi + ZgW^) dr

= jdt jdx \dy \dz F {x, y, z, t)

= \dt \dx \\dy'dz' F'« y', /, H)

= \\dt\\\dTr{x',y\z',1fr

= ^\d^ L' (ZeV + Y:v + Z;w') dr'

+ ^vjd1fjp'(x: + '"^Ne'-jMj)dT\

Since the principle of relativity must also apply to the system

S' this may be written

jdE = ^ jdE' + ^v [[tKJIdif (22).

Consider the case in which the motion of the system as a whole

is such that it is at rest relative to S\ and suppose further that the

velocities of its parts relative to 8' are so small that v^jc^ may be

considered negligible. The centre of mass of the system is thus

at rest relative to S^ which, under the further condition postulated,

can only be the case provided XK^ = for all values of if. In

spite of this /[S^/Jdi' will not necessarily vanish; for this in-

tegral is not taken between given values of If but of t, so that in

general the limits will involve x' as well as ^.

If, however, the external forces do not act except during the

interval considered, the parts which would otherwise depend on

x' also vanish. This statement will be made clearer in the sequel

where the general case is considered. If the forces vanish entirely

outside the time limits then we have

jdE= ^jdE',

so that dE = ^dE\

We therefore conclude that the energy of a uniformly moving

system which is not under the influence of external forces is a

function of two variables, namely its energy Eg relative to a system

* See Williamson'B Integral Calculus, p. 320.
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of axes moving with it and its velocity of translation v relative to

the standard system of axes. Thus

BE ^ 1

dEo Vl-yVc^'
pi

so that E= ° + -^ (v).

yjr (v) is evidently the energy of the system when Eq = 0. This

has already been determined for the case of a material point (see

p. 313), and was found to be

The value for the whole uniformly moving system will therefore

be obtained by addition of all the masses and is equal to •

M^dm-')'^Vi - if'/if

where S denotes summation over the whole system. The com-

plete expression for E is therefore

Comparing this with the formula for the case in which ^o = 0,

namely

we see that, so far as the part of the energy which depends on the

velocity v is concerned, the effect of the energy Eq is to increase

the apparent mass of the system from 2/x to ^/j, + Eq/c^. Thus

an addition BE to the energy of any system will give rise to an

increase SE/c^ in its mass. It is only a short step from this result

to the hypothesis that all mass is simply a manifestation of

confined energy.

The question whether or not mass is simply a manifestation

of confined energy is obviously a matter of the very utmost im-

portance, and it is very desirable that it should be submitted to

the test of experiment. The energy liberated in chemical actions

is so small compared with the "dead" masses involved that it

is hopeless to detect any change of mass thus arising, always
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supposing that weight as well as mass is proportional to
fj,
+ Ejc^

'

In the case of radioactive change the matter is more hopeful. The

decrease of mass of a system due to the loss of 1000 gm. calories

is 4 "6 X 10~" gm. Now 1 gm. atom of radium in radioactive

equilibrium evolves about 3*024 x 10^ gm. cals. per hour. Thus

its diminution of mass per hour would be

3024 X 10* X 4-2 X 10^ , ^ ,^ „

9^^To^ = ^'^ ^ ^^ "^^-

This would amount in a year to "012 mgm. or in 100 years to

1*2 mgm. It would be worth the while of anyone who could

afford the necessary capital to make observations of this character.

Momentum.

We have seen that ^, the x component of momentum of a point

charge, satisfies the relation -~ = Kx. Let us apply this result to

the system, previously considered, which is surrounded by a closed

boundary impervious to radiation and is subjected to the action of

external electric forces X^, Fg, Z^, etc. Then the total momentum
gained by the system in the time during which the forces act will

be

jd^=JK^dt=jdtjp\^Xe + '^Ne-'^Me^dT

= ^jdt' jp' (x: + ^' n; - J i/;) dr'

+ ^Jdt' jp' (Z,V + Ye'i/ + Z^w') dr'

^/3^^jdE' + j3J[XK,']dif.

Let the system move as before, so that its centre of gravity

remains at rest refeiTcd to S', then l^K^ =0, and if in addition

the forces are zero outside the time limits considered, the second

integral vanishes and therefore

h=^UdE'

and d^ = ^^dE' (24).
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'The momentum is therefore also a function of the energy referred

to axes moving with the moving system and of the relative

velocity q {— v) of the latter referred to the standard system. We
have in fact

d^ _ v/(f

•sj/iv) is obviously the momentum when Eq = 0. This has already

been determined for a point charge, and it is clear that for the

whole uniformly moving system

where ^/a is the sum of the masses contained in the system. The

complete expression for the momentum is thus

^ = S.-H§ .(25).

Thus the effect of the internal energy Eq on the momentum of

the system is equivalent to an increase of the mass by the amount

Eajc^, in agreement with the change we have found it to produce

in the energy itsel£

Forces Continuously Operative.

Let us now consider the case referred to on p. 317 when the

forces continue to act outside the limits of the time t, still con-

fining ourselves to the case where the centre of gravity of the

moving enclosed system remains at rest relative to S', so that for

any instant t\ XiT/ is still equal to zero. Under these circum-

stances the integral J(ZKJ)dt' would vanish if the limits of

integration were given values of t\ but as they are given values

of t it does not. Let the time limits with respect to S be ti and

t^; then the limits for If are determined by the equation (see p. 300)

«=^(*'+^.-').

Thev are therefore -^—-x' and -^—-0/

m



THE PRINCIPLE OF RELATIVITY 321

The limits for t' thus depend on the x' coordinate as well as on t.

We may split the integral to be evaluated into three parts thus

:

J J ti V , J li J t.

- —

a

'/3 c-

[^K^-\dt'.

The middle integral vanishes, since its limits do not depend on

x'. We are not able to evaluate the other two integrals in the

general case in which K3;' varies in an arbitrary manner with the

time. However, the most important case practically is that in

which the change of K^ during a time comparable with va//d' is

negligible, and in this case the integrals assume a very simple

form. Under these conditions we have

fP

The sum of the two integrals may evidently be written

A J^.

The calculation of the energy and momentum is now easily carried

out in the manner previously employed, and we obtain

E=[tfi +
cV Vl - v'jcf

S(Z,V)-,
J, I

c" J
.(27).

In these formulae Kgf is to be interpreted as the x' component

of the external force and x' the x' coordinate of its point of applica-

tion, both referred to the system S\ In the particular case where

KJ arises from a uniform external hydrostatic pressure acting on

the boundary of the system, equal to po when referred to the system

of axes 8\ then if F, is the volume of the enclosed space referred

to the same axes,

and
Er

)
C»

+
vVc'

Eo + PoVo\

p„Fo-c»2/i...(28),

^l-v'jd c»

R. E. T.

.(29).

21
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Exam'ples.

If the moving system consists of electromagnetic radiation

enclosed in a massless closed boundary, the energy and momenta

referred to axes relative to which the system is moving with

velocity v are

^=vr^ (^«>'

f=v-T^t=^'^ - <='^>'

where E^ is the energy of the system referred to axes moving

with it.

These are the values on the assumption that the boundary

walls are rigid. If, however, the boundary is perfectly flexible

the radiation pressure will have to be balanced by an external

pressure p^ given by the relation

In this case E =
,

^ '-^

t = ^ 13
Vl - v^c' (^

The principle of relativity leads to the conclusion that almost

all physical quantities are functions of the velocity v of the system

relative to the axes of reference. It would lead us beyond the

scope of this book to go into the matter in detail, but the following

table of corresponding values is instructive

:

Physical Ouantitv
^*^"® referred to axes Value referred

J ^ J' moving with system to system S
Pressure of hydrostatic type jOq P—Po (32),

Con6ned energy Eq E=^Eq (33),

Temperature % ^^ ^ ^o (^*^'

Entropy ij, i>=i7o (35).

The reader who is interested in this subject may be referred

for further information to Planck ("Zur Dynamik bewegter

Systeme," Sitzungsher. d. kgl. Preuss. Akad. der Wissenschaften,

1907) and Einstein {Jahrhuch der Radioakt. u. Elektronik, vol. iv.

p. 451, 1907).
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The Principle of Relativity and the Aether.

Before leaving this part of our subject it is desirable to review

the bearing of the principle of relativity on the question of the

existence of the luminiferous aether. We have seen that if we
start from the hypothesis that electromagnetic actions have their

seat in a medium, the aether, which is at absolute rest, the known
facts can be explained on the hypothesis of Fitzgerald that bodies

contract when in motion relative to the aether. This contraction

can be shown to be a plausible consequence of the motion through

the aether. If this contraction is the only change due to the

motion, the effects in moving systems would not be exactly cor-

related with those in fixed systems, although the differences, so

far as the writer is able to judge, would not have been detected

in any experiments which have been carried out up to the present.

Any effects which might arise which were not accounted for by

such a scheme might be explained by making the velocity of

light a function of the motion of the system through the aether.

On the other hand, the principle of relativity, which is in

accordance with all the known facts, describes them in a simpler

and more symmetrical manner. It is clear that if the principle of

relativity and its consequences are valid, electromagnetic experi-

ments can never yield any information as to the state of rest or

uniform motion of an aether. This follows since, in the last

analysis, all the effects are then made to depend on the relative

motion of matter. It is, in fact, quite unnecessary ever to bring

the word aether into the discussion.

From this standpoint it is desirable, perhaps, to state the

matter somewhat more explicitly. To specify any physical event

it is necessary to locate it in time and space, that is to say, to

determine the four coordinates t, x, y and z of the time and place

at which it occurs. The question arises as to whether we can be

sure that two events which appear to occur at the same place at

successive times t and If really occur at the same place. Can we
be sure that the place which appears to be the same has not

changed its position in the interval ? It is clear that such a

discussion is futile until we have fixed on a set of axes Ox, Oy, Oz

in terms of which we can specify the position of the points

considered,

21—2
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Let us suppose that we have fixed upon such a set of axes

and that they are so chosen that the physical system in which the

events occur is at rest as a whole when referred to these axes.

Having marked off our axes in terms of measuring rods, which

we may suppose to be part of the system, we should naturally turn

our attention to the measurement, of time. This could be done

by means of a series of clocks which we could compare with one

another at some fixed point, let us say at the origin. It would,

however, be necessary to have some means of comparing them

when they were moved away so as to be at a considerable

distance from one another. This could be done by sending

light signals. The simplest assumption we could make would be

that the light was propagated in spherical waves. By considering

the case of a wave propagated from the origin we see that x, y, z

and t would satisfy the relation x"^ \- y^ -^^ z^ — cH^ = 0, where c is the

velocity of light in space. The coordinates as thus determined

would be consistent with each other and would be the simplest

ones in terms of which the events in that system could be

described. If we had no opportunity to investigate other systems

we should probably conclude that our system was at rest relative

to the medium in which the light was propagated.

Now suppose that we have another system, let us say a distant

solar system, which is moving with the velocity v relative to the

first. An investigator located in the second system would be able

to discover a fi*amework of axes and a set of coordinates x^, y^, z^

and ij in terms of which light would in his system be propagated

in spherical waves. He would find these coordinates the simplest

in terms of which he could describe the events occurring in his

own system, and he would have the same reason for concluding

that the second system was at rest relative to the aether that the

first observer had had for concluding that his was. It is evident

that one of the two conclusions must be fallacious, and there is

nothing to favour one rather than the other.

The coordinates x, y, z, t and Xi,yi, z^, ti which refer to a given

event are of course different for the two systems. Ejich set is

preferable to the other for describing events in its own system;

but if we are to describe events in a universe in which both

systems exist there is nothing to choose between them. It is

clear that there are an infinite number of possible systems of
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reference corresponding to all the possible values of v, and each

one is as good as another. In fact, if we wish to represent the

whole universe in the simplest and most elegant manner, we

cannot thus arbitrarily separate time and space, but we must

rather consider the whole as a four-dimensional manifold of

w, y, z, and t.

Four-dimensional analysis has now been devised with the

object of effecting such a representation. It is found that the

electromagnetic equations then assume a more symmetrical form

than that in which we have considered them. The reader who is

interested in these questions may be referred to the following

authorities :

—

Minkowski, Raum und Zeit. Leipzig, 1909.

SoEfimerfeld, Ann. der Physik, vol. xxxii. p. 749, and vol.

xxxin. p. 649. 1910.

M. Laue, Das Relativitdts Princip.

To sum up we may say that the Principle of Relativity fur-

nishes no evidence either for or against the existence of an aether.

It denies the possibility of determining the motion of such a fluid

if it exists. In so far as Relativity is a Universal Principle it

finds the aether a superfluous hypothesis.



CHAPTER XV

RADIATION AND TEMPERATURE

It is a very familiar fact that when material bodies are heated

they emit electromagnetic radiations, in the form of thermal,

luminous and actinic rays, in appreciable quantities. Such an

effect is a natural consequence of the electron and kinetic theories

of matter. On the kinetic theory, temperature is a measure of

the violence of the motion of the ultimate particles ; and we have

seen that, on the electron theory, electromagnetic radiation is

a consequence of their acceleration. The calculation of this emis-

sion from the standpoint of the electron theory alone is a very

complex problem which takes us deeply into the structure of

matter and which has probably not yet been satisfactorily resolved.

Fortunately we can find out a great deal about these phenomena

by "the application of general principles like the conservation of

energy and the second law of thermodynamics without considering

special assumptions about the ultimate constitution of matter.

It is to be borne in mind that the emission under consideration

occurs at all temperatures although it is more marked the higher

the temperature.

The problem which we set before us is that of finding the

nature of the radiation which is found in an enclosure containing

material bodies and maintained at a constant temperature. Suffi-

cient time is supposed to have elapsed for any secular changes in

the enclosed matter to have come to an end, so that the nature

and condition of any element of the matter does not vary. Special

radiations of chemical or radioactive origin are therefore eliminated

in so far as they involve progressive material changes. Even in

the steady state the interchange of radiation will be accompanied

by an interchange of electrons arising from thermionic and photo-

electric emission (see Chap, xviii). The efiect of this on the
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calculations may be eliminated by special devices, for instance by

surrounding the radiating surfaces by an envelope of ideal matter

which is perfectly transparent to radiation but perfectly opaque

to electrons, and as it makes no difference in the final results we

shall, for the sake of brevity, leave it out of account.

In considering a train of plane electromagnetic waves, the

intensity is defined as the amount of energy which they transport

in unit time across unit area of a surface perpendicular to their

direction of propagation. If the normal to a surface is inclined

at an angle 6 to the direction of propagation, the amount of energy

which it would receive per unit area, in unit time, is equal to the

intensity multiplied by cos 0. In the case of the radiation in an

enclosure the specification of the intensity is not so simple ; for

here the wave trains are travelling indiscriminately in all directions.

Let d(o be an element of solid angle and dS an element of area

described normally about the axis of dm. If i (co) dSdco is the

energy of the radiation, incident on dS in unit time, whose

direction of propagation is comprised within the element of solid

angle dw, then i (co) is the intensity of this radiation. The notation

i{co) is employed to indicate the possibility that this quantity

may depend upon the direction of the axis of dco. We shall see

that one of the characteristic properties of the radiation present

in an enclosure maintained at a constant temperature is that i (e»)

is independent of this direction. It is clear that if the normal to

dS is inclined at an angle 6 to the axis of dco, the energy incident

on dS in unit time which is propagated in directions lying withiii

dco is

i (co) cos 6 dSdco.

The radiation under consideration involves other elements in

its composition beside the solid angle day. We know that by

means of a prism or other analysing device it can be split into

elements having different frequencies {v). The result of this

analysis is independent of the instrument used provided the latter

does not absorb or transform the energy in any way. The process

is, in fact, a physical resolution into the equivalent Fourier's series.

It is therefore legitimate to express i as an infinite sum of terms,

or as an equivalent definite integral, extending over all the

possible frequencies between and oo . To complete the speci-

fication of an element of the radiation it is necessary to indicate its
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plane of polarization. This will be determined if the intensities of

the equivalent beams, polarized in any two mutually perpendicular

planes containing the direction of propagation, are given. We
may fix these planes by making one of them that which contains

the normal to some arbitrary fixed plane as well as the axis of

propagation. The second plane is the perpendicular plane which

contains the direction of propagation. We shall distinguish the

intensities of the two corresponding plane polarized beams by

the suflBxes 1 and 2 respectively. In the light of these explana-

tions we may express the energy, incident on dS per unit time,

whose frequency lies between v and v + dv, and whose direction of

propagation lies in a cone of solid angle doo described about an

axis making an angle with the normal to dS, in the form

{ii{va)) +t2(i'G))} cos 6 dS dvdd) (1).

We shall now consider what happens to the radiation which

falls on any small material object placed inside the enclosure at

constant temperature which contains the radiation whose properties

we are investigating. Part of this radiation will be reflected from

the surface and part may escape after penetrating the interior

and undergoing refraction, internal reflection and so on, but the

remainder will be absorbed. By absorption of radiation we under-

stand its conversion into some non-radiant form of energy, so that

it becomes temporarily stored in the matter. Let A denote the

proportion of the incident energy which is not absorbed. In

general A will depend on the nature of the substance, the

frequency of the radiation, the plane of polarization and the

azimuth 0. It might also depend on the incident intensity,

although this is usually assumed, on experimental grounds, not

to be the case. For the whole surface the net absorption of

energy in unit time may evidently be written

f r j '{i,{l- A,) + ^(1- A^)} 0080 dSdvda> ...(2).
J sJ Jo

The radiant energy emitted from the whole surface may be

written in the form

f r C'ie^ + er,) cos 0dSdvd(o (3),
J s J Jo

where e, and e^ may depend on the nature of the substance, the
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frequency v, the angle 0, and the plane of polarization as well as

on the temperature, tj and 62 must be independent of t'l and 4
provided the enclosure contains radiating matter other than the

body 8 and provided the area of S is vanishingly small compared

with that of the other matter.

The only way in which the body S can either gain or lose

energy is by interchange of radiation, so that the net rate at which

its energy increases is

r Too ,-277

/ {ii(l- Ai)- €1 + 12 (1-^2)- ^2] cose dSdvda ...(4!).
J s J Jo

The value of this integral must always be zero, otherwise the

temperature of S would alter. This would contravene the

second law of thermodynamics ; since the difference of tempera-

ture thus established could be used to furnish available work,

which would then be obtained from a source at a constant

temperature.

This conclusion must be true whatever the shape, size and

nature of the body S, whatever its position in the enclosure and

whatever the nature, shape and size of the enclosure and the

other matter contained in it may be
;

provided only that the

enclosure is maintained at a constant temperature.

The fact that the integral (4) vanishes under all these con-

ditions enables us to establish many important properties of the

functions i, A and e. In the first place the radiation must be

isotropic ; that is to say, i must have the same value at a given

point for all directions in space. It cannot be a function of co. If

it were, the intensity of the radiation in some directions would be

stronger than in others. By taking 8 to be a flat object it could

be turned so as to receive more or less of the stronger radiation

in different positions. Differences of temperature would thus be

set up which would contravene the second law. This result must

be true for all frequencies and all planes of polarization. This is

clear since S may be a substance which absorbs some frequencies

and transmits others, or it may be a plate of a material like

tourmaline which has much more intense absorption for light

polarized in certain planes than in others.

By expressing the element of solid angle da> in terms of the
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angle B between the direction of the ray and the normal to d^ we
may write (4) in the form

J SJ Jo

By considering bodies of varying composition to make up S we
can vary ei, Cg, A^ and A2 independently of t'l or 4 as functions

of either S, v, x or the plane of polarization. It follows that the

equation

ii\-A) = e (6)

is identically true for every wave-length, plane of polarization and

element of angle. Thus for any assigned range of each of these

quantities the part of the radiation incident on dS which is

absorbed is equal to the similar radiation which is emitted from

dS.

Next consider the case of a body which absorbs all the radiation

which falls on it. Such a body has been called by Kirchhofif

" perfectly black." The term black body is convenient, although

it may be rather a misnomer, as such a body may be very bright

when the illumination is due to its own temperature radiation.

For a black body, then, we have J. = 0, so that i= e. It follows

that the intensity i of the radiation in the enclosure is equal to

the emissivity e, as defined by the preceding equations, of a per-

fectly black body. It is clear that e must have the same value

for all perfect absorbers at the same temperature ; so that i must

be independent of the nature of the materials present in the

enclosure. Thus i is a function only of the frequency and plane

of polarization of the radiation and of the temperature T of the

enclosure. By symmetry 11 = 12, so that the way in which the

plane of polarization enters into i is a very simple matter. The

determination of i as a function of v and T will be considered

later.

If a denotes the proportion of the incident radiation which is

absorbed, then a = l — A for each wave-length and so on. Whence

6/a = i has the same value for all substances at the same tem-

perature. Thus the emissive power divided by the absorption

coeflBcient for any substance depends only on the frequency and

plane of polarization of the radiation and the temperature, and

is independent of the nature of the substance. This result, which
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was discovered by Balfour Stewart, is usually known as Kirchhoff's

Law.

The foregoing results require amplification when the nature of

the medium varies from one point of the enclosure to another.

The relation i= e no longer proves that i has the same value

everywhere in the enclosure, since the emissivity e of a black body

may depend, and in fact does depend, on the nature of the

surrounding medium. If we call / the function which has the

same value at all points in the enclosure it is clear that the

relation between i and / must be determined by properties of the

medium which have nothing directly to do with absorption or

emission. For if we consider a portion of the medium where

there is no emitting or absorbing matter, but which is characterized

by a particular value of the velocity of transmission, the appro-

priate value of i will somehow have to be established. In order

to find / it is not therefore necessary to concern ourselves directly

with the way in which e may be modified according to the nature

of the medium in which the emitting system is embedded. All

that is necessary is to consider the passage of radiation across the

interface between two portions of the medium characterized by

different velocities of transmission.

Let us imagine that one of the regions in question is separated

from the other by a perfectly reflecting interface. The intro-

duction of this cannot make any difference to the nature of the

radiation. The interface is punctured at the point A, leaving

a small opening of area dS. In the upper medium, where the

velocity of transmission is V, is a perfectly reflecting hemisphere

with equal and symmetrical apertures at B and G which subtend

equal infinitesimal solid angles d<o Sit A. If -4 Z) is the direction

of the refracted ray corresponding to the incident ray BA, it is

clear that with this arrangement the only radiation which can get

from the lower medium to the part of the upper medium outside

the hemisphere is that comprised in a small solid angle d(o' about

AD and the equal beam which is symmetrical about the normal

AF. The rest is all reflected by the hemisphere and returned

through dS.

The ratio of the two elements of solid angle is

dto'/do) = sin 6' d6'/sin 6 dd,
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and the law of refraction gives

sin^/sin^=F7F.

If %dv denotes the intensity of the incident radiation of frequency

between v and u + dv, in the upper medium, then the energy of

this range of frequency which is incident on dS in unit time is

t„ dvdS cos 6 da). The energy reflected along ^0 is

piydvdS cos do),

where p is the coefficient of reflection. If p' is the coefficient of

reflection for the lower medium the proportion of incident energy

which is refracted is 1 — p', so that the energy transmitted into

the upper medium is

(l-p)i,'dvdScoBe'da/,

where i/ is the value of i„ for the lower medium. If the distribu-

tion of energy in the spectrum of the radiation in the two media

is to remain invariable, we shall have

(1 — p) iy dvdS cos 6 d(o = {l — p) i, dpdS cos 6' d<o.
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^, i^ COS 6 dm _l - p
i„ COS d aco 1 — /o

F^' = -l-p
(^>-

If the composition of the radiation in either medium were to

change, the temperature of a material particle in it which possessed

selective absorption would be altered. This would contravene the

second law of thermodynamics, so that equation (7) must be true.

Now the left-hand side of (7) is independent of the direction

and plane of polarization of the radiation, since the latter is

isotropic at any given point. Thus if we can determine the value

of the fraction on the right-hand side for some particular angle of

incidence and plane of polarization we shall have determined it for

all values. If 6 is the polarizing angle and the light is polarized

perpendicular to the plane of. incidence no light is reflected at

the boundary and p = p' =0. It follows that p must always be

equal to p' and V^i^ must always be equal to V'^iJ, so that the

quantity which is invariable, which we previously denoted by /,

is not the intensity i„ but i^ x V\ Thus V^iy must be a universal

function F(v, T) of v and T which we shall seek to determine.

Also, if 2/„ is the energy per unit volume of the radiation whose

frequency lies between v and v + dv, we observe that % « VL^,

so that V^Ly is also a universal function of v and T.

Stefan's Law.

We shall first find how the density of the complete radiation

depends upon the absolute temperature T. Suppose that at some

point of the wall of our enclosure at constant temperature T there

is fitted a cylinder in which a piston may be made to work up and

down. Both the walls of the cylinder and the face of the piston

are perfect reflectors of radiation. The effect of an outward

motion of the piston is to increase the volume which is filled by

the radiation and, in addition, work is done by the pressure p of

the latter on the piston head. If the increment of the entropy

of the system which is produced by a small displacement is

denoted by dS, we have

_
dS='^\S^ (8).
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where dU is the increment in the internal energy and dv is the

increment in the volume. If L is the energy of the complete

radiation per unit volume, then dU= Ldv. We have seen (Chap.

X, p. 212) that the pressure of isotropic radiation on a surface

bounding it is p = ^L. Since the process contemplated is a re-

versible one dS must, from thermodynamic principles, be a perfect

differential ; so that

dvdT~dTdv'

so tnat
g gy ^-^j

-
g^

]^j,[^rj.)^\ - ^-92"

and dT^^T ^^^'

or log Z = 4 log T+ const.

Thus L = AT' (10).

It follows that the energy per unit volume, in vacuo, of the

radiation in equilibrium in an enclosure at the absolute tempera-

ture T, is equal to a universal constant A multiplied by the fourth

power of the absolute temperature. Since the intensity of the

radiation is equal to the energy per unit volume multiplied by the

velocity of light, it follows that the former must also be pro-

portional to the fourth power of the absolute temperature. More-

over, if E is the total emission from unit area of a perfectly black

body, we see from p. 330 that E=A'T\ where A' is a new uni-

versal constant. This result is usually known as Stefan's Law.

It was suggested by Stefan*, in the inaccurate form that the total

radiant energy emission from bodies varies as the fourth power of

the absolute temperature, as a generalization from the results

of experiments. The credit for showing that it is a consequence

of the existence of radiation pressure combined with the prin-

ciples of thei-modynamics is due to Bartoli-f- and BoltzmannJ.

• Wiener Ber. vol. Lxxnt. p. 391 (1879).

t Bartoli, Sopra i movimenti prodotti dalla luce etc., Firenze, 187d.

+ Ann. der Phys. vol. xxn. p. 31 (1884).
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Since L, i and e may be split up into their spectral components

it follows that each of these will have to satisfy equations of the

type
1-00

{L^, %, 6^) cZi/ = const. X T* (11).
Jo

Reflection of Radiation at a Moving Mirror.

There is another effect, in addition to those already contem-

plated, which is produced when light or radiation is reflected at a

moving surface. This results in a change in the wave-length or

frequency of the light, which is akin to Doppler's effect. By con-

sidering the simple case in which the mirror is moving parallel to

the direction of propagation of the radiation, which is incident

normally, it is clear that the frequency of the light is diminished

after reflection by an amount which is proportional to the velocity

of the reflector, when this is in the same sense as that of the

incident radiation. If the reflector is moving towards the incident

beam the frequency of the reflected beam is greater than

that of the incident beam. The complete resolution of more

complex cases is effected most easily by means of the principle of

relativity.

We shall consider the case of a plane reflector moving with

uniform velocity v parallel to the direction of its normal, which

we shall take as the axis of x. In the case of a ray incident at

an angle 6 the vectors which specify it will only contain the

space and time coordinates through the factor

/. X cos 6 + z sin 6 \
cosn \t-\ 1-7)»

if the plane of incidence is that of the x and z axes and 7 is a con-

stant which specifies the phase. The corresponding factor for the

reflected ray is

/ , X cos 6 — z sin 6 \
cos n

provided the reflector is at rest. If the reflector is in motion

these expressions must be unchanged when all the quantities are

measured in reference to axes x', y\ z' and H referred to which the
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mirror is at rest. The relation between x
, y\ z and t' and x, y, z

and t is given by the equations

x=^{x-vt), y'^y, z' = z, t' = l3(t-vxld*)and ^ = {l-v-/c'')~K

Thus referred to axes moving with the mirror, the vectors

which specify an incident ray will be expressed by

, /., x' cos d' + z' sin 0" ,\
a cos n ( r + ^- 7 )

.

where a is a constant, the corresponding quantity for the reflected

ray being

. /^, x' cos ^' — z' sin 6' A
a cos 71 [t — H7 ).

In terms of the coordinates referred to axes at rest we shall have

for the incident ray

/ (/!/, / o\ yS (a; — •yO cos ^' + ^ sin ^ ,]

a cos n' -l/S {t - vx/c^) + ^^ + 7'^

= a cos 71 jp ( 1— cos ^ j ^ H ^^ —^ h 7 V

and for the corresponding reflected ray

A r,/^ /ON B{x — vt) cos 6' — z sin 6' ^
a cos 11'

j/3 it - vxjc') - ^^^ + 7'^

/ ( o /-. V ^,\ . /8 (cos 6' + vie) x-z%\nff ,)= a cos 71 j/S f 1 + - cos 9\ t - '--^ '—^ + 7 [

.

The frequencies referred to axes x, y, z and t at rest in space are

proportional to the coefficients of t. Thus if Vi is the frequency of

the incident and v^ of the reflected ray as measured by an observer

refen*ed to whom the mirror is moving with velocity v, we have

1 + - cos 6'

Vi c

1— cos 6
c

but from equations (11), Chap. XIv,

cos 6—
cos ^' = ""

1 ^ a1— cos a
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thus -^ = l_:jf/£ ^=1 + 2^008^ (12),

^ 1 - 2 - COS ^ + -
c cr .

neglecting (v/cY and higher powers.

The corresponding relation between the wave-lengths is

^' = l-2-cos^ (13).

Wren's Law.

The foregoing considerations, coupled with thermodynamical

principles, enable us to take another step forward towards the dis-

covery of the function F (v, T). This advance is due to Wien*.

The argument resolves itself into two parts. In the first place, if

we start with an enclosure containing only thermal radiation, such

as we have seen to be characteristic of some temperature T, and

then alter the nature of this radiation by means of a motion of

some part of the perfectly reflecting boundary wall, we shall be

able to show that the resulting radiation is invariably such as is

characteristic of some other undetermined temperature T'. Having

established this proposition, the second step consists in making use

of it so as to find out as much as we can about the nature of the

function F {v, T).

Consider the cylinder with perfectly reflecting walls shown in

Fig. 41. The ends are closed by plates of radiating matter main-

tained at the temperatures T^ and 1\ respectively. T^ is greater

than Ti. The transverse partitions are perfectly reflecting and

are provided with shutters D^ and D^ which can be opened

or closed at will. The partitions can also be caused to slide

along the cylinder. We now imagine the following processes to

occur :—(1) D.^ is shut and Di open. Then G is filled with radia-

tion characteristic of T2 and A and B with radiation characteristic

of Tj. When equilibrium has become established D^ is closed.

(2) The radiation in G is allowed to push the piston F and so

compress the radiation in B until the pressure of the radiation

in B is equal to that in G. On account of the Doppler efiect

the nature of the radiation in B will have become changed

• Berl. Ber. 9 t'eb. 1893.

R. E. T. 22
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by the motion. Let us examine the consequence of supposing

that the radiation now in jB is not homogeneous with that in C.

Since the total pressures in B and C are equal, the pressure, or

density, for some frequencies will be greater in B and for others

greater in G. • \S) Place some selectively reflecting material over

the opening in Dj, choosing it so that it transmits more of the

rays whose density is greater in B than in C. Open the shutter an

instant and then close it. The pressure in G is now gi-eater than

that in B. (4) Allow G to expand until the total densities again

become equal. External work can be done by this expansion.

(5) Open the door D^ and allow the two radiations to mix.

Leaving the door open push F back to its position after the

displacement in (2). Then (6) close A and push F back until

the pressure in B is equal to that in A. In this step the work

lost in the second step is exactly recovered.

\
' \

D,

Fig. 41.

In the complete cycle, we have obtained work equal to that done

by the expansion of the radiation after selective mixing without

any transference of heat to the cold body 2\. The heat which is

the equivalent of the work done must have come from the body

Ti. As the process might be repeated indefinitely it is clear that

the whole of the heat of T^ might be converted into available

work in this way. As this is contrary to the second law of

thermodynamics it follows that the inequality supposed in (2)

does not exist. Thus the following theorem must be true:—If we

start with a perfectly reflecting enclosure containing nothing but

radiation characteristic of a certain temperature, the nature of the

radiation will be changed if the walls are allowed to expand or

contract, but the resulting radiation will always be identical with

that temperature radiation which exerts the same total pressure.

Now let us suppose that we have a cylinder fitted with a

movable piston and filled with radiation characteristic of some
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temperature T. The face of the piston is perfectly smooth and

perfectly reflecting. The walls of the cylinder reflect completely,

i.e. without loss of energy, but irregularly in all directions. This

device keeps the radiation isotropic and so makes it unnecessary

for us to consider certain complications which would otherwise

arise. The sectional area of the cylinder is A and its height h.

h will vary with the position of the piston. Let L (X) d\ denote

the energy per unit volume of the cylinder which belongs to wave-

lengths between \ and \-\-d\, then J=AhL(\)d\. is the total

energy belonging to these wave-lengths which is present in the

cylinder. Owing to the motion of the piston the value of J will

tend to change. It will tend to decrease because the radiation

whose wave-length is near X will join some other group when it

is reflected at the moving piston, and it will tend to increase

because other radiation will have its radiation changed to values

near \ when it is reflected. The rate of loss of energy by the

group is clearly equal to the total amount which is incident on

the moving piston in unit time. The proportion of /which belongs

to rays whose direction of propagation lies within any small solid

angle dco = 2ir sin Odd is dQ)/4s7r, since the radiation is isotropic.

Thus the amount of energy belonging to these wave-lengths

which is incident on the piston in unit time in directions lying

within the cones whose semi-angles about the normal are and

+ de is

^ L {X) d\ . sin 6dd . cA cos 0.

The rate of loss of energy by the group will be obtained by inte-

grating this expression over all angles which lie between and

7r/2. It is thus equal to

lAcL{\)d\ (14).

The calculation of the rate of gain of energy by the group is

more complicated. If we consider a ray of wave-length Vinci-

dent at an angle the wave-length of the reflected ray will be

given by

X' = xfl-?^cos^)by(13).

The change of sign is due to the fact that we are now taking

V to be positive for an outward motion of the piston, which

corresponds to increasing volume. Thus, by reflection, rays

22—2
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characterized by V, dX and d are changed into the group com-

prised between \ and \ + d\, where

dX' = d\ (l -- cos e\ (15).

The energy incident in unit time in the group of waves defined

by V, d\', e and dd va

^ Ac L {\')dX' Bind COS 0de (16).

Only part of the energy of the X group is changed into energy of

the X group. The balance is equal to the work done by the group

on the moving piston. The pressure exerted by the X' group may

be written

2Ajcoa'0 if j=?^^|^X(\O^V.

The work done by this pressure per unit time is thus

2Aj cos^ 6 . V.

By combining this result with (16) we see that the rate at which

the energy of the group X is increased by reflection from the

group V is

AJG co9e-2Ajcos^ 6.

V

(17).

But j = ^ sin ed6 L (V) dX' and

L (V) = L(x-—XcoseY from (13),

=L (X) cos . X -^ + higher terms,
c oX

by Taylor's theorem. By moving the piston slowly enough v/c

can be made as small as we please, so that only the lower powers

of this ratio need be considered. By substituting for dX' from

(15) and neglecting higher powers of v/c than the first, we find

j = '^^[[l-2lcos0)L{X)-^oos0.X^-^ldX...{18).

After substituting this value of j, (17) becomes

sin^cos^d^ f/, ^v /,\ r /. s 2y . ^ dL).j^8m0cos0d0 (f^ ^v /J^^/^\ ^w n ^ oL] , _ ^.AdX ^ Ul —2-co30jL{X) ^ cos ^ . X ^ Kc — 2y cos ^)

in cos d0 II (X) - 2 ^ cos Ul (X) + X ^-^^)
\

AcdX
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to the same order in vjc. The total gain in energy is obtained by

integrating this over all values of 6 from to 7r/2, giving

4rfx|cZ(X)-|^(2L(X)+X^>)| (19).

By combining this with (14) we see that the net increase of

energy of the group X, in unit time due to an outward motion

of the piston is

| = 4.{2,(.) + X?^)}.X (20,

But by direct differentiation we have

Thus, from (20),

^ = ^dXJX(X)^+A-^^|

= Ad\[vL{X)+h^^\,

?^>=«(-5.(X)-X?^) (21).

V
where « =^ is a function only of the time t.

The differential equation (21) gives the relation between L (X,)

and the time t as the piston is moved. As we have seen, the

effect of the motion is to change the radiation in such a way that

it is always identical with the radiation which characterizes some

temperature T. Thus for each time t there is a corresponding

temperature T, and T must, therefore, be a function of t only.

Thus it must be possible to replace < in (21) by some function of

T only. This can be determined if we make use of Stefan's Law
together with certain simple properties of the radiation which may
be regarded as given by experiment.

Consider the total energy densityL=\ L (X) dX. Integrating
Jo

both sides of (21) with respect to d\ from to qo , we have

^~=-k\5l+ \i(\)r-zi.

Now the form of the experimental curves connecting L(X) and \
shows that the product XL (X) vanishes at both limits, so that

^^ A r
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But by Stefan's law L = AyT*, where ^i is a universal constant.

Thus

dT
T

80 that (21) may be written

or —Kdt= -nr;

T^-^= 5L(X) + X^-^ (22).

If the variables are changed to Tj = log T, Xi = log A, and

Li = iogL{X), (22) becomes

Now change the independent variables from Ti and \i to T^ and tti,

where tti = Ti + \. Denoting the new partial derivatives by B, we

have

- dLi _ oLi Btti oLi oTi oLi oLi

so that Tmf~ ^>
oJ-1

and A = 5r;+^(7ri),

where ^(tti) is an arbitrary function of ttj . Substituting for the

logarithms and multiplying both sides by dX we find that

L{\)d\=T<'(ji{T\)dX ....(23)

= \-' (T\y
(f)
(TX) dX

= X-'x(TX)dX (24),

where
(f>

and % are undetermined functions of the product TX
only.

It is known from experiment that L(X) has the value zero

when \ = or oo and a single maximum between these limits.

Differentiating (24) by X we see that the maximum and minimum

values of L (\) satisfy the equation
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The value zero at X,= oo is clearly indicated, but the value at

X = cannot be foreseen without further information about the

function x • Presumably the maximum value is given by

^T^-^^ - 6x(xr) = (25).

If this equation has a single root \T = b, then the value \m of

X, for which L (X) is a maximum, will vary with the temperature

in such a way that the product Xm^f is always constant. This

result, which has been well established by experiment, is known as

Wien's displacement law.

It is probable that the relations (23) and (24) which involve

the universal undetermined functions
<f>
and % of the argument XT

are as far as we can get, from such very general considerations as

have been employed above. To determine these functions more

particularly it is probably necessary to consider the constitution of

the radiating matter in a maimer more explicit than we hrvve done

hitherto.

The Formula of Rayleigh and Jeans.

We have seen that the properties of the radiation in an

enclosure at a uniform temperature are determined by the

temperature alone and are independent of the nature of the

material bodies which are present in the enclosure. Thus if the

enclosure contains nothing but radiation, the latter will have

exactly the same constitution at a given temperature whatever

the walls are made of, provided they have even the smallest

power of emitting every possible kind of radiation. On the other

hand it is evident that the nature of the contained radiation,

when equilibrium has been established, must be determined as

the result of an equality between the emission from and absorption

by the walls. The constitution of the radiation ought therefore

to be determinate if we can calculate the rate of emission and

absorption of different types of radiation in any particular case.

Since the nature of the radiation is independent of that of the

matter it makes no difference what constitution we assume for

the matter, which we make use of in carrying out the calculations,

provided that it is a possible type of matter and also is one which



344 RADIATION AND TEMPERATURE

has some capacity for emission in every part of the spectrum.

To facilitate the calculations one naturally assumes the simplest

type of hypothetical matter which is compatible with these

requirements.

Of the attempts to solve the radiation problem which have

been based on the principle thus outlined, the earliest to rest

on a substantial foundation, and the most successful, is due to

Planck. Before considering Planck's theory we shall briefly

indicate another method of attack which has led to results that

are quite inconsistent with the experimental data. It is a well-

known result in molecular dynamics (see Chap, xvii) that if any

self-contained dynamical system possessing sufficient complexity

is provided with a certain amount of energy and left for a

sufficient length of time, a state of statistical equilibrium will

finally become established. This state of equilibrium is charac-

terized by the fact that each degree of freedom, or each coordinate

which is required to specify completely the whole energy of the

system, possesses the same average amount of energy. Now
consider a perfectly reflecting enclosure containing a small amount

of matter. The matter contains a finite number N, let us say, of

molecules and each of these will have some finite number, p on

the average, of degrees of freedom. On the other hand the aether

which the enclosure contains will be capable of an infinite number
of modes of vibration. These are determined by the geometry of

the perfectly reflecting boundary and extend fi*om the gravest

mode of vibration to vibrations of infinite quickness. There is

thus an infinite number of degrees of freedom in the aether,

whereas the number in the matter remains finite. Consequently,

since each degree of fi-eedom receives equal energy, all the energy

will be found in the aether, in the final equilibrium state, and

none in the matter. Moreover, for a given range d\, there are

many more possible modes of vibration the smaller \ is, so that

/alljthe energy tends to accumulate in the waves of infinitesimal

wave-length. By calculating the number of natural wave-lengths

between \ and \ + c?X, and by supposing that there is an infinite

amount of energy in the whole system, so that each wave-length

acquires the amount RT which is appropriate to two degrees of

fi-eedom in the matter at the same temperature, we can find the

amount of energy which occurs in the stretch of radiation between
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X and X + d\. By carrying out a calculation of this kind, Jeans*

has shown that

L{X)dX = ^^^^dX (26),
A.

or in terms of frequency instead of wave-length

Livydv^Sir-^RTdp (27).

A rather similar conclusion had previously been reached by

Lord Rayleighf.

From this point of view the radiation problem reduces to a

determination of the number of modes of vibration in the aether

comprised within given limits of frequency. A simplified form of

Jeans's calculation which is due to H. A. Lorentz J may be stated

in outline as follows : Consider the temperature radiation in equi-

librium with a small amount of matter in a rectangular box, whose

sides are parallel to the coordinate axes and of lengths di, d^, d^.

The walls are smooth and perfectly conducting so that no radiation

is absorbed or emitted by them. In the steady state the box will

be filled with stationary waves, satisfying the condition that the

tangential electric intensity vanishes at every point of the

boundary. Any parallel beam of radiation which is travelling

in any one of the eight directions given by the combinations of

the direction cosines ±1, ±m, ±n, will always after reflection be

travelling in one or other of this group of directions. The totality

of such groups will therefore represent the number of modes of

vibration of the aetherial part of the system. On account of the

two planes of polarization which are required fully to specify the

beam of radiation, each mode will have associated with it an

amount of energy 2i2T equal to four times that of a single degree

of freedom. If X is the wave-length of the radiation under

immediate consideration, the condition at the conducting boundary

requires that

2/c?i _ , 2m(^2 _ T 2wc?3 _ ,

*. Phil. Mag. vol. x. p. 91 (1905).

+ Phil. Mag. vol. xlix. p. 539 (1900) ; Coll. Papers, vol. iv. p. 483.

X Theory of Electrons, p. 93.
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where ki,kt, and k^ are integers. Since Z* + w" + w* = 1, we have

Z. 3 Z. 9 ^ 8 A,
"'1

1^
"^ j^ ""S ^

Thus k^, kj, and ^3 can have any integral values which satisfy

this equation. Since the equation is that of an ellipsoid whose
coordinates are ki, k^, and A;,, and whose serai-axes are Id^jX,

2(ii/\, and 2dJ\, the nuraber of vibrations whose wave-lengths lie

between \ and \ + dX is equal to the number of points having

coordinates which are positive integers which lie in the volume

between the ellipsoids whose parameters are determined by X and

\ -^ fix, respectively. The number of such points is equal to the

volume lying in a single octant between the two ellipsoidal shells.

The number is therefore 47r c^c^jC^aC^X/X,* and the energy per unit

volume of the box and wave-lengths between the limits X and

\+c?X is 87rRTdX/X*. It has been found that every purely

dynamical method of calculating the radiation formula leads to

(26) and (27).

Although the value of L{X) given by (26) satisfies Wien's

functional relation (24) it is quite inconsistent with the results of

experiments on the complete temperature radiation. The experi-

ments show that L (X) has a maximum for a value of X whose

position is governed by Wien's displacement law and has the value

zero when \= 0. But (26) would make L(X) increase indefinitely

as X approached zero. There are a number of ways in which this

contradiction might conceivably be avoided. Jeans has suggested

that the final state of equilibrium, if it could ever be attained,

would be given by (26); but that the rate of emission of the

energy of short wave-lengths by matter is so slow that the

distribution given by (26) would only becorae established after

an indefinite lapse of time, and in any finite time would not even

be approximately realized. According to this view the observed

distribution is one of intermediate equilibrium due to less

fundamental causes. Nevertheless the causes which establish the

intermediate distribution must be sufficiently fundamental to be

common to all types of matter; otherwise the degree of con-

sistency which has been observed in experiments on thermal

radiation would not be found.

Another way of escape is to deny the applicability of the
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theorem of equipartition of energy to aetherial, as opposed to

material, systems. There are a number of reasons why this is not

a very satisfactory alternative. In the first place the same kind

of objection may be made against the applicability of equipartition

to material systems. Thus the specific heats of gases are not

what would be given by a naive application of this theorem, par-

ticularly when one considers the large number of electrons present

in the atoms and that each electron ought to have its quotum of

energy. On the other hand the law of equipartition has been so

successful in other directions that it is difficult to believe that its

deduction from dynamical principles involves a fundamental error.

In the second place the dilemma in question does not seem to be

connected with the law of equipartition alone, so that denial of

the validity of this would not really remove the difficulty. It

appears that a number of calculations which use the first method,

that of equilibrating the absorption and emission of energy, lead

to Rayleigh's formula (see for example Chap, xvii, p. 433). In

fact this formula appears inevitably to arise whenever the emission

and absorption of radiant energy by matter is assumed to be a

continuous process subject to dynamical and electrodynamic laws.

Although it may appear very revolutionary to some, it seems

to the writer that the only logical way out of these difficulties is

to deny the adequacy of dynamics and electrodynamics for the

explanation of the emission or absorption of radiation by matter.

If we leave the familiar guidance of dynamics behind it is necessary

to find some other set of fundamental principles to rely on.

Although the matter cannot yet be regarded as fully and satis-

factorily worked out, a valuable start in this direction has un-

questionably been made by Planck and his followers.

Planck's Law.

We have stated that Planck has shown how theoretically to

deduce a radiation formula which is in good agreement with the

results of experiment. It would take up too much space adequately

to consider the various vicissitudes which this theory has undergone

at the hands of Planck and his critics, so that we shall practically

confine ourselves to the discussion of the most recent form* of it.

* Ann. der Phyg. vol. xxxvii. p. 642 (1912).
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Although this involves special assumptions which seem rather

strange at first sight, it is free from self-contradiction and from

assumptions, such as that of the discontinuous nature of energy,

which appear to do violence to the fundamental ideas of physics.

So much could not be said of the earlier forms.

We shall suppose the radiating properties of the matter to

arise from the presence in it of an indefinite number of minute

electrical oscillators. To fix our ideas we may take the picture

aflbrded by the electron theory and suppose each oscillator to

consist of an electron in equilibrium in a certain position, when

free from the action of external forces, and subject, when dis-

placed, to a restoring force which is proportional to the displace-

ment from the equilibrium position. If s denotes the moment of

the doublet which is equivalent to the displaced electron, then the

potential and kinetic energies are equal respectively to ^Ms^ and

^Ni^, where M and N are constants. The total energy is

U=iMs' + iNs^ (28).

If the component, along the axis s of the doublet, of the external

force due to the incident radiation is Eg, the differential equation

satisfied by s is

Ms + m=Es (29),

if we neglect the reaction arising from the radiation. The natural

frequency Vq of the oscillator is

"'-L^^ (30).

When the small force arising from the reaction of the emitted

radiation is included (see Chap, xii, p. 266) the equation for 8

becomes

Ms + Ns-^-s=Es (31).

The first step in the solution of our problem is to find the rate of

emission and absorption of radiation by any particular oscillator.

The method originally adopted by Planck is an immediate

application of the principles of electrodynamics which we have

already developed. The radiation is determined by the acceleration

of the electron, the rate of emission at any instant being pro-

portional to the square of s in accordance with formula (11) of



RADIATION AND TEMPERATURE 349

Chap. XII. The energy absorbed is equal to the work done by

the external force Eg on the oscillator, so that the instantaneous

rate of absorption of energy is EgS. Now the force Eg is the

component which lies along the axis of the doublet of the electric

intensity in the radiation. However complicated the radiation

may be it will be possible to express Eg as a function of the time t

by means of a Fourier's series in the form

Eg= i Oncosf^^-S^) (32).

where the Cs and S's are undetermined constants and T is an

arbitrary time which is greater than every t. By substituting

this value of Eg in (31) and solving for s, we can show* that the

mean value U of the energy of the resonator, which is equal to

M^ since the kinetic and potential energies must be equal on the

average, is

^=T6,^=^«- (33).

where C^^ denotes the mean value of all the coefficients (7„ for

which n lies near v^T. It happens that the distant terms do not

contribute anything to the energy. But the energy / L{v)dv
Jo

per unit volume of the radiation when expressed in terms of the

electric and magnetic intensities is equal to half the mean value

of EJ' + Ey^ + E/ + Hi + Ey^ + Hi. Since the radiation is iso-

tropic the mean value of each of these terms is the same, so that

f L{v)dv==3E} (34).
•'0

By putting dv = ^n/T, where An is a large number, the integral on

the left can be expressed as an infinite series, and by comparing

with the value of E^ which results from (32), it follows that

whence from (33),

X(i.o) = 87r^' U (35).

This result is in formal agreement with equation (27), since

the oscillator has two degrees of freedom and the energy per

* Cf. Planck, Warmestrahlung, pp. 118 et seq., Leipzig (1906).
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degree of freedom when equipartition holds is ^RT. Thus it

appears that if equipartition of energy is established among the

oscillators by actions going on in the matter (these may be

supposed to be independent of radiation) we are again led to

Rayleigh's formula. This formula in fact appears to result from

every method of calculation which makes both the absorption and

emission of the energy by the matter take place in a continuous

manner. It is well to point out that the Rayleigh formula

expresses the experimental results satisfactorily when v is small

and T is large, that is to say when the energy of the radiators is

large. There is therefore at least an element of truth in it.

In order to arrive at a formula which does not make L (v)

infinite when v is infinite, it is necessary to introduce discontinuity

somewhere, and thus bring probability and entropy considerations

to bear on the sta.te of the radiant energy. In his earlier papers

the assumptions made were equivalent to postulating that the

energy itself had a discontinuous structure, but Planck has now

shown that equivalent results may be obtained by merely sup-

posing that the radiant energy is emitted by jumps, the absorption

taking place continuously. As the emission of radiant energy

might be expected to be conditioned by the breaking up of some

structure present in the matter, this seems a very natural

hypothesis.

The investigation which follows involves a number of additional

hypotheses. In the first place we assume that the energy U of

the oscillators is determined entirely by interchange of radiation

:

that the influence of any direct dynamical interaction of the

oscillators, if it occurs, has negligible consequences. We shall

assume that the absorption of energy by the resonators is con-

tinuous and follows the requirements of the classical laws of

dynamics and electrodynamics. It is thus determined by the

conditions laid down on p. 349. On the other hand we shall

assume that emission of energy is not a continuous process but

one which never takes place except when the energy U of an

oscillator is an integral multiple of a certain element of energy

e = hvo- In this expression Vq is the frequency of the oscillator

and A is a universal constant. The element of energy is thus

proportional to the frequency of the oscillator. We also assume

that when emission takes place the oscillator suddenly loses all
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of its energy. It is clear that the oscillator must not invariably

emit when its energy is an integral multiple of e, otherwise the

integral multiple would never exceed unity. We shall assume

that whenever one of the critical values is reached, the ratio of the

probability that no emission takes place to the probability that

emission takes place is proportional to the density L {v^ of the

radiation surrounding the oscillator. If r] is the probability that

emission takes place, the probability that emission does not take

place is 1 — 7^ ; so that

~^=l->L{v,) (36),

where p is a constant quantity which we shall determine later.

The mean energy U of an oscillator in the steady state may now
be determined in terms of 17, as follows

:

Out of N oscillators selected at random that have completed

an emission N-q will emit when they have accumulated a single

element of energy, N{\ —'r})v when they have accumulated two

elements of energy, iV(l — t^)""^?; when they have accumulated

n elements of energy, and so on. Thus, in the steady state, out of

iV" oscillators selected at random simultaneously,

Nr) = NPq will possess energy between and e,

N(l-v)v = ^Pi » » » >, 6 ,, 2e,

Nil-vT'^V^^Pn-i „ ,, » » (n-l)e „ we,

where P^ = (1 — vT V is the probability that the energy of an

oscillator lies between ne and (?i + 1) e. The mean energy of an

oscillator is therefore

^=Jo^»("+5)'=(r2)^ (''>'

since the average value of the fractions of an element of energy

which intervene between any two consecutive integral multiples

is ^e. Thus from (36)

U={pL(vo)+^]€ (38).

We shall determine p so that (38) agrees with the corresponding

equation (35) of the former theory when U is large. In this case

the ^ in (38) can be neglected, so that, by comparing with (35),

^ = 8^V"e = 8^K»
^^^^'
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Thus the mean energy U of the oscillators, and also, since

the division of the energy among them in the steady state, is

completely determined.

In order to introduce the temperature T it is necessary to

calculate the entropy /S of the system. This is equal (see Chap,

XVII, pp. 400 and 407) to R times the logarithm of the probability

of the system, defined in a similar way to that introduced by

Boltzmann* into the kinetic theory of gases. The present case

is a little different from that contemplated in the kinetic theory,

inasmuch as it is only the part of the energy of the resonators

which is an integral multiple of e that is a matter of chance and

therefore subject to probability considerations f. The probability

sought is the number of ways in which the N resonators can be

aiTanged so as to have the given distribution of energy units,

subject to the condition that the same distribution arises when-

ever the resonators which have a given number of units are

interchanged among themselves. This probability may be

calculated as follows:

Along the positive energy axis lay off marks at the points

0, le, 2€ ...me ... oo e. From these marks draw lines perpendicular

to the axis and on them lay off NP^, NP^, NP^... NPm--- NP^
equidistant dots. Altogether there are 'ZNPm = N dots and their

distribution over the diagram is a geometrical representation of

the way in which the resonators are distributed about the energy

of the system. Since the dots which have equal numbers of units

are considered to give rise to systems which are indistinguishable,

the number of independent ways in which the iV^ dots can be

aiTanged to form the given distribution is

W = N\^U{NPm)\

where 11 denotes the continued product for all the values of m.

from to X . Thus

S = RlogW = R\ogN\-Rt\og{NP^)\,

• Vorlesungen iiber Oastheorie, p. 41, Leipzig (1896).

t Planck, Sitzber. der K. Pr. Akad. der Wiss. vol. xxxv. p. 723 (1911).
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and since we may use Stirling's approximation* for the factorials

when iV is large

S= R\ogNl-R% [NPm (log NP^ - 1) + ilog 2-rrNPrr,]

= R {log N\-NlogN + N-^t\og ^TvN] - NR^Prr, log P^,

using SPm = 1 and remembering that the neglected term

fsiogP^

vanishes compared with the others when iV^ is indefinitely large.

The first term on the right depends only on N and is therefore

constant. It may be assimilated with the undetermined constant

which is always included in the entropy. The value of this

constant does not enter into our calculations, so that, leaving it out

of account, we have for the entropy S;^ of the N resonators

S^ =-NR i P^logP^
m=0

= -i2i^ |i log ,; + (^- l) log (i-
l)|

= Ki^|(|.^).o.(Vl)-(i-l)log(-f-i)}..,^)

= NS.

And since, by the definition of entropy,

U 1

1 dS R' e'^2
f=dZ7 = 7^"^F7i ^^i>'

e 2

Finally, from (38) and (39),

L{y)dv=-^[-^--^dv (43)

Stt hv' , ....

"~^~R— "^'^ ^^^>'

and L(X)d\= —^ dX. (45).

* See p. 402.

R. B. li S3



364 RADIATION AND TEMPERATURE

If i,dv is the intensity of a plane polarized constituent of the

. . . . . . . Sir
radiation, travelling in a given direction, we have — i^ = L (v),

c

since the radiation is isotropic. Thus

i=«4^w4«^ (^^)-

If the medium is one in which the velocity V of radiation differs

from the value c which it possesses in a vacuum the right-hand

side of (46) will have to be multiplied by c^/V^, since, according to

the conclusions on p. 333, VH, is the function which has a uni-

versal value. Corresponding changes would have to be introduced

in (44) and (45). We shall, however, confine our discussion to the

•case of the radiation as it is found in a vacuum.

Formulae (44) and (45) are those which are known as Planck's

radiation formulae. They are in agreement with the functional

jelations (23) and (24) demanded by Wien's argument. These

formulae have been derived theoretically in other ways* which

differ in important points from that which has just been given.

But in order to obtain them it has always been found necessary to

introduce discontinuity somewhere, either in the constitution of

the radiation itself or in the mode of its absorption or emission.

When \T is small, or v/T large, it is evident that unity may be

neglected compared with the exponential in the denominator of

the fraction, so that for small wave-lengths, or high frequencies,

and low temperatures,

L{v)dv = 8irh'^e~^dv (47),

i(\)(iX=87r^e ^'^^d\ (48).
A,

When V is large the exponential factor in (47) diminishes much

more rapidly than v^ increases, so that Z (v) = when i/ = oo . For

the same reason X(X) = when A, = 0. Thus the conditions

referred to on p. 341 are satisfied by Planck's formula. On the

• For example cf. A. Einstein, Ann. der Phy$. vol. xxn. p. 183 (1907); Jeans,

Report on Radiation and the Quantum Theory, p. 30, London (1914); Debye, Ann.

der Phys. vol. xxxiii. p. 1427 (1910); Poincar6, Jonm. de Physique, vol. n. p. 6

(1912) ; W. Wilson, Phil. Mag. vol. xxix. p. 795 (1915).
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other hand when vjT is small or \T large, (44) and (45) de-

generate into

L {v) dv =^ v^RTdv

7? 7^

L{\)d\ = %'n--—-d\
K

They are then identical with Rayleigh's formulae (26) and (27),

which, as we have already pointed out, are in agreement with the

results of experiments which are made subject to these conditions.

In fact throughout the whole range of the variables \ (or v)

and T, which has been tested, the differences between the experi-

mental results and those given by Planck's formulae lie within

the limits of experimental error.

Numerical Values of the Constants.

For the density in space of the black body radiation in a

vacuum we have

aT' = aT* (50),

where « = 1 + ^4 + |i + ^i + - = 1-0823.

The absolute constant a which occurs in the expression of

Stefan's law is thus defined in terms of R, c and h. Accurate

measurements of a have been made by Kurlbaum*, who finds

f

a = 706 X 10-" erg cm.-^ deg."*.

Another relation between the constants is given by the value

of \ for which L (A,) is a maximum. If we differentiate L (X) by \
and equate to zero, the equation which corresponds to (25) is

5(e-*- l) + x= (51),

* Ann. der Phys. vol. lxv. p. 759 (1898).

t Some recent values of a are much higher than this. Thus Gerlach (1912)

finds a value about 10 % higher, and F6ry and Drecq (1911) find a value more
than 20 % higher than Kurlbaum's. Most of the determinations, however, have

given values of a which are not far from 7"1 x 10~".

23—2
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ch
where x— p „, . (51) has two real roots, viz. a; = and x — 4*9G51.

Thus the maximum value is given by substituting x = 4965 1 in

According to the measurements of Lummer and Pringsheim*

h = 0294 cm. deg. Solving (50) and (52) for R and h we find

R = 1-346 X 10-" erg deg -^]

A =6-548x10-==' erg sec. j
^^^^'

Since R is the constant in the gas equation pv = RiT reckoned

for a single molecule, this value of R enables us to deduce the

value of N, the number of molecules in a cubic centimetre of a

gas under standard conditions, and the charge & on an ion, from

well-known data. We have pv = NRT, where

j9 = 76 X 13-6 X 981 dynes cm.-«, t;=lcm.» and T= 273 deg.

Whence JV= 2'76 x 10" per cm.».

Since the charge which is required to liberate half a^ubic centimetre

of hydrogen, measured under standard conditions, in electrolysis is

0-4327 E.M. units (see Chap, i, p. 6) it follows that

iV^e = 0-4327 E.M.U.,

whence e= 4-69 x 10-" electrostatic units

= 18-9 X 10-" in our units.

These values of N and e are in excellent agreement with those

which have been found by Millikan, Rutherford and others, using

more direct methods. This agreement must be regarded as sup-

porting very strongly those assumptions in Planck's demonstration

which are necessary to produce the formulae finally obtained.

We shall see that Planck's radiation theory has recently received

unexpected support in two other directions. One of these will now
be considered.

Radiation and Specific Heat

From the phenomena exhibited by absorption bands, the

residual rays, and so on, we know that something like Planck's

oscillators must exist in actual matter and possess natural

* Verhand. der DeuUch. Physik. Ges. vol. i. p. 230,
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frequencies not far from the frequencies of the radiation forming

the visible spectrum. From (42) we can calculate the energy

corresponding to any one of these natural frequencies at a given

temperature.

Einstein * suggested that practically all the energy stored in

simple bodies might belong to a few frequencies, and, on this

hypothesis, was able to calculate the specific heat as a function

of the frequency. If this hypothesis were not true it would be

necessary to suppose that the number of systems having a given

frequency is much smaller than the number of atoms present in

the substance; otherwise the specific heats of bodies would be

much larger than those which they actually possess.

Let us suppose that there are iV oscillators per unit mass of

any substance, and that they all have the same natural frequency v.

The total energy of the oscillators in unit mass of the substance at

the temperature T is, by (42),

N / hv hv\

If all the heat is in this kind of energy, the specific heat (7„ will

be given by differentiating this expression with respect to the

temperature, so that
hv

At low temperatures, according to this formula,

RT'^ '

since we can neglect unity compared with the exponential in the

denominator. Thus (7„ rapidly becomes extremely small with

decrease of temperature. At high temperatures C„ approximates

to NRe^^ = NR approx. It thus becomes independent of the

temperature; and if we suppose that there is one natural fre-

quency per atom, so that N is the number of atoms per unit mass

of the substance, the value NR agrees quantitatively with Dulong

and Petit's Law.

• Ann. der Phys. vol. xxn. p. 180 (1907).
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An elaborate investigation of the specific heats of a large

number of substances, particularly at low temperatures, has

recently been carried out by Nemst* and his pupils. They find

that the relation between C, and T is of the same general character

as that called for by (54), but that a better agreement is obtained

when a slightly different equation is used, viz.

C.=
NR iw)' \2RTJ

^
\

.(55).

The second term, which was introduced by Nernst and Lindemann,

was obtained empirically.

The agreement between the results of experiments and (55) is'

shown by the following numbers, which represent typical cases

selected at random from a paper by Nemst and Lindemann f.

Copper (Cu) NaCl Diamoud (C)

Abs. Cp C7p Abs.

(cal.)

<7p Abs. Cp Cp
Temp. (cal.) (obs.) Temp. (obs.) Temp. (cal.) (obs.)

23-5 0-15 0-22 25-0 0-32 0-29 30 0-000 0-000

27-7 0-31 0-33 25-5 0-34 0-31 42 0-000 0-000
33-4 0-69 0-54 28-0 0-48 0-40 88 0-006 0-03

87-0 3-37 3-33 67-5 2-88 3-06 92 0-009 0-03

88-0 3-39 3-38 69-0 2-95 3 13 205 0-62 0-62

137 4-65 4-57 81-4 3-49 3-54 222 0-78 0-76

234 5-52 5-59 83-4 3-64 3-7.') 262 1-16 1-14

290 5-75 5-79 138 4-90 4-87 306 1-59 1-58

323 5-81 6-90 235 5-73 5-76 358 2-08 2-12

4.')0 6-03 6-09
— — — 413

1169

2-55

5-41

2-66

5-45

Cp is the specific heat of the solid substance at constant

pressure and is the quantity which is given by the experiments.

The calculated values of C^ are obtained from the values of C„

given by (55), together with the known relation, based on thermo-

dynamic considerations,

'i+9|^t) (56),Lip = (7p

• Zeits.fur Elektrochemie, vol. xvii. pp. 265, 817 (1911).

t Ibid. p. 817.
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where a is the coefficient of linear expansion, V is the atomic

volume, and K the compressibility. The difference between Cp

and G^ is only appreciable at the higher temperatures.

It will be observed that (55) contains only one adjustable

constant, the frequency v, so that the agreement shown by the

table is quite convincing. In fact in the case of KCl, KBr and

NaCl the value of v has been taken from the experiments of

Bubens and Hollnagel on the residual rays from these substances.

Thus in these cases the complete thermal behaviour may be pre-

dicted from the determination of a single optical constant, and

shows an excellent agreement with the observed results. In other
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cases, for instance mercurous chloride, it is necessary to use a

formula involving a summation over two different values of v;

but there are good reasons for assigning* at least two frequencies

for compound substances, so that this cannot be considered to be

an argument against the general position.

The general character of the relation between G^ and -p™,

given by (54) and (55), is shown by the accompanying diagram

(Fig. 42) taken from Einstein's paper. The ordinates represent

the values of the right-hand side of (54) and the abscissae those.

of -^^. NR is taken = 5"94. The calculated values of (7- are

shown by the broken curve. The circles represent the older

observations of the specific heat of carbon, an appropriate value
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of V being assumed. The newer observations agree better with

(55) than with (54), but the general character of the curves is the

same.

In a recent paper P. Debye* has deduced formulae for the

specific heats at various temperatures which agree even better

than (55) with the experimental results.

Debye's method, which is a very interesting one, identifies the

heat energy of the substance with the energy of the vibrations in

its elastic spectrum. The number of these is calculated according

to the same general method (see p. 345) as that used by Jeans in

dealing with the corresponding aetherial problem, except that the

total number of vibrations, instead of being infinite, has a finite

limit SN equal to the number of degrees of freedom of the

N molecules present in the system. To each vibration is then

attributed the amount of energy required by the quantum theory.

In this way Debye finds

G„ = 3NR 12 r* pd^ 3a;

Jo e^-l
.(56a),

where x = hvm/RT and Vm is the highest frequency in the elastic

spectrum. This formula only contains the same number of para-

meters as those of Einstein and of Nernst and Lindemann. It

represents an important advance as (54) is known to be inaccurate

and (55) has never received a satisfactory explanation. At the

same time it is unlikely to be a complete theory, since it makes

all the heat energy reside in a spectrum for which v is less than

about 10" whereas at temperatures for which the specific heats

are normal there is vigorous radiation in the neighbourhood of

p= 10**, showing that there is a considerable amount of energy

beyond the limit of the calculated elastic spectrum.

A different type of theory which leads to a very accurate

formula for specific heats has been given by A. H. Comptonf, who
assumes that the effective degrees of freedom disappear when the

energy falls below a critical value.

Other directions in which Planck's theories have received

interesting support will be considered under the heading of photo-

electric action in Chapter xviii and under Bohr's theory of the

behaviour of electrons in atoms at the end of Chapter xxi.

* Ann. der Phys. vol. xxxrx. p. 789 (1912).

t Phys. Rev. vol vi. p. 377 (1915).



CHAPTER XYI

THE THEORY OF MAGNETISM

When we regard magnetic phenomena from the point of view

of the disturbance produced by the material media in which the

effects take place we are struck by the great variety of phenomena

manifested as compared with those in the electrostatic case.

When a plane slab of dielectric is placed in a uniform electric field

in free space, so that the lines of force are perpendicular to the

face of the slab, the electric intensity is invariably smaller inside

the dielectric than in the surrounding space. In dealing with

magnetic phenomena an effect of this nature is by no means the

invariable rule.

In comparing the behaviour of magnetic media they are found

to belong to one of three distinct classes.

1. Diamagnetic media. Substances of this class are character-

ized by a permeability which is less than the value unity attributed

to free space. They therefore tend to move into the weakest

parts of the magnetic field, as this arrangement makes the

potential energy of the system a minimum.

2. Paramagnetic media. The permeability is constant and

greater than unity. These substances tend to move into the

strongest parts of the field. Their behaviour is thus analogous to

that of homogeneous dielectrics in the electrostatic case.

3. Ferromagnetic media. The permeability is greater than

unity but is not constant. The polarization (magnetization) tends

to reach a saturation value as the magnetic intensity is increased.

The high value which the polarization may reach is a characteristic

feature of this class of bodies.

There is another very important and fundamental difference

in the magnetic and electric behaviour of matter. It is never

possible to separate the positive and negative magnetic charges
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in different portions of matter in the way in which the electric

charges can be separated. This would be extremely unlikely to

be the case unless the fundamental magnetic element contained

both positive and negative magnetism and were therefore similar

to an electric doublet rather than to the positive and negative

charges of which such a doublet is constituted.

This basic difference receives a ready explanation on the

electron theory. According to that theory magnetic forces can

arise only from the motion of electric charges and, in the last

analysis, from the motion of electrons. Now there is no possible

motion of electrons which can give rise to an isolated magnetic

pole; but there is a very simple type of motion which gives

rise to a system which is the magnetic analogue of the electric

doublet, i.e. a system which has positive magnetism on one side

of it and negative on the other. Many years ago Ampere built

up a theory of magnetic media on the assumption that the atoms

were the seat of circular electric currents. As is well known, such

a current behaves like a small magnet, and the hypothesis is there-

fore all that is required to account for magnetic polarization and

hence, from the analogy with dielectrics, for magnetizable media.

Now we shall be able to show that an electron revolving in a

closed orbit is equivalent to a small magnet in the same way that

Ampere's atomic currents were. This theory, whose develop-

ment is due largely to Weber and Langevin, will be shown to give

a simple explanation of diamagnetism as well as paramagnetism.

With certain further assumptions which do not seem improbable,

it can be made to give a good account of the more complex

phenomena of ferromagnetism as well.

The Magnetic Force due to a Moving Electron.

We have seen (Chap, xi, p. 221) that the components of the

magnetic intensity due to an electrically charged particle moving

with the uniform velocity w parallel to the z axis are

where ^ = w/c. When /8 is small, which we shall suppose to be

the case in the motions we are dealing with, we can put

^1 = <^/^> Xi = x and y^ = y.
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Thus

.(1).

We may therefore write the resultant magnetic intensity as

±f = —
;, sm d .(2).

The magnetic force is evidently distributed in circles about the

axis of motion.

The value of the magnetic force above is that for a charge e

in uniform rectilinear motion. It will, however, give the instan-

taneous value of H in cases of curvilinear motion provided the

acceleration is not too great (see Chap. Xli). We shall suppose

that this condition is satisfied by the intra-atomic motions

which give rise to the magnetic quality of bodies. Let us seek

an expression for the component in any direction of the magnetic

intensity at any point Q due to an electron moving in a closed

orbit.

Let it be required to find the component Hz of the magnetic

intensity H at Q (Fig. 43). Resolve

the velocity at every point of the orbit

into two components, one parallel to

Oz and the other perpendicular to Oz.

The components parallel to Oz con-

tribute nothing to the value of Hz. The
other components can, for the whole

orbit, be represented by the projection

of the original orbit on a plane perpen-

dicular to Oz. Let PAIN be this pro-

jection. Let the velocity at P in the

projected orbit be along PR, and take

the origin so that it lies in the plane

of the original orbit. PMN and PR then lie in the plane xOy.

Join PQ. The instantaneous resultant magnetic intensity H at Q
due to a moving charge at P is perpendicular to the plane PQR.
Let it be equal to QS and draw SZ perpendicular to Oz. Draw
QR perpendicular to Pit and join OR. Then all the lines OZ, ZS,

SQ, QR and OR are perpendicular to PR. Moreover the angles

Fig. 43.
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SZQ, SQR and QOR are right angles, so that the triangles ZQS,

QRO are similar and the angles ZQS, QRO are equal. Thus

H,/H = ZQ/QS = OR/RQ = p/r sin 6,

where p is the length of the perpendicular drawn from on the

projection of the line of motion, and r, 6 are the coordinates of Q
with respect to the point P as

origin and the projection of the

line of motion as axis. But we
have seen that the resultant

magnetic intensity H in the

ev sin 6
same notation is

H.= epv

-, whence

.(3).

We shall now apply this re-

sult to find the average value of

the components of the magnetic

force at any point P arising from

the motion of an electron in

an approximately circular orbit.

Let QRS (Fig. 44) be the orbit,

its centre and ON the polar

axis. Let the angle PON = 6.

We shall call the average com-

ponent of magnetic intensity along OP the radial component and

the average force at right angles to OP in the plane of the paper

the tangential component.

The Radial Component.

Consider the motion at any point Q of the orbit. It may be

resolved into two parts, one parallel to OP and the other in the

direction of the tangent at Q' to the projection Q'RS' of QRS on

a plane perpendicular to OP. The component of velocity parallel

to OP contributes nothing to the radial component of the force

at P. The direction of the force arising from the component of

velocity in a direction perpendicular to OP will always be per-

pendicular to the radii QP, SP and so on. It will thus lie along
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the lines PPi, PP^ and so on. The radial component arising in

this way will thus have the same sign as we proceed round the

orbit. Provided the dimensions of the orbit are small enough it

will evidently not matter if we take the moving point 8 to be at

8', Q at Q' and so on. To the same order of accuracy we can

treat the lines PQ = PS = r as constant. Hence from (3) the

g
average value of the force along OP is Hr= ~^pv. Now the

average value pv is clearly equal to twice the area of the curve

Q'MS' divided by the periodic time t of the orbit, p being the

perpendicular from on the tangent to this curve. Hence if S

is the area of the original orbit QRS, pv = 28 cos 6/t and

Er=—,-cosd (4).

The Tangential Component.

This is not so readily found, but a similar method of treat-

ment may be applied with success. Take OP as the axis of z.

The tangential component of force sought is the force in a

direction P'f (Fig. 45) perpendicular to

OP in the plane POF. Call this the

axis of y. The axis of cs is thus per-

pendicular to the plane PON. Resolve

the velocity at any point 8 of the orbit

into its components x, y, z. y being

parallel to PT will contribute nothing

to the tangential component at P. Let

us consider the effects of the i and x

components separately. Let the dotted

curve represent the projection of the

original orbit on a plane containing OP and perpendicular to the

plane NOP. The dotted curve will thus be a representation of

the X and i velocities and its area = 8 sin 0. Consider the i com-

ponent of velocity first. The y component of magnetic force at P
arising from this is always in the same direction whether the

particle is above or below the plane of the paper, on account of the

change of sign of the velocity.

Fig. 45.
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The magnetic force at P arising from this component of the

motion at Q is equal to

ez.QRez 8mQPR =

This force is perpendicular to the plane POQ. What we want is

the component along PT which is perpendicular to the plane

POQ;. This is equal to

ezQR QR ezQ'R

c.QP'"^ QR^c.QP^'

since PR is the line of intersection of the planes QOP and Q'OP.

On account of the effect being in the same sense all the way

round the orbit we may to the first order in OQ/OP put

PQ = OP = r= const.

The component arising in this way is thus the average value of

or
dz e S . ^
-J- at = —, — sm 0.
at cr^ T

Now consider the y component of the force at P which arises

from the x component of velocity in

the orbit. Let VQR (Fig. 46) be the

orbit, V'Q'R' its projection in the

plane of xz. Let SOU be the dia-

meter perpendicular to OP and ON;
this diameter will be perpendicular

both to the element of the actual

orbit at S and to its projection. Con-

sider two points Q', R' sjrmmetrically

situated with respect to the axis U.

The corresponding points in the orbit

are Q, R. It will be seen that the

tangential force at P arising from the

X motion at Q and R is oppositely directed at the two points. If

the coordinates of R are x, y, z, those of Q are x, —y, — z. More-

over

PR' = OP + z, PQ'=OP-z.

If OP is sufficiently great compared with the dimensions of the

Fig. 46.
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orbit the average force in the y direction at P arising from the x

motions at Q and R is

2c \ipp - zy ~ {OF + zy\
"
2M^' [v

~

op) ~V"^of) J

ex 2z

c.OF' OP'

The average value of this taken all round the orbit is

^ e 1 [ dx ,^ - e area^SF'O'i^' r. e S . ^
2 —7.^^ -

\ z^i-at = 2 — — = 2
..
- sm 0.

c . OP^ tJ dt c.r^ T c.r' T

The sign of this force is determined by the direction of the

motion at the side of the orbit nearest to P and is evidently

opposite to that arising from the component z. The balance of

tangential force is thus

Ht = -^,-^iri9 (5).

The- average value of the component of the magnetic force

perpendicular to both OP and PT vanishes. Because if AB is

the line of intersection of the plane NOP with the plane of the

orbit the latter can be divided into pairs of elements dSj, dSz

which are symmetrical about AB and are equidistant from P.

These elements produce equal and opposite effects at P so far as

the component under consideration is concerned. The orbit can

thus be divided into mutually interfering pairs of points so that

the average value of this component is zero.

It is evident from formulae (4) and (5) that the average value

of the magnetic field of force due to the revolving electron is

exactly equivalent to that which would be given by a small magnet

whose moment is

eSM=~ (6)
CT

and whose axis coincides with the axis of revolution of the

electron.

An atom may in general contain a number of electrons rotating

in closed orbits as well as others which execute small oscillations

about a position of static equilibrium. The orbits may be

numerous and distributed in various azimuths inside the atom,

so as to furnish no resultant magnetic moment ; or they may
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possess an axis of symmetry with a resultant magnetic moment.
In every case we shall see that a phenomenon analogous to

diamagnetism occurs ; but in the case of the atoms for which the

revolving electrons have a resultant magnetic moment there are

reasons for believing that this is marked by the paramagnetic or

ferromagnetic effects which supervene.

In developing a theory of the action of an external magnetic

field on the revolving electrons it is necessary to make some

hypothesis about the nature of the forces which hold them in

their orbits and which determine the orientation of the orbits

with respect to the atoms. We shall suppose that the forces are

determined by the structure of the atom and that the planes of

the orbits are determined by the symmetry of the atom. When an

external field is applied, forces are brought to bear on the re-

volving electrons which derange the previous state of motion. This

displacement will give rise to a force acting on the neighbouring

parts of the atom which will, in general, cause the axis of the

atom to turn and so change the plane of the orbit. The state of

things we are imagining is in fact much the same as if the electron

were revolving in a channel cut in a rigid non-conductor (the

atom). If in the absence of an external magnetic field the orbits

are arranged so that the atom has no magnetic axis, these forces

will not give rise to any tendency to change the orientation of

the atom as a whole. In such cases we shall see that the effects

produced give rise to phenomena like those exhibited by diamag-

netic substances. The same results would follow if the atoms were

held rigid by interatomic constraints ; but as a number of liquids

are diamagnetic such a supposition would not help in explaining

diamagnetism. The hypothesis that the revolving electrons can

be treated like currents flowing round their orbits, which are more

or less rigidly attached to the atom, simplifies the mathematical

calculations very considerably.

Diamagn etism.

Let us suppose that, for reasons of symmetry or otherwise, the

external field has no tendency to alter the orientation of the orbits

in space. We can calculate the magnetic permeability of a substance

if we can calculate the change in the equivalent moment of the
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revolving electrons produced by the application of a given external

field H. Let S' be the area of the orbit projected on a plane

perpendicular to H. Then the establishment of an external field

H will cause a flux HS' of magnetic force through the orbit. If

the orbit is circular this will give rise to an electric intensity E
tangential to the orbit, where

= -^^8{HScosd) (7),

where is the angle between H and the normal to S, t is the

periodic time, a> the angular velocity and 8 denotes the change

per revolution.

But the moment of the force Ee will cause an increase in the

moment of momentum of the electron. Thus

,, eS e (or^
smce M = — =—^

.

CT c 2

So that dM^^ Erdt = ^r^ Eds,
zmc zmcco

and SM = ^r^- Eds=:--r^--8{HScose),

neglecting the change in co during one revolution. Hence

m^ T e 8{HScosd)

M ^TT mc S

If we neglect the change in S compared with 8, and if we take

T = 10~^^ sec. to correspond with spectral lines, since

e

m
= 177 X 10' X c V47r,

ZMjM is of the order 10-» x 8H. Since the greatest attainable

magnetic fields correspond to fT < 10" it follows that the effect we

are considering will not change the magnetic moment of the orbits

by more than about 10""* of its value.

R. E. T. 24
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We shall now consider the conditions under which the field

H cos 6 will change the area S of the orbit, limiting ourselves to

the case of a circular orbit under a central force. If this is f{r)

at distance r, then the condition for steady motion in the absence

of the magnetic field is

After the magnetic field is applied this becomes

IT

may^r + Tnw^Zr + ^mtorho) H— cos d ear =/(r) + /' (r) Sr,
c

neglecting squares and higher powers of 8r and Ba>. Thus

{/' (r) — mo)^] 8r = 2,mru) 8(o + -(orHcoa 6,
c

Eut

S(^cor^)=— = ---^-B(HScosd)=-^Hcoae,^
e 47rmc ^ 4smc

since we are neglecting terms involving the product of H and Br

as small. Thus

— 4>mco^8r = 2mojrSa) + - wr Hcoa$,
c

Whence {/' (r) + Swiw^j Br = 0.

It follows that either

(1) Sr = and Bco = -?^^,
2mc

or (2) /' (r) = - Srno)' or /' (r)//(r) = - 3/r,

and f{r) = constant x r~\

Thus, except in the special case in which the force varies inversely

as the cube of the distance, Br = 0, and there will be no change in

the area of the orbit. The only effect of the magnetic field will be

to change the angular velocity.

It is clear that the component of the magnetic intensity 1? sin 0,

in the plane of the orbit, will not change the area of the latter, as

it only gives rise to displacements perpendicular to this plane.
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Calculation of the Magnetic Permeability.

The effect that we have been considering involves a diminution

in the component of the magnetic moment of the elementary orbits

resolved along the direction of the external magnetic field. The

phenomenon is, in fact, precisely analogous to that of the induction

of currents in linear conductors occupying the same positions as the

orbits. The net result is a creation of polarization of the elements

of the medium in a direction opposite to that of H. Since the

creation of positive polarization in the electrostatic case leads to

a dielectric constant greater than unity it is clear that the present

effect will lead to a magnetic permeability less than unity. In other

words the effect we are now considering leads to diamagnetism and

not to paramagnetism. The value of the diamagnetic constant can

readily be calculated.

We have seen that the increment in M per orbit due to the

establishment ofH is

g2

where H' = Hcos 6 is the component ofH along the normal to the

orbit. Suppose that the atoms of the body considered possess no

resultant magnetic moment, then the only effect of the field H will

be to produce this change ZM. Suppose that there are v atoms

per unit volume, each of which contains n electrons executing

orbits whose areas are S^, S^, ... Sn- Let the normal ONp to the

plane of any orbit make an angle dp with the direction of H. On
the average all directions are equally probable for the line ONp,

so that, out of any number of orbits considered, the proportion

which lie between 6 and + dd will be —'—.
. For each

47r

orbit of type p

and to get the resolved part of this parallel to // we have to

multiply again by cos 6p. Thus if there are Vp orbits of this type

in unit volume their contribution to the magnetic moment of the

medium will be

Mp = - -^^, VpSp (' sin cos' 0d0

1 e'H

3 47rmc»''^'^**

24—2
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To get the intensity of the polarization I we have to sum this for

all the diflferent orbits in the atom. Thus

«=n 1 ^ *

p^i ^ 3 47rmc" p.i ^ ^

The force in a cavity perpendicular to the lines of force is

B = fiH=H +I=H

so that /* = 1 — -j^

^^VpSp

,3
»

\''l'nmc

^'^VpSp

It is necessary to show that the known values of 1 — /i do not

lead to absurd values of Sp the areas of the orbits. Of the known

substances bismuth has the largest value of 1 — /*, namely 3'1 x 10~'.

Let us suppose each atom to contain one orbit of each kind, then

Vp becomes v the number of atoms in unit volume. We can now

estimate S/Sfp the sum of the areas of all the orbits in the atom.

As a sufficient approximation we shall take

ejm = 1-8 X 10^ X c ViTr, e = IQ-^" x c Vi^,

and *""
io7

>< l^"" = ^ ^ ^^^^

9'78 being the density of bismuth, 207 its atomic weight, and
n

10~** the mass of the hydrogen atom. Thus XSp= 10~" for
1

bismuth. If the area of the orbits were comparable with the

cross section of the atom we should have /S=7rx 10~^', so that,

treating all the orbits as of equal area, n = 30 approximately.

In the case of other substances, whose diamagnetism is less

pronounced, the values of n would be smaller than this. The

atomic weight of bismuth is 207, and there are good reasons for

believing that the number of electrons in each atom of the different

elements is comparable with the atomic weight. It is thus clear

that the diamagnetic coefficients are of the order of magnitude

which is otherwise probable.
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We have seen that the effect of applying a magnetic field is to

change the periods of the orbits projected into a plane perpen-

dicular to the magnetic field, the component of the motion

parallel to the latter being unaltered. Since the revolving

electrons are accelerated they will in general be radiating*, and the

fi-equencies of the radiation will be determined by the periods of

revolution. There will thus be a change in the frequency of the

radiation produced by the magnetic field. The displacement of

the spectral lines due to this cause was discovered by Zeeman in

1896. The foregoing method is not a satisfactory one for deter-

mining quantitatively the changes in the fi:equency and character

of the radiation which arise in this way, as it does not sufficiently

consider the motions perpendicular to the orbit. This deficiency

will be remedied when the theory of the Zeeman effect is con-

sidered in Chapter xx. Without going more deeply into the

matter at this stage, it is evident from what has been said, that

the magnetic displacement of the spectral lines and the pheno-

menon of diamagnetism are very intimately related, on the theory

we are discussmg.

It appears that the occurrence of electrons revolving in orbits

is quite unnecessary to account for diamagnetism. The same kind

of effects occur even if the electrons are at rest before the magnetic

field is applied. This is shown very clearly by the following in-

vestigation which is due to Lorentzf

We shall confine ourselves to arrangements of electrons which

are isotropic with respect to three mutually perpendicular directions.

Let the coordinates of any particular electron with respect to any

set of rectangular axes, whose origin is the centre of mass of the

system, be x, y, z. Then Xx = ^y = '2,z = 0, taken over the whole

body. Let its moment of inertia about any axis through be

I=2mk. Then

A; = Sa^ = ^3/'' = 2^" and 'S,xy = ^xz = Xyz = 0.

Let E be the resultant electromotive intensity of external origin

at any point, then the force acting on an electron has the com-

ponents eEx, eEy, eEg, and the couple about has the components

e^{yE,-zEy), e^{zE^-xE^\ e^{xEy-yEx\

* On the doubtful assumption that the classical theory of p. 258 applies to such

systems. Compare Bohr's Theory at the end of Chap. xxi.

+ Theory of Electrons, p. 124.
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If the whole system is very small E will not vary much from

point to point of it, so that we can put as a sufficient approxi-

mation :

n n dF^, dFv oFu

^^ = ^^ + ^-9^+2^^+^^'

where F is the value of E at the origin. Hence since Sa; and

%xy, etc. vanish, the components of the couple become

or --kH^, --kUy, --kH,.

There is thus an angular acceleration about the axis oiH= — ^— H,

and the crea;tion of a field H therefore results in the creation of

angular velocity — ^— H.

If we take the system considered by Lorentz to be one of the

atoms of the substance we see that the effect of placing it in a

magnetic field of strength H will be to set all the electrons in the

atom in rotation about the axis with the uniform angular velocity

B— =— H. This rotation, whose axis is parallel to H, will give rise

to an intensity of magnetization in the same sense as that given

by Langevin's theory. Moreover the magnitudes are the same in

both cases provided we replace Sco^d by irr^, where r is the

distance of an electron from an axis, parallel to H, which passes

through the centre of figure of the atom. The resulting value of

the permeability is easily shown to be

where y is the number of atoms in unit volume, and the summation

is extended over all the electrons in the atom. The order of

magnitude of 1 — yu, is evidently the same as before, and is equally
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in agreement with estimates of the number of electrons in the

atom which are derived from other sources*.

The theory outlined brings diamagnetism into agreement

with the fact that the Zeeman separation results in sharp lines.

The alteration in the frequency of the emitted radiation depends

only on the magnitude of H and is independent of its direction.

In general the Zeeman effect is much more complicated than that

outlined by this theory. Some of the more complex cases are

considered in Chapter xx.

Two important deductions about diamagnetism may be drawn

if it is admitted to be identical in nature with the phenomenon

recognized optically as the Zeeman effect. In the first place the

Zeeman effect is exhibited by practically all the spectral lines of

every substance, so that we should expect every substance to have

diamagnetic quality. This does not really involve any contra-

diction with experience, as the diamagnetic property is necessarily

very feeble, and is therefore easily masked by small paramagnetic

effects. There seems to be no valid reason for supposing that the

same kind of actions which produce the diamagnetism of bismuth

do not occur and produce similar effects even in substances like

iron.

The other point is that yu- — 1 is proportional to a universal

constant — ^—^ multiplied by v'%r\ Now, provided the unit of

symmetry we have considered is the atom, we should expect v

and Sr^ both to be independent of temperature within the order

of accuracy to which /a — 1 can be measured. Of the substances

for which the variation of /x — 1 with the temperature was measured

by Curie t, water, quartz, KNOs and molten bismuth showed no

detectable variation. In the case of solid bismuth on the other

hand the value of 1 — /x, which was large at ordinary temperatures,

fell off in a linear manner as the temperature increased to the

melting point, when there was a sudden drop to the small value

* It is not necessary that all the electrons in the unit considered should be able

to rotate about the axis of symmetry. The momentum calculated above will be

communicated to all of them, but some may be prevented from rotating by

constitutive restoring forces. The value of the diamagnetic constant may therefore

only indicate a lower limit for the number of electrons in the atom.

t Oeuvres, p. 252.
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characteristic of the fused metal. It seems probable that these

changes are comaected with the crystalline structure of the

substance.

Paramagnetism.

To explain the magnetic qualities of bodies, other than dia-

magnetic, we shall make the hypothesis that, in some cases at any

rate, when the resultant magnetic moment of the atom is not zero,

the applied magnetic field is able to turn the planes of the orbits

of the constituent electrons of the atoms towards the plane perpen-

dicular to its direction. We do not know the precise nature of the

mechanism by which the turning is brought about ; but in defence

of the hypothesis we are able to urge that such a rotation tends to

make the potential energy of the system a minimum, and will

therefore tend to occur if there is any means by which it can be

accomplished. Superposed on this there will in every case be the

diamagnetic effects already discussed; in many cases, however,

these are insignificant compared with the effects which arise from

the turning of the orbits.

The couple which tends to turn the axis of an orbit depends

on the mutual energy of the external magnetic field He and that

of the revolving electron. Let the magnetic force Hi, due to the

revolving electron at any point, consist of two parts, an average

value Hi and an oscillating part H^. Then Hi = Hi and ^2 = 0,

where the bars denote mean values of the vectors taken over

a complete revolution. The energy per unit volume at any

point is

H5e + H, + H,r=l [H,^ +m + H^

+ 2 {HeH,) + 2 {HeH,) + 2 {H,H,%

where {Hg + Hi + H^ denotes the vector sum of these vectors.

The mean value of this taken over a revolution is

^[H}-v'm+~H} + ^ (HeH,)l

since the average of the other terms is zero. Thus the mean
value of the mutual energy, per unit volume of the medium, is

(HgHi), and does not depend on Hz. It follows that the forces

which on the average produce a given rotation of the planes of the

orbits will be the same as those which would produce the same
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effect on a similarly situated equivalent current. The revolving

electrons can therefore be replaced by the equivalent currents

so far as the rotational effect of an external magnetic field is

concerned.

If there were no other actions than those arising irom the

magnetic fields, the orbits would all set themselves with their

normals parallel to the external magnetic force, as this is the

arrangement in which the potential energy is a minimum. The
tendency to complete alignment will however be resisted by the

thermal motions of the atoms and also by the interatomic forces

of other than magnetic type. The latter embrace the forces which

give rise to cohesion and to chemical effects and which in all

probability are mainly electrostatic. One effect of the application

of a magnetic field will be to convert the mutual potential energy

of the orbit and the field into kinetic energy of the matter which

moves with the orbit. In the simplest case, as perhaps in a gas

where'the elastic and chemical forces may be neglected, the mutual

'energy will be entirely transformed into the kinetic form. This,

however, will change the distribution of kinetic energy among the

different atoms or sub-atoms so that it is no longer that which

was characteristic of the substance at the original temperature.

One of the effects of magnetization then may be that of changing

the temperature of the substance.

If the magnetizable substance is in a field of strength H and

its intensity of magnetization is changed from / to / + dl, the

work done by the magnetic force in increasing the magnetization

is Hdl. In general the internal energy will at the same time

suffer the increment d If. If the magnetization turns the axes of

the atoms, as we have supposed, it will be necessary, in order to

keep the temperature constant, to communicate to the substance

an amount of heat

dQ = dU+HdL

In general U and I may be functions of H as well as of the

absolute temperature T. For processes which are reversible,

that is to say, where there is no hysteresis, the increment of

entropy
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must be a perfect differential. Thus

dH \t \dT '^^dT)]~dT [T \dH "^ dHJ]

dl Hdl\dU_
°'

dT'^ TdH'^ TdH~
In general U will probably involve H on account of the strains

produced in the material by the magnetic field. With gases

T ^Tf
^^^^ ^^ ^^'^ *"^ "^ most cases it will probably be very small;

so that we obtain as an approximation covering a majority of

cases, the equation

it^Tm'^ <">•

This is satisfied by / =f(H/T), where /is any function.

In the case of paramagnetic substances / is directly pro-

portional to II, so that, if the conditions above are satisfied,

I=^H (12),

where -4 is a constant independent of T^ Curie found that for a

number of typical paramagnetic substances the susceptibility I/H
was inversely proportional to the absolute temperature. For such

substances it would seem to follow that U does not depend ap-

preciably on H, that the only important change produced by H
is in the potential energy of the elementary magnets and that the

energy of the accompanying strains, if any, is negligible.

The result contained in equation (12) was first discovered by

experiment, and is often referred to as Curie's Law. The quantity

A is also sometimes called Curie's constant. A considerable

number of exceptions to the law have been found *, particularly at

low temperatures. Some of these have been attributed to changes

in the crystalline or other configuration of the material

* Cf. Eammerlingh Onnes and Perrier, Konink. Akad. Wetemch. Amsterdam

Proc. vol. XIV. p. 115 (1911).
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Paramagnetic Gas.

An instructive case, which has been considered by Langevin,

is that of a paramagnetic gas such as oxygen. In this case the

kinetic theory of gases enables us to calculate the form of the

/TT\
function / in the relation /=/ (

-^ j
which is required by the laws

of thermodynamics. We know from Boltzmann's Theorem (see

Chap. XVII, p. 403) that if the molecules of a gas in a closed vessel

occupy positions in which they have varying amounts of potential

energy, then there will be a greater number per unit volume in

the positions in which the potential energy is less. In fact the

ratio of the concentrations of the gas at two points where the

potential energy differs by w is e " W-^^^ where R is the gas con-

stant for a single molecule.

In the present instance w will be the potential energy of the

equivalent magnet in the field H, i.e. —MR cos 0, where 6 is the

angle between the magnetic axis of the molecule whose moment
is M and the field H. The number of molecules dn whose magnetic

axes lie within the two cones whose semi-angles are 6 and 6 + dd

respectively is

dn = 2'rTAe'^'^'\medd,

where J. is a constant as yet undetermined. The total number N
of molecules considered is evidently

- MH -

N^'lirA] e^^ sm0d0
Jo

The resultant intensity of magnetization I is in the direction of

ZT, by symmetry, and is given by

l^\McQsedn = 1'TrAM\ xe^'^'' dx

. A nr fcosh a sinh a)
= ^ttAM

\ —a"
\ y
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where a = MHjRT. But A = Na/4nr sinh a, so that

I = MNi^-r- , (13).

Since M is determined by the structure of the molecules, we
see that for a given density of gas / depends only on a, i.e. / is

a function only of H/T in accordance with the conclusion already

reached by thermodynamic reasoning. We also note that / is

proportional to N, i.e. to the pressure of the gas.

It has not been possible as yet to test this formula by experi-

ments on gases on account of the smallness of the intensities of

magnetization which they acquire*. It has, however, been exten-

sively used by P. Weiss in building up a theory of the behaviour

of ferromagnetic substances, as we shall see.

Ferromagnetic Substances.

The main difference between the ferromagnetic and the

paramagnetic substances lies in the very high intensities of

magnetization attainable by the former, in the fact that they

are capable of permanent magnetization, and that the magnetiza-

tion is not in general a definite function of the external magnetic

force H. The magnetization does not change reversibly with H
and substances of this class therefore exhibit the phenomenon of

hysteresis. It results that the heat Q =fHdI, which is developed

when H is made to pass through a cycle of changes, no longer

vanishes but has a finite value.

Weissf has attempted to explain the facts of ferromagnetism

on the hjrpothesis that the only forces which it is necessary to con-

sider as acting on the elementary magnets or revolving electrons

are (1) the impressed magnetic field Hi of external origin, and

(2) the molecular field H^ arising fi-om the elementary magnets

of the neighbouring atoms. It is also necessary to take into

account the kinetic reactions arising from the thermal agitation of

the molecules, just as in Langevin's theory of a paramagnetic gas.

The assumption of a molecular field uniform throughout the

substance will naturally be no more accurate than the similar

assumptions as to uniformity which are almost invariably made in

* A determination of the susceptibility of Oxygen at 20° C. has been made by

A. Piccard (Archives de Geneve, vol. xxxv. p. 480 (1913)). The difficulties of

making observations over an extended range of temperatures would be considerable.

t Journal de Physique, vol. vi. p. 661 (1907).



THE THEORY OF MAGNETISM 381

dealing with molecular physics. This field will vary greatly from

point to point but we may reasonably expect to get valuable

indications of the way in v^hich a real body would behave by

assuming for H2 a uniform value equal to its average value

throughout the substance. The theory entirely omits to consider

interatomic forces of non-magnetic type. This is clearly legitimate

until it is shown that such forces do play an important part in the

phenomena under consideration.

Permanent Magnetization.

Weiss's theory accounts for the existence of permanent magneti-

zation in the following fashion. Bearing in mind that the molecular

magnets are in equilibrium under the influence of thermal

agitation and the intensities H^ and H^, the value of / for a given

value ofU will be determined by the equations

I cosh a 1 MH --.-.-... _
Iq smha a RT

where /q = MN is the maximum possible intensity of magnetization

which is attained when the axes of the elementary magnets all

point in the same direction. Moreover H^ is proportional to the

intensity of magnetization and may be written Hi= \I, where

\ is some constant. Permanent magnetization corresponds to the

absence of external field, so that H^ = 0, and we have the two

independent equations

/ cosh a 1 , / RT ,_ .

.

-- and T=VTrr^ (14).
Jo sinh a a I^ \MI^

The values of / which satisfy these equations may be found

most readily by a graphical method (see Fig. 47). Let ORF be

^ '=°^'^" i and OQP that of ^ = -1^
a If, \M1q

cording to the simplest hypothesis which can be made R, \, M
and lo are constants independent of T and H, so that OQP is a

straight line which makes an angle a with the axis of x, where

7? 7'

tan a = , .
j

is proportional to the absolute temperature T. The

possible values of I/Io are given by the intersections of OQP and

ORP. There are thus always two possible values of /, one of which

is zero. Of these, however, the point P corresponds to a stable and
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the point to an unstable condition of the substance. To show

this, let us suppose that by means of an external field the in-

tensity of magnetization is made to undergo a slight decrease,

so that it is now determined by the line ST parallel to the axis of

a. This state of magnetization gives rise to an internal field which

is proportional to OU, whereas to overcome the thermal tendency

to disorganization it is only necessary to have a field proportional

to V. The magnetization of the substance will therefore increase

automatically until the state corresponding to the point P is

reached. The reverse happens if the magnetization is given a

virtual increase beyond that which corresponds to the point P.

Thus P represents a stable configuration of the material. In the

same way it can be shown that represents an unstable condition.

The permanent magnetization exhibited by the paramagnetic

metals is not as definite as this theory would lead one to expect.

The indefiniteness may, however, be due to the fact that these

materials are not microscopically homogeneous, as well as to the

occurrence of microscopic local reversals of magnetization. There

are also, in all probability, complications arising fi'om the crystal-

line character of these materials.

As the temperature rises the slope of the line OP increases

until at a certain temperature To it coincides with the tangent to

the curve at the origin. At higher temperatures than this the

only possible solution would be /= 0, so that the substance would

be incapable of permanent magnetization in the absence of an

external magnetic field. The temperature To may therefore be

interpreted as that at which the ferromagnetic quality disappears.
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To determine the slope of the tangent to the curve at the

origin we have

d (I\_ d /cosha_l\

da\lj daVsinho a)

^^.('i±^\\\
—ae

= \ when a = 0.

^''''^
3 ~ daU ^0

" Uoa ^«=o
~ ^Mh '

and ^« =W ^^^^-

On this theory if we write f(a) for -;—j we have
•' ^ \ / smha a

III,=f{MH,IRT),

where /is the same for all substances. Since H^ = \I we have

7r/(w)=/(4:^)-
so that I/Io = <f>{T/To) (16),

where the function is the same for all substances. Thus if we

express /, the intensity of permanent magnetization, in terms of

the maximum possible intensity of magnetization Iq, and T the

absolute temperature in terms of the absolute critical temperature

Tq, we obtain a characteristic equation for the intensity of

permanent magnetization which is identical for all ferromagnetic

substances.

It is probable, as we shall see later, that the magnetic

properties of the ferromagnetic metals are too much complicated

by various secondary causes to afford a satisfactory test of the

theoretical conclusions above. The properties of various crystalline

ferromagnetic minerals, though complex enough of themselves,

are in some respects simpler than those of the ferromagnetic

metals and are better suited for carrying out a test of this

character. The mineral magnetite has been found to be especially

suitable for this purpose ; but before discussing the experimental
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data which have been obtained with this substance we shall

consider briefly the remarkable magnetic properties of another

mineral, pyrrhotite, which seem likely to shed much light on the

nature of ferromagnetic substances in general.

The Properties of Pyrrhotite.

The magnetic properties of this ferromagnetic mineral, which

is a sulphide of iron having a composition very near to FeS, but

with a slight excess of sulphur, have been investigated in detail

by Weiss. The crystal has three mutually perpendicular planes

of symmetry which may be indicated by the axes Ox, Oy, Oz.

The crystals are much more easily magnetized parallel to one

of these axes Ox than in any other direction, and furthermore the

susceptibility parallel to Oy is much greater than that parallel to Oz.

The plane xOy is called by Weiss the magnetic plane.

The magnetic phenomena exhibited by a uniform crystal when
placed in a magnetic field parallel to Ox are characterized by

remarkable simplicity. If the crystal shows no magnetic polarity

to start with, the intensity of magnetization remains zero until H
reaches a critical value -\-He, when the intensity of magnetization

suddenly assumes its saturation value + /,, which remains constant

for all positive values of H and for all negative values greater

than — Hg. As soon as — He is reached the intensity of magnetiza-

tion suddenly becomes — /«, and retains that value until the field

becomes = or > + He. The /,H curve is thus a rectangle and the

phenomenon is irreversible.

If the magnetizing field is inclined to Ox the phenomena are

very different *. For different values ofH the curves for I obtained

by rotating the direction of H in the magnetic plane are shown in

the accompanying figure. If H exceeds about 12,000 gauss the

value of / is constant for all values of the field, but unless H is

very great I is not in the same direction as H. This effect is well

exhibited' by the curve for H = 4000. The short lines represent

the direction of the resultant magnetization for a field of intensity

H = 4000 gauss inclined to the axis Ox at an angle given in

degrees by the numbers alongside. For a variation in H of 5°

* P. Weiss, Journal de Physique, vol. iv. p. 486 (1905).
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from the axis Oy the direction of the intensity of magnetization

varies more than 45°. The component of the intensity of magneti-

zation parallel to the field is a minimum when the angle d between

H and Ox is a maximum, for small fields. For larger fields the

minimum occurs at intermediate values*.

The curves in Fig. 48 can be represented quite closely by

a simple trigonometrical formula. If 6 is the angle between

H3rs=i~-

H = 73IO C ^''^^^
H-4000 B

7—7--
/ /
/

89
/
88

/
87

«« 85^
80 ^^'"'^ N.^

H=I992 A
70 ^A fin^---'^

^A
^Q-""^

'^K
40
—

^

^__\
30-

"^^Z-l
20

10

—

Tig. 4a

the axis Ox and H, and that between Ox and /, then it appears

that

jErsin(^ — 0) — 7i/sin^cos^ = (17),

where n is a constant quantity. The phenomena in the plane xOz

may be represented by a similar formula but with a different value

of w.

A simple physical interpretation can be given to the foregoing

equation. In addition to the field H the elementary magnets will

be acted on by forces which depend upon the magnetization of the

• P. Weiss, loc. cit. p. 487.

R. K T. 35
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medium. These forces will certainly be partly magnetic, arising

from the intermolecular magnetic field. They will not, at any rate

necessarily, be entirely magnetic. They may arise as reactions, of

elastic or other type, to the displacement of the elements of the

material, from the normal equilibrium position, which is produced

by the magnetic field. Since / measures a displacement of the

elements from either a more normal or a less regular arrangement,

the potential energy of the system which is due to these forces

will be proportional to 7* even though the forces are not actually

magnetic. On account of the aeolotropy of the medium the

coefficient of /' will be dilBferent along the different axes. Thus

in general when H and I make angles 6 and ^ respectively with

the axis of x, the x component of force per unit magnetic moment
of an elementary magnet may be represented byH cos d + XiI cos ^
and the y component by ff sin^ + X2/sin<^, where \i and Xj are

constants depending on the structure of the material. Thus

taking moments about the centre of mass of the elementary

magnet

{H cos 6 + \i/ cos 4) sin 4> = {H sin d + Xj/ sin ^) cos 0,

or fi^sin(^ — <^) — (\i— \2)/sin^cos^ = 0.

This is the same as the former equation if \i — X2 = w. For the

plane xOz we have only to replace Xj — Xa by A^ — X^. It appears

from the experiments that (}^i
— \^I= 7300 gauss and

(\i - X3)/= 150,000 gauss,

whereas the maximum (saturation) value of / is about 47 gauss.

The great difference between these numbers is somewhat surprising.

If they were really magnetic forces one might expect them all to

be of the same order of magnitude.

One of the most striking features of these phenomena is the

very small field which can reverse the magnetization along the

axis Ox compared with the fields which are required to produce

any appreciable magnetization along the perpendicular axes. This

is the more striking as the reversal of the magnetization would

appear to involve the intermediate passage of the elementary

magnets through the perpendicular orientation which is so difficult

to produce, throughout the mass of the material, at any rate, by

the application of an external field. There is not, however, any

essential difficulty here. It seems clear that there are in general
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two stable positions of the elementary magnets, namely the positive

and negative directions along the axis of x. In the presence of

an external field which exceeds + ^^ in magnitude, one of these

becomes unstable. As the equilibrium is a kinetic and statistical

one, as is shown (see p. 388) by the variation of the intensity

of permanent magnetization with the temperature, there will be a

continuous passage between the two states, so that in a very short

time the molecules will have arranged themselves with the axes

of the magnetic atoms all oscillating about the position of stable

equilibrium. This condition will ultimately be reached, no matter

how great the forces which oppose the intervening motion.

Permanent Magnetization and Temperature.

Broadly speaking the properties of other ferromagnetic crystal-

line minerals, such as hematite and magnetite, exhibit the same

general features as pyrrhotite. The other minerals have not been

examined so thoroughly as pjnrhotite, and there are important

differences in detail; but they all possess different magnetic

properties along the different axes of symmetry, and the three

minerals referred to all possess one axis of conspicuously easy

magnetization. The phenomena in the direction of this axis

enable some of the most important consequences of Weiss's hypo-

thesis of molecular magnetic fields to be tested. We have seen

that the hysteresis curves for magnetization in this direction are

very simple compared with those of the ferromagnetic metals. In

the case of the minerals there is one stable value of the intensity

of magnetization I^ which is practically independent of the external

field. The direction of /c may be positive or negative, depending

on the previous treatment of the specimen, but otherwise it is

quite definite. The evidence for regarding the value lx= 0, which

is also permanent within a more limited range of treatment, as

a mixture of equal amounts of -I- /<, and — Ig seems quite satis-

factory: the most important argument being that there is no

continuous change but a sudden jump from 7=0 to /= + /<,.

The minerals thus possess a definite value Ig of stable intrinsic

magnetization which is difierent from zero. This is in accordance

with the requirements of the theory. The reason why the ferro-

magnetic metals may be expected to be less definite in this respect

will be briefly referred to later.

25—2
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We also saw on p. 382 that this theory led to a simple relation

between the intensity of permanent magnetization and the tempe-

rature (equation (16), p. 383). This relation is the same for all

substances, provided the intensity le is expressed in terms of the

greatest possible value of /<, (the value at T= 0) and the tempera-

ture T in terms of the temperature T^ at which the ferromagnetism

disappears : that is to say, the maximum value of /<. and the

absolute temperature T^ are to be taken as the units of intensity

of magnetization and temperature respectively. This theorem has

been tested experimentally by. Weiss* in the case of magnetite.

He finds that the theoretical curve is followed with great accuracy

except in the immediate neighbourhood of T=To and at very

low temperatures. Even in these regions the deviations are not

very large. The experiments extend from — 79° C. to the critical

temperature To= + 587°C. When one considers the wide range

of temperature covered, and the fact that there are no disposable

constants in the formula, this agreement must be regarded as a

remarkable confirmation of the theory.

There is one point which seems to call for further discussion at

this stage. Equation (16) is derived from the equations

I cosh a 1 MH . ^-. ^ _
/o smha a RT ^

"

by putting the external field H^ equal to zero and E^ = X7, the

derived equation (15) being used to eliminate the constants.

Since / is a continuous function of T when Hi = it should also

be a continuous function of Hi and T when Hi is allowed to vary.

At first sight this appears to be contradicted by the experimental

results. For, so far as the experiments have shown, there is no

appreciable change in the value of /= /« as the external field H^
is increased from zero to the highest values available in the

laboratory. This would seem to be a fatal objection to the theory

unless the values of the internal field Xl were so great that the

largest values of Hi attainable were negligible in comparison. In

that case the behaviour would be sensibly the same as for Hi =
even in the highest fields which can be obtained. We shall see

in the next paragraph that it is possible to deduce the values

of the coefficients \ by an independent method, from experimental

• Journal de Physique, vol. vi. p. 665 (1907).
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data. The values of X so obtained show that \I is extremely

large compared with the magnetic forces at our disposal ; so that

this objection falls to the ground.

Properties near the Critical Temperature.

In this neighbourhood we have seen that

lo

a

Thus

M

I 1 M ,„ , r.

The critical temperature is Tq = ^p° . Thus

1-??) = ^^" or {T-1\)I =H^To
^loT

H,T,
.(18).

It follows that at temperatures sufficiently near to T^ the product

of the intensity of magnetization /, and the difference T — T^

between the actual and the critical temperature, will remain

constant when the magnetizing force H^ is maintained constant.

The /, T curves will be portions of rectangular hyperbolas whose
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parameter is proportional to the field strength H. That this is

at least approximately true is proved by the accompanying diagram,

which represents the results of measurements by P. Curie on a

specimen of iron in the neighbourhood of the critical temperature.

The values ofH are written alongside the corresponding curves.

It is evident that equation (18) may be used to determine

the values of the coefficient \, since T, T^, I and H^ are given by

the experiments. From measurements of this kind the following

values of \ and H^ have been deduced by Weiss

:

Iron \= 3,850 ^2 = 6'56 x 10« e.m.u.

Nickel \= 12,700 ^2 = 6-35xl0« „

Magnetite \ = 33,200 ir2=14-3xl0« „

The values of H2 are enormous compared with the magnetic fields

which can be obtained in the laboratory, so that the peculiar

result that Ic does not appear to vary with the external field is

accounted for satisfactorily.

Abrupt Changes in Magnetic Properties.

At high temperatures iron exhibits a number of more or less

abrupt changes in its magnetic properties. Below 756° C. it

exhibits the characteristic ferromagnetic properties usually asso-

ciated with the metal. Between 820° C. and 920° C. it appears to

be incapable of permanent magnetization, but it exhibits the rapid

diminution of susceptibility with rising temperature which, as

we have seen, should characterize ferromagnetic substances in

the neighbourhood of the critical temperature. Between 920° C.

and 1280° C. it behaves like a typical paramagnetic substance,

the susceptibility varying as the inverse absolute temperature.

Above 1280° C. it has similar properties, except that there is a

sudden increase in the susceptibility at this temperature. This

varying behaviour has been attributed to the existence of different

modifications of iron within each of the limits of temperature

specified. These modifications are denoted by Fea, Fey8, Fe^
and Fe S.

It has been pointed out by Weiss* that the constants which

determine the magnetic behaviour of these difierent forms of iron

• Journal de. Physique, vol. vi. p. 685 (1907).
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exhibit simple numerical relations. These may be determined as

follows

:

Fe a. In the neighbourhood of T^ when / and a tend towards

zero

a I,MH I,.NM.H
"3~ ^RT ~ SNRT '

where iV is the number of magnetic molecules per unit volume

of the material. But NM = Iq and NRT is the pressure p which

would be exerted by the substance if it were gaseous and occupied

the same volume at the same temperature. Thus if 8 is the

density of the substance the constant

^ MS SpS'

This formula is derived on the supposition that each kinetic

molecule forms one magnetic molecule. If however n of the latter

go to make up one of the former the right-hand side will have to

be multiplied by n. Putting in known values of Iq and S, and the

value of p derived from obvious data, one finds that

G = xT = 000165n.

Fey3. We may attribute the quasi-ferromagnetic behaviour

of this body to the fact that the external field B^ is helped by the

molecular field \I. Thus if %8 is the true susceptibility (8 = density)

and GB is the true value of Curie's constant

7=Y
= — = o f

= — + A,0,

where x'S is the measured value of the susceptibility. Comparing

this with the equation

I(T-T,) =
H,T,

we see that, since H^ is arbitrary.

Substituting the experimental value of ^ = ^'13 x 10~* at 820° C.

one finds

C= 000164 X 2.

Fe y. The experimental values of the susceptibility of this

paramagnetic body give the following values for G. At 940° C,
(7= 000172 X 2, and at 1280° C, C= 000182 x 2.
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Fe S. In a similar way the value of G for this paramagnetic

body is found to be 000198x3 at 1280° C. and 000173x3 at

1336° C.

The interesting point is that all the values of G above are

equal, within the limits of experimental error, either to twice or

to three times the common factor 00017.

The occurrence of sudden changes in the magnetic qualities is

by no means confined to iron. Similar features are presented by

the other ferromagnetic substances which have been examined. In

fact abrupt changes also occur even with diamagnetic substances.

Thus Curie found that there was a large drop in the value of the

diamagnetic constant of bismuth when fusion occurred. Moreover

the diamagnetic constant of the molten bismuth was independent

of the temperature, whereas this was not the case with solid

bismuth. In the case of tin, which is sometimes diamagnetic and

at others paramagnetic, according to the temperature, a number

of transition points have been observed* These facts support the

view that a considerable part at least of the mcgnetic properties

of bodies are determined by the occurrence of systems of consider-

able size rather than the atoms or sub-atomic structures'!". It

is of interest to form an estimate of the local strength of the

molecular fields on the hypothesis that the apparent saturation

of iron is due to the equilibrium between the internal fields and

the kinetic energy of thermal agitation. Weiss {loc. cit. p. 688)

estimates that for iron at ordinary temperatures ///„ = 091 about,

whence, making use o^ Langevin's formula, a = 113. Thus

MH_NM.H _ NM.H _
RT~ NiiT ~ p ~

'

where p is the pressure exerted by the magnetic molecules, sup-

posed gaseous, and filling the same space as the metal. Putting

NM = 2000 gauss and p = 2 x 10* dynes per sq. cm, one finds

5"= about 11 X 10* lines per sq. cm. This rough calculation agrees

as to order of magnitude with the more accurate estimate which

was obtained on p. 390, and supports the conclusion to which

we have already been driven that the behaviour of simple

* Du Bois and Honda, Versl. Kon. Ah. van Wetetuch. Amsterdam, vol. xu.

p. 596 (1910).

t Of. Oxley, Comb. PhU. Proc. vol. xvi. p. 486 (1912).
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ferromagnetic substances, in the fields available in the laboratory,

will be practically the same as when Hi = 0.

Other Properties of the Ferromagnetic Metals.

Whatever the ultimate explanation of the very interesting

properties of ferromagnetic crystals like pyrrhotite and magnetite

may be, it is probable that they furnish an indication of the

direction in which we should look for an explanation of the

behaviour of ferromagnetic metals. It is well known now that

all metals are complex aggregates of minute crystals. When the

metals are impure, as is the case with most specimens of iron, for

example, the crystals may vary considerably in composition as

well as size. It is therefore reasonable to expect the behaviour

of iron to resemble that of an irregular matrix of small crystals

of, let us say, pyrrhotite. The behaviour of such a matrix can

readily be calculated. If, for the moment, we neglect the small

susceptibility, parallel to the y and z axes, of any crystal selected at

random, the latter will not develop any magnetization until the

X component of H reaches the critical value Hg. Thus all the

crystals, supposed initially in random azimuths, will not become

magnetized simultaneously, and the intensity of magnetization will

not approach saturation suddenly, as with a single crystal, but

gradually. This agrees, of course, with the behaviour of iron.

On the other hand there would on this view be no magnetization

until H = He, whereas iron has a definite susceptibility for H=0.
This can be accounted for when the small magnetizations parallel

to Oy and Oz are considered, and by considering such additional

factors as the lack of homogeneity of the material and the possi-

bility of local inequalities in the magnetization, it is probable that

the behaviour of any particular specimen of iron could be imitated

exactly by a model of this kind. For these reasons the study of

ferromagnetic crystals is probably of fundamental importance

towards the understanding of ferromagnetic materials in general.

It is worthy of remark that in the case of iron deposited electro-

lytically in a magnetic field, hysteresis curves have been obtained

which are almost rectangular like those given by pyrrhotite in the

magnetic plane *.

• Maurain, Journal de Physique, Ser. 3, vol. x. p. 123 (1901).
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The Ultimate Magnetic Elements.

In the case of magnetite above the critical temperature, Weiss*

finds that the value of p^ is not proportional to T~^ as in the case

of the typical paramagnetic substances, but that the graph of x'^
against T consists of a series of straight lines at different inclina-

tionsf. Since G = ml^jZR, where C is Curie's constant per unit

mass, w is the molecular weight, and I^ the saturation intensity of

magnetization per unit mass, this result might be interpreted as

arising fi:om a variation of either m or I^, or both. Weiss rejects

the variation of m on the ground that it does not lead to simple

results. On the other hand, if w is assumed to be constant, the

resulting values of /j calculated from the experimental values of G
are to each other, within the limits of experimental error, in the

ratio of the numbers 4, 5, 6, 8 and 10. To explain this Weiss is led

to make the hypothesis that the magnetic properties of substances

arise from the presence of an ultimate unit, the " magneton," in

the atoms of the substance. It is apparently necessary that these

elements should be capable in eflfect of annihilating each other

temporarily, as the same substance may contain different numbers

of magnetons at different temperatures.

In the case of other substances the number of these elements

per atom or molecule may be determined in different ways. In

the case of ferromagnetic substances it may be deduced from the

saturation intensity of magnetization at the absolute zero. In the

case of solutions of paramagnetic substances all that is required is

the value of the constant C = mli'/SR. In these ways values of

this number have been deduced for nickel, cobalt, iron and a large

number of salts of iron, cobalt, manganese, chromium, copper,

uranium, vanadium and the rare earths. The integral numbers

vary from 4 to 56 in different cases. In the case of two salts of

vanadium there is no indication of an approach to simple integral

multiples, and the agreement in other cases has recently become

much less satisfactory owing to a more accurate redetermination of

the susceptibility of water. At the present time the experimental

evidence in favour of the magneton leaves much to be desired.

It is worth while to add that a theory of the behaviour of the

atom which has had very considerable success in some other

* Le Radium, vol. vin. p. 301 (1911).

+ H. Takagi (Sci. Rep. Tohoku Imperial University, vol. n. p. 117 (1913)) has been

unable to confirm this result. Cf. Honda and Ishiwara, ibid. vol. iv. p. 250 (1915).
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branches of physics leads to the existence of a magneton. This

theory supposes the atoms to be made up of rings of electrons,

revolving round a positive kernel of small dimensions, having

a charge equal and opposite to the sum of the charges on the

electrons. The steady motions are subject to dynamical laws and

do not give rise to radiation in appreciable quantities. Radiation

occurs when the electrons move from one stable configuration to

another, and its frequency v is determined in accordance with the

quantum hypothesis by the equation hv = W, where h is Planck's

constant, and W is the change in energy which accompanies the

change in the configuration. Nicholson* and Bohri* have shown

that under these circumstances the value of T/v, where T is the

kinetic energy of the electron and v its orbital frequency, is always

an integral multiple of h/2. Now we have seen that the average

magnetic moment of the magnet, which is equivalent to'n electrons

revolving in a circular or elliptic orbit, is M = neS/r, where S is

the area of the orbit and t the time of description. Thus if m is

n e T
the mass of an electron M = -^ . Thus it follows from this

Zirm V

type of theory that M will always occur in integral multiples

e h
of Mf,, where jj/j = — —-. Putting e/m = 1-77 x 10^ E.M.U. and

h = 6-55 X 10-27 erg sec, this gives Mo = 9-23 x 10-=^^ This is nearly

six I times as large as the value of the magneton found by Weiss

from experimental considerations. The experimental value of the

magneton is 164 x lO"''^ in the same units.

Mechanical Reaction caused hy Magnetization.

On the theory of magnetism which we have been discussing

it appears to the writer§ that we might expect to observe a

rotational mechanical reaction when a bar of iron is magnetized.

For simplicity suppose that the magnetization arises entirely from

the orbital motion of negative electrons whose charge is e. Let

there be N of them per unit volume, and let A^, denote the average

value of the projections of the areas of the orbits perpendicular to

the axis of magnetization, divided by the times in which they are

Monthly Not. Roy. Attr. Soc. vol. lxxii. p. 679 (1912).

+ Phil. Mag. vol. xxvi. p. 1 (1913).

J Since this was written I have learnt from a conversation (July 1913) with

Dr Bohr, who had made similar calculations, tliat a more exact experimental

value of the magneton makes this ratio exactly five.

§ Phys. Rev. vol. xxvi. p. 248 (1908).
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described. Then 7^, the magnetic moment per unit volume, is

given by Iz = NeAz. The resultant magnetization is taken to be

parallel to the axis of z.

We shall now calculate the moment of momentum of the

revolving electrons about the z axis. Consider any approximately

circular orbit, the coordinates of whose centre are given by x^, y^, Zq.

Let the coordinates of the revolving electron referred to this

centre at any instant be f, rj, ^. The moment of momentum of

the electron about the z axis is then

Averaging this over a complete revolution the mean values are

977 - d^ ^ fdv dp area of projected orbit .

'^•M = ^=J'"sr '^^ Hr-'iu t
^-

Hence the average moment of momentum about any axis is

independent of the position of that axis so long as its direction

is the same. It is equal to ImAg. The moment of momentum
Ug per unit volume is

C/^ = 2iVmJ^=2-7^ (19).
e

It is thus equal to the intensity of magnetization multiplied

by 2m/e.

By the principle of the conservation of momentum the moment
of momentum thus created must be balanced by an equal moment
about the same axis. This reaction might conceivably occur either

(1) on the electromagnetic system producing the exciting field,

or (2) on the atoms of the magnetic material. In the former case

the effect should depend simply on I^ and not involve ejm. In

the latter case the effects observed depend on the looseness of the

atoms. If they were free to rotate without affecting the neigh-

bouring atoms, the moment of momentum of the orbits might be

compensated by local rotations of the non-magnetic matter. In

that case the magnetic material would not have any tendency to

turn as a whole. On the other hand the fact that the magnetic

properties of the material are very susceptible to changes of

temperature makes it very unlikely that the connection between

the magnetic atoms and the neighbouring matter is a loose one.

It seems therefore most probable that the moment of momentum
created in this way will be compensated by a motion of the
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magnetic material as a whole. Experiments which have been

made to detect this effect have not led to a decision as to whether

it exists or not.

Since the first edition of. this book appeared Einstein and

Haas* have succeeded in detecting and measuring this effect

experimentally. The moment of momentum found by them agi-ees

within 2°/^ with that given by equation (19). The converse

effect of magnetization due to rotation has also been discovered

by S. J. Barnettf, but the quantitative agreement in this case

appears to be less satisfactory.

Specific Heats of Ferromagnetic Substances.

If a substance is magnetized to an intensity / in a field of

strength H, and / is proportional to H, the energy of the system

is changed by an amount ^HI. On account of the very large

magnitude of the internal fields this energy is comparable with the

whole thermal energy in the case of the ferromagnetic substances.

This is true even when the average intensity of magnetization is

zero. As the energy of the molecular fields is a function of the

temperature, a very considerable part of the specific heat may
arise in this way. The molecular magnetization diminishes with

rising temperature so that additional energy must be supplied in

order to overcome the attraction of the elementary magnets. The

effect thus involves an increase in the specific heat of the sub-
•\ T or

stance. Since Hz = X/ this part of the specific heat is —f^D
where J is the mechanical equivalent of heat. Since / disappears

suddenly at the critical temperature so will this additional specific

heat. Weiss and Beck]: have shown that the part contributed by

the internal magnetic energy in this way accounts quantitatively

for the anomalous specific heats of ferromagnetic substances.

It seems desirable to add that a large number of exceptions

both to Curie's Law of the variation of susceptibility of para-

magnetic substances with temperature and to the law of tem-

perature independence of diamagnetic susceptibility are known.

It remains to be seen whether these can be accounted for as

arising from complications due to molecular agglomeration, the

requirements of the quantum theory and the like.

* Verh. der deutsch. Physik. Ges. No. 8, April 30 (1915).

+ Phys. Rev. vol. vi. p. 239 (1915).

X Journal de Physique, Ser. 4, vol. vn. p. 249 (1908).



CHAPTER XVII

THE KINETIC THEORY OF ELECTRONIC CONDUCTION

Thermodynamics and the Kinetic Theory of Matter.

(i) Entropy and Probability,

When a material system is isolated in such a way that its

total energy U and total volume v remain constant, its physical

state will nevertheless, in general, change with lapse of time. This

is evident since the two variables U and v do not completely

specify the condition of the system—if we understand by the

condition of the system the way in which it reacts to instruments

which measure such quantities as pressure, volume and tempera-

ture, which characterize matter in bulk rather than the individual

molecules of which we believe it to be composed. For example,

we might have two systems having the same material composition

and the same values of U and v, but the temperatures of corre-

sponding points of the two systems might be different. The two

systems if left alone would then change in diflferent ways as time

elapsed. The changes which ensue are not capricious but definite.

So far as physical measuring instruments are sensible of them,

they tend to the establishment of a definite end condition. The

final state is characterized by the fact that a certain function

called the entropy {S) of the system has attained the maximum
value consistent with the imposed conditions.

The entropy may be considered to be defined by the dif-

ferential equation

dS=^{dU+pdv) (1),

where T is temperature and p pressure. From this definition and

the second law of thermodynamics, it may be shown that any
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reversible change occurring in an isolated system leaves the value

of S unaltered, whereas any irreversible change increases S.

Thus the final state is that for which >Sf is a maximum. It may
also be shown that the change in S produced by any reversible

action depends only on the initial and final states of the system

and not at all on the way in which the change has been effected,

provided it is reversible throughout. Thus S isa perfect diflferential

with respect to the independent variables in terms of which the

state of the system is described.

The final state is only steady as regards quantities like pressure,

temperature and so on, which are usually taken to be sufficient to

describe the behaviour of matter in bulk. If we made use of

instruments fine enough to determine the motions of the individual

molecules there is every reason to believe that the system would

be found to be the seat of very lively, never ceasing changes. The

final steady state is therefore one of statistical equilibrium merely.

The actual spatial distribution of the individual molecules and the

distribution of the momentum and velocity which they possess are

both constantly changing. On the average, however, and actually

if the system contains an indefinitely large number of molecules,

the distribution of the molecules in space and of momentum and

velocity among the molecules is definite. We shall now attempt

to discover what this law of distribution is.

The number of ways in which a given amount of energy may
be distributed among an indefinitely large number of molecules is

clearly infinite to a very high order. Some of these are much
more probable than others and there will be one distribution which

is the most probable. Jeans* has shown that in the statistically

steady state which is independent of the time the most probable

distribution is infinitely probable compared with the others; so

that if we can find the most probable distribution we shall have

obtained the actual distribution for all practical purposes.

Boltzmann pointed out the intimate connection between the

probability of a given state of a system and the entropy of the

system. In the final state of an isolated system we have seen

that both the entropy and the probability of the system have

attained a maximum value. In the intermediate stages both

* Dynamical Theory of Gases, Chap. xa.
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quantities are moving towards the maximum. Let us now intro-

duce the hypothesis that the entropy of a system is a function

of its probability only. This course is evidently permissible, since

we have not yet defined the probability of a system precisely.

We shall have to take care, when we come to do this, that our

definition does not conflict with the hypothesis. Let us see what
conclusions we may arrive at from the general conceptions of

entropy and probability with the aid of our hypothesis.

Consider two entirely separate material systems, let us say two

stars po far apart that the interaction of their radiations may be

disregarded. Then we have, by hypothesis, >S^i =f(wi) and S^ =f{w^),
where Si and S^ are the entropies and Wi and Wz the probabilities of

the systems separately. If S and w are respectively the entropy

and probability of the two systems considered together, we have

f(w)= S==S, + S,=f(wi)+/{w,).

But W = WiWa,

hence f(wi'W2)=f(wi)+f(w^\

so that S = k\ogw (2),

where A; is a universal constant. Thus the difference between

entropy and probability is only that one combines by addition and

the other by multiplication.

Of the total number of molecules under consideration let us

suppose that in the steady state the fraction

/{x, y, z,p, q, r)dxdydzdpdqdr (3)

have their centres between x and x + dx, y and y + dy, and z and

z + dz, and their momenta between the components p and p + dp,

q and q + dq, and r and r + dr. We shall suppose that the six

variables x, y, z, p, q and r completely describe the state of the

particles. This is equivalent to treating them as massive points

subject to the action of forces, and although not general enough

for many problems in dealing with gases, is sufficiently so for the

electrical problems in which the particles under consideration are

electrons. Another interpretation which may be given to y( ) is

that it is the probability that a particle selected at random should

have its six coordinates within the assigned limits. We shall

suppose that /is a continuous function which can be differentiated.
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and proceed to determine the probability of the state of the gas

which corresponds to any assigned form of the function /.

We may consider the gas to be represented by a series of

points in a six-dimensional space, lengths measured along the

axes of which give the values of x, y, z and p, q, r, the components

of the distance of each particle from a fixed centre and of its

resultant momentum respectively. Each particle is represented

by one point, and if we know the density of such points at every

part of the six-dimensional diagram we shall have a complete

picture of the state of the gas. Now divide up the whole of the

space so that the six-dimensional elements of volume

dxdydzdpdqdr = da

are everywhere equal. We shall define the probability of a given

distribution f as the number of ways in which the given distri-

bution may be constructed by distributing the total number n

of particles among the different elements of volume. We shall

consider the elements da to be so small that the state of the

particles which are defined by the limits of da- is to be considered

precisely the same for all of them. This would introduce a

.diflSculty if we considered the diagram to represent an actual in-

stantaneous state of the system. The difficulty can be overcome

by considering it to represent a large number of successive states.

In the former case the number of particles in each element of

volume is necessarily limited ; in the latter case it may be made

as large as we please by contemplating a sufficiently large number

of successive states. Since / is given, the number of particles in

the element da is nfda. Since the particles in any element are

to be treated as alike, any rearrangement of them within the

element will not give rise to a fresh distribution. The problem

therefore is to find the number of ways in which n like objects

may be distributed among the totality of the compartments da
which make up the whole of the space, when the same distribution

is considered to arise wherever the same particles occur in the

same elements of volume, no matter how they are arranged within

the element of volume. The number of ways is clearly

n\-i-U(nfday. (4),

where IT denotes the continued product taken over all the elements.

As an example we may consider the number of ways in which all

R. E. T.
• 26
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the particles may be given the same position and momentum.
This is evidently equal to one, which is also the value given by (4),

since, for all the elements da except the one in which the particles

lie, we have {nfda)\ = 0! = 1, and for the remaining element

{nfda)\ = n\.

Since the size of the elements da is arbitrary the expression

for the probability above will only be the value in terms of some

arbitrary standard. It is not necessary, however, for us to determine

the value of the standard, since it is possible to arrive at results

which are independent o^ da without doing so.

By combining (4) with (2) we have

S = k\ogn\-kX\og{nfda)\ (5).

Now we can always make nfda as large as we please by taking

n big enough. When N is any very large number we have

Stirling's well-known approximation

or \og^'\ = N{\ogN-\) + \\og2lTN{
^^^

= N{\ogN-l)
'

with sufficient approximation, since we may neglect logiV com-

pared with N when N is large. Thus (5) may be written

S = k\og n\ — k t nfda (iog nfda — 1)
"

= k log n\ — k% nfda (log n/+ log da — 1)

= k [log n! — n (log da— 1)1— k^ nfda . log nf,

since all the da'& are equal and 'Znf da = n. Since n is constant

we obtain

S = const. — k
I
nflognfda (7).

If the particles under consideration make up the whole of the

system then (7) will be the complete expression for the entropy.

Without any more elaborate analysis we may add to S a. part

which is independent of the particles under consideration and

therefore independent of /. With this understanding we may
put

S = So- kj nflognfda (8).



THE KINETIC THEORY OF ELECTRONIC CONDUCTION 403

where Sq is made up of the entropy of the foreign parts of the

system together with an arbitrary constant.

(ii) 2'Ae Law of Distribution.

Now if the total energy and volume of the system are constant,

the final steady state is characterized by a maximum value of S.

This fact is sufficient to determine the function nf. We shall

suppose the energy IT of the system to consist of three parts,

(1) a part Uq which is independent of the n molecules, (2) the

potential energy W of the n molecules, and (3) their kinetic

energy L ; i.e.

U=Uo+W + L (9),

where W = j (l>(x,y,z)nfd(r = j Wrnfda- (10),

and ^ " 2~ f
^^' "^ ^' "^ '^'^ "-^^'^ " f

^' "•^^°' ^^^^'

Thus Wr and Lg are independent of /. Since the entropy is to be

a maximum for the actual function / Ave have by varying nf

BS = -kj{\ognf+l)B(nf)da=0 (12);

also since the total number n of particles is constant

0=J8{nf)da- ....(13);

finally since the total energy of the system is constant

= j{Wr + Lg)B(nf)da- (14).

These equations are satisfied for all possible variations ofnfit

log nf= — ko(Wr + La) + const.,

where ^o is constant throughout the system. Thus

nfdxdydzdpdqdr= Ae" '^^ ''^
'^' dxdydzdpdqdr...{lb),

where A is constant throughout the system.

We may determine k^ from a knowledge of the mean kinetic

energy Ljn of the particles. We have evidently

26—2
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L
n

IIIIII
^^~ ^"^"'^"^"^ dxdydzdpdqdr

1 IIJ(P'
+ 9' + '')^~^^'^^''^''^dpdqdr

2m rrr
^-

jlfe-r.^*''-''Updgdr

=2^ "' ''' = 21 (">•

Moreover since

n = A
jljljje

-'»("'' + ^'^ dxdydzdpdqdr

""-{a^i) jpb^^ <">•

From equation (15) we see that if Vr dr is the number of particles,

with no restriction as to momentum or velocity, in the element of

volume dT= dxdydz, then

v,dT = Ae-^^'dTl{r e
^'^ L \pdqdr]

ne dr ...(18).

Thus if we compare any two different elements of volume dr

and dr

log'^, = ko(Wr'-Wr) (19).

If we denote the probability that a particle situated in the

element of volume dr has components of momentum which lie

between p and p + dp, q and q + dq, and r and r + dr, by

F(p,q,r)dpdqdr,

then

nfdxdydzdpdqdr = v, dr Fdpdqdr = Ae'^'* i^r + L.)
^^ dpdqdr,
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and from (18)

F{^, q, r) dpdqdr=
e ^"' dpdqdr

p^ + q^ + r^

I e ^ 2m dpdqdr

= (2^/^''°^'*'^* (2»)

=&)^ °"^"' *'^»* (2i>-

It follows from equations (20) and (21) that F is entirely-

independent of the potential energy W^ of the particles in the

element dT. The distribution of velocity among the particles,

and also of kinetic energy, is entirely independent of their potential

energy. We see from (19) that the variation of the potential

energy causes the numbers of particles in equal volumes to vary

from point to point, although their mean kinetic energy is the

same everywhere.

An apt illustration is furnished by the equilibrium of a column

of gas, in an enclosure at constant temperature, subject to the

action of gravitation. The mean kinetic energy of the particles

is the same at every point, as also is the way in which the kinetic

energy is distributed among the particles. On the other hand,

the density of the gas is greatest at the bottom of the vessel

where the gravitational potential energy is least. The law of

variation of density with height is readily deduced from equation

(19).

The pressure p exerted by the particles at a point where the

number in unit volume is v is easily calculated. Consider a smooth

impenetrable surface, whose plane is perpendicular to the axis of

X, to be placed at the point. On impact with the surface each

colliding particle will have its x component of momentum reversed.

The momentum communicated to unit area of the surface in unit

time is evidently

=irr\ '22).
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Since we are neglecting effects which depend upon the size and

mutual potential energy of the particles they will behave like

a perfect gas and satisfy the equation pv =i R^T. li R is the

value of jRi reckoned for an amount of gas equal to one molecule,

this may be written

p = vRT (23).

By comparison with (22) we see that

h=llRT (24),

L 3
and the average kinetic energy — = ^ ^^- We shall frequently

make use of (19) in the form

^""^u'^-RT-
^...(19a).

(iii) The Constant h.

Having determined the nature of the function nf we can now

write the expression (8) for the entropy of the system in the form

S^8,-\- kJA {h [ Wr + L,] - log A)e~^' ^^" "^ ^'^ dccdydzdpdqdr

(25).

To determine the universal constant k we need only consider

the simplest case, that of a monatomic gas for which W^ is every-

where zero. Equation (25) then becomes

S = S, + kVr A{k,L„-\ogA)e~^' ^^' "^ ^"^ dpdqdr
J - CO

= ^o + ^[|(l-logj|^^ + log^) + logl]^
-^ ....(26),

= So'+kn |logX + logF
J

where Sg is a new constant, which is independent of L and V.

In the present case L is the total energy of the system, since the

potential energy is zero ; so that

,„ dL+pdV
do =

J,
,

whence
(i), = F ^^^ (ItL^I ^^^^'
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On the other hand we obtain from (26)

whence, by comparison with (27),

pV=knT

and by comparing this with the equation of a perfect gas we
have

k = R = (Tko)-\

The numerical value of R is known to the same degree of pror

cision as that to which we know the value of the mass of an atom,

With the accuracy which has recently been reached in this branch

of physical measurement the different methods of determining R
are consistent to within about 1 °/^. One of the best values,

deduced by Planck (see Chap, xv, p. 356) from the constants in

the complete radiation formula, is

E = yfc = l-346xl0--i-™--7-i\
sec* deg.

The Theory of Metallic Conduction.

The view, that the transportation of electricity in metallic

conductors, like the corresponding phenomenon exhibited by

electrolytes, is due to the motion of minute charged particles,

was a definite feature of the old Weberian formulation of electro-

dynamics. The modern development is due to the labours of

Riecke, Drude, J. J. Thomson and others. According to the

most prevalent form of the theory, and the one which we shall

now consider, the atoms of the metal are regarded as continually

dissociating into a negative electron and a positively charged

residue. It follows from the kinetic theory considerations which

we have just discussed that the electrons will be moving in all

directions in the interior of the metal with very high speeds.

They will in fact possess the same distribution of velocity as

would an uncharged molecule of equal mass, and their mean
kinetic energy will be proportional to the absolute temperature. We
should rather expect that the atoms and positively charged residues

would have an equal distribution of kinetic energy, but it is

possible that they are jammed in some way which prevents this
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coming about. Whether the atoms and positive residues are

able to move or not, they are to be regarded as only oscillating

about fixed positions and not travelling from point to point of

the material.

We now suppose that the effect of applying an electromotive

intensity is to superpose on the haphazard motion of the electrons,

which arises from thermal agitation, a velocity of drift which,

since they are negatively charged, is in the opposite direction to

the applied force. This motion constitutes the electric current,

which is thus carried entirely by the negative electrons. A 'priori,

one might be tempted to suppose that the positive residues would

also drift along under the influence of the electric field. If any

such effect exists it must be extremely small. For if it were

appreciable we should expect an electric current to transport

atoms of one metal into the other across the junction between

two metals. Careful experiments have been made to detect

such effects, but they have always led to negative results. This

objection would be removed if we supposed the positive particles

to be of the same nature in different materials. There are, how-

ever, two sertous objections to such a view. In the first place

there is no other evidence of the liberation of such particles fi'om

atoms under conditions which can be considered at all analogous to

those which hold inside conductors. In the second place the

hypothesis appears to be incapable of removing such difficulties as

are presented by the simpler theory.

The strongest arguments in favour of the view which asserts

that the currents in metals are carried by negative electrons are

as follows

:

(1) Conductors when heated or illuminated are found to emit

electrons into the surrounding space. The mass of the electrons

thus emitted from a hot wire may, in favourable cases, be large com-

pared with the number which, on any reasonable hypothesis, may be

expected to be present in the wire at any instant, showing that

electrons are continuously flowing into the wire from other parts of

the system*.

(2) The typical good conductors at low temperatures are all

metals : i.e. electropositive elements which are known from other

phenomena to liberate electrons from their atoms readily.

• Of. 0. W. Richardson, Phil. Mag. vol. xxvi. p. 345 (1913).
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(3) If the particles which carry the current did not possess

an extremely small mass in proportion to their charge we should

not expect to get the well-known effects produced by a magnetic

field in electric currents, e.g. the change of resistance in a mag-

netic field and the Hall effect. These effects are unquestionably

very complicated, and so far the electron theory has not been able

to furnish an adequate quantitative explanation of them. On the

other hand it is the only theory which has been able to account

for them qualitatively.

The Simple Theory of Conduction.

In order to illustrate the problem presented by electric and

thermal conduction in metallic conductors we shall consider the

behaviour of the electrons to be much simpler than it is likely to

be in any real case. A more exact treatment will be given later.

For the present we shall make the following assumptions : (1) that

the electrons all move freely for the same distance X between two

collisions, (2) that they all have the same velocity of thermal

agitation v and (3) that the motion of an electron subsequent to a

collision is entirely independent of its history previous to the

collision. We shall also assume that the only force acting on the

electrons throughout the free path A, is the applied electric intensity

X. It follows from assumptions (1) and (2) that the free time t = \/v

is the same for all the electrons. To be consistent with the

requirements of the kinetic theory of matter we take the kinetic

energy, ^mv^, of the electrons to be equal to the mean value ^RT
of the same quantity for the atoms of a monatomic gas at the

same temperature. Subject to these simplified assumptions the

electrical conductivity of a metal may be calculated as follows

:

If e is the electric charge of an electron, the force acting on it

during its free path is Xe and its acceleration is Xe/m. If the

component of the velocity of the electron, parallel to the electric

intensity, at the beginning of its free path is ti, the value of this

Xe
component at the end of the path will be w H 1, where t is the

free time. The average velocity in the direction of the electric

1 e .

field is therefore -^X — t, since, all directions of v being equally

probable, the average value of u over a large number of electrons

is zero. Since t = X/v the average drift velocity of the electrons in
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the direction of the electric field may be written -xX . If n is

the number of electrons in unit volume, the number of them

which, in unit time, drift across a unit area drawn perpendicular

to the direction of the electric force X will be k nX . Each of
2 mv

these carries a charge e, so that the quantity of electricity trans-

ported across unit area in unit time or, in other words, the electric

current density i, will be

^~2mv^~QRT '

Thus the specific electrical conductivity a- is

* ne-^Xv

""-X-QRT ^^^>-

It is a well-known result of experiment that for the pure metals,

which are good conductors, cr is almost exactly inversely proportional

to the absolute temperature T except at very low temperatures.

Now e and R are universal constants and do not vary with tempera-

ture. Hence if our assumptions are to be compatible with the facts

it is necessary that nXv should be independent of T. Since v oc T*

this requires that nX should be inversely proportional to VT.

At present we are not in a position to say whether this variation

with T is to be attributed to the variation of w or \ or of both

of them.

Comparison with Thermal Conductivity.

The best conductors of electricity are also the best conductors

of heat. Under the circumstances it is natural to attribute the

two effects to the same cause, viz. the motion of the electrons.

From this point of view the problem of the conduction of heat

in a metal is the same as that in a gas having the same number

of molecules in unit volume, the same free path and the same

molecular weight and temperature, as the electrons in the metal.

In our calculations we shall suppose that the amount of heat

which is distributed by radiation and by the dynamical action

of the molecules and positive residues on each other is negligible

compared with that distributed by the rapidly moving electrons.

The results can therefore only be expected to be true for good

electrical conductors, since the worst electrical conductors have an
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appreciable thermal conductivity. Under these restrictions the

problem of determining the thermal conductivity is mathematic-

ally identical with that of finding the thermal conductivity of the

corresponding gas. In the notation we have previously employed

the thermal conductivity k of the corresponding gas, which is given

in any standard text-book on the kinetic theory of gases *, is

k=^ln\vR (29).

Comparing this with equation (28) we have

kJ<x=Z~ T (30).

Equation (30) is the expression of a simple and very remark-

able conclusion. The ratio of the thermal to the electrical con-

ductivity has the same value at the same temperature for all good

conductors : for different temperatures the value of the ratio is

proportional to the absolute temperature. The first part of this

generalization is known as the law of Wiedemann and Franz, by

whom it was announced as an experimental discovery about 1850;

the law of temperature variation was discovered experimentally

by L. Lorenz somewhat later.

The more recent experiments of Jaeger and Diesselhirst

enable an accurate comparison with equation (30) to be carried

out. They determined the values both of the ratio of the two

conductivities at 18" C. and of its temperature coefficient, for a

large series of metals and alloys. The values they found are

exhibited in the table on p. 412.

Assuming that the charge on the electron is equal to that

carried by a hydrogen atom in electrolysis the evaluation of R/e

does nob require any unfamiliar data. If n is the number of

molecules in one cubic centimetre of a gas at 0° C. and 760 mms.

pressure, then nR is the value of the constant Ri in the equation

pv = RiT, where v = l cm.^ p = 76x 13*6 x 981 dynes/cm.'^ and

T= 273° abs. On the other hand, since the molecule of hydrogen

is diatomic ne is equal to the quantity of electricity which passes

through a water voltameter when ^ c.c. of Ha is liberated at 0° C.

and 760 mms. This is equal to '4327 e.m. unit, so that the value of

R^
3 — T at 18° C. = 6-5 x 10'». It will be observed that for the pure

metals which are good conductors the experimental value of the

* For instance, Jeans's Dynamical Theory of Gases, p. 259.
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Ratio

:

Temperature
Thermal Conductivity Coefficient of thia

Material to Electrical Conductivity Ratio, per cent.

Copper, commercial 6-76x lO'" at 18° C. —
Copper (1) pure 6-65x 10><> at 18° C. -39

Copper (2) pure 6-71 x IQio at 18° C. "39

SDver, pure 6-86xlOio at 18° C. -37

Gold(l) 7-27 X lO'o at 18° C. -36

Gold (2) pure 7-09xlOiOat 18° C. -37

Nickel 6-99 x IQio at 18° C. '39

Zinc(l) 7-O5xlO'0at 18° 0. '38

Zinc(2)pure 6-72x 10»o at 18° C. -38

Cadmiimi, pure 7-06x 10"> at 18° C. '37

Lead, pure 7-15x 10»<» at 18° C. '40

Tin, pure 7-35 x 10»o at 18° C. . "34

Aluminium 6-36X1010 at 18° C, "43

Platinum (1) 7-76xlOi<' at 18° C. —
Platinum (2) pure 7-53 x lO^o at 18° C. '46

Palladiiun 7-54 x lO"* at 18° C. '46

Iron (1) 8-02x1010 at 18° C. -43

Iron (2) 8-38x1010 at 18° C. "44

Steel 9-03x1010 at 18° C. '35

Bismuth 9-64xl0i0at 18° C. -16

Constantan (60 Cu, 40 Ni) ll-06x lOio at 18° C. -23

Manganin (84 Cu, 4 Ni, 12 Mn)... 9-14x lO'o at 18° C. '27

ratio is very close in all cases to the theoretical value. The

deviations are greater for the poorer conductors and in almost

all cases are in the direction of values greater than the theoretical.

This is what would happen if the part of the thermal conductivity

which does not depend on the motion of the electrons were to

become appreciable. Thus the deviations lie in the direction in

which they would be expected to occur. The behaviour of alloys

is exceptional, but so are most of their electrical properties. In

fact Lord Rayleigh* has pointed out that the electrical resistance

of alloys may be expected to be unduly high on account of the

existence of a " false resistance " arising from the Peltier heating

effect at the junction of parts of the material of varying com-

position. It is also desirable to mention that Leesf has found

that the divergence of the values of k/aT for different substances

is greater at the temperature of liquid air than at ordinary

temperatures. On the whole, however, the concordance of the

values of this quantity for so many metals over so wide a range

of temperatures is more striking than the differences, when one

considers the number of factors which might enter.

The percentage temperature coefficient required by the theory

* Nature, vol. liv. p. 154; Scientific Papers, vol. iv. p. 232.

+ Phil. Tram. A. vol. ccviti. p. 381 (1908).
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is 0'366 7o- The experimental values for the good conductors

are practically equal to this within the limits of experimental

error.

More Complete Theory of Conduction.

The extent to which the preceding calculations account for the

observed relations between the electric and thermal conductivities

of good conductors is the more sui-prising when one considers the

approximate nature of the assumptions on which the calculations

are based. For example, we assumed that all the electrons moved

through equal free paths with equal velocities. Now the results

of the kinetic theory considerations at the beginning of this

chapter lead us to expect that instead of possessing equal veloci-

ties the electrons would have a velocity distribution in accordance

with Maxwell's law. This requirement is not obviated by the possible

fact that the electrons may be subjected to very intense forces;

for the distribution of kinetic energy amongst the particles is,

as we have seen, independent of the potential energy. Moreover

the fact that the atoms, with which the electrons collide, are so

massive that the velocity of an electron does not alter in mag-

nitude during a collision with one of them makes no difference,

for the encounters of the electrons with one another will ensure

that Maxwell's law of distribution of velocity is established.

The following calculation* is much more general than the one

we have considered. It assumes that when no external force

acts on the conductor and it is all at a uniform temperature the

velocity of the electrons is distributed according to Maxwell's law.

When an electric force acts, or when the temperature varies from

point to point of the material, we shall suppose the law of distri-

bution to be slightly modified. We shall neglect the immediate

effect of collisions between electrons compared with that of those

between electrons and atomic or sub-atomic structures, and shall

treat the latter as though they were immovable centres of force.

The theory is therefore incomplete, since we assume that the

normal distribution of velocity is that of Maxwell and at the same

time that the collisions take place with particles which are im-

movable and are therefore unable to change the resultant velocity

* Cf. H. A. Lorentz, Theory of Electrons, p. 266 ; N. Bohr, Studier over metal-

lernen Elektrontheori, Copenhagen (1911) ; 0. W. Richardson, Phil. Mag.

vol. xxiii. p. 594 (1912).
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of the colliding particles. Thus, so far as the set of assumptions

we are dealing with is concerned, a complete theory would have

to take into account the occurrence of collisions between electrons,

or something which produces the same effect, in order to account

for the existence of Maxwell's distribution under normal con-

ditions. The mathematical difficulties of a more complete theory,

unfortunately, appear insuperable. Our method of attack will be

to try to find a law of distribution of velocity, slightly different

from the normal one, which will make the distribution at every

point a steady one when electric or other forces act on the

electrons in the metal.

Consider the causes which tend to change the number of

electrons, at any point, which have assigned components u, v, w
of velocity. These are two in number, viz. (1) the free motion

of the electrons from one part of the conductor to another, and

(2) collisions. Let us imagine the distribution of velocity among
the electrons at any point to be represented by a three-dimen-

sional velocity diagram. The diagram is drawn so that the

resultant velocity of each electron at the point is represented by

a radius from the origin. The density of the points which are

the ends of such lines and which lie within any element of volume

da = dudvdw of this diagram will represent the number of elec-

trons at the given point which have velocity components between

u and u + du, v and v + dv, and w and w + dw. In this discussion

we mean, of course, by the expression the number " at any point

"

ic,y, z the number in an infinitesimal element of volume dT=dxdydz

which contains the point x, y, z. Let us denote the number of

electrons which have velocity components u, v, w at the point

x, y, z at the instant t hy f (u, v, w, x, y, z, t) da dr. If the

electric intensity in the metal is X it will give rise to an

acceleration of each electron equal to Xe/m. X is supposed to

be parallel to the x axis. If there were no collisions these

electrons would be found in a different element da' dr of the

velocity and space diagram at a later instant t + dt. Owing to

the motion the new velocity coordinates would evidently be

u + X — dt, V, w, and the space coordinates x-\-udt, y + vdt and

z + wdt instead of u, v, w, x, y, z respectively. Corresponding

points would be displaced equally in each diagram so that

da' = da and dr^dT. If there were no collisions we should
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have as the condition for the existence of a distribution of

velocity invariable with the time, that

:

fiu-\- X ~ dt, V, w, x + udt, y + vdt, z + wdt, t-\- di\

=f{u,v,w,x,y,z,t).

The occurrence of collisions, however, makes it necessary to

modify this equation. The number of electrons in the elements

dadr at t + dt is equal, not to the number in the element dadr at

time t, but to the latter minus those which have disappeared from

the original group plus those which have come into the group

from other groups, owing to the occurrence of collisions. Since

these quantities are each clearly proportional to the range of

velocity and space covered by the group and to the interval of

time dt, we may write them in the form adcrdrdt and bdadrdt

respectively. The condition for the existence of a steady distri-

bution of velocity may therefore be written:

/ (u -{ X — dt, V, w, X + udt, y + vdt, z + wdt, t + dt)

=f(u, V, w, X, y, z, t) + (b — a) dt,

and on expanding

f(u+ X ^ dt, etc.

J

by Taylor's theorem, we have

„ e 8/ df df df df , .^,,X-^ + u^ + V;f + w^ + ^ = h-a (31).m ou ox oy oz dt

If we can evaluate b and a in terms of/ we shall evidently obtain

an equation from which, if we are able to solve it, the function /
may be deduced.

The evaluation of a and & is a particular case of a more general

calculation given by Maxwell*. In the present instance we are

treating the centres of force with which the electrons collide as

immovable. This will correspond very closely with the facts on

account of the small mass of the electrons. The relative velocity

of the colliding particles is thus equal to the actual velocity

V = \!v? + t;^ + u;'* of the moving electron. Strictly speaking, any

moving electron will be influenced by all the centres of force at

every instant; but we shall suppose that when the important

* Scientific Papers, vol. u. p. 36.
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deflections take place the influence of one of the centres is very

great compared with that of all the others. As the term collision

is often understood to imply the occurrence of geometrical con-

tact, like that between hard elastic spheres, we shall replace it by

the more general term encounter, throughout the rest of this

discussion. The sequence of changes which characterize an en-

counter is then to be represented mathematically as follows. As
the previous history of the electron cannot affect the results of the

calculation we can suppose it to have been moving for an indefinite

time with the uniform velocity F in a straight line. As the en-

counter begins to occur the linear path becomes curved, but the

magnitude of V is unchanged. As we are neglecting all encounters

in which more than one centre of force plays an important part,

the orbit of the electron will lie entirely in one plane, that which

contains the direction of its original motion and the perpendicular

from the centre of force upon it. If the orbit is an open one it

will end by becoming asymptotic to a straight line inclined at an

angle, which we shall call 26, to the direction of the original

straight path. 6 is evidently the deflection up to the apse, about

which the orbit is symmetrical. If the perpendicular distance

from the deflecting centre to the original straight path is b, the

number of collisions made in unit time by a single particle whose

speed is V, such that the distance 6 lies between b and b + db and

the plane of the orbit lies in an azimuth between yjr and i/r + dyjr,

where yjr is measured from a fixed plane passing through the

direction of V, which is taken as the axis about which yjr is

measured, is nrbdbd-^, where n is the number of the deflecting

centres in unit volume of the substance. This follows since the

expression above is equal to the number of centres in the region

between two circular cylinders of radii 6 and b + db, whose height

is equal to the velocity V of the moving particle, which is cut off

by the two planes i|r and i/r + d-vir which pass through V and

determine the plane of the orbit. Since there are /(w, v, w) do-

particles with velocity components about u, v, w in unit volume,

it follows that the number of particles which leave the group

u, V, w, X, y, z in unit time owing to deflections through angles

which lie between 16 and 2{6 -\- d6) in an azimuth between

•y^ and i/r + d->^ is

nVf{u, V, w, X, y, z, t) bdbdyjrda-drdt (32).
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The relation between b and 6 may be found from the theory of

central orbits*. The law of force being K/d*, where d is distance

and K is positive when the forces are repulsive, let

1

« = nrp77TlQJ <^^>'

where Mi is the mass of an electron and M2 that of one of the

centres of force. Then

^-i:H-^(srV'^ <->

where so' is the least positive root of

'-^'-7h($r-' • <«5>-

Evidently a is a function of 6 and s only.

Since M-^jM^ is very small we can put (Mi + AL)/MiM2 = m~^,

where m is the mass of an electron. Hence

2

bdb = (—f7-,) ado.

Thus the expression (32) may be written

n

2 4

(—j ^ V * ^ f{u,v,w)a. dadfda-dTdt (36).

Now consider the reverse collisions which bring new electrons

into the group u, v, w. Let u', v\ w' denote the velocity components,

before the encounter, of an electron which, as the result of the

encounter, acquires the velocity components m, v, w, i.e. joins the

specified group. Consider first the reverse encounters for which

and yjr lie within the assigned limits considered above. Since

the value of the resultant velocity is unchanged by a collision,

we have

V = Vi?H^w^-f w'2 = Vit^ 4- 1;2 + m;2 = y.

The individual components u', v', w' will be different from w, v, w on

account of the rotation of F through the angle 1Q. They may be

written down by making use of the fact that the component of

* Maxwell, Scientific Fupeis, vol. n. p. 36; BiOVLth's Farticle Dynamict, oh&p. vl

p. 198 (Cambridge, 1898j.

R. E. T. 27
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velocity along the apsidal distance has been reversed whilst the

perpendicular component is unaltered. Thus if -v/r = is the plane

containing V and u,

u' = u — 2u sin'' + s/v"^ + W^ sin 26 cos i^,

with similar expressions for tf and w'. The volume du'dxfdw' of

the three-dimensional velocity diagram Avhich is occupied by the

deflected points will be equal to dudvdw, since the new points

may be obtained by reflecting the undeflected points in a plane

perpendicular to the orbit and tangential to it at the apse. Thus,

in considering the reverse collisions which bring extraneous elec-

trons into the group /(w, v, w) dudvdw, the only change we require

to make in (36) is the replacement of f{u, v, w) by f{u', v', lu').

Hence

h-a = n (^^)'" ^ y
*

~^jj{f('^'' ^'' '^') - f("> '"' '^)] ^dadylr.

We shall confine our discussion to the one-dimensional case in

which the state of the material depends only on the so coordinate,

i.e. in the electrical problem we shall suppose the electric intensity

to be parallel to the axis of x and in the thermal problem we shall

suppose the temperature gradient to lie in this direction. Under

these restrictions equation (31), when applied to the steady state

which does not change with the time, becomes

2 4

m ou ax
.(37).

The left-hand side is the rate of change of/ owing to collisions,

and the right-hand side that which arises from the displacement

of the group of electrons as a whole.

Now when the material is at a uniform temperature T and

there is no applied electromotive force, the distribution of velocity

among the electrons is in accordance with Maxwell's law. Thus,

if/o (^1 ^> '^) denotes the value of the function / under these con-

ditions, we may write

f,{u,v,w) = Ae-^^' (38),

where A and h are constant throughout the material. It is likely
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that this distribution will be only slightly changed by the changed

conditions we are contemplating, since the new forces which come

into play are always small compared with the intermolecular

forces. Let us see if we can satisfy (37) by a solution of the

form

f(u,v,w) = Ae-^y +uxiV) (38a),

where the term w%(F) is small compared with Ae~^^* and x(F)
is a function of V, the resultant velocity, only. There are two

conditions which any solution will have to satisfy. These are

that the total number of electrons in unit volume of the material,

and their mean kinetic energy at any part which is at an assigned

temperature, should both have the same values as in the uniform

condition to which (38) applies. If we carry out the integrations

over the whole of the velocity diagram, we find that the former is

N=A{'irlKf and the latter ^mF^ = 3ot/4^, whether we use (38)

or (38 a). Hence (38 a) satisfies the required conditions so far.

In order to determine %(F) we make use of equation (37).

Since the ditierences of / do not occur on the right-hand side of

this equation, we shall neglect the effect of the small term ux ( V)

on the right-hand side of (37). Substituting the assumed solution,

the left-hand side becomes

^ 1 -A_

—
-
1-—

^n\—\~^V *~^x(F)l -47rwsin*^o(?a,

vhilst the right-hand side is

\ m ox cxj

Thus

xiV)=^ ^-
,

^-^ (39)

4>7rn(^y~'^ V "^rahi'dada

=^r'-"(2MX.l-M^KM|)-- (40).

27—2
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where

<f>-^
= ^7ni(-y~^r sin'' eada (41)

The definite integral in (41) is a function of s only, and may be

evaluated gi-aphically when s is known. Thus %(F) does not

involve a nor -ylr, and only involves u, v, w in the combination V.

It is therefore possible to satisfy (37) by a solution of the form

of (38a), where x(^ ^^ ^ function of V only and is given

by (39).

The electric current density, J, will be obtained if we multiply

the number of electrons in unit volume within a specified in-

finitesimal range of velocities, by their component of velocity

parallel to the electric intensity and by the charge each carries,

and then integrate the product over all the electrons in unit

volume. Thus

J=4,7reru'x{V)V^dV='^erV\{V)dV
JO O J Q

r(-^ + 2
27r , \s-l

3 ^ _J_ ^2 L "^ ^*" v« — 1 / 'f'(^^

J'"^ (42),

remembering that

\ e-'aPdx = r(^ + 1) =pV{p).
Jo

The specific electrical conductivity, a, is the coefficient ofX in

(42) when there is no temperature gradient in the material, i.e.

when dAjdx and dhjdx are zero. Thus

47r,6^ ^Aj3-i+^) ^

The thermal current density W is obtained by integrating the

product of the number of electrons in unit volume, which have

velocity components within a given range, by their thermal

energy ^mV^ and by their velocity component u parallel to the

temperature gradient, over all the values of u, v, w which occur.
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Thus

F= 27rm r u'xiV) V'dV= ^ m f" F'';^(F)dF
.'o o Jo

TT , VS — 1

m ux \s — l J a da;J

(43a).

f

When the electric current density / vanishes, we have from (42)

m ax \s—l J fiox

Jc 771/ TYt

Since, from p. 405, h=-~ = ^^^ by equation (24), we see that

hdx Tdx'

The thermal current, Wq, when there is no electric current, is

therefore

2 +3
w - - - ^ _-£lJ_i /I ^"•"

3 r *^ ^o dx
'

and the coefficient, k, of thermal conductivity is the coefficient

of — ^ m this expression or

k^l'^
U-i .^

(44)
r + 3

The ratio of the thermal to the electrical conductivity is

The simplicity of equation (45) is very striking. It shows

that the ratio of the thermal to the electrical conductivity is in-

dependent of the number and mass of the free electrons and of

the number and strength of the centres of force. In addition to

R, e and T it depends only on s, the index which determines the

mode of variation of the force exerted by the centres with the
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mutual distance. We have seen (p. 411) that the results of experi-

ments show that for the pure metals the value of kja is SR'T/e^;

whence we conclude that 2s/(s — 1) = 3 or s = 3. It follows that

the encounters of the electrons in all metals are such as would

occur with immovable particles which exert central forces varying

as the inverse third power of the mutual distance.

We can estimate the order of magnitude of the strength, K, of

the centres from that of the electrical conductivity of the metals

by substitution in equation (43). Substituting the values of

A and
(f),

we have

j,^2J2l^.E^if Ti
. TOO

I
Bin.'^(f)ada

Jo

where v is the number of molecules in 1 c.c. of any gas at 0°C, and

760 mms. We do not know either the number, N, of free electrons

or the number, n, of centres of force in unit volume ; but we shall

assume that both these quantities are of the same order of mag-

nitude as the number, p, of atoms of the metal in unit volume.

Let us put N='yp and n = Bp; then 7 and 8 are numbers com-

parable with unity. The other data required are, in general:

vR = 3-72 X 10^ ergs/° C, vm = 5x 10-^ gm. per c.c, e = 1*6 x lO-**

E.M. unit, T=273°C. and / 8m^<f)ttd(x which, when s = S, is
•'0

equal to

Taking the case of silver as an illustration, o- = 6 x 10~* E.M, unit

and Sir/7 = 8-5x10-^.

This result is of additional interest because several other

considerations point to the occurrence of forces varying inversely

as the cube of the distance as an important feature of atomic

structure. Thus J. J. Thomson* and Jeansf have shown that

some of the laws which govern the emission of thermal radiation

would follow if the collisions of the electrons were with centres

of force obejdng the inverse third power law. The strength, K, of

these centres can be estimated from the constants in the radiation

• Phil. Mag. vol. xiv. p. 217 (1907) ; vol. xx. p. 238 (1910).

t Ibid. vol. XX. p. 642 (1910).
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formulae. The mean of the estimates given by Thomson and

Jeans is K =2 5 x 10~-'. This agrees satisfactorily with that

given by the electrical conductivity.

If the centres of force are due to the occurrence of electrical

doublets inside the atom, it is possible to have a state of steady

motion in which an electron revolves about the axis of the

doublet. The energy of the steady motion, as well as that of

the small oscillations about it, is proportional to the frequency of

the rotation. Thomson* has suggested this result as an explana-

tion of the emission of electrons by the action of light (cf p. 469);

in which case, as we shall see in the next chapter, the kinetic

energy of the emitted electrons is a linear function of the fre-

quency of the exciting light. Another interesting property of

these orbits is that the moment of the magnet to which they are

equivalent depends only on the moment of the doublets about

which they are rotating. Since the universality of the law con-

necting radiation and temperature suggests that the strength of

these doublets is independent of the matter in which they occur,

they would furnish an explanation of the atomic magnets, or

magnetons, whose existence has been inferred by Weiss (cf. also

p. 395).

Electrical Conductivity as a Function of Temperature.

Although the electron theory has been very successful in

explaining the laws of Wiedemann and Franz and of Lorenz, which

are obeyed by the ratio of the thermal to the electrical con-

ductivity, it has not been so successful in accounting for the

behaviour of these two properties individually. In point of fact,

for the pure metals the thermal conductivity is practically inde-

pendent of the temperature, whereas the electrical conductivity is

approximately inversely proportional to the absolute temperature,

except at low temperatures. Since

"-^inU Kl^—~7 <*'>

I sm^c^aaa

even if we assume the index s which determines the law of force

to be practically independent of T, the observed law a varies as

* Fhil. Mag. vol. xx, p. 243 (1910).
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T~^ might arise from an appropriate variation of one or more of

the quantities N, n and K with T. At present there is no means

of finding the connection of K, N and n separately with T.

Recent experiments by Kammerlingh Onnes and his collabora-

tors have shown that the resistance of the pure metals becomes

exceedingly small at very low temperatures. This result cannot be

said to be definitely indicated by the formulae which we have just

developed. It is, however, not necessarily in conflict with them.

For example we might identify the centres, with which the elec-

trons collide, with the vibrators which take part in thermal

phenomena. The most obvious physical interpretation of these

vibrators is to regard them as electrical doublets. The doublets

might arise, for example, by the \'ibration or steady motion of

electrons about an equilibrium position. They would exert forces

on the moving electrons which would vary inversely as the cube

of the mutual distance, a result which, as we have seen, is required

by several considerations. It follows from Einstein's theory of

specific heats that the energy of the vibrators approaches zero

exponentially as the absolute zero of temperature is approached.

Now the average moment of a doublet constituted in this way is

proportional to the square root of its energy : so that the moment
or strength of the centres will also approach zero exponentially as

the temperature is reduced. Since there is no reason for sup-

posing that the number of free electrons approaches zero at so

fast a rate as this, the conductivity would become infinite at very

low temperatures.

Such a view is in satisfactory agreement with the experi-

mental measurements. By assuming that K times the product

on the right-hand side of (47) varies as T~^. which gives the

right variation of a with T at high temperatures, and that the

variation of K with T depends upon the contained heat energy,

as deduced from the specific heat measurements, in the manner
just indicated, I find that the calculated temperature at which the

electrical resistance disappears agrees quite accurately with that

given by Kammerlingh Onnes in the case of mercury and is not

far from the values given for lead and gold. The way in which

the calculated electrical resistance varies with the temperature is

also very similar to that found experimentally at these low tem-

peratures. The same results would not follow from Planck's later
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theory of specific heats mentioned in Chapter xv. According to that

view the energy of the vibrators does not approach the value zero at

low temperatures but the finite value hvl^ This would make K
approach a finite value, so that the resistance would not vanish.

The explanation just offered is in any event only a partial one

For Kamerlingh Onnes* has shown that there is a further sudden

diminution of the remaining resistivity at liquid helium tempera-

tures in the case of the pure metals. An interesting suggestion

to explain this effect has been given by Sir J. J. Thomsonf, who
assumes that the electrons are emitted along the axes of systems

which align themselves in the direction of the external field when

the heat energy is sufficiently diminished, in a way analogous to

the behaviour of the elementary magnets in Weiss's theory of

ferromagnetism. It is interesting to note that the supra-conductive

state, as it is called by Kamerlingh Onnes, disappears in a strong

magnetic field |.

Thermoelectric Phenomena.

As is well known, if a circuit which consists of wires of two

different materials is constructed, a current will flow round it

without the assistance of a battery, if the two junctions are at

different temperatures. There is no current when the two j unctions

are at the same temperature. As there is no observable change in

the nature or composition of the mal^erials constituting the circuit,

the electromotive force which drives these currents must be derived

from the available thermal energy. By causing the electric cur-

rents to perform mechanical work we could evidently construct

a heat engine out of a circuit of this kind. As long ago as 1854

Lord Kelvin showed that valuable information about thermoelectric

phenomena might be obtained by the application of the principles

of thermodynamics to thermoelectric circuits.

The thermoelectromotive force of a circuit consisting of the

two conductors A and B may be denoted by Ej^b- It has been

found that for a very large number of pairs of substances Ej^b can

be represented within the limits of accuracy of experimental ob-

servation by the comparatively simple empirical formula

E^B=-a{T,-T,) + ]^h{Ti-T,%

where T^ and Ti are the temperatures of the two junctions and
* Communications Phys, Lab. Leiden, Supplement No. 34 to Nos. 133—144,

p. 65 (1913). t Pliil- Mag. vol, xxx. p. 192 (1916).

X Kamerlingh Onnes, loc. cit. No. 139, p. 66 (1914).
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a and h are constants. The differential coefficient of Ej^b with

respect to the upper temperature T^ is called the thermoelectric

power of the circuit. It is clearly a linear function of the tem-

perature within the limits of accuracy of the formula above. The

thermoelectromotive forces between circuits of different metals

terminating at the same pair of temperatures are connected by

the relation E^b + Ebc = ^ag (48).

This is evident since the circuit composed by the addition of AB
and BG in the order of the letters only differs from ^C by the

inclusion of a single wire of the material B, the temperature of

which varies from one extreme to the other and back again. As

inequality of temperature in a closed circuit of a single uniform

material does not give rise to any thermoelectromotive force, this

cannot cause any difference from the effect given by .4C simply.

In addition to the thermoelectromotive force caused by a differ-

ence of temperature there are the converse reversible heating and

cooling effects which are produced by the flow of an electric current.

We have thus to consider the Peltier effect, which is the heat

liberated when an electric current flows across the junction between

two different metals, and the Thomson effect, which is the heat

developed reversibly when an electric current flows along an un-

equally heated bar. These are measured by the respective coeffi-

cients P and 0-. Both of these refer to the amount of heat liberated

by the passage of unit quantity of electricity. In specifying a- the

electricity has to flow against one degree difference of temperature,

the directions of the electric and thermal gradients being coinci-

dent, a is positive when positive current flowing in the direction

of increasing temperature causes an absorption of heat.

The application of the conservation of energy to a thermo-

electric circuit gives Ei = Ri^ + ilP + i \ <xdT if R is the

resistance of the circuit. When i is made very small the Joulian

development of heat Ri^ vanishes in comparison with the other

terms, so that the reversible quantities satisfy the equation

E = lP + j<7dT (49).

Similarly by applying the second law of thermodynamics in

the form
\ -m —0 to the reversible heat production, we have

X^+j^dT = (50).
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It follows from these equations that

^ = ^ and '^JB-<^A=T^,[j,j (51).

These conclusions have been confirmed in many particulars, and

there are no experimental results which can be said with certainty

to conflict with them. The values of the different thermoelectric

quantities may be derived from the expressions given on pp. 420

—

421, for the rate of transportation of electricity and heat. These

expressions were derived on the hypothesis that the law of force

between the electrons and the centres with which they collide varied

as a power of the mutual distance. They will hold strictly only if

the centres are at distances apart which are large compared with

those within which the forces are appreciable. The two principal

reasons for this are : (1) if this condition is not satisfied all the

particles are under collision conditions at every instant and the

physical foundation of the calculation disappears, and (2) as

the potential energy varies very rapidly from point to point in the

neighbourhood of any electron the quantity A will be subject to

corresponding sharp variations (cf equation (15), p. 403), and the

actual A can therefore scarcely be regarded as differentiable.

In order to embrace these conditions we shall generalize tlie

former calculations a little at the sacrifice of a certain amount of

rigour. We shall assume that the average value of A is differ-

entiable however complicated the internal fields of force may be

and that, for the steady flow parallel to the axis of u, f is always

of the form J.e~^^^ + w%(F'), where ;^ involves u, v and w through

V only. By working through a calculation similar to that already

carried out, it becomes clear that, provided the medium is

isotropic, ;^ ( V) will be of the form

where the function yfr involves only the mass, m, of the electrons,

the number, n, of the centres in unit volume, the law of force

and V. In this way the equations for the currents of electricity

and heat may be written

:
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F=^«j(2MX-^)7. +^*4 (54)

=,-—a,^l^mX-ItT -^~+/;jg-| (55)

RT .
J
dT _^.

= -V*~^rf^ ^^^^'

where

Jo

<To = specific electrical conductivity = -^ -^^ J.J4,

k = thermal conductivity = 7^'n n^Ws—f-} 1

and %. = fiig-(^:)] = ?^.(.'-.). '

If the centres are far enough apart and act on one another

with forces which vary as the inverse sth power of the distance,

we have, as before,

/' = -C4l + 2) and ^' = -(-A.+3).

In the equations above, X is the mechanical force on an electron.

If Xq is the electric intensity, then eXo = mX.

The thermoelectromotive force E round any circuit is the

value of / Xgdx which is required to reduce the current i to zero,

when there are no batteries in the circuit. Thus from (53)

E = I Xodx when i=0

dx

= ||i2'log^|-J(log^+/i)^T| (57),

after integrating by parts. If the integral is taken round a closed

circuit of two metals with varying temperatures, the integrated
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I? = f {log
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part has the same value at the identical limits. The unintegrated

part, since the integi'and is not necessarily a perfect differential,

will not necessarily be zero. If the temperatures of the junctions

are T' and T^, it may be written

^/^'|log^^ + (/^-yuO|c^r (58),

where the suffixes 1 and 2 denote the respective materials. The
thermoelectric power is

dT

The Thomson coefficient, o-, may be obtained as follows :—The

heat developed per unit area and thickness dx in the direction of

the current is equal to the work done by the electric force inside

the volume + the stream of energy flowing in — the stream of

energy flowing out. This is

(60),

from (53) and (56). The first term on the right in (60) represents

the Joule heating effect and the third term is independent of the

electric current. The middle term alone reverses with the electric

current and is therefore the heat production owing to the Thomson

effect. The Thomson coefficient o; which is the amount of heat

absorption per unit current per unit time per unit rise of tem-

perature, is therefore

a==-~^{\ogA+f.) (61).

The value of the Peltier effect may be obtained by applying

the same equation to the passage of a current across the junction

between two metals at the same temperature instead of con-

sidering the flow along a bar of the same metal with varying

temperature. The magnitude of the Peltier coefficient Pjs is

given by

eP,, = RT(\og^^ + f,,-fM.^ (02\

This is not quite equal to the work done by the electric force

in the neighbourhood of the separating surface. For we see from
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(53) that when there is no difference of temperature ( ^ = j, as

t approaches zero X^ approaches ^— ; so that the work

A
done by the electric force at the boundary is jRTlog-j^. The

difference between this and eP,2 is due to the fact that, when the

law of force is different in different metals, the amount of kinetic

energy transported by the electrons which carry a given current

is different. As the ratio of the thermal and electric conductivities

indicates that the law of force is very nearly the same for the pure

metals which are good conductors, it is probable that /ij — /Aj is not

large. . It may, however, be of the same order of magnitude as the

observed Peltier and Thomson effects.

The values given by (58), (59), (61) and (62) satisfy the

equations (49)—(51) of Lord Kelvin's thermodynamic theory.

A different method of deducing some of the thermoelectric for-

mulae will be considered in the next chapter.

Conductivity for Periodic Forces.

The behaviour of the electrons in metals under alternating

forces has been considered by various writers*. The following

investigation, due to H. A. Wilson +, is an elaboration of a method

originally given by Jeans:}:. The electrons instantaneously present

in any given volume may be divided into groups characterized by

a particular velocity of agitation V. The number of collisions oi

the electrons with one another is regarded as small compared with

the number of collisions between electrons and atoms. Owing to

the relatively small mass of the electrons the latter class of

collisions will have very little effect in changing the magnitude

oi the velocity V. Thus the electrons in any given group will

remain in that group throughout a large number of collisions.

Let dN denote the number of electrons in the group characterized

by the value V and let u denote the average component of velocity

of this group in the direction of the electric intensity X. Consider

* More complete discussions than that considered in the text have been given

by H, A. Lorentz, Proc. Acad. Amsterdam, vol. v. p. 666 (1903), and N. Bohr,

Studier over Metallernes Elektrontheori, p. 76 (1911). Some of Bohr's results have

been obtained by Livens {Phil. Mag. vol. xxx. p. 434 (1915)) by a different method.

+ Phil. Mag. VL vol. xx. p. 835 (1910).

t Ibid. vol. xvn. p. 773 (1909).



THE KINETIC THEORY OF ELECTRONIC CONDUCTION 431

the rate at which the momentum of the group is changing. The

group is gaining momentum from the applied field at a rate which

is equal to the force which acts on the electrons in the group. The

magnitude of this is XedN. At the same time the momentum
thus acquired is being dissipated by collisions at a rate mu^dN,
where /3 depends on V, on the strength of the centres and on the

law of force which governs the collisions. The value of /3 can be

found by considering the deviation of the electrons produced by

collisions*. Thus in general the change of momentum of the group

Avith time will be in accordance with the differential equation

:

^iviudN) = XedN- urn/3dN (63).

When we are dealing with direct currents a Steady motion is

soon established which is independent of the time. The value of

u for this case is thus obtained by putting the left-hand side of

equation (63) equal to zero. The current density is eJudN=a-X,
where a is the specific electrical conductivity. When the same

assumptions are made about the nature of the collisions and about

the law of distribution of velocity among the electrons {dN as a

function of V), this leads to values of a in agreement with those

given by other methods for direct currents.

To find the conductivity for periodic forces let X = Xq cos pt.

After dividing by dN, (63) becomes

du ^ „w -^ + mpu = X(,e cospt.

As in the theory of dispersion, the solution of this equation which

corresponds to stationary conditions is the particular integral

^ e cos (pt — 8)U= Xo
/ ^ y

where tan 8 =p//3. The mean value of u for all the electrons is

udN.-11
Since all the work done by the electromotive force is converted

into heat the rate of heat production is the mean value of

NeuX = NeuXo cos pt.

It is also equal to ^a-pX^^, where a-p is the conductivity for forces

whose frequency is p. This statement may be taken as the

• Cf. H. A. Wilson, loc. cit.
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definition of a-p. The mean value is to be taken over a time

which is large compared with 27r/p. Thus ^o-pA','' is equal to the

mean value of

^ r cos^^^cos^^)^^ and cr, = ^ f-f^, ...(64).

In this expression N and ^ are functions of V and the integral is

one with respect to V between the limits and + oo . As an

illustration we may consider the simplest possible supposition that

we can make, namely that the electrons all have equal velocities.

The integral then reduces to a sum over the N electrons for all of

which /3 has the same value. For zero frequency (p = 0) the value

of a-p then becomes

and

:p^=-./(l +P'/a>) = .,/(! +i>=^'^0 ...(60).

All the quantities except N on the right-hand side of this

equation are known with considerable accuracy, and a-p can be

deduced from experiments on the optical properties of metals.

Schuster* has applied equation (65) to the optical data accumu-

lated by Drudef. In this way he finds that for all the commoner

metals the number of free electrons in a given volume is from one

to three times as great as the number of atoms present. It may
be that these estimates are subject to errors arising. from the

occurrence of selective optical absorption, a phenomenon which is

disregarded in the theory above ; but it does not seem likely

that the number can be much smaller than this. For the experi-

ments of Rubens and Hagen with infra-red radiation show that

ap does not differ appreciably from o-q until the visible spectrum

is approached rather closely. This would not be true if iV" had

values much smaller than those calculated by Schuster.

Thet'mal Radiation.

The theory of the motion of electrons in metals is of import-

ance from another point of view because it helps us to form a

Phil. Mag. VI. vol. vii. p. 151 (190i).

t Ann. der Fhijiik, vol. xxxix. p. 537 (1890) ; vol. xm. p. 189 (1891).
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judgment as to the mechanism of the emission of electromagnetic

thermal radiation from hot bodies. We saw in Chap, xv that

the spectral distribution of energy in the radiation inside an

enclosure in equilibrium with matter was independent of the

nature of the matter and determined solely by the temperature of

the enclosure. It follows that if we can imagine a type of matter

which is sufficiently real and at the same time sufficiently simple

in its behaviour to admit of our calculating the properties of the

radiation which is in equilibrium with it at a given temperature,

we shall have solved the radiation problem. Such a possibility

would seem to be offered by the theory of the motion of electrons

in metals. We know that during the collisions the electrons are

accelerated and that when electrically charged particles are ac-

celerated they emit radiation. The accelerations of the other

constituents of the system are probably negligible in comparison

with those of the electrons; so that it would seem that we are

not likely to be led into serious error if we attribute all the

radiation to the motion of the electrons. A very general know-

ledge of the nature of the motions enables us to analyse the

radiation thus emitted into its constituent frequencies by means

of Fourier's series. In this way we can arrive at a knowledge of

the way in which energy of assigned frequency is being emitted

by the" moving electrons. In the steady state an equal amount of

radiant energy will be absorbed by the system. The absorption

of energy occurs through the Joule heating effect of the electric

currents established by the electric intensity in the electro-

magnetic waves. If the intensity in the waves of frequency p is

Xp the absorption of energy per unit volume per unit time is the

mean value of apXp\ where a-p is the conductivity for currents of

frequency p. As we have seen a-p is a function of ^. By equating

the amount of emitted energy of a given frequency to that ab-

sorbed we arrive at an expression for the steady energy density of

given frequency.

This method of calculating the distribution of energy in the

black body spectrum was first used by Lorentz*. His calculations

were confined to waves of low frequencies. The method has since

been extended by various writers, including J. J, Thomson f,

* Cf. Theory of Electrons, p. 80 ; Amsterdam Proc. 1902-3, p. 666.

t Phil. Mag. VI. vol. xiv. p. 217 (1907) ; vol, xx. p. 238 (1910).

K. E. T. 28
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Jeans*, H. A. Wilsonf and BohrJ. It appears that if the same

assumptions are consistently carried through the calculations the

distribution of energy found is that given by the law of Jeans and

Lord Rayleigh. As we have seen, this law is not in accordance

with the experimental facts; so that the method is not adequate

to the solution of the problem. In fact, Jeans§ and McLaren]]

have shown pretty conclusively that any dynamical method leads

inevitably to Jeans's law, so that a dynamical foundation of the

theory of radiation does not seem to be possible.

Galvanomagnetic and Thermomagnetio Phenomena.

A number of interesting phenomena are observed when a

conductor carrying an electric or thermal current is placed in

a magnetic field. The effects are conveniently classified according

to whether they are exerted across or along the primary current.

The transverse effects are as follows

:

(1) Hall Effect. When an electric current flows across the

lines of force of a magnetic field an electromotive force is observed

which is at right angles to both the primary current and the

magnetic field.

(2) von Ettingshausen's Effect. Under the like circum-

stances a temperature gradient is observed which has the

opposite direction to the Hall electromotive force.

(3) Nemst and von Ettingshausen's Effect. When heat

flows across the lines of magnetic force there is an electromotive

force in the mutually perpendicular direction.

(4) Leduc and Righi's Effect. Under the like conditions

there is a transverse temperature gradient.

The transverse effects are all proportional to the vector

product of the intensity H of the magnetic field (at any rate for

sufficiently small fields) and the primary current i of heat or

electricity. Thus any of the effects of amount E may be considered

to be measui"ed by the coefficients ttj, TTg, tts, tt^, where,for each suffix,

E^irHi (66).

• P/«7, Mag. vol. xvii. p. 774 (1909) ; vol. xviii. p. 209 (1909).

i- Ibid. vol. XX. p. 835 (1910).

X Studier over metallenies Eleklrontheori, Copenhagen (1911).

• § Phil. Mag. VI. vol. xvii. p. 229 (1909).

II
Ibid. vol. XXI. p. 15 (1911).
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The suffixes correspond to the numbers which precede the

effects as enumerated above, tt is taken to be positive if, when

the primary current flows in the positive direction along the x

axis and H is in the positive direction along the y axis, the resulting

electric or temperature gradient is in the positive direction along

the z axis, the arrangement of the axes being such that a right-

handed screw travelling along Ox would rotate from Oy to Oz.

This choice of signs is not, however, the one which occurs in the

literature of the subject. A series of measurements by Zahn of

the various coefficients for different conductors led to the values

in the following table:

Conductor tt^ tt^ ir^ ir^

Iridium +4-02x10-* -5-5x10-8 -5x10-8
Palladium I -6-91x10-* +3-3x10-8 +1-27x10-*
Palladium II -11-12x10-* +1-8x10-8 +0-51x10-*
Platinum -1-27x10-* +2-1x10-8 very small

Copper -4-28x10-* +232x10-8 -2-7x10"*
Silver -8-97x10-* +40-4x10-8 -4-3x10"*
Zinc +10-4x10-* -12-9x10-8 -2-4x10"*
Iron +10-8x10-* -39x10-8 -10-5x10-* +5-7x10-8
Steel . +133-6x10-* -68-7x10-8 -16-6x10-* +6-7x10-8
Nickel I -46-9x10-* +20x10-8 +13x10"* -2-8xlO"8
Nickel II -125x10-* +55xlO"8 +35-5x10-* -17-6xlO"8
Antimony +2190x10"* -202xlO"8 +176x10"* -134x10-8

It is clear from these numbers that the phenomena are very

complicated. The sign and magnitude of the observed effects

exhibit no obvious relation to any known property of the materials

concerned. In the case of bismuth, a conducting material which

can be obtained in the form of large crystals, it has been found

that the Hall coefficient changes sign as the orientations of the

primary current and the magnetic field are changed with reference

to the crystal axes.

The longitudinal effects are different according as the magnetic

field is across or along the direction of the primary current. With
a transverse magnetic field the following longitudinal effects have

been observed. Each corresponds to the transverse effect with

the same number prefixed.

(1) When a conductor is placed in a transverse magnetic

field a change in its specific resistance is found to occur.

28—2
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(2) There is a Peltier effect at the junction between trans-

versely magnetized and unmagnetized material.

(3) There is a thermoelectromotive force between trans-

versely magnetized and unmagnetized material.

(4) There is an alteration in the thermal conductivity in a

transverse magnetic field.

All these effects also occur in a longitudinal magnetic field,

but as a rule they are then smaller. In both cases (2), (3) and (4)

have been observed only with bismuth and the ferromagnetic

metals. The change of resistance in a magnetic field, also, is

much larger with these metals than with any of the others.

Since the change of resistance cannot depend on the sign of H,

provided the material is isotropic, it follows that for small fields

the change hR in the resistance R must satisfy the equation

SR/R =AH% where A is a, constant. This equation is satisfied

over a considerable range of values of H by the metals which

exhibit only small changes. The following values of A have been

determined by Patterson:

Cadmium 2-82x10-12 Copper 0'26xl0-i2

Zinc 0-87x10-12 Tin 0-2.3x10-12

Gold 0-37x10-12 Palladium O-llxlO-12

SUver 0-26x10-12 Platinum 0-06x10-12

The effects are much larger at low temperatures. Thus Laws

found the following values of IQi^ x ^ :

Temperature - 1 86' C. + 18° C. + 50° C. + 100° C.

Cadmium 51 2-60 1-70 0-98

Zinc 18 0-88 058 —
With crystals the effect depends on the direction of the current

with reference to the crystal axes, and with the ferromagnetic sub-

stances the intensity of magnetization appears to be at least as

important as the magnetic intensity.

Theory of Galvanomagnetic Effects.

The electron theory cannot be said to have been very success-

ful, as yet, in unravelling these complicated magnetic phenomena.

No doubt one of the factors having an influence is the deflexion

of the paths of the moving electrons which is produced by an

external magnetic field. The magnitude of the Hall effect which
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would be expected to arise in this way may be calculated as

follows:

We shall suppose the Hall effect to be measured by the

external electromotive force which it is necessary to introduce

in order to reduce the deflexion of a galvanometer again to zero.

The galvanometer is connected across two points at unit distance

apart which were at the same potential before the magnetic field

was applied. Let the primary current i be along the axis of x,

the Hall current j along the axis of y and the magnetic intensity

H along the axis of z. The components of the electric intensity

at any instant are X, Y, 0. If x, y, z are the coordinates of an

electron, its equations of motion are

mx = eX eif, iny = eY-\—-ex, mz = (67).

Thus mx = eXt— — ey + mu (68),
c

TT

my = eYt + ~ ex+ mv (69),
c

if we take the origin of time to be the instant at which the last

collision occurred, and put x = y = 0, x = u and y = v when t = 0.

From (68)

a; = s — Xt^ eyt + ut,
2 m mc

and from (69)

y = lYt + ~ ~\l-Xf---yt + nt\ +v ...(70).m c m [2 m c m"^ j .

If T is the time between two collisions, assumed for simplicity

to be the same in all cases, the average value of y is

v = - ydt=-Y-^-ir \-^~ Zt« + ^ w y]r\-\-v.
rJo m 2 c nilem 2\ c m^J j

Now u = 'v = 0, since these quantities are as likely to be

•ative as
]

^Xt, so that

IT

negative as positive, and — y may be neglected compared with
c

^ 2m { 3cm j
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The Hall current density j* is =ney, so that, for this to vanish,

6cm

Also ^=a~ ^T»
2 m

if we neglect y as before.

_ 1 g»
Therefore i = ned; = ^n — Xt,

2 m

XT 2ifr .

or r=-K 'i-

S c ne

The Hall coefficient ttj is

Hi Sne ^ ^

if all the quantities are in electromagnetic units.

Several methods of estimating n lead to values of the order

lO'", and putting e = — 10~^ E.M.u. approx,, we see that the

order of magnitude of ttj is — 10~l To the values which are

given on p. 435 the following, which have been found by diflferent

observers, may be added for comparison

:

Metal ... Bi Sn Pb Sb Te Na Cu
n-i -9-0 -000004 +0-00009 +0-192 +530 -0-0025 -00005

According to the theory above, the Hall coefficient should

be negative for all substances. The positive coefficients ex-

hibited by Lead, Antimony, Tellurium, Iridium, Zinc and Iron

might be taken to indicate the presence of free positive electrons

if there were any independent evidence of their occurrence. A
theory along these lines has been worked out by Drude*, but it

cannot be considered to have been very successful. It seems

more likely that the effects are all due to negative electrons, but

that the theory only takes account of part of the phenomena. It

seems probable that the magnetic field affects the conditions of

equilibrium of the electrons and the way in which they are emitted

by the parent atoms. Suggestions towards a theory of this kind

have been made by Sir J. J. Thomsonf. It is also probable that

the current-carrying electrons are deflected by the magnetic

• Ann. der Physik, vol. m. p. 369 (1900).

+ Corjauscular Theory of Mattel', chap. v. New York (1907).
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fields of the electrons revolving within the atoms and that the

orientation of the orbits of revolution is affected by the external

magnetic field.

In the case of cuprous iodide, a compound substance which

exhibits fairly typical electronic conductivity, it is possible, by

adding varying amounts of iodine in excess of that which is

normally present, to cause the conductivity to vary over a wide

range. Presumably this alters the concentration of the free

electrons without changing other important factors appreciably;

for Steinberg* has shown that the Hall coefficient for this sub-

stance is directly proportional to the specific resistance. It is

therefore inversely as n in accordance with equation (71).

The change of resistance in a transverse magnetic field may
be calculated on the electron theory in the following manner

:

Using the same notation as in the theory of the Hall effect

and neglecting the term Heyjc, because it is small when averaged,

we have

m c Tni c mvl m )-|.

. e ^^ H e \H e (I e ^,, 1 ,A
,

)

in c m\ c 7)i\Q vi

1 r . 1-r 1 r . I e ^ Hea= - \ x = - — At
c m

ElfLtx-r-
c m \24 m

I = nex = - — -\t- Yin —^'^(X.

If there is no magnetic field H=0 and

. n e^ Y V%= n ~ "^oA = aA.

It is important to notice that in the presence of a magnetic

field the free time t will not be the same as r^, because the

magnetic field affects the curvature and therefore the average

length of the free paths, and it may also affect the orientation of

the systems with which the electrons collidef. Calling Br the

* Of. Baedeker, Elektrischen Erscheinungen, etc. pp. 101, 123.

t Cf. E. P. Adams, Phys. Rev. vol. xxiv. p. 428(1007).
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change in t thus produced, the increment Bi in the current,

eflFected by the magnetic field H, is

2 m
I

12 c' m»
J

If p = l/o- is the specific resistance

p a- To i 12 c^ m^ ]'

Since the difference between t and Tq is small compared with

either of them, this may be written

If we may neglect St/tq this equation may-be used to deter-

mine n, since all the quantities are known. Using this method,

which is due to Sir J. J. Thomson, Patterson* found that his

measurements of the change of resistance led to the following

values of n:

Metal ... Pt Au Sn Ag Cu
1-4 X 1022, 2-2 X 1022, 4-5 x IO21, 3-6 X IO22, 3-4 x IO22,

Metal .. Zn Cd Hg C
5-8x1022, 2-7x1021, 4-3x1020, 1-08x10".

It is difficult to judge how much reliance ought to be placed

on these magnetic methods of evaluating n until a more satis-

factory explanation of the anomalous values of the Hall coefficient

is forthcoming.

A detailed account of the modem experimental data relating

to galvanomagnetic and thermomagnetic phenomena will be found

in Baedeker's Die Elektrisclien Erscheinungen in MetaUiscken

Leitern, p. 94.

* Phil. May. vol. ni. p. 643 (1902).



CHAPTEU XVIII

THE EQUILIBRIUM THEORY OF ELECTRONIC CONDUCTORS

The Emission of Electrons from Hot Bodies and Thermo-

electric Phenomena.

When bodies are heated an emission of negative electrons

is found to occur, which increases very rapidly with increasing

temperature. The salient features of this phenomenon as they

have revealed themselves experimentally may be briefly re-

capitulated as follows

:

(1) The number of electrons* N emitted at different tem-

peratures T is governed by the formula

N=^AT^e-^l'^ (I).

A, \ and h are constants. A varies very much from one substance

to another. X is of the order unity, and its precise value makes

very little difference to the formula, b in equivalent volts is always

comparable with five.

(2) The emission (evaporation) of electrons is accompanied

by an absorption of heatf. In the case of the only metals

(osmium, tungsten and platinum) which have been examined the

magnitude of this effect is about what would be expected from

the values of h.

(3) The absorption
:J:
of electrons by a cold metal is accom-

panied by a liberation of heat. For a large number of metals

this has been found to be approximately what the value of h

would lead us to expect.

* 0. W. Richardson, Phil. Trans. (A), vol. cci. p. 643 (1903).

+ Welmelt and Jentzsch, Ann. der Physik, vol. xxviii. p. 687 (1909); Cooke and

Richardson, Phil. Mag. vol. xxv. p. 624 (1913), vol. xxvi. p. 472 (1913) ; Wehnelt

and Liebreich, Verh. der dentsch. phi/sik. Ges. 15. Jahrgang, p. 1057 (1913).

J Richardson and Cooke, Pkil. Mag, vol. xx. p. 173 (1910) ; vol. xxi. p. 404

(1911).
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(4) The energy* of, and the distribution of velocity among,

the emitted electrons is identical with that given by Maxwell's

law for molecules having the same mass as an electron at the

same temperature as the emitting metal.

In addition to the points outlined above a large amount of

information bearing on this subject in other ways has been

accumulated. For an account of this the reader may refer to

The EleclHcal Properties of Flames and of Incandescent Solids,

by H. A. Wilson (University of London Press (1912)), or to The

Emission of Electricity from Hot Bodies by O. W. Richardson

(Longmans, Green and Co. London (1916)).

Li some cases, notably those furnished by the alkali metalsf,

this emission may be greatly augmented by the occurrence of

chemical action. In fact, some recent writers have taken the

standpoint that chemical action is an essential condition for the

emission to occur. This is very unlikely on general grounds.

For it amounts to denying that the simplest type of chemical

action, namely, the decomposition of an elementary atom into

a negative electron and a positive ion, can ever occur under

the influence of heat alone. In the opinion of the writer, the

facts also are decisively against it. The behaviour of platinum,

which is the substance which has been most thoroughly studied,

is very difficult to reconcile with any chemical theory, and the

currents which can be obtained from incandescent tungsten are

much too large to be attributed to chemical action;^

We shall therefore assume that there is an emission of electrons

from elementary and compound substances which is a purely

thermal effect and try to find out what laws we should expect

such a phenomenon to obey. It is convenient to have a separate

name for an emission of this kind, and we shall describe the

emission of electrons which occurs under the influence of heat

by the term thermionic.

It is also worth while to consider for a moment what laws we
should expect an emission to observe which is conditioned by

• Richardson and Brown, Phil. Mag. voL xvi. p. 353 (1908) ; Richardson, Phil.

Mag. vol. xvi. p. 890 (1908) ; vol. xvm. p. 681 (1909).

t Cf. Fredenhagen, Verh. der deutsch. physik. Ges. 14. Jahrgang, p. 384 (1912).

+ Cf. 0. W. Richardsou, Phil. Mag. vol. xxvi. p. 345 (1913).
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chemical action. The electrons which are liberated are then to

be regarded as one of the products, either intermediate or final,

of the chemical action, and the extent to which they are formed

will be determined by the laws which govern the formation of

other chemical products. Now, the law which governs the rate

of chemical actions in general is not essentially different from (I),

and something very like the other results enumerated on p. 441

would also follow in this case, so that such considerations will not

enable us to distinguish between the two phenomena. The only

satisfactory criterion is whether the emission of electrons is

accompanied, pari passu, by chemical combination or decomposi-

tion of the more generally recognized type. There is no evidence

that this is universally the case.

We shall now return to the consideration of the theory of the

purely thermal emission. This phenomenon may be attributed

to the increased kinetic energy of the electrons at high tempera-

tures enabling them to overcome the forces which tend to retain

them in the conductor. The rate of variation of the emission with

the temperature may be calculated in a variety of ways. It will be

conducive to clearness if we sacrifice generality to a slight extent

and make a definite hypothesis about the structure of the interior

of a metallic conductor : although many of our results will be more

general than the hypothesis we are making. We have seen that

the electrons in a good conductor behave as though they were

acted upon by fixed centres of force varying as the inverse third

power of the mutual distance. The potential energy of an elec-

tron must therefore be continually varying from point to point

of its path. We shall suppose that the potential energy of an

electron inside a metal is a function of its position only. In other

words, we are supposing that the interior of a metal may be

sufficiently described by mapping it out by a series of fixed

surfaces, the level surfaces of W, the potential energy of an

electron. These surfaces are supposed to be definite and charac-

teristic for each conductor. The fact that the electrons are in

motion prevents this from being a complete representation of

the state of affairs, but it will be fairly certain to give a

satisfactory account of the more important features of the

phenomena.

The state of the electrons at any point of such a system as we
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are considering is defined by the average number v of them per unit

volume at that point at any instant, by the potential energy W of

the electrons at that point, and by the temperature T, which is

proportional to the average kinetic energy of the electrons. At
points just outside any conductor W takes the constant value Wq.

In the state of equilibrium the values of Wq are different and

characteristic for different conductors. This definition of Wo is not

sufficiently exact. At points very close to the conductor an electron

is attracted towards it by its mirror image in the conductor.

Thus W increases for some little distance away from the conductor

and the points at which it approaches a sensibly constant value

are not immediately outside the bounding surface. On the other

hand, at considerable distances from the surface W will be affected

by the potential of other bodies in the neighbourhood. The true

value of Wo is the value of W at points at a considerable distance

from the surface, either in a cavity inside the conductor or outside

if there are no other bodies in the neighbourhood.

It follows, as a result of our investigation of the kinetic

theory of matter (p. 404), that at any point in a system in

equilibrium at temperature T,

dn=vdT = Ke-^/^'^dT
'.

(]),

where dn is the number of electrons, which participate in thermal

phenomena, in the element of volume dr, and K is constant

throughout the system, being a function of T only.

We shall now consider the formulae which determine the

equilibrium between the external free electrons and the internal

electrons which can become free. Confining our attention to a

single conductor, consider first the special case in which there are

a finite number p of finite internal regions each characterized by

constant values Vi, Wi, Ti, ... Vp, Wp, Tp. Then if Vo, Wq, Tj are

the values of the corresponding variables just outside the con-

ductor, we have

g-WJJlT ^^ ~ g-fVJUT ••' g-WpjBT -^jg-WIRT

where n is the total number of electrons which can become free

that are present in the system. In general it will be possible

to regard If as having a constant value only over a region of
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infinitesimal volume, so that

''o _ ZT _ ^^ _ '^
/qx

where the integral is taken throughout the entire system. If we
regard Wo as a fixed constant,

/l
v, = n /I e-(^'-^'o)/RTdT. (4)

The next step is to calculate the absorption of heat when

electrons are allowed to evaporate from a conductor. Consider

the conductor to be surrounded by an insulating boundaiy such

that the volume of the space between the conductor and the

boundary is v. If the boundary is displaced so that the volume

increases by dv, work pdv will be done by the equilibrium pressure,

p, of the atmosphere of electrons. If we admit that such a change

of the external volume is not accompanied by any material

alteration of the mutual potential energy of the positively charged

parts of the atoms which make up the conductor, the increment

dS in the entropy of the system will be

dS=hdU + pdv) (5),

where U=n{^RT + J) (6),

j^lWe-^^l^'^drlL-^i^'^dT (7),

and p = VoRT (8).

n is the total number of electrons in the system which can

become free, and the integrals in J are extended throughout the

system. Since n is constant, it follows that when the volume is

increased by dv the heat abstracted is

dQ = TdS = dv(n^^+VoR'A (9).

Since

Jr+v+sv = f We-^'^'^'dr 11 e-^l^'^dr
J T+v+Sv I J T+v+Sv

IT+ t)
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g-Wt/BT
= 7 Wo--'-^ ;...(io),

J r+v \ J T+v I

where / denotes that the integral is taken over the volume t
J T+D

of the conductor plus the volume v of the external space.

Let Wp be the number of electrons in the external volume v

and rir the number, of the kind contemplated, in the metal. Then
in these problems «„ is always extremely small compared with

Hr. And since

by (3), we may replace

[ e-^^I^Tdr in (10) by \ e-^^^^dr.

Also since

f
We-^/^'^dr

J V

f We-^/^^dr
Jr T

and the following equation is true as regards order of magni-

tude,

the order of magnitude of

f
Vfe-^'^l^'^dr

J V

is that of — . Thus 1 'We~^^'^^^''^ dr may also be replaced by
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f We-^l^'^dr in (10). Whence

4-= J-- (Fo-/) (11),

and from (3)

n^I^v,{W,-J) (12).

By comparison with (9) the loss of heat which accompanies

the escape of one electron is

-^= Wo-J+RT=w + RT (18).
VqCV

Since RT is the external work, lu =Wq — J \b the internal

latent heat of evaporation of one electron. Moreover, since 8
is a perfect differential,

From (5) and (6)

(d8\ n /3 ^ dJ\ , /dS\ 1 f dJ \

Thus Ji+p^T^^ = T (voR + RT ^)

and m^^ ~ = n-^- = VqIU,

•(14),

dT dv

so that Vo = Ae-' = Ae •'

where -A is a quantity, characteristic of the material, which is

independent of T.

Equations (14) exhibit the relation between the equilibrium

concentration Vq of the electrons in the external atmosphere, the

temperature T and their internal latent heat of evaporation w.

If w were a known function of 1\ (14) would enable us completely

to specify i^o as a function of T. Some information about the way

in which w depends on T may be obtained by the following slightly

different thermodynamic argument.
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The Relation with the Specific Heat of Electricity.

There is an intimate connection between vq, T, w and the specific

heat of electricity <t within the conductor under consideration.

Suppose that we have two conductors A and A' made of the same
material, but maintained at the different absolute temperatures

T and T'. They are to be of sufficiently great size and are

connected by a thin conductor of the same material. The atmo-

spheres of electrons about A and A' are enclosed and separated

from each other by a suitable insulating boundaiy (see Fig. 50).

*

vV v

A A'yyy'/yy//y/yyyy/yyyyyy/yyyyyyyyyyyyy^yyyyyyA

T T'

P P'

A

Fig. 60.

If contact difference of potential depends upon temperature, the

potential V at the surface of A' will not be the same as that

at the surface of A. If the value at the latter surface is F, the

electrons in the enclosure surrounding A will be at a different

electric potential from those surrounding A'. Let eV be >eF,

and surround A with a screen which is permeable to the electrons

and maintained at the potential V' . This may be imagined as

a wire gauze of indefinite fineness which is connected to one

end of a battery, the other end being connected to A. The

electromotive force of the battery is Y' — V. There is no work

done by the battery, but even if there were it would not affect

the argument. The nett effect of this airangement is that the

electrons in the enclosure outside the potential filter have the

temperature T and the potential V. Their pressure po is different

from the pressure p outside A, the relation being evidently

eiV' -V)
log po = log ;)

-
RT .(15).
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With the arrangement shown in the figure the electrons are

made to perform a reversible thermodynamic cycle between the

temperatures T and T' in the following manner:

By means of a suitable piston and cylinder arrangement N
electrons are taken out of the enclosure bounding A. This opera-

tion is conducted at constant pressure p^, the temperature being T
and the potential V. The external work done is NRT and the heat

absorbed from A is N [w-ite{V' -V)-\- RT]. The N electrons

are then caused to expand adiabatically to the temperature T'.

The work done during this adiabatic transformation is

NR^{T'-T),

where 7 is the ratio of the specific heats of the electrons at

constant pressure and at constant volume. The heat absorbed is

nil and the pressure is changed from po to

The next step consists in expanding to the pressure p' at the con-

stant temperature T'. The work done here is

-irijriog£;@T\y-^

and an equal amount of heat is absorbed. The electrons at the

temperature T' and potential V are then allowed to flow into A'

under the uniform pressure p'. The work done during this stage

is -NRT' and the heat absorbed is -N{w'+RT'), where w' is the

internal latent heat of evaporation of one electron at T'. Finally the

electrons are allowed to flow down the connecting conductor back

to A, when the whole system is in precisely the condition at which

we started. There is no work done in the last operation and

the heat absorbed is Ne I SdT, where S is the heat absorbed
J T'

when unit quantity of electricity flows against unit rise of

temperature.

Since the heat absorbed during the flow down the conductor is

taken in at a series of continuously varying temperatures we have

R. E. T. 29
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to apply the second law of thermodynamics in the integral form

jdQ

This gives

w + e(V'-V) + RT p, pfT\^y w' + RT\ ^ S .^ .

f ^^'^po[r) r-+^J^r^^=^'
whence, by (15),

|-|; + i2{iog;)-iogp'}-^^-(iogr-iogr)+ej^|dr=o

....!!.. .(16).

or iogp--X_logT+ ^+-lJ''|rfr = ^ (17),

and VoRT =p = A,Ty-^e ^T ^JoT (18),

_w_ f^f I eS\dT

or Vo = A,e ^t+ j ^,^-1 RjT
(19),

In these equations A, Ai and A^ are constants which are

characteristic of the substance and are independent of T. e is

used for the base of the natural logarithms to distinguish it from

the electronic charge e.

A certain amount of caution is necessary in the interpretation

of these equations. In measuring the specific heat of electricity a,

a continuous current is driven along by means of an impressed

electromotive force. If we are to be certain that S and o- are the

same thing it is desirable that the flow down the conductor should

be a continuous process. This can be realized to any desired degree

of approximation by making the cylinders sufficiently small and

numerous and working them rapidly enough. As we have not

proved that the thermal effects arising from a current inspired by

difiusion are identical with those due to a current driven by an

impressed electromotive force, it is desirable that the current in the

unequally heated conductor should be driven in this way. Our

cyclic process may be adapted to this end by introducing a battery

in the wire, which is made indefinitely thin, whilst the conductors

A and A' are indefinitely large. The transference in the wire is

thus electrically driven and outside of A and A' it is effected

mechanically, the whole process being continuous.
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Under these circumstances the w of equations (16)—(19) is not

necessarily the same thing as the w of equation (14). The latter

refers to a virtual displacement of electrons across the boundary

subject to the equilibrium conditions, whereas the former refers to

a continuous stream such as actually occurs under an impressed

force. Since the electric transference produces no permanent

change in the materials, the difference between these two quantities

will be equal to the difference in the quantities of energy which

accompany the transference of unit quantity of electricity in the

respective media on the two sides of the boundary, if such a

difference exists. If we keep the symbol w for the w of equations

(16)—(19) and denote the true latent heat of evaporation—the w
of equation (14)—by ^ we have

W = (f)-(\- Xo),

where Xi is the energy transferred by unit electric current in the

metal in unit time and Xq is the corresponding quantity for the

current outside the metal. Thus instead of (19) we get

^„ = ^,e-i^^^-(^^-^)}+/'(^-S)f (20).

We have now arrived at two different expressions (14) and

(20) for vo in terms of ^, <r and T. Since, if
(f>

and <r could be

expressed in terms of T, these expressions would have to become

identically equal, it follows that

X,-Xo r^f 1 e<T\dT^r^ 1 defy

MT ^ J \y-l a) T J RTdT

for all values of T. Hence o- will be given by each of the equa-

tions :

1 f R w-cfi dw\

e t^l"*'~T~"rfji ^^^^'

1 ( R ,rpd Xi-Xq d<f)l , .

7\^^^^dT~T~-dT\ ^^^^'

1
(
R Xi - Xo dw\ ...

e {^i^l
- -IT - dT\

^^^^•

29—2

^ e\i
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Approximation to Vo as a function of T.

If the electrons are treated as point charges, they have three

degrees of freedom and 7 = f. If the collisions of the electrons

occur with centres of force varying as a power of the mutual

distance, it follows from the kinetic theory calculations in the last

chapter that ^ (
^
,„

"
j
= 0, so that, under these conditions,

.(25).

The value of a is different for different metals and may be either

positive or negative. In general it also varies with the tempera-

ture, often in a complicated manner. If the thermoelectric powers

of different pairs of metals were accurately linear functions of the

Metal
Temperature (T

Observer
°C. Erg/El. mag. c.g.s. unit

Mercury + 50 6-8 xl02 Schoute

+ 100 8-6 xl02 »
+ 150 10-6 xl02 »>

Copper -100 0-9 xl02 Berg
1-6 xl02

))

+ 100 2-0 xl02 »
+ .300 2-1 xl02 Lecher

+ 500 2-6 xl02 )»

Silver + 100 3-46x102 »
+ .300 4 20x102 n
+ 500 4-95 x 102

»»

Platinum - 50 -9-4 xl02 Berg
-91 xl02

1)

+ 50 -9-0 xl02
ji

+ 100 -9-1 xl03
j>

IroD -4-0 xl02
))

+ 100 -12-4 xl02
)5

+ 100 -1.3-8 xl02 Lecher

+ 200 -16-8 xl02 »
+ 300 -14-2 Xl02

))

+400 -7-5 xl02
ji

Constantan -23-0 xl02
})

+ 200 -19-9 xl02
1)

+ 400 -13-7 xl02
>»
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temperature, then the difference in the values of a for any two

metals would be proportional to the absolute temperature (equa-

tions (51), p. 426). This is not borne out by the preceding'

experimental values of o- which are taken from a table compiled

by Baedeker*. Thus for iron o- is negative and its numerical

value is greatest at just over 200° C. It is questionable, however,

. . BE
whether the reliability of the experimental determinations of ^
and o" warrants us in rejecting equation (50), p. 426, Chap. xvil.

In all cases it has been found that ea is a good deal smaller

than f JB, so that ^R may be taken as a first approximation to the

value of
-J^.

Thus neglecting the second and higher derivatives

of (/) we have, approximately,

<f>
=

<t>o + ^RT (26),

where ^o is independent of T. Substituting this value of <p for iv

in (14) we obtain

Vo = A,T^e~^ ....(27).

In this equation A^ and 0o are independent of T to the extent to

which the assumed approximations are valid.

Now there is a simple relation between Vq and the number
of electrons emitted by unit area of the conductor in unit time,

provided we can neglect the reflexion, at the surflice of the con-

ductor, of the electrons which return to it from the exterior. It is

known from experimental results that such reflexion is appreciable,

but we shall disregard it for the present, and consider how it may
be allowed for later. In that case, since Vq represents the number

of electrons per cubic centimetre of the space in the steady state,

the number emitted by the surface in unit time will evidently be

equal to the number returned from the exterior in the same interval.

This is

.'0 J -a> J -00 VtT/

='^^ = vj/-)^Ti (28).
2 (Trim)* ^^tdh/

* Elek. Erscheinungen in Metallischen Leitern, p. 76.
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If we apply a sufficiently great potential difference all the N
electrons emitted by the conductor may be collected on a neigh-

bouring electrode. The ensuing saturation current is, per unit

area of the emitting body,

Ne = AJ^;^^T'€-'f>->lR^=A,T'€-<i"J^T (29),

where A2 and ^0 are constants characteristic of the substance but

independent of T. Had we not made the approximations above

the index of T would be slightly different from 2 and we should

have had exponential factors of the type e**" , where Op is an

. extremely small constant. The values of these factors cannot differ

much from unity. We should therefore expect (29) to give a fair

representation of the mode of variation with temperature of the

electrons emitted by hot bodies. The number of substances which

have been tested in this way is now very considerable and for all

of them the emission has been found to be consistent with an

equation of the form Ne = AT^e'^^^. As, however, the variation

is almost all in the exponential term the results can be fitted as

well by Ne = AT^e~^^'^, by taking a slightly different value of the

constant b in the exponential index.

We shall now consider the bearing of these effects on the

nature of contact electromotive force.

Contact Difference of Potential.

Imagine an enclosure limited by an insulating boundary, main-

tained at temperature T. Suppose the enclosure to contain q

material bodies, arranged in any manner, and that the whole system

has come to a state of thermal equilibrium. The temperature

will then be uniform and equal to T throughout the system. In

general the surfaces of the bodies will assume different potentials

V„V,,...Vg. Clearly

e{Vm-Vp) = Wo"^-WoP (30),

where TFo"* is the potential energy of an electron just outside the

mth body. Ifwe can show that If0'" — ^(^ are uniquely determined

by the constitutive equations of the system it will follow that

Vm — Vp represent true intrinsic differences of potential. Let Vq
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etc. represent the concentrations of the electrons at points just

outside the different bodies. Since there is equilibrium between

the electrons which are just outside each pair of bodies we evidently

have g" — 1 equations of the type

v^lv^ = e RT .

From (14) and (12) we see that there are q equations of the type

v^^^miy^^Jm^mT). From (7) there are also g equations of

the type Jm='^m{T) and evidently there are q equations of the

type Am = constant. Altogether there are 4^ — 1 equations between

the Sq variables Vq, J and A, the q — 1 differences W^^ — WqP and T.

Thus there are 4!q — l equations and 4<q variables, so that if one of

the latter, say T, is given all the variables including the q — 1

differences TTq"* — Wq^ are determined. These equations involve

neither the size, shape nor relative orientation of the bodies, so

that the differences of potential Vm — Vp are characteristic of the

substances under consideration. They are clearly the same whether

the bodies are in contact or not.

Since from (IS) w = Wo — J it follows that

Wo'" - WoP = Wm-Wp+ J,n - Jp.

We shall see below (p. 457) that Jm — Jp is small compared with

Wm — Wp] so that according to this view the contact difference of

potential may be estimated from the internal latent heat of

evaporation of the electrons. The experimental determinations

of w for different substances are not yet sufficiently trustworthy

to furnish a satisfactory test of this relation; although such

indications as there are tend to show that w is smaller for

electropositive than for electronegative elements.

The Peltier Effect.

We shall now proceed to obtain expressions for the various

physical quantities which are grouped under thermoelectric

phenomena. Let us first consider the Peltier coefficient P. To

do this we need only to consider a reversible isothermal cycle

involving two different conductors. The arrangement and opera-

tion is in fact much the same as that shown in Fig. 50 except that

the conductors A and A' are of different materials and are at the
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same temperature T. Let the suffixes 1 and 2 be used to denote

the various physical quantitieswhich relate to the separate materials,

the notation being otherwise as before. Let eV^ be >eF,. Sur-

round the first conductor, as before, by a potential filter maintained

at Fj. This will reduce the pressure of the electrons from p^ to ^i"

and will change their potential energy from eV^ to eV^. but will not

affect their temperature T. The cycle commences by removing N
electrons from the enclosure surrounding A^ under the uniform

pressure p^. The work done is NRT and the heat absorbed is, by

virtue of (13), N[w^ + e{V^- V,) + RT]. Next expand at T from

^Ji" to p2' The work done and heat absorbed are each equal to

NRT\og{pi°/p2). Next condense at p.^ and V^ in the second body.

The work done is —NRT and the heat absorbed is —N[w2 + RT'].

The electrons are then allowed to flow along the connecting con-

ductor to -4 J, thus completing the reversible cycle. During this

operation no work is done, but there is an absorption of heat NQe
at the junction. The total amount of work in this isothermal

reversible cycle is NRT log {pi'^jp^. Since the cycle is isothermal

this must vanish, so that pi^pi- The total absorption of heat is

N [w, + e ( Fa - F,) + iJT + RT \og{p,^lp.,) -w^-RT-V Qe], and since

this also must vanish we have

Qe = w,-w,-e{V,-V,) (31).

If Q is to be the same thing as the coefficient P which is measured

in experiments on the Peltier effect, it is necessary that the cycle

should be operated under the same conditions as when a current

flows continuously under an impressed electromotive force. Hence,

as in dealing with the Thomson effect, Wg and w^ will be the values

of the latent heats which correspond to a steady flow and not to

equilibrium conditions. Denoting the former by w and the latter

by ^ as before, we therefore have the equations

eP = w.,-w,-e{V2-V,) (32),

= <i>2-<\>x-{\-y^) + e{V2-V,) (33),

= /,-/,- (X^-Xx) (34),

since ^ = TT^ — /,

A series of experimental values of P as well as the values

of the thermoelectric power of the same pairs of metals at the
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same temperatures are given in the following table, taken from

Baedeker*.

Temperature
C.

Peltier coefficient in
Thermoelectric f

Materials

Millicalories

per coulomb
Ergs per
E.M. unit

1 = 10-« volt per
degree C.

Cu^Ag

Fe -*. Conatantan

Pb -*. Constantan

Cd^Pb

Cu-*.Ni

100
200

100
200
300

100
200

100
about 220
about 340

450

0-137

3-4

4-1

5-5

1-90

2-73

3-6

4-4

0-197

0-390

646

1-9

2-2

2-5 (max.)
1-9 (mill.)

2-4

0-0376 X 10*5

1-42 xlO*5

1-72 xlOii

2-31 xlO*5

0-80 xlOO
1-14 xl06
1-51 X106
1-84 xlO*5

0082 X 10"

0-163 X 10*5

0-271 X 10*5

0-80 Xl0*5
0-92 xlO*5

1-05 Xl0*5

0-80 Xl0*5

1-00 xlO**

2-12

(47-7)

(50-7)

(53-7)

27-1

33-5

39-9

46-3

3-03

4-48

5-93

(27)

(30)

(34)

(23) .

(25)

In all these cases the Peltier coefficient when expressed in

equivalent volts is of the order 10~^—10~^ volt. The ratio of the

thermal to the electrical conductivity of metals, which contains X as

a factor, shows that - (Xg — \) cannot be much greater numerically

than this value of P. On the other hand Fg — Vi may amount to

several volts in extreme cases. It follows that e(V2 — V^), w^ — Wi

and 02 — 01 are approximately equal to one another. Thus Jm — Jp

is small compared with «;,„ — w^ as stated on p. 455.

* hoc. cit. p. 73.

t The values in brackets were obtained from specimens of material different

from those used in measuring the Peltier coefficient.



458 THE EQUILIBRIUM THEORY OF ELECTRONIC CONDUCTORS

The Thomson Effect.

A number of expressions for a- have already been given (p. 451).

For the purpose of comparing the results of different theories it

is desirable to express some of them in terms of the quantities

J etc. which describe the internal structure of the material

instead of
<f)

etc. Consider, for example, equation (23). We have

If
= ^(Tro-^) and from (2) and (14)

dlogVp ^ dlogK Wo 1 dWo_ Wo J
dT dT ^ RT^ RT dT RT^ RT»'

Thus ^^=^-l^ + RT^-^=-T^^[i^-RlogK

so that a = ^ \-^ + r |„ f*^^^" - R log ^)l . . .(35).
e \y-l^ dT\ T

This expression is more general than equation (61) of the last

chapter, and the two become identical only in rather simple cases.

We have seen that the kinetic theory methods employed in

Chapter xvii can only be regarded as strictly accurate when the

linear dimensions of the regions, within which the forces exerted

on the electrons are appreciable, are small compared with the

distance between collisions *. In that case the potential energy W of

the electrons will only differ by a negligible amount fi'om the

fh\^
mean value J. Also the A of the last chapter is equal to iV^ (

-

ifN is the number of free electrons in unit volume. Since

W J
log iV = log Z - -^ = log ir - -^

,

A,|^_iJlogir| = -i2^(logiV) = -iJg^(log^)-||.

Thus, from (35),

logA-^»)}_R\ 1 3 a

e (7 - 1 2 dT

• Bohr has, however, succeeded by a different treatment in showing that

equation (61) of Chapter xvii holds for a very general case. Of. Studier over

Metallernes Elektrontheori, Copenhagen (1911).
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This is in agreement with (61) (p. 429), since under the conditions

contemplated ^ ("^^7 = ~
ef

'

These equations, which have been deduced from thermo-

d3mamic considerations, are thus in agreement with those given

by the kinetic theory calculations when the latter are accurate.

In virtue of (34), equation (35) satisfies the condition

postulated by Lord Kelvin's Theory

Thermoelectromotive Force.

Having found expressions for the Peltier and Thomson co-

efficients we can, by means of the energy equation (49) of the last

chapter, deduce from them the value of the thermoelectromotive

force of the complete circuit. For a circuit of two materials with

junctions at T' and To one finds in this way, for example,

E = {V,- F,)r - ( F, - F.)^^]r^^_ii±±i dT

.

. .(36).

In a similar way equations may be obtained containing other

combinations of the variables which occur in equations (21)—(24)

and (32)—(34).

By making the assumption of thermodynamic reversibility and

substituting the values of P and a from equations (23) and (32)

in equation (49), p. 426, we obtain

T \t.

and, after integrating by parts,

£(F^-T^)|r_ rr^^^

or <^x-02 = e|F,-F,-r|^(F,-F,)| (37).
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By making use of (37) the following expressions for E may

be obtained from (36) or the equivalent equations:

To

E -I"ejq T
dT. .(38)

.(39)

^\V,-V,
To eJTo J-

1 r^' X, - \s

,.(40)

.(41).
To ^J To -t

The values in terms of J^, J^, etc. may be derived by obvious

dE . .

substitutions. The thermoelectric power ^, is given by dif-

ferentiating (38)—(41 ) respectively by the upper limit T'. These

equations obviously satisfy Lord Kelvin's condition

dE _P
dT'T'

Alternative Expressions for the Thermoelectric Coefficients.

If we wish to express these quantities in terms of the number

of electrons (i/ = -y- j in unit volume at each point of the conduc-

tor, instead of in terms of the functions J which depend on their

mean potential energy, we may proceed as follows

;

_w
Since from (3) v = Ke -^^, we have

J, = f -^ [RT log K-RT log v] dr ^[^ dr'^

^RT\ogK-~{ vlogvdT
) (42).

eP = Ji - Jg + Xi - \2

Thus, for example,

dE
and similarly with the other quantities a^,E and r^
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If the distance between collisions is large compared with the

distances within which the forces are appreciable, then the poten-

tial energy of the electrons is constant in all but a small fraction

of the available space. In this case we can replace the average

values of v and W by actual values without serious error. If, in

addition, the law of force during collisions varies as a power of the

distance, we see from the last chapter that ^[y')~^ And,

finally, if the law of force is the same for the different materials

then, for any pair, \m — Xp = 0. Under these circumstances the

expressions which have been found reduce to

Fe = RTlogv,/l^^ (43),

R ^ T^,(\ogv,)
.7-1

.(44),

R fi"

^ = 7J^/og(,^)cZr (45),

dE R
Bi^=?'<: (^^)-

These equations are exact if the collisions are always like those

between hard elastic spheres.

Comparison with Experiment.

There are a number of reasons why formulae (43)—(46) are

unsatisfactory. In the first place the ratio of thermal and electrical

conductivities indicates that the force during collisions does not

vary very sharply with the mutual distance. Moreover the computed

strength of the centres indicates that the electrons are never free

from very considerable forces. Thus the theoretical conditions are

far from being satisfied. In the second place the formulae are

contradicted by the thermoelectric data themselves. By hypo-

thesis all the electrons are to be treated alike, so that v in

equations (43)—(46) represents the number of current-carrying

electrons in unit volume of the material. Now the electrical

conductivity is proportional to v, and there is no reason to expect

that the other factors which enter into it will not be of the same

order of magnitude for different substances. We should therefore

expect that Vi/vi would, for different substances, be comparable
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with the ratio of their specific electrical conductivities. Formula

(43) would therefore l"ead us to expect an exceptionally large

Peltier effect at the junction between a very good and a very bad

conductor. The Peltier effect in a number of cases of this kind

has recently been investigated by Koenigsberger and Weiss*.

Although these experiments are difficult to make, they seem to

have established that the Peltier effect in such cases is not, in

general, of exceptional magnitude. In some cases it was found

to be in the opposite direction to that given by equation (43).

The more complete theory involves two considerations which are

neglected in equation (43). In the first place, the law of force

during collisions may vary from one material to another. It is,

however, extremely improbable that the term Xj — Xg. which arises

from this circumstance, can be comparable with the term involving

log Vijvi, when the ratio of the two conductivities is very great.

We are thus driven to the conclusion that the difference in the

potential energy of the electrons is not, in general, measured, even

approximately, by RT log Vijvi, where Vi and v^ are the volume

concentrations of the free electrons. This objection cannot be

made in the case of the formulae given by the more complete

theory, which make the Peltier effect depend on the mean poten-

tial energy of all the electrons which may, from time to time,

become free under the dynamical actions actually occurring, and

not on the actual or average number of those free instantaneously.

The number of the former may be quite considerable, although, on

account of the intensity of the attraction of the rest of the atom,

very few of them are able to get fi:ee enough to take part in

carrying the current at any instant.

A second point which is of interest in this connection is that

raised by the phenomena exhibited at the melting-point. For all

the metals which have been tried, except antimony and bismuth,

the specific conductivity of the solid at the melting-point is greater

than that of the liquid. The changes are quite considerable,

the ratio of the two specific conductivities varying from 1"34

in the case of sodium to 4'1 in the case of mercury. In the

case of antimony the ratio is 070 and in the case of bismuth

0"46. All the metals except antimony and bismuth contract when

they solidify. In accordance with (43) and (46) we should expect

* Ann. der Physik, vol. xxxv. p. 1 (1911).



TFE EQUILIBRIUM THEORY OF ELECTRONIC CONDUCTORS 463

these changes in the electrical conductivity to be accompanied by

very considerable changes in the Peltier effect and the thermo-

electric power. Such effects have been looked for most carefully

and with negative results. It is clear that the change in the

thermoelectric power, if there is any, is much smaller than we

should expect from (46). However, it cannot be said that the

absence of Peltier effect at the melting-point is properly under-

stood on the more general theory. It is evident that it might

happen in a number of ways which it would take too long to

discuss here.

In the case of the iodiferous cuprous iodide, to which reference

has already been made in connection with the Hall effect, Baedeker*

finds equation (46) to be accurately verified if the relative values

of V are measured by the relative conductivities. It seems as

though the conditions affecting the motion of the electrons are

much simpler in the case of this substance than in the case of the

metals.

The Conducting Electrons.

The expressions which have been obtained for the various

thermoelectric quantities involve integrals which are extended

over all the electrons which are able at any time to take part in

thermoelectric phenomena. In general we should expect only part

of these electrons to be capable of engaging in the transportation

of the electric current. Many of them will be so strongly attracted

to the atom nearest to them that they will only rarely be able to

escape from its immediate neighbourhood. Such electrons will

only be slightly displaced under the influence of an external field

and will not participate in the conveyance of the conduction

current.

It seems natural to suppose that the conduction current is

carried by those electrons of the class contemplated which are

instantaneously executing open, as opposed to closed, orbits. An
expression for the number N of electrons which are executing

open orbits may be obtained on the assumption, which accords

with the results of the discussion in the last chapter, that the

electrons are attracted by centres of force varying inversely as the

• Nemst Festschrift, p. 62, Halle (1912).
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cube of the mutual distance. Let R be the instantaneous radius

to the centre and 6 the angle this makes with the direction of R
when t = 0. Let T be the tangential and R the radial component

of velocity. Let V^ be the velocity from infinity, then

^mVi' = - W.

It is shown in Routh's Dynamics of a Particle (Cambridge, 1898),

p. 231, that all the orbits for which V-[^ < T^ are open.

The equation to the others is given by

K

where To = h(A + B), Rq = nh(B — A), To and ^o are the values of

T and R when t and 6 are zero, n- = -r^- — 1 and h = Rl\ Evi-

dently R can only become infinite if A and B have opposite signs.

Since

l + n4-"
RoB = -A

l-ri-.-»

the condition that B and A should have the same sign is

n^ il = l2_^ > 1,

Ro' Ro'

i.e. V,'>to'+Ro'.

The complete condition for an open orbit is therefore that the

initial kinetic energy should exceed the kinetic energy due to the

attractive forces supposed to act from infinity to the point con-

sidered. If we put
<f>
= — W=^mV/, we evidently have

= 8n {^Jrdr{^derd4>r^ sin Oe—kmr^

= 8nx(^)

.(47),
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where Sn denotes the number of electrons of all sorts at a point

where their potential energy is W at any instant, and BN denotes

the number of them which will execute open orbits. This calcula-

tion assumes that the distribution of kinetic energy among the

particles is independent of the potential energy, a conclusion which

we have already established (see p. 405).

Now the number dn of electrons of all speeds in the element

of volume dr is equal to vdr where, from (3),

v =

Ir
= Ke-^i^'^

iR^dr

whence the total number N of current-carrying electrons in the

volume T is

N=\vx{y^inT)dr
J T

= '^\ xi-^^'^'^'^drli e-'f^l^^dr (48).

It is impossible to predict anything very precise about the

behaviour of integrals like those in (48) ; but it will be observed

by comparing with formula (39), for example, and neglecting

X2 — Xi, that both the number of current-carrying electrons in a

cubic centimetre and the thermoelectric power are functions of

W .

the distribution of p^™ in the space inside the conductor. We

should therefore expect that any cause which produced a continuous

alteration of the electric conductivity of the substance at a given

temperature would produce a corresponding alteration in the

thermoelectric power. The changes in the one quantity would

be expected to follow changes of the other quantity in a corre-

sponding manner.

Evidence of a correspondence of this kind exists in the case of

alloys. Their electrical behaviour is found to depend very largely

on the intimate structure of the alloy From this point of view

alloys may be regarded as falling into two main classes: (1) those

which consist of mixtures of crystals of the constituents and

(2) those formed of crystals whose constituents are mutually

R. E. T. 30
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soluble. In some cases the constituents are only able to dissolve

in one another to a definite limited extent. In other cases chemical

compounds are formed which give rise to considerable complication.

The behaviour in such cases, however, is determined by the mutual

solubility of the compounds and the independent constituents ; so

that the effect of chemical combination is practically to increase

the number of substances which have to be considered. Otherwise

their behaviour is similar to that of cases where no cheinical com-

bination appears to occur.

Let us consider the two simple cases of complete immiscibility

and of complete mutual solubility, from which all the others may
be developed. In the case where the constituents are entirely

immiscible the specific electrical conductivity, expressed as a

function of the composition, changes linearly from the value

characteristic of one of the pure substances to that characteristic

of the other. Precisely the same statement is true of the thermo-

electric power referred to a standard metal. The behaviour of

alloys whose constituents are mutually soluble is entirely different

in character. The addition of a small quantity of either constituent

to the other pure metal produces a large diminution in the specific

electrical conductivity. The diminution produced by the ad-

dition of a given quantity of the foreign substance diminishes

progressively as further amounts are added. Thus the curve

which expresses the conductivity as a function of the percentage

composition drops sharply from the value corresponding to either

pure metal and has a flat minimum in between. The curve which

expresses the thermoelectric power as a function of the composition

is entirely similar in character. The reader who is interested in

the electrical properties of alloys will find a very good account of

the recent developments in Die elelctrischen Erscheinungen in

metallischen Leitern by K. Baedeker (Braunschweig, 1911).

We have seen that a considerable change in electrical con-

ductivity is unaccompanied by corresponding changes in the

thermoelectric quantities in the case of pure metals at the melting-

point. It seems probable that in this case there is something in

the conditions of equilibrium which makes J -{-X take the same

value for the electrons in the two phases. This would not

necessarily involve a corresponding equality in the fraction . in

(48). In addition there is the possibility that liquefaction causes
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a considerable change, without altering J, in the centres which

determine what corresponds to the mean free path.

It is worth while to consider the form taken by (48) in two
simple cases. In the first let us suppose that the interior of the

conductor may be divided into two classes of regions, for the first of

which, Tj, </>(=— W) has a large value which we can denote by ^q.

For the second t^ suppose that <^ = 0. Then (48) becomes

(49).

This formula makes the conductivity increase rapidly with in-

creasing temperature on account of the factor e-*o/-B2r ipj^g

experiments made by Horton, Koenigsberger and others on the

conductivity of comparatively poor conductors show that the

temperature variation can be represented satisfactorily over a

considerable range by a formula for the conductivity developed

from an expression of type (49) for the number of current-carrying

electrons.

In the second place suppose -~jp to be small. Then if we neg-

lect terms involving {(fy/RTy and higher powers we find

4N = n{l-^(RrfU;^ ^^^^'

,4
where <f}i^ is the mean value of

<f)^
taken throughout the volume

of the conductor. We should expect this type of formula to apply,

qualitatively at least, to the best conductors ; for the variation of

conductivity with temperature in such cases is comparatively

small. According to (50) N will always be less than n, which it

approaches asymptotically as (f>/RT approaches zero. Thus N will

always increase with rising temperature. In order to explain the

decrease in the conductivity of the pure metals with rising tem-

perature it is necessary, if this theory is to hold, to fall back on an

increase either in the number of the centres of force per unit

volume or in their strengths.

Some of the rather bad conductors investigated by Koenigs-

berger exhibit very interesting phenomena. Thus in the case of

30—2
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magnetite the conductivity increases rapidly with increasing tem-

perature at low temperatures, to a maximum at about 240° C.

After that it falls off as the temperature rises in a manner which

resembles the behaviour of the metals. The rapid increase at low

temperatures is evidently due to the large increase of N with T
when (f>/RT is large. The subsequent decrease may tentatively

be attributed to an increase in the number of the repelling centres

or to a change in the magnetic structure of the substance. A
comprehensive account of the temperature variation of the electrical

properties of the comparatively poor conductors, by Koenigsberger,

will be found in the Jahrbuch der Radioaktivitdt und Electronik,

vol. IV. p. 158 (1907).

The Reflexion of Electrons at the Surface of Conductors.

According to the theory on p. 444 et seq., the concentration I'o

of the electrons at a point close to a conductor in an enclosure at

a constant temperature T is determined by T and the intrinsic

potential V^ of the conductor. Thus the equilibrium pressure

p has a definite value and in accordance with equation (14) is

given by

p = v,RT = ATe^^^''^ (51),

where
<f>

is the internal latent heat of evaporation reckoned per

electron and J. is a constant characteristic of the material but

independent of T. This equation can be established in a very

general manner and is true even if the electrons are emitted

wholly or in part by the photoelectric action of the complete

aetherial (black body) radiation*. Now in accordance with (28)

the number of electrons which reach unit area of the surface of the

conductor from outside in unit time is

In the steady state this quantity must be equal to the number
emitted by unit area of the substance in unit time provided all

the incident electrons are absorbed by the conductor. However,

the experiments of von Baeyerf and the writer^ have shown that

• See 0. W. Richardson, Phil. Mag. vol. xxiii. p. 619 (1912).

+ Ber. der Deutsch. Physik. Ges. Jahrg. 10, p. 96 (1908).

+ Phil. Mag. voL xvi. p. 898 (1908), vol xvm. p. 694 (1909) ; Phys. Rev. vol. xxtx.

p. 557 (1909).
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a very considerable proportion even of the very slow moving

electrons which are emitted by photoelectric and thermionic action

is reflected by metals, so that it is necessary for us to take

reflexion into account.

If the body is not a perfect absorber then some of the N
electrons will be reflected by it. Let the proportion reflected be r.

Then the number actually absorbed by the conductor in time dt is

(1 — r)Ndt. Let the number emitted by the same surface in time

dt be eNdt. Then the equilibrium condition gives

6=1 -r (53).

Thus the emissivity (compared with a perfect absorber) and the

reflecting power are complementary.

This result is somewhat analogous to Stewart and Kirchhoff's

radiation law. By introducing kinetic theory considerations it can

be shown that the equality holds for each group of velocities

u, V, w, du, dv, dw*. Measurements of the reflexion of slow

electrons by different metals have recently been made by

A. Gehrtsf.

Photoelectric Action.

As is well known, the fact, discovered by Hertz, that a spark

passes more easily between two terminals when that which is

negatively charged is illuminated by ultra-violet light, led to the

discovery that the incidence of light of sufficiently high frequency

caused the emission of negative electrons from conductors. This

phenomenon, which is called the photoelectric effect, is certainly

very general and appears to be a universal property of matter.

There is no doubt about the universality of this effect when the

term light is understood to include X rays and 7 rays, although

some experimenters have recently called in question the per-

manence of the effects exhibited by metals and ordinary ultra-

violet lightj. We shall now consider what conclusions may be

drawn as to the nature of photoelectric action, by the application

0. W. Richardson, Phil. Mag. vol. xxirr. p. 606 (1912).

t Ann. der Physik, vol. xxxvi. p. 995 (1911).

X G. Wiedmann and W. Hallwachs, Ver. d. D. Physik. Ges. vol. xvr. p. 107

(1914). H. Kiistner, Phys. Zeits. vol. xv. p. 68 (1914).
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of the principles of thermodynamics and the kinetic theory of

matter.

Consider an enclosure maintained at the constant temperature

T containing a material which is photoelectrically active but which

has negligible thermionic emission. No such material may exist;

but this will not vitiate the results if thermionic and photoelectric

actions are independent, a hypothesis which we shall adopt. The

equilibrium concentration of the electrons near the photoelectric

material will be determined by equation (51), as we may show by

considering the work done against a piston which is transparent to

radiation but impervious to electrons. The number which return

from the enclosure per unit area of the surface of the material in

unit time is therefore given by (52). If a is the proportion of

these which is absorbed, i.e. not reflected, it is necessary, in order

that the conditions should be steady, that the number emitted in

unit time should be equal to

-G^.^^^^^^ <->

But the number emitted is a function of the intensity or

density of the surrounding radiation. Experiments have shown

that for monochromatic radiation the number is almost, if not

exactly, proportional to the intensity of the illumination and varies

little if at all with the temperature, when the other conditions are

constant. We may therefore assume the photoelectric emission to

be proportional either to the density of the aetherial radiation

present or to its rate of emission or absorption. We shall take

the latter as being the more general. Our results can then be

adapted to the former hypothesis by making the emissivity e equal

to unity. If the steady energy density in the vibrations between

V and V + dv is L (v) dv the energy belonging to these frequencies

which is incident on area dS in unit time is

/:J—
L (v) dv day dS cos 0,

where dco — lir sin Odd and the limits are from to 7r/2. Thus, if

€ is the emissivity of ther material, the amount of energy of these

frequencies which is emitted from unit area in unit time is

\ceL{v)dv. Let us suppose that the emission or absorption of

unit quantity of radiant energy of frequency v at temperature T
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causes the liberation oi F{v, T) electrons. Then the total number

of electrons emitted in unit time by the complete radiation is

N= jreF(v,T)L(v)dv (55).

I

For equilibrium (54) and (55) must be identically equal for all

values of T. Thus if we can express L (v) as a function of v and

Ty and ^ as a function of 2\ we shall have an integral equation of

which €^ {v, T) is a solution.

We see from equation (26) that ^ is approximately equal to

^o + ^RT, where ^o is independent of T, Over the part of the

spectrum we are dealing with, L{v)dv can be represented with

great accuracy by equation (47) of Chap, xv, or

hv

L (v) dv = Sirh
-J e dv.
C

Thus from (54) and (55)

eF{v,T)hv^e ^^dv = A,T^e ^^
(56),

where -4i=- s—j

—

-. (57).
(27re)^mW

We shall assume that A^ is independent of 2\ This has not

been proved, strictly speaking, as
(f>

is only approximately equal

to (j)o + ^RI' and a will also involve T. All that we shall claim

for our results, therefore, is that they will represent the way
€F(v, T) varies with the parameter 0o when the matter is supposed

to satisfy certain ideal conditions which may be only approximately

realized in practice. However, solutions could be found for other

cases in which T'^ on the right of (56) is replaced by certain other

functions of T.

When Ai is constant, (56) is solved by

€F(y,T) = when < hv < 4>o (58),

and eF{v,T) =^fl-^^ when cf>o<hv<oo ...(59).

This solution makes the photoelectric- action of monochromatic

light independent of 1\ and the emission zero when the frequency

is below a certain critical value. These results are both in agree-

ment with experiment.
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Now consider the average kinetic energy E„ of the electrons

which are emitted by light of frequency v. The total energy E
emitted under the influence of the complete radiation at T is

cleaily

E^jT E„eF{v)L{v,T)dv (60).
4 Jo

This must be balanced by the kinetic energy returned to the

metal by the stream of electrons, N per unit time, from outside.

If n is the number of electrons per unit volume of the space

outside, the stream of energy which reaches unit area in unit

time is

and since k = {2RT)-^ and N=n,^

^

—

,

E' = 2NRT (61).

Of this energy let the proportion 1 — /9 be reflected; then ^ is

the proportion which is absorbed. Thus for equilibrium

E = I3.2NRT (62).

If we neglect the effects of reflexion, by putting a = /3 = 1, and

substitute the value of N given by (47), Chap, xv, making the

same approximations as before, we obtain from (60) and (62),

Jo
dvE,eF(v)hp^e-'"'l^^=2A,RT'e-<i>''l^'^ (63).

Subject to

€F{v) = from v = to v = j>olK

A h
and ^F(v) = ~—^(l—(})olhv) from v = <})o/h to v = (X>,

the solution of this is

Ey = hv — ^0 when (f)o<hv<<X) (64).

For values of hv which lie between and 0o. Ey has no meaning,

as the corresponding electrons hare no external existence.

The solution (64) is dependent on the assumption that the

reflexion of electrons can be neglected. This is equivalent to

assuming that effects which arise from the collisions of the

electrons may be disregarded. But if we consider this from the
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point of view of the electrons emitted under the influence of the

light, we see that neglecting the effect of collisions is tantamount

to assuming that the only energy lost by the electrons is used up

in overcoming the work
(f)

of the forces which tend to retain them
in the interior of the substance. Under these circumstances the

kinetic energy of the escaped electrons will be equal to that which

they acquire by the action of the light (not necessarily from the

light directly) minus the work ^ which they have to do to escape.

It is clear that the energy which they acquire under the influence

of the light is hv, where h is Planck's constant. It evidently has

the same value for all the electrons liberated by light of the same
frequency; any difference in the energy of the electrons emitted

by monochromatic light must therefore be attributed to the effect

of collisions of the escaping electrons in the interior of the

substance.

We can take account of the reflexion of electrons tentatively

by putting /3 = sa. Then instead of (64) we get

E^ = s(hv —
(l)o)

when ^q < hv < oo ...., (65).

For small velocities of incident electrons, such as those with

which we are concerned, the proportion reflected increases with

increasing energy. It follows that out of a mixed aggregate of

incident electrons a greater proportion of the slow ones will be

absorbed than of the fast ones, and that the proportion of incident

electrons which is absorbed will be greater than the proportion of

their incident energy which is absorbed. Thus s will be a positive

quantity which is less than unity.

There is no conclusive reason for denying the applicability of

the type of argument given above* to the emission of material

particles of all kinds, whether charged or uncharged and of what-

ever chemical nature, under the influence of every type of aetherial

radiation, provided the chemical actions are of a reversible character

so that an equilibrium in the material part of the system can occur.

The foregoing treatment of this subject is taken from papers

by the writerf. An equation resembling (64) was first given by

Einstein J as a consequence of the view that the energy of light

Cf . 0. W. Richardson, Phil. Mag. vol. xxvii. p. 476 (1914).

t Phijs. Rev. vol. XXXIV. p. 146 (1912) ; Phil. Mag. vol. xxiv. p. 570 (1912).

J Ann. d. Physik, vol. xvii. p. 145 (1905).
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waves was distributed in discrete quanta. For further develop-

ments of the subject the reader may consult the following papers:

—

Einstein, Ann. der Physik, vol. XXXVIL p. 832 (1912); Journal de

Physique, 1913; Planck, Sitzungsber. d. k. Preuss. Akad. d. Wiss.,

Math. Phys. Kl. vol. xviii. p. 350 (1913); 0. W. Richardson, Phil

Mag. vol. xxvn. p. 476 (1914).

Measurements of the kinetic energy of the electrons emitted

by various metals under the influence of light of dififerent

frequencies, which have recently been made by the writer and

Dr K. T. Compton*, afford considerable support to the above

theory. Denoting the maximum observed value of E^ by Em, and

the mean value by E„, these quantities were found to satisfy the

relations

Em = km{v- Vo)

and E„ =K (v — v^)

corresponding to (64) and (65). The values of the constants found

are given in the accompanying table

:

Metal Values from E rn Values from Ev

Na
"0

51-5

63
78-5

80
83
91

100
104

58-3

47-7

38-2

37-6

36-2

33
30
28-8

5-2

4-3

5-2

5-1

4-9

3-55

3-8

5-85

"0

52
73
80
84
89
89
97
103

Xo

57-7

41-1

37-5

35-7

33-7

33-7

30-9

29-1

2-6

2-6

2-55

2-8

2-75

1-9

1-65

2-8

Al
Mg
Zn
Sn
Bi
Cu
Pt

The units are: for Vq, 10"sec.~^: for Xo> 10~'cm.: and for km

and ky, 10~^ erg sec.

According to these results s in (65) is very close to \ for all the

metals investigated. The values of km are all somewhat less than

the radiation value h = 6'55 x 10~^' erg sec, but there are a number

of minor causes which might give rise to this discrepancy. There

is another way in which h may be estimated from these observations.

Vq, the least frequency which will give rise to any photoelectric

emission, is equal to <^ajh. If we may assume that ^^ has the

same value as in the thermionic emission and that it is correctly

• Phil. Mag. vol. xxiv. p. 575 (1912).
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given by the measurements of the latter effect which have been

made, we can evaluate h from ^o a-nd Vq. A number of observers

have found values of ^o for the thermionic emission from platinum

in the neighbourhood of 8-32 x 10"^^ erg. Whence

h = (^oK = 8-07 X 10-^ erg sec.

Thus this method of evaluating h leads to numbers which are

about as much above the radiation value as the others are below

it. From the experimental values of Vq the corresponding values

of ^0 can be calculated. The differences of «^o for different metals

are found to agree fairly closely with e times the corresponding

contact differences of potential. This is in agreement with the

theory of contact electromotive force which has already been given.

The linear relation between Em and v has been verified inde-

pendently by A. LI. Hughes* whose values of km exhibit a fair

concordance with most of those given in the preceding table.

Similar experiments leading to a much closer agreement between

the constant km and the radiation value of h have recently been

made by Kadesch-f- and Millikanj. The first measurements of the

energy of the electrons emitted under the influence of ultra-violet

light were made by Lenard§.

These results must be considered as confirmatory of the

validity of Planck's radiation formula.

A number of interesting theories of metallic conduction have

recently appeared which differ in radical points from those we
have considered in this and the preceding chapter. These theories

will be found described by their authors in the following papers:

—

Keesom, Gomin. Leiden Phys. Lab. Nos. 30 and 32 (1913), cf.

0. W. Richardson, Phil. Mag. vol. xxviii. p. 633 (1914); Wien,

Berlin Sitz. Ber. p. 184 (1913), Columbia University Lectures

(1913); J. J. Thomson, Phil. Mag. vol. xxx. p. 192 (1915), cf.

O. W. Richardson, Phil. Mag. vol. xxx. p. 295 (1915); Stark,

Jahrbuch der Rad u. Elek. vol. IX. p. 188 (1912); Lindemann,

Phil. Mag. vol. xxix. p. 127 (1915).

* Phil. Trans. A, vol. ccxii. p. 205 (1912).

+ Phys. Rev. vol. in. pp. 63, 367 (1914).

J Phys. Rev. vol. iv. p. 73 (1914).

§ Ann. der Physik, vol. viii. p. 169 (1902).



CHAPTER XIX

TYPES OF RADIATION

In recent years the number of different kinds of radiation with

which we have become familiar has been greatly extended. This

is especially the case if the expression radiation is made to include

any invisible form of energy which originates at a material source

and is capable of travelling through empty space at a very high

speed. We shall adopt this extension of the term for the present,

as it is convenient for the immediate purpose of our discussion.

To classify the different radiations it is desirable to place them

in the following groups

:

(A) Material and electrically charged.

(B) Material and uncharged.

(C) Aetherial.

To determine whether a given radiation falls in group (A) or

not is usually a comparatively simple matter. The rays are bundles

of electrified particles in rapid motion. They will therefore behave

like an electric current flowing in a flexible conductor and thus be

deflected in a magnetic field. The direction ofthe deflexion enables

the sign of the charge which the particles carry to be determined.

Another method is to receive a beam of the radiation in an elec-

trically shielded and insulated conducting cylinder. The cylinder

will then charge up with electricity of the same sign as that carried

by the particles which constitute the radiation. This method,

though more direct, is often less easy of practical application than

the method which makes use of the magnetic deflexion.

To distinguish between groups (B) and (C) may be extremely

difiicult. In the case of radiations whose frequencies lie within



TYPES OF RADIATION 477

or close to the range covered by the visible spectrum the occur-

rence of interference, diffraction, refraction and dispersion is taken

to indicate that they are aetherial ; since it is only on the theory

of waves propagated in a continuous medium that the phenomena

enumerated have received an adequate explanation. On the other

hand if the frequency of the waves were very great it might be

extremely difficult, if not impossible, to detect these effects ; so

that this criterion would not necessarily be available.

Rather recently W. H. Bragg* has suggested a different method

of distinguishing between aetherial and uncharged material rays.

The distinction depends upon the geometrical distribution of the

secondary rays which arise when the primary rays fall on matter.

Recent investigations have shown that these secondary rays may
differ greatly in character according to circumstances. Generally

speaking, their nature is determined partly by that of the primary

radiation and partly by that of the matter on which it impinges.

It often happens that the impact of a simple primary radiation on

a chemically simple substance will cause the simultaneous emission

of more than one type of secondary radiation. The different types

of radiation which may thus arise will be considered more fully

below. For the present it is only necessary to realize that the

secondary rays in general consist partly of negatively charged

particles (electronic or /8 type) and partly of rays which are similar

in their properties to Roentgen rays (X type).

Now consider the emission of /3 secondary rays which occurs

when a beam of X primary rays impinges normally on a slab of

absorbing matter of indefinite thinness. The number of /3 rays

emitted from the side of the slab on which the primary rays are

incident would be expected to be smaller than the number emitted

on the emergent side, if the X rays are uncharged material particles.

For, in this case, the emitted electrons will be either those which

were originally present in the slab and which are knocked out of

it by the moving uncharged particles ; or they will consist of those

of the moving uncharged material particles which have lost a

positively charged constituent by collision with the atoms of the

slab. In either event the average value of the component of

velocity of the emitted electrons along the normal to the surface

will not be zero and will be in the direction of the incident radiation.

* Nature, vol. lxxvii. p. 270, Jan. 23 (1908) ; Phil. Mag. vol. xvi. p. 918 (1908).
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There will therefore be a greater number of /8 rays emitted from

the emergent than from the incident side of the slab.

At first sight it appears that this difference ought not to be

found if the incident radiation consists of aetherial pulses similar

to those which, as we have seen in Chap, xii, are emitted when

a charged body is accelerated. Under these circumstances the

natural view of the emission would seem to be that the electrons

present in the slab receive an impulse from the electric intensity

in the passing pulse. Now the electric intensity is always normal

to the direction of propagation of the pulse and thus lies in the

plane of the slab. From this point of view there is nothing to

favour one side of the slab rather than the other, so that the

emission of electrons should be the same on the incident as on

the emergent side.

The distribution of the secondary ^ emission produced by the

7 and Roentgen rays has been examined experimentally by Bragg

and others. In every case it has been found that there is a larger

emission from the emergent side of a thin plate than from the

incident side. These results have led Bragg to maintain that

the 7 and Roentgen rays consist of uncharged material particles

and are not "aetherial" pulses. It was shown first of all by

O. Stuhlmann*, and about the same time, independently, by

R. D. Kleemani*, that a similar lack of symmetry occurs in the

emission of electrons from thin plates when illuminated by the

ultra-violet light from the arc. It thus appears that Bragg's

criterion leads to the view that light, as well as the radiations

previously enumerated, consists of neutral material particles.

Under the circumstances it is desirable to reconsider the

position. One of the chief difficulties lies in the fact that we

have no adequate theory of the mechanism of the absorption of

light and similar radiations leading to the emission of electrons.

The view which imagines the kinetic energy of the electrons to

be derived from the work done by the electric intensity in the

pulse, as it passes over them, leads to values of the kinetic energy

which are far smaller than those observed experimentally. Thus

the occurrence of asymmetrical emission is not the only difficulty

Nature, May 12 (1910) ; Phil. Mag. vol. xx. p. 331 (1910), vol. xxu. p. 854

(1911).

+ Nature, May 19 (1910); Eoy. Soc. Proc. A, vol. lxxxiv. (1910).
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experienced by this simple theory. In this connection it is worth

while to point out that the simple theory does lead to a slight

excess of emergent emission owing to the deflexion of the moving

electrons caused by the magnetic force in the aetherial pulse. This

deflexion, however, is far too small to produce the observed effects

if the force in the pulse is supposed to be distributed uniformly,

in the usual way. On the other hand the application of thermo-

dynamic and statistical principles to the study of thermal radiation

and photoelectric action led us to the view that when radiant

energy causes the disruption of an electron from a material system,

the electron acquires an amount hv of energy, where h = 6'55 x 10"-''

erg sec. and v is the frequency of the radiation. This value is in

good accord with experiment, although for any moderate value of

V the amount of energy hv is much greater than that which we

should expect the electron to acquire, on the simple view dis-

cussed above, from the direct action of the pulses. It seems

fairly clear either that the (electromagnetic) constitution which

we have assumed for the radiation is at fault or the mechanism

of the process of absorption is different from what we have

supposed.

In view of the latter possibility it is very desirable to see if

we cannot find out anything about the magnitude of the Bragg

and Stuhlmann effects to be expected from aetherial radiations,

without making any definite assumption about the way in which

the radiation is absorbed, but keeping to the value hv of the energy

acquired by the disrupted electrons, which, as we have seen, is

confirmed by experiments on photoelectric action and by the

theory of heat radiation. Consider again the case of aetherial

radiation incident normally on a thin slab of absorbing material.

In general, absorption may occur through the operation of processes

of very different nature, for example, conduction as opposed to

accumulation by relatively fixed and stable arrangements ; but we
shall suppose that the only type of absorption which we need to

consider in our slab is that which results finally in the disruption

of electrons from material systems. We shall fix our attention on

the state of things which exists after the slab has been illuminated

for a sufficiently long time so that there is no further accumulation,

in the slab, of energy abstracted from the incident beam. Under

these circumstances the energy absorbed from the incident radiation
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will appear, at any rate in the first instance, as the kinetic energy

hv which the disrupted electrons possess at the instant of disruption.

Thus if there are N of them disrupted in unit time the energy

absorbed from the radiation is Nhv. It is important to observe

that the energy of the electrons which we have to consider here

is that which they possess before, not after, they are emitted from

the slab.

But energy is not the only physical quantity of which the

incident beam suffers depletion. We have seen in Chap, x, p. 211,

that when a material system similar to that under consideration

absorbs an amount B of aetherial energy an amount of momentum

EJc disappears from the aether. In the present case this momentum
must be communicated to the slab and the electrons it contains,

in order to satisfy the law of action and reaction. Now according

to the electron theory the action of the radiation is on the electrons;

so that this momentum is communicated to them in the first

instance, and such of it as is ultimately received by the slab of

matter only reaches it indirectly through dynamical actions of the

nature of collisions. We shall therefore assume that the electrons

receive momentum as well as energy fi-om the incident radiation

previous to the occurrence of disruption ; although we do not know

the precise nature of any process which will communicate an appre-

ciable amount either of momentum or energy from a periodic

aetherial disturbance to them. Now consider the accumulation, in

any small interval of time, of momentum by the electrons in the

slab. The increase of momentum of the slab and contained electrons

is due to (1) the momentum of electrons which come into the

system, (2) the momentum, reckoned negatively, of the disrupted

electrons, and (3) the momentum accumulated during the interval

by the electrons present in it. Since the state of the electrons

instantaneously present in the slab is steady, by hypothesis, it

follows that the difference of (1) and (2) is equal to (3). When (1)

is zero, (3) is the momentum derived from the radiation. It follows

that the momentum which is acquired by all the absorbing electrons

firom the radiation, is exactly equal to the momentum of the dis-

rupted electrons at the moment of disruption. But since the energy

absorbed is Nhv the value of the former amount of momentum is

Nhv/c. If u is the average component of velocity of the dis-

rupted electrons, in the direction of incidence of the radiation, an
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alternative expression for the momentum of the N electrons is

Nmu. Thus m = — =— (1)

if v^ is the average value of the square of their velocity at the

instant of disruption.

As (v^p approaches c, u approaches ^(v^)^, so that for those

radiations which give rise to the emission of very high speed /9 rays

there will be a very marked preponderance in the emergent direc-

tion. In the case of ultra-violet light, however, for which v is

equal to about 10", the ratio of u to (v"^)^ is only about 1 : 500. The

effects indicated by these calculations are of the order of magni-

tude of those found by Bragg with y and X rays ; but with light

the calculated effects are much smaller than the experimental.

However, Partzsch and Hallwachs* have shown that the effects

observed by Stuhlmann can be attributed to a difference in the

absorption of the light by the thin films according to the side of

incidence ; so that it is not certain that the differential emission

caused by ordinary light has yet been observed.

It thus appears that the results obtained by Bragg and

Stuhlmann may be accounted for without supposing the primary

radiations which exhibit them to be of a material nature. There

does not therefore appear to be any simple criterion which will

invariably enable us to distinguish between aetherial and neutral

material radiations. In fact there does not seem to be any

convincing evidence of the existence of any radiations which

belong to group (B), so that as a working hypothesis it seems

most reasonable to classify as aetherial all those radiations which

do not belong to group (A). This conclusion is fully substantiated

by recent experimental discoveries which have shown that X rays

under suitable conditions can exhibit the phenomena of reflexion,

diffraction and interference (cf p. 509).

The nomenclature which is currently employed in describing

these radiations is very confusing, as it is not based on any definite

system. Thus in different contexts radiations may be differently

named, either according to their mode of origin or according to

what is believed to be their nature, or according to the effects

which they produce. In this way it often happens that radiations,

which we have every reason for believing to be identical in nature,

• Ann. der Phys. vol. xli. p. 247 (1913).

R E. T. 81
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have entirely different names depending on more or less fortuitous

circumstances. Thus a high speed negative electron is called

a /3 ray if it originates in a radioactive substance, a cathode or

Lenard ray if it is produced in a vacuum tube, a secondary

Roentgen ray if it is produced by the impact of the Roentgen

rays on a solid obstacle, and so on. As it is not our purpose to

describe the properties of all the different kinds of radiation in

detail we shall extend the scope of the term y8 ray so as to cover

any negatively charged material ray. In the same way we shall

call a positively charged material ray an a ray, although this term

also is usually applied only to those rays which originate with

radioactive substances. The uncharged, and presumably aetherial,

radiations will be referred to as X rays. We shall use the term

7 rays for these when they originate from radioactive substances

and Roentgen rays when they are produced in vacuum tubes.

For a detailed account of the properties of these radiations the

reader may be referred to the following authorities : J. J. Thomson,

Conduction of Electricity through Gases, Chaps, xi, xii, xix and XX;

Rutherford, Radioactivity, passim.

The difference between a and yS rays is not merely one of sign.

In all cases the specific charge (e/m) has been found to be of a

different order of magnitude. For the /8 rays e/m always has the

large value which corresponds to electrons, whereas for a rays e/m is

always of the same order as the corresponding quantity in electro-

lysis. As all the evidence points to the charge e being either

equal to, or a small multiple of, the elementary electronic charge

in all these cases, it follows that the a rays consist of atoms or

molecules which have lost one or more negative electrons. Their

properties do not furnish any evidence that we have succeeded

in isolating any fundamental positively charged electrical atom

which would correspond to the negative electron, unless it be the

hydrogen atom which has lost a negative electron.

The most convenient test for the presence of the various types

of radiation under consideration is that furnished by the pro-

duction of electrical decomposition (ionization). Thus the passage

of the rays through an insulating gas imparts to it the property

of electrical conductivity. The amount of this ionization is often

taken to be a quantitative measure of the energy absorbed from

the rays. In the case of the X radiations this has proved to be
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the only method of estimating the energy which is available

except in rare cases, although with the a and /3 radiations more

direct methods can usually be employed. The other tests for

radiations, in addition to the production of ionization, such as the

excitation of fluorescence, photo-chemical action, etc., are probably

secondary and depend on electrical decomposition, or at any rate

disruption, in the first instance.

The Aether Pulse Theory of the Roentgen Rays.

The suggestion that the Roentgen rays are pulses in the

aether, which are produced when the cathode rays are stopped

by the walls of the tube or other material obstacle, was first made
by E. Wiechert* and Sir G. G. Stokesf. A view, which is really

equivalent to this, that these rays are transverse aetherial vibra-

tions of exceedingly short wave-length, had previously been put

forward by Schuster \ and others. The consequences of the aether

pulse theory have been worked out by various physicists, including

J. J. Thomson §, Abraham ||
and Sommerfeld^f.

We have already seen in Chap, xil that when an electrically

charged body or electron is accelerated or retarded, an electro-

magnetic pulse spreads out in all directions with the velocity

of light. In accordance with equation (11) of Chap, xii the total

amount of energy in the whole pulse remains constant as it spreads

outwards, so that the amount falling on unit area varies inversely

as the square of the distance from the source. We also saw that

at any point of the pulse the electric and magnetic intensities are

equal and mutually perpendicular. They are also at right angles

to the direction of propagation. The thickness of a pulse pro-

duced by stopping a particle which moves with a given velocity

is greater the smaller the acceleration, whilst, at the same time,

the energy present in the pulse is less. On this view the main

difference between the X rays and thermal radiation or white

* Ann. der Phijs. vol. lix. p. 321 (1896).

+ Nature, p. 427, Sept. 3 (1896) ; Mem. Manchester Lit. and Phil. Soc. vol. xli.

<1896).

+ Nature, p. 268, Jan. 23 (1896).

§ Phil. Mag. vol. xlv. (1898).

II
Theorie der Ekktrizit'dt, n. Chap, ii., Leipzig (1905).

IT Sitzungsber. der Kon. Bayerisch. Akad., Math. Phys. KL, Jahrg. 1911, p. 1.

31—2
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light is due to the fact that the X rays originate from particles

which move with much greater speeds. These high speeds enable

the electrons to penetrate right into the interior of the atoms, where

they are subject to fields of force much more intense than those

to which the slow moving electrons are exposed. Thus in the

X ray pulses the forces are both more intense and also change more

sharply than those in the light waves. Since, in both cases, the

aetherial disturbances are quite irregular, the X rays, on this view,

evidently correspond to light waves of high average frequency.

Many of the salient differences between X rays and light may
at once be accounted for by these considerations. The absence of

diffraction, interference and refraction under ordinary circumstances

is an immediate consequence of the extremely high frequency of

the vibrations to be expected. Nevertheless the pulse theory can

at most only account for the origin of part of the radiation from

an ordinary X-ray tube. For, as we shall see later, recent investi-

gations have shown that such radiations consist largely of mono-

chromatic wave trains similar to the ordinary spectral lines but of

enormously higher frequency. These can be accounted for, in a

similar way to the explanation of ordinary spectral lines now
current, as a consequence of the return to the normal state, of an

atom from which a deep-seated electron has been dislodged* (cf.

Bohr's theory at the end of Chap. xxi).

There is one peculiarity of the aether pulse theory which

deserves further consideration. By means of Poynting's theorem

and the expressions for the electric and magnetic vectors found in

Chap. XII we can write down the density of the stream of energy

in different directions from the accelerated electron. In the

simplest casef, when the acceleration F is in the same straight

line as the velocity v (= y8c), the energy radiated across unit area

at a point distant r from the accelerated particle, where r makes

an angle \ with the direction of v, is

_e^P_ sin'X

IGTT^c^r^ (1-/3 cos X)8 ^
^'

In this expression F and y8 are the values of those quantities at

the instant when the radiation left the accelerated particle, and

therefore at a time t = rjc previous to that at which it reaches the

• Of. J. J. Thomson, Phil. Mag. vol. xxm. p. 456 (1912).

+ Cf. Sommerfeld, loc. cit.
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point under consideration. We see from (2) that E'=0 when

X = or TT, so that there is no X radiation along the axis of

motion. If y8 is small the maximum of JE' occurs when X = 7r/2,

so that the maximum radiation is in the equatorial plane. This is

no longer the case when y8 becomes comparable with unity, i.e.

when the velocity of the electron becomes comparable with that

of light. In fact as yS approaches 1 the value of X for which E'

is a maximum approaches zero, so that the resulting X rays all lie

in an infinitely narrow hollow cone about the original axis of

motion. Some recent experiments by J. A. Gray* on the X (or 7)

rays which are produced when /3 rays are stopped by matter,

show in a convincing manner that the intensity of the resulting

X radiation is much greater in the forward than in the backward

direction of the ^ rays. Similar phenomena in the production

of X rays by the stoppage of cathode rays had previously been

observed by Kayef. Gray concludes that the asymmetry which

he has observed is too large to be accounted for by the aether pulse

theory of the production of X rays.

The Scattering of X Rays.

A simple theory of the scattering of X rays by matter has been

giv^n by Sir J. J. Thomson
Jj.

When matter is traversed by an

aether pulse, the electrons in the former will be accelerated by the

electric intensity in the latter. Consider the case in which matter

is traversed by a plane pulse in which the electric intensity is

imagined to be parallel to the axis of x. Let the direction of

propagation of this " primary " pulse be along the axis of z, and

let X denote the value of the electric intensity in it. When the

primary pulse passes over an electron the latter will be subject to

an acceleration r =— . If we suppose the initial velocity of the

electron to be negligible compared with that communicated to it

by the pulse, we can put sin e = e = in equation (11) of Chap. xil.

Thus the energy radiated by the electron in time dt whilst the

primary pulse is passing over it is

'^^^G^i^^ii^il-^)'
^^^'

* Roy. Soc. Proc. vol. lxxxvi. p. 513 (1912).

t Gamb. Phil. Proc. vol. xv. p. 269 (1909).

X Conduction of Electricity through Gases, Second Editioo, p. 821.
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This result will only be true provided Xe is large compared Avith

the forces called into play by the resulting displacement of the

electron from its original position of equilibrium. The limitations

thus introduced will be considered below. The energy radiated

by the electron during the complete passage of the pulse is

evidently

^'^=6^/(i?|). W'

where the integrals are extended over the time of passage. It is

probable that, except in the case of very penetrating radiations,

we shall not be led into serious error if we neglect /3^ compared

with unity. Thus

j(r^^y=^o-v ^'^'

where E = ^ (X^ + U^) = X'^ is the energy in unit volume of the

primary pulse and d is its thickness. If N is the number of

electrons in unit volume of the matter, and if the primary pulse

only loses energy in this way, the energy —tW which is lost by

the primary pulse in travelling a distance hz is given by

hW=h{Ed) = --^^Whz (6).

Thus the relation between the energy W of unit area of the pulse

and the distance z traversed in the matter is

__Ne*

W=Woe 6^'"''=*^
(7)

if Wo is the value of W when z = 0.

On the theory that we are considering, the thickness of a

primary pulse is clearly equal to the distance traversed by an

electromagnetic disturbance in the time during which the accele-

ration of the emitting electron is appreciable. This time will be

determined by two factors : (1) the velocity of the moving electron

relative to the retarding atom, and (2) the geometrical distribution

of the field of force, inside the atom, which produces the accelera-

tion. The velocity of the moving electrons is always large and

has the value c of the radiation velocity as an upper limit. The

linear dimensions of the fields of force will depend upon the

constitution of the atom, but will be comparable with the distance
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between the electrons which are present in the latter. As we
shall see later, there are good reasons for believing that the total

number of electrons present in the atom is nearly proportional to

and comparable with the atomic weight; so that the distance

between them will be comparable with, but somewhat smaller

than, the diameter of an atom. We should therefore expect

that the very penetrating pulses which are produced by the

stoppage of very rapidly moving electrons by heavy atoms would

have a thickness of the order of 10~^ cm. If the stoppage (or

acceleration) is produced by light atoms the thickness of the

pulses might be ten times as great with electrons moving at

the same speed. With slow moving electrons the pulses in each

case will be correspondingly thicker, since, other factors being

equal, the thickness varies inversely as the speed of the electron.

We shall see later that values similar to those above for the wave-

lengths of the monochromatic X-radiations are given by the quite

different theory referred to on p. 484.

When very penetrating X radiations fall on light atoms there

is every reason to believe that the pulses are so thin and the

electric intensity in them so large that the forces called into play

by the resulting displacement of the constitutive electrons of the

matter are relatively small. We should therefore expect the theory

which leads to equation (7) to hold in such cases. Under the

same circumstances the thickness of the secondary pulses will be

almost the same as that of the primary pulses. For the thickness

of the secondary pulse is equal to the distance travelled by

radiation during the time taken by the primary pulse to pass

over an electron. But the diameter of an electron is only about

10~" cm. and is therefore practically negligible compared with the

thickness even of a very penetrating pulse. It follows that the

thicknesses of both the primary and secondary pulses are the same

under these conditions and we should therefore expect them to

exhibit very similar properties. In confirmation of this result

Barkla has found that the "scattered" secondary Roentgen rays,

which are produced when penetrating primary Roentgen rays pass

over substances made up of light atoms, have the same absorption

coefficient as the primary rays, whatever the chemical nature of

the matter in which they originate.
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For such rays, according to equation (7), the coefficient of

scattering is Ne*j67rm^c\ Since e, m and c are independent of

the nature of the matter, the coefficient of scattering for different

types of matter made up only of light atoms should be pro-

portional to N, the number of electrons in unit volume. In the

case of air Barkla found that the energy, measured by the

ionization produced, of the scattered radiation from 1 cubic centi-

metre is equal to 0'00025 of that of the primary radiation passing

through it. Thus, for this substance,

Ne*/67rnt'c* = 0-00025.

Since e/2 V^ = 4-81 x 10"^ e/2 Vuwc - 1-77 x 10^ and

c = 3 X 101", Ne = 2 Vtt^c x 5-95.

But if n is the number of molecules in 1 c.c. of air, the results

of electrolytic experiments show that ne = 2 Vttc x 0*4327. Whence
i\r/7i = 14. Thus the number of electrons divided by the number

of molecules is about half the molecular weight. Since the absorp-

tion of penetrating X rays by light atoms depends only on the

quantity of matter traversed and not on its chemical nature, we
are led to the further conclusion that the atomic weights of the

different elements are proportional to the number of electrons

their atoms contain. Combining the two inferences, it follows

that the number of electrons present in the atoms of different

elements is a common submultiple of their atomic weights. This

conclusion we shall find to be supported by other lines of reasoning

(see pp. 490—496).

FolaHzation of X Rays.

By making use of the properties of the scattered X radiation

it is possible to show that Roentgen rays possess features analogous

to the polarization exhibited by light and other electromagnetic

waves. The existence of this polarization was first demonstrated

by Barkla* and his results have since been confirmed by a number

of other observers. The principle of these experiments is as

follows: Let AB he the direction of the cathode stream in the

tube in which the Roentgen rays originate. The cathode rays are

stopped by the anticathode at B. Let the Roentgen rays which

travel in the direction BC, which is normal to AB, pass through

Phil. Trans. A, vol. cciv. p. 467 (1905).
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matter consisting of light atoms at G and thus give rise to

" scattered " X rays. Now it is probable that the cathode rays are

not stopped by a single impact at B so that their motion will

become irregular before they cease to cause the emission of

Roentgen rays. We should, however, expect the most penetrating

rays to {yise when the cathode rays are moving at their greatest

speed, that is to say, before they have been deflected by many

encounters. The main features of the penetrating rays will there-

fore be determined by the properties of pulses emitted during the

acceleration of electrons moving in the direction AB. Let CE be

a line parallel to AB in the plane of ABG and let CD be per-

pendicular to EG, GB and BA. The acceleration at B of an

electron whose velocity is along AB will give rise to an element

of pulse travelling along BG in which the electric intensity is

parallel to GE and the magnetic intensity is parallel to GD. If

this pulse falls on an electron at G, the latter will be subject to an

acceleration along GE. If we assume the electron to be at rest

initially, the secondary pulse will have zero intensity along the

axis GE and its maximum intensity in the equatorial plane

through G which contains GD and BG. If the cathode rays were

stopped by the first encounter at B the secondary rays would have

zero intensity along the polar axis GE and a maximum intensity

at points in the equatorial plane through G. If the primary tube

were rotated so that AB became parallel to GD, the secondary

rays would fall to zero in the direction of GD, and GE would

become one of the directions of maximum intensity. Since the

electrons are believed to be only partially stopped by a single

collision the intensity of the secondary rays will never drop to zero.

We shall only be able to observe a minimum value in the directions

indicated as compared with the maximum value in the perpen-

dicular plane.

c V.B^

Fig. 51.

The observations alluded to are in satisfactory accordance with

the theory just outlined. The maximum difference of intensity
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in the directions GE and CD observed by Barkla is about

207o.

The Scattering of a and ^ Rays by Matter.

When these very rapidly moving particles traverse matter it

seems fairly certain that they pass through the interior of the

atoms and not simply through the space between them. For

instance, it is found that when a pencil of a rays is made to

pass through sufficiently thin sheets of solid substances, only a

small fraction of them are either deflected through appreciable

angles or stopped, whereas a calculation based on the fairly con-

cordant values of the dimensions of molecules given by various

methods shows that the chance of a particle passing through such

a sheet without colliding with a molecule is excessively slight.

Admitting that the moving charged particles pass through the

interior of the atoms, in many cases without sensible deflexion, it

follows that such deflexions as occur must arise from encounters

with systems forming part of the atom rather than with the atom

as a whole. We should therefore expect that a study of the

scattering of pencils of these particles which results from their

transmission through matter would afford valuable indications

toward a knowledge of the structure of the atoms of the latter

;

although it is possible that the effects to be expected might not

be very dissimilar even if widely different views of the structure

of the atoms were adopted. The problem has been considered

theoretically by both Thomson* and Rutherford f, who have

adopted rather divergent views both as to atomic structure and as

to the nature of the deflexions. Let us consider Thomson's treat-

ment first.

Thomson considers the atoms through which the charged

particles pass to be made up of N^ negative electrons accompanied

by an equal quantity of positive electricity. The deflexion of a

moving negative electron, for example, will then arise from two

causes : (1) the repulsion of the electrons distributed through the

atom, and (2) the attraction of the positive electricity. In regard

to (2) two cases are considered : (1) the positive electricity is

• Camb. Phil. Proc. vol. xv. p. 465 (1910).

t Phil. Mag. vol. xxi. p. 669 (1911).
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distributed with uniform volume density throughout a sphere

whose vohime is equal to that of the atom (see Chap, xxi), and

(2) it is divided into separate equal units, as to which it is con-

sidered probable that they occupy a much larger volume than that

occupied by an electron.

The deflexion of an individual electron due to its passage

through a single atom will depend on the manner in which the

atom is approached, but the average value of this deflexion taken

over a large number of encounters will be a definite quantity 6.

If we consider a sufficiently large number of consecutive deflexions

it is probable that no serious error will be introduced if they are

all treated as equal to the mean value 6. It is to be remembered

that the direction of any individual deflexion is a matter of chance

and its magnitude is very small. By considering the resolution of

any large number n of such deflexions 6 along any two perpen-

dicular axes in a plane at right angles to the original motion, it

is evident that the problem of finding the average effect of the

n deflexions is the same as that of finding the average amplitude

of the resultant of n vibrations, the amplitude of each of which

is 6 and the phase of each of which is entirely fortuitous. This

problem has been solved by Lord Rayleigh* who has shown that

the average resultant amplitude is

^/ne (8).

It follows that if the rays pass through a plate of thickness t,

containing N atoms, of radius h, per unit volume, the average

deflexion which they experience is 6 \lNTrb'^t. The problem is

thus reduced to the determination of the value of 6.

The part 6^ of which arises from deflexions caused by the

negative electrons can be found by means of the theory of particles

moving under central forces which vary inversely as the square of

the distance *!-. When the velocity T of the y8 particles is so large

that the resulting deflexion is small, the deflexion produced by a

single encounter is —r^ - , where x is the perpendicular distance
u}f V CO

between the electron encountered and the undeflected path. The

average value of this for all the electrons which lie within a

• Theory of Sound, Second Edition, vol. i. p. 35.

+ Routh, Dynamics of a Particle, Cambridge, 1898, Chap. vi.



492 TYPES OF RADIATION

distance a of the line of motion is —77^ — . If ? is the average

length of the path of the moving particle which lies inside the

atom, if the electrons are uniformly distributed in the atom and if

there are v of them per unit volume of the latter, the number of

collisions with electrons which lie within a distance a is viraH.

If we suppose for the moment that the negative electrons are alone

operative and consider any very large number a of encounters

with atoms the average total deviation would be

4e2 1 46= / j-

Since this must be Vo- times the effect of a single encounter the

effect of the latter is

substituting \/l = ^\/'2.h, where h is the radius of an atom.

If 01 is the average deflexion due to the sphere of positive

electrification the theory of central forces shows that this is

given by
e" NoTT

^^-^^«T4 ^^^>'

provided ^i is small When the positive electricity is made up of

definite units the mean deflexion ^g due to these is given by

where t is the ratio of the volume occupied by the positive

electricity to the volume of the atom.

Thus, according as we adopt the first or second hypothesis as

to the geometrical configuration of the positive electricity, the

value of 6 will be given by the equations

= {Oi' + <l>i')^ or = (ei^ + (fy,^)^ (12),

and the average deflexion t/t^ in passing through a thin plate of

thickness t will be given by either
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As the only unknown quantities on the right-hand sides of (13)

and (14) are N^ and t, if the equations are supported by experi-

ment they ought to enable us to determine the value of Nq the

number of electrons in the atom.

The extent to which these equations are in accordance with

the observed scattering of /9 rays when they pass through thin

sheets of various solids has been examined by Crowther*. If yjr

is any particular angle of deflexion it follows from the theory

of errors that the probability of a deflexion greater than -yfr is

g-^'Mm". Thus from (8) the thickness to for which this probability

is ^ will be given by
e-Vlct,ff^=.:^ (15)^

or tAo^=^V(clog2) (16),

where c is a constant for any particular substance. The probability

that the deflexion is less than -\/r is equal to 1 — g-'/'Vc^e^^ that is to

1-e-^l* (17)

where k is constant for any particular substance, if i/r is kept

constant. From (8) and (16)

tAo* = ^mMx VbP (18),

and from either (13) or (14)

tAo* = const, x^^ (19),

where the absorbing medium is kept the same and the velocity of

the incident rays is varied. When -^/r is also kept constant

mV%^ = constant (20).

The method of investigation adopted by Crowther was to

measure the proportion of the incident ^ rays whose deflexions

were less than a fixed value yjr when they passed through ab-'

sorbing sheets of different materials and when the thickness of

the sheets and the velocity of the rays were varied. In this way
he has been able to confirm equations (16), (17) and (20) using

aluminium sheets, and equation (16) with platinum sheets also.

The value of yfr/to^ enables Hq to be calculated from (13) and (14).

In reducing (14) t is assumed equal to zero, but it is shown that

* Roy. Soc. Proc. A, vol. lxxxiv. p. 226 (1910).
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the value assumed for t cannot affect the results vitally. If (13)

is taken, Nq is found to be proportional to the atomic weight W
of the elements C, Al, Cu, Ag and Pt, the value of No/W varying

only between 2"87 and 332. This variation is comparable with

the error of measurement. If (14) is taken, No/W rsiuges from

3*7 for carbon to 33'5 for platinum. Since the scattering of X rays

by matter leads to the conclusion that the number of electrons per

atom is proportional to the atomic weight, the hypothesis under-

lying (14) is discarded and the experiments are taken to establish

the view that the positive electricity is uniformly distributed.

Subject to this hypothesis the results show that the number of

electrons present in any atom is equal to three times the atomic

weight, within the limits of accuracy of the measurements. Al-

though this estimate is considerably higher than that given by

the scattering of Roentgen rays by light atoms it is of the same

order of magnitude.

Rutherford's treatment of the scattering differs from Thomson's

in two important particulars. He attributes the main features of

the scattering of the particles w^hen they pass through thin layers

of matter to the effects of single encounters (single scattering)

and not to the chance combination of a multitude of excessively

minute deflexions. This is the most radical difference in so far as

the method of calculation is concerned. It is supported by the

experiments of Geiger* and others on the scattering of a rays

produced by thin sheets of matter. These experiments have

shown that the proportion of a particles which are scattered

through large angles is very much larger than that which would

be expected as the cumulative effect of a multitude of small de-

flexions. The other difference is in the hypothetical constitution

of the atom which is adopted. This is imagined to consist of a

central point charge + NqB surrounded by a sphere of uniformly

distributed electrification equal altogether to + NqB. The assump-

tion of a large central charge is shown to be required to account

for the large individual deflexions.

The probability of a single deflexion greater than a given

angle is clearly determined, making use of the theory of central

* Geiger and Marsden, Roy. Soc. Proc. A, vol. Lxxxn. p. 495 (1909); Geiger,

Roy. Soc. Proc. A, vol. Lxxxni. p. 492 (1910).
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forces, by the chance that the undeflected path of a particle,

moving with given velocity, will pass within an assigned distance

of the fixed centre. In this way it is shown that the fraction p

of the particles which are deflected through angles lying between

<^i and ^3 is

p=^'^nt}fUoi''^-Got''^^ (21),

where 6 =?^ (22),

E being the charge, m the mass and V the velocity of the a par-

ticle. The results of this theory are shown to be in satisfactory

accordance with

(1) the measurements of the proportion of a particles scattered

through large angles

;

(2) the scattering of a particles through all angles, if allowance

is made for the effects arising from the cumulative effects of small

deflexions considered by Thomson
;

(3) the proportion of a particles scattered through large angles

by sheets of different elements, if the central charge is assumed to

be proportional to the atomic weight.

It appears that Rutherford's calculations, as well as Thomson's,

lead to the constancy of the fractions "^jU^ and mV^jt^ for the

scattering of the ^ rays under the conditions investigated by

Crowther. The values of the constants, however, are different in

the two cases and so are the estimated values of Nq. Using

Crowther's data Rutherford calculates the following values for iVo,

the number of electrons which would have a total charge equal to

the hypothetical central charge : for Al, iV^o = 22 ; for Cu, A^o = 4)2
;

for Ag, iVo= 78 ; and for Pt, N^^ = 138. These values are roughly

in the proportion of the atomic weights. Platinum and gold

appear to be the only materials for which suitable data relating

to the scattering of the a particles through large angles are avail-

able ; but in that case the resulting estimate of JVo is in substantial

agreement with that deduced from the behaviour of the fi rays.

On the theory of single scattering the number of particles

deflected through an angle greater than a given angle will be

equal to let, where k' is a constant, if the thickness t is small.
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Thus, instead of (17), the proportion ///o of the rays for which the

deflexion is less than an assigned amount will be given by

///o = \-k't (23),

provided t is small enough. Since Crowther found (17) to be

confirmed by his experiments this test is in favour of Thomson's

theory. This divergence might be reconciled by supposing that

the cumulative effect of the deflexions of /8 rays by electrons is

relatively more important than the compound deflexion of the

o rays. This seems reasonable, as a moving particle will come

within range of many more electrons than atoms. The moving

electrons will be deviated in varying degree both by the electrons

and the large central charge, whereas the a particles will only be

affected appreciably by the central charge, on account of the small

mass of the electrons.

Reviewing the whole evidence broadly it is quite clear that

the phenomena observed in the scattering of a and /S particles

by matter are quite decisively in favour of Rutherford's view

that atoms contain a highly charged massive nucleus of minute

dimensions. The estimates of iV^o obtained on this supposition

are also in better agreement with the estimates of the numbers

of electrons in atoms deduced from the scattering of X rays than

those given by Thomson's theory. Finally it will be shown in

Chap. XXI (pp. 589 et seq.) that a large number of different

phenomena point most definitely to the nucleus theory of the

atom *.

Secondary Rays.

The secondary rays which are emitted when Roentgen rays

are absorbed by matter possess many interesting properties. The

scattered radiation, which is similar to the primary radiation,

has already been considered. In general two additional types

of secondary radiation are found to be emitted. One of these

is of the X type and is called, for reasons which appear below,

"characteristic" radiation; and the other is of the /8 type.

Let us consider for a moment the means which are available

for recognizing and classifying what we may provisionally call

* Cf. Rutherford, et al.. Discussion on the Structure of tlie Atom, The Royal

Society, 19 March, 1914.
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pure radiations of the X type. Suppose that we are dealing with

primary radiations whose penetrating power is comprised within

the limits of that of the rays given off in quantity by an ordinary

Roentgen ray bulb. When such rays are allowed to fall on matter

it is found that characteristic radiations are not excited, provided

the matter consists entirely of elements whose atomic weights are

all below 40. If the atomic weights exceed 40, characteristic

radiations are found to be emitted. In all cases there is evidence

of the occurrence of scattered radiation. These facts would lead

us to conclude that absorption of the rays by light elements is

a less complex phenomenon than absorption by matter containing

the heavier atoms. Let us take as our criterion of a pure radiation

the condition that its law of absorption, by matter consisting only

of light elements, should be an exponential one. That is to say,

if the incident intensity is \ the intensity i, after traversing

normally a thickness x of the matter, will be

i = i,e-^^ (24),

where k is independent of x. This law results, of course, if

successive equal thicknesses of the absorbing matter absorb equal

fractions of the radiation entering them. The intensity i is taken

to be measured by the ionization which the rays will produce

in a thin layer of a gas like air, which is composed solely

of elements of low atomic weight. This method is satisfactory

because the amount of ionization in such cases has been shown

to be proportional to the loss of intensity due to absorption.

Now suppose that we have a number of different pure radiations

and that we determine the value of k for each of them when they

are absorbed by sheets of some particular light element. Let the

resulting values of k be Xi, fi^, Vi, etc. Let the corresponding

values of k for some other light element be Xa, /^a, Va, etc. Then

it is found that X, : /Ai : Vi etc. = Xg : /ia : i^a etc. No such simple

relation between the values of k is found to hold when absorption

by materials with heavier atoms is considered, so that this result

favours the comparative simplicity of the phenomena in the case

of the lighter atoms.

It is clear that if we take any particular element of low atomic

weight the value of the absorbability k will give us a means of

classifying any particular pure radiation. As it is very readily

obtainable in thin sheets, aluminium is generally taken as the

R. E. T. 32
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standard. This method of investigation has been used by Barkla*

and his collaborators, whose researches have greatly increased our

knowledge of the X type of secondary Roentgen rays. We shall

see below that there is another criterion which may be used

instead of k, namely the maximum velocity of the y8 rays emitted

when the X rays fall on metals. This has been shown to have,

for each pure radiation, a definite value which is independent of

the metal (cf. also p. 505). Finally, thanks to the discovery of the

diffraction of X rays by crystals (see p. 509), we can now determine

the wave-length or frequency of the rays by reflexion from crystals.

The classification of X rays according to their frequencies is the

most scientific and precise ; though most of the pioneering work

in investigating the characteristic rays was done by using the

rougher absorption criterion before an exact knowledge of the

wave-lengths was available.

When the primary rays are such as are emitted by an ordinary

Roentgen ray bulb the difference between the secondary rays

emitted by aluminium (atomic weight 27) and an element like

copper (atomic weight 63) is very striking. In the first place,

the quantity of the secondary emission (scattered radiation) from

aluminium is comparatively insignificant. The amount of the

secondary radiation from the copper is very much larger. The

two radiations differ also in quality. We have seen that the

aluminium radiation has the same penetrating power as the

primary radiation. The copper radiation is much more absorb-

able. It is also very nearly a pure radiation f. The current

evidence is to the effect that it consists almost entirely of a pure

radiation mixed with a trace of scattered radiation. The amount

of the scattered radiation from copper, and other elements of

atomic weight above 40, appears to be of the same order as that

given out by aluminium.

This pure secondary radiation is that which we have referred

to as the characteristic secondary radiation. It is characteristic

in the sense that its absorbability k has a value which is charac-

Barkla, Phil. Mag. vol. xi. p. 812 (1906) ; Barkla and Sadler, Phil. Mag.

vol. XVI. p. 550 (1908) ; vol. xvii. p. 739 (1909) ; Barkla, Jahrh. der Hadioakt. etc.

vol. ni. p. 246; Phil. Mag. vol. xxii. p. 396 (1911).

t As judged by the absorption criterion. It is now known to consist of a

number of monochromatic emissions extending over a moderate range of frequency,

in addition to the scattered radiation (cf. p. 513).
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teristic of the metal from which it is emitted. In the case of the

elements whose atomic weights lie between about 40 and 100

the absorbability of the characteristic secondary rays is quite

independent of the nature of the primary X rays which are used

to excite them. With the elements of still higher atomic weight

the phenomena are more complicated and it appears that these

elements give off more than one kind of characteristic radiation.

It is convenient to allude to the characteristic radiation from

a particular element M as the M-X rays. Thus the characteristic

rays from copper are called the Cu-X rays. This notation is due

to Bragg.

The absorbability of the characteristic ray diminishes, and their

penetrating power increases, as the atomic weight of the parent

element increases. The characteristic rays differ from the scattered

rays in one important particular in addition to those already

mentioned. They show no trace of polarization. This leads to

the view that the manner in which the primary rays cause the

formation of the characteristic rays is less direct than that in

which the scattered rays are produced. This conclusion may be

considered to be established when we recall that the scattered

rays are similar in their properties to the primary rays and

independent of the matter in which they originate : whereas the

characteristic rays have their properties determined solely by the

matter of origin and not at all by the character of the primary rays.

We shall now turn to the absorption of pure X radiations

by sheets of different elements. A series of results obtained

by Barkla and Sadler is exhibited in the accompanying diagram

(Fig. 52). The abscissae are proportional to the absorption

coefficients of the various radiations in aluminium. The experi-

mental values of kjp in aluminium are indicated by the abscissae

corresponding to the various vertical dotted lines alongside which

are written the chemical symbols of the different elements by

which the pure characteristic radiations were emitted. The ordi-

nates are the values of kjp, where p is the density of the absorbing

element, for the elements C, Mg, Fe, Ni, Cu, Zn, Ag, Sn, Pt and

Au. In the case of the elements of atomic weight below 40,

namely C and Mg, the relation between the absorbability of the

radiations by the respective elements and that by aluminium is a

linear one, as has already been pointed out on p. 497. The same

32—2
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thing, however, will be observed to be approximately true in the

case of Pt*, Au*, Ag and Sn as well. In fact such a linear relation

between the absorption coefficients for different pure radiations

has been found to hold quite generally, provided the range of

radiations tested neither includes that characteristic of the absorb-

ing substance nor lies near the less absorbable side of it.

JO 40 50 60 70

Absorption /N At (k/p)

Fig. 52.

<00 110 120 130 140

The curves for Fe, Ni, Cu and Zn are quite different. As
they all exhibit the same features we need only consider one of

them, that for nickel for example. The absorbability by nickel

of the radiations from Cr, Fe, Co and Ni, which are either more

absorbable than, or as absorbable as, that characteristic of nickel, is

* It is necessary to except the penetrating Ag-X and Se-X rays in these cases.
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proportional to the absorption of the same radiations in aluminium.

The next most penetrating radiation, as measured on the aluminium

scale, is the Cu-X radiation, and this shows a small but definite in-

crease over the absorbability required by the law of proportionality.

As the absorbability in terms of aluminium of the characteristic

rays diminishes further, their absorbability in nickel increases

very rapidly. Thus the absorption coefficient of the Zn-X rays

in nickel is several times that of the Cu-X rays, although the

atomic weight of zinc (65) is only 2 units greater than that

of copper. Further diminution in the aluminium absorbability

of the characteristic rays is accompanied by an approximately

proportional diminution in the absorbability of the rays in nickel.

Thus the curve again approximates to a straight line which has

a different slope from the linear portion on the more absorbable

side of the radiation which is characteristic of nickel. It will

be noticed that in each case the radiation having the maximum
absorbability is that which is characteristic of the element next

but one to the absorbing element when they are arranged in the

order of increasing atomic weight.

Direct experiments have shown that the abnormal absorption

of radiations which are slightly more penetrating than the radia-

tion characteristic of the substance tested, in the cause of the

emission of the characteristic radiation. The amount of the

characteristic radiation emitted by an element is found to be

zero until the exciting rays become at least as penetrating as

the characteristic radiation ; as the penetration, measured in

terms of aluminium or some substance which behaves similarly to

aluminium, is increased beyond this critical value, the amount of

characteristic radiation which the exciting radiation will cause to

be emitted, compared with the ionization which it produces in air

or any other gas containing only light atoms, increases at first to

a maximum value and then diminishes. In fact, the quantity of

characteristic radiation emitted appears, for all exciting radiations,

to be proportional to the excess of absorption over what would

be given by the linear relation which holds for exciting radiations

that are more absorbable than the characteristic radiation.

Since these results appear to be quite general, the occurrence

of humps, like those shown in the relative absorbability curves

for Zn, Cu, Ni and Fe in Fig. 52, affords a simple and delicate
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method of detecting the presence of unknown characteristic radia-

tions. Working in this way Barkla and Nicol* have succeeded

in separating two quite distinct characteristic radiations from each

of the elements silver, antimony, iodine and barium. A compre-

hensive examination of all the radiations thus far discovered shows

that, when they are arranged in the order of kjp, their comparative

absorbability in aluminium, they fall into two series. These have

been called by Barkla the K and L series respectively. In each

series the order of diminishing absorbability is that of increasing

atomic weight of the metal of origin. The data for the radiations

which have thus far been isolated are given in the following table

:

Absorbability of

Fluorescent

Radiation Atomic weight
Radiation

(kip in Al)
Remarks

Series K Series L

H-Mg 1-008—24-32 No radiation observed.

Probably very absorbable.

Al and S 27-1 and 32-07 Radiation observed but kjp

not yet measured.

Ca 40-09 435 Less accurate than succeed-

ing values.

Cr 52 136
Fe 55-85 88-5

Co 58-97 71-6

Ni 58-68 (61-3) 59-1 The value in brackets is

Cu 63-57 47 -.7 deduced by Barkla from
Zn 65-37 39-4 X ray measurements.
As 74-96 22-5 >

Se 79-2 18-9 The value for Rb has not

Br 79-92 16-4 been determined so ac-

Rb 85-45 13-7 curately as the others.

Sr 87-62 9-4

Mo 96 4-7

Rh 102-9 3-1 /

Ag 107-88 2-5 700 \

Sn 119 1-57

Sb 120-2 1-21 435 Values for L more accu-

I 126-92 0-92 306 rate than for K series.

Ba 137-37 0-8 224
Ce 140-25 0-6 .

W 184 33
Pt
Au
Pb

195
197-2

207-1

27-5

25
20

These values are com-
paratively approximate.

Bi 208 19

• iiature, Aug. 4 (1910).
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Reasons have been given by Barkla for believing in the

existence of series other than the series K, L which have already

been explored*. It will be noticed that the fact that the charac-

teristic radiations are only excited by radiations more penetrating

than themselves is analogous to Stokes's law in optics : according

to which fluorescent light is invariably of lower frequency than the

light which excites it. For this reason the characteristic radiations

have sometimes been called fluorescent radiations. It is obvious

that each pure characteristic radiation has features which are

closely analogous to those exhibited by a monochromatic emission

of fluorescent light, and the sum of the radiations characteristic of

any given element may be regarded as a fluorescent spectrum in

the X ray region.

It follows from the experiments which have been described

that so long as we keep to a group of characteristic radiations

whose penetrating powers (or frequencies) are all above or all

below the penetrating powers (or frequencies) of the radiations

characteristic of the elements in which absorption takes place,

the ratios of the absorbabilities of the diff'erent radiations are

independent of the particular absorber used to test them. For

groups of radiations which satisfy this criterion Owenf has shown

that for the K series the values of kjp are inversely proportional

to the fifth power of the atomic weights of the elements of which

the radiations are characteristic. We shall see later that the

wave-lengths of characteristic radiations of the K series are

approximately inversely proportional to the squares of the atomic

weights of the generating elements ; so that Owen's rule can be

put in the form
7 1^4
Tcjp <x \2.

Bragg and Peirce I have shown that the absorption per atom,

of radiations satisfying the criterion above, is proportional to the

foui:th power of the atomic number N (see p. 513) of the absorbing

element; so that both rules can be combined into the general

expression

k/p=CN*X^.

* Phil. Mag. vol. xxii. p. 408 (1911).

+ Roy. Soc. Proc. A, vol. lxxxvi. p. 426 (1912).

J Phil. Mag. vol. xxviii. p. 626 (1914).
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The values of the constant G will change in passing through

the critical frequencies corresponding to those of the emissions

characteristic of the absorbing element.

Recent experiments have confirmed the view that ionization

by X rays consists first in the emission of a high speed electron

by photoelectric action. This electron then spends its energy in

ionizing the molecules of the gas by impact. Practically all the

ions liberated result from the second process. H. Moore* has

shown that the first process is an atomic phenomenon, whereas

the second is notf, but depends to some extent on the molecular

configuration of the atoms. For a given radiation the number

of electrons per atom emitted owing to the photoelectric action

of the rays is found to be proportional to the fourth power of the

atomic number, and incidentally the law of absorption found by

Bragg and Peirce is confirmed and extended.

The Relation between /3 rai/ and X ray Emission.

Wc have seen that X ra3'^s are emitted when high-speed

electrons impinge on matter and also that when. X rays are

absorbed by matter secondary radiation of the yS type is emitted.

Recent investigations have shown that this transformation of

X ray into yS ray energy and the inverse change obey a number of

fairly simple laws which appear to be of a general character.

The specification of the nature of any single ^ thy ^^ * quite

simple matter. Since each ray is a moving electron, its nature is

determined when its speed and direction of motion are given. In

general a beam of /3 rays consists of a shower of electrons having

different speeds and directions of motion. By the insertion of

suitable stops the range of the directions of motion can be re-

stricted to any desired extent. By the application of a magnetic

field the y8 rays can also be spread out into a sort of spectrum. In

this way sufficiently homogeneous beams of /3 rays can be obtained

for experimental purposes. The ^ rays which are given out by

radioactive substances or which are emitted when X rays are

absorbed by matter are, as a rule, of a heterogeneous character.

This heterogeneity arises in part from the fact that the rays

• Phil. Mag. vol. xxvii. p. 177 (1914); Roy. Soc. Proc. A, vol. xci. p. 337

(1916).

t Cf. Barkla and Simons, Phil. Mag. vol. xxm. p. 317 (1912).
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originate at different depths in the matter and thus lose varying

amounts of energy before they emerge. In many cases it has been

shown that the maximum energy of the y9 rays which thus arise is

a definite quantity which exhibits rather simple relationships.

In the cases now under consideration it has not always been

found possible to measure the energy of these rays by the com-

paratively direct methods involving stoppage by an electric or

deflexion by a magnetic field, which have been employed in the

case of the cathode rays and of the electrons emitted by hot bodies

and by bodies illuminated by ultra-violet light. The reason for this

is either that the energy of the rays is too great to be much affected

by the electric fields at our disposal or else that the rays are not

concentrated enough for the magnetic method to be available. A
measure of the energy of the /S rays has been found in the distance

that they are able to travel in a gas like air before they cease

to produce additional ionization of the gas. This distance has

been found to be sufficiently definite to be taken as a satisfactory

index of the velocity of the quickest rays in any given group.

Using this criterion Sadler* and Beattyj* have been able to

show that the maximum velocity of the /3 rays emitted when a

given characteristic X radiation is allowed to fall on different

metals always has the same value. This maximum velocity is

therefore characteristic of the X radiation and independent of the

metal ; it is greater the greater the atomic weight of the metal of

which the X rays are characteristic.

This question has been studied more fully by WhiddingtonJ.

He has shown by experiment that if the original velocity of a

group of /S rays is ^o, their velocity v after traversing a thickness d

of matter is given by
Va*-v'=ad (2.5),

where a is a constant characteristic of the matter. Since (25)

appears to hold with fair approximation down to the velocity

(approximately v = 0) at which ionization ceases, it follows that

the velocity Vg of the fastest secondary rays is given by

Vs^ = ud (26),

* Phil. Mag. vol. xix. p. 337 (1910).

t Phil. Mag. vol. xx. p. 320 (1910).

X Roy. Soc. Proc. A, vol. lxxxvi. pp. 3C0, 370 (1912).
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where a= 2 x 10^°, for air at atmospheric pressure, and d is the

maximum distance in which ionization is perceptible. Analysing

the results of Sadler and Beatty in a manner which depends on

this principle it appears that

Vs = k'w (27),

where k' is a constant and w is the atomic weight of the radiator

of which the secondary rays are characteristic. This relation has

been verified for the Fe-, Cu-, Zn-, As-, Sn-, Mo-, and Ag-X rays.

The value of k' is very close to 10^ (± 4%).

We have seen that the characteristic X rays are only excited

by X rays more penetrating than themselves. Using an X ray

tube with a silver anticathode Whiddington* has investigated the

relation between the velocity of the cathode rays in the primary

tube and the amount of secondary characteristic radiation emitted

when the resulting primary X rays are allowed to fall on difierent

metals. He finds that no characteristic secondary rays are emitted

until the cathode rays have a critical minimum velocity Vp. The
emission begins quite sharply at this point and subsequently varies

as the fourth power of the velocity of the cathode raysf. The

value of Vp is connected with the atomic weight w of the secondary

radiator by the simple relation

Vp = kw (28).

The value of A; is very close to 10* and, in fact, k = k' within the

limits of error of the experiments.

Thus primary cathode rays of velocity just greater than Vp = kw
give rise to primary Roentgen rays, and these if absorbed by a

metal of atomic weight w would give rise to secondary Roentgen

rays, characteristic of that metal, which give rise to secondary /8

rays whose maximum velocity is Vs = k'w = kw = Vp. The maxi-

mum velocity of the secondary yS rays is equal to the minimum
velocity of the primary cathode or ^ rays which are able, in-

directly, to excite the characteristic Roentgen rays which caused

the emission of the secondary ^ rays.

The formulae above only apply without modification to Barkla's

K series of characteristic radiations. According to Whiddington]:

* Roy. Soc. Proc. A, vol. lxxxv. p. 323 (1911).

t Cf. J. J. Thomson, Phil. Mag. vol. xiv. p. 217 (1907).

t Roy. Soc. Proc. A, vol. lxxxvi. p. 378 (1912).
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the case of both the K and L series is covered by the more general

formulae

Vp = k(Aw + B) (29),

v»=k'(Aw+B) (30).

For the K series A =1 and B = 0.

For the L series A = ^ and B = — 25.

Thus the secondary cathode rays, excited by the characteristic

rays which belong to the L series from an element of atomic weight

Wy have a maximum velocity equal to

(f--) 10^ cm. sec.~^.

It will be observed that there is a very close resemblance

between the emission of electrons by matter under X ray and

ultra-violet light illumination. In both cases the number of

electrons emitted is proportional to the incident intensity, whereas

the maximum energy of the electrons is independent of this in-

tensity. These facts receive a simple and obvious explanation on

the view that the X rays and light consist of showers of material

particles or of bundles of energy which are localized in space and

do not spread out as the distance from the source is increased.

On the other hand in the case of light (and also X rays, see

p. 510) it is impossible to account for the phenomena of inter-

ference and refraction on such a view. It seems a little safer,

therefore, to suppose tentatively that the energy of the emitted

electrons in some way represents a condition which determines

the disruption of matter under the stimulus of a given radiation.

To agree with the results of the theory of black body radiation

and of the experiments on the emission of electrons under the

influence of light it is necessary that one part of this condition

should be that the energy of the disrupted electrons is either

equal to hv, where h = 6*55 x lO"'" erg sec. and v is the frequency

of the radiation, or is an integral multiple of this quantity. It

also appears that this condition must be of a very general

character and necessarily inherent in all types of matter.

[It is difficult, in fact it is not too much to say that at present

it appears to be impossible, to reconcile the divergent claims of

the photoelectric and the interference groups of phenomena. The

energy of the radiation behaves as though it possessed at the same

time the opposite properties of extension and localization. At
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present there seems no obvious escape from the conclusion that

the ordinary formulation of the geometrical propagation involves

a logical contradiction, and it may be that it is impossible con-

sistently to describe the spacial distribution of radiation in terms

of three dimensional geometry.]

We have seen that the maximum energy of the electrons

emitted under the influence of illumination by light is given

by the equation

Tm=vh-Wo (31),

where Wq is a constant characteristic of the type of matter by
which the light is absorbed. If this relation holds for the radia-

tions of the X type as well as light, the results given above enable

us to determine the frequency of the characteristic X radiations.

In these cases Wq is negligible compared with vh, so that

"" 2r- 2h
^^^^•

Thus for the copper-X rays belonging to the K series, putting

jfc' = 10«, ^ = 1, w = 63, B = 0, w = y^ X 10-« and h = 655 x 10"=",

V = 2-74 X 1018 sec.-^

According to this estimate their frequency is about 2000 times

as great as that of visible light.

It has been found by the methods described in the next section

that the X rays emitted from tubes with an anticathode made of

an element of high atomic weight consist largely of a general

radiation spread over a wide range of frequency like an ordinary

continuous spectrum. The Coolidge tube which has a tungsten

anticathode furnishes a good example of this, and is convenient

to investigate as it can be manipulated with accuracy. The

maximum frequency v of the rays emitted when a potential V is

applied to such a tube has been investigated by Duane and Hunt*,

and by Rutherford, Barnes and Richardson f. The former investi-

gators found that

eV= hv (32a)

with great accuracy, showing that to excite a radiation of given

frequency the impinging electrons must have an amount of energy

• Phys. Rev. vol. vi. p. 166 (1915).

t Phil. Mag. vol. xxx, p. 339 (1915).
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at least equal to one quantum of that radiation. The latter

investigators, who pushed their experiments to much higher

potentials, found that this law only held for relatively low values

of V. As F increased, the observed maximum frequency became less

than that given by (32 a) until finally v reached a constant superior

limit. This limiting value agreed closely with that for the K
characteristic radiation from tungsten.

Experiments by Barkla* have recently led him to the con-

clusion that when K characteristic rays of frequency v^ are

emitted under the stimulation of primary X rays of frequency

v(v> Vi), then for each quantum hvi of the K radiation emitted

there is also emitted one electron with the kinetic energy

^mv^ = hv, and possibly also one quantum of each of the L, M, etc.

radiations. It seems difficult to reconcile this result as it stands

with the quantum considerations with which X ray phenomena

in general are in harmony, since we should expect that the ^ rays

associated with the emission of the characteristic rays would have

an amount of energy given by ^mv^ = h{v — Vi) and not ^mv'^ = hv,

the amount of energy hv^ being taken up in separating the electron

from the atom antecedent to the emission of the characteristic

radiation. It seems possible that the actual phenomena are

more involved than the interpretation referred to would indicate.

It is probable that the relations underlying (27)—(30) and (32)

could be expressed more accurately in terms of the atomic number

N than of the atomic weight w.

X Rays and Crystals.

An enormous advance in our knowledge of the properties of

X rays has recently taken place owing to a discovery made by

Friedrich, Knipping and Lauef. These experimenters allowed

a narrow beam of X rays to traverse a thin plate cut from a

crystal of zinc-blende and then to fall on a photographic plate.

When the plate was developed, instead of a single black spot being

obtained as in the absence of the crystal, it was found that the

central circular spot was surrounded by a regular pattern of

circular and elliptical spots. This pattern varied with the direction

in which the crystal plate was cut, and its symmetry was deter-

mined by the relation of the direction of the primary beam to the

• Nature, Feb. 18 and March 4 (1915).

t Sitzber. der k. Bayer. Akad. d. Wiss. June 1912.
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directions of the crystal axes. Laue, who appears to have sug-

gested the experiment, explained the phenomena somewhat as

follows :—The crystal is to be regarded as a geometrically regular

arrangement of points (atoms) in space, each of which when

traversed by the primary beam of X rays becomes a source of

secondary waves. Owing to the regular arrangement of the points

these secondary waves will only reinforce one another in certain

directions. These dii-ections determine the position of the

secondary spots on the photographic plate. The theoretical

investigation has been extended by Debye* so as to take account

of the influence exerted by the heat motions of the atoms. Con-

sidering the case in which a system of atoms is arranged in cubical

order so that the atoms lie on lines parallel to the axes of x, y and z

at distance a apart, let a parallel beam of radiation of wave-length \
travel along the axis of x. The intensity of the radiation at a

distant point x, y, z due to a small parallelepiped of such a sub-

stance at temperature T is proportional to

K^-^S

sin^iV.^fl -^')sin'i^,^^^sin^iy^3^- 2Er4^Yl-?^
+ ^ e ^ ^

. ^ira^ x\ . .Tray . .iraz
sin^ -T- 1 sin^ —- - sm^ —- -

X V rj \ r A, r

(33),

where r = (af'+ y^ + z^p, R is the molecular gas constant, / is the

restoring force for unit displacement of the atoms, and N1N2N3

are the number of atoms which lie along the x, y, z edges, respec-

tively, of the parallelepiped. The bright spots are determined by

the simultaneous vanishing of the three trigonometrical factors in

the denominator

%\v^ -T- 1 sin'^ —- — sm* ——

.

A, \ r

)

\ r \ r

In addition to the diffraction pattern there is a uniform illumina-

tion proportional to

* Verh. d. Deutsch. Physik. Ges. vol. xv. p, 678, p. 738 (1913).
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The relative intensities of the uniform illumination and the

diffraction pattern depend upon the temperature T and on the

stiffness of the atoms /. The results of the investigation are

supported by the fact that in the case of diamond, for which / is

very large, the diffraction pattern can be observed for much

smaller values of xjr than for other substances. Formula (33) is

deduced on the supposition that the heat motions of the atoms

are in accordance with the Boltzmann-Maxwell law, and therefore

requires modification in the light of recent work on the specific heats

of solids. The necessary modifications are considered by Debye.

The production of diffraction effects with X rays is not con-

fined to crystals. Thus Friedrich* has observed halos round the

central image when X rays have been allowed to pass through

certain non-crystalline substances.

It has been pointed out by W. L. Braggf that the bright

spots in the transmission photographs are found at places corre-

sponding to regular reflexion from planes in the crystal rich in

atoms, subject to the condition that the waves reflected from

successive planes reinforce one another. This suggested that

X rays would be reflected from the natural faces and cleavage

planes of crystals, and the phenomenon was at once found J in the

case of mica and other crystals. Since, for a particular wave-

length X of the X rays, there is no appreciable reflected intensity

except in a particular direction determined by djX, where d is the

distance between the successive layers of atoms, this phenomenon

has opened up a new and powerful method of investigating the

structure of crystals on the one hand and the properties of X rays

and atomic structure on the other. These problems have been

attacked with conspicuous success by W. H. and W. L. Bragg §,

Moseley and Darwin
||, Moseleyll and others**. These investigations

Phys. Zeits. Jahrg. 14, p. 1079 (1913).

t Camh. Phil. Proc. vol. xvn. p. 43 (1912).

t Nature, Jan. 23, 1913.

§ W. H. and W. L. Bragg, Roy. Soc. Proc. A, vol. Lxxxvni. p. 428 (1913)

W. H. Bragg, ibid. vol. lxxxix. p. 246 (1913) ; W. L. Bragg, ibid. p. 248 (1913)

W. H. and W. L. Bragg, ibid. p. 277 (1913); W. H. Bragg, ibid. p. 430 (1914)

W. L. Bragg, ibid. p. 468 (1914).

II
Phil. Mag. June 1913 ; ibid. vol. xxvi. p. 210 (1913).

^ Phil. Mag. vol. xxvi. p. 1024 (1913) ; ibid. vol. xxvii. p. 703 (1914).

•» De Broglie, G. R., 17 Nov., 22 Dec. (1918), 19 Jan., 2 Feb., 2 Mar. (1914);

Herveg, Ver. d. Deutsclt. Phys. Ges. vol. xvi. p. 73 (1914).
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have confirmed in a remarkable way the conclusions as to the nature

of X rays which we had already reached from less direct evidence.

If the X radiation from an ordinary bulb, for instance one

which is furnished with a platinum anticathode, is observed, it is

found to consist of a general radiation similar to white light,

except that the average wave-length is enormously shorter, accom-

panied by a number of sharp lines of much greater intensity than

the neighbouring spectral distribution. In an X ray bulb with a

platinum anticathode W, H. Bragg * found that the strongest line

had a wave-length equal to 1"10 x 10~* era. and its mass absorption

coefficient in aluminium was 23'7. According to Barkla's measure-

ments this absorption coefficient corresponds to an X radiation of

an element of atomic weight 74 if it is in the K series or 198 if it

is in the L series. Since the atomic weight of platinum is 195 we

are evidently dealing with the characteristic radiation belonging

to the L series from this element. Admitting that the measured

coefficient of absorption is slightly in error and that the true value

in the L series would correspond to an atomic weight 195 the

equivalent atomic weight in the K series is 72"5. According to

Whiddington's results the energy of a cathode ray which will just

excite the K radiation in an element of atomic weight 7
2
"5 is

2"06 X 10~^ erg, whilst the energy hv which corresponds to a wave-

length \= I'lO X 10-« cm. is 1-78 x IQ-^ erg. Thus the absolute

numerical value of the frequency is in satisfactory agreement with

the relations on p. 508. In addition to this platinum line Bragg

also considers a line of wave-length 1'66 x 10~^ cm, emitted by a

nickel anticathode and a line of wave-length 1'2.5 x 10~* cm. emitted

by a tungsten anticathode. The former belongs to the K series

of nickel and the latter to the L series of tungsten. If these three

lines were all in the K series the corresponding atomic weights

of the elements which would emit them are 59, 67 and 72*5

respectively. The squares of these numbers are in the ratio

100 : 130 : 150 whilst the corresponding frequencies as deter-

mined by experiment are in the ratio 100 : 132 : 151. These

results together form a striking confirmation of equation (32).

The values of the wave-lengths given above have been deduced

from the formula

n\ = 2dcose (34),

* Roy. Soc. Proc. A, vol. lxxxix. p. 246 (1913).
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where n is the order of the spectrum, d is the distance between

consecutive reflecting planes and is the angle of incidence. An
exhaustive examination of the effects exhibited by rock-salt (NaCl)

has shown that for reflecting planes parallel to the (1, 0, 0) face

the value of d is 2*81 x 10"^ cm.

W. H. and W. L. Bragg have showm how the detailed structure

of crystals may be determined accurately by means of X ray

diffraction. One of the interesting results of these investigations

has been to show that the unit of crystal structure is not simply

the chemical molecule, since in many cases a given atom in a

crystal may be assigned with equal propriety to any one of a

number of neighbouring molecules*. It is to be anticipated that

these X ray phenomena will also throw light on the structure of

atoms as well as of molecules f.

The X ray spectra of most of the elements whose atomic

weights lie between those of aluminium (27*1) and gold (197*2)

have been photographed by MoseleyJ. In the K series, which

has been examined in the case of the elements between aluminium

and silver (atomic weight 10788) there are always two strong

lines which are referred to as the a and /3 lines respectively. In

the case of the elements of lower atomic weight, a number of faint

lines are present in addition. In the L series, which has been

examined in the case of elements ranging from ziconium (atomic

weight 90*6) to gold there are usually five well-marked lines

denoted by a, j3, y, 8 and e. These decrease in intensity as well

as in wave-length from « to e. In many cases a number of faint

lines are also present. In both the K series and the L series there

are simple numerical relations between all the lines belonging

to any one of the sub-series a, y8 and so on from all the various

elements.

Suppose we assign to each element an integral number N
which, subject to two reservations, represents its position in a

complete table of the elements arranged in sequence according

to the atomic weights. In arranging this table the sequence of

atomic weight is departed from when it clashes with the sequence

* Of. W. H. Bragg, Phil. Trans. A, vol. ccxv. p. 253 (1915).

+ Of. A. H. Compton, Nature, 1915, and W. H. Bragg, loc. cit.

J Phil. Mag. vol. xxvii. p. 703 (1914). These investigations have been extended

by Maimer, Phil. Mag. vol. xxvui. p. 787 (1914), and de Broglie, C. B. (1914).

E. E. T. 33



514 TYPES OF RADIATION

of chemical properties as required by the periodic law. Thus

argon is placed before potassium, cobalt before nickel and tellurium

before iodine. In addition blank spaces for undiscovered elements

are left between molybdenum and ruthenium, between neodymium

and samarium, and between tungsten and osmium. N is called

the atomic number of the element. Thus for hydrogen N =1, for

aluminium N=1S, for silver iV=47 and so on. In accordance

with the periodic law the chemical properties of the elements are

determined by the atomic number N rather than by the atomic

weight. Moseley finds that the frequencies v of each sub-series

are determined by the equation

p =A{N-by (35),

where A and b are constants characteristic of each sub-series.

For the lines denoted by a in the K series

A = {~-^^p,and 6 = 1 (36),

and for the lines denoted by a in the L series

A -(|-.-|:.)^oand 6 = 7-4 (37).

In (36) and (37) vn is the fundamental Rydberg frequency in the

formulae for the optical spectra of the elements. For the K series

the agreement is very exact, but for the L series there is a

deviation from linearity with the elements of very high atomic

weight. It is evident from these results that equation (32) is only

an approximation, its validity depending on the fact that roughly

speaking, the atomic weights of the elements are proportional to

the values of N.

A number of interesting points in relation to X rays will be

found discussed at the end of Chap, xxi, pp. 589 et seq. For

further information the reader may also consult Kaye, X rays

(London 1914), W. H. and W. L. Bragg, X rays and Crystal

Structure (London 1915), and Rutherford, Radioactive Substances

and their Radiations (Cambridge 1913).



CHAPTER XX

SPECTROSCOPIC PHENOMENA

The power of emitting light is a universal property of matter

at a high temperature. When the matter is in a sufificiently

concentrated condition the energy emitted within a given range

of frequency dv does not exhibit sharp variations from one wave-

length or frequency to another. This is true of highly compressed

gases as well as solids and liquids. The general character of the

function which expresses the emitted energy of a given frequency

in terms of temperature and frequency is similar to that of the

corresponding function for black body radiation. In accordance

with Stewart and Kirchhoff's law the difference between the

emissivity and that of a black body depends only on the reflecting

power ; and when the latter is given as a function of v and T the

cinissivity can be calculated from that of a black body.

The behaviour of gases which are not highly compressed is

quite different. Almost the whole of the emitted energy is then

confined to a limited number of quite narrow ranges of frequency.

In consequence the gas is said to emit a line or a band spectrum

according to the appearance of the light when examined in the

spectroscope. The distinction between a line and a band spectrum

is a sufficiently real one, but it is one which is difficult to define

in simple terms. The width of the bright regions in the band

bjjcctra is greater than in the line spectra and the boundaries are

less sharply marked. However, a number of so-called band spectra

are found, under high resolving power, to consist of a multitude

of fine lines very close together and it is possible that this may be

a general feature of band spectra. Nevertheless, these two classes

of spectra differentiate themselves quite shaiply in other ways, as

we shall see in a moment.

33—2
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One of the most striking features of spectral lines is the

constancy of their position in the spectrum. It is this fact which

renders spectrum analysis so reliable. The only physical agencies

which have been found capable of displacing them are intense

magnetic fields (Zeeman effect), intense electric fields (Stark efiect)

and the application of high pressure. In all three cases the

observed displacements are quite small. The intensities of differ-

ent lines may be varied by any desired amount by changing the

temperature and the manner and degree of excitation, without

producing any change in the frequency. These frequencies are

evidently characteristic of systems which remain identical under

very varied physical conditions.

One is naturally tempted to try to account for spectral lines as

the radiation from negative electrons vibrating about equilibrium

configurations in the normal atom. Although there are many
facts which seem to support such a view, the enormous complexity

of the spectroscopic phenomena which have already been discovered

is difficult to harmonize with such a simple hypothesis. In the

spectra ' of a number of elements, iron for example, there are

thousands of bright lines. In the case of iron, and many other

elements, it has not been possible to find any simple relation

between the spectral lines, but in a number of other cases many
of the lines have been found to fall into series which exhibit fairly

simple numerical relationships between the frequency numbers.

What follows is the merest outline of the more important facts

which have been discovered in this field. For further information

the reader may be referred to J. Stark, Principien der Atom-

dynamik, vol. II. chap, ii., and Kayser's Handbuch der Spectroscopies

vol. II. chap. VIII.

Series of Spectral Lines.

The first regularity of this kind was discovered by Balmer* in

1885 in the case of the line spectrum of hydrogen. The frequencies

of the well-known lines ^a, H^, Hy, etc., are found to be given by

the formula

-"""•(i-^^) «•

* Verh. der Natur. For. Ges. Basel, vol. vn. p. 548 (1885) j Ann, der Phys.

vol. XXV. p. 80 (1885).
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where v^ is a constant and m takes in succession the integral values

3, 4, 5, etc. Starting from Ha, for which v = ^Vo, the lines are

widely spaced in the frequency scale at first, but the distance

between each two succeeding lines continually diminishes. For

large values of m all the lines practically coincide with v = Vo. The

first 31 lines of this series have now been discovered and they all

agree with the formula to within 0"6 Angstrom unit (1 Angstrom

unit = 10~^ cm. = A).

Balmer's series is much simpler than the series which have

been found in the spectra of elements other than hydrogen. In

the case of the alkali metals for example the series are made up
of pairs of lines very close together (doublets). In the spectra of

the alkaline earth and other metals the doublets are replaced by

triplets. The individual lines in a doublet or triplet are called

components. In a large number of cases 3 series and in some

cases 4 series have been found in the spectrum of a single element.

The separate series are also interrelated in an interesting manner.

The values of the frequencies in the general case of 4 series of

doublets are given by the following expressions.

Sharp Principal Series.

First Component, ^Vi= ^t^"^ - , ° ,- (2).^ '11
(1+s)* im+p,y ^'

N N
Second Component, ^i/, = ., ° - -.

—~-^. (3).

Third Component, ,1/3 = ,,
'^°

,, -^^ — (4).^
' ' ' {\4sf (m+p,)« ^

'•

Sharp Subsidiary Series.

First Component. ^, =-;^,-^-^ (5).

Second Component. .„,=^-^-^_^ (6).

Thiri Component. ,..=^j^.-^, (7).
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Diffuse Principal Series.

First ComponeDt, .„, = ^-^^ - ^_^, (8).

Second Component, ,v,=^j^^-^^ (9).

Third Component, ... = ^-j^, - ^--^, ...(10).

Diffuse Subsidiary Series.

(In general this series, consists of groups of six lines, divided

unequally into 3 sub-groups, which we may term components.)

^'^' = (jT^r - c^rrif?
(«^^«^^^«^ ^^^) •

-(ii)-

First I ., _ ^\ No'

Component]'''' {l+Pif {m + d"f
^^''^•

^''^'''=(Tfk)^-(-^r^^
^^^^^"^^ ^^^"> (i^>-

Second
l^^-^"

=(T& - {n^^ ^^'^°"^^^ ^^"^> ^''^-

Component
I

,„ N^ iV„

Third

Component

N N
lit -'•'0 -*'

/I ft\

In these formulae all the quantities on the right-hand side except

m are constants. No has the same value for all elements. The

others vary from one element to another. The successive lines

are obtained by giving to m the successive integral values 1, 2, 3, 4,

etc. In the doublet series the frequencies denoted by ^v^, ^v^, 3I/3,

i"/"* 4^2'" and 4I/3'" are missing and in the single line series the

frequencies 1I/2, ^v^, z^i, tv" and ^v^' in addition. For a critical dis-

cussion of the degree of accuracy with which formulae of this

character fit the observed facts the reader may be referred to recent

papers by W. M. Hicks in the Philosophical Transactions of the

Royal Society.
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The formulae given above show that, as in the hydrogen series,

the lines all gradually crowd together as the frequency correspond-

ing to m = 00 is approached. This frequency, in the case of the first

component for example, for each of the four series, has the values

° "
" and ——^-T^ . Thus the two subsidiary

series have the same termination. This is true separately of each

corresponding pair of components. There are other relations

between the different series.

In the case of the sharp subsidiaiy series and the diffuse

principal series the difference in frequency between the components

of a given line is constant throughout a given series. A similar

relation holds between the lines whose frequencies are given by

(13), (15) and (16) on the one hand and by (12) and (14) on the

other in the diffuse subsidiary series. In the case of the first

two components the values of the constant frequency differences

in the respective series are, in the order of the table above,

8^1 ~ 3^2 =

ii+p,f {i+p,y

{l+dj {1 + dy
/// /// -i' n •A'n

I ...(17).

*"' ''"' "^"^ "^'* -'(iV^-o^p-yl
In the case of the sharp principal series on the other hand the

difference in frequency between the components is not constant

but decreases as the value of m increases. Thus the components all

crowd together as the end of the series is approached. A similar

relation holds between the lines given by equations (11)—(13) and

(14) and (15) respectively in the diffuse subsidiary series. In

these cases the series of individual components terminate at a

common frequency ; in the former cases there is a separate termin-

ation for each component of a given series.

The series are also interrelated in the following manner : The

first term (m = 1) of the sharp principal series and the first term

of the sharp subsidiary series have the same frequency; this is

equal to the difference of frequency between the ends of the sharp

principal series and of the sharp subsidiary series. Also the

frequency difference between the ends of the diffuse principal
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series and the diftuse subsidiary series is equal, for each component,

to the frequency of the first coiTesponding term of the diffuse

subsidiary series.

Roughly speaking the intensity of the lines tends to diminish

as m increases, although the relative intensities vary a great deal

with the mode of excitation of the lines. In a sharp principal

series of doublets the component of higher frequency is more

intense than the slower component The order of variation of

intensity of the components with increasing frequency is usually

the reverse of this in the case of the lines belonging to either

of the subsidiary series.

The most important steps in the establishment of the serial

relations just described are due to the work of Runge*, Rydbergf,

Kayser, Paschen and Bergmann These relations have been

somewhat generalized recently by Ritz and Paschen (see p. 597)

and the results used, following a suggestion of Rydberg, to predict

the existence of "combined" series. A number of examples of

such combined series will be found in papers by Paschen
;]:
in the

Annalen der Pliysik from 1908 onwards and also in the last section

of Chap. XXI of this book.

The X-ray spectra of the elements have been described in the

preceding chapter, p. 513.

Series in Band Spectra.

A number of relations between the emission frequencies ob-

servable in band spectra have been discovered by Deslandres§.

The frequencies of the lines which make up a single band are

found to agree very approximately with the formula

i/ = ^(m + a)2 + c (18),

where A, a and c are constants and m takes various successive

integral values. As a rule this formula does not deviate seriously

firom the observed values unless the band contains more than

about 50 lines.

In general, emission bands are not found isolated but occur in

related groups and in some cases there are a number of groups

Brit. Assoc. Report for 1888, p. 576.

t K. Svenska. Vet. Akad. Handl. vol. xxin. No. 11, p. 155 (1890).

X See also Stark, Principien der Atomdynamik, vol. n. p. 50.

§ Papers in Comptes Rendus from 1885-1891 and from 1902-1905.
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which exhibit relations with one another. Deslandres finds that

the following relation covers the whole system of groups of bands

in certain cases

:

v=f{n\p^)xm-' + Btv' + <j>(p') (19).

Here v is the frequency of a lino in any of the bands, J5 is a

constant, (ft and / are characteristic functions, p, n and m are

integers. The number p is characteristic of the group and n is

characteristic of the band in which the line occurs, in the same

way that m is characteristic of the particular line in the pai'ticular

band. For specified values of^ and n (19) becomes identical with

(18) with a = 0. The values of p and n never exceed 10, whereas

in may be comparable with 100.

No explanation of (19) has ever been suggested ; but it is

important to observe that the numerical relation between the

frequencies of lines in band spectra is of a character quite

different from that which occurs in the series observable in line

spectra. With regard to the foregoing system of series of line

spectra it is also important to remember that very few of the lines

in the more complex spectra have been found to fall into these

series ; so that the possibility of the existence of other types of

series of lines, as well as of lines which do not belong to any series

at all, is one which we have to bear in mind.

The Zeeman Effect.

"We have several times had occasion to refer to the change in

the frequency of spectral lines caused by the application of a

magnetic field, which was discovered by Zeeman. In Chap, xvi

we even considered the theory of this effect in connection with

the theory of diamagnetism. We shall now discuss the theory

in what is probably the simplest possible existing case.

Consider an electron which is subject to a restoring force

proportional to its displacement from the equilibrium position in

the atom. The restoring force per unit displacement is isotropic,

that is to say it has the same value for different directions of

displacement, in the absence of a magnetic field. Taking the

equilibrium position as origin the equations of motion of the

particle, when there is no magnetic field, may be written
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The natural frequency »o/27r has the same value whatever the

direction of vibration and is given by

no^^f/m (20).

Now suppose a magnetic field H^ parallel to the z axis is

applied. As the electron is in motion this will add to the forces

previously acting a new force proportional to the vector product of

the velocity and H. The components of this new force on the

electron are respectively

eH^dy _eH,dx
c W c dt'

" ^^^^•

The equations of motion in the magnetic field are therefore

(22).

These are solved by

a; = Oj cos {rcit + hi), y =^ — a^sm (uit + 6i) (23),

x = Oz cos {n^t + 62), y = 02 sin {nj, + h_) (24),

«= as cos (wo^ -h 63) (25),

eH
where n? -ni^n^^ (26),

mc '

n^ + -^nz = n,^ (27).
mc

Equation (25) shows that the vibrations parallel to the mag-

netic field are unaffected by it. The corresponding frequency n^

has the same value whether the field is applied or not. The six

arbitrary constants Oj, Oa, a^, hi, h^, 63, of which the first three

determine the amplitude and the last three the phase of the

vibrations, depend on the initial conditions of motion and are of

no particular interest in connection with the present discussion.

Equations (23) represent two rectilinear simple harmonic

motions at right angles. These are of equal amplitude and differ

in phase by a quarter period. They therefore constitute a circular

vibration in a plane perpendicular to the magnetic field. The

same is true of equations (24) except that the direction of the

rotation is reversed. Since the difference between Wi or n^ and tIq
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is very small in comparison with either, we can write, instead of

(26) and (27),

Swi = ?ii- Wo = o
"^

. Sn.^ = n., - Vo = - ^r-^ ...(28).
Zmc zrnc

Thus the difference between the frequency of each of the two circular

vibrations and that of the original vibration has the same magnitude

but is positive in the one case and negative in the other. The
frequency difference per unit magnetic field is quite independent of

the frequency of the original line and is entirely determined by

the universal electronic constant e/m.

Now consider the radiation which will be emitted by an

electron moving in the manner we are contemplating. Since the

circular vibrations are capable of resolution into simple harmonic

motions, the nature of the radiation, although not necessarily its

amount, can be deduced from the simpler case of a rectilinear

simple harmonic motion. By Poynting's theorem the rate of

transmission of energy at any point is proportional to the vector

product of the electric and magnetic intensities and the direction

of transmission is the direction of that vector. It follows from

the results of Chapter xii that in any motion in which the

velocity and acceleration are collinear the magnetic intensity lies

in circles about the axis of motion and vanishes at points along

this axis. There is therefore no radiation along the direction of

the axis of a simple harmonic motion. Now turn to the radiation

in any of the directions which are perpendicular to this axis. It

follows from Chapter xil that the electric intensity in the radiation

wave in this case lies in the plane containing the axis of motion

and the radius. It is also perpendicular to the latter. The mag-

netic intensity is equal to the electric intensity and its direction is

normal both to the electric intensity and the radius. Since the

plane of polarization of the radiation is that which contains the

direction of the magnetic intensity in the wave-front, we see that

the radiation emitted in the direction under consideration is com-

pletely polarized in the equatorial plane. These principles together

with equations (23)—(25) are sufficient to determine completely

the character of the radiation which is emitted in directions co-

incident with, and normal to, the lines of magnetic force.

Consider the light emitted along the lines of force first. The

simple harmonic motion given by (25) emits notiiing in this
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direction; so that the original line will be entirely absent when

obsen'ations in this direction are made. It is different with the

circular vibrations (23) and (24). The direction of observation is

now situated in the instantaneous equatorial plane for these

motions. The observed radiation will therefore have its electric

intensity parallel to the instantaneous direction of motion and its

magnetic intensity parallel to the radius drawn from the centre to

the instantaneous position in the equivalent orbit. The light will

therefore exhibit complete polarization. The direction of the

rotation given by (23) is in the clockwise direction as seen from

points along the positive z axis, that given by (24) is in the

opposite direction. Thus the light emitted along the positive

axis of H consists of two lines circularly polarized in opposite

directions; the one which has the frequency Uy is right-handed,

the other which has the frequency n^ is left-handed.

When the light is observed in a direction perpendicular to H^,

the vibration corresponding to equation (25) will give rise to a

line which is polarized in the plane to which the magnetic

intensity is perpendicular. The frequency of this vibration is n^,

the same as that of the original line in the absence of a magnetic

field. The circular vibrations are now observed in their own

plane and may be resolved into simple harmonic motions along

and perpendicular to the line of sight. The former give rise to no

^emission in the direction contemplated, whilst the latter give rise

to light polarized in the plane containing the magnetic intensity.

Thus when the emitted light is viewed in directions normal to the

magnetic force the original line is converted into a triplet. The

middle component has the same frequency as the original line and

is polarized perpendicularly to the lines of magnetic force, whilst

the other components are at equal distances from it and are

polarized in the perpendicular plane.

According to (28) Wj will exceed Wq if e is positive and be less

than no if e is negative. Zeeman found that when the light was

emitted along the positive z axis the slowest component of the

observed doublet exhibited right-handed circular polarization.

This shows that the centres of emission are negatively charged

particles.

The problem of the effect of a magnetic field on electrons

executing closed orbits in the atom is quite complex in detail;
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but Larmor* has shown in a general manner that for small values

of the magnetic force the motion consists in the combination of

the original motion with a uniform rotation about the axis of H.

This leads to equations (28) for the Zeeman shift.

All of the foregoing conclusions "f, many of which were predicted

by Lorentz, were found by Zeeman and other investigators to be

accurately fulfilled in the case of a large number of spectral lines.

According to Paschen all the lines of the single line series of

spectra exhibit this relatively simple type of Zeeman effect. The

same is true also of many other lines. Thus Purvis finds about

50 lines in the spectrum of palladium which give the normal

effect. I ought also to add that the value of ejm deduced from

the magnitude of the shift in these cases agrees with that given by

the electrons furnished by the cathode rays and from other sources.

It seems fairly clear from these results that the hypothesis of

vibrating electrons is an important step towards the explanation

of emission spectra.

In the case of the majority of spectral lines the Zeeman effect

is more complicated than the " normal " type just outlined. But

even the more complex cases exhibit certain relatively simple

features which are of importance. For example, when the lines

are observed in the direction of the magnetic field, the components

of lower frequency exhibit right-handed, and those of higher

frequency left-handed, polarization, showing that the vibrators

are negatively charged. Moreover RungeJ has shown that

although the frequency displacement hnjH often differs from the

theoretical amount e/2mc, yet it is always a small integral multiple

of e/2mnc, where n is a small integer. This holds true even when,

as we shall see, the number of new lines produced by the magnetic

field is much gi-eater than two. Another important result, dis-

covered by T. Preston§, is that all the lines of a given series and of

homologous series of different elements are decomposed by the

magnetic field in the same manner.

* Aether and Matter, p. 341.

+ The rather different treatment considered in Chap, xvi, when it is fully

worked out, leads to results identical with those above. Cf. hotenU, Theory of

Elections, p. 124.

% Phys. ZeiU. vol. vin. p. 232 (l'J07).

§ PhiL Mag. vol. XLV. p. 325 (1898), vol. XLVU. p. ICo (1899J.
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To illustrate this it will be best to consider one or two examples.

The behaviour of the lines in the sharp principal series of doublets is

exemplified by the case of the sodium D lines. Their behaviour in

a transverse magnetic field is exhibited in Fig, 53. The letters p
and n denote that the lines are polarized parallel and perpendicular

to the lines of magnetic force, respectively.

n 2' 2> n

D.,

n It p p n 71

Fig. 53.

The two components of sharp subsidiary series of doublets are

decomposed in exactly the same way except that the less refrangible

component of the one series replaces the more refrangible of the

other and vice versa. This may be regarded as a confirmation of

the correspondence in the structure of the lines of these two series

which is indicated by the respective series formulae.

The strong lines of the diffuse subsidiary series of doublets are

split up into triplets, whilst the satellites split into eight com-

ponents of which six are polarized perpendicularly and two parallel

to the axis of the magnetic field.

The way in which the lines of the sharp subsidiary series of

triplets break up in a transverse magnetic field is shown in

Fig. 54. The behaviour of the diffuse series of triplets is still

more complex, as is also that of many lines which have not been

assigned to any series.

Paschen and Back* have recently observed that with certain

double lines the character of the Zeeman effect depends very much

on the strength of the magnetic field. The arrangement of the

lines in strong fields is in some respects simpler than that in weak

fields.

Not much has yet been accomplished in the way of an expla-

nation of the more complicated types of Zeeman effect, although

* Ann. der Physik, vol. xxxix. p. 897 (1912), vol. xl. p. 960 (1913).
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the theory has been attacked from several different points of view-

by Lorentz*, Voigtf and other writers. One important point

brought out by Lorentz is that a magnetic field cannot of itself

alone endow the vibrating atomic system with essentially new

modes of vibration : it can only cause the separation of existing

periods which previously were coalescent. This is an example of

the well-known dynamical principle that the number of possible

modes of motion of a system is determined by the number of

degrees of freedom, since the number of degrees of freedom is not

affected by the magnetic field. Naturally, by imagining the

motion of the electrons to be constrained in various ways or by

assuming different forms for the expressions for the potential and

kinetic energies of the electrons, it is not difficult to arrive at

rather complex types of Zeeman effect. But the theoretical

results thus far attained do not seem to resemble very closely the

effects exhibited by the actual spectral lines.

Type a.. n 11 n P P P n n n

Typeh-i n 11 P P n n

Type c

2

11 P n

Fig. 54.

Most of the lines of band spectra which have been examined

do not exhibit any measurable Zeeman shift. In the few cases in

which this effect has been observed in the lines of band spectra

the results have been more irregular than those given by line

spectra. Thus Dufour + found in the banded flame spectra of the

haloid salts of the alkaline earth metals some lines which, when

* Theory of Electrons, chap. iii.

t Magneto- wtd Elektro-Optik, cliaps. n. and ly.

J Comptes llendui, vol. xiv. pp. 118, 229 {1908J.
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observed in the direction of the magnetic field, gave rise to com-

ponents with circular polarization in the opposite direction to that

exhibited by the line spectra. Other lines showed the normal

behaviour in this respect and in both cases the polarization was

incomplete. The existence of circular polarization in the opposite

direction to that given by the normal effect cannot necessarily be

interpreted as implying positively charged vibrators, since Lorentz*

has shown that this effect can arise from the vibrations of negative

electrons under suitable circumstances.

Theories of Spectral Emission.

The frequency of the occurrence of the normal type of Zeeman

effect and the fact that the more complicated types are closely

related to the simple type and to the series of line spectra, show

that the oscillations of negative electrons play a very import-

ant part in spectral emission. A serious difficulty in the way

of the further development of the interpretation of these eflFects

arises from our ignorance of the nature of the emitting systems.

If we consider a particular series of lines, for example, we can either

regard these as the overtones which accompany the fundamental

vibration of a single system or we can look upon each line as the

natural vibration of a separate system. In the latter case the other

lines of the series are attributed to the occurrence of systems which

are constitutionally related to one another in some regular way.

Both these views have had their respective advocates. Another

view, which attributed all the spectral lines to the natural modes

of vibration of the normal atom, is certainly no longer tenable. As

each electron can at most only give rise to three natural frequencies

the number of electrons per atom which would be required to furnish

the spectra of elements like iron and titanium is quite prohibitive.

Moreover such a hypothesis would make the absorption spectra of

metallic vapours quite different from what they are.

The experimenters who have adopted what one may call the

overtone view of the nature of spectral series, have come to quite

different conclusions as to the nature of the emitting systems.

Thus Lenardf found that the upward stream of colour arising

* Theory of Electrons, p. 123.

+ Ann. der Physik, vol. xi. p. 636 (1903), vol. xvii. p. 195 (1905). Of., however,

H. A. Wilson, Phil. Trans. A, vol. ccxvi. p. 63 (1915).
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from a bead of alkali salt in the outer regions of a flame is unde-

flected by an electric field, whereas in the interior of the flame

the coloration is deflected. In the former case only the lines

of the principal series are emitted, whereas in the latter case

lines of the subsidiary series may also be found. He therefore

concluded that the emitters of the principal series were uncharged

atoms of the metal and those of the subsidiary series atoms which

had lost one or more electrons. Experiments with salt vapours

in the arc confirmed this conclusion. On the other hand Stark*,

largely from experiments made on the rapidly moving positive ions

(canal rays) found in vacuum tubes under certain circumstances,

has come to the conclusion that the emitters of all the line series

are positive ions: and holds, on other grounds, that the band

spectra are emitted by the neutral particles. There is no doubt

that the sources of the line spectra are in many cases in rapid

motion, since Stark f has shown that they exhibit the Doppler

effect. This fact alone does not settle the question, but there is no

doubt that the streams of deflected positively charged particles do

in general give rise to the emission of series lines. However, such

streams usually contain a fair proportion of neutralized particles

which might be the source of the emission. In fact it seems to

the wi'iter that the bulk of the experimental evidence which has

been brought to bear on this question might be interpreted in

various ways.

The truth of the overtone view of the nature of spectral lines

cannot be said to have been established. In fact there are very

grave objections to it. R. LadenburgJ, who investigated the

dispersion of luminous hydrogen in a vacuum tube, found that it

was negligible except in the neighbourhood of the red line H„,.

In this region satisfactory measurements showing the regular

type of anomalous dispersion to be expected near a natural period

were obtained, although no measurable effect could be detected in

the neighbourhood of the bright blue-green line H^. An extensive

series of measurements covering the dispersion of the vapours of

the difterent alkali metals in the neighbourhood of the lines of the

various principal series has recently been carried out by Bevan§.

• Jahr. der Radioakt. u. Elektronik, vol. viii. p. 231 (1911).

t Phys. Zeits. vol. vi. p. 892 (1005).

+ Ver. der Deutsch. Physik. Gee. x. Jalirg. p. 858 (1908).

§ Roy. Soc. Proc. A, vol. lxxxiv. p. 209 (1910), vol. lxxxv. p. 54 (1911).

li. E. X. 34
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Both these investigations lead to important condusions of a similar

character.

Let us turn to the theory of dispersion given in Chap, viii,

p. 148. In the case of a gaseous substance we can neglect the

term aP which depends upon the polarization, on account of its

smallness, so that the refractive index, neglecting the eflfects

specifically due to the absorption term in the equations of motion,

will be given by

m«=l +i-/f^ (29),

where e is the charge, m the mass, of the vibrators, ps the natural

frequency of the sth type of vibrator, p the frequency of the light,

Vg the number of vibrators of the sth type present, and n the

number of types. Bevan has shown that an equation like (29), with

one term for each line, represents the measurements for potassium

as accurately as they can be made ; so that we shall not be led into

any serious error by neglecting the absorption term. No doubt

the same conclusions apply to the other substances investigated.

Now in the case of the hydrogen lines e/m has the regular value

for negative electrons, since the Zeeman effect is of the normal

type. Thus all the quantities on the right-hand side of (29)

are known except Vg. It follows that from measurements of

the refractive index we can obtain the number of emitting

particles.

Now Ladenburg and Loria's experiments show that there is

no appreciable dispersion in hydrogen until it becomes luminous,

whereas luminous hydrogen shows anomalous dispersion in a

marked maniier in the neighbourhood of the line Ha. Thus it

follows that the systems which emit this line do not exist in

ordinary hydrogen but are only formed when the gas becomes

luminous. Moreover luminous hydrogen does not show measur-

able anomalous dispersion near the line Hp, whence it follows that

the number of systems which can emit light giving the line H^
is much smaller than the number which can emit light giving the

line Ha. This conclusion must be valid even though we have

neglected the absorption term ; because it follows, from the shape

of the dispersion curves, that the inclusion of the absorption term

only affects the estimated value of Vg seriously when we make use

of frequencies very close to p,. Now Ha and H^ are the first
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two lines of Balmer's series, so that this argument leads to the

conclusion that the systems which can emit the different lines of

this series are not present in equal numbers. It follows that the

different lines of a given series are given out by different systems

and therefore presumably by atoms in different states.

Bevan's results with the lines of the sharp principal series

of the alkali metals confirm these conclusions. The argument

here is not so strong because these lines do not exhibit the normal

type of Zeeman effect, so that we have not such good grounds for

the validity of the simple theory of dispersion which leads to (29).

The constants might be of the more general type given in Chap.

VIII, p. 176, for example. However, even in this case, it is not

likely thnt the order of magnitude of Vg estimated from the simple

formula would prove to be seriously wrong.

As to the actual numerical differences in Vg Bevan finds for the

first four doublets of the principal series of potassium that the

numbers of vibrating electrons are proportional to the respective

numbers

:

mi = 0-113, m2= 1-58 x 10"*, 7^3 = I'l x 10"' and m4 = 3 x 10-«.

There is some evidence that the value of Vg is equal, or approxi-

mately equal, for the two lines of a doublet. Results of a similar

character are given by the other alkali metals.. The proportion of

systems capable of emission to the total number of atoms present is

probably greatest in the case of the centres which emit the sodium

i) lines. Using data given by Wood for the temperature 644° C.

Bevan estimates that the proportion of centres to atoms is about

1 in 12. A corresponding calculation has been carried out by

Ladenburg and Loria in the case of hydrogen in a Geissler tube.

By making use of the formulae (24 a) and (24 b) of Chap, viii,

in which the part played by the absorption term is taken into

account, they conclude that about one centre capable of emitting

the line H^ is found in every 50,000 molecules, under the conditions

of their experiment.

As to the nature of the difference between the different atoms

Avhich makes them capable of emitting different spectral lines

a number of plausible hypotheses may be considered. In the first

place the electromagnetic analysis (measurement of the deflexion

produced by transverse electric and magnetic fields) has shown

34—2
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that the atoms present in the vapours of metals may lose varying

numbers of negative electrons. Thus Sir J. J. Thomson* has

recently found that the positive rays in mercury vapour contain

mercury atoms which have lost 1, 2, 3, 4, 5, 6 and 7 electrons

respectively. In the second place there have also been shown to

occur in vacuum tube discharges atoms which have gained one or

more electrons in excess of the normal amount. Finally, systems

may be formed by the combination of two or more atoms.

I ought also to add that Ritzf has shown that if the electrons

are supposed to vibrate in the field of a small magnet, different

frequencies occur which obey the same kind of law as Rydberg's

series, if the magnet is supposed to be built up of varying

numbers of smaller elementary magnets. The possibility of

this last type of theory has received some support from Weiss's

work on the magnetic properties of bodies considered in Chap, xvi,

but it does not otherwise seem to agree very well with present

tendencies in the development of the theory of atomic structure

(see Chap. xxi). H. A. Wilson J has pointed out that if we take

the atom to be composed of a number of electrons in equilibrium

inside a sphere of positive electrification of uniform volume density

—a hypothesis which, as we shall see in the next chapter, gives

a fair account of many of the properties of the atoms—then

each atom possesses only one mode of vibration which is effective

in producing any considerable amount of radiation, and the

frequency of this mode of vibration depends only on the universal

constants e, m and c, and the density p of the positive electrifica-

tion in the sphere. According to this theory the frequencies of all

spectral lines are determined by the density p of the positive

electrification. For a given atom the requisite changes in p are

secured either by a deficiency in the normal complement of

electrons or by combination of the atoms with each other. As

these changes always take place in discrete amounts the frequencies

can be made to depend on whole numbers in the same way as in

Balmer's series.

A number of attempts have been made to construct vibrating

systems which have overtones resembling the spectral series.

• Phil. Mag. vol. xxiv. p. 668 (1912).

t Gesammelte Werke, Paris (1911).

t Phil. Mag. vol. xxiii. p. 660 (1912).
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Ritz* has succeeded in constructing two-dimensional dynamical

systems of this kind, whilst Whittakerf has expressed the form

which the requisite energy functions must take in a very general

manner.

A theory of spectral emission, due to Bohr, which depends on

different principles from any of the foregoing will be considered in

the next chapter, p. 590. This theory offers a quantitative ex-

planation of Balmer's series and is able to overcome most of the

difficulties we have so far encountered.

Fluorescence.

Many substances when illuminated, let us say by monochromatic

light, are found to emit light of a different colour or frequency.

This phenomenon is called fluorescence. Sir George Stokes, who

made very important researches on the subject, concluded that the

fluorescent light was invariably of lower frequency than the

exciting light. This generalization has been found to be only

approximately true. The first exceptions to it were noticed by

Lommel|. The more recent investigations of Nichols and Merritt§

have shown that in the case of certain substances which they

examined, the relative distribution of energy in the fluorescent

spectrum does not depend very much on the frequency of the

exciting light, and that a considerable proportion of the emitted

energy may belong to higher frequencies than that of the exciting

radiation.

Very often the fluorescent emission lasts for some time after

the exciting radiation has been cut off. The phenomenon is then

often termed phosphorescence. There does not seem to be any

very sharp line of demarcation between fluorescence and phos-

phorescence, as the duration referred to may take almost any

value from zero upwards with different substances and according

to circumstances. However, in the case of liquid and gaseous

bodies this duration has always been found to be too small to

* Loc, cit.

t Roy. Soc. Proc. A, vol. lxxxv. p. 262 (1911).

t IVied. Atm. vol. iii. p. 113 (1878).

§ Phijs. Rev. vol. XIX. p. 18 (1904).
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measure; so that they are strictly fluorescent according to the

definition.

Fluorescence is very susceptible to changes in the physical

condition of the bodies exhibiting it. Thus some substances are

fluorescent only when dissolved in certain non-fluorescent liquids

;

whilst others, barium platino-cyanide for example, are fluorescent

in the solid state and not when dissolved. The luminous paints

are examples of an important class of substances whose behaviour

has been investigated by Lenard and Klatt*. They find that

these bodies, which are of a saline character, only exhibit phos-

phorescence when they contain three different chemical substances.

Only small traces of two of the three need be present. These

facts show that phosphorescence is not a unique property of the

atom, or even of the chemical molecule.

It is probable that phosphorescence is invariably accompanied

by the liberation of electrons f. This is a very important

point and at once suggests the explanation of these phenomena.

It now seems fairly certain that the exciting light first causes

the emission of electrons from some constituent of the material

and that the fluorescent light arises from the recombination

of these emitted electrons. The time factor will then be

determined by the resistance to this recombination and will be

greater in solids than in liquids and gases, and at low than at high

temperatures in solids. These requirements are borne out by the

experimental results. In fact, all the observed phenomena seem

to receive a very plausible explanation on this view.

It is questionable whether fluorescence can be sharply dis-

tinguished from other kinds of optical absorption except such as

arise from electrical conduction. It is at least possible that in all

cases energy is absorbed from the light by the electrons until

disruption occurs. The disruption might occur entirely within an

atom and not give rise to perceptible emission of electrons. The

frequency of the emitted light might have any value including that

of the incident light as a particular case. There might even be

no re-emission of radiation except very indirectly, the whole of the

absorbed energy being stored temporarily in the atom. In fact

* Ann. der Phys. vol. xv. pp. 225, 425, 633 (1904).

t Stark and Steubing, Phys. Zeits. vol. ix. pp. 481, 661 (1908) ; Lenard and

Saeland, Ann. der Phys. vol. xxvui. p. 476 (1909).
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this hypothesis seems wide enough to cover all the phenomena

referred to, and so far as the writer is able to judge, there are no

facts known at present which definitely contradict it.

Wiedemann and Schmidt* discovered that the vapours of

various organic compounds and ofthe metals sodium and potassium

exhibited fluorescence. This list has been extended to include the

additional elementary substances mercury, iodine and bromine by

R. W. Wood. The fluorescence exhibited by the vapours of the

alkali metals and iodine has been investigated in detail by Woodf
and found to exhibit remarkable results. Although there is a

good deal of similarity in the effects exhibited by the different

substances, perhaps the case of iodine is most interesting. When
the stimulation is effected by monochromatic light the fluorescent

spectrum is not a continuous one but is in the form of a series of

fine lines whose frequencies are approximately equidistant, with

the original line forming one of the lines of the series. The
positions of the lines of the fluorescent spectrum change in a

remarkable manner as the frequency of the exciting light is

altered. They are also intimately related to the fine structure of

the very complex absorption spectrum of iodine. This spectrum

has seven very fine lines, visible only with the highest resolving

power, within the width of the green .mercury line. When the

green mercury line is used for excitation it is found that a large

number of the fluorescent lines are made up of fine lines having a

structure similar to the seven absorption lines covered by the

exciting spectrum, but the fluorescent lines are about thirty times

as far apart on the frequency scale as the corresponding absorption

lines. Many other interesting peculiarities have been observed

which promise important results when investigated further.

The line fluorescence shown by the elements alluded to does

not obey Stokes's law. It possesses the remarkable property:}: of

being converted into a band spectrum by an admixture of inert

gases like helium. The intensity of the banded fluorescence

diminishes with the amount and molecular weight of the strange

gas added. No adequate theory of these phenomena has yet been

put forward, although it is clear that any satisfactory theory of

• Ann. der Phys. vol. Lvn. p. 447 (1896).

t Wood's Physical Optics, ch&Tp. xvin., New York (1905); Phil. Mag. Got. 1912.

J Wood and Franck, Ver. der Dentxch. Phys. Ges. vol. xiii. p. 84 (1911).
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spectroscopic phenomena will have to take account of them. The

remarkable complexity of the absorption spectrum of iodine, which

has been pointed out by Wood*, should also be remembered in

this connection.

The Effect of Pressure on Spectral Lines,

In 1896 Humphreys and Mohlerf observed that the spectral

lines of various metals were displaced towards the red end of the

spectrum when they originated in the arc at a high pressure. The

shift was approximately proportional to the pressure. Humphreys J

explained this displacement as arising from the Zeeman effect of

the intermolecular magnetic fields. The writer§ pointed out that

there should be a displacement, of the observed order of magnitude,

arising from the forced vibrations in the atoms of the gas near the

emitting centres. An explanation having a similar physical basis

was given about the same time by Larmor|l. A theory which is

not very different in principle from the last two has recently been

put forward by G. H. Livens^, who, however, comes to the con-

clusion that the shift should be proportional to the concentration

of the emitting particles and only to the pressure of the gas in so

far as it influences the concentration. No doubt effects of the kind

contemplated by Livens may occur under favourable circumstances,

but it does not seem probable that they have much to do with the

pressure shift under the conditions in which it has been observed.

In the first place the experiments described above on the dispersion

of light by luminous gases and by the vapours of the alkali metals

indicate that in the case of many of the lines which exhibit the

pressure shift it is probable that there are very few centres in a

volume of the dimensions of the wave-length of light, so. that

Livens's analysis will not apply without modification. It then

reduces to much the same thing as that given by the writer. In

the second place the shift should vary enormously for spectral lines

of the same series to accord with Bevan's results. Finally, such a

view is hardly likely to lead even to so much consistency as has

* Phil. Mag. Dec. 1912,

+ Astrophys. Journ. vol. iii. p. 144 (1896). ,

t Jahr. der Rad. u. Elektronik, vol. v. p. 324 (1908).

§ Phil. Mag. vol. xiv. p. 557 (1907).

II
Astrophys. Joxirn. vol. xxvi. p. 120 (1907).

H Phil. Mag. vol. xxiv. p. 285 (1912).
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been recorded in measurements of the pressure shift, although,

it must be admitted, this is far from being all that might be

desired.

The Stark Effect.

Stark* has recently observed interesting changes in a number

of spectral lines when the emission takes place in a strong electric

field. As in the case of the Zeeman effect the phenomena are

different for different lines and the observed effects depend upon

the geometrical relation between the direction of emission and the

direction of the electric field. When the lines Hg, and H^ are

under observation in a direction perpendicular to the electric

field, it is found that five lines appear instead of each original

line. These five lines are symmetrical about the original line

with which the central one is coincident. The two outer lines

are much stronger than the other three and are polarized parallel

to the electric field. The three inner lines are polarized perpen-

dicularly to the electric field. When the radiation is observed in

the direction of the electric field three evenly spaced lines appear.

These have the same wave-length as the three lines which were

polarized perpendicularly to the field in the former case and are

now unpolarized.

Of the helium lines which have been examined those belonging

to the sharp principal series and to the sharp secondary series

exhibit no noticeable decomposition. The lines belonging to the

diffuse subsidiary series break up into three or four lines of unequal

intensity, asymmetrically spaced with respect to the original line.

None of these lines are coincident with the original line and they

are unpolarized. In the case of helium the lines observed in the

direction of the electric field present the same characteristics as in

the transverse direction.

For the three lines {Hp, Hy and He\= 4026 A) for which the

data are most accurate the displacement of the components is

proportional to the strength of the electric field. The helium line

* Sitzimgsber. d. k. Prews. Akad. d. Wits. Berlin, 1913, p. 932; Ann. der Physik,

vol. xLiii. p. 965 (1914). Stark and Wendt, ibid. p. 983 ; Stark and Kirschbaum,

ibid. p. 991, p. 1017. Elektriscfie Spectralaiialyse chemiicher Atoine (1915).
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o
of wave-length 4472 A, which is split up very asymmetrically,

appears to deviate from this law. With a field of 13,000 volt cm ~^

the difference in the wave-lengths of the two outer components

was 3*6 X 10~^cm. for H^ and 5'2 x 10"^ cm. for Hy. A number of

lithium lines exhibit effects of the same order as those given by

hydrogen and helium. Here again the sensitive lines are in the

diffuse subsidiary series. The lines of the two sharp series

exhibit only comparatively small displacements. The displace-

ments shown by a large number of lines of calcium and mercury

which have been examined are all small.

An explanation of these effects has been put forward by Bohr*.

He points out that the external electric field will change the

amount of energy in the atoms in the different stationary states

(see p. 590), and thus involve a change in the frequency of the

radiation which is given out in changing from one stationary state

to another. Other explanations have been offered by Garbassof,

Gehrckef and Schwarzschild
J.

In his second paper Bohr has

been able to show that his theory gives a fair quantitative account

of some of the principal features of the effect in hydrogen.

The Inverse Zeeman Ej^ect.

In our treatment of absorption and dispersion in Chap, viii

we omitted to consider effects which may arise ^hen an external

magnetic field is present. This defect will now be remedied, but

the treatment given will be very brief Those who wish for fuller

information about this and related questions may be referred to

Lorentz's Theory of Electrons, chap, iv; Wood's Physical Optics,

chap. XVII ; and especially to Voigt's Magneto- und Elektro-Optik,

passim.

If we wish to take account of the effect both of a magnetic

field and of absorption, we cannot, in general, afford to neglect

any of the terms in the equations of motion of the electrons

numbered (1) in Chap. viii. We shall, however, simplify matters

by assuming that there is only one kind of electron per atom

whose motion is of importance. Let us first consider the case

when the external magnetic intensity R lies along the z axis,

Phil. Mag. vol. xxvii. p. 512 (1914), vol. xxx. p. 394 (1915).

t Phys. Zeits. Feb. 1 (1914).

t Verh. d. Deutsch. physik. Ges. Jahrg. 16, p. 20 (1914).
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which is that of the direction of propagation of the light. The

equations of motion, under these conditions, reduce to

m^^ = .(^. + «P.)-..-^| + ^i2| (38).

m^ = e(^,+«7^,)-«2r-^| (35),

where k = \~^ of Chap. viii. If there are N of the movable

electrons in unit volume, the components of the polarization P
are given by •

P^ = Nex, Py = Ney and P^ = Nez (36).

Let the waves propagated through the medium depend on the

time through the factor e'^' only; then, by making use of (36),

equations (33)—(35) may be replaced by

E^=={ri + ih)P,-iePy (.37),

Ey = {r/-^ih)Py-{-ieP^ (38),

E, = (7+ t5)P. (39),

where ^ =---«-^. S = _p, e = ^^^p (40).

Since the waves, supposed plane, are propagated along the direc-

tion of the z axis, the electric and magnetic vectors in the wave

front will contain t and z through the factor e'P(^-««) only, and will

be independent of os and y. Thus the fundamental electromagnetic

equations

rot^= -^7

and TotE = 5-
c ct

give us

c^q^E^ = D^ = E^ + P^\
and c'q^Ey = Dy = Ey + Py\

^*^^'

Substituting these values for E^, Ey in (37) and (38) we obtain

and
^_l___(,y

+
t8)J

Py^ + ieP, (43).

Thus Py=±iPx (44).
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There are therefore two solutions having opposite values of Px
for a given value of Py. To interpret the imaginary sign consider

the case, corresponding to the solution having the positive sign,

where Pg. is proportional, at a fixed point, to the real part of e'^*,

or cosjt)^. Then Py will be proportional to the real part of i&'P^,

or — sin pt. Thus the solution Py = + iP^ corresponds to a circular

vibration of P, and since P is in the same direction as the resultant

displacement of the electrons these also execute similar circular

vibrations. The value of q for this vibration is given by substi-

tuting in either (42) or (43) from the equation Py = + iP». It is

thus given by

(^0^=1 + ?—^ (45).^
7 + 6 + tS ^ ^

In a similar manner we see that the equation Py = — iPx corre-

sponds to a circular vibration in the opposite sense, for which q is

given by

0^52=1 + L^ (46).
7 — e + 10

In general q will be complex. As in Chap, viir, p. 165, we shall

k
obtain the coefficient of absorption - p and the index of refraction n

if we put

cq = n{l-ik) (47),

where n and k are real, n and k will thus be obtained by solving

the simultaneous equations

"Hl-^) = l +
(;^f|^„

2n* = ^-^^A_...(48).

where the positive sign corresponds to the vibration (45) and the

negative sign to (46). When there is no magnetic field these

equations become

n'(l-i') = l +^^„ 2«fc = ^-^ (49).

Equations (18) and (19) of Chap. Vlil evidently reduce to (49)

when the same assumptions are made and the slight difference in

notation is allowed for.

This result establishes a simple correlation between the

behaviour of the two circularly polarized rays in the longitudinal

magnetic field and the equivalent unpolarized light in the absence
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of a magnetic field. The only difference between the equations

(49) and the corresponding pair of equations (48) is that 7 is

replaced by 7 + e in the one case and by 7 — e in the other. Thus
considering a given value of 7, the polarized ray (45), in the

presence of the magnetic field, will have the same refractive index

and absorption coefficient as the unpolarized ray for which 7 had

the value 7 + e in the absence of a magnetic field. Similar con-

clusions apply to the other ray if e is replaced by — e. We see

from (40) that p satisfies the relation

so that the right-handed ray, which corresponds to (45), will exhibit

the same behaviour as the unpolarized ray of frequency p shows

in the absence of a magnetic field, provided its frequency pi is

given by

The left-handed ray (46) will exhibit the same behaviour as both

the foregoing if its frequency pa satisfies

Thus the curves that express the refractive index and absorption

coefficient of the circularly polarized rays in the longitudinal

magnetic field as functions of the frequency are separated by

a frequency p<^ — p^ given by

or P9 — Pi =— R (52).^ ^ VIC

Each of these curves is identical with the corresponding curve in

the absence of a magnetic field except for the displacement. The

original curve is almost midway between the displaced curves. The

relationship is exhibited graphically in Fig. 55, p. 547.

Comparing (52) with (28) we see that the displacement of the

two circularly polarized components of the absorption spectrum is

just equal to the Zeeman shift in the emission spectrum for the

same magnetic field. Also if e is negative the absorption band
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for left-handed circularly polarized light is shifted towards the low

frequency side. In the direct Zeeman effect we found that when

e was negative the component of lower frequency was left-handed,

if we observed the emission in the dii-ection of the magnetic

force.

Effects of the kind just specified were first observed by

Maculoso and Corbino* in their experiments on the absorption

of light by sodium vapour in the neighbourhood of the D lines, in

the presence of a magnetic field. More complete experiments by

Zeemanf and Hallo J have shown that the phenomena are com-

pletely in accordance with the theory, the development of which

is largely due to Drude and Voigt. J. Becquerel § has shown that

similar phenomena are displayed by the very sharp absorption

bands exhibited by the salts of certain rare earth metals at low

temperatures, whilst Wood || has found them in the fine lines of the

channelled absorption spectrum of sodium vapour. In both these

cases the direction of rotation for some of the lines corresponds

to that given by the elementary theory for positively charged

particles (see p. 524).

We shall now turn to the case in which the light is propagated

at right angles to the lines of force of the external magnetic field

which we shall still suppose to lie along the z axis. The equations

of motion of the electrons will therefore still be given by equations

(33)— (35). Let the light be propagated along the x axis. The

various electric and magnetic vectors will then depend upon the

coordinates only through the factor e'^(*-9-»^). In the first place

we notice that when the light is plane polarized so that the

electric vibration is in the same direction as the magnetic field,

the latter exerts no effect on the observed phenomena. For the

relations between the polarization, the electric intensity and the

motion of the electrons are given by equation (35) together with

D, = P^ + E^ and P^ = Nez.

These equations, together with

?^ = 1?^ and ~^ =1^
dx dt dx c dt

*

• Comptes Rendtis, vol. cxxvn. p. 548 (1898).

t Amsterdam Proc. vol. v. p. 41 (1902) ; Arch. Neerl. (2) vol. vn. p. 465 (1902).

+ Arch. Nierl. (2) vol. x. p. 148 (1905).

§ Comptes Rendus (1906-7).

Phil. Mag. vol. xv. p. 274 (1908).
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are sufficient to determine completely the behaviour of the light,

and none of them involve the external magnetic field R.

It is otherwise with the light polarized in the perpendicular

direction. The effect of R has now to be considered, on account

of equation (34). Since rotH = D/c, we have

div D = c div rotH= 0,

and since the waves are plane

dy dz '

so that Dx will always have the value which it had before the light

was present, namely zero. Thus

Ex + P^ = Dx = (53).

From this relation, together with (37), (38) and Dy = Ey + Py, we

find

^y
(7 + i8)(i + 7 + ia)-6« "

_ (i + y + isy-,^

Thus

^v ../-. .,,x._ a+y+i^y

From (56) the index of refraction n and the coefficient of absorp-

tion kp/c may be obtained by equating real and imaginary parts,

and solving the resulting simultaneous equations for n and k.

From (54) we observe that the ratio of P^ to Py is complex.

If we turn this ratio into the form a^^, a will be the ratio of the

amplitudes and 6 the phase difierence of the components of the

polarization. Since P^ and Py are proportional to x and y
respectively, we see that in general the motion of the electrons

Avill be in an ellipse perpendicular to the direction of the magnetic

field. The eccentricity and orientation of the ellipse will evidently

depend on the frequency of the light, since 7, 8 and e involve this

quantity.
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To determine the position of the absorption bands it is neces-

sary to know the value of k. Solving the equations we find that

this quantity is given by

VJ.^ + B^ — A
/^'= Y ^^^)'

where

^ = [(1 + 7? - S^- e^][7(l + 7)- 52 - e^] + 2 (1 +7)(1 + 27) S^

5 = (1 + 27) S [(1+ 7)2 -8^- 6^1-2 (1+7) 8 [7(1+ 7) -^^-e^],

C = [ry (1 +,y) + ^ - e'J + (1 + ^e") h\

The exact determination of the maximum values of h from (57)

by differentiation leads to formulae which are too complicated to

handle, but it happens that these maxima are given very approxi-

mately by the minimum values of C. . These values are readily

found in the case of very sharp bands or absorption lines, where the

region in which perceptible absorption occurs is so narrow that 8

and e may be treated as constants compared with 7, which passes

through the value zero in this neighbourhood and varies very

rapidly with p.

Subject to these approximations the minima of G and maxima

of k are given by
7(H-7) = e— S»

or 7 = -^±\/62-82 + ^....: (58).

The corresponding values oi A, B, C and PxjPy are

A = ^h'e', fi = -^8(H-46''±V4e2-482+l), 0=8^(1 + 462),

g^2.ie = £^^ 1^, (59).

The simplest case arises when the absorption is relatively

feeble and the magnetic field is strong enough to produce a

separation of the absorption lines which is great compared with

their width. Under these circumstances 8 is large compared with

unity (see Chap, viii, p. 167) and e must be large compared with 8;

so that from (58) we have the approximate relation

''"i'-^WeP <«">•

This shows that the original line is split into two absorption lines

which are separated by the same frequency difference as the
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corresponding lines in the longitudinal inverse effect or the

corresponding emission lines in the direct effect.

To the same order of accuracy the maximum coefficient of

absorption is evidently, from (57), the same for both lines and

is given by

^ = JL (61)

This is just one-half of the value of the maximum absorption

coefficient in the absence of a magnetic field under otherwise

identical conditions (see Chap, viii, p. 167). Thus when the medium
is traversed perpendicularly to the direction of the magnetic force,

by light in which the electric intensity is also perpendicular to the

magnetic force, the light will be absorbed to the extent given

by (61) when the frequency has either of the values given by (60).

Corresponding to one of these vibrations the polarization of the

medium and the motion of the electrons will be given respectively

by Px = + iPy and x— + iy, and corresponding to the other by

Px = — iPy and x = — iy. Thus the electrons move in opposite

directions in circles perpendicular to the direction of the magnetic

force. This motion agrees with that which corresponds to light

of the same frequency when the inverse longitudinal Zeeman effect

is under consideration. In general these transverse effects will

not be symmetrical about the frequency corresponding to 7 =
because the expressions for n and k involve odd as well as even

powers of 7.

Magnetic Rotation and Double Refraction.

The rotation of the plane of polarization of plane polarized

light, when it passes through a refracting medium in the direction

of the lines of force of an applied magnetic field, was discovered

by Faraday* when he was engaged in trying to find the connection

between electromagnetism and light. The explanation of this,

the first magneto-optical effect to be discovered, follows at once

from the theory of the longitudinal inverse Zeeman effect which

has just been given.

As is well known, a plane polarized ray of light is equivalent

to two rays circularly polarized in opposite senses and differing

Exp. Res. § 2162 (1845).

B. E. T. 35
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suitably in phase. Thus the plane polarized ray can be regarded

as compounded of two opposite circularly polarized rays having

the same frequency. But we have seen that these constituent

rays are propagated with different speeds in the direction of the

lines of magnetic force, so that when they emerge from the

medium they will no longer have the same phase difference as

when they entered. They will combine into a ray which is, in

general, polarized in a plane different from that of the original

ray. This rotation of the plane of polarization is easily calculated

in the case in which the absorption coefficient kpjc is so small

that we may neglect it. This condition must certainly hold

when we are dealing with transparent refracting media.

Turning to equations (48) we see that when k is negligible,

the refractive index is

"='+*(7±^ <*'>

according as the ray is right- or left-handed. The velocities Vr

and Vi of the right- and left-handed rays are therefore given by

1_1 J_ 7 + 6

Vr c 2c (7 + e)2 -H 8*

and _ = _ 4-

Vi c 2c (7 — e)'' + h^

'

If one of the circularly polai-ized rays gets ahead of the other in

phase by an angle
<f>

the plane of polarization of the resultant ray

will clearly be rotated through the angle
(f)/2.

The rotation (o

of this plane per unit length of the medium, arising from the

difference in velocity of the two rays, will thus be

2 [vr Vi]

4c

7+ e

^w^^ (««)•

The sense of this rotation clearly reverses when the magnetic

force R is reversed, because changing the sign of R replaces +e
by —6 and vice versa.

The rotation near an absorption line or band, where k cannot

be disregarded, is most readily obtained graphically. Let ABODE
be the curve which gives l/« as a function of the frequency in the
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absence of a magnetic field. Then the corresponding quantity for

the two circularly polarized constituents when a longitudinal

magnetic field is present will be obtained, as is clear from the

discussion on p. 538, if we simply displace ABODE to the right

or to the left by an amount corresponding to + e. Let the curves

thus displaced be AjB^GiDiEi and A^Bfi^D^E^ (Fig. 55). In these

curves the ordinates represent Ijv and the abscissae the values of

p which is 27r times the frequency. The value of the coefficient

of rotation «o will be given as a function of the abscissae p by

the lower curve PQRST in which the ordinates are the differences

of the ordinates of the two upper curves at the same value of p.

These conclusions hold good when the liglit is propagated

along the lines of magnetic force. When the direction of propa-

gation is transverse to the magnetic field a different phenomenon,

which was predicted and verified by Voigt, manifests itself

Suppose the incident light to be plane polarized. We can then

resolve it into two components one polarized in the plane con-

taining the magnetic field and the axis of propagation, and the

other in the perpendicular direction. In the latter component the

electric vibrations are parallel to the magnetic intensity, so that

the velocity of this constituent is the same as that of light of the

same frequency in the absence of a magnetic field. This con-

clusion follows from the discussion on p. 542. The velocity of the

perpendicular component is, however, given by the value of n

35—2
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obtained from equation (56). The plane polarized ray therefore

splits up into two plane polarized rays, polarized in mutually

perpendicular planes, which travel with different velocities. Thus

for light propagated transversely to the direction of the lines of

magnetic force a simply refracting medium behaves, in a magnetic

field, like a doubly refracting crystal. This effect does not reverse

when R is reversed because (56) contains e (and therefore R) only

through its square.

Kerr's Magneto-optical Effect.

In 1876 Kerr* showed that when light, which is polarized in

or perpendicular to the plane of incidence, is reflected from the

poles of an electromagnet, the reflected light becomes elliptically

polarized when the magnet is excited. To explain this effect on

the electron theory it is necessary to take into account the

modification of the laws of transmission and reflexion of light,

which arises from the change in the motion of the electrons in the

metal which is produced by a magnetic field. Naturally, the

theory is more complicated than that of the inverse Zeeman

effect. It is discussed at length by Voigt in Magneto- und Elektro-

Optik, chaps, vi and vil.

Natural Rotatory Effects.

When a beam of plane polarized light passes through a plate

of quartz so that the direction of propagation is parallel to the

optic axis of the crystal, it is found that the emergent light is

polarized in a different plane from that of the incident light.

The rotation of the plane of polarization is proportional to the

thickness of the plate and is somewhat different for light of

different frequencies. The general character of the effect is thus

similar to the Faraday effect, but a difference in the nature of the

two effects is observable if the light is reflected so as to traverse the

rotating system in the opposite direction. In the case of quartz

the emergent light is then polarized in the original plane, whilst

in the magnetic case the effect is equal to that produced by a

path of double the length of the single path. Thus in the quartz

plate the rotation relative to the axis of propagation is the same

for both directions of propagation through the plate ; whereas this

* B.A. Report, 1876, p. 85 ; Phil. Mag. May, 1877.
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is not so in the magnetic case, on account of the reversal of the

direction of the magnetic field relative to the direction in which

the light travels. It is found that some quartz crystals rotate the

plane of polarization to the right and others to the left. The
crystals themselves exhibit a similar geometrical dissymmetry,

one being the mirror image of the other. The relation between

them is like that between a left-handed and a right-handed

helix.

Similar effects are shown by other crystals and by a very large

number of liquids and solutions. In all the liquid substances

which exhibit this effect, it has been found that the active

constituent is either a compound of carbon in which at

least one carbon atom is combined with four different chemical

groups or a compound of some other element exhibiting an

equivalent chemical structure. If this type of chemical structure

is visualized in three dimensions it will be seen that there are

only two possible ways of arranging the gi'oups, so that the

resulting molecules cannot be displaced in space so as to become

coincident. These are so related that one of them is the mirror

image of the other. There is thus the same relation between the

molecules of these compounds as there is between the crystals of

right- and left-handed quartz. Corresponding to the behaviour of

quartz we should expect one of the two isomers, as they are called,

to be left-handed and the other right-handed; otherwise, since

the structural difference is purely a question of spacial arrange-

ment, one would expect their other physical and chemical properties

to be practically the same. Large numbers of such pairs of optical

isomers have been isolated and their existence has led to great

advances in our knowledge of structural chemistry since Pasteur*,

Van 't Hofff, and Le Bel J pointed out the importance of these

phenomena.

It has been found that arrangements which rotate the plane of

polarization of light may be constructed by taking a pile of thin

sheets of doubly refracting crystals like mica, an-anging them so

that their optic axes are all similarly situated with respect to the

• liecherches sur la di$tym6trie moMculaire de$ produiu organiquet natureU,

Paris {I860).

+ La Chimie davs VEspace, liotterdam (1874).

X Bull. Soc. Chim. [2] vol. xxu. p. 377 (1874).
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axis of the pile and then shearing the system about the axis so

that points which previously lay on a line parallel to the axis now
lie on a spiral. It is possible that a sheared structure of this kind

might account for the rotatory properties exhibited by some

crystals, but it is obviously inadequate to account for the similar

phenomena displayed by liquid substances. A general explanation

based on the electron theory has been put forward by Drude*.

It is only necessary to suppose that the electrons, which move
with equal freedom in different directions on the usual form of

dispersion theory (Chap, viii), are constrained to move in helices

in naturally active bodies. In that case Drude was able to show

that right-handed and left-handed circularly polarized beams of

light would travel with different velocities in the medium, the one

being quicker than the other according to whether the helicoidal

paths of the electrons are right- or left-handed. The rotation of

the plane of polarization thus arises in a very similar manner to

that considered in the inverse Zeeman effect and is greatest when

the general dispersion is greatest. Taken as a whole the facts are

in good general agreement with Drude's theory, but it is possible

that other ways ot introducing a helicoidal structure into the

behaviour of the electrons would lead to very similar results.

Electro-optics.

When various isotropic insulators are placed in a strong electric

field they are found to behave optically like doubly refracting

crystals. This effect, which is exhibited both by solids and

liquids, was discovered by Kerrf. The difference in the refractive

indices of the ordinary and extraordinary rays is proportional to

the square of the applied electric intensity. In dealing with the

theory ofdispersion and related phenomena we made the assumption

that when an electron is displaced from its equilibrium position in

the atom it is acted on by a restoring force proportional to the

displacement. Voigt:{: has developed a theory of Kerr's electro-

optical effect which depends upon the supposition that this

assumption is only true as a first approximation. When large

* Lehrbuch der Optik, chap. vi.

+ Phil. Mag. [4] vol. l. pp. 337, 446 (1876) ; [5] vol. viii. pp. 85, 229 (1879)

;

vol. IX. p. 157 (1880) ; vol. xiii. pp. 153, 248 (1882).

J Magneto- und Elektro-Optik, chaps, viii, ix and x.
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forces and relatively large displacements are involved it is necessary

to consider higher powers of the displacement than the first. In

its general form this theory seems to be capable of embracing the

known facts.

Peculiar electro-optical effects are exhibited by many crystalline

substances. Some of these appear to arise from the internal strains

produced by an external electric field, an effect which is the con-

verse of the piezo-electric effects investigated by J. and P. Curie*.

The effect of an electric field during the emission of spectral

lines has already been considered (p. 537).

The Absorption Spectra of Gases and Vapours.

The investigation of the infra-red absorption spectra of gases

and vapours in recent years has revealed interesting phenomena.

In general there appear to be two groups of bands, one in the

region between 2/i and 20/x, and the other beyond lOO/ttf. The

former have generally been attributed to the vibrations of the

atom in the molecule and the latter to the rotations of the

molecules. When examined with relatively low dispersion the

energy curve of the bands of higher frequency is found to consist

of two maxima separated by a minimum. Under higher dispersion

the two main humps are found to be cut up into a succession of

subsidiary maxima and minima, indicating that the bands consist

of a series of lines rather close together \. In the simpler cases

these lines are found to be equidistant on the frequency scale

and symmetrically placed about the centre of the band§. The

frequency differences for successive lines are very close to the

frequencies of the bands in the remote infra-red which have been

attributed to molecular rotation.

A formal explanation of these effects can be given along the

lines of Bohr's theory (see Chap, xxi, p. 590). Considering the

vibrations of the higher frequency there are a series of stationary

states corresponding to the differences of energy

hv,,^W,-W^ (64).

• Comptet Rendus, vol. xci. pp. 294, 383 (1880) ; toI. xcu. pp. 156, 860 (1881) ;

vol. xciii. pp. 204, 1137 (1881).

+ Rubens and v. Wartenberg, Verh. d. Deutsch. physik. Get. xin. p. 796 (1911).

% E. v. Bahr, Verh. d. Deutsch. physik. Ges. xv. pp. 710, 731 and 1150 (1913).

§ N. Bjerrum, Nernst Festschrift, Halle a. S. 1912, p. 90; E. v. Bahr, Phil.

Mag. vol. xxviu. p. 71 (1914) ; Goldhammer, Verh. d. Deutsch. physik, Ges. 1914.
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Owing to the rotations of the molecule there will be distributed

about these states a series of states of rotation characterized by

kinetic energy

r::S::}-
"=»'• 2' ^'^^ («5>-

The energy necessary to effect a transference from one of these

states to another will be

Ay, — ^niha>i + ^n^ hcog,

so that the frequency of the absorbed radiation will be

v = Vi — ^riitui + ^112(02 (66)

(rij = 0, 1, 2, etc., n^ = 0, 1, 2, etc.). This formula covers the

fi'equencies of the observed lines if Vi is the frequency of the

centre of the band and Wi = to^ is the frequency difference of

consecutive lines. An explanation resembling this in important

points has been given by Bjerrum (loc. cit.). On this type of

theory one would rather expect a maximum in the centre of the

band instead of a minimum ; but this difficulty may be avoided

if it is supposed, as seems likely, that the experiments have been

made with inadequate dispersion and that the central lines are

much sharper than the outer ones.

If G) is identified with the frequency of the rotation of the

molecules we can use (65) to determine the moments of inertia

of the molecules about the rotation axes. The values so found

are in general agreement with those calculated from the dimensions

of molecules* if we assume that the mass of each atom is practi-

cally confined to a minute region at the centre of the atom. It

is to be remembered that such a theory makes the moments of

inertia of atoms and of many compound molecules quite different

from those deduced from the old-fashioned ideas about atoms.

Thus the moment of inertia of any single atom about any axis

through its centre is practically zero, and the same is true for

a diatomic molecule for rotations about the line joining the

centres of the atoms. This makes the corresponding value of a
enormously large. Again the moment of inertia of a molecule

of hydrochloric acid about a principal axis perpendicular to the

line of centres is nearly equal to that for a hydrogen atom about

an axis at a distance from its centre equal to the distance between

the centres of the hydrogen and chlorine atoms, and so on.

* Of. V. Balir, Phil. Mag. vol. xxvni. p. 71 (1914) ; Goldhammer, loc. cit.
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If the moments of inertia of the molecules can be considered

to be constants which are independent of the energy of rotation,

then the frequencies w will be constants for each molecule and

for each principal molecular axis of rotation. It is to be expected

from considerations similar to those used by Planck (Chap, xv,

p. 350) in finding the energy of his resonators that at low tempe-

ratures practically all the energy will be found in the rotation

for which w= 1, and as the temperature increases more and more

energy will go into rotations with high values of n. As in the

case of the resonators it is to be anticipated that at sufficiently

high temperatures the distribution of energy among the rotations

will coalesce with that expected from the kinetic theory ; so that

the effective width of the whole absorption band, or the distance

between the two maxima, should be proportional to the square

root of the absolute temperature. This result has been verified by

V. Bahr*. Again on these quantum considerations the rotational

energy should contribute nothing to the specific heat at sufficiently

low temperatures, the temperature at which the specific heat

begins to be appreciable being higher the smaller the moment
of inertia of the atom or molecule on account of the correspondingly

greater size of the rotational energy quantum. Thus in the case

of hydrogen, which is the lightest diatomic molecule, Euckenf

has shown that below 70" absolute the specific heat is practically

that of a monatomic gas. It is to be expected that a similar

phenomenon will be observed with other diatomic gg-ses at still

lower temperatures. Again for monatomic gases and for diatomic

gases in the case of rotations about the axis of figure the corre-

sponding limiting temperature will be enormously high on account

of the low moment of inertia. Thus the theory gives a simple

explanation of the fact that these rotations contribute nothing

to the specific heats of such bodies even at relatively high

temperatures.

The application of the quantum theory to the specific heats

of diatomic gases has been considered in detail by Einstein and

Stem J and by Ehrenfest§.

Phil. Mag. vol. xxvnt. p. 71 (1914).

t Berl. Ber. 1912, p. 141.

X Ann. der Physik. vol. xl. p. 651 (1913).

§ Verh. d. Deutsch. physik. Ges. vol. xv. p. 451 (1913).



CHAPTER XXI

THE STRUCTURE OF THE ATOM

The way in which the electrons form comparatively stable

groupings which exhibit the properties that characterize the

atoms of the various chemical elements is a problem which has

engaged the attention of a large number of physicists. It will be

impossible to do more than briefly indicate some of the more

interesting results which have been achieved in this field.

Perhaps the most striking property of the chemical atom is its

definiteness and permanency. Its properties are only temporarily

affected by the very strenuous actions which accompany chemical

combination and decomposition. Sir Joseph Larmor* appears to

have been the first to point out that this definiteness could not

be expected to arise if matter consisted of nothing more than

electrons of negligible linear dimensions whose motions were

governed by the classical equations of the electrodynamic field.

For consider any system in which the electric and magnetic vectors

are given by the equations (1)—(4) of Chapter ix with p=0.
Let X, y, z and t be the space and time coordinates of any point

of this system, E and H being the electric and magnetic vectors.

Now consider a second system in which the corresponding variables

are denoted by the suffix 1 and are such that

(a:, y,z) = lc (a?!, y^, z^), t = It^ E = mE^, H= nH^.

Then by substituting in the equations referred to, it is at once

seen that, provided k = l and m = n,

div^\ = 0, diviri = 0,

rot Ei = -H,lc, rot H^ = E,fc,

where the operations now refer to the subscripted independent

variables. By introducing the condition that the charge of the

electrons is to be the same in both cases we obtain an additional

* Aether and Matter, p. 189.
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equation between k and m, but there is still nothing to determine

the absolute value of these quantities. Thus, corresponding to

any solution of the equations, there are an infinite number of other

solutions corresponding to linear transformations of the variables.

If any solution corresponds to a state of steady motion or rest

there are an infinite number of such possible states. Thus the

finite size and general definiteness of the atom must be due to

something outside the equations referred to.

This conclusion is valid only if the dimensions of the elements

of electric charge are negligible compared with the dimensions

of the problem. The radius of an electron, as deduced from its

inertia, is about 10~^^ cm. and is therefore about 10~' times that

of an atom. We should therefore expect that, as an approximation

towards the problem of atomic structure, we may treat the nega-

tive electron as a point charge endowed with inertia. In that

case there must be something which determines the finiteness

and definiteness of the atom, which lies outside the properties of

the negative electron itself as well as outside the equations of the

field. One way in which this additional requirement has been

met is by supposing the positive electrification to be limited to

the region inside a sphere of atomic dimensions. This hypothesis

was first introduced by Lord Kelvin*. Its consequences have

been worked out very fully by Sir J. J. Thomson f and the

question has also been considered by Lord RayleighJ. Other

possibilities will be referred to later. (See pp. 585—606.) Of

these the most important and successful is the theory due to Bohr

which supposes that atomic structure is not determined solely by

mechanical principles and the equations of the electro-magnetic

field, but that it is necessary to take into account certain new prin-

ciples allied to those involved in the quantum theory of radiation.

A number of writers, in addition to those referred to above

and in the preceding chapter, have considered the question of the

emission of series of spectral lines by atoms made up of electrons.

Among these are Jeans §, Nagaoka|| and SchottH. One of the

* Phil. Mag. vol. in. p. 257 (1902). t Phil. Mag. vol. vii. p. 237 (1904).

X Phil. Mag. vol. xi. p. 117 (1906).

§ Phil. Mag. vol. ii. p. 421 (1901) ; vol. xi. p. 604 (1906).

II
Phil. Mag. vol. vn. p. 445 (1904).

H Phil. Mag. vol. xii. p. 21 (1906) ; vol. xiii. p. 189 (1907) ; vol. xv. p. 438

(1908).
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objects of these investigations has been to find systems of electrons

which when disturbed from a state of equilibrium will give rise

to a series of vibrations in which the overtones are related to

the fundamental in the same way as the different members of

Rydberg's series are. In this respect the researches referred to

can hardly be considered to have been particularly successful, and

it now seems that this view of the relationship between the lines

of spectral series must be a mistaken one (cf Chap. XX, p. 528).

On the other hand they have greatly added to our knowledge

of the structural conditions which must be satisfied for systems of

this kind to exist permanently.

The question of the definiteness of the atom, already alluded

to, is related to that of the definiteness of frequency, or the

fineness, of spectral lines. This fineness is of a very high degree.

Recent researches* have shown that in the case of many lines,

practically the whole of the observable width is due to the

Doppler effect arising from the thermal motion of the molecules.

The actual emitters must therefore be instruments of very great

precision. Moreover, as Jeans f has pointed out, they must be

atoms, or at any rate systems whose symmetry is such that they

are incapable of acquiring through molecular impacts any ap-

preciable motion of rotation about any axis except that of the

emitter. For instance if the system contains an emitting doublet

whose axis is rotating with angular velocity 27r&) about a fixed axis,

the observed light will consist of three lines having frequencies

p + o), p and p — (o instead of the single line of frequency p
emitted by the system when at rest. If a> has the range of

values given by the Boltzmann-Maxwell law of equi-partition

of energy, this effect would result in the production of a rather

broad band fading away at the edges, instead of a line of the

sharpness which is usually observed In the case of monatoraic

molecules co is inappreciable J, as is shown by the values of the

specific heats of monatomic gases.

Disregarding the perturbation due to rotation it is necessary

to consider how the frequency p of the atom at rest can be

sufficiently definite. If the electrons are somehow arranged in

positions of statical equilibrium, and the spectral lines are caused
• Buisson and Fabry, Journ. de Physique, vol. n. p. 442 (1912).

t Phil. Mag. vol. n. p. 422 (1901).

X On the classical dynamics. Cf., however, p. 553.
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by vibrations about these positions, their definiteness is accounted

for. On the other hand the existence of paramagnetism leads us

to infer the presence, at least in certain atoms, of electrons

rapidly revolving in closed orbits. Consequently numerous

attempts have been made to seek the origin of spectral lines in

the kinematics of revolving rings of electrons. Unless rather

special and somewhat strange assumptions are made, however, it

is impossible to secure sufficient definiteness of frequency in this

way.
«

The difficulty here, which has also been emphasized by Jeans,

is brought out in the following discussion which is due to

Schott*. Consider a system containing a ring whose radius is

r consisting of n electrons, evenly spaced about the circum-

ference when undisturbed, and revolving with velocity F= /3c.

Approximate stability is assured by the presence of a central

positive charge or a containing sphere of positive volume electrifi-

cation or some other device giving rise to an attraction towards

the centre of the ring. The equations of motion are shown to be

^^-7-^ (1).

™d P.-^,(l +«^+^V» ='^' (2),

where CT is a function of n and ^ which is proportional to the

rate of radiation from the ringf. The terms in K and W in (2)

represent the force which arises from the electrons in the ring

itself, other than the one whose motion is considered. iT is a

function of n only and W of n and /3. Pi is the central force

arising from the rest of the atom and the term on the right is the

centi'ifugal force. Pi may be considered as a function of r into

whose form it is not necessary to inquire, m the mass of an electron

is of the form -^'^{^), where a is its radius. Now nU, being

proportional to the radiation, is always positive if the system

radiates at all. Thus if a is constant equation (1) shows that ^
cannot be constant for a radiating system. When y8 is given r

may be obtained from (2), so that the radius of the ring also will

• Phil. Mag. vol xn. p. 21 (1906).

t Of. the value of U in Phil. Mag. vol. xn. p. 22 (1906) and of R in vol. xiii.

p. 194 (1907).
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vary with the time, when the system radiates. Subject to the

constancy of a, there can therefore be no state of strictly steady

motion which is compatible with the emission of radiation. If a

is allowed to vary with the time then (1) and (2) can obviously

be satisfied by constant values of V or ^ and r and a state of

definitely steady motion is possible. This, however, makes the

energy radiated come from the internal energy of the electron

and, so far as one can see at present, there is no other warrant for

such a hypothesis. In any event any part of the radiation which

does not arise from the expansion of the electron would, by its

emission, cause changes in fi and r. Thus the expanding electron

might account for the sharpness of some lines, but it is difficult to

see why practically all of them should be sharp on such a view.

In constructing a theory of the atom it is not necessary either

that spectral lines should originate with revolving electrons or

that the lines of spectral series should correspond to harmonics.

The existence of para- and ferro-magnetic substances does, how-

ever, appear to necessitate the existence of revolving electrons in

some atoms. Such electrons may be so arranged that their

radiation is practically zero. Equations (1) and (2) show that

under these circumstances y8 and r may be constant. The devia-

tion from steady motion is determined by the amount of radiation,

so that an atom may have revolving rings of electrons in it and

still be quite definite provided these do not radiate. This con-

dition can be secured by placing a sufficient number of electrons

in any one ring, as the radiation decreases with great rapidity

as the number is increased. This result, Avhich can easily be

established by calculation, is also obvious physically, since the

amount of radiation is determined by the lack of symmetry of the

corresponding static field. On the other hand, for the emission of

spectral lines we require a system which may be unstable, as it is

known not to be the normal atom, but which must radiate and must

have a definite frequency. Power of radiating and definiteness of

frequency are precisely the qualities which do not concur in systems

of revolving rings of electrons. (See, however, p. 590.)

If revolving systems occur in the ultimate parts of matter

their axes must be determined by the structure of the matter

and must turn in space when the matter as a whole is turned.

Otherwise the properties of crystals and magnetized bodies would
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depend on their orientation in space*. When bodies whose atoms

contain systems of electrons in orbital motion are turned, a

gyrostatic couple ought to be experienced. The fact that such

an effect has not been observed cannot, I think, be regarded as

disproving the existence of such systems. The moment of momen-

tum of the revolving electrons is so small that one could only

expect to detect such an effect by carrying out special experiments

of a delicate character, and this has not yet been done.

In the papers of Schott to which we have referred, the ques-

tions of the stability of, and the amount of radiation from, rings

of revolving electrons are both considered in detail. In most of

the calculations the only assumption made as to the nature of the

force attracting the electrons to the centre of the atom is that it

is of the usual electromagnetic type. Some of the results are

therefore more general than the corresponding ones given by the

investigation which we shall now describe.

The properties of the type of atom which is made up of

coplanar rings of electrons inside a large sphere of uniform

indeformable positive electrification have been worked out by

Sir J. J. Thomson f and lead to very interesting results. If b is

the radius of the large sphere and p the density of the electrifica-

tion in it, then the force, acting on an electron whose charge is e

at a distance a from the centre of the sphere and due to the

positive charge of the latter, is ^irpea If there are v electrons m
the neutral atom, the charge E in the positive sphere is

J? = i/e = 47r/o6V3

Hence, in terms of the number and charge of the electrons, the

force they experience at a distance a from the centre due to the

positive sphere is ve'a/bK In addition to this the electrons are

acted upon by forces due to their mutual repulsions. If is the

centre of the sphere an electron at A will be acted upon by an

electron at B with a force e^jAIP and the radial component of

this = -j-iTj cos OAB. If OA = OB. i.e. if the electrons are in the

same ring, this repulsive force is e^/WA^sin^AOB. Hence, if we
have n electrons arranged at equal angular distances 27r/w round

• Cf. Jeans, Phil. Mag. vol. xi. p. 606 (1906).

t Loc. cit., cf. also The Corpuscular Theory of Matter, chap, vi., New York, 1907.
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the circumference of a circle, the radial repulsion on one of them
due to the others is

—^ ( cosec 7r/n+ cosec lirln + cosec Stt/w + + cosec ^^ —
)

.

Calling the sum within the bracket Sn we have, if the electrons

are at rest under their mutual forces,

4a'
8 =TZi^n

h^=rv ^^>-

This will determine a state of possible equilibrium if the elections

are at rest. If they are rotating round the ring we shall have to

take account of the centrifugal force and the equilibrium condition

becomes

— = niaco^ + -^S^ (4).

These equations only determine a state of possible equilibrium.

They do not tell us whether the equilibrium is stable or unstable.

For such a ring to be a possible part of a normal atom it is

necessary that this arrangement should be stable, otherwise the

ring would break up under the action of any external force. To

find out whether the equilibrium is stable or not it is necessary to

calculate the forces called into play by an infinitesimal displace-

ment and to see whether its direction is snch as to cause the

displaced electron to move back to its original position. This

must be done both for radial and for tangential displacements in the

plane of the ring and for displacements perpendicular to the plane

of the latter. Let us illustrate this by considering one or two

simple cases.

In the case of a single electron it is evident that the centre of

the sphere is the only position of equilibrium. The equilibrium

in this case is evidently stable. In the case of two electrons it is

evident by symmetry that the only equilibrium position is that in

which they lie along the same diameter of the sphere. If they

are at rest at a distance a from the centre the repulsive force is

-r-„ and the attraction is -tt-. Hence the total force actmg on
4a' (r
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dR = :r f,+ —,] da.
ay

each electron, repkoned positive if directed towards the centre of

the sphere, is

This vanishes if a = ^b. If a becomes a + da, R increases by

4 V^"^

As the quantity in brackets is positive when 6 = 2a, it follows that

the equilibrium is stable as regards radial displacements.

The reaction called into play by a displacement in any direc-

tion perpendicular to the radius may be calculated as follows. Let

the angular displacement from the equilibrium position be dd;

then the linear displacement is add. The attraction of the

positive sphere i^ still towards the centre, so that the tangential

restoring force will be due entirely to the other electron. The

force between the two electrons is repulsive and equal to ^—^ along

the line joining them, if we neglect small quantities. The tan-

gential component of this is 2~~2 ^^^ ^ ^^ ^^ c~2 ^^ ^^ *^® ^^^

order. This is directed towards the position of equilibrium of

the displaced electron ; so that the equilibrium is stable for lateral

displacements. As this is true whatever the direction of the dis-

placement, the arrangement of two electrons along a diameter,

each at a point halfway between the centre and the circumference,

is one which satisfies all the conditions for stability.

We shall now consider the general case. Take the centre of

the atom as origin and let the position of an electron be given by

the cylindrical coordinates r, and z. r is the projection of the

radius on the plane of the undisturbed orbit, 6 is the angle r makes

with a fixed line in that plane and z is the displacement perpen-

dicular to the plane of r and 6. The coordinates are supposed to

undergo small oscillations about the steady values r = a, 6 = co and

z=0. If the suffix s refers to a particular electron we can there-

fore put rg=a + ps and

Os— ^«_] = — +<f)s—<}>g-^ (5),

where n is the number of electrons in the ring, pg and Zg are small

compared with a, and
<f)g

and ^g_i are small compared with iir/n.

R. E. T. 36
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The radial repulsion exerted by the *th electron on the ^th is

-B^ = - e'^ [vp' + r,» - 2rpr, cos (6, - dp) + (zp - z,y] ~ ^

4a'' sinin 1^1 aV ^sm^'-f) aV 2&m^y\rJ

-H<^«- <^p) cot Vrj... (6),

where -Jr = (« — s) -

.

The tangential force 0p, tending to increase 0p is

( 1 \

\rp^ + n" - ^rpv, cos ((9,- ^p) + {Zp - z,Y\^i

= 4^^sS^t-t^^-i?-(^-^p)(-^^ + itant)}(7).

The force perpendicular to the plane of the undisturbed orbit is

^'
ih-'s) (8).Z =

^' 8a3 sin* -^

In equations (6)—(8) higher powers than the first of the small

quantities p, <f)
and z have been dropped.

The radial force Rp exerted by all the other electrons in the

ring on the pth. is

e^

-^P — TTi^— Pp^' —^sPp+S'^s — f^^s^p+s^s
^Ob'

.(9).

The tangential and perpendicular forces on the same particle

are respectively

0p = Sg/>p+g5,- a(l>pG + als(f)p+s(^s (10),

and Zp = ZpD-%sZp+sDg (11),

where

^»=^3/ + 1' Bs = ^—J cos— sm^—),
8aH .sir . , STT r 8aH n/ nJ

\ sm — sm" — /
^

\ w n /

Sir
, cos — ,

G»= :r^. cot — + i- tan— , C*= 2 (7«,
STT V n * n J ,=14a='

A =

sin-' —
n

gs 1 «-^
5—; , and i)= S Z)..

sm^" —
n

(12).
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The equations of motion of the ^th electron are

9V„ fde.m

m

«»^ =-7;5% + ^i> (15).

From (13) since <o is the value of -^ when the steady motion is

undisturbed

in agreement with (4). By making use of this relation, (13)

becomes, to the first order in the small displacements,

By similar treatment (14) may also be made linear, to the same

degree of approximation. Thus the values of p and are the

solutions of a set of In simultaneous linear differential equations

of the second order. To find the frequencies assume that p^ and

^p vary as e'3*. Equation (16) then becomes

{A - mf) py + J.i/3p+i + 42/3i>+2 + ..•

— 2inaa)iq(f)p + aBi(f)p+i + aB2<f)pi.-+ ... =0...(17),

g2

where A = t—^S + A'. Treated in a similar way (14) becomes

^ a a a

There are n each of the equations (17) and (18) obtained by

giving p the successive integral values 1, 2, 3, . . . n.

These equations can be solved by the following artifice. If

Pp^^ = app and ^p+j = a(f>p for all values of p from 1 to n — 1, and if

p^ = apn and
(f>i
= cc(f>ny then a**= 1 identically; so that a is one of

the nth roots of unity and is equal to

2k'n- . . 2Aw
cos h I sin ,

n n 36—2
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where A; is an integer between and n — 1. Whatever value p
may have, we see that equations (17) and (18) reduce to

Pp (A - mq^+ a^i + aMg+ . . . + a«-^ .4„_i)

+ <^pa (- ^imwq + aB^ + a^B^ + ... + a"-i5„_,) = 0...(19),

and

/Op {2ima>q - aBj - a^B^ - ... - a^-^B^-i)

+ (f>pa {G- mf - aCi - a^ Ca - . . . - a«-^ (7„_:) = 0. . .(20).

Thus we see that all the 2n equations (17) and (18) are satis-

fied by pp = aPpn and ^p = ofi^n for all the values of p between I

and n, provided (19) and (20) are also satisfied. By eliminating

^p and Pp from (19) and (20) we see that the frequencies q are

given by the biquadratic equation

{A - mq"+aA^ + o?A^ + ... + a"-Mn-i)

(0 - mq- -aC-CL^C^-...- a"-i C„_0

= - (- 2ima)q + aB^ + a^B^ + . . . + oC^-^Bn-^Y - • .(21).

This may be written more concisely

(f J ^ + Zi - Xo - mq^ {No -N,- mq') = (M^ - 2mcoqy . . . (22),

, X e' %^ 2sk7r f 1
where i/;fe = ^r—- 2, cos h

8a* «=i n . STT
sm sm''

STT

n

' , Sir . , S7r\
cot h * tan —

>, n ^ n I ^...(23).

n

SIT

,^ e'V 2sA:7r^^^V
JSk = -T—.Z COS

4a* ,=1 w . „ STT
sm*^—

n

STT

n/r e* "^^
• 2sA;7r IT

i«i = ^-^ 2 sm
8a' ,=1 w . „ 57r

sm'^ —
n

In these equations k is the integer in a = cos V i sin

and may have any value from to ?i — 1. If n — A is written

for k in (22) the values of q given by the equations differ only

in sign, so that the frequencies are the same. Thus all the values

of the frequency can be got by putting ^ = 0, 1, 2, ...(w— l)/2

if n is odd, and A; = 0, 1, 2, ... w/2 if n is even. If w is odd there

are (w — 1)/2 equations of the type (22) leading to independent
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values of the frequency. When ^ = 0, M]^ = and equation (22) re-

duces to a quadratic, so that altogether there are 4(w + l)/2— 2= 2n

values of the frequency. When n is even there are r?/2 + 1 equa-

tions, but Mk = when k=0 or n/2, so that two of these reduce

to quadratics. Thus we see that whether n be odd or even

there are 2n possible frequencies for vibrations in the plane of

the orbit, corresponding to the 2n degrees of freedom of the

electrons, in this plane.

In a similar way the n frequencies q of the vibrations at

right angles to the plane of the orbit may be shown to be

given by

'!^ + P,-P,-mq^ = (24),

where /';b = 27-r 2 cos /sm' ^ (25).
oa*s=i n

I
n ^ ^

The values of L, M, N and P have been worked out in a

number of the simpler cases and the corresponding frequencies

calculated*.

The importance of this investigation lies, for reasons which

have already been given, not so much in the fact that it enables

us to evaluate the frequencies of the vibrations of the electrons,

as in the fact that the frequency equations (22) and (24) enable

us to determine whether the equilibrium is stable or not. If

all the values of q given by (22) and (24) are real then all the

disturbances p, ^ and z are periodic functions of the time, and

the system will only execute small oscillations about the steady

configuration. In this case the steady motion is stable. If,

on the other hand, any of the roots contain an imaginary part,

the corresponding values of p, <f>
or z will contain factors of the

type €^*, where A is a real positive constant. Thus any such

disturbance will increase indefinitely with the lapse of time and

the presence of complex or imaginary values of q shows that

the equilibrium is unstable. The condition that the equilibrium

should be stable is therefore that all the values of q given by

the equations (22) and (24) should be real for all the admissible

values of k.

* Of. Thomson, loe. cit.
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The stability of the z motions can always be provided for,

since the value of the rotation w is, so far, at our disposal.

Transposing equation (9) we have

and, substituting this value of a, (24) becomes

»»«' = S'|l+ ^4-™--^^" (26),
6» 1' ^ 2S J

""" 2S

where ^ = ^ Pjt and T, = ^Po.

Tje — To is always negative, so that the right-hand side of (24) can

obviously be made positive by choosing co large enough. Thus q
can always be made real and the z motions stable.

Now turn to the motions in the plane of the orbit. We may
write equation (22) in the form

(A-q^){B-q^)-{C-Dqy = f{q) = (27),

where

mA=^-S + Lk-L„ mB = No-Nk, mC=Mjc and D = 2a>.

A, B, G and D are real and B is positive. We can make GjD
as small as we please by suitably choosing «, and at the same

time preserve the stability of the z motions. Let A have any

positive value, then GjD can always be chosen so as to be less

than -f J.^ or + B^. Now /(g) is positive when q = ±<xi , negative

when q lies between + A^ and + jB^ or — A^ and — B^, and

positive when q = GID. The graph of f{q) thus crosses the real

X axis four times between + oo . If ^ is negative there are only

two such intersections. For all the roots to be real it is therefore

necessary and sufficient that A should be positive. This is the

condition for stability.

When the number of electrons in a ring becomes considerable,

negative .values of A begin to appear ; so that no amount of

rotation can make the ring stable. The greatest number of

electrons which are stable in a circle inside a sphere, contain-

ing an equal total quantity of positive electricity uniformly
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distributed, is five*. Six or more electrons in a single ring are

never in stable equilibrium however great the angular velocity

is. Such a ring may, however, be made stable if a negative

charge is introduced at the centre. If this negative charge is

equal to that carried by j> electrons, the effect of the additional

repulsion thus introduced is to increase A in the frequency

equation (27) to J. + 3^*. This can always be made positive

by taking p sufficiently large.

From what has been said it is clear that the condition for a

ring to be stable is that ^ + 3^ = | —^ - (io - ^a) + 3 "^

should be positive. The greatest value of Lq — Lk is for k = n/2

when n is even and for A; = (n— 1)/2 when n is odd. The number

of electrons which would have to be placed at the centre of the

ring to ensure stability is therefore given by the least integral

value of p for which

S~>Lo — Ln — i —r when n is even

and 2^ > A — Ln-i — f —r when n is odd

(28).

By means of these equations the least value of p for a given

value of n can be calculated, p increases very rapidly for large

values of n. as is shown by the following table of corresponding

values

:

5 6 7 8 9 10 15 20 30 40

1 1 1 2 3 15 39 101 232p

When p exceeds unity the additional electrons cannot all lie

at the centre of the ring but must separate under their mutual

repulsion. Thus when n = 9 and p = 2 there will be an external

ring of seven and two electrons inside situated along a diameter

of the sphere at equal distances from the centre. When p is large

it is possible for the electrons to arrange themselves in stable

equilibrium in rings rotating about a common axis and Ijdng in

parallel planes. On the assumption that the effect of external

rings of electrons can be neglected and that the effect of internal

rings is the same as if the total charge on the electrons were

* Cf. Thomson, loe. cit.
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collected at the centre of the sphere, the number of electrons

in the successive rings can be calculated by the application of the

foregoing principles. It is probable that this treatment will give

a fair representation of the properties of atoms containing a

number of electrons, even if the latter are not arranged in rings

but, for example, in concentric shells. The conditions for equi-

librium are of the same general character in both cases. If a

shell contains a large number of electrons it will be unstable

unless some of them are inside, just as the corresponding ring

was. We shall now consider the structure and properties of the

atoms which have different numbers of electrons, when their

constitution is determined by the equilibrium conditions to which

we have been led. The numerical computations will be omitted

;

they are given in the paper by Thomson to which reference has

frequently been made.

We have seen that when there is only one electron it will lie

at the centre of the positive sphere, whilst if there are two, they

lie always along a diameter at equal distances from the centre.

Three electrons will arrange themselves at the corners of an

equilateral triangle situated on a circle whose radius is given by

equation (3). The arrangement of four electrons at the corners

of a square is unstable if the electrons are at rest. It is found

that one of the electrons will jump out of the plane of the others

and that the stable arrangement for four electrons is at the

corners of a regular tetrahedron. A similar occurrence takes

place whenever the number of electrons is greater than three.

Thus three is the greatest number of electrons that can exist

in stable equilibrium in a ring, provided they are at rest. By
assigning to the rings of electrons sufficiently high velocities,

it appears that the number in the ring can be increased to as

many as five without instability setting in. A ring of six or

any greater number, however, is unstable even if rotating. Six

electrons can be in stable equilibrium if one is at the centre of

the sphere and the other five rotate in a ring around it. A
single electron at the centre is sufficient to make a ring of

seven or eight stable, thus accounting for nine electrons alto-

gether. With ten electrons it is necessary to have two in the

centre and a ring of eight outside. With eleven three go to

the centre and this holds till we get to fourteen, when the
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number in the centre increases to four. With seventeen elec-

trons it is found that the stable arrangement is an outer ring

of eleven with six inside it. We have seen, however, that a

ring of six is unstable, so that one of them goes to the centre

leaving a ring of five. We have thus three concentric sj'^stems

in this case, containing respectively one, five and eleven electrons.

When the number of electrons in the outer ring becomes con-

siderable, the number which it is necessary to place inside the

ring in order to ensure stability increases very rapidly. For

large values of the number n in the ring the number p inside-

varies as rv^.

The actual arrangement of the electrons with some of the

smaller numbers is given in the following table. The number

of horizontal columns gives the number of rings ; the numbers

are the number of electrons in each ring. The total number in

the atom is thus obtained by adding up the vertical columns.

outer ring 12 3 4 5

outer ring 5 6 7 8 8 8 9 10 10 10 11

inner ring 1111233 3 4 5 5

outer ring 11 11 11 12 12 12 12 13 13 13 13 14 14 15 15
2nd ring 5 6 7 7 8 8 8 8 9 10 10 10 10 10 11

1st ring 111112333344555
outer ring 15 15 15 16 16 16 16 16 16 16 17 17 17 17 17 17 17

3rd ring 11 11 11 11 12 12 12 13 13 13 13 13 13 14 14 15 15
2nd ring 5 6 7 7 7 8 8 8 8 9 9 10 10 10 10 10 11

1st ring 1111112 2 333344555
outer ring 17 19 20 20 20 20 20 20 20 20 20 21 21

4th ring 15 16 16 16 16 17 17 17 17 17 17 17 17

3rd ring 11 13 13 13 13 13 13 13 14 14 15 15 15
2nd ring 5 8 8 8 9 9 10 10 10 10 10 10 11

Istring 1 223333445 5 55
outer ring 21 22 23 24
5th ring 17 20 20 .....21

4th ring 15 16 17 17

3rd ring 11 13 13 15

2nd ring 5 8 10 11

Istring 1 2 3 5

Thus 93 electrons arrange themselves in six concentric rings

of 5, 11, 15, 17, 21 and 24 respectively. 94 electrons begin the

series with seven rings having the arrangement 1, 5, 11, 15, 17,

21 and 24.
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Numbers like those in the preceding table showing the

arrangement of the electron in the atom can be obtained in the

following manner. It is first necessary to determine a sufficient

number of corresponding values of p and n. This can be done

by means of equations (28). Having done this we can draw the

curve which gives p as a function of n. It is of the general form

exhibited by the accompanying figure.

30
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Suppose it is required to find how a large number JV" of

electrons will arrange themselves in stable rings. Take OPi =N
along the axis of ^ and draw PjQi inclined at 135° to OPi inter-

secting the curve in Q^. Then if Q^P^ is perpendicular to OPj,

QiP2 = P2Pi. By the property of the curve Q^F^. electrons in

a ring require OP2 inside to make them stable, so that N = OPi

electrons will arrange themselves with an outer ring of P2P1

surrounding OPa electrons. In general OP2 will not be an

integer ; in this case, . instead of OP2 we take OP2' the next

higher integral value. Thus we see that N = OPi electrons

will arrange themselves so that the outermost ring contains

P2P1 electrons. We can find the distribution of the OP2'

electrons by repeating the process. From Pg' draw P2Q2 inclined

at 185° to OPi and draw Q2P3 perpendicular to OP,. If OP3

is the next integer higher than OP3 the OP2' electrons will

arrange themselves with an outer ring of P3P2 electrons sur-

rounding the remaining OP3'. In this way we can proceed until

the whole N electrons are accounted for.

Referring to the table on the preceding page we see that the

successive atoms formed in this way possess features analogous

to those properties of the chemical elements which are sum-

marized by the periodic law. Thus it will be observed that the

first element with seven rings is the same as that with six except
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for the outer ring of 24 electrons; this in turn is the same as

that with five except for the outer ring of 21, and so on. We
might expect that elements with the same internal structure

would have similar properties. If so, we should expect them

to be separated by groups of elements having widely different

properties. If, as a number of different lines of investigation

lead us to believe, the atomic weight is proportional to the

number of contained electrons, this is exactly what happens.

As we proceed through a list of elements of increasing atomic

weight we find elements of similar character periodically ap-

pearing separated by entirely different elements. This kind of

relationship ought to be exhibited especially by properties such

as the frequency of vibration of the electrical constituents of

the atom, which we should expect to be determined largely by

the geometrical arrangement of the contained electrons. It is

well known that the lines of the spectral series of elements of

the same chemical family are closely related.

Another kind of resemblance to the properties of the chemical

elements is brought out in a still more marked way if we can

consider the equilibrium of the electrons in the successive arti-

ficial atoms and confine ourselves to the case where there is a

constant number, for example twenty, of electrons in the outer

rings. Starting with the first member, that with 59 electrons

altogether, this will only just have enough electrons inside to

keep the outer ring stable. It will therefore very readily give

off one electron. When it has given this off, however, there

will only be 58 electrons left, a number which is not great

enough to have an outer ring of twenty. These will therefore

an-ange themselves with an outer ring of nineteen. Now 58

is the greatest number which can have an outer ring of nine-

teen, so that the stability of this atom as regards emission of

electrons will be very high, more particularly as it has an excess

of positive charge. The atom with 59 electrons will thus be

capable of emitting one negative electron and so form a monova-

lent positive ion. It will do this with great readiness but will only

be able to emit one negative ion. It will therefore behave like

the strongly electropositive elements hydrogen, lithium, sodium,

potassium, etc. The next atom with 60 electrons will be some-

what more stable than the first, but will be able to emit



572 THE STRUCTURE OF THE ATOM

two electrons before the number falls to .58 and it becomes

exceedingly stable as regards further emission. Thus it will

resemble the divalent electropositive elements of the alkaline

earth group. In a similar way the next element will not so

easily emit an electron but it will be able to part with three

before reaching the very stable condition with 68 electrons. It

will therefore be less electropositive but will be capable of giving

rise to a trivalent positive ion. It will therefore resemble the triva-

lent earth metals such as aluminium. In this way we see that as

the number of electrons increases, the elements which have an

outer ring of twenty become continuously less electropositive

but have a continuously increasing electropositive valency. "When

we come to the last atom with twenty electrons in the outer

ring and 67 altogether this would theoretically be able to emit

nine electrons, but practically it will be so stable that it will

be incapable of emitting any except under very great forces.

It may thus be considered to resemble the. inert gases helium,

argon, etc. which are incapable of entering into chemical com-

bination. Again, this element will be unable to combine with

a free electron; for if it did so it would have 68 electrons alto-

gether and these would arrange themselves with an outer ring

of 21. As the system with 68 electrons and an outer ring of

21 is very unstable and liable to emit an electron when

neutral, it will be still more unstable when it carries an excess

of negative charge, so that this atom with 67 electrons will be

incapable of combining with one additional electron. It will

thus have zero electronegative valency. In this respect it again

resembles the inert gaseous elements. The element with 66

electrons will tend to combine with one electron; since, when

the atoms are neutral, the element with 67 is more stable than

that with 66. It will not be able to combine with more than

one, for if it did it would possess 68 electrons altogether, an

arrangement which, as we have seen, is exceedingly unstable

even when neutral. This element will thus behave like the

strongly electronegative monovalent elements fluorine, chlorine,

etc. The atom with 65 electrons will have a less strongly

marked tendency to combine with an additional one but will

be able to combine with two altogether before reaching the

limiting condition. It will thus resemble the elements oxygen,

sulphur, etc. which are divalent but less strongly electronegative
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than the preceding elements. Proceeding in this way we see

that the element with the greatest number of electrons, out of

those which have an outer ring of twenty, has zero electro-

negative valency. As the number of electrons is successively

diminished the valency steadily increases whilst the elements

become successively less electronegative. The most electro-

negative element has one less than the maximum number of

electrons and is monovalent.

These properties furnish a striking analogy to the variation

of valency and electrochemical properties as we pass through a

series of elements in the periodic table. Starting with the

element possessing 58 electrons, the maximum number with an

outer ring of nineteen, the following table shows how the electro-

positive and electronegative valencies change as the number is

increased

:

Number in outer ring 19 20 20 20 20 20 20 20 20 20 21
Total number 58 59 60 61 62 63 64 65 66 67 68
Electropositive valency 1234567891
Electronegative „ 0876543210
The corresponding valencies for the series of elements between neon

and argon, omitting potassium, are shown in the following table

:

Element Ne Na Mg Al Si P S CI Ar

Atomic weight ... 20*2 23*0 24-3 27*1 28-3 31-0 32-1 35-5 39-9

Electropositive

valency 12 3 4 5 6 7

Electronegative

valency 7 6 5 4 3 2 1

In each case the sum of the maximum electropositive and

electronegative valencies is constant, and the elements become

successively more electronegative and less electropositive as the

mass of the atoms increases.

The numbers purporting to represent the electropositive

and the electronegative valencies of the different chemical ele-

ments are not in every case verified by facts. They are rather

to be taken as representing a law which summarizes a general

tendency. Thus so far as the writer is aware no compound of

sodium is known in which it is heptavalent. This is probably

due to the fact that it is difficult to get strongly electropositive

elements to combine with one another. The electronegative

elements are more adaptable in this respect, and they furnish

numerous examples in which the law is fulfilled. We have for
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instance the following compounds which exhibit the maximum
electropositive and electronegative valencies:

Electropositive valency SiCl4 PClg SCle CI2O7
Electronegative „ SiH, PH3 SHj HCl

PNag NaaS NaCl

In each case the sum of the valencies is constant and equal to

eight.

The numerical relations obtained above are to be taken as

illustrative rather than as indicating the actual number of

electrons which the atoms of the respective chemical elements

contain. If the electrons were arranged in shells instead of in

rings, the conditions of stability would lead to results of the

same general character but the numerical values might be quite

different. In order that the periodicity in the electrochemical

properties and the observed changes in the electropositive and the

electronegative valency should be found, all that is necessary is

that there should be a sudden increase in the stability of the

electrons in atoms which have certain numbers Ni, N^, N3, etc.

of electrons and a gradual diminution as we pass from any one

of these numbers to the next higher. For example, an atom

which contains Nz + n electrons would lose n electrons rather

easily, but it would require forces of a different order of mag-

nitude to dislodge n + 1 electrons. Its electropositive valency

would thus be n. On the other hand it would have a tendency

to combine with any number of electrons until the total number

became equal to Ng. Its electronegative valency would therefore

"be JVj — (Nz + n). The sum of the two valencies has the same

value for all the elements with numbers of electrons between

N2 and iVg and is equal to i^Tj — iVg. In discussing the question

of valency it is not necessary to consider specifically the effect

of the excess of positive or negative charge when electrons are

removed from, or added to, a given atom. This effect will change

regularly with the excess or deficiency of electrons. It is also

necessary to observe that the question of valency is one of

equilibrium in a system, the molecule, which is uncharged as a

whole. The effect of the total charge on the individual atoms

being different will therefore only come in to a very limited

extent, since they are so very near together. It would be rather

different if we were discussing the possibility of the ionization

of a given atom.
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It is worth while remarking that the elements which lie

between the very strongly electronegative monovalent elements

like fluorine and the next higher strongly electropositive mono-

valent element, e.g. sodium, are the gases He, Ne, Ar, Kr
and Xe which have no chemical affinity ; whereas those which

lie between elements like manganese, which show some analog}'

with the chlorine group, and the corresponding element like

copper, which is analogous to sodium, exhibit the highest electro-

positive valency of any of the elements. This is shown by the

oxy-compounds and various complex amino-compounds of the

metals of the iron, palladium and platinum groups.

It is convenient to have a name for the measure of the

tendency of an electron to leave an atom which has been dis-

cussed above. Following Sir J. J. Thomson we shall refer to

this as the electronic pressure of the atom.

Chemical Combination.

It has been pointed out that Lord Kelvin, in his paper entitled

"Aepinus atomized" {Phil. Mag. vol. in. p. 257, 1902), was the

first to suggest that the chemical atom consists of a sphere of

uniform positive electrification containing negative electrons of

much smaller dimensions embedded in it. In that paper he dis-

cusses the forces which will come into play when some of the

simpler types of atoms are brought together. Considering the

simplest type of all, that which contains only one electron, it

is evident that two such atoms Avill exert no mutual force if the

spheres lie entirely outside one another. If, however, one of the

spheres A penetrates another B, then, since part of the positive

sphere of B lies inside that of A, the repulsion of the positive

sphere of B by that of A will be less than the attraction of the

negative electron at the centre of A. Thus the two spheres will

attract one another. It is clear, hoWever, that the negative

electron at the centre of each sphere will still be in equilibrium

there until the centre of one sphere lies within the circumference

of the other. If both the spheres are equal, the mutual repulsions

of the negative electrons then exceed their attractions by the

positive spheres; the electrons therefore move along the line

joining the centres of the two atoms so as to lie outside the

centres, but remain always within the atom. We thus get a
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neutral (uncharged) combination of the two atoms which may
be regarded as the simplest type of elementary molecule. If the

sizes of the spheres are unequal, the story is somewhat different.

A calculation of the forces shows* that, whereas the electron in the

smaller sphere moves outwards along the line of centres, that in

the larger sphere moves towards the smaller. This movement

towards the smaller sphere is gradual at first, but at a certain

position the equilibrium becomes unstable and the electron proper

to the large sphere makes a sudden jump into the smaller sphere.

In the case in which the ratio of the radii of spheres is three to

one, this instability occurs when the distance between the centres

lies between 2*6 and 27 times the radius of the smaller sphere.

After this has occurred both electrons remain inside the smaller

sphere even if the larger sphere is taken away. We thus get

a case which is analogous to the formation of a neutral compound

molecule, and, as in the case of electrolytes, when this molecule

is subsequently broken up one atom is positively and the other

negatively charged.

We have seen that the important differences between the

chemical elements are in all probability determined by the differ-

ence in the number of electrons in the atom rather than by the

difference in size of the positive spheres. We have every reason

to believe that the atoms of most of the elements contain a con-

siderable number of electrons, so that there is no evident reason

why they should behave in the same way as the extremely simply

constituted atoms just now under discussion. It seems clear, how-

ever, on general grounds that if the atoms contain a large number

of electrons they will attract one another whether they are like or

unlike, and so will tend to coalesce into groups of more than one

atom. That the forces between uncharged atoms will in general

be attractive appears to follow from the fact that the electrons are

more or less mobile. Under the influence of the electric field due

to a neighbouring atom, these will arrange themselves so that

their potential energy is diminished. It is to be remembered that

although the atoms are electrically neutral there will be intense

fields of force in their immediate neighbourhoods owing to the

different geometrical distribution of the positive and negative

electricity. The attraction between uncharged atoms is similar

• Cf. Kelvin, loe. cit.
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to that between an uncharged conductor and a charged sphere.

This effect will take place whether the atoms are similar or dis-

similar.

The combination of two atoms in this way will, in general, be

accompanied by a transference of electrons from one to the other.

The way in which this takes place is most conveniently described

in terms of the idea of electronic pressure. Consider the atom

which possesses iVg + 1 electrons. Let us denote this by A and

suppose it to be brought into immediate juxtaposition with the

atom B, which contains iVj — 1 electrons. We have seen that the

electronic pressure of the atom A is very high while that of B is

very low. In other words less work will be required to drag an

electron out of A than out of B. Under these circumstances we
should expect an electron to pass from A to 5; so that in the

compound thus formed A will carry one electronic unit of positive

and B one electronic unit of negative electricity. After this

transference has taken place A will contain N^ electrons so that its

electronic pressure will be very low. Thus no more electrons will

pass over to B, especially since if another were to be transferred B
would then have i^3 + 1 electrons, and this number corresponds to

an atom with a very high electronic pressure. There is still another

reason why no further transference should take place, and that is

that the transference of the first electron produces an electric field

between the atoms which tends to stop any further exchange.

If another atom of A were brought into the neighbourhood

of the molecule ^J5 it would not be able to transfer another

electron to B^ despite its own high electronic pressure. For if it

did so B would then have iV^j + 1 electrons, an arrangement which

is particularly likely to shoot off one electron. This action would

certainly result in this case since it would be helped by the electric

field from B \Q) A. Thus A is clearly a monovalent electropositive

element and J5 is a monovalent electronegative element. The

molecule AB xs, 2, fully saturated molecule and will show no

tendency to enter into further combination with any other

elements.

Now consider the interaction between an atom C containing

JV2 + 2 electrons and an atom D of another element containing

iV^8 — 2 electrons. The electronic pressure of C being higher than

that of Dy we should expect an electron to pass from C to D.

R. E. T. 37
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C will then have iV^a + 1 electrons and one unit of positive charge,

whilst D will have i^3 - 1 electrons and one unit of negative

charge. Now if C and D were uncharged their electronic pres-

sures would be respectively higher and lower than before the

transference. Thus there will be a tendency for another electron

to pass from (7 to Z), despite the opposition of the electric field esta-

blished by the transference of the first electron. If this takes

place there will be no further transference, since (7 and D now

carry N2 and N^ electrons respectively ; so that the transference of

an additional electron would be opposed by the discontinuities in the

electronic pressure as well as by the electric field produced by the

two electrons already displaced from G to D. The compound CD
is thus completely saturated. If C and B were placed in contact,

an electron would evidently at once be displaced from C to B; but

despite the increase in the electronic pressure of G thus caused no

further transference could take place. For this would involve

increasing the number of J5's electrons to Ng + !» an arrangement

with a very high electronic pressure. Since this pressure would

be assisted by an intense interatomic electric field, the two com-

bined would effectually stop any tendency for a second electron to

go to B. If, however, an uncharged atom of B were placed in the

neighbourhood of GB, this restriction would not occur. This atom

would have a low electronic pressure and would readily abstract an

additional electron from G. Thus the compound molecule GB^

would be formed. By similar reasoning to that which has pre-

ceded, this would be fully saturated and would have no tendency

to combine with any other atoms. In a similar way the element

D would form the fully saturated molecule DA2 when allowed to

combine with A. G and D are typical divalent elements, G being

electropositive and D electronegative.

It is to be borne in mind that there is a difference between

the energies liberated when G combines with B to form GB and

when GB combines with B to form GB.2. The formation of GB.^

from GB is opposed to some extent by a preexisting electric field,

whereas that of GB from G and B is not. In some cases this

restraining influence may be sufficient to prevent the ready forma-

tion of the compound GB2, and the action may stop at the GB
stage. Nearly all the elements with high valencies furnish

examples of an effect of this character. The intermediate stages
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are known as unsaturated compounds. A number of examples are

given, selected from elements of different chemical families, in the

accompanying table.

Element Maximum valency Compounds

Chlorine

Sulphur

Phosphorus

Carbon

Iron

Copper

Potassium

+ 7
-1
+6
-2
+ 5
-3
+ 4
-4
+ 3
-5
+ 2
-6
H-1
-7

CI2O, CI3O3, CIO2, CI2O7
HCl
S2CI2, SCL, SCI4, SIfl

H2S
PC13, PC15
H3P
CS, CS,; CO, CO2
C2H9, C->tl4, CH4, CgClg

Fe2Cl4, FeCls

CU2O, CuO

KCl

It is to be observed, as we have already seen is indicated by

this theory in a general way, that the maximum valency of an

element depends on whether it occurs in the compound as an

electropositive or an electronegative element. Thus consider the

element with N3—2 electrons. We have seen that this can only

take up two additional electrons before reaching the unstable

stage. Two is therefore the maximum valency of the element

when it occurs as the electronegative part of the compound. On
the other hand it can part with i^s — 2 — iV^g electrons before it

reaches the other unstable configuration ; so that this is the value

of its maximum electropositive valency. A glance at the table

will show that this property is very well illustrated by the com-

pounds of chlorine, sulphur and phosphorus. It is obvious from

these considerations that the terms electropositive and electro-

negative are merely relative. An element may be electropositive

to one element and electronegative to another ; in this case it will

lose an electron when combined with the first element and gain

one when combined with the second.

The function of the electrons in the elementary molecules such

as Ha, O2, Nj, Clj, Br^, Ij, etc. is a matter of great interest. We
have seen that similar atoms will show an attraction for one

another, and they may be in equilibrium in pairs without the

37—2
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transference of an electron from one of the atoms to another. It

is not however certain that such a state of equilibrium would be

stable without the transference of one or more electrons. Suppose

that the uncharged atoms contained N electrons, where N is a.

number lying between iVg and N^. We have seen that such an

atom has a tendency both to emit, and to combine with, one or

more electrons, the precise number depending on the value of N.

It is conceivable that the arrangement (N —1) (N + 1) would be

more stable than the arrangement NN. In the former case one

atom would carry a positive and the other a negative charge,

whilst in the latter case both atoms would be neutral. On the

whole the evidence seems to be in favour of the elementary

diatomic molecules containing oppositely charged as opposed to

neutral atoms. The facts which bear on this question may be

briefly summarized as follows:

(1) Walden has found that in certain solvents the elementary

solutes Bra and la can be electrolysed and equal quantities of

bromine or iodine are liberated at each electrode.

(2) In structural chemistry the bonds which combine like

atoms are treated as being in every way similar to those which

hold together unlike atoms.

(3) The inert gases, helium, neon, etc. which do not enter

into combination with other elements have monatomic molecules.

At the same time the metals have monatomic vapours for the most

part and are averse to combination with one another, although

they combine readily with electronegative elements.

(4) The molecular refraction and dispersion of a substance

might differ considerably according to whether the atoms occurred

in oppositely charged pairs or not. There is no evidence of any

well-marked difference between the optical properties of elemen-

tary substances, considered as a class, and those of compounds.

If we accept the view that the chemical bonds which unite

different atoms of the same element involve the transference of

an electron, it follows that the number of possible isomeric forms

of many substances is greater than the number indicated by

ordinary structural chemistry. Take for instance ethyl chloride

C2H5CI. This is obtained by substituting one atom of chlorine

for one of the atoms of hydrogen in ethane CaHg. The structure
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of ethane would be represented according to the present hypo-

thesis by
+H +H

+H C + C H-H

+H +H

while that of ethyl chloride would be either

H+ H+ H+ H+11 11
H+ C + C H+ or +H C + C H+

+ - - +

-CI +H +H -CI

according as the chlorine entered into combination with the

carbon atom containing a positive unit of electric charge or not.

It is obvious that ordinary structural chemistry does not admit of

any dissymmetry of this kind, and its position in this respect is

supported by the facts. Although attempts have been made to

prepare such compounds as ethyl chloride in different ways, so as to

isolate different isomeric forms if they existed, they have invariably

been unsuccessful. The ordinary structural formulae appear to be

quite capable of taking account of all the different isomeric forms

of such carbon compounds which can be prepared. This, however,

is no very conclusive evidence against the view above as to the

nature of the bonds, for in most cases it is clear that one of the two

possible forms would be much more stable than the other ; so that

even if the less stable form were produced at first, it would imme-

diately be changed into the other. We should expect the number

of structurally possible compounds always to be greater than the

number of those which can be actually isolated. It is clear that

the number of these possible electrical isomers will increase rapidly

with the number of carbon atoms in the compound.

This method of looking at chemical combination gives a

definite physical meaning to the bonds of structural chemistry.

They represent the directions of the electric fields between the

atoms. The bonds are to be regarded as starting on a nega-

tive electron and ending on a positive or negative charge. A
bond extending between two points may therefore be either

positive or negative. This quality is not taken account of in
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ordinary structural chemistry, The position of the end of the

bond where the negative charge is may conveniently be indicated

by an arrow pointing towards it. This enables us to omit the

cumbersome positive and negative signs in the formulae on p. 576.

These would then become

H H H H H H
1 r 1

' \i ^ ,

,

:—c—c-«—

H

H—€—^C-«—

H

H—C—C-
t t
H H CI H H CI

ci-«—c—»-ci ci-«—c—»-a

The application of this method of drawing structural formulae

may also be illustrated by the successive chlorine substituted

methanes, as follows:12 3

H a a

I t t
H—j-C-^—

H

H—>-C-«—

H

H—j-C—>-Cl

f f I
H H H

4 5

CI CI

t
•'!

-C—»-Cl Cl-«—

c

! i
H CI

It is clear that the total positive charge on an atom in

electronic units is obtained by subtracting the number of bonds

which point towards the atom from the number which point away

from it. Thus the carbon atom in each of the successive com-

pounds 1 to 5 will be charged with - 4, — 2, 0, + 2, + 4 electronic

units of electricity respectively. The formulae have been drawn,

of course, on the supposition that each hydrogen atom carries one

unit of positive charge and each chlorine atom one unit of nega-

tive charge.

Even when all the valency electrons existing in a compound
molecule are saturated, there will still be a considerable external

field, just as a neutral electric doublet gives rise to an external
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field. These forces would not be so intense as those which come

into play during chemical combination proper, but they are probably

capable of accounting for such phenomena as hydration, cohesion,

surface tension, latent heat and the properties arising from

molecular forces generally.

In considering the nature of the bonds connecting atoms of

the same element it is interesting to observe that the phenomenon

of self-combination is only shown to any considerable degree by two

elements, carbon and silicon, and that both these elements lie

exactly in the centre of their respective series in the periodic

table. Their electrochemical properties are therefore neither

markedly electropositive nor electronegative, and they ought to

show an almost equal tendency to enter into combination in either

sense. This is just the kind of condition of the atom that we
should expect would give rise to self-combination, on the view

that we have adopted as to the mechanism of this action. For

such an atom would be almost equally stable whether it formed

the positive or the negative end of a chemical bond. It would

show a greater degree of adaptability to the effect of the remaining

groups with which the atoms were combined than would atoms

which were not so constituted.

If this view of chemical combination is the correct one, it

becomes a matter of great importance to determine the sign and

magnitude of the charge cairied by each atom in different com-

pounds. The most generally applicable method is, of course, the

electrolytic one. In the case where one atom is deposited at the

cathode it presumably carries a positive charge in the compound

;

since, so far as the writer is aware, no cases are known where the

solvent is capable of reversing the polarity of the ions formed by

a given electrolyte.

The phenomenon of magnetism also seems to be capable of

shedding some light on this phenomenon. Townsend has shown

that the magnetic permeability of solutions of salts of iron con-

taining the same amount of iron has the same value for all ferric

salts ; it also has the same value, but one which is different from

the preceding, for all ferrous salts, whilst for the ferricyanides

it has uniformly the value zero, i.e. the fen'icyanides are non-

magnetic. These results show that the magnetism of dissolved iron

compounds is an atomic property but suggest that it depends on
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the electric charge carried by the iron atom. From chemical

reasons we believe that the iron atom in ferric salts carries three

units of positive electricity, whereas in the ferrous salts it contains

only two and in the ferricyanides it occurs in the electronegative

part of the molecule. Thus by making experiments on the

magnetic properties of any iron salt we could tell what the electric

charge in the iron atom in the molecule was.

Thomson suggests that considerations of this kind may account

for the magnetic properties of elementary oxygen. It is well

known that both oxygen and ozone are strongly paramagnetic.

On the view of atomic combination above, the oxygen molecule

may be expected to contain one atom which is positively charged.

Now in all the known compounds of oxygen it probably functions

as the electronegative constituent. Even when combined with

the strongly electronegative element chlorine, oxygen appears to

be electronegative. This is indicated by the high valency of

chlorine in the higher oxides CIO2 and CI2O7, and by the oxide CljO

being to some extent acid forming. Thus elementary oxygen is

the only form in which an electropositive oxygen atom appears to

exist, and this may explain why oxygen and ozone are the only

substances in which oxygen is paramagnetic.

Attention has recently been called by K. G. Falk and J. M.

Nelson* to a number of facts in structural chemistry which seem

to support Thomson's view of directed valencies. Among these the

following may be mentioned

:

(1) A hydrocarbon which is thought to have the constitution

[C(C6H5)8]2 conducts the electric current when in solution. As
the electric current does not appear to produce permanent

chemical change the ions have been thought to be — C(CgH5)3

and +0(0,^,),.

(2) The symmetrical saturated dicarboxylic acids of the type

CO^U(CH,)p-CE.,-{CR,)pCO,n show definite differences in

their physical properties when they are compared as a group with

the rather similar acids C02H(CH2)p - (CH^)pC02H. In the

former case the directed valencies may be arranged symmetrically

whereas in the latter they cannot.

(3) The quantitative yields of the various isomers formed

when the unsymmetrical hydrocarbons of the ethylene series

• Proc. Amer. Chem. Soc. vol. xxxii. p. 1637 (1910).
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combine with the haloid acids are readily interpreted on this view,

as also are the chemical properties of the diazo-compounds and a

number of other substances*.

It is necessary to add that most of these facts have been

accounted for by chemists in other ways which seem fairly satis-

factory.

Reviewing the whole question broadly it seems quite likely

that in a great number of cases of chemical combination trans-

ference of electrons between the atoms will not occur. There

seems to be little doubt that the forces between uncharged atoms

can be sufficiently great to account for the energy of chemical

combination in a great number of cases. Definiteness of valency

can also be accounted for in this way. For instance, if the neutral

carbon atom possesses four electrons arranged at the corners of

a regular tetrahedron, the directions of maximum electric intensity

in the field of the neutral atom will be along lines possessing a

similar tetrahedral symmetry. The safest course to adopt at

present would appear to be that of restricting the interpretation

of valency bonds as representing electronic transference to those

cases only in which the possibility of electrolytic dissociation has

been demonstrated

The Structure of the Positive Electricity.

The foregoing, necessarily brief, review of chemical phenomena

shows that there is a very close correspondence between the

properties of the elements and those required by the atoms

considered by Thomson. It is not likely that the hypothesis

of a sphere of positive electrification of a uniform volume density

is essential in order to arrive at conclusions of the same general

character as those which have been indicated. It is probable that

somewhat similar conclusions about questions of stability would

hold if the volume density of the positive electrification, instead

of being uniform, were greatest at the centre of the sphere. On
the other hand, we have seen that it is impossible to construct

a definite atom out of indefinitely small elements of positive and

negative electrification acting on each other according to the

• The application of the Electron Theory to Organic Chemistry has also been

discussed recently by McCleland, Phil. Mag, vol xxix. p. 192; vol. xxx. p 665

(1915).
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classical laws of electrodynamics. It is necessary to introduce

something else in order to account for the actual size of the

atoms.

The sphere of continuously distributed positive electrification

has the merit of lending itself readily to calculation and, as we

have seen, it gives a satisfactory account of many of the properties

of the chemical elements. On the other hand there are some

rather striking properties which it leaves unexplained, at any rate

in its simplest form. Consider for example the phenomenon

of radioactive transformation. The chemical and spectroscopic

properties of the typical radioactive elements radium, thorium

and uranium are not sharply different from those of the elements

which do not exhibit radioactivity ; so that it does not seem likely

that they have a constitution radically different from that of the

others. But we know that the atoms of the radioactive elements

are continually emitting atoms of helium and turning into other

elements of lower atomic weight. Thus an emission of part of the

positive sphere itself is a possibility which has to be contemplated.

To account for these phenomena Thomson has suggested that the

atoms of the elements of higher atomic weight are made up of

combinations of sub-spheres like that which may be supposed to

constitute the helium atom ; but on such a view it is not easy to

see why the atoms should possess a different order of stability

from that of their compounds, without importing something else

into the theory. Another point which deserves some consideration

is the fact that there is an upper limit to the weights of atoms.

All the elements of higher atomic weight than bismuth (208) are

radioactive and therefore unstable. The striking feature of this

instability is that it appears to affect the positively charged part

of the atom, as well as, if not more than, the negatively charged

constituents.

As it stands, the positive sphere gives no account of the mass

of the atom. Unless all the methods of estimating the number of

electrons in the atoms are entirely misleading, a contingency

which is very unlikely in view of the excellent agreement given

by entirely different methods, practically the whole of the mass

of matter must belong to the positively electrified parts of it.

Now the electromagnetic inertia of the positive spheres of Kelvin

and Thomson is negligible compared with that of a single electron,
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SO that the greater part of the mass is entirely unaccounted for

by this theory.

The following hypothesis appears to offer a possibility of

explaining these facts and at the same time of retaining the

important features of the positive sphere. Suppose that the

positive electricity, instead of being uniformly distributed, is in

the form of electrons whose charge is E and mass M, where E is

very small compared with the numerical value of the charge e of

the negative electrons. Since the electromagnetic mass of such

particles is proportional to E^jR, where R^ is comparable with

their volume, it is clear that if R were small enough the positive

electricity could be made to carry most of the inertia of the atom.

If e = vE, then r/R = velm-T-E/M, where the small letters refer to

the negative electrons. If the hydrogen atom contains only one

negative electron, then E/M is the value of the corresponding

quantity for the hydrogen atom in electrolysis, r would be

greater than R in the proportion of something comparable with

lOOOy, so that the positive electron would have to be confined to

a much smaller space even than the negative. This would lead to

the difficulty about the definiteness of the atom already alluded

to, if the law of force between these positive electrons were that

of the inverse square. Let us suppose that at very small distances

this law does not hold but is replaced by something more compli-

cated, let us say

where p2> Pi> 2. At very small distances the third term would

give a repulsion and keep the positive electrons from joining

together, and the first term would give the usual law of force

at large distances. The middle term would cause the positive

electrons to attract one another at certain distances. This would

make them aggregate into clusters which, if the constants were

of suitable magnitude, would be of dimensions comparable with

that of the atoms. The positive electrons would be regularly

distributed inside so that such clusters would behave very much
like a continuous distribution of positive electrification, provided E
were sufficiently small.

On this hypothesis there would be a definite positive atom

capable of existing without the presence of a negative electron.
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Such atoms would be able to coalesce if the air* term were

neutralized by the presence of a negative electron, but not other-

wise. In this way more complicated atoms could build up, and

the conditions for the equilibrium of the electrons in them would

be similar to those of Thomson's theory. There would be a limit

to the size of atoms which could be built up in this way, because

with the larger atoms it would be difficult to arrange the negative

electrons so as to prevent a whole unit of positive electricity {vE)

from ever becoming unstable.

It will be urged that there is no experimental evidence in

favour of the exisftence of particles carrying a charge less than e.

That is true, but if Eje is very small it is questionable whether

any experiments which have been made would be capable of

detecting their existence. Their mutual attractions would prevent

an electron from getting away from an atom with any considerable

number of them. Another objection is that all known chemical

atoms are either neutral or carry a charge which is an integral

multiple of + e. It may be that the elementary positive atom

also has a charge which is equal to an integral multiple of e,

or that the law of force somehow makes the stable systems neutral.

It must at least be admitted that these suggestions are not more

artificial than the hypothesis that the atoms are provided with

a sphere of positive electrification just sufficient to neutralize the

electrons present.

Collisions between systems of this kind would be rather different

from those between atoms made up of positive electricity of uniform

density, and might be expected to give rise to a relatively high

percentage of sharply deflected a rays, such as was found by

Rutherford and Geiger.

We shall not pursue this subject further. The deflexions of

the a rays through large angles and the scattering of X rays by

light atoms, which were considered in Chapter xix, agree much
better with Rutherford's view that the positive electricity in the

atom is concentrated in a minute region of it than with the

uniform sphere of positive electrification. This position is made

stronger still by the considerations brought forward in the two

next sections. It will be noticed that if the linear dimensions of

the nucleus are small enough the whole mass of the atom may be

of electromagnetic origin.
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The Radioactive Elements and the Periodic Law.

The study of the chemical properties of the radioactive

elements* has brought to light a number of facts of the highest

importance which bear on the relation between the chemical

properties of the elements and their atomic weights. Soddy

pointed out that when a radioactive element A was converted

into a second element B with accompanpng emission of an a ray,

then the chemical properties of B would be those of an element in

the next column but one before A in the periodic table. Russellf
showed that if a /3 ray were emitted instead of an a ray the new

element would be found in the next column beyond that of the

first element. Thus, to illustrate the case by considering one

particular chemical property, the emission of an a ray diminishes

the electropositive valency by two, whereas the emission of a yQ ray

increases it by one. In the case of the thorium series for example,

if we neglect branch products, the successive changes are exhibited

in the following table

:

a Eayliess i3 a a a a i3

Th -» Msth I -* Msth II Ea Th -» ThX -». Em A-> B C
IV II III IV II VI IV V

The numerals underneath represent the number of the column in

the periodic table (or the value of the electropositive valency).

The character of the change is indicated above the arrows.

But the matter goes further than this. In some cases an a ray

change is followed by two successive changes in which an a ray is

not expelled. The last element then occupies the same column in

the periodic table as the original element. In such cases these

two elements have, so far as can be ascertained, identical chemical

properties, and are incapable of being separated by chemical

methods. There is evidence % also that their emission spectra are

identical. These results are surprising at first sight since the

atomic weights of the elements in question must differ by the

atomic weight of helium approximately, or about four units. In

• F. Soddy, Chem. News, vol. ovn. p. 97 (1913); G. v. Hevesy, Phys. Zeits.

vol. XIV. p. 49 (1913) ; K. Fajans, Phys. Zeits. vol. xiv. pp. 131, 136 (1913); Verh.

d. Deutsch. Phys. Ges. vol. xv. p. 240 (1913).

t Chem. NeiDs, vol. cvii. p. 49 (1913).

X Russell and Rossi, Boy, Soc. Proc. A, vol. lzxxvii. p. 478 (1912).
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contrast to their chemical properties, the radioactive properties of

two such elements are quite different. These phenomena receive

a plausible explanation on the view, advocated by Rutherford,

that the atoms are built up of electrons revolving round a massive

central nucleus of small dimensions, if we adopt the hypothesis

that both the a and ^ particles are ejected from the nucleus itself.

For the chemical and spectroscopic properties of such an atom will

be determined almost entirely by the charge of the nucleus and

hardly at all by its mass. The ejection of an a particle, which

is a positively charged helium atom with twice the electronic

charge, will diminish the total positive valency of the nucleus by

two, and the ejection of an electron will increase it by one. The

resulting nuclei will be those appropriate to atoms whose positions

in the periodic table are those actually found.

This position is strengthened by a number of other lines of

evidence. Thus J. J. Thomson* has discovered that neon consists

of" two gaseous elements having the same spectrum and chemical

properties but differing in atomic weight. We have seen also that

the X-ray spectra of the elements are not accurately functions of

the atomic weight but are accurately determined by successive

whole numbers. The sequence of these numbers is that of the

atoms in order of ascending atomic weight except for the elements

whose positions in the periodic table are anomalous. It seems

natural to interpret the "atomic numbers" as measures of the

charge carried by the positively charged nucleus. These facts do

not receive any obvious explanation on the Kelvin-Thomson theory

of the atom.

Bohr's Theory of the Behaviour of Electrons in Atoms.

This theoryf which has been referred to briefly in Chapter xvi

depends upon principles entirely different from those underlying

the theories so far considered. It assumes that atoms are made

up of electrons revolving in orbits around a central positive charge

of minute dimensions which carries practically the whole mass of

the atom. So far the structure of the atom is that suggested by

Rutherford to account for the observed scattering of a particles by

* Roy. Soc. Proc. A, vol. lxxxix. p. 1 (1913).

t N. Bohr, Phil. Mag. vol. xxvi. pp. 1, 476, 857 (1913) ; vol. xxvii. p. 506 (1914);

vol. XXX. p. 3D4 (1915).
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matter. The difficulty as to the indefiniteness of such an atom
on the basis of the ordinary electrodynamics which was mentioned

at the beginning of this Chapter is overcome by Bohr by the intro-

duction of certain hypotheses which are closely related to those

underlying Planck's theory of Radiation. Thus the theory denies

the adequacy of the classical electrodynamics as a basis for the

explanation of atomic behaviour. This can hardly now be con-

sidered a serious objection to the theory since the inadequacy of

electrodynamics to account for the phenomena of heat radiation

has been established.

The simplest type of atom on this theory consists of an

electron describing an orbit about a nucleus with an equal

positive charge. Let us consider an equally simple but slightly

more general case, that of an electron of charge e and mass m
revolving about a positively charged nucleus of charge E and

mass M. Let us treat the problem first of all from the standpoint

of the ordinary dynamics. If we fix our attention on the state

of the two particles at a given instant then we know that, pro-

vided their instantaneous kinetic energy is less than the potential

energy lost in coming to the given configuration from an infinite

distance, a condition which we shall suppose to be satisfied, the

relative orbit of the particles is an ellipse with one of them in

a focus. If a is the semi-major axis of the relative orbit and r is

the distance between the centres of the particles at any point of

the path, their kinetic energy* is

^=4^<.--5) (29),

and the potential energy referred to the infinitely distant con-

figuration is — Ee/r. Thus the difference between the energy in

the infinitely distant configuration and the instantaneous total

energy, or what may be termed the lost energy, is

W=Ee/2a (30).

Both W and the instantaneous total energy are independent

of the instantaneous position in the orbit. The orbital frequency*

CO and the relative semi-major axis a are given by the equations:

, M +m 2W' .„,.

"^-mrTTT^^^ <^1>'

and a=Eef2W (32).

* Cf. Bouth's Dynamics of a Particle, chap. vi. Cambridge (1898).
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Throughout the theory the forces between the particles are

assumed to be the usual electrostatic forces varying inversely as

the square of the distance. This is an important feature of

Bohr's theory.

Equations (31) and (32) exhibit very clearly the difficulty

already referred to in accounting for the observed definiteness in

the size of atoms and in the frequencies of their spectral lines

on this type of theory, if we keep to the ordinary dynamics and

electrodynamics. For the ordinary electrodynamics requires that

such a system will continually radiate energy; so that W will

continually increase. Thus w will increase continuously and

a diminish continuously until the electron coalesces with the

nucleus. Bohr denies the existence in fact of these continuous

variations and replaces them by the following non-mechanistic

hypotheses

:

A. That only certain of the states of motion included in

(31) and (32) are possible states. Such stationary states are

governed by the ordinary mechanics as regards the configuration

of the orbits, which, however, are executed without radiation.

B. The stationary states are those which satisfy the follow-

ing relation between the frequency a> and the mean kinetic

energy T
Tjco = ^Th (33),

where t is any integer and h is Planck's constant.

Thus the possible orbits are confined to those for which T/co is

an integral multiple of h/2. This assumption, which is closely

connected with the quantum hypothesis of Planck, may in

special cases be interpreted rather differently. If the electrons are

executing circular orbits then (33) is equivalent to the statement

that the moment of momentum of the electrons (their so-called

angular momentum) must be an integral multiple of /i/27r. We
have seen already that such an assumption leads to the possibility

of an atomic magnet or magneton. The mean kinetic energy T
in (33) is the value of

i ^Tdt (34).T .K

where T is the periodic time. In the case of the elliptic orbits of

two particles referred to above it is not difficult to show that (34)
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is equal to the lost energy W. [This may be done by substi-

tuting from (29) in (34) and changing dt/r into rdOjA, where

A is twice the areal velocity, and then making use of the polar

equation to the ellipse

llr=l + e cos 6,

e being the excentricity and I the semi-latus rectum.] Thus, for

the most general case of the motion of two charged particles

under their mutual attractions, we can put

W=Th^ (35).

From (31), (32) and (35) we now see that for any particular

integral t the values of o), W and a are completely determined.

We have in fact by obvious substitutions

, Mm E'e'
" = ^"IfT^T^ (^^>'

^-^"^ M+m rVi^
^^^^'

, 1 M + m T^h^ .__,

47r2 Mm Ee '

Since all atoms are neutral and the smallest electric charge

which can be isolated is the charge e of an electron we should

expect the simplest atom to be formed from an electron and

a positive nucleus carrying a charge equal to e. The properties

of this atom should therefore be given by putting E= e in

(36)—(38), We see at once, however, that we should expect an

infinite number of atoms to arise in this way corresponding to

all the integral values of t. It is in fact a definite feature of

Bohr's theory that we should expect even the simplest atom to

be capable of existing in an infinite number of distinct states

characterized by varying amounts of energy. Of these that for

which T = 1 will possess much less energy than any of the others

and we should expect this to be the normal atom. If we put

E = e and t= 1 in (36)—(38) and substitute the numerical values,

we find

2a = 1-1 X 10-8 cm., « = 6-2 x 10" sec.-^ and F/e = 13 volts.

The values of la, and w are of the right order of magnitude for

the diameter and optical frequency of a hydrogen atom and the

B. E. T. 88
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value of W is very close to the experimental value of the work

necessary to ionize an atom of this element.

If we now turn to the question of the emission of radiation

from such a structure we shall find still more convincing reasons

for identifying it with the atom of hydrogen. We have seen that

it is necessary to assume that radiation is not emitted in the

stationary states ; so that the frequencies given by (36) need not

have any direct connection with the frequencies of the spectral

lines of the element. To account for spectral lines Bohr makes

the following additional hypothesis, which is again closely con-

nected with that of Planck, viz.

:

C. That emission of energy in the form of radiation takes

place only when the electron passes from one stationary state to

another and that as a result of such passage the difference

of energy corresponding to the two states is emitted in the form

of a single quantum of monochromatic radiation. Thus if IF^i

is the energy in the initial and Wr^ that in the final state, the

frequency v of the monochromatic radiation emitted is deter-

mined by the relation

hv=Wr,-W,^ (39).

Applying this principle to the atom for which E = e we have

for the fi-equencies of its spectral lines, from (37),

- , Mm. e*(l 1) .,_.
'' = ^'^MT^h}K^-^^\ ^^^'

Thus there will be a doubly infinite number of lines corre-

sponding to all the integral numbers Ti and •T2. These can be

arranged in an infinite number of series, each series containing

the lines which correspond to a particular value of Tj. Most of

these lines will, in general, be outside the limits of the visible

spectrum and many of them will never achieve appreciable in-

tensity owing to factors which prevent the formation of the

systems. For instance, we see from (38) that the radii of the

systems increases rapidly with t; so that the systems corre-

sponding to large values of t will only have a chance to form in

appreciable numbers in highly attenuated atmospheres. If in (40)

we put Ti = 2 we get the series

-"^(i-^^) («)>

.here ^'^^'J^S <*2).
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This agrees with Balmer's series (equation (1), Chap, xx) if

the constant iV=4i/o- The experimental value of Rydberg's

constant N= 4i/o is 3"290 x 10^^ whereas the value calculated from

(42) is 3"26 X 10^'. These numbers are identical to the accuracy

within which the values of e, — and r are known. Thus Bohr'sm h

theory accounts quantitatively and completely for Balmer's seizes.

Again only the lines of this series for values of m in (41) less

than about 12 are observable in vacuum tubes, but the lines up

to m = 33 have been observed in stellar spectra. This is accounted

for by the much larger size of the atomic systems corresponding

to large values of m which has already been referred to. Thes&

systems would have a much better chance to form in appreciable

quantity in the extensive but highly attenuated atmospheres of

the stars in question. Finally it has been found by Rau* that

a minimum potential energy corresponding to about 13 volts is

necessary before a colliding electron can excite the line spectrum

of hydrogen, in close agreement with the lost energy of the normal

hydrogen atom already calculated.

The series obtained when Tj = 1 in (40) lies in the extreme

ultra-violet. Such a series was unknown when Bohr first published

his theory but lines which appear to belong to it have since

been discovered by Lyman f. The series obtained by putting

T, = 3 in (41) agrees exactly with a series discovered by PaschenJ

in the infra-red. The series corresponding to Ti = 4, 5, 6 etc.

are too far in the infra-red to be observable under present con-

ditions. There are no known lines which are certainly due to

hydrogen except those which have been accounted for by the

theory.

The next simplest structure to which we can apply equations

(36)—(39) is that of a positive charge 2e with a single electron

revolving about it. On the nucleus theory of the atom it is

to be expected that this system will correspond with a helium

atom which has lost both its two electrons and recombined with

one of them. Since the mass of the helium atom is very nearly

4 times that of the hydrogen we shall have M = 4ifi where Mi is

* Sitz. Ber. d. Phys. Med. Ges. Wiirzburg (1914).

t Nature, vol. xcni. p. 241 (1914).

X Ann, der Phys. vol. xxvii. p. 5G5 (1908),

38^2
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the mass of the hydrogen atom. Making these substitutions we

get for the spectra of the singly charged helium ions, the frequencies

The series Ti = 1 and t^=2 are in the extreme ultra-violet and

have not yet been observed. The series Ti=3 has been discovered

by Fowler* in a vacuum tube discharge in a mixture of helium

and hydrogen. The series t^ = 4 was first observed by Pickering

in 1896 in the spectrum of the star ^-Puppis. This series was

also obtained by Fowler in the laboratory. Lines of both the

series Ti = S and Ti = 4 have been obtained by Stark f and Evans |

in a helium discharge Avhich contained no trace of the hydrogen

lines; so that there is little doubt that these lines are due to

helium and not to hydrogen. The lines were originally attributed

to hydrogen on account of the similarity of the spectra and this

position seemed strengthened by the fact that they were first

observed in a mixture of hydrogen and helium. In fact the

alternate lines in Pickering's series are almost coincident with the

lines of Balmer's series. According to Bohr's theory the lines in

question would be exactly coincident if we could neglect the mass

of the electron compared with the masses of the hydrogen and

helium nuclei.

These considerations have led to another interesting verifi-

cation of the theory. Fowler§ and Evans || have made careful

determinations of the constant N' for the two series of helium

lines which, as we have seen, are in agTeement with (43) and find

that this quantity is rather larger than the constant N for Balmer's

series as the theory requires. The ratio N'/N should be given by

16(3/, + m)
(4^)_

'

4ifi + w ^ ^

From the observed value of N'/N the ratio MJm of the mass of

hydrogen atom to the mass of an electron can be determined firom

spectroscopic data alone. In this way Fowler 11 finds

i/i/m = 1855 + 12,

* Monthly Notices Royal Ast. Soc. December 1912.

t Ver. d. Deutsch. Phys. Gen. vol. xvi. p. 468 (1914).

t Phil. Mag. vol. xxix. p. 284 (1915).

§ Phil. Trans. A, vol. ccxiv. p. 254 (1914).

II
Nature, voL xcn. p. 5 (1913) ; Phil. Mag. vol. xxnc, p. 284 (1915).

IT he. cit.
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in excellent agreement with the value deduced from the best

measurements of e/m and e/Mi.

In general, it will be seen from (37) and (39) that if we
neglect the ratio m/Mi compared with unity the spectral lines of

a system consisting of a single electron rotating round a nucleus

of charge ne will have frequencies given by

-«'^(^.-^=) m
Some lines which fit this formula when n = S (corresponding to

a positive centre with a triple charge) and Tj = 6 have been found

by Nicholson* in the spectra of the Wolf-Rayet stars and by

Mertonf in a condensed vacuum tube discharge between carbon

electrodes. These are the only instances in which series of lines

with w > 2 in (45) have been detected.

In contemplating systems containing more than one electron it

is not possible to follow out the results of the theory in detail

with the logical certainty of the deductions above on account of

the known difficulties of the orbits on the ordinary mechanics and

of the uncertainty as to the interpretation of assumption B or its

equivalent in the more complex cases. It is, however, possible

to deduce the known general properties of spectral series without

reference to assumption B except in its relation to single electron

systems. Thus regarding assumptions A and G alone it follows

from the theory that any given atom which has lost a definite

number, including zero, of electrons, can exist in an infinite

number of stationary non-radiating states characterized by dif-

ferent amounts of energy W^, Wp ... TFp, TT, ... and that the

frequencies of the spectral lines which are emitted in the passage

between the stationary states will be given by the totality of the

equations

vp,= l{W,-W,] (46)

for all the possible combinations of states. This result is only

another way of stating Ritz and Paschen's principle of the combi-

nation of spectral series (see p. 520). Again these authors have

Monthly Notices Roy. Ast. Soc. p. 382 (1913).

+ Roy. Soc. Proc. A, vol. xci. p. 498 (1915).
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shown that the frequencies of the lines in the ordinary line spectra

of the elements can be put into the form

^-^^P-^ w-
where JV is the constant in Balmer's series (see below, however),

Hi and «a are integers and
(f>r

and <^g are functions of integers

which approach unity for large values of n. Thus for large values

of both rii and n^ the lines in the ordinary series of all the

elements tend to coincide with lines of the hydrogen spectrum.

This result is at once accounted for by the theory. For we have

seen that large values of Wj and n^ correspond to states of the atom

in which the radii of the orbits of the electron in the stationary

states between which the interchange takes place are large com-

pared with the radius of the orbit in the normal atom. Thus

when n becomes large the orbits will be executed at distances

which are large compared with the linear dimensions of the atom

and their properties will be determined solely by the total charge

on the rest of the atom and will not depend on the number and

configuration of the electrons contained in it. In fact the whole

of the rest of the atom can be regarded as equivalent to the

nucleus in the simpler cases already, discussed. If we suppose

that the lines of the ordinary spectral series are emitted when

the normal atom is being formed by the recombination of an

electron with a singly charged positive ion, then for large values

of n the theory becomes identical with that already given for the

hydrogen atom. There is, however, one small difference. The
M

value of N in (47) should involve the factor ,> where M is

the mass of the rest of the atom and in that of an electron. Thus

iV in (47) should be a little larger for heavy atoms than for the

atom of hydrogen. If the value for hydrogen is taken to be

109675 the value for an atom of infinite mass becomes 109785.

Most of this change occurs with the atoms of small atomic weight.

These considerations have been strengthened by some recent

discoveries of Fowler* who has found a number of series in the

" enhanced " line spectra of certain elements for which the value

of the constant' corresponding to N in (47) has four times the

• Fhil. Trans. A, vol. ccxiv. p. 225 (1914).

1
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normal value. These series are to be expected on the present

theory if they are emitted during the recombination of a single

electron with a doubly charged positive ion. They therefore cor-

respond with the series already discussed which result from the

combination of a single electron with the helium nucleus.

The application of Bohr's * theory to the structure of the more

complicated atoms which have a highly charged nucleus and a

large number of electrons is of a more tentative character than

most of the considerations so far discussed. As a working hypo-

thesis it is assumed that the electrons arrange themselves in a

number of circular rings which revolve round the nucleus. For

this case assumption B is equivalent to the statement that the

moment of momentum shall be an integral multiple of A/27r and

this is accordingly assumed to be the case. The question of

stability for displacements perpendicular to the orbits is, in ac-

cordance with the general theory, determined by the rule of the

ordinary mechanics that for a virtual displacement the energy

should be greater for the displaced than for the undisplaced

position. The same criterion can be applied in regard to stability

for displacements in the plane of the orbit, but Bohrf has pointed

out that it is implicitly satisfied by the assumption of the uni-

versal constancy of the moment of momentum. In considering

the forces, the other electrons in the same ring can be allowed

for in much the same way as in Thomson's theory. The degree

of stability of the systems is taken to be measured by the lost

energy in the state finally arrived at. But the amount of lost

energy is not the only condition which determines the final state.

It is necessary to consider the way in which the atom can be

formed by the approach of successive electrons to the nucleus.

This involves the question of the tendency of separate rings

of electrons to coalesce into a single ring. It is shown that

coalescence of two rings will only take place when they contain

the same numbers of electrons. Thus it is to be expected that in

the structure of atoms, rings of 2, 4, 8 etc. electrons will pre-

dominate. From considerations of this kind Bohr arrives at the

arrangement shown in the following table for the structure of the

first twenty-four elements. The large figure gives the atomic

* Phil. Mag. vol. xxvi. p. 474 (iyi3).

t loc. cit. p. 480.
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number (or the charge on the nucleus) and the figures in brackets

give the numbers of electrons in the successive rings starting from

the innermost.

H 1 (1) F 9 (4, 4, 1) CI 17 (8, 4, 4, 1)

He 2 (2) Ne 10 (8,2) Ar 18 (8, 8, 2)

Li 3 (2,1) Na 11 (8, 2, 1) K 19 (8, 8, 2, 1)

Be 4 (2,2) Mg 12 (8, 2, 2) Ca 20 (8, 8, 2, 2)

B 5 (2,3) Al 13 (8, 2, 3) Sc 21 (8, 8, 2, 3)

C 6 (2,4) Si 14 (8, 2, 4) Ti 22 (8, 8, 2, 4)

N 7 (4,3) P 15 (8, 4, 3) V 23 (8, 8, 4, 3)

8 (4, 2, 2) S 16 (8, 4, 2, 2) Cr 24 (8, 8, 4, 2, 2)

This table certainly exhibits a very close correspondence with

the properties of these elements as exemplified by the periodic

law but it is to be remembered that a certain amount of attention

has been paid to the chemical properties of the elements in

arriving at the assumed structure. The theory does, however,

quite definitely require that helium should be difficult to ionize

and should be incapable of combining with an additional electron.

It also requires that lithium should be electropositive to hydrogen.

The structure of the hydrogen molecule is quite definitely

indicated by the theory, as the process of its formation by the

gradual approach of two atoms can be followed step by step*.

The two electrons keep their original angular momentum and

flow into a single ring with the nuclei situated on the axis of the

ring one at each side of the plane containing it. If a is the

radius of the ring and b the distance of one of the nuclei from

its plane _
b = a/Va

The calculated fi-equencies are in general agreement with the

optical data but the calculated heat of dissociation of Hj into H
is only about half the value found by Langmuirf. Langmuir's

method is, however, a very indirect one and the result may perhaps

be subject to a considerable error.

Bohr's theory when applied to the consideration of the absorp-

tion of radiation also points to interesting results which seem to

be in agreement with fact. In order to account for Kirchhoffs

law, since the pjissage from the stationary state A to the stationary

* Bohr, loc. cit. p. 868.

t Journ. Amer. Chem. Soc. vol. xxxiv. p. 860 (1912).
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state B is accompanied by the emission of a quantum of radiation

of frequency

v = l{W^-W^] (48).

it seems necessary to suppose that the absorption of a quantum
of radiation of frequency v will result in the transference of an

electron from the state B to the state A. If it is assumed that

the absorption of radiation by the atom takes place by quanta,

the condition that absorption of radiation of given frequency v

may occur is that in the atom there should exist an actual

stationary state D and also there should be capable of existing

a possible stationary state C such that

hv = Wj)-Wc (49).

If hv is less than Wj) it will only be possible to satisfy equation

(49) for certain values of v corresponding to the various stationary

states of the atom outside the state D. Thus we should expect

a series of absorption lines corresponding to the emission lines

of the atom. If now hv exceeds W^ the energy from the radia-

tion will be sufficient to carry the electron outside the atom

and every state of the electron outside the atom is a possible

stationary state no matter what the value of the energy may be.

Thus for values of hv greater than Wjy we should expect con-

tinuous absorption. Experiments by Wood * have shown that the

absorption spectrum of sodium vapour satisfies these conditions.

It consists of a number of fine absorption lines which agree in

position with the lines of the principal series in the emission

spectrum of sodium terminated at the ultra-violet end by a con-

tinuous absorption spectrum. Again if we consider the kinetic

energy i^mv\ of the electron which has been liberated from the

atom by the absorption of radiation, we see from (49) that this

will be given by
^mv>= hv-WD (50).

This result is evidently the law of photo-electric action which

has previously been obtained in other ways.

The considerations on pp. 530—531 regarded in the light of

the 'present theory show that the amount of dispersion in a
* luminous gas cannot be regarded as a measure of the number of

* Physical Optica, p. 613 (1911).
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systems capable of absorbing light of the frequency in question,

as the older theory required; since we saw that Ladenburg antl

Loria's experiments indicated very different dispersions for the

dififerent lines of Balmer's series. According to Bohr's theory all

these lines correspond to the same end state, namely that for

which Ti is equal to 2. Thus a hydrogen atom which is in a

position to absorb light of frequency corresponding to any line

of Balmer's series should be in a position equally to absorb light

of the frequency of any of them. If dispersion were determined

simply by the number of systems capable of absorbing light of

the frequency affected, we should expect equal dispersion for all

the frequencies in Balmer's series. Of course such a result cannot

be considered to be a consequence of Bohr's theory, which may
require a revision of the whole question. A simple explanation

of the known facts, however, would be to attribute the dispersion

(in an analogous way to Bohr's treatment of the Zeeman effect)

to an actual effect of the instantaneously luminous systems. On
such a view the dispersion would not arise from the systems

capable of absorbing the given radiation, although the absorbable

frequencies would coincide with the dispersed frequencies. Simi-

larly the amount of dispersion would not measure the number of

systems capable of absorbing the dispersed radiation but would

measure the i\umber of systems actually emitting radiation of

neighbouring frequency. On this view we should expect a close

connection between the brightness of the lines and the amount of

dispersion of light of neighbouring frequency. As the condition

is not one of temperature equilibrium there is no reason to expect

a similar connection on the view that dispersion is closely related

to absorption in such cases.

According to the present theory the emission spectra of atoms

are caused by the change of an atom from a condition in which

one of the electrons is in a stationary state with more energy to

one with less energy. In the extreme case the transference is

from complete dissociation of the electron to the normal state of

the atom. But there are an infinite number of intermediate

possibilities corresponding to all the lines of the possible spectral

series. When the emission is stimulated by the electric dis-,

charge, in most cases the immediate cause of the abnormal state

of the atom is the impact of an electron on it. We should there-
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fore not expect the lines to be excited unless the energy of the

impinging electrons were equal to or greater than the amount

given by (49). For the lines of higher frequency to be excited

in the series which correspond to a return to the normal atom or

to a state near the normal (i.e. for small values of Tj and large

values of Ta in equation (45)) this amount of energy would have to

be nearly equal to the energy required to remove an electron from

the normal atom. In agreement with these suppositions Rau *

has found that a potential difference of about 13 volts is required

to excite the lines of Balmer's series in hydrogen, about 30 volts

to excite the ordinary series of helium and about 80 volts to

excite the double charged helium series. The values calculated

by Bohr for the energy necessary to remove an electron from the

normal hydrogen atom is 136 volts, from the normal helium

atom 29'3 volts and to remove two electrons from the normal

helium atom 81*3 volts. In addition Rau noticed that in the

ordinary series of helium slightly higher voltages were necessary

to excite the lines with higher values of « as compared with the

lines with smaller values of n.

There is now quite definite evidence that in a number of

casesf electrons only lose energy by collisions with atoms in

amounts which correspond to a transference between two stationary

states. It appears, for example, that electrons can undergo a large

number of collisions with mercury atoms without loss of energy, so

long as the energy of the electrons is less than that acquired by

falling through a potential difference of 4*9 volts. If the electrons

are moving in an accelerating electric field they lose no energy by

collisions with the atoms of mercury vapour until this critical

value is reached, when they lose all their energy at the next

collision. This process is accompanied, or more probably followed,

by the emission of the mercury line X, = 2536 whose frequency v

satisfies the relation hv = 4i'9e volts. Thus there seems to be

a close correspondence between the transference of energy to

atoms by collisions with electrons and by absorption of radiation.

Phenomena similar to those described have been noticed by

McLennan and Henderson J in the vapours of cadmium and zinc.

* Sitz. Ber. d. Phys. Med. Ges. Wiirzburg (1914).

t Franck and Hertz, Verh. d. Deutsch. Phyaik. Ges. xvi. pp. 457, 612 (1914) j

Akesson, Sitz. Ber. Heidelbeigcr Akad. d. Wiss. A, no. 21 (1914).

X Pioy. Soc. Proc. A, vol. xci. p. 485 (1915).



604 THE STRUCTURE OF THE ATOM

It is evident that the high frequency X ray spectra of the

elements of higher atomic weight must originate from electrons

which are much more strongly bound than the relatively super-

ficial electrons whose rearrangements give rise to the vacuum
tube spectra. On the present view it is natural to attribute the

most penetrating K series of lines to the innermost ring, the

L series to the second ring and so on. According to the prin-

ciples laid down by Bohr in dealing with complex atoms the work

necessary to displace an electron from a ring to a state of rest at

an infinite distance from the rest of the atom is equal to the

kinetic energy of an electron revolving in the ring. The velocity

of the electron in its circular orbit will thus be equal to the

velocity necessary for a colliding electron to excite the radiation

which arises when an electron falls back into the ring. If -^ jP* is

the radial force on an electron revolving in a ring of radius a this

will be equal to the centrifugal acceleration; so that

"f^^tf (51).

From the principle of the universal constancy of the moment
of momentum of the electron we have also

mva = h/2Tr (52).

Thus v = 2ire'F//i (53).

To obtain an approximate value of v we may neglect the effect

on F of the electrons in the rings. It is clear that their effect

on the innermost ring cannot be large and in any event the

exact calculation cannot be made. Subject to this limitation F
becomes equal to N, where + Ne is the charge of the nucleus.

Thus
v=27re^i^/^ = 2-lxlO«iV (54).

Since N, the atomic number, is nearly equal to half the atomic

weight we should expect that the velocity of a cathode ray

necessary to excite the K radiation characteristic of an element

of atomic weight A would be given approximately by the relation

t; = 10«^ (55).

This is the relation found by Whiddingfcon (p. 506). • If the

radius of the second ring is large compared with that of the
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first and if there are n electrons in the latter we should expect

the fundamental frequencies of the L radiations to be given

approximately by

hv = ^mv^ = 2-2 X \0^^m{N-nf (56).

Something of this kind is suggested by Moseley's empirical

equation (p. 514). For the heaviest atoms the diameter of the

innermost ring as deduced from (51) and (52) is about 10~"cm.

It is thus large compared with the estimated diameter of the

nucleus and small compared with that of the atom.

Moseley found that the K and L radiations consisted of a

number of lines which he indicated by the suffixes a, yS, <y etc.

In each case the a line has the lowest frequency, the frequency

increasing from a to /8, y8 to 7 and so on. It has been suggested

by Kossel* that the K^ line is caused by the transference of an

electron from the second ring to the innermost ring, the K^ line

from the third ring to the innermost ring and so on. In a simi-

lar way the L^ line is attributed to a transference from the third

to the second ring, the L^ line to a transference from the fourth

to the second and so on. On these suppositions it follows from

assumption G that relations of the following type, analogous to

the combination principle in the ordinary series of lines, will hold

for the different X ray lines

:

^K ~^K =^L (^^)-
/3 a a

y P P a a

So far there are only data available for testing (57). The follow

ing table gives values of Vj^ — vj^ found by Malmerf and Moseley's

values of Vj^ , for the elements for which N, the atomic number,
a

has the value shown

:

N 40 42 44 46 47 50 51 57

(-^^-vO-lO" 4-6 5-5 61 6-6 6-9 8-4 90 11-6

V, -i-10'' 4-93 5-53 617 6-84 7-19 8-29 8-67 11-21

The agreement is probably within the limits of accuracy of

measurement of the difference Vjr ~ ^ir • Another point which
P a

• Verh. d. Deutsch. Physik. Ges. xvi. p. 953 (1914).

t Fhil. Mag. vol. xxvm. p. 787 (1914).
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favours this view of the origin of the different X ray h'nes has been

brought out by W. H. Bragg * who has shown that to excite any of

the K lines of an element it is necessary that the frequency of

the exciting radiation should be higher than that of any of them.

From the considerations mentioned on p. 601 it will be clear that

no frequency less than this will be able to remove an electron

from the innermost ring and so provide a vacant place for the

electron, whose displacement causes the emission of the excited

radiation, to return to.

The explanation of the Stark effect offered by Bohr's theory

has been considered on p. 537. Since a magnetic field will not

change the energy in the stationary states the Zeeman effect

cannot be explained along analogous lines but may be attributed

to a modification of the radiation during emission in accordance

with the general theorem of Larmor (p. 525). The connection of

Bohr's theory with the isotopic elements and the radio-active

phenomena discussed in the preceding section is of an obvious

character and does not seem to call for further elaboration.

It will be seen that Bohr's theory now embraces a considerable

amount of reasoned knowledge and coherent fact. It has already

received unexpected experimental support in several directions.

In dealing with the simpler structures the conclusions follow with

logical certainty from the assumed premises and in this domain,

so far as the writer is able to judge, there are no facts which

contravene its requirements. The position in regard to the more

complicated atomsis more speculative, but the problems here are so

complex that it would be too much to expect finality in this region

of any theory. Although the theory is non-mechanistic it is to

be remembered that it preserves continuity with the ordinary

dynamics in the region of slow vibrations. For Bohrf has shown

that when t is large and the frequencies correspondingly small,

the assumptions used lead to the conclusion that the frequency

of the energy emitted in passing between the stationary states

approaches asymptotically to the orbital frequency, as is required

by the ordinary dynamics.

• Phil. Mag. vol. xxix. p. 407 (1915).

^ t Phil. Mag. vol. xxvii. p. 608 (1914).



CHAPTER XXir

GRAVITATION

General Characteristics.

The position of physical theories of gravitation to-day is

ahiiost as speculative as it has been ever since the days of

Newton. Nevertheless we cannot afford entirely to overlook the

bearing of the electron theory on gravitational action, particularly

as we have found the theory to be capable of giving a fair account

of the other known physical phenomena. Paradoxical though it

may seem, it is quite likely that one of the chief difficulties in the

way of a physical theory of gravitation lies in the extreme sim-

plicity of the known laws of gravitational action. The prospect of

addition to our knowledge of gravitation by experiment is not

very hopeful on account of the smallness of the forces concerned.

These are large enough, of course, when we are dealing with the

enormous aggregations of matter familiar to astronomy, but they

are exceedingly small with masses which can be controlled in the

laboratory.

The fundamental law of gravitation, Avhich was enunciated

by Newton, may be expressed by means of the equation

„ , dm dm'
t = Ic —

,v

where F is the attractive force between two material particles

whose masses are dm and dm' at a distance r apart, and k is the

gravitational constant which is equal to 66 x 10~^ in C.G.s. units.

This inverse square law of attraction is the foundation of the

astronomical calculations of the orbits of the heavenly bodies.

As these are very exact it follows that the index of r is 2 w^ith

great precision.
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The value of h is also very accurately independent of the

nature of the attracting materials. This is proved by experiments

made with pendulums constructed from different substances.

These show that the weight of a body, at any point of the earth's

surface, divided by its mass is a constant independent of the

nature of the body. This law of proportionality between weight

and mass is one of the most accurately known of the experimental

laws of physics.

The inverse square law at once suggests a relation with

electrostatic forces. If neutral matter consists of oppositely

charged elements it is clear that two uncharged particles will

attract one another if the attraction between unlike elements

slightly exceeds the repulsion between like elements. There is,

however, a well-known difference between gravitational and

electrical effects which calls for consideration. The space inside

a closed electrical conductor is found to be completely shielded

from the effects of an external field of electrical force, whereas an

electrical conductor exerts no such shielding effect from the action

of gravitational force. Nevertheless this is not a valid objection

to the view that the two forces are of the same nature. It is

qualitatively obvious that the electrostatic shielding arises from

the opposite displacement of the two kinds of electricity along the

conductor in such a way as to tend to annul the field inside. A
precise calculation shows that the compensation is exact if the

law of electrostatic force is the inverse square. In the case of

gravitational action the effect of a conducting screen will be to

increase the attraction between two material bodies A and B

&

Fig. 57.

rather than to diminish it. For, let the screen C surround B as

in the figure. The fundamental property of a conductor lies in
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the mobility of some of its ultimate electrified parts. Let some of

these (P) be attracted by neutral matter and others (Q) repelled.

The effect of A on the screen will be to make the parts P move

towards D and the parts Q towards E. Thus the force urging B
towards D is increased by the presence of the screen G, owing to

the formation of an attractive layer at D and a repulsive layer at

E. It is evident that this additional force will be exceedingly

minute. In a similar way gravitating matter might give rise to a

field of electric force inside a hollow conductor, but with any

probable hypothesis about the action of gravity on electrons the

resulting electric forces are too small to detect.

Comparison with Electrostatic Forces.

Before proceeding further it is desirable to emphasize the

smallness of gravitational attraction compared with the forces

between the electrons composing the attracting matter. We may
illustrate this by comparing the gravitational attraction between

two material particles of masses rrii and m^ with the electrical

attraction between two particles of like masses, of which the first

(mi) consists solely of positive electrons and the second (^Wj)

consists solely of negative electrons. The magnitude of the

gravitational attraction is Q'Q x 10~^ m^mz/i'^ dynes. Let iVj be

the number of positive electrons in mj and n^ the number of

negative electrons in th^. Then if E and e are the respective

charges on the electrons, we have

-^ = — for the negative electrons = 5'4 x 10" E.s. units.

Let us take, as a lower limit for E/M for the positive electron, the

value of this quantity for the hydrogen atom in electrolysis. We
then have

—i- = ^f^ = 3 X 10" electrostatic units,
m, M

So that the gravitational attraction

6-6xl0-« N.Exn^e
.(1)5-4x3x103' r"

= 41 X 10"*° times the electrostatic attraction.

Looked at from this point of view it is rather surprising that the

electrostatic forces do come so near to balancing one another and

R. E. T. 39
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it is quite clear that it will only be necessary to make a minute

change in the law of force between electrons in order to modify it

sufficiently to take account of gravitational attraction. The change

which we shall have to make will be quite beyond anything which

could be detected by direct experiments on the forces exerted

between electric charges.

Law of Force between Electrons.

Perhaps the simplest assumption that we can make in order

to account for gravitational attraction is that the repulsive force

between two electrons, whose charges are Ei, Ez respectively, is

not accurately equal to 7 ^~ , as we supposed in Chapter i.

It may be that the force is not determined entirely by the charges

of the electrons but depends to a slight extent on the geometrical

configuration and the state of motion of the charges as well. In

order to take this into account we may write the force between

El and Eo in the form ^--^F{E-^E^, where F denotes a
'VJT T

fimction of the configuration and state of motion of E^ and E^.

The magnitude of F can only differ very slightly from unity.

Let us consider two material particles P and Q at a distance r

from each other and such that P consists of N^ positive electrons

of charge E^ and n^ negative electrons of charge e-^ and the corre-

sponding magnitudes for Q are indicated by the suffix 2. It is

evident that the total repulsion between P and Q is

[N^]S\E^EzF{E^Ez) + N,ihE,ezF{E,e^)+N^n,E,e,F{E,e,)

+ niTia 61^2F (6162)]/4itn K

If the two particles are uncharged, N-^Ei = — n^Ci and N^E^^ — n^e^.

Let us also suppose that the electrons of like sign are identical in

both bodies and that all the electrons of whatever sign have equal

charges. Then

E = E^ = E2 = -ei = -ez = -e

and the repulsion becomes

AT AT A'"^^^ X {F{E\E2) + F{e,e2)-F{E,e2)-F(E,e^)} (2).

The simplest assumption that we can make is that the electrons

of like sign are in the same condition in whatever substance they
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occur. In this- case the functions F will all be constants charac-

teristic of the electrons. It also follows by symmetry that

F {E.£i) = F (^162). Since all the functions are very nearly equal

to unity, we may write

F{E,E,)=l+a, F{e^e,)=l+b, F {E,e,) = F (E^,) = 1 + c,

where a, b and c are very small constant quantities. The repulsion

between two neutral particles is therefore equal, on this supposition,

N N E^
to i

^
2 (« + ^ — 2c). This will be negative if 2c is greater than

a + 6, so that in order to account for gravitational attraction it is

necessary to suppose that the attraction between two unlike charges

is slightly greater than the repulsion between two like charges.

On the further hypothesis that all the mass of the substances is

electromagnetic it will be proportional to the numbers N^ and N^

of the electrons which the particles contain, except in so far as

the electromagnetic mass of an electron may vary somewhat in

different atoms. If Mi and M^ are the masses of the particles

at P and Q respectively and if M is the mass of a positive and

M Mm that of a negative electron, then N^ = -,-:f—
— and No = ,, ^

,

so that the repulsion becomes

Since the quantity in brackets is a universal constant, subject to

the hypotheses which we have made, the attraction accords with

the Newtonian law.

The preceding result is based on the hypothesis that the mass

of the electrons is not appreciably different in different substances.

We shall see in the next paragraph that we cannot be sure that

this is the case.

The Atomic Weights of the Elements.

It is now fairly certain that the number of negative electrons

in any atom is equal to about half the atomic weight or, at all

events, is comparable with the atomic weight. As the value of

e/m for the negative electrons is very large it follows that only

a very small proportion of the mass of an atom can arise from the

electromagnetic mass of the negative electrons. If the mass of

39—2
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the atoms is of electromagnetic origin it must be associated almost

entirely with the positive electricity. As we have seen, there is

a considerable body of evidence in favour of the view that the

positive electricity is confined to a very minute region of the atom,

so that practically the whole of the atomic mass will reside in this

nucleus. The estimated linear dimensions of the nucleus are very

small (about the same as the linear dimensions of the negative

electron) so that considerable overlapping of the fields of the

constituent positive electrons may be expected. We should there-

fore expect the electromagnetic mass of such a nucleus not to be

equal to the sum of the masses of the constituent positive electrons

on account of the mutual interference of their electric fields. It is

impossible to say precisely what difference would be expected to

arise in this way, but it is likely to be only a small fraction of the

total mass.

The expulsion of a rays from the atoms of the radioactive

elements shows that the nucleus is made up of separable parts.

However, the a particles are atoms of helium and have very nearly

four times the mass of the lightest known positively charged

particle, the positive hydrogen ion. Thus unless we accept the

hypothesis that there is more than one kind of positive electron

we cannot regard the a particle as such an ultimate unit. If we
take the hydrogen ion to be the positive electron, the value of

e/m which it possesses shows that its linear dimensions are about
10~* of that of the nuclei. If such positive electrons were dis-

tributed fairly uniformly throughout the volume of the nucleus

the overlapping of the fields would have little influence on the

electromagnetic mass. The electromagnetic mass of an atom

would then be very close to the sum of the masses of the positive

electrons, and thfe truth of the statement at the end of the pre-

ceding paragraph would follow. We cannot, however, be sure of

this deduction as we are completely ignorant of the constitution

of the hypothetical nucleus.

It might be thought that further information might be obtain-

able from a consideration of the atomic weights of the elements.

If the mass of an atom can be treated with sufficient accuracy as

the sum of the masses of the constituent positive and negative

electrons and if each kind of atom can be regarded simply as

a neutral combination of a given number of such units then, to
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the same degree of accuracy, the atomic weights of the different

elements will be proportional to whole numbers. This is on the

supposition that there is only one kind of positive and one kind of

negative electron. If there are n different kinds of electrons of

masses m^, m^, etc., then the masses of the atoms will be of the form

Oimj + 02^2+ ... , where Oj, a^, etc. are integral numbers starting

from zero. It is well known that the atomic weights of the

elements exhibit an approximation to whole numbers which cannot

be fortuitous* ; but the deviations from integrals, or from the

linear law just referred to, cannot now be regarded as likely to

arise from modifications of the electromagnetic mass of the indi-

vidual electrons. The work of Soddy and others (see p. 589) on

the chemical properties of the radioactive elements has shown

that elementary bodies having identical chemical properties and

different atomic weights frequently coexist. It is therefore likely

that a great many so-called chemical elements are mixtures of

atoms having the same chemical properties but differing in mass.

The experimentally determined atomic weight is, on such a view,

the average of the weights of the constituent atoms and depends

on the relative proportion in which they are present.

There is another point which deserves consideration in this

connection. The two lightest positively charged particles with

which we are familiar are the hydrogen ion and the a particle.

According to the views of Rutherford and Bohr both of these

particles consist only of positive electricity. The a particle has

twice the actual charge and approximately half the specific charge

(e/m) of the hydrogen ion. It is quite possible that the a particle

is made up of four hydrogen ions cemented into a nucleus by

means of two negative electrons, but it has not, so far, been shown

that the a particle can be broken up into anything smaller; so

that we shall examine tentatively the consequences of supposing

that it is a fundamental element of positive electricity independent

of the hydrogen ion. In that case we have to deal with two posi-

tive electrons, one of which has associated with a given charge

approximately twice as much mass as the other. On p. filO we

considered gravitational attraction from the point of view that it

arose from a minute lack of compensation between the attractions

and repulsions of the ultimate electric charges. By supposing the

• Strutt, Phil. Mag. [6J vol. i. p. 311 (1901).
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additional forces to be determined by the electric charges we
arrived at equation (3) in agreement with the Newtonian law of

gravitational attraction. This was on the hypothesis that the

value of ejin for all the electrons of given sign was the same. If

some of the positive electrons, let us say the a particles, have

a different value of ejioi from the others, hydrogen ions, the same

argument will lead to the conclusion that the weights of different

elements will not be proportional to their masses if their respective

atoms contain hydrogen ions and a particles in different propor-

tions. Thus if we are to retain the law of proportionality between

mass and weight, which has always been found to hold with high

accuracy, it is necessary to suppose that the modification of the

law of force does not depend simply on the charge of the electrons.

It must depend quite directly on the mass which is associated

with a given ultimate element of electric charge. The necessary

change in the law of force will be considered in the next section.

It is to be remembered that the necessity for considering this

question depends entirely on the hypothesis that there are different

positive electrons having specific values of ejm. There is no

logical necessity for any such hypothesis since, as we have seen, it

is quite possible that the nucleus of the helium atom may prove

to consist of four hydrogen ions held together by two negative

electrons.

Forces between Charges Modified hy Mass.

We shall now consider the consequences of the hypothesis that

the force between two ultimate elements of electric charge is not

determined solely by the quantity of electricity present in the

elements but depends to a slight extent on the mass associated

therewith as well. The results of this hypothesis are fi-ee from

contradiction so far as the facts which have been reviewed are

concerned. Such a hypothesis seems a natural one firom another

standpoint. We might regard the ordinary form of the electro-

static law of force, which makes the force between neutral systems

vanish, as an ideal which is attained when the ultimate elements of

charge are devoid of relative motion and have an infinitesimal

volume density. According to the electron theory these con-

ditions are not realized in any actual material system. Another
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way of describing very much the same position is to say that the

electrostatic law of force represents what would occur if the

infinitesimal elements of charge were at rest in the undisturbed

aether, that is to say in aether devoid of energy. The classic

electrostatic law of force would then represent exactly what would

occur if the aether were homogeneous. But in the immediate

neighbourhood of an actual element of electric charge there

is an immense disturbance going on and, as we have seen, the

mass of the element is a measure of the energy of this dis-

turbance. We might therefore expect that the field of force

emanating fi'om such a region would be modified to an extent

depending on the local disturbance ; and also that the reaction, to

an external field, of an element of charge thus situated would be

similarly affected. Under these circumstances the force between

two positive electrons at a given distance apart will not necessarily

be equal to the force between two negative electrons of equal

charge separated by the same distance, on account of the difference

of the masses; neither will the attraction between unlike electrons

necessarily be equal to the repulsion between like electrons carrying

equal charges.

Unfortunately there is an apparently fatal objection to any

view which makes the modified law of force depend on what is

practically nothing more than an alteration in the effective charge

produced by the local energy or mass. For the law of force will

then involve the product of two factors each of which depends on

the state of only one of the two separate elements. If dvi denotes

the mass which is associated with the element of charge de, we can

take ^- as a measure of the intensity of the local disturbance.

Using Taylor's Theorem we see that the force between two

elements dE and de instead of being equal to will be

dEde' \^ dm' .dM .dm'dM ]

wher6 A and a are fundamental constants which must be equal, by

symmetry, when the charges are of like sign; otherwise this is

not necessarily the case. Keeping the capital letters for positively

charged elements and the small letters for negative charges it
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follows that, to the accuracy covered by the terms above, the

force between mixed elements (dB + de) and (BE' + de') is

-^ [dE+ 9e + ^ 9if + adm] [dE' + de' + AdW + adm'] . . .(5).

Assuming that the condition for neutrality is

dE' + d^ = dE + de=0,

the force between neutral systems becomes

-^--^{AdM Jr adm) {AdM' -{ adm') (6).

dM, dm, dM' and dm are positive but otherwise arbitrary

except that -rT> = -tttv , so that (6) is essentially positive. This

corresponds to a repulsion and is incompatible with an attraction

unless either A or a has an imaginary part.

If we are to get an attraction it is necessary that the change

due to the masses should not enter as a separate factor for each of

the elements of charge concerned, provided we are limited to

functions whose expansions contain only real constants. The law

of force may, for instance, be of the form

dede' j.f'bm 9m'\ _ 9e9e'
[

"bm , 9m' /dm\^

4^'^*^V9^97;~4^r'^''9^"^^W^n9^j
dm dm' , /9w'\«

|

using Stirling's Theorem. As before, a=h and c=hhy symmetry,

for charges of the same sign, but there is no longer any necessary

relation between a and g. If the constants have the same value

independently of the sign of the charges concerned, i.e. if

a = A =b = B and c = G = h = H,

then the expression above leads to the following value for the

force between two mixed systems (jdE + de) and (bE' + de') :

r—^ 1(9^ + de) (dE' + de') + a [{dE + de) {dM' + dm')
47r?*

(^

+ {dE' + de'){dM+ dm)-\+ cr(9^+ 9e) (^^ dM' + ^' 9»i')

+ g{dM-^dm){dM'-¥dm')\ (8).
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If the condition for neutrality is dE + de = dE' + de = 0, the force

between neutral systems is

g {dM + dm) {dM' + dm')l^7rr^ (9).

As g may be negative, this agrees with the Newtonian law.

According to formula (8) the terms involving a ana c might

make an important difference to the force exerted on an electron

by a gravitational field, but would have no effect on the attraction

of two neutral particles, which is determined entirely by the term

containing g. The introduction of this term is practically equiva-

lent to attributing the Newtonian law of mass attraction to each

pair of elements of charge however small.

Conditions for Neutrality.

The introduction of gravitational forces complicates electrostatic

problems very considerably. The condition for electrical equili-

brium in any conductor is that the streain of positive electricity

in any direction at any point should be equal to the stream of

negative electricity in the same direction at that point. In general

this condition may be very complicated. If we may suppose that

only the negative electrons are free to move, as the positive current

is zero the negative current must be zero also. If we are also free

to neglect effects arising from differences of pressure of the electrons

at different points, the condition will be satisfied if at every point

the electric force on an electron is exactly balanced by the gravi-

tational force, the resultant average force on an electron then

being zero. There will thus be a potential gradient in a con-

ductor in equilibrium m a gravitational field; this potential

gradient is, however, too small to be detected experimentally

The way to define a neutral material particle is not an obvious

matter under these circumstances. We might, for example, define a

neutral material particle as one which exerted no force on a nega-

tive electron ; but equally valid reasons could be urged for making

the vanishing of the force on a positive electron the condition for

neutrality. If both these conditions were satisfied there would be

no force between two neutral particles, so that they are not com-

patible with the existence of gravitational attraction. In accord-

ance with the considerations of the last section we might define

a neutral particle as one which would give rise to forces exerting
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equal accelerations on both positive and negative electrons. Taking

as an illustration the formulation of the forces on p. Gil the

force on a negative electron at B, due to a particle consisting of

Ni positive and tij negative electrons at A, may be written

and the acceleration will be obtained on dividing this expression

by m. In a similar manner the acceleration of a positive electron

at B, due to the material particle at -4, is

^^^^[N,E{l+a) + n,e{l+c)\ (10).

If these two accelerations are equal and \i E=—e
Ni hM — cm

cM — am ,(11).

Under these suppositions N^|n^ must have this ratio for

the particle at A to be neutral. Previously we supposed N^ and

n^ were equal. If we still suppose this to be the case we see that

c = {bM -t am) /(M + m). Since M exceeds m, this is compatible

with 2c>a + b if a exceeds b.

By attributing gravitational attraction to a slight excess of the

attraction of the oppositely charged elements over the repulsion of

the elements with like charges we are led to the paradoxical result

that the addition of sufficiently small amounts of electrification

of like sign to each of two neutral particles will increase the

attraction between them instead of diminishing it. Consider, as

an example, the specification of the forces which we have just

been discussing. The repulsive force between two neutral

particles is

-^ [N,N, (1 + a) + n,n, (l+b)- (N,n, + N,n,) (1 + c)].

If a small negative charge is given to both the particles n^ will

become Wj 4- Swi and Wg will become nj + Bn^, N^ and N2 being

unaltered. Taking N^ = rii and i\^a = »^ as the condition for neu-

trality, the additional repulsion is

{
Sn^Sn^ (1 + 6) + (nM^ + ^Sn,) (6 - c)} E^/^Trr^

or to the first order of small quantities

{n,Bn.2 + rh8n,){b-c)E'J^nr^ (12).
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If equal positive charges were added, instead of negative

charges, the additional repulsion would be

(rii Bn^ + nMi) (a - c) E''l4>7rr'^.

Since 2c exceeds a + b, either a — c or b— c must be negative.

Thus at least one of the cases considered gives rise to an attrac-

tion. This attraction will only be experienced when very small

quantities of electricity are added, since unity is very large com-

pared with a, b or c. Thus the neglected second order term, which

corresponds to the usual electrostatic repulsion, will very soon

overcome the attractive forces under discussion.

If the negative electrons are alone capable of motion, the

interior of a large solid conductor in equilibrium under its own

gravitational field will contain a slight excess of negative electricity,

since the gravitational force on an electron has to be supported by

that arising from the electric intensity. Ifwe neglect the pressure

of the electrons, this condition will hold right up to the surface

whatever the total charge on the conductor may be. Any electric

or magnetic effects arising from this excess of negative charge

would be very minute, even with conductors of the magnitude of

the earth.

General Considerations,

A review of the preceding discussion shows that the electron

theory is not in a position to make very definite assertions about

the nature of gravitational attraction. It seems likely that the

Newtonian law of attraction between elements of matter is one

between elements of mass or confined energy and that it is of a

very fundamental character. It is doubtful if it can be replaced

by a modified law of electrostatic force between electrons or

elements of electric charge, unless the modified law includes

the associated mass explicitly. Even so, the case does not appear

very simple. A number of alternative possibilities could be

eliminated if the acceleration of a negative electron in the earth's

field of gravitational force could be determined experimentally.

If gravitational attraction is, as it were, an uncompensated

residue of the electrical forces, we should expect it, like all electrical

actions, to be propagated with the velocity of light. Lorentz*,

• Proceedings Akad. van Wet. te Amst. vol. u. p. 559 (1900),
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who has considered this question very fully, finds that if gravita-

tion is propagated in the same manner as electrical actions it will

give rise to effects practically identical with those which follow

from the usual Newtonian law. The differences which arise are

too small to be detected from astronomical data and they are also

incapable of accounting for the recognized irregularities in the

motions of the heavenly bodies.

The view that gravitational attraction is an electrical effect at

bottom is quite old. The definite form of it, that particles of

uncharged matter contained equal and opposite charges and that

the attraction between the unlike charges slightly exceeded the

repulsion between the like charges, seems to have been first put

forward by Mossotti*. The application to electrons in atoms has

been considered by J. J. Thomson f.

Tlie Relative Theory of Qravitational Effects.

The following speculations, due to fiinstein %, about the relation

between gravitation and some other phenomena, are of considerable

interest. The discussion sets out from the empirical law that in

a uniform field of gravitation all material bodies move with equal

accelerations. We have seen that this law is likely to be of a veiy

fundamental character. Rather similar results have been obtained

by Abraham § by a somewhat dififerent argument.

Let us consider two separate regions of space. In the first is

a uniform field of gravitational force. This space is provided with

a set of axes k, at rest, and the lines of gravitational force run in

the negative direction parallel to the z axis. The magnitude of the

gravitational acceleration is 7. The second region of space is firee

from gravitational attraction and is provided with a set of axes k

which move with uniform acceleration 7 in the positive direction

along the / axis. The equations of motion of any particle in

either system (provided the action of other material particles on it

may be disregarded) are then the same, if the equations for each

* O, F. Mossotti, Sur Us forces qui rigissent la constitution intime des corps.

Turin, 1836.

t Gamb. Phil. Proc. vol. xv. p. 65 (1908).

X Ann. der Physik, vol. xxxv. p. 898 (1911).

§ Physik. Zeits. 13 Jabrg. p. 1 (1912).
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system are referred to the set of axes which we have associated

with that system. They are clearly

Now let us assume that our two systems are physically identical,

i.e. that it is impossible to distinguish between them by any

physical means whatever. This is tantamount to denying absolute

acceleration in the same way that the principle of relativity denies

absolute velocity. The equivalence of the two systems is obvious

if we confine ourselves to the Newtonian mechanics. This is not

the case however when we turn to some of the results which we
have deduced from the principle of relativity.

It is shown on p. 318 that the mass of any system involves a

part E/c^, where E is the radiant electromagnetic energy of the

system and c is the velocity of light. E/c^ is mass in the sense of

a coefficient of inertia but we have not proved that it is subject to

gravitational attraction, in the way that the ordinary mass of the

system is. If this mass is not subject to gravitational attraction

it is evident that the equivalence of the systems k and k will not

hold exactly ; systems in a uniform gravitational field will only

fall uniformly provided the inertia of their electromagnetic energy'

may be neglected. A formal proof that if k and *:' are exactly

equivalent it is necessary that El(f should represent gravitating

mass, as well as inertia, is easily constructed

Fig. 53.
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Let the diagram represent the axes k in the field of uniform

gravitational force. Let /Sa, 8^ represent two sufficiently minute

material systems at a distance h apart along the z axis. If Si.^ and

Bx are small enough, h will remain invariable. The systems will

simply slide along the z axis with uniform acceleration, as though

they were held apart by a rigid connection of length h. Suppose

that /Si2 is allowed to send a certain amount of radiant energy E
which is received by 8^. The energy is measured at >S'2 and 8^ by

instruments which can be brought together and compared. As we
do not yet know anything about the effect of gravitation on

electromagnetic energy we are unable to say anything about what

takes place during the transference. We can, however, find out a

great deal about it if we admit that the system k is equivalent to

the system k. For in the system k let us measure the energy of

the radiation with reference to a set of axes k^ that are at rest with

reference to k at the instant at which the radiation leaves /Sig. If

the energy thus measured is E when it leaves /Sfg, it will, by the

theory of relativity *, be equal to £^(1 + 7^/c^) by the time it is at

B-i. For >Si is then moving with reference to the axes /Co with

the relative velocity v=yt = yh/c. This result is true only to the

first order of the small quantity yh/c\

On the hypothesis that the two systems are equivalent, exactly

the same result will have to hold with reference to the system of

axes K in the gravitating system. In this case yh is equal to
<f>,

the difference in the gravitational potential between the points ^2

and Si', so that if E2 and Ei are the energies of a given quantity of

radiation at <Sa and Si respectively, then

E, = E,{l + <f>lc').

If we are to retain the principle of the conservation of energy in

these cases it follows that work equal to Ei(f>/c^ is done on the

radiant energy by the gravitational forces. This is the same as if

the radiant energy possessed gravitational mass equal to E/c\ We
therefore conclude that E/c^, which the principle of relativity shows

to be the inert mass of radiation, represents its gravitating mass

also.

* Einstein, Ann. der Fiiysik vol. xvii. p. yi3 (1905).
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The Velocity of Light in the Qravitational Field.

Keturning to the system k, let v^ be the frequency of the

light emitted by S^ ; then by Doppler's principle the light received

by Si will appear to have a different frequency, viz. Vi=Vi(l+ yh/c-)

to the first approximation. If the systems k and k are equivalent,

the gravitational field will therefore produce a change in the

frequency v^ of the radiation which leaves S2 to the value

»^i=i/2(H-</>/c2)

at a place Si where the gravitational potential differs by
<f)

from

its value at S^. These results are true when the clocks used to

measure time at S.^ and Si agree with one another when brought

together. But the distance h is constant in the k system ; so

that, if the radiation were being continually emitted by Si and

received by ^2. there would be a continuous accumulation or deple-

tion of waves in the space between them, if vi and v^ were unequal.

This contradiction indicates that the times at different parts of a

gravitational field are not correctly given by clocks which .agree

when brought together. To give times which do not lead to a

contradiction the clock at S.^ must go 1 + (^/c" times slower than

the clock at Si when they are brought together and compared.

Measured with such clocks the frequencies at S^ and Si become the

same and the number of waves in the stretch h is independent of

the lapse of time, when the emission and reception are steady and

continuous.

Now if we measure the velocity of light in different places of

the system k with clocks which agree when compared together we
get always the constant quantity c. If k and k are equivalent,

the same is true of the gravitating system k. But these clocks do

not go at the right rate in different parts of k ; whence it follows

that the velocity of light is not the same at different parts of k

but varies with the gravitational potential according to the

relation

'=<-^«)

Thus the principle of the constancy of the velocity of light which

Einstein made the basis of the principle of relativity does not hold

for gravitational fields according to this theory.
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It is easy to calculate the curvature of a ray of light produced

by gravitation on this view. Take two points on the wave front

at distance dl apart. At time dt later the wave front will be tan-

gential to spheres of radii cdt and (c + -^dljdt described about

the two points. The rotation 80 of the wave front in time 8t is

thus

If Sn is an element of the normal to the wave front cdt= Bn,

dn~ cdl~d' dl

to a sufficient approximation.

Let us apply this to the case of light passing within a distance

8 of the centre of a star of mass m. Let k be the gravitational

constant, r the instantaneous distance of the ray of light from

the centre of the star and yfr the angle between r and the per-

pendicular from the star on the straight path of the undeflected

light. Then
<f>
= km/r and the small total angular deflexion 86 is

•30 __kmf"''^ Idr df
dl (f J -„/2rdl cosxli

km ['"1^
. -, . 2km= TK- 1 cos yjrd-ylr =

T/i ^8

The deflexion is directed towards the star, so that if the light

comes from a second star the apparent angular distance between

their centres will be increased; in the case of the light from a

star passing just outside the sun's disc it amounts to 0"83 second

of arc.

In a later paper Einstein* has extended the investigation so

as to cover the relation between gravitation and electromagnetic

phenomena other than mass and the velocity of radiation, using

similar methods. The smallness of the expected effects appears to

preclude the possibility of their experimental verification in the

near future.

* Ann. der Physik, vol. xxxvra. p. 355 (1912).



625

INDEX OF NAMES

Abraham, M. 122, 228, 230, 231, 239,

242, 262, 282, 483, 620
Adams, E. P. 439
Airy, Sir G. B, 134, 271, 275, 285

Akesson 603
Ampere, A. M. 86, 362
Arago, F. 271 ff., 275, 283

Back, E. 526
Baedeker, K. 439, 440, 453, 457, 463,

466
Baeyer, 0. v. 468
Babr, E. v. 551, 552
Balmer, J. J, 516, 517, 531 ff., 596,

598, 602, 603
Barkla, C. G. 487, 488, 490, 498, 499,

602, 503, 504, 506, 509, 512
Barnes, E. W. 508
Barnett, S. J. 397
Bartoli, A. 331
Beatty, R. T. 505
Beck, P. N. 397
Becquerel, J. 542
Berg, 0. 452
Bergmann, A. 520
Berzelius, J. J. 1

Bessel, F. W. 33
Bevan, P. V. 529, 530, 531, 636
Bjerrum, N. 551, 552
Blondlot, R. 122
Bohr, N. 242, 373, 395, 413, 430, 434,

458, 484, 633, 538, 551, 590, 591,

592, 593, 595, 596, 599, 600, 602,

G03, 604, 605, 613
Boltzmann, L. 334, 352, 379, 399, 511,

666
Boscovich, R. G. 270
Bmdley, J. 270
Bragg, W. H. 477 ff., 481, 499, 603,

604, 611, 512, 513, 606
W. L. 511

Broglie, P. De 511
Brown, F. C. 6, 442
Bucherer, A. H. 239, 242, 316
Buisson, H. 556
Byerly, W. E. 33

Campbell, N. R. 273
Cauchy, A. L. 165

R. E. T.

Cavendish, Hon. H. 39, 43
Coblentz, W. W. 159
Cole, A. D. 124
Compton, A. H. 360, 513

K. T. 474
Cooke, H. L. 441
Corbino, 0. M. 542
Coruu, M. A. 123
Coulomb, C. A. 12, 42, 43
Crowther, J. A. 493, 495, 496
Curie, J. 551

P. 376, 378, 390, 392, 394, 561

Darwin, C. G. 511
Davy, Sir H. 1

De Broglie, M. 511
Debye, P. 354, 360, 510
Deslandres, H. 620, 521
Diesselhorst, H. 411
Doppler, C. 529, 566, 623
Drecq, M. 365
Drude, P. 134, 136, 137, 407, 432, 438,

542, 560
Duane, W. 122, 608
Du Bois, H. 392
Dufour, A. 527
Dulong, P. L. 357

Ehrenfest, 663
Einstein, A, 295 ff., 314, 322, 364, 367,

359, 360, 397, 424, 473, 474, 663, 620,
622 ff.

Ettingsbausen, A. von 434
Evans 596

Fabry, C. 122, 656
Fajans, K. 589
Falk, K. G. 584
Faraday, M. 1, 3, 39, 43, 86, 100, 121,

545, 648
Fermat, P. de 271
Feiy, C. 365
Fitzgerald, G. F. 232, 280, 282, 283,

289, 291, 323
Fizeau, H. L. 273, 274, 276, 285, 306
Fleming, J. A. 124
Fourier, J. Baron 33, 327, 433
Fowler, A. 596, 598
Frauck, J. 536, 603

40



626 INDEX OF NAMES

Franz, R. 411, 423
FredenhageD, K. 442
Fresnel, A. 271, 273 ff., 285
Friedrich, W. 509, 511

Garbasso, A, 538
Gauss, K. F. 20 ff., 28, 30, 41, 42, 43,

98, 204
Gehrcke, E. 538
Gehrts, A, 469
Geiger, H. 5, 494, 588
Gerlach, W. 355
Goldhammer 551, 552
Gray, J. A. 485
Green, G. 23, 32, 117, 190
Gutton, C. 122

Hagen, E. 139, 432
Hall, E. H. 409, 434 ff., 463
Hallo, J. J. 542
Hallwachs, W. 469, 481
Havelock, T. H. 161
Heaviside, O. 13, 15, 218
Helmholtz, H. v. 2
Henderson 603
Hertz, H. 122, 469, 603
Herweg, J. 511
Hevesy, G. v. 589
Hicks, W. M. 518
Himstedt, F. 122
Hollnagel, H. 159, 359
Honda, K. 392
Horton, F. 467
Hughes, A. LI. 475
Hull, G. F. 215
Humphreys, W. J. 536
Hunt 508
HurmuzescQ, D. 122

ger, G. 411
Jamin, J. C. 134
Jeans, J. H. 38, 80, 103, 105, 122, 343,

345, 354, 399, 411, 422, 423, 430,

434, 555 ff., 559
Jentzsch, F. 441
Joule, J. P. 106, 429, 433

Kadesch 475
Kamerlingh Onnes, H, 378,425, Preface
Kaufmann, W. 7, 235, 239, 316
Kaye, G. W. C. 485
Kayser, H. 516, 520
Keesom, W. H. Preface

Kelvin, Lord 425, 430, 459, 460, 555,

575, 576, 586, 590
Kerr, J. 548, 550
Kirchhoff, G. 189, 331, 469, 515, 600
Kirschbaum, H. 537
Klatt, V. 534
Kleeman, E. D. 478
Knipping, P. 509
Koenigsberger, J. 462, 467, 468
Kossel 605
Kundt, A. 154

Kurlbaum, F. 355
Kiistner, H. 469

Ladenburg, R. 529, 530, 531, 602
Lagrange, J. L. 105, 175
Lamb, H. 231, 275
Langevin, P. 251, 259, 362, 374, 379,

380, 392
Langmuir 600
Laplace, P. S. Marquis de 18, 26, 30,

32, 33, 42, 43
Larmor, Sir J. 2, 109, 170, 229, 258,

286, 291, 525, 536, 554, 600
Laue, M. 325, 509, 510
Lebedew, P. 215
Le Bel, J. A. 549
Lecher, E. 452
Leduo, A. 434
Lees, C. H. 412
Lenard, P. 475, 482, 528, 534
Leroux, F. P. 154
Liebreich, E. 441
Li^nard, A. 244
Lindemann, F. A. 358, 360
Livens, G. H. 430, 536
Lodge, Sir 0. J. 276
Lommel, E. 533
Lorentz, H. A. 2, 3, 149, 156, 161, 162,

1C7, 177, 183, 228, 233, 239, 241, 276,
282, 286, 289 ff., 295, 316, 316, 345,

373, 374, 413, 430, 433, 525, 627, 528,
538, 619

Lorenz, L. 149, 411, 423
Loria, S. 530, 531, 602
Lummer, 0. 356
Lyman 595

McCleland 585
McLaren, S. B. 434
Maclaurin, R. C. 162
MacLean, G. V. 122
McLennan 603
Maculoso, D. 542
Maimer 605
Marsden, E. 494
Maurain, C. 393
Maxwell, J. C. 2, 6, 14, 35, 81, 96 ff.,

101, 102, 107, 115, 121, 122, 142, 149,

155, 207 ff., 212, 215, 223, 224, 230,

232, 271, 307, 413 ff., 417, 611, 556
Merritt, E. 533
Merton 597
Michelson, A. A. 274, 277, 278, 280, 282
Millikan, R. A. 5, 6, 356, 475
Minkowski, H. 325
Mohler, J. F. 536
Moore, H. 504
Morley, E. W. 274, 277, 278, 280, 282
Moseley, H. G. J. 511, 513, 614, 605
Mossotti, F. O. 620

Nagaoka, H. 555
Nelson, J. M. 584
Nernst, W. 358, 360, 434, 463



INDEX OF NAMES 627

Newton, Sir I. 7, 607
Nichols, E. F. 158, 159, 179, 180, 215

E. L. 533
Nicholson, J. W. 395, 697
Nicol, J. 502

Oersted, H. C. 86
Ohm, G. S. 97, 106
Onnes, H. Eamerlingh 378, 425, Preface
Owen 503
Oxley, A. E. 392

Partzsch 481
PaBchcn, F. 520, 525, 526, 595, 597
Pasteur, L. 5i\)

Patterson, J. 436, 440
Peirce 608, 504
Pellttt, H, 122
Peltier, J. C. 412, 426, 429^ 430, 436,

455 ff., 459, 462, 463
Perot, A. 122
Perrier, A. 378
Perrin, J. 6
Petit, A. T. 357
Pickering, E. 0. 596
Planck, M. 267, 276,-822, 344, 347 ff.,

352, 354 ff., 360, 39-5, -107, 424, 473 ff.,

553, 591, 592, 594
Poincar6 354
Poisson, S. D. 26, 28, 30, 31, 42, 43, 47,

52, 82, 119, 218
Poynting, J. H. 203 ff., 208, 213, 215,

221, 484, 523
Preston, T. 525
Priestley, J. 12
Pringsheim, E. 356
Purvis, J. E. 525

Bankine, A. 0. 282
Rau 595, 603
Eayleigh, Lord 149, 155, 175, 343, 345,

347, 350, 355, 412, 434, 491, 555
Riecke, E. 407
Righi, A. 434
Eitz, W. 520, 532, 533, 597
Roentgen, W. C. 477, 478, 482
Rosa, E. B. 122
Rossi, R. 589
Routh, E. J. 464, 491, 591
Rowland, H. A. 99
Rubens, H. 139, 158, 159, 359, 432, 551
Runge, C. D. T. 520, 625
Russell, A. S. 589
Rutherford, Sir E. 6, 6, 356, 482, 490,

494 ff,, 508, 688, 590,613
Rydberg, J. R. 614, 520, 532, 656, 595

Sadler, C. A. 498, 499, 505
Saeland, S. 534
Saunders, C. A, 122
Schmidt, G. C. 535
Schott, (Jr. A. 555, 657, 559
Schoute, C. 452

Schuster, A. 432, 483
Schwarzschild, K. 538
Sellmeier, W. 149, 165, 166, 161, 177,

179, 181
Simons 604
Soddy, F. 589, 613
Sommerfeld, A. 325, 483, 484
Stark, J. 8, 616, 620, 529, 534, 537,

596, 606
Starke, H. 7
Stefan, J. 333, 334, 841, 356
Steinberg, K. 439
Stern 553
Steubing, W. 634
Stewart, B. 331, 469, 515
Stirling, J. 353, 402, 616
Stokes, Sir G. G. 4, 91, 95, 101, 271,

275 fit., 280, 283, 483, 503, 533, 535
Strutt, Hon. R. J. 613
Stuhlmann, 0. 478, 479, 481

Takagi, H. 394
Thomson, Sir J. J. 3, 4, 7, 122, 208,

209, 218, 229, 232, 234, 242, 249, 407,

422, 423, 425, 426, 429, 430, 433, 438,

440, 456, 458, 482, 483, 484, 486,
490, 491, 494 ff., 606, 632, 555, 569.

565, 567, 675, 684 ff., 890, 599, 620
Townsend, J. S. 4
Trouton, F. T. 282
Trowbridge, J. 122

Van 't Hoff 649
Voigt, W. 527, 638, 642, 547, 548, 550
von Baeyer, 0. 468
V. Bahr 553, 555
Ton Ettingshausen, A. A. 434
V. Wartenberg 651

Walden, P. 680
Weber, W. 362, 407
Webster, A. G. 44, 223
Wehnelt, A. 441
Weiss, P. 380, 381, 384, 385, 887, 388,

390, 394, 395, 397, 423, 425, 462, 532
Wendt, G. 637
Whiddington, R. 605, 606, 512, 604
Whittaker, E. T. 12, 276, 283, 533
Wiechert, E. 3, 234, 244, 483
Wiedemann, E. 535

G. 411, 423
Wiedmann, G. 469
Wien, W. 327, 346, 354, Preface
Williamson, B. 317
Wilson, C. T. R. 3, 4

H. A, 5, 277, 283, 430, 431,

434, 442, 528, 532
W. 354

Wood, R. W. 531, 535, 636, 638, 542, 601

Zeemau, P. 2, 3, 373, 375, 616, 521,
524 ff., 527, 528, 530 ff., 641, 542, 545,

648, 650, 602, 606



628

INDEX OF SUBJECTS

o rays, scatterinp; of 490
Aberration of light 269, 306
Absorbing media 163
Absorption, feeble 166 ; of characteristic

X rays 497 ff., 503
Absorption of light 144; coefficient of

165; near critical frequencies 178
Absorption spectra of gases 529, 551,

601
Acceleration and force 260
Aether 268 ; and the principle of rela-

tivity 323
Aether pulse theory of the Roentgen

rays 483
Airy's experiment 271
Alloys, conductivity of 465
Arago's experiment 271
Atom, definiteness of 554; of Kelvin
and Thomson 555

Atomic, numbers 510, 588; structure

491, 494, 549, 559, 569 ; theory, ap-

plication to the 6 ; weights of ele-

ments, and gravitational attraction

611; weights of radioactive elements
588

Atoms, Bohr's theory of 395, 590;
number of electrons in 488, 494, 495,

569
Atoms, ionization energy of 593, 603
Attraction, gravitational, compared with

electrostatic 609
Avogadro's number 6
Axes, moving 286, 297

/3 rays, deflexion by electric field 236;
detiexion by magnetic field 237, 240

;

scattering of 490

/3 secondary X rays 496
Balmer's series 595
Band spectra 520
Black body radiation 330, 433
Bohr's theory of atoms 395, 533, 537,

551, 555, 590 ff. ; theory of fepectra

590
Bucherer's experiment 239

Characteristic X rays, absorption of

499 ff.

Charge, accelerated, field due to 247,

249 ; accelerated, radiation from 257

;

central, of atom 494, 510, 588, 590;
electric, with variable velocity 243;
on electron, determination of 3, 356

Charged system, in uniform motion
217

Charges, fictitious 57
Chemical combination 575; and trans-

ference of electrons 576, 579, 585
Collisions between particles under cen-

tral forces 417
Combination, chemical 575
Combined series 520, 597
Conditions at boundary between two

dielectric media 45
Conducting electrons 463
Conducting media, propagation of elec-

tromagnetic waves in 135; reflexion

at boundary of 137
Conduction in metals, electron theory

of 408, 413, 463; simple theory of

409
Conductivity, electric, of alloys 465

;

electric, of bad conductors 467 ; elec-

trical 410, 420, 422; electrical, for

periodic forces 430; of metals for

heat 411, 421
Constant, Boltzmann's 406 ; Planck's

356, 469, 506, 509, 591
Contact difference of potential 454
Contractile electron 232
Contraction, Fitzgerald's 280, 291
Correlation, principle of 286, 290
Corresponding states, of magnetization

382
Coulomb's Law 23
Critical temperature, magnetic 389
Crystals and X rays 509
Curie's Law 378
Current, convection 98; displacement

97; electric 96; force on an element
of, in magnetic field 114; magnetic
force due to element of electric 113

;

polarization 98
Currents, induction of 100

Diamagnetism 361, 368
Dielectric constant, electron theory of

74
Dielectric media 39; Poisson's theory

of 47 ; electron theory of 58
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tors when charges are present 186
Diffraction of X rays by crystals 498,

509
Dispersion, theory of 142, 152 ; ano-
malous 154 ; of rock-salt 161 ; gene-

ralized theory of 169 ; of luminous
gases 529

Displaced electrons, potential due to

67
Displacement Law, Wien's 343
Distribution of energy, molecular 403
Distribution of potential energy 404
Doppler effect 284, 304
Double refraction, magnetic 542, 547
Doublet, potential due to 58, 69

Electricity, different elements of 9

;

specific heat of 429, 448, 451, 452
Electrified particles, force between 10
Electrodynamics, first law of 95 ; second
law of 101

Electromagnetic, equations 307 ; inertia

7, 228 ff., 234
Electromagnetism 86; dynamical theory

of 102
Electron, accelerated 199; at rest 197;

contractile 232 ; determination of
charge on 3, 356 ; expanding 557

;

field due to rigid 222; in uniform
motion 197, 218; positive 8, 482,
585, 612 ; relativity theory of me-
chanics of 310; revolving, magnetic
force due to 362, 367 ; theory, origin

of 1

Electronic, conduction, kinetic theory of

398; conductors, equilibrium theory
of 441, 444

Electrons, asymmetric emission of, 478
Electrons, conducting 463 ; emission

of, from hot bodies 441 ; in equi-

librium with conductors, temperature
relation 444, 447, 450, 454; law of
force between 610 ; number of, in
atoms 488, 494, 495, 569; reflexion

of, by conductors 468
Electro-optics 534, 550
Energy, electric, of charge in uniform
motion 220, 262 ; in electric field 34,
44 ; inertia of 316 ; in field of ac-
celerated point charge 251, 255

;

magnetic, of charge in uniform motion
221, 252; of a system of charges 33;
of moving particle 312; of oscillator

349 ; rate of loss of, by aether 203
Entropy 399; and probability 400; of

resonators 253
Equations, electromagnetic, for moving

systems 286,290,307; Laplace's 18,

42 ; Lorentz's 183 ; Poisson's 26,

42 ; of line of force 16 ; of propaga-
tion 115 ; universal 182

Excitation of spectral lines, 505, 603

Ferromngnetic substances, specific heats
of 397

Ferroniagnetism 361, 380, 393, 397
Field due to uniformly moving charges

218
Fitzgerald's contraction 280, 291
Fizeau's experiment 273, 306
Fluorescence 533
Force, exerted on electric charges 205

;

thermoelectromotive 459
Forces, activity of the 201 ; between

material particles 614, 618 ; con-
tinuously operative, on principles of
relativity 320

Galvanomagnetic effects 434
Gas, paramagnetic 379
Gases, absorption spectra of, 529, 551,

601
Gases, luminous, dispersion of 529
Gauss's theorem 20 ff., 41
Gravitation 607, 619; effect of, on

light 620, 623; relative theory of

620
Green's theorem 23

Hall effect 434, 437

Induction, electric 40, 51 ; magnetic
82

Inertia of energy 316
Intensity, electric 14, 20; of reflected

light, minimum value of 181
Inverse Zeemau effect 538
Ionization, by X rays 504; energy of

atoms 593, 603
Iron, magnetic properties of 391
Isotropic radiation, pressure exerted by

211

Jeans and Bayleigh's radiation formula
343

Eanfmann's experiment 235
Kerr's electro-optical effect 550 ; mag-

neto-optical effect 548
Kinetic theory and thermodynamicn

399
Kirchhoff's Law 330; solution 189

Laplace's equation 18, 42; operator,

transformation of 26
Law, Curie's 378; of Stewart and

Kirchhoff 330; of Wiederaann-Franz-
Loreuz 411

Least time, principle of 271
Light, aberration of 269, 306; velocity

of, in the gravitational field 623
Line of force, equation of 16

Magnetic, double refraction 542, 547
;

field, effect of, on electric currents
434, 437, 439 ; force due to moving
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electron 862 ; properties, abrupt
changes in 390; rotation of plane
of polarization 538, 545

Magnetism 77 ; application of thermo-
dynamics to 377; on electron theory
361

Magnetization, mechanical reaction
caused by 395; permanent 381, 387

Magneto-optics 373, 521, 526, 538, 542,
548

Magneton 894
Mass, electromagnetic, of rigid electron

228 ; electromagnetic, variation with
velocity 234 ; longitudinal and trans-

verse 229 ff. ; variation with velocity

on the principle of relativity 312
Material particles, conditions for neu-

trality 617; forces between 614, 618
Maxwell's stresses 35, 81
Mechanics of electron 310
Michelson and Morley's experiment 277
Molecular rotation and spectral fre-

quency 552, 556
Moment, magnetic, of revolving electron

367
Momentum, and radiation pressure

212 ; effect of inertia of energy on
320 ; electromagnetic 208, of charge
in uniform motion 221, of isolated

system 215, of rigid electron 227

;

of moving particle 314, 319
Moving axes 286, 297

Natural rotation of plane of polarization

548
Negative electron 7

Neutral material particle 617
Newton's law of gravitation 607
Number of electrons in atoms 488, 494,

495, 569
Numbers, atomic 510, 588

Optical, convection, Stokes's theory of

275 ; effects due to motion of re-

fracting medium 273
Oscillator, energy of 349

Paramagnetic gas 379
Paramagnetism 361, 376, 379
Peltier effect 429, 456, 457
Periodic law, and radioactive elements

588 ; and structure of atoms 570
Permeability, diamagnetic 371
Phosphorescence 633
Photoelectric action 469 ff., 498, 504,

601, 604
Planck's radiation formula 347, 364, 355
Point charge in uniform motion, field

due to 248
Poisson's equation 26, 42 ; solution of

equations of propagation 118 ; theory

of dielectric media 47
Polarization, electric 51; electron theory

of 64, 70; magnetic rotation of plane
of 638, 545 ; natural rotation of plane
of 548; of X rays 488; potential due
to 60; variable 54

Positive electricity, structure of 685
Positive electron 8, 482, 585, 612
Potential, at internal points 19 ; con-

tact difference of 454 ; electric 15

;

magnetic, due to electric current 86

;

propagated 193 ; scalar 194 ; vector

194, 197
Poynting's theorem 203
Pressure of radiation 209
Pressure shift of spectral lines 536
Principle of correlation 286, 290
Principle of least time 271
Principle of relativity 296, 322
Probability and entropy 400
Probability, of distribution of energy
among oscillators 352, 357 ; of statis-

tical distribution of a gas 401
Propagation, equations of 115
Pulse theory of Roentgen rays 483
Pyrrhotite, magnetic properties of 384

Quasi-stationary motion 262

Radiant energy, gravitational mass of

622
Radiation, and temperature 326, 433

;

complete 328, 433 ; energy density of

complete, in refracting medium 332
;

formula of Planck 347, 365 ; formula
of Eayleigh and Jeans 343 ; formula
ofWien 364; from accelerated electric

charge 257 ; isotropic 211 ; pressure

and momentum 212; pressure of 209;

reaction of, on accelerated charge 263;
reflexion of, at a moving mirror 277,

335 ; secondary, asymmetrical emis-

sion of 477 ff. ; types of 476 ; from
atoms 594

Radioactive elements and periodic law
588

Ratio of electromagnetic to electrostatic

unit 122
Rayleigh and Jeans's radiation formula

343
Rays, residual 167
Reaction of radiation on moving charge

263
Reflecting power, of metals 140 ; of

quartz 169
Reflexion, change of phase on 138, 168;

of electromagnetic waves 129 ; of

electrons by conductors 468 ; of light

by moving mirror 277, 336; of light

near critical frequencies 178
Refracting medium, optical effects due

to motion of 273 ; theory of propaga-
tion of light in moving 284

Refraction, of compounds and mixtures

150 ; of electromagnetic waves 129

1
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Refractive index 149, 1C5
Eelative theory of gravitation 620
Relativity, principle of 296; dependence

of physical quantities on velocity 322

;

experimental test of 242, 315, 318
Residual rays from absorbing media 167
Resistance, change in a magnetic field

489
Reststrahlen 159
Roentgen rays 482 ff., 496 ff., 503, 505,

507 ff., 603, 605
Rydberg's constant 594, 596, 598

Scattering, of a and /3 rays 490 ; of a
and ^ rays, Rutherfoi'd's theory 494

;

of o and p rays, Thomson's theory

491 ; of X rays 485
Secondary rays 477, 496, 503, 505, 606
Series in band spectra 520
Series, spectral 516, 590, 595
Shell, force on a magnetic 83
Shells, polarized 62
Specific heat of electricity 429, 448, 451,
452

Specific heats, at low temperatures 358

;

Debye's theory 360; Einstein's theory

357 ; of ferromagnetic substances 397

;

and molecular rotation 553
Spectra, band 520
Spectra, Bohr's theory of 690 ; X ray of

elements 613
Spectral emission, theories of 526, 590
Spectral frequency and molecular rota-

tion 552, 556
Spectral lines, definiteness of frequency

of 556; displacement in electric field

637 ; efifect of pressure on 536
Spectral series 516, 590, 595
Spectroscopic phenomena 615, 520, 528,

556, 690
Stability, of electrons in atom 557, 559,

563, 567
Stark effect 537
Stationary states 592, 599
Stefan's law 333
Stirling's approximation 402
Stokes's theorem 91 ; theory of optical

convection 275
Stresses, Maxwell's 35, 81, 207 £f.

Structural formulae, in chemistry 680
Structure of positive electricity 585

Temperature and radiation 326, 438
Thermionics 441
Thermodynamics and kinetic theory 399
Thermoelectricity 425, 448, 455, 459,

461
Thermoelectromotive force 469
Thermomagnetic effects 434
Thomson effect 429. 448, 452
Transparency of quartz 159
Tubes of force 16, 22

Unit of current 89
Unit of electric charge
Units, electrical 109

13

Valency, chemical, and atomic structure

571, 578
Values, actual and mean 65
Velocity, addition of, on principle of

relativity 302 ; of light in the gravita-

tional field 623 ; of propagation of

electro-magnetic field 121; of second-
ary /3 rays emitted by characteristic

X rays 504; wave 252

Wave of reorganization 258
Wave, plane-polarized electromagnetic

124
Wave-length of X rays 613
Waves, electromagnetic 115
Wien's law 337; displacement law 343;

radiation formula 364

X ray excitation 505, 604
X ray spectra 513, 605
X rays, ionization by 504
X rays, and crystals 498, 509 ff.;

jS secondary 503 ff., 605; character-

istic, absorption of 497 ff., 503;
characteristic, velocity of secondary

j8 rays emitted by 504
;
polarization

of 488 ; scattering of 485 ; wave-
length of 613

Zeeman effect 373, 521, 526; inverse

638; theory of 373, 521, 606
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