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PREFACE.

THIS work on Elementary Algebra has been written
at the request of the Syndics of the Cambridge
University Press, and is intended to include those parts
of the subject which most Schools and Examination
Boards consider as covered by the adjective elementary.
The discussion, herein contained, of Permutations and
Combinations, the Binomial Theorem, and the Expo-
nential Theorem—subjects which are sometimes in-
cluded in Elementary Algebra, and sometimes excluded
from it—should be regarded as introductory to their
treatment in larger text-books,

I have in general followed the order of arrangement
and method of presenting the subject which are tra-
ditional in England. T hope that the Table of Contents
will enable the reader to find with ease the articles in
which any particular part of the subject is discussed.

It may assist a student who is reading the subject
for the first time, without the aid of any one to exp{a.in
his difficulties, if I add that the propositions here given
fall naturally into five groups, and that in the text
these groups are divided one from the other by col-
lections of miscellaneous questions or examination
papers which have been set recently by various repre-
sentative Examining Bodies. All articles and examples
which are marked with an asterisk (*) may be omitted
by any one who is reading the subject for the first
time.



vi PREFACE.

I am indebted to the kindness of the Secretaries of
the Cambridge Local Examinations Syndicate and of
the Oxford and Cambridge Schools Examination Board
for permission to use the papers and questions which
have been set in the examinations held under their
authority. A large number of the examples' inserted
at the end of each chapter are, except for a few verbal
alterations, derived from one or other of these sources,
and indicate the tests of a knowledge of the subject
which are usually applied: those questions which are
marked with an asterisk are intended for the more
advanced students only. The numerous examples in-
terspersed in the text of each chapter are in most cases
easier than those placed at the end of the chapters,
and can be solved by a direct application of the rules
given in the text. '

I gratefully acknowledge my obligations to Dr
Forsytint)f Trinity College, Cambridge, Mr Platts of
Trinity College, Cambridge, Mr Tucker, the Secretary
of the London Mathematical Society, formerly of
St John’s College, Cambridge, and now of University
College School, London, and Mr R. T. Wright of
Christ’s College, Cambridge, who have generously de-
voted considerable time to the dreary task of reading
the proof-sheets and verifying the results of the
examples. Their suggestions and remarks have been
of great assistance to me, and have saved the book
from many imperfections and obscurities.

I shall be grateful for notices of misprints, cor-
rections, or criticisms on the work which may occur
to any of my readers.

W. W. ROUSE BALL.

TriNrY CoLLEGE, CAMBRIDGE,
October, 1890,
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CHAPTER 1
DEFINITIONS AND NOTATION.

1. Algebra is a science which treats mainly of
numbers.

The distinction between arithmetic (which is also
concerned with numbers) and algebra may be stated as
follows. In arithmetic, every number is distinguished
from every other number by the use of a certain figure or
figures; but in algebra, we use symbols (such as the
letters of the alphabet a, b, «, , &c.) to represent any
number whatever. We may, in a special problem, give
a particular numerical value to one or more of the
letters introduced, but our processes are general, and the
letters may usually stand for any numbers whatever.
Numbers represented by letters are often called
quantities.

It is customary to employ not only the letters of the
English alphabet, such as a, b, c,..., zr A4, B,C,..., and
those of the Greek alphabet, such as a, 8, ry,..., but
also letters with accents, like @', a”, ..., or with suffixes,
like a,, a,,..., each of which may represent any number.

Thus the numbers represented by letters, like a, &', a”, a, «3},

will generally be different, and will have no connection one wi
the other. :

2. Symbols. Each of the quantities like a, b,
a,b,a,b, is termed a symbol.
B. A. 1



2 DEFINITIONS AND NOTATION.

The numbers denoted by algebraical symbols are
abstract numbers. :
Every concrete quantity, such as a length, an area, a time,
a weight, &c., is measured by the number of units of its own
kind which it contains. Thus a length may be expressed as
foot, 6 inches, &c., according as a foot or an inch is the unit of
ength. The numerical measure of the quantity, that is, the
number of times the unit is contained in it, is ca.lf'ed an abstract
number; such as 4 or 6 in the case above given.

3. Symbols of Operation. The operations or
processes of algebra are denoted by certain signs which
are known as symbols of operation. With many of
these symbols, such as +, —, x, +, &c. the student
has already become acquainted in arithmetic.

The words “of operation ” are often omitted, and, for
brevity, these symbols of operation are called symbols.
They cannot well be confused with the symbols defined
in Art. 2, and no difficulty is found to arise from this
double use of the word. ' .

4. Expressions. Any combination of symbols by
algebraical processes is called an algebraical expression.

In other words, any combination of letters, which
denote numbers, by means of symbols of operation is
called an algebraical expression.

5. It follows from the definition given in Art. 1, that algebra
may from one point of view-—and this is the best way of present-
ing it to one who is reading it for the first time—be regarded as
a generalization of arithmetic. This is historically the origin of
the science, which was indeed once known as universal arithmeti

The description of algebra as a universal arithmetic may be
illustrated by shewing how its notation enables us to express
various arithmetical relations in a concise and general manner,

For example, if a man walk for 4 hours at the rate of 3 miles
an hour, he will walk 3 x4.miles ; if he walk for 2 hours at the
rate of 4 miles an hour, he will walk 4x 2 miles. Now these
and all similar conclusions may be included in a single state-
ment or formula. Let us say that a man walks at the rate of »
miles an hour (where the letter v stands for 1, 2, 3, 3}, or any




DEFINITIONS AND NOTATION. 3

number, whether fractional or not), and let us suppose that he
walks for ¢ hours (where the letter ¢ also stands for any number
whatever), then the number of miles he will walk will be the
roduct of » and ¢, If we represent this number of miles by the
etter s, then s=vx¢ This algebraical relation includes every
particufa.r numerical example otge the kind in a single statement.

6. We shall begin by describing some of the %ro-
cesses, and defining some of the terms, used in algebra.
It will be noticed that in many cases these definitions
are the same as those with which the student is familiar
. in arithmetic.

7. Addition. The result of adding two or more
numbers together is called their sum.

The operation of addition is denoted b{ the word
plus, which is represented by the symbol +. This
s});mbol, when written between two numbers, signifies
the operation of adding the number placed after the
symbol to the one placed before it.

Thus 2+ 3(read as two plus three) indicates that we are to add
3 to 2. Soa+b (read as a plus b) indicates that we are to add
the number denoted by the letter b to that denoted by a.
Similarly x+y+2 (read as x plus y plus z) indicates that we are
first to add y to x, and thenboadgztothatsum.

8. Subtraction. The result of subtracting a
smaller number from a greater number is called the
difference of the two numbers.

The operation of subtraction is denoted by the word
manus, which is represented by the symbol —. This
s{mbol, when written between two numbers, signifies
the operation of subtracting the number p! after
the symbol from that placed before it.

Thus 7-3 gzad as seven minus three) indicates that we are
to subtract 3 from 7. So a—b (read as a minus b) indicates
that we are to subtract the number denoted by the letter b
from that denoted by the letter a. Similarly a+b—¢ indicates
that we are first to add b to @, and then from the sum to
subtract c.

1-2



4 DEFINITIONS AND NOTATION.

9. 8igns. Many symbols of operation are em-
ployed in algebra, but the word sign, when used
alone, is generally taken to refer only to the symbols
+ and —.

10. Positive and Negative Quantities. It is
evident that addition and subtraction are processes
opposed to one another. If +a means increasing a
quantity by @, then —a must mean decreasing it by a;

and if these operations be performed in succession, no
effect will be produced.

If, for instance, a certain length measured along a line from a
fixed point (estimated say in feet) be given, then +a will repre-
sent a feet in that direction. Hence —a must represent a feet .
- in the opposite direction, since the effect of the two taken in

succession is to be nothing, :

So, if we are considering a man’s income (reckoned say in
pounds s’oerling), then +a will signify an addition of £a, and —a
will signify a decrease of £a. If however we are considering his
expenditure, then +a will signify an increase of £a, while —a
will refer to what decreases his expenditure by £a. Thus, if I
earn 20 shillings and then lose 5 shillings, tﬁe result may be
stated either by saying that 1 have gained 15 shillings, or that I
have lost — 15 shillings.

Similarly, if +a represent a distance of @ miles to the north,
then —a will represent @ miles to the south; and vice versa.
Thus, if I walk 10 miles to the north, I may be said to have
walked — 10 miles to the south. '

So again, if a man be # years older than a boy, the fact -may
a}llso be expressed by saying that the boy is — years older than
the man. .

11. The quantities + a and — a are in fact always
equal in magnitude but opposite in character, and we
use the signs + and — to signify this difference in their
nature or quality, without any regard to whether the
quantities to which they are prefixed are actually added
to or subtracted from any other quantity.
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12. Multiplication. The number obtained by
multiplying two or more numbers together is called
their product. Where more than two numbers are
multiplied together their product is sometimes called
their continued product.

The operation of multiplication is denoted either by
a dot (.) or by the symbol x. Either of these symbols,
when placed between two numbers, signifies the opera-
tion of multiplying the number placed before the
symbol by the number placed after it.

Thus 7 x5 or 7.5 (either of which is read as five times seven
or seven multiplied by five or seven tnto five) indicates that we
are to multiply 7 by 5. The latter form, namely 7. 5, might be
mistaken for the decimal fraction 7'5 ; and it is therefore better
to avoid using it, if there be any chance of confusion. So the
product of 2 and the number denoted by a can be represented
either by 2xa, or by 2. a; it is also often written as 2a, the dot
between the 2 and the a being left out. Similarly the result of
multiplying the number denoted by @ by the number denoted by b
is represented either by a x b, or by a., or by placing the symbols
side by side; thus, ab. Itis evic{ent that this latter form of re-
presenting the result cannot be used where both the quantities
are arithmetical numbers: thus the symbol 75 is used to denote
seventy-five and therefore cannot be also used to denote five
times seven.

Of the methods of denoting multiplication of alge-
braical quantities which are above described, that of
placing the symbols (which represent the quantities)
side by side is the most common.

13. Factors. Each number in the product of
several numbers is called a factor of the product.

If the factor be a number expressed in figures, it is
called a numerical factor: if it be a number denoted by
a letter or letters, 1t is called a literal factor.

14. Where several literal factors occur in the same product,
it is usual to write them in their alphabetical order and to place
the numerical factors first. Thus we generally write the product
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of 5, a, b, and ¢ as babe, and not ax5xcxb (or any similar
order). Similarly it is usual to write the product of a and x as
az, and not as za, though it is always permissible to use the
latter form if it be more convenient. e shall see later that we
infer from arithmetic that it is immaterial in what order the
numbers which form a product are multiplied together.

15. Coeflicient. Each expressed factor in a pro-
duct (or the product of some of the factors) is called
the coefficient of the product of the remaining factors.

A coefficient may be a product of an arithmetical
number and a number denoted by a letter or letters.

If the coefficient be a number expressed in figures,
it is called a numerical coefficient : if it be a number
denoted by a letter or letters, it is called a lteral co-
effiorent. '

Where the coefficient vs unity <t 18 usually omitted.
For example, we write  and not 1 x .

Thus in the product 6ada, the coefficient of abx is 6, which is
a numerical coeflicient ; the coefficient of ax is 6b ; the coefficient
of x is 6ab ; and so on.

Similarly in the quantity y, the coefficient of y is unity.

16." Division. The result of dividing one number
by another number is called the guotient of the first
by the second. The number divided is known as the
dwidend, and the number by which it is divided is
called the divisor.

If there be no remainder, then the dividend is said
to be exactly divisible by the divisor. ‘

The operation of division is denoted either by the
symbol +, or by the symbol /. Either of these symbols,
when Flaced between two numbers, signifies, the opera-
tion of dividing the number placed first (the dividend)
by the number placed after it (the divisor). The
symbol / is calles a solidus: it is desirable that the
student should know its signification, but except in this-
chapter we shall use it but rarely.
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The operation of division may also be represented
by a fraction having the dividend for numerator and
the divisor for denominator.

. = Thus either 35+7 or 35/7 (read as thirty-five divided by seven
or thirty-five by seven) indicates.that we are to divide thirty-five

(the dividend{) by seven (the divisor). The operation can also
- be indicated by the use of a fractional form, as 4f. So any of

the forms a-b, a/b, org indicates that we are to divide the
number denoted by @ by the number denoted by b.

17. Brackets. We sometimes want to isolate a
particular set of quantities, and treat them for the
moment by themselves as if they were a single quan-
tity. This is effected by placing them within a pair of
brackets. The same result may be otherwise denoted
by drawing a line, called a vnculum, over the quantity
it is desired to isolate.

Brackets of various shapes are used,suchas ( ), { },[ }

The methods of treating brackets, and of removing or insert-
ing them, will be fully explained in chapters ir. and m1.; but
their use and meaning may be here illustrated by considen:‘:s
an expression such as a - (b+c¢). Here the part d+c¢ is enclo
in a bracket, it is therefore to be treated as a single Sl’uantity:
thus the sum of b and ¢ is to be subtracted from a. The same
result might also be denoted by drawing a vinculum over the
b+ec: thus, a-b+c.

Similarly (a+b)(c—d) signifies the product of the sum of «
and b and the quantity obtained by subtracting d from c.
So again {a — (b+¢)} [b - c] indicates the product of the expres-
sion in the brackets { } by the expression in the brackets [ ]: the
uantity in the brackets { } is found by first adding ¢ to b and
then subtracting their sum from a, the quantity in the brackets
[ ]is found by subtracting ¢ from b.

18. Equality. The symbol = represents equality,
and stands for the words s equal to.
Thus a=b (read as a 8 equal to b or a equals b) indicates

{:)ha.z the number denoted by @ is equal to the number denoted
y b.
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19. Other Symbols of Operation. The‘follow-
ing symbols of operation are used as abbreviations for
the words against which they are placed.

The symbol > stands for is greater than.

............ < cieeenen. 8 less than.

............ F .cceeve.. 18 n0t equal fo.

............ > ......... 18 not greater than.
............ 4 ......... 18 not less than.

............ + ..ccee.. plus or minus.

............. ", veeeees.. therefore.

............ 0 eeeeeee.. Decause.

............ ~, when placed between two numbers,

stands for the difference between them.

Thus 7 x5=385 signifies that five times seven is equal to
thirty-five.

Again (a—b)>c signifies that the result of subtracting the
number denoted by b from the number denoted by a is greater
than the number denoted by c.

So a~b indicates the difference between the numbers de-
noted by @ and b. ’

20. We shall now give a few examples to illustrate
the above notation. The beginner will find it desirable
(i) to write every step in a line by itself,
(ii) to place each fresh line below the one last written,
(iii) to keep the symbols for-equality in a vertical line.

Should it be necessary to explain’ how one step is
derived from the one immediately preceding it, the
explanation should be written between the two lines.

To save space, explanatory statements and successive
steps are often printed in the same line, but in writing
his work the student is recommended to follow the
above rules.
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Ex. 1. What is the numerical value of x+a when x=86,a=21
In this case, r+a=6+2
T =3
Ex. 2. If m=2, n=1, =3, y=1, find the numerical values
of (i) 2m+n(x—2y); (ii) (2m+n)(x—2y); (iii) (m —n)(z-3).

These are three separate examples. We shall take them in
their order.

(i) Here 2m=2x2=4,
Also, z-2=3-@x1)=3-2=1,

and <on(z-2y)=1x1<)

o 2mtn (v —-By) =441
=5.

(i) Here om+n=4+1=5,

and z-2=3-2=1.

o (m+2n) (r-2y)=bx1=5.

(iii) Here m-n=2-1=1,

and r-3=3-3=0.

But the product of two numbers, one of which is zero, is itself
zero. Hence (m—n)(z-3)=1x0
=0.
Note. The student should remember that the sum of a
number of quantities, each of which is zero, is necessarily eaual to

zero; and therefore the product of a number of quantities, of
which one is zero, must be equal to zero.

EXAMPLES ON THE ELEMENTARY PROCESSES. I A.

1. Write down the continued product of a, 2, 3, and b.

2. What is the numerical value of 7ax when a =3} and 2= 31
And what is the numerical value when a=2 and z=1

Write down the coefficient of # in the following quantities,
numbered 3 to 6; and state whether the coefficient is literal or
numerical.

3 Tx 4. 23ax. 5. my. 6, =
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What are the numerical values of the following quantities,
numbered 7 to 10, when a=1, =2, y=3?
3ax . xy
1. 7 . 8. Yy 9. 3a" 10. .’l:‘/y.
What are the numerical values of the following quantities,
numbered 11 to 14, when a =2, b=4%, c=3, d=1?

1L abed 12 ath 13 bia M. O
15. What is the numerical value of the quotient of (a - b)
by ¢, when a=11, b=2, and ¢=31

16. State in words the meaning of the expression
{(@a=8)~(c-d)}+(a-c).
17. Find the numerical value of
5a+3b - {(c+d)+(c—d)}+2e,
when a=1, b=4, c=4, d=},e=}.
18. If A gained £7 and lost 12s. how much did he lose as
the result of the whole transaction ?

19. If A walked 7 miles in a S.W. direction, how far did he
walk in a N.E. direction ? '

21. Powers. When a quantity is multiplied by
itself a number of times the resulting product is called
a power of the quantity.

Thus xz is called the second power of x, or the
square of =, or x squared; xxx is called the third power
of =, or the cube of x, or x cubed; xxxx is called the
Jourth power of = ; and so on. '

- 22. Indices. Exponents. The square of z is
usually denoted by #* instead of by a, the small number
placed above and to the right of 2 shewing the number
of times the factor 2 has been repeated to form the pro-
duct. The cube of z is similarly (ﬁ;noted by 2’ instead of
azz. And generally, if the factor # be repeated n times,
the result 1s written as #". The small number or letter

- placed above and to the right of the symbol, and which
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denotes the number of times the symbol is repeated
in the product, is called the index, or exponent.

When the number & is taken by itself, it might
be called the first power of # and denoted by a*, but if
the index be unity it is usual to omit it.

Thus, the fifth power of z, or zaxxx, is denoted by 2%; and in

this case, 5 is the index, exponent, or power. So 2# denotes the
nth power of x, and is usualf; read as x to the power n.

A similar rule applies to more complicated products.

Thus a%3 is written instead of aabbb. So Tazy4 is written
instead of 7axrzyyyy.

Note. Beginners are sometimes apt to confuse the index
(which denotes the power to which a quantity represented by
a letter is raised) with a suffix (which is merely used to dis-
tinguish the quantity from other quantities as explained in
Art. 1). They have no connection. The student will also notice
that the number which represents an index is written above and
to the right of the symbol to which it refers, while the number
which represents a suffix is usually written below the symbol to
* which it refers.

Example. If a=2, b=3, z=4, y=1, find the numerical
values of (i) 3by?; (i) a®—»?%; (iii) 22-b¥; (iv) @¥+y.
i . 3by?=3xbxyxy
=3x3x1x1
=9.

(ii) Here P?=2r0x=4x4=16,
and YP=yy=1x1=1
coa2-yi=16-1
=15,
(iii) Here . *=42=4x4=16,
and bv=31=3.
st —bv=16-3=13.

(iv) Here av=2'=2, and y=1.
aVy=2+1=2
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"EXAMPLES ON THE NOTATION OF INDICES. I. B.

If a=1, b=38, ¢=2, x=2, y=>5, find the numerical values of
the following expressions. -

1. 2742 4. 2+ec 7. 2
2. 2ay? 5. a%-+y2 8 av.’
z? a+b Kl
3. 25" 6. - 9. bre
If a=2,8=1, I=m=3, find the numerical values of
10. a%+p% 13. 2m°. 16. 3aB’Bmt
11. «*-3g8. 14, 3a%B. 17, I*-a
2 -
2 8. 15 34", 1. =7
a . B a
If a,=3, a,=2, a,=4, find the numerical values of
19. a?-ax,. 20. a2-a,. 21. aa’agd
If a=1, b=3, =0, y=2, find the numerical values of
22, Tax? 24, 2022 26. 3ay?-—2b%r
23. y2-a% ' 25, b*+y. \ 27. b*-2xy.

If a=4, b=3, =2, y=1, find the numerical values of

28, (a2 +5%) (a2 -g?). | 30. 2{a?—(B2-aB)}. | 32 (4°+9%)/(z+9).
29, 3a-(b—2z+2)% | 3L 223 (a—b). 33, (a8 —43)2.

23. Roots. 8Surds. The quantity which when
raised to the n' power is equal to any number such as
a is called thé n* root of a.

The n't root of @ is represented by the symbol ¥a,
which is called a surd.

It is usual to call the number which when squared
is equal to a the square root of a (and not the second
root of @). It is denoted by ./a, or more often by /a.

Similarly the number which when cubed is equal
to a is generally called the cube root of @ (and not the
third root of a); it is denoted by Ja.
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Where no exact number can be found which is the
nt root, of a, then the n'® root of a is called an trrational
quantity or an irrational surd.

An expression which involves no irrational quantity
is said to be rational.

The symbol 4/ is known as the radical or the radical
sign.
Wherever the radical sign is followed by more than

one symbol it is desirable to put all the quantities on
which it operates within brackets or under a vinculum.

Thus the square root of the product of ¢ and b would be

denoted either by /(ab) or by A/ab. The expression J/ab
signifies the product of b and the square root of @, but it is
80 likely to be mistaken for N/(ab*) that we should avoid its use,
and should express the product of & and the square root of @ by
by/a, where the radical sign only affects the quantity immediately
before which it stands.

Ex. 1. If a=3, x=1, c=11, find the numerical values of
() W3a; (i) J(@-a); (i) Ja®-2¢; (iv) Y(as?).
@M . V3a=+3x3

=3.

(ii) N(z—a)=s(7-3)
=J4
=2

(i) Y= 2c=n/49—-22
, =327
=3.
(iv) V(az?)=3/(3 x 49)
=‘:/ (147)7
and as there is no exact number whose cube is 147, either we

must leave the result as an irrational surd, or we can (by arith-
metic) find the value to as many places of decimals as we like.
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Ex 2. If a=4, b=1, x=3, find the numerical values of
() Wa+a; (@) J@@+a); (i) JaF-2@+a)(b+a)

(@) (W2d)+a=r+a=3+4=4%.
(ii) V@@ Ta)=A9+4=N{=4.
(i) Na=F=2(a+z) B+2) =4 -2(4+3)(1+3)
° =:/64 -2x7x4
=38
=2,

EXAMPLES ON THE NOTATION OF SURDS. L C.

Find the numerical values of the following expressions, when
‘a=1,b=3, ¢c=1,d=2.

1 avFe. 3. NBE-Pate). | b JEb+d)
2 G-dVE | 4 YBd+Ja+D-1.| 6 N D,

If a=4, b=2, =1, y=}, find the numerical values of

7. Wabs. ’ 9, (22— 4bye). |11. @-y)Vb—z.
8. Vi-3y. 10, Vozr+a 12. (2*—yt) V@ +5.

13. Express in words the meaning of the expressions

@) @+t Nad-EF+e); (i) atdba?-@+d).

And find their numerical values, when a=3, =2, ¢=1,

24. Terms. When an algebraical expression is
made up of a number of component parts, connected
by the symbols + and —, each part is called a term.

Terms which differ only in their numerical co-
efficients are called like terms.

A term preceded by the symbol + is called a posi-
tive term, or a positive quantity ; and it is said to have a
positive sign. A term preceded by the symbol — is
called a negative term, or a negative quantity ; and it is
said to have a negative sign.
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When no symbol is prefixed to a term it is con-
sidered to be positive. _
Thus in the expressions 2ax® — 363 — bxyz and Tatz + 43+ xy2
the terms —3b% and 4%® are like, as are also the terms —bayz
and +azyz; but the terms 2as? and 7a%z (though they contain
the same letters) are unlike, since the powers to which ¢ and »
are respectively raised are different. e terms 2a4% 7a?z, 453,
and xyz are positive terms: the terms —35 and —8ayz are
- negative terms.

25. Simple and Compound Expressions. A
simple expression consists of one term only. A com-
pound expression contains more than one term.

A simplé expression is sometimes called a monomial.
If a compound expression consist of two terms, it is
called a binomial ; if of three terms, a trtnomial ; and if
of more than three terms, a multinomsal or polynomial.

Thus 5ab%3 is a simple expression, a +b is a binomial,
23433+ 2% is a trinomial, and so on.

Again 223 — 3ax?—br+4+a?b is a compound algebraical
expression, made up of five terms. The first term is 243, the
second is 3ax?, the third is bz, the fourth is 4, and the fifth
is the quotient of a? by b. The first, fourth, and fifth terms are
E)ﬂitive terms, the second and third terms are negative terms.

o two of the terms are like.

As one more illustration, consider the expression

[W{a2+ B2+ 2% - a] (v + D).

Although this looks complicated, it is a simple expression ; it
consists of the product of two quantities, namely that enclosed
in the brackets ( ) and that enclosed in the brackets [ ] The
quantity enclosed in the brackets ( ) is a binomial expression,
consisting of the sum of two terms. The quantity enclosed in
the brackets [ ] is also a binomial expression, consisting of the
result of subtracting a from the square root of the expression
enclosed in the brackets { }. This last expression, namely that
enclosed in the brackets { }, consists of the sum of 22 and of the
square root of the sum of 5 and 22

26. Degree or Dimensions of a quantity. A
quantity which is the product of n letters is said to be
of the n* degree or of n dimensions.
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In reckoning dimensions, numerical factors are not
counted.

Thus each of the quantities abc, 2¢%, and —32° is of the
third degree, or of three dimensions. -

Sometimes we speak of the dimensions in a lpa.rt.i—
cular letter, and we then confine ourselves to that letter

Thus 2a2b is of two dimensions in @ and one dimension in b.

27. Degree or Dimensions of an expression.
The degree of an expression is the degree of the term of
highest dimensions in it. In estimating it, it is usual
to confine ourselves to only one letter.

An expression which is of the n® degree is said to
be of n dimensions.

An expression which is of the first degree in a
letter is said to be linear in that letter.
Thus % +2y%+ 33 is of the second degree in #, but it may be

said to be of the third degree if all the letters are taken into
account.

28. Homogeneous Expressions. A compound
expressmn is said to be homogeneous when every term
in it is of the same dimensions.

Thus the expression x’ +zy%+ 28 is homogeneous in.x and
andlsoftheth?rd degr y KL o8e %

29. Formula. Identity. When an algebraical
- expression can be written in two ways the result ob-
tained by equating one to the other is said to be an
algebraical formula or identity.

Examples will be given later [see ex. gr. Art. 87].

30. It is desirable to warn the beginner to be careful to
observe both the order and the extent of the operations indicated
in an algebraical expression.

Thus a+ b x ¢ or a+ be signifies that the product of b and ¢ is
to be found and then added to @, while either (a+b) x cor (@ +b) ¢

or a+b. c signifies that the number which is formed by adding
b to a is to be multlphed by c.
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So again J/a+b signifies that b is to be added to the square

root of a, but 4/(a+b) or A/a+D signifies the square root of the
sum of @ and b. '

It is obviously undesirable to use forms of notation which re-
semble one another so closely as those above written, and which
are liable to be mistaken the one for the other; and in practice
we shall avoid the use of forms which a careless reader might

regard as ambiguous.

EXAMPLES ON ALGEBRAIC NOTATION. I.D.
1. What are the numbers seven and three called respectively
in the expression 7a3?

2. Define what is meant (i) by 22, and (ii) by 32. Which is
the greater when =1, and which is the greater when 2=21

3, Write down the continued product of 3, b, b, ¢, and .

4. Write down the sum of the five quantities given in Ex. 3.

What are the dimensions of each of the following quantities ?
6. zyz. 6. 3azt. T. 2022 8 bz 9. 2 10, am

11. What are the dimensions in z of each of the quantities
given in Exs. 5,6, 7, 8, 9, 10?

State the dimensions in x of the expressions numbered 12 to 14.

12, 2-3x. 13. 3ax?- 723+ 2a%2. 14, 2m-oan

15. Are any of the terms in the following expression like

terms ?
2a23 — b2+ 3222+ 3b3 — Sabx.
16. If a=8, b=>5, c=1, find the numerical value of
¢ N10ab+b A/Bac+a «/45bc.
If =2, find the numerical values of the expressions 17, 18,
I AL R N N BT
19, If a=1, b=3, ¢c=4, d=0, find the numerical values of
@) 3ab®-d[beE+2(c=b)]+ac(bP—cd)+§d;
(i) Va+2 | 3(a+2b)
a+2b+d " 2-a °
20, If a=3, b=4, c=5, d =6, find the numerical values of
@) 2B+ + B —ad-dB (i) 2 (a+b) (c+d)—(b+c)(d+a) )
d-c+b-a ’ ab+cd —be - da
B. A. 2




CHAPTER IIL
ADDITION AND SUBTRACTION.

31. THE first thing that we have now to do is to
learn how to add, subtract, multiply, and divide alge-
braical expressions. These operations will constantly
. occur in all our subsequent investigations, and it 1s
necessary to know how to effect them with accuracy
and facility before we proceed any farther.

We shall deal in this chapter with the rules for
adding and subtracting algebraical expressions, and
shall consider first the case of simple expressions and
next the case of compound expressions.

32. Addition and Subtraction of Simple Ex-
pressions. The addition of a number of simple quan-
tities is indicated by writing them down in succession,
each preceded by the sign of addition, namely + [see
Art. 7). If any one of them has to be subtracted, it
must be preceded [Art. 8] by the sign of subtraction,
namely —.

Thus to indicate the addition of b to @ and then the sub-
traction of ¢ from the result we write a+b—c.

We cannot simplify this until we know what numbers or
expressions are represented by a, b, c.

33. Order of addition is immaterial. In
arithmetic it is shewn that the sum or the difference

of several numbers is the same in whatever order the
additions or subtractions are made. We assume that
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the same will therefore be true of numbers when they
are represented by algebraical symbols.

Thus the sum of ¢ and b may be written indifferently as
a+b or b+a.

It is easy to verify this statement by giving ¢ and &
numerical values, or considering some particular case (such as
one in which a and b stand for a number of shillings, or for
lengths measured in some given direction); and all similar refer-
ences to arithmetic can be tested in like manner.

By similar reasoning the expression

a-bte-d
may also be written (among other ways) as
a+c-b-d, ora-d-b+e¢, or ct+a-d-b.

Any difficulty that may arise from negative quantities will be
explained later.

34. Combination of like terms. Where like
terms occur, they can be combined into a single term.

(i) Where the like terms are of the same sign
they can be replaced by a single term of the same sign,
like either of them, and having a numerical coefficient
equal to the sum of the numerical coefficients of the
separate terms.

For example, to add 2a to any quantity and then to add 3a
to it is equivalent to adding 5a to it. That is,

] 20+ 3a=>ba.

Similarly, to subtract 2a¢ from any quantity and then to
subtract 3a from it is equivalent to subtracting 5a from it.
That is,

-2a -3a= —b5a.

(ii)) Where two like terms are of opposite signs
we take the difference of the numerical coefficients
and affix the sign of the greater.

For example,

3a-2a=2a+ a-2a=+a,
2a-3a=2a-2a— a=-—a.

The terms may cancel one another. For example,

222 — 28— 22=0,
2—2
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(iii) Where there are several like terms, some
positive and some negative, first, as in case (i), we
combine all the positive terms into one term, and all
the negative terms into another term ; and then, as in
case (ii), we combine these two terms into one term.

. For example,
4a+2a-3a+a~ba=4a+2a+a—-3a—-5a
=Ta-8a

=-a.

35. Simplification of Expressions by Col-
lection of like terms. There may be different sets
of like terms in the quantities to be added. In such
a case all the like terms of each kind can be collected .
together, and then combined into one term. The final
result will be the sum or difference of the terms so
formed. ) ;

For example, the expression

3a+b+2a-3b-4a+b=3a+2a—-4a+b+b-3b
=5a—4a+2b-3b
=a-b.

EXAMPLES. II A.

Find the values of the following expressions by combining -
like terms.
—a+2b+3c—2a —2c+2b+3a.
-Ya+c-2b+n—-$a+dn—3e.
22423 — 22 —3y2 4 222 — T2+ 2
ja-b+3b-}a+%b-}a.
43¢~ 4r+ g - 4P+ 27— .

a a a ,a .

333t 4
Na+23b-Ja-\Jb.
2Ja+c—38/b+Ja+2/b-3e.

I N X
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36. Addition of Multinomials. 70 add to any
quantity ‘@ multinomial expression write down every
term of the multinomial with its own sign prefived.

To prove this rule, let us consider the addition to
any quantity of a binomial expression like (a +b) or
(a—0).

In the case of a+ b both the terms are positive.
Now we know from arithmetic that to add a to any
quantity and then to add b to it is equivalent to adding
their sum (a+b) to it. That is, '

+@+b)=+a+b............... (A).

In the case of a —b the terms are of opposite signs,
and we will suppose for the present that @ >b. Then,
if we add a to the given quantity we shall have added
b too much, and therefore must subtract b from the
result. That is,

+@—b=4+a->b......c........ (B).
A similar proof evidently applies to the case of any
multinomial, and hence the rule given at the head of
this article follows.
Thus, for example,
+(a+b+c)=+a+b+c,
© and +(@a-b-c)=+a-b—-c

Ex. Find the sum of (a+b-c), (2a+4c), and (3a —2b—3c¢).

The sum =(a+b-c)+(2a+4c)+ (3a—2b~3c)
=a+b-c+2a+4c+3a—2b--3c.

Collect like terms,
.*. the sum =a+2a+3a+b—-2b—c+4c—-3¢c
=6a—b.

37. Process of addition. It is often convenient
to write the expressions so that the like terms come in
vertical columns, and then add them as in arithmetic.
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Thus the above example would be written

a+ b- ¢

2a +4c

3a—-2b-3¢
Add, 6a- b

38. The numerical coefficients may be fractional
as in the following example.

Ex. Add together x+y— 1z, v -}y, and 3y +2.
Here we have %x+ Y-}z

W+ 2z
x+fy+3e

39. Subtraction of Multinomials. 7o subtract
Jrom any quantity a multinomial expression write down
every term of the multinomial with its sign.changed;
that 1s, change every plus into a minus, and change every
minus into a plus.

To prove this rule, let us consider the subtraction
from a,nz quantity of a binomial expression like (a + b)
or (a—b).

In the case of a+b both the terms are positive.
Now we know from arithmetic that to subtract a from
any quantity and then to subtract b from it is equiva-
lent to subtracting their sum (@ +b). That is,

—(@a+bd)=—a—=b..ccccuenn.... ©).

In the case of a — b the terms are of opposite signs,
and we will suppose for the present that @ >b. Then,
if we subtract a from the given quantity we shall have
subtracted b too much, and we must therefore add b to
the result. That is,

—(@a=b)=—a+b.....cc.cu.... (D).

A similar proof applies to the case of a multi-

nomial, and hence the rule given at the head of this
article follows.
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Thus —(a+b+c)=—-a-b—c,
—(a—b-c)=-a+b+c,
and ~(a+b-c)=-a-b+e

40. Extension of results. The results (B) and
(D) of Arts. 36 and 39 were proved true on the hypo-
thesis that a was greater than b. We shall now see
under what conditions we may regard them as true for
all values of a and b.

If they be true for all values of a and b, we may
put @ =0 in them. We shall then get

+ (_ b) =-=b,
—(=b=+0d

The first of these results shews that the addition of
a mnegatwe quantity must be taken as being equivalent
to the subtraction of a positive quantity of the same
magnitude. The second shews tg:: the subtraction of
a negative quantity must be taken as being equivalent to
the addition of a positive quantity of the same magnitude.

Neither of these operations is discussed in elemen-
tary arithmetic, but if we take them to have the
meanings above given, then it will be found on trial
that the equations (B) and (D) are true whatever be
the numencal values that we give to the symbols.
Therefore, on this hypothesis, we may consider those
equations to be true for all values of the quantities
involved.

For example, to subtract z —y + z from 2¢+ 3y, we have

@z +3y)—(r-y+2)=20+3y-2+y -2
=z+4y -z

Hitherto we have supposed that our algebraical
symbols denoted positive numbers only, for if a symbol
had denoted a negative number we could not have
subtracted it from any other number. We now know
the meaning to be assiguned to the addition or sub-
traction of a negative number, and henceforth we shall
consider that our symbols may stand for negative as
well as positive numbers,
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*41. The meanings obtained, in the last article, for the
addition and the subtraction of a negative quantity will be
found on consideration to be a natural extension of the results
of arithmetic, and to be consistent with the description given in
Arts, 10, 11 of negative quantities. But the metﬁod by which
we have found a meaning for these operations is worthy of close
attention, since it is one of which we shall make frequent use, and
on it large parts of algebra are founded. The following account
of the method may h(ﬁp the student to understand it better.

We have two relations, (B) and (D), which we have proved
in Arts. 36, 39 to be true in every case in which they are arith-
metically intelligible, namely, in every case in which the number
denoted by a is greater than the number denoted by . But if
certain numbers (ex. gr. whenever a is less than b) are sub-
stituted in these relations they involve operations (such as the
subtraction of a negative number) which are arithmetically un-
intelligible. Such operations have no meaning, and we can
make them stand for any thing we please, or define them in
any manner we like, provided that our subsequent use of them
is always consistent with the meaning so selected, and leads to
results which are not inconsistent with the meaning of operations
already employed. Now the use of algebra depends largely
on employing relations which are true whatever be the numrgzrs
for which the symbols stand. We therefore try to find a meaning
for these operations, not in an arbitrary way, but by extending
the arithmetical results so that our new meanings shall be con-
sistent with all the results already obtained, and shall thus allow
of our symbols having any numerioal values.

42. Process of subtraction. When one ex-
pression is to be subtracted from another, it is often
convenient to write the expressions so that the like
terms come in vertical columns, and then to subtract
them as in arithmetic—changing mentally the sign of
every term in the quantity subtracted, but not altering
the signs on the paper.

Thus the example given at the end of Art. 40, where z—y+:2
is subtracted from 22+ 3y, would be written thus :
22+ 3y
r— Y+z
Subtract, r+4y—z
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43. Removal of Brackets. A plus sign before
a bracket enclosing a quantity merely signifies that the
quantity is to be added ; while a minus sign before a
bracket enclosing a quantity signifies that the quantity
is to be subtracted.

Hence the results of Arts. 36, 39, 40 may be stated
thus. If, in a given expression, we have a quantity in a
bracket preceded by the plus sign, we can remove the
bracket provided we write down the terms inside it each
with its own sign prefized : if the bracket be preceded by
the minus sign, we can remove the bracket provided we
write down the terms inside it each with its sign changed.

For example,
a+(b-c)+(c-d)y=a+b-c+c-d
=a+b-d.
a+(b—c-d)-(-a-b+d)=a+b—c—-d+a+db-d
=2a+2b-c-2d.

44. Sometimes the quantities contained within
brackets are themselves compound expressions involv-
ing other brackets. In this case the brackets are made
of different shapes s0 as to enable us to pick out each

pair. :
Thus @ — {6 —[c— (d—e)]} means that we are to subtract from
a the quantity enclosed within the brackets { }. This quantity
is itself formed by subtracting from b the quantity wi(t’.hin the
brackets [ ]; and so on.

To find the value of such an expression, the beginner
will find it best to remove only one pair of brackets at
a time, and to begin with the innermost brackets.

Thus a-{b-[c—-(@-e)}j=a—{b-[c—d+e]}

=a—{b—c+d-e}
=a-b+c-d+e.

45. Introduction of Brackets. Conversely, we
can introduce brackets. Any of the terms of an
expression can be placed within a pair of brackets,
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preceded by the plus sign, provided no alteration is
made in the signs of the terms inside the brackets.
Similarly, any of the terms of an expression can be
placed within a pair of brackets, preceded by the
minus sign, provised the sign of every term within
- the brackets 1s changed.

For example, we may write a+b — ¢ in the form
a+(-c) or a—(-b+c).
Other ways of writing it are the following :
b+(a—c), b—(c—a), (a+b)—¢c, —(—a-b)-c.

Each of these forms reduces to a+b—c¢ when the brackets are
removed.

46. Algebraical S8um. We have shewn [Art. 40]
that the subtraction of a positive quantity is equivalent
to the addition of a negative one of the same numerical
magnitude ; and also that the subtraction of a negative
quantity is equivalent to the addition of a positive one
of the same numerical magnitude. Hence, subtraction
may be regarded as equivalent to an algebraical sum-
mation; and the result of subtracting one quantity from
another is often described as their algebraical sum.

Thus the algebraical sum of Ba,' —2a, and - 4a is equal to
ba—2a—-4a=ba—6a=—a.

This extension of the word sum to cover subtraction
as well as addition is convenient and saves much cir-
cumlocution.

NOTE. When hereafter we speak of the sum of
two or more quantities, or of adding certain quantities
together, we shall in all cases mean the algebraical
sum.

47. Inequalities. A similar extension of arith-
metical language has been given to the phrases greater
than and less than.
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In arithmetic, we say that the excess of a number a
over a number b is a — b, or that a number a is greater
than a number b by a — b, where, in both cases, a is
supposed to be greater than b. So long as a is greater
than b this is intelligible, but if a be less than b it is
arithmetically unintelligible. We therefore extend the
meaning of the phrase “greater than,” and say that
(whatever numbers a and b may denote) a 18 greater
than b by a—b.

Thus b is greater than 3 by 5—3, that is, by 2; similarly
3 is greater than 4 by 34, that is, by—l So - 2lsgreaber
than7by -2- 7thatls,‘ay —9. Again -3 is greater than
—1 by -3-(-1), that is, by —2; and so on.

48. We say also that a is greater than b, if a —b
be positive; and a is less than b, if a — b be negative.

This enables us to compare the magnitudes of any
two numbers, whether they be positive or negative.

For example, —2 is greater than -3, because -2-(-3)is
equal to +1, which is positive.

MISCELLANEOUS EXAMPLES. II B.

1. Add3to -2

2. Add -3to2.

3. Add -z to -y

4, Find the sum of 3, 3%, —3a%, Ty, 2 and - 5y2

5. Find the sum of a3, 323, —2a%z, —2a3, —32% and 2d%z.
6. Subtract 7 from 2.

7. Subtract 7 from —2.

8. Subtract b from a.

9. Subtract —x from —y. -

10.. If A gained 10s. and then lost £2, how much did he
lose? How much did he gain ?

11. Toa+b-xadd —2¢-b+y.
12. Add together z+y and 2 —y.
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13. Find the sum of 3a+2, —3a-2y, and z+3y.

14, From x+y subtract z-y.

15. From the sum of 2a+3b and 2b- 3a aubtract z+a.
16. What is the difference between a2 - b2 and a2+ 2%?
17. From bc+ 2ab — 3ca subtract 2bc+ ab - 3ca.

18. Add together 3a—(b-c), 3b—(c—a), 3c-(a—b); and
find the numerical value of the result when =6, b=3, c=2.

19, Add together

. 463 + (3a?c — 6b3c), 5b%c— (ad+3a’), ad - (20°+ 2b%).
Subtract (v + 2y +2) from (z - 2y +2) + (2y - 2).
Simplify [@+b— {a+b+c—(a+b+c+d)}]-a.
Simplify (a—b)— {3a—(a+d)} + {(a —2b)—(6a—2b)}.
Add together Ja+3}b+4c, fa+3b—13c, —3a-3b+}e
From %42+ }y® subtract 42 — y2+ 22,

From the sum of ¥+3m and —4m+3n subtract the
sum of $l—4n and }m - En.

26. A man is now a years old, how long will it be before
heis b {ea.rs old? What would be ‘the meaning of the result if
b were than a?

27. A walks 10 miles due north, then 15 miles due south,
and then 7 miles due north. What is the total distance towards
the south that he has gone ? ’

28. What quantity must be added to @ in order that the
sum may be b?

29. What quantity must be subtracted from @ in order
that the result may be a+561

30. What quantity must be added to a3+ in order that
the sum may be 231

31, What quantity must be subtracted from 22—g?2 in order
that the result may be 2y 1

32. By how much is # greater than y?
33. By how much is —b greater than -a?
34, By how much is 11 greater than —117?

35. Shew that, if #=2a+3b, y=38a—2b, z=b-4a, then
z+y+z=a+2b.

aﬁﬁﬁ?ﬁ



CHAPTER IIL
MULTIPLICATION.

49. WE proceed now to the consideration of the
multiplication of algebraical quantities, and shall dis-
cuss successively (i) the product of two or more simple
expressions, (ii) the product of a compound expression
and a simple expression, and (iii) the product of two or
more compound expressions.

50. Order of multiplication is immaterial.
In arithmetic it is shewn that the product of one
number a by another b is the same as the product of

b by g, that is, ab=0ba. Similarly,

abe = ach = bea = bac = cab = cha.
Thus it is immaterial in what order we multiply the
different numbers together. We assume that the same
is true of all algebraical expressions (whether they re-
present positive or negative quantities).

51. Product of S8imple Expressions. The pro-
duct of two or more simple quantities is indicated
by writing them down in a line separated, each from
the one next to it, by the symbol x, or by a dot (.), or,
in the case of literal factors, side by side without any
intermediate symbol [see Art, 12]

Where the result contains the same quantity re-

peated more than once, the result can be somewhat
simplified by using the index notation [Art. 22].
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Ez. 1. Find the product of 2abx and 3azy.

(2abz)(3ary)=2xaxbxxx3Ixaxzxy

=2x3xaxaxbxrxzxy
=6atbaly.

With a little practice, the result can be written down by inspec-

tion : and as soon as possible the student should solve such

questions by inspection only.

Ez. 2. Find the product of 3a*xy® and Yazs,
(Ba*zry?)(3ar®)=3 x k x aPax zx3x y®

52. Product of a positive and a negative
quantity. The explanation of the multiplication of
two numbers which is given in arithmetic is only in-
telligible if both the numbers be positive. If one of
them be negative, we have to find the meaning of an
expression like (—a) b or like a (—b).

The expression (—a)b signifies that — a has to be
taken b times.

oo (—a)b=(—a)+ (—a) + (- a) +......[b terms]
=@ =@ —0—..ovriennnrenen[b terms]
=—(at+ata+...... )  [b terms]
=—(ab)
=—ab.

The above proof applies only to cases where b is a whole
number, but, by the principle explained in Art. 41, the rule can
be extended to cases where b is a positive fraction.

The expression a (—b) may be written as (—d)a,
since the order in which the multiplication is made is
immaterial. But, by the above reasoning, (— b) a = — ba,
which is the same as —ab. Therefore a (—b)= —ab.

We shall defer for the present the consideration of

the meaning to be attached to the product of two nega-
tive quantities [see Art. 55]. :
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For example, the product of 3ab and —4cd is — 12abed. Here
al{’ the letters are different, and no further simplification is pos-
sible.

Similarly, the product of —2zy and 3« is — 623,
Similarly, the continued product of ab, be, and —ac is
(ab)(be)( — ac)=(ab¥e)( - ac)= - a%b?cs,

EXAMPLES, IIL A.
Write down the product of the following expressions.

1. 2ar and 3by. 2. 3ab and cd.
3. 7a% and THa2. 4. jabeand 2ab'cs.
5. 4ab, Tbe, 11cd, and 8da. 6. ax, bz, cx, d2?, esS, and fat.
7. ayz, bzx, and cxy. 8. ayz, abzz, and bizry.
9. }a¥s3, }b%r, and 63abry®. 10, 3%m, }min, and }in2
11. 7ar and —be. 12, -7ax and b2.
13. abz, bex, and - acz. 14. Bmx, —miny, and 3%

15. - 8a,a.a3 3ay0,0, 2050,0. 18, - 2% ky'z, and b’

53. Product of a Simple Expression and a
Multinomial. The product of a multinomial and a
number denoted by a letter is found by multiplying
every term of the multinomial by the number, and taking
the algebraic sum of these products.

Consider first the case of the product of a number
and a binomial. We know from arithmetic that to
add to any quantity n times the sum (that is, the
algebraic sum) of two numbers, @ and b, is equivalent
to first adding na and then adding nb. That is,

n (¢ + b) = na + nb,
and . n(a->b)=na—nb
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These results may also be proved directly by a
method similar to that given in Art. 52. For

n(a+b)= (a+d)+(a+d)+..... [n terms]
= a+a+...coeeenenneene....[n terms]
I I SRS [n terms]}

= na+nb.

Similarly,

n(@-d)= (a-b+(@->b)+...... [n terms]
= a+a+.cciciiueennn.. [0 terms]
—b—=b— e[ terms]}

= na-—nb.

Moreover, since the order of multiplication is im-
material, we shall also have
(a+b)n=an+bn, and (a-d)n=an—bn.
The same method is applicable to multinomials,
. and hence the rule given at the head of this article
follows.
Ez. 1. Multiply Ta—-2b+ 3¢ by .
z(Ta—-2b+3c)=2.7a-2.2b+2.3¢c
="Tax - 2bx + 3cx.
Ex. 2. Multiply Tz+3y+112 by —3=.
(T2 + 3y + 112)( - 32) = (T2) ( ~ 32) + (3y) (— 3=) + (112)(— 31‘)
, = — 2123 - 92y - 337z,
Ex. 3. Multiply ax—by — cz by xye.
(a — by — cz) (wyz) = (ax) (xy2) - by (vyz) - cz(wyz)
=ax'ys - by’ — coy:®.

EXAMPLES. III B.

Find the product of the following expressions.

1. 2z+3y+zand 2.

2. al+bm+cn and -7an.

3. lyz-mxz—nxy and Iny.

4. Find the coefficient of # in § (z+a)— {2a—b (c-2)}.
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Reduce the following expressions (numbered 5 to 10) to
their simplest forms; and state in each case what is the co-
efficient of z, and whether the form is a binomial, trinomial, or
multinomial.

5. 3a-2(b-x)-{2(a-0)-3(x+a)} - {9xr—4(x -a)}.
z+y y-2x 3y—x 3r+2y
(-5 oo )

2 2 4

2[r-a-3{x—4(v-bx—-a—a)-a}].

. 6a-2[b—-4(3c—27)+3{a—(4c+2)}]
2(3r—-y)-4{27—(r-9)} -3{(z-4)+2(3z-y)}.

AN “N_12(%- M)]
10. 4 (x 2) 6[(2.1: 3 12 (3 %1 .

11. Expressa?(23+ 2z —1) —ab(l+ 22— x) + b3(1 + 2 — 2?) with
numerical coefficients, when a=4 and b=8; collect like terms,
and arrange the result according to powers of z.

12. Simplify ¥*+[a(a~-b)- {ab~b(a+b)}].

13. Simplify 2y - {y3a -2z —-a (4y —z) -z (a—2y)}.
What is the coefficient of y in the result ?

© ® 3 o

54. Product of Two Binomials. The product
of two binomials is found by multiplying every term in
the one by every term in the other, prefizing the proper
sign according to the rule of signs enunciated in Article
56, and taking the algebraic sum of these products.

To prove this rule, we have to find the product of
two binomial expressions, one like a+b or a—b, and
the other like z +y or z — 9.

(i) To find the value of (a +b) (= + ¥).
Denote a + b by =,
co(a+d) (w4 y)=n(z+y)

=nx+n:1/ [Art. 53
=(a+bd)z+(a+d)y
=ax + bz + ay + by. [Art. 53

B. A. 3
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(ii) To find the value of (a+b) (z—y).
Denote a + b by n,
o (@+d) (e—g)=n(z-y) .
=nz—ny [Art. 53
=(a+d)z—(a+d)y
=(az+bz)—(ay+by)  [Art.53
= az + bx — ay — by. [Art. 39

(iii) To find the value of (a —b) (= —y).

Denote a — b by n, and let us assume that a is greater
than b,

S (e=d)(z—y)=n(r—y)
=nz—ny [Art. 53
=(a-b)z-(a-b)y
= (az—bx)—(ay —by) - [Art. 53
=ax — bz — ay + by. [Art. 39

All these results are included in the rule enunciated
at the head of this article.

55. BExtension of results. The results of the
last article have been proved on the assumption that
we are finding the product either of two positive quan-
tities, or of a positive and a negative quantity. We
now proceed to find the meaning which must be given
to the product of two negative quantities so that those
results may be true for all values of the symbols a, b,
z,y. To do this, we use a method analogous to that
employed in Arts. 40, 41.

If, in the result of (iii), we put 5=0 and y =0, we
obtaln a X & = ax, which is of course true.

If, in the same result, we put a=0 and y=0, we

obtain
oo (- b)z=—ba.
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Similarly, if we put b=0 and =0, we obtain

a(-y)=—ay. :
These give us the rule for forming the product of
a positive and a negative quantity, which we had
previously obtained in Art. 52.
If, in the same result, we put =0 and 2 =0, we get

=) (-y) =+by,
which gives us the meaning to be attached to the
product of two negative quantities.

If we agree that the product of two negative
numbers shall be taken as a positive number equal
to the product of the numbers, then it will be found on
trial that the results (i) (ii), (iii) of Art. 54 are true
whatever be the numerical values (positive or negative)
that we give to the symbols, ang0 any one of these
results may be deduced from either of the other two of
them. .

For example, if we take the first result, namely,

(a+b) (v+y)=az+bz+ay+by,
and put —c for b, and -z for y, we obtain
(a—c) (x—-2)=ar+(-c)z+a(-2)+(—c)(~2)
=ax —-cx—az+cz,
which is equivalent to the result (iii).

Similarly, from any one of the three results of Art. 54 the

other two can be deduced.

56. Rule of 8igns. The results of the last
article are known as the rule of signs, which may
be stated in the following form. The product of two
quantities of the same sign (either both positive or both
negative) 18 a positive quantity; while the product of
two quantities of opposite signs (one positive and the
other negative) 18 u negative quantity.

The rule is sometimes enunciated in the following
form. Like signs produce plus, and unlike signs pro-
duce minus.

3—2
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57. The application of the rule gives the results
(-1)(®)=-b, and (-1)(=d)=+b.
Also, by Art. 40, we have
—(b)=—b, and —(=b)=+b.

Hence to multiply a quantity by —1 is equivalent
to subtracting it.

This result is sometimes assumed; but it is desirable that
the student should notice the different meanings which are
attached to expressions like (—1)(b) and —(b), though it
happens that the results are equal to one another.

58. As -particular instances of the rule of signs,
we have (—a) (—a)=+a’ and also (+ a) (+a) =+a’.
Thus the square of any quantity, whether positive or
negative, is itself positive.

The special case that (- 1) (—1)= +1 is worthy of notice.

59. The continued application of the rule of signs
enables us to write down the product of several factors
of different signs. -

(=a)(=d) (—)=(-a)(+bc)=—abe,
(-a=(-0)(-a) (~a)=-a,
(—a)=(-a)(-aP=(-a)(-a’)=d!

(- ap=(-a) (- ap=(-a) (@)= -a".
The method is general, and the product of a number of

factors will be positive or negative according as the number of
factors which are negative is even or odd.

60. Process of multiplication. It is usual to
perform the process of multiplication in the manner
shewn in the following example, where the product of
#+3 and z— 2 is determined.

x +3

x -2

F R o VRO (i),
— 22 —=6.iiiiiiiiniiniiiiiinna (ii),
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The multiplier, z — 2, is written in a line under the multipli-
cand, z+3, and a horizontal line is then drawn. Each term of
the multiplicand is then multiplied by the first term (in this
case, ) ofpthe multiplier, and the results with their proper signs
are written down in a line, which is denoted above by (i).

Next, each term of the multiplicand is multiplied by the next
term in the multiplier (in this case, —2), and the results with
their proper signs are written in a second line, which is denoted
above by (ii); any term in this product which is “like” one
of the terms in row (i) is put immediately under it.

The final result is obtained by adding these rows together.
The fact that the like terms are in vertical columns. facilitates
the addition.

This method of multiplying is sometimes called “cross
multiplication.”

" Note. The lines of dots and the numbers (i) and (ii), in the
_ work given above, are inserted only to facilitate the explanation,
and they form no part of the process itself.

61. The numerical coefficients of the terms in the
expressions which are multiplied together may be
fractions. In such a case, we may either multiply the
expressions together in a manner similar to that given
above, or we may reduce each expression to a fraction
with a numerical denominator (which is the arithmetical
L.C.M. of the denominators of the fractional coefficients)
and in which all the coefficients in the numerator are
integers. The beginner will find the latter course the
easier. :

For example, to find the product of -4y and }z+3y we
may proceed in a manner similar to that given in Art. 60; thus

do -

z +

22—

Lo gw'y_ .
"3+ — Py

Or we may put
3o—y=1(3v-2y), and 3o +1y=1y (47 +3y).
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Hence (3z-1y) (3o +1y) =4 (32— 2) s (42 +3y)
=7y (37 - 2) (42 +3y)
=y (1227 +2y - 6y?),
the product of 3z—2y and 4x+3y being found in the manner
explained in Art. 60.

62. The following examples are important, and will
serve to illustrate the above remarks.

Ex. 1. Find the square of the binomial x+ a.
xz+ a
z+ a
22+ ar
ar+a?
%4 2ax + a?

.Ex. 2. Find the square of x—a.

r - a
r - a
22— ax
— ax+a2
22— 2ax+a?

Ezx. 3. Find the product of x+a and z - a.
z +a
T —a
Prax
—ax—a?
oa—1

‘We see, from this example, that the product of the sum and
the difference of two quantities is equal to the difference
of their squares.

Thus, 98 x 102=(100 — 2)(100+ 2) = 10000 - 4 =9996.

Exz. 4. Find the product of z+a and x+b.
z +a
z +b
22+ ax
+ bz +ab
22+ (a+b)x+ab




MULTIPLICATION. 39

EXAMPLES. III C.
1. Write down the product of
(i) —ar and -by; (ii) axr and -by; (ii) —z and —a
Multiply z+2 by y - 3.
Multiply -1 by z-2.
Find the product of z—a and #+b.
Multiply 72—1 by 2-17.
Multiply 7a —m by m+7a.
Multiply 3z - 3a by 3z - 3a.
Multiply az — b2 by br —a?
. Find the product of 22— a? and 22+ a2
10. Multiply az+ by by xa - 2yb.
11, Multiply 248 — 3bm? by 35— 2am.
12. Find the product of 4ax?— 3byz and 3by? - 2axz.

63. Product of Two Multinomials. The pro-
duct of any two expressions is found by multiplying
every term of the one by every term of the other, prefix-
wng the proper sign according to the rule of signs, and

* taking t[e algebraic sum of these products.

To prove this rule, we have only to apply the same
method as that given in Art. 54. Consider the
product of two multinomials, such as a+b+c+... and
Z+Y+2z+ ..., where the +... in these expressions is
intended to shew that there may be a number of other
terms similar to these written down.

Denote (a+b+c+...) by n,

.. the product (@ +b+c+...)(z+y+2+...)
=n(z+y+2+...)
=nz+ny+nz+... -
=(a+b+c+...)z+(a+b+c+...)y +(a+b+c+...)2+...
=ax+bz+cx+...+ay+by+cy+...+az+bz+cz+...

If some of the terms be negative, we can still write
each expression as an algebraical sum, and then, by the
rule of signs, find the corresponding terms in the
product.

PNP O P

©
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Thus the product (a—b)(z—y—2)
=la+(=d}{z+ (-9 + (- 2)}
=az+a(-y)+a(=2)+(=bz+(-b) (—y) +(-b) (-2)
=ax — ay — az — bz + by + bz.

64. Tt is usual to perform the process of multipli-
cation in a manner similar to that given in Art. 60.

Thus to multiply 22+2+1 by 22— 2+ 1 we proceed as follows
itz +1
22—z +1
oA+ a3+ 2
18-z
+22+241
at +22 41

As another example, let us multiply 242~3z+1 by 3z-4.
- 3r +1
3r - 4
6x3— 923+ 3z
— 822+12x-4
6231722+ 1524

65. If an expression consist of several terms, and
these contain different powers of the same letter, it is
usual and convenient to arrange the terms so that the
term containing the highest power of the letter shall
be the one to the extreme left, the term containing the
next highest power of the letter shall be next to it, and
so on. When so written the expression is said to be
arranged in descending powers of that letter.

Thus each of the expressions
- B2+ (a+b)z+c? 2344322 -3a’r+at
is arranged in descending powers of x. The latter of them is
also arranged in ascending powers of a.

The process of multiplication is facilitated if the
expressions are arranged in descending powers of the
same letter.
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EXAMPLES. IOl D.
Find the product of 322+ 72+2 and 222 — 42+ 3.
Multiply 322~ 52~ 7 by 7225z - 3.
Multiply 22 - az+a2 by z+a.
Multiply 22+ ax+a® by x—a.
Find the product of 22+ ar+a? and 22— ax + a2
Multiply a2 + b2+c2 - bc—ca—ab by a+b+ec.

PO PE

66. A judicious use of brackets will often enable
us to write down the product of two expressions by
inspection.

Thus the three following examples are included in Art. 62,
Ex. 3, where it is proved that (r- a)(z+a)=2%-a?
Er. 1. (a®4b%)(a®-b%)=(a?)? - (b%)? )
=at- b4
Ex.2. (a-b+c)(a+b-c)={a-(b-c)} {a+(b-c)}
=a?-(b-c)?
=a?—(b® - 2bc+c)
] =a?-b34+2bc—c2
Er.3. {2®+z+1} {2?-2+1} ={(#3+1) + 2} {(22+1) -2}
=(2241)2 -2
=(2*+ 222 +1) - 22
=zt4a+1.
67. Again, if we want to find the square of any multi-
nomial, for example of @ +b+c+d, we may multiply a+b+c+d
by a+b+c+d in the manner indicated in Art. 64, or we may

find the product by repeated applications of Art. 62, Ex. 1.
Using the latter method, we have

{o+b+c+d}2={a+(b+c+d)}P
=a?4+2a(b+c+d)+(b+c+d)?
=at+2ab+2ac+2ad+ (b+[c+d])?
=a?+2ab+ 2ac+ 2ad + b2+ 2b[c+d] +[c + ]2
=a?+2ab + 2ac+2ad + b2+ 2bc + 2bd + ¢ + 2ed + d?.
The required square consists therefore of the following groups
of terms, (i) the square of the first term, namely a?; (ii) twice
the product of the first term and the second term, twice the

product of the first term and the third term, &c.—every term
that follows a being multiplied by 2a to give one in this group of
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terms; ém) the square of the second term, namely b2; (iv) a
group of terms, every term that follows b in the original ex-
pression being multiplied by 2b to give one in this group of
terms; and so on.

The method is general, and enables us to write down the
square of any multinomial by inspection. For example, the
square of (a?+b%—c%-d?+e?)

=(a?)?+ 202 (b2 — ¢ — a2+ €?) + (b2)2+ 202 — B — A%+ €2) + ( — )2
+2(- ) (-d? +e)+ (- )P+ 2(- ) () + ()

=at+2a%? - 2032 - 2a%d? + 2a%e3 + bt — 2b2c2 — 2b3d?2 + 2b2e3 +
+2¢%d? — 2c2e? 4 d* — 2d%2 + ¢t

EXAMPLES. IIL E.

[The results of the following examples can be reduced to one of
the three following forms:

(x+a)(x-a) =23—ad,

(z+a) (22— ar+a2)=23+ad,

(z—a) (22 +ar+a?)=23—a3;
and the student ought to be able to write down the answers by in-
tion, in a m analogous to the examples given in Art. 66.]
Write down the product of the f(;llowing expressions:
1. 22+7and 2%-17. 2. 77 and 83.
3. 2+3and 22-32r+9. 4, 2x+11and 22-11.
5. a-b+cand —a-b+ec. 6. y2-b%and ¥4+ b2+ b4
7. y—(a+1)and y2+(a+1)y+a®+2a+1.

68. Product of a number of expressions.
The product of more than two expressions can be deter-
mined by first finding the product of two of them,
then multiplying that by another of the factors, and so
on in succession.

69. For example, the cube of 2 + a is denoted by (2 + )3, and
its value is obtained bg multiplying (+a)? by x+a. The
value of the former of these quantities, namely of (»+a)?, has
been determined in Art. 62, Ex. 1, and is 22+2ax+a?. Hence
to find the value of (z+a)? we have the following work.

234+2ar + a?
z+ a
3+2a2%+ alr
+ ax?+ 20?2+ ad
2%+ 3axt+3a%r + a®

£
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Similarly, the cube of #—a will be found by multiplying
z—a)? by (v—a). The value of (z —a)? is determined in Art. 62,
x. 2; and the product of this by (z—a) will be found to be
23 — 3a2® + 3a’r — a’
This result can however be found at once from the result of
the last example. For, if in it we put (—a) for +a we obtain
{g+(-a)}*=23+3(-a)2’+3(-a)z+(-a)’,
that is, (x— a)¥=2°— 3axr?+3a?r — ad.
These results can be combined in a single formula, thus:
(z+aP=23+3a22+3alr +ad,
where either the upper sign is taken throughout, or the lower
sign is taken throughout.

70. Similarly, it can be shewn that
(£ +a)t=24+4ar3+6a?2? + 4aPx + at,
and (z —a)t=2* - 4a2® + 6a%22 - 40z +at.
Both results are contained in the formula
(zxa)t=24+ 4023+ 6Ba2r2 + 4a3r +at.

*71. We have hitherto confined ourselves to cases
where the indices were definite numerical numbers;
and we have assumed that results, such as z x 2* =2"
and (2%)" = 2, were obvious from the definition of indices
given in Art. 22. The indices may however be them-
selves denoted by algebraical symbols, which may stand
for any integral number: thus 2™ will mean the
product of m factors, each equal to 2.

We now proceed to prove two rules of which the
above instances are special cases. We shall for the
present assume that the indices are positive integers.

*72. Index Law I. 7o shew that =™ x a* =a2™™,
where x 18 any quantity, and m and n are positive
integers.

We have, by the definition of indices [Art. 22],
" x &* = (xxx ... m factors) (zzx ... n factors)
= zax ... (m + n) factors
=a"",
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Thus the index of the product of two factors is the sum
of their indices, provided the factors are powers of the
same quantity.

For example, 13x 2%=2%,

*73. A similar rule holds if we have the product of
several factors, provided each factor is some power of
the same quantity. Thus

™ x a* X & =™ x 2*
= g™,

*74. It follows that the product of two homogeneous
expressions is itself homogeneous. For, if the sum of
the indices of every term in the first expression be m,
and the sum of the indices of every term in the second
expression be n, then the product of any term of the
one expression and any term of the other will be of
m+ n dimensions.

Should the student make a mistake in one term of
such a product, this test may enable him to detect his
blunder. ,

For example, if it were asserted that the result of multiglying
234 2a22+3a?r - a® by 2%—2ax+5a? contained a term 3adz, we
know there must be a mistake, since every term in the product
must be of (3+2) dimensions, and 3a®z is of only 4 dimensions
[Art. 26]. As a matter of fact 3a%23 is one term in the product.

It follows similarly that the product of a number of -
homogeneous expressions is itself homogeneous, and
therefore that any power of a homogeneous expression
is itself homogeneous.

*75. Theorem. 7o shew that (ab)*=a"b".

1t is obvious from the definition that (ab)2=a2b?. This is a
particular instance of the general theorem that (ab)*=a"b".
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We have, by the definition of indices [Art. 22],
(ab)* =ab x ab x ab x ... n factors
= (aaa ... n factors) x (bbb ... n factors)
=a"xb"
= ﬂbl.
Similarly, {abe}" = {a (bc)}" = a* (bc)* = a™b"c".

And mmllar}! the n** power of a product is the
product of the n powers of 1ts factors.

#76. Index Law II. To shew that (@)= ™,
where x 18 any quantity, and m and n are positive
integers.

We have, by the definition of indices,
(&™) =2™ x 2™ x 2™ X ... n factors
=xm+mrm+...utum| [A.l’t 72

Jnn

=g™,
For example, (23)4 =212,

*EXAMPLES ON THE INDEX LAWS. IILF.

Write down the product of the following expressions num-
bered 1 to 9.

*], 27 and 2%, *2. 7aMa5! and — 3a®x®,

*3. —4a’yY and - 3a101p20643, ¥4 am 4] and 2 -1,

*5, 2*+aand a*+b %6, z*+xr-1land a*-z-1.

*7. 2™+ 32"+1 and 2™ — 2243,

*¥8, ar-b, b*—cy and a® - o™

*9, (ab)*~ (2%, an— 2%, and b*—an.

#10, Write down the continued product of # to the power
of a million, of # to the power of a thousand, and of .



46 MULTIPLICATION.

MISCELLANEOUS EXAMPLES. IIIL G.

[T%e beginner should take care that all the expressions in each
example are arranged tn descending powers of some letter before he
begins to multiply them together.]

1, If =0, and y= -5, find the value of

T(@-y)(2r-y)-3(22-y) (++y)+5 (@ +y)
2. Find the value of
(a—b0)2+(b—c)*+(a—Db) (b—c)+5¢% when a=1, b= -2, c=4.

3. Subtract (2a - 3b) (¢ —d) from (2a+3b) (¢ + d).

4, Simplify (r—a)2+(z-0)2+2 {(#-a) (b—2) +ab}.

5. Prove that .

(e-b)(a+b-c)+(b-c) (b+c-a)=(a—c)(a+c—-D).

6. Simplify

(i) (a—3b)2+6(a—>b)(b—c)+(3b—c)%+6 (ac—20%);
(ii) (e+d+clP-(a—d+c)+(a+b-ct—(—a+b+c)

7. Reduce to its simplest form '

(@a+b+c-d)(@+b-c+d)+(a-d+c+d)(-a+b+et+d).

8. From 3(2?-3¢+2){3(x+5)-5(5+2)}
subtract 2 (z+5) {5 (22—22)—2 (42— 22-6)}.

9., Multiply 2% - 52y +6y2 by 2 —4y.

10. Multiply af+3atz +9a3? + 27ax8+ 8laat+ 24325 by

a-3x.
11, Find the product of 1274422 and 1_§+~”_’ z

4 8°
12, Multiply 28— aa?— 2a22+ a3 by 22+ ax—a?
13. Multiply 2°-2ax?+ 2a%z — 3a® by % - 3ax + 2a?
14, Multiply 23+ 622 + 12592+ 8y3 by 23— 322y + 322 - 33,
15. From (2a— b)?+ (a — 2b)? subtract the square of 2 (@ —b).
16. Multip.ly 2yttt —aytaet+yzs by x4y -2
17, Multiply together 3a+ b+ 2¢, 2a+2b+¢, and a— 2b - 3c.
18, Multiply together 3a—b+2c, 2a — 3b+c, and a+2b-3c.

19. Find the continued product of
r+y+z, 2+y—2 x-y+z and -z+y+az
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20. Multiply }a3+3ad- 35 by yha? - dad+30%
21, Find the continued product of 2z — 1, 223+ 4, and §x+}.
22. Find the continued product of
3 (23432 +2), 3 («*- 52+6), and }(22+2x-3).
23. Prove that (z+3p—(z+2)3=3(2+2)(z+3)+1.
24, Simplify
(a-b) (z+a) (#+D)+(b—c) (z+D) (w+0)+(c—a) (x+0) (v+a).
25, Prove that (a—b)2+(c—a)(c—d)=(b—c)*+(a—b)(a—c)
26. Shew that y(y—1)(y-2)(y—-3)+1=(y2-3y+1)%

27. In the expression 23— 212+ 3« - 4, substitute a — 2 for #,
and arrange the result according to descend.mg powers of a.

28, Simplify
(i) (a+bd+c)lR—(b+c)lR—(c+a)®-(a+b)2+a2+b2+c2;
(ii) (@¥d+cyP-(b+cP—(ct+aP—(a+bP+ad+b3+cd
29. If x=a?-be, y=>b%-ca, and z=c®—ab; prove that
(i) ar+by+cz=(x+y+2)(a+d+c);
(ii) be(2®-y2)=ca (y2—2x)=ab (2 —xy).
#30, Simplify the expression aax?+ by2+ cz*+ 2yz, where
x=b+c—a, y=c+a->, and z=a+b-c.

*31, Prove the following identities, by multiplying out each
side of the equality.

(1) (Q+a2Q+0)-(1+a?)(1+b)2=2(a~b)(1—-ab);
(i) (a+d+cP=a3+0B+c3+3(b+c)(c+a)(a+d);
(iii) (F+z-220P+(E+z-2)P+(w+y-2)°
=3 (y+2-22) (s+2-2y) (x+y—22);
iv) (#-9)(=-2)(z-3y)+9y(x-y)(= - 29)+18y*(v - )+ 6y°
: =2 (s+9) (2+29);
(V) (@ty+P=(r+y-23+(@-y+2P+(-2+y +27+24yz;
(v) @-2)(+2+(-3) (c+a)+(z-y) (@ +y)
=3z (32— ) + 22 (- 2%) + 2y (a7~ 7).

*32. Find the coefficient of 2° in the product of (1-2)? and
1422+ 322+ 428+ 5at,



CHAPTER 1IV.
DIVISION. : '

77. WE proceed next to the consideration of the
division of one algebraical expression by another al-
gebraical expression; and shall discuss successively

ivision by simple expressions and division by multi-
nomials.

We may add that we can always test the correctness
of the result of a division by seeing whether the product
of the quotient and the divisor when added to the
remainder is equal to the dividend. For this reason,
division is sometimes said to be the inverse of multi-
plication.

78. Division by Simple Expressions. The
quotient of an expression (the dividend) when divided
by a simple quantity (or by a product of simple quan-
tities) is indicated by writing the divisor after the
dividend and preceded either by the symbol + or by a
solidus / [see Art. 16]. The operation may also be
represented by a fraction having the dividend for
numerator and the divisor for denominator.

For example, we may represent the operation of dividing abe
by x either by the form abc+-z, or by abe/z, or by =

. In using either of the first two of these forms it must be
noticed that all the quantities that come immediately after the
symbol + or / are to be regarded as a divisor. Thus either
abjxzc or ab+-zc would mean that ab was to be divided by ¢,
and not that ab was to be divided by # and then the result
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multiplied by c¢: the latter could be represented either by
(ab=+z)c, or by (ab/z) ¢, or by ‘Z—? xe.

Similarly we can express the operation of dividing 4% +y* by
a by any of the following forms, (22+y%)+a, or (22+ y’)%x, or
J’%. But an expression like #2+4y%+-a would signify that
y® only was to be divided by a, and the quotient added to 2%;
while #3-+-a+ g2 would signify that 22 was to be divided by a, and
that y? was to be added to the quotient: we shall however avoid
the use of forms such as these which a careless reader might
regard as ambiguous,

Where the same quantity appears as a factor of
both divisor and dividend it may be cancelled, since
to multiply any expression by a certain quantity and
then to divide 1t by the same quantity cannot alter it.

Ex. 1. Divide 21a2® by 3x.

2lax®  2lapw

Here a5 = 8

="Taz.

Ex. 2. Divide 6a*b3c3 by bab?c®.

Here _6a’b3c? = bapibyt

5abic3 5%"0
= 50
=5
Ex. 3. Divide 9a%b (c*+d?) by 3ax®.

9a% (¢ +d?¥) _, ab(*+d?)
Here 3028 =3 7 .

Note. Examples such as those given above can generally be
solved by inspection, and it is only to explain the reason of the
method that any steps are inserted in the work here
printed.

79. Rule of 8igns. One or more of the factors
may be negative. We may, by Arts. 55, 56, regard a
negative factor as the product of —1 and an equal
positive factor. The following results, where 4 and B

B A. 4
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stand for any algebraical expressions, follow at once :
. —4 (-4 A A
O F=Cpt=Cng=-%;
o 4 (=)(E=1H4_ 4 A,
@ —p=—ps ~CV3=-®
wn —A _(-1)4_ 4
) —p=-18~ 3
Thus the rule of signs in division is similar to
that in multiplication, as given in Art. 56, and may be
stated in the following form. The quotient of any
quantity by another quantity of the same sign (that 18
either when both are positive or both are megative) s
positive, but its quotient by a quantity of the opposite
sign 18 negative.
This is sometimes enunciated in the form, Like
signs produce plus, and unlike signs produce minus.
Ex. ). Divide 11a%c by —2ac?,
' 1la®bc _ 1lab
—%cd 2’
Ex. 2. Divide —3xy by —2ab.
Here —3zy_3ay

Here

EXAMPLES. IV. A.

Divide 27 by 23, 2. Divide 18a«5 by 3.
Divide 64ab?c® by 4bc2. 4, Divide 51im? by 17l.
Divide 98a,’a5a;? by 7a,%a.%as’. 6. Divide 56a%S by — 7aa2.
Divide - 5203 by 1302, 8. Divide —81a7 by - 9z4,
Divide 51abz? by 3aby. 10. Divide —4p%s by 3pga®

80. Quotient of a Multinomial by a Simple
Expression. The quotient of a multinomial quantity
by a simple quantity 1s the algebraic sum of the quotients

tained by dividing each term of the multinomial by
the stmple quantity.

© No e
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We know from arithmetic that the quotient ob-
tained by dividing the sum of two or more numbers by
a divisor is the sum of the quotients obtained by
dividing the separate numbers by that divisor. The
same proposition will therefore true of nmumbers
represented by algebraical symbols: the principle ex-
plained in Art. 41 allowing us to extend its application
to negative quantities. This is equivalent to the rule
printed at the head of this article.

Thus, if a+b be divided by z, the result is the sum of a/z
and b/z, which we may express in any of the forms

(a+d)+2=(a+2)+(b+2);
a+db _a b
z oz x’

or (a+b)/r=alzr+b[x.

We have a similar result if there are more than two terms.
Thus

or

atb=c_a b ¢
r =z z =z
which may also be written (a+b—c¢)/x=a/z+b/x—c/x.
Ez. 1. Divide 1ab®+ 3a?b by ab.
H 7ab*+3a’b_7i_b2+3a_2b
ere & &
=7b43a.
‘We might also have proceeded thus:
3
Tab?+ 3a b=ab(7b+3a)=7b+3a.
ab ab
Ex. 2. Divide 4lm2n® - 3lm by — 2Im?2.
Amind - 8Pm _ (4min®  3lm
—2m? ~  \ 2Im? ‘2777»5)

Here
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EXAMPLES. IV. B.
Divide 7a2b+14ab? by 7ab.
Divide 2a?r-3ab® by 4a.
Divide 1283y —15lmy? by —3ly.
Divide gaxt+5bz®—Jca®+192 by - .
Divide -343-9422-32 by -4

*81. Quotient of a Multinomial by a Multino-
mial. We proceed now to consider the division of one
compound expression by another compound expression.

We want to obtain an expression such that the
product of it and the divisor shall be equal to the
dividend, and our method of finding the expression is
’ e(i:liva,lent to gradually building up an expression

which when multiplied by the divisor will give the
dividend. To do this, we arrange both dividend and
divisor in descending powers of some common letter,
. which let us suppose is . Then, if we divide the first
term in the dividend by the first term in the divisor
we shall get one term of the quotient. Multiply. the
whole of the divisor by this, and subtract the result
from the quotient; we shall then get a remainder which
is at least one degree lower in z than the original
dividend. This remainder must then be treated as the
‘dividend, and we shall get another term in the required
quotient and a new expression to divide which is of
still lower dimensions in 2. Finally, we shall get a
number of terms in the quotient, and either no re-
mainder, or a remainder which is of lower dimensions
than the original divisor.

o g o

82. Thus to divide #*+22+1 by 1+x+2? we write the
expressions in descending powers of # as shewn herewith.
Divisor, Dividend. Quotient.
Bhr+1) at+23+1(
The first term of the dividend, viz. 24, when divided by the
first term of the divisor, viz. 2%, gives 22; hence the first term in
the quotient is 2. Write 22 in the space reserved for the
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quotient; then multiply the divisor by it, writing the result
below the dividend, and subtract. It is often convenient to
place all like terms (if any) in the same vertical column; thus
Btar+l)at +ad41(a?
A28+ 23
-3 41
Next, we have to divide this remainder by a2+x+1. The
highest powers of x in the remainder and the divisor are respec-
tively —23 and 2% and the result of dividing — a2 by 2% is —a.
This therefore is the next term of the quotient. We write this
as another term of the quotient, and then multiply the divisor
by it, writing the result below the quantity from which we have
now to subtract it. The operation so far will therefore be
represented as follows.
2rz+l)t 42 41 (-2
A28+ 2t
-z +1
—-B-at-z
' 224241
Next, we have to divide this remainder by 2?+2+1. The
first term of this new remainder, 22, when divided by the first
term of the divisor, viz. 22, gives 1; hence the next term in the
quotient is 1. Proceeding as above, we get
Btz+1l)at 42t 41 (2%-2+1
A48+ 2?
-2 +1
—ad—ad -2
224x+1
r2+r+1

Therefore the quotient is 22— z+ 1, and there is no remainder.
Hence (¢*+2%+1) is evactly divisible by (22+2+1) [Art. 16].

The student should verify this result by forming the product
of 22+4x+1and 22— z+1; and he will find [see Art. 66, Ex. 3] that

(B+z+1) (22 -2+ 1)=2t+22+1.

83. The above process is really equivalent to writing the

dividend in the successive forms
A+a2+1,
(22 +r+1)—23+1,
2 (P2+r+1) -z @ +2+1)+ (22 +2+1),

which are only different ways of writing the same expression.
The last form shews that the dividend is exactly divisible by
22441, and that 22— x+1 is the quotient of the division.
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84. " Note. The successive terms of the quotient are sometimes
written by the side of the steps from which they arise, thus:
P4z+l)ar 422 +1(a2

A3+ 22
-a3 +1(-=
-B-22-z
24x+1(+1
22441

85. The following are additional examples.
Ez. 1. Divide 2*—-a? by z—a.
r-a)r -a*(z+a
72— ax
ar — a?
ax —al

Hence the quotient is #+a, and there is no remainder.

The result of this division ought to have been obvious, since
we have already shewn that (z+a)(x—a)=2%—-a?; and hence
the quotient of 22—-a? by r—-a must be x+a. It should be
noticed that, if we can resolve the dividend into factors, we
can write down by inspection the result of dividing it by any
one of those factors.

Ex. 2. Divide 24?-3ax+a? by x+2a.

We have z+2a) 22%2-3azr+a®(2x-"Ta

22% +4ax

-Tax+ a?
—Taz—14a* -
15a2
The quotient therefore is 2z — 74, and there is a remainder 15a2.
This result is equivalent to the formula
22% - Bax+a’=(2x - Ta)(x +2a) + 15a%,
which the student can verify by multiplication.
Note. Here we wanted the remainder to be independent of
x. If however we had arranged the expressions in descending
powers of a, wc should have had a quotient 4a -7z, and a re-
mainder 18z? which is independent of a. This 18 shewn by
the accompanying work.
V' 2a+x)a-3axr+212 (da—ix

a’+dax
—';ax“‘ 22
- sox— Ja?

i
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This result is equivalent to the formula
% —3ax + 227 =(§a — L2) (20 + ) + 4822
Er. 3. Divide }a*+Hx—-3% by §o—}.
We shall treat this by a process analogous to the second
method given at the end of Art. 61. We have
P+ Pr-3=9%B22+11v—4), and §r—}=3}(3x-1).
2 +Hr-3  HBe?+1lr-4) 32 +1lr-4
Henoo 3o-1 ~ f@e-D 3 -1

Now dividing 322+11x—-4 by 3z—1 we have a quotient z+4,
as shewn herewith. )

3r—-1)322+11zx-4 (2+4
32— =z

122-4
1227-4

Therefore the required quotient is } (z + 4).

Ex. 4. Divide a3+ b3+ -3abe by a+b+c.

Here it will be convenient not only to arrange each expression
in descending g)owers of a, but also to arrange the coefficients of
every power of a in powers of b : in short, to arrange primarily
in gowers of a, next, as far as is consistent with this, in powers
of b, and so on.

To save space, we shall not concern ourselves with arrangin

the expressions so that only like terms are in the same vertica!
column.

a+b+c) ad-3abe+ b3+ (at—ab—ac+b3-be+c?

a3+ a?b+ale
—a%h —a?c—3abc+ b +c3
—a?b—-ab? - abe
—a%+ab?—2abc+ B+
—a’c — abc—ac?
ab?— abc+ac’+ b + &
ab? + 5 +b%
— abc+ac?—-bic+ 8
- abe ~b% —be?
act+bc+ 8
ac®+bci+ ¢

Hence the quotient is a?—ab —ac+b%—be+c? and there is no
remainder.
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We ‘might also have collected the coefficient of each power
of a in a bracket, thus:

a+(b+c))a3 _3abc+bs+e3(as-a(b+c)+(b2-bc+cﬂ)
a*+a?(b+c) :
—a?(b+c)—3abc+ b3+
—ad (b+c)—a(b+c)? o
a(BP-bct)+bB+cd
a(b?®-be+c)+b3+c8

Here we write down the difference of a (b+c)? and 3abc in its
simplest form, either performing the work mentally, or doing it
as a subsidiary example. Similarly we write down the product
of (b+c) and (52— be+¢?) as b*+ % without inserting the details
of the multiplication.

*Ex. 5. By what expression must x284-2%-2 be divided to
give x4+ 22242 as quotient, with no remainderf B
We always have the relation
dividend = (divisor) . (quotient) + remainder.
Here there is no remainder.
< 2B+ ot —2=(divisor). (#4+222+2).

If we divide both sides of this equality by 2%+2s2+2, we see
that the required divisor is equal to the guotient of #8+2%-2 by
2A+22%+2, This will be found to be #2—1, which is therefore
the required expression.

EXAMPLES. IV. C.

Divide 2%-172+16 by 2~1.

Divide 2%+24242—172-8 by 2-1.

Divide 42%-52%+6x-92 by 27-3.

Divide 2%+a3 by z+a.

Divide #3-a3 by z-a.

Divide a4+ 34+ - 2y%® — 283 — 2232 by z+y+2.
. Divide a7-13z-30 by 2*-22+3.

Divide 223 §a% —10y° by 3z -y.

9. Divide 24%-32%+1 by 2*+22+1.

10. Divide a%+3ax3+a3z+3at by 22+4ax+3al.

N N -

© =
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11. Divide a?zv(x+y) + 3a(2? — 22y — y*)+ 9y (y — x) by ax — 3y.
12, Divide by (a—c) the sum of the four quantities
3a3—a? (7b + 2¢) + 3ab?, b3+ ab (4a— 5b)—Tbc3,
' 2a%c— B +a? (3b—2a), and 6a?b+ be3+2ab%—a?.
13. Multipl oA — 334322 -2x+1 by }a%-2+1, an
divio the product l‘:y' gﬁi; 2:’%—%.1:—1:'- ¥ dw-atl, aud
14. Divide aba’+(ac—dd)a?—(af+cd)x+df by ar—d.

*86. Index Law 1. We proceed now to consider
the case of the quotient of a quantity raised to a literal
power divided by the same quantity raised to some
other literal power. The method of treating this ques-
tion is analogous to that given in Art. 72, and we shall
for the present assume that the indices are positive
integers.

e want to find the value of 2™+ 2* when m and
n are positive integers, and we shall consider (i) the
case when m >n, and (ii) the case when m < n.

First. If m> n, then % =z,

FO!‘ ;;

Now, if m > n, then each factor in the denominator will
cancel with a factor in the numerator, and therefore all
the n factors in the denominator will cancel with n of
the factors in the numerator. This will leave (m —n)
factors in the numerator, each equal to z, and the
product of these is denoted by z™™. Thus we have

wm

7
Second. If n>m, then 2 =L .
For > _za ......(m factors)
& zx ... (n factors)

Now, if n > m, then each factor in the numerator will
cancel with a factor in the denominator, and therefore
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all the m factors in the numerator will cancel with m of
the factors in the denominator. This will leave (n —~m)
factors in the denominator, each equal to z, and the
product of these is denoted by 2*™. Thus we have

a 1

>

*EXAMPLES ON THE INDEX LAWS. IV.D. . -

*]. Write down the quotient of 1214?27 by 1laat
*2. Write down the quotient of 17422 by — 3al‘s?.
¥3. Write down the quotient of 27a2 by 3an.

*4, Divide -1 by a*+1.

*5. Divide a™+antl14+2-1 by an+1.

MISOELLANEOUS EXAMPLES ON DIVISION.. IV. E.

1. Divide 1-5a2%+42% by 1-2z+2%

2. Divide 23+3zy+y°-1 by z+y-1

3. Divide o*+3a*+3ab®+b3+¢ by a+b+ec.

4, Divide 35+244+132-10 by 23+242+2-2.

5. What is the remainder when 14—243+2a:’—x-1 is
divided by #2+3z—11

6. Divide a*+4a’+6a2b+4ab3+bt~ct by a+b+ec.
7. Divide 49+2748 by 2%+ 3ay+3y™
8. Divide 2u# + 52% — 162%? + 352y° - 1254 by 2% — 20y +3y™.
9. Divide 2% — 10a% + 252%?3 — 31ay® + 204 by 2 — 3y + dy™
10. Divide 125*— 3a% — 4g3b2—8ab (a®+ b%) by 3a2+ 653+ 2ab.
11. Divide &7 —2yM—Ta5y* - Ty +142%® by x— 2%
12, Divide ab(2?+y%)+(a?+0%) zy+(a—-b)(z-y)-1

by az+by-1.
13. Divide 345 - 102ty + 1623%2 — 12223+ zy* +2y5 by (v - )2
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14. Divide 24— (b—2)2*—(2b—1)a3- (b*+2b-8)x+3b+3
by 22+ 3x+b+1.
15. Divide 1+3z by 1-2z to 5 terms in the quotient.

16. Divide 14a*+15a%b+ 33a2b®+36ab%+28b*
by 7a?- 3ab+ 1452

17, Divide 92*- 1243y +132%°2 - 423+ y* by 92?—3xy+3*

18. What is the remainder when a!-3a3b42a2b%-b* is
divided by a?- ab+ 2b21

19. Divide y'+y°-5y'-2y by y*+3y+1.
20. Divide y3-2b%'+b® by 3+ by?+b% + 5%

21. Divide #4+(a—1)2%—(2a+1) 2*+(a+4a—-5) 2 +3a+6
by 23-3z+(a+2).

22. By what expression must x+3 be multiplied to give
z7+ 218717

23. By what expression must _3a* - 8a%b+4a2? — 8ab’—12b4
be d1v1ded to give the quotient 3a?— 2ab+ 65217

*24, By what expression must 23+ 642 —4x—1 be divided to
give .v"+5x— 9 as quotient, with 8 as remainder?

25. qluotlent and divisor in a certain example are
a-b-c a.nd +b02+c2+ab+ac—be. What was the dividend?

26. The product of two factors is (z+2y)+ (3xr+2)% and
one of them is 4r+ 2y +2: find the other.

27. Thec&wmtlty 28+ a#+22°+ 342 — z+4 is the product of
twl;) algebraical expressions. One of them is 22— 2+1. Find the
other.

28, If the product of two e tl&;vre:smons be 28+ xtyt+y5 and
one of them be 2* - 2y +y2; find the other.

%29, Prove that if n2=n+1, then 2+ aad+atad +aPr+at is ¢

exactly divisible by 2%+naz+a?

*30. Find the quotient by a+b+c+d of
(a+b) (b+¢) (c+d) (d+a) (a+c) (b+d)+(abe+bed+oda +dab).

*31. If 22+7x+c be exactly divisible by 2+ 4, what is the
va.lue of ¢?



CHAPTER V.

SIMPLE EQUATIONS INVOLVING ONE UNKNOWN QUANTITY.

87. Identity. When two algebraical expressions
are equal for all values of the letters involved, the state-
ment of their equality is called an tdentity or a formula
or an tdentical equation [see Art. 29].

In an identity, the expressions which are separated
by the symbol of equality are merely different ways of
expressing the same quantity.

Thus (¢ +b 2—-a’+2ab+b2 is an identity, for it is true for all
values of @ an

88. Some writers use the symbol = to represent the words
13 identically equal to, and would write the above identity as
a+b)??=a’+2ab+b% The symbol = has however another and
ifferent meaning, which is in common use in the higher parts
of mathematics; and as it is important that every mathematical .
symbol should be unambiguous and definite it is undesirable to
use = as a symbol of identity.

89. Equation. When two algebraical expressions
are equal to one another only for certain values of some
of the letters involved, the statement of the equality
is called an algebraical equation.

The quantities separated by the sign of equality
are called the sides QfP the equation.

Thus 2+ 7=11 is an algebraical equation, for it is true only
when x is put equal to 4.

The expression 247 is the left-hand side of the equation;
the number 11 is the right-hand side of the equation.
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90. Root. The values of the letters which make
the two sides of an equation equal to one another are
called the roots of the equation.

The roots of an equation are said to satisfy it.

To solve an equation is the process of finding the
roots, The word solution is often used to denote the
roots, which are the results of this process.

91. Unknowns. The letters which represent the
unknown quantities are often called the unknowns,—
an abbreviation for unknown quantities; and the equa-
tions are said to be equations in (i.e. involving) the un-
known quantities.

. 92. Notation. It is usual to represent the value
of known quantities (other than mere numbers) by the
letters near the beginning of the alphabet, such as
a, b, ¢, &c.; and to represent the unknown quantities,
whose values we want to determine, by the letters near
the end of the alphabet, such as z, y, 2, &c.

93. Classification of Equations. Equations
which involve (beside the unknown quantities) only
numbers are called numerical equations. Equations in
which some or all of the known quantities are re-
presented by letters are called algebraical equations.

Equations are further classified according to their
dimensions in the symbols which represent the un-
known quantities.

Simple Equations. An equation which contains
only one unknown quantity, say 2, is said to be a simple
equation, or an equation of the first degree, or a linear
equation, when only first powers of & occur in it.

Quadratic Equations. An equation which con-
tains only one unknown quantity, say , is said to be a
quadratic equation, or an equation of the second degree,
when the only powers of z which occur in it are the
first and second, namely, # and 2*.
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*Similarly, an equation in x is called a cubic equation, or an
equation of the third _degree, when the only powers of z involved
are z, 22 and 23 It 18 called a b atic equation, or an
equation of the fourth degree, when the only powers of # involved _
are z, 238, 23, ahd 24,

94. Axioms. We assume the following axioms.

(i) If equal quantities be added to equal quan-
tities the sums will be equal..

(ii)) If equal quantities be taken from equal. quan-
tities the differences will be equal.

(iii) If equal (1ua.ntities be multiplied by the same
number (or by equal numbers) the products will be equal.

(iv) If equal quantities be divided by the same
number (or by equal numbers) the quotients will be equal.

In other words, we assume that we may multiply or divide
both sides of an equation by the same quantity; and also that
we may add to or subtract from each side of an equation the
same quantity.

95. Transposition of terms. Any term may
be moved from one side of an equality to the other pro-
vided its sign 18 changed.

Suppose that we have an equality such as

a+b—c=d.
Add c to each side. This, by axiom (i), is permissible.
“a+b—c+ec=d+e,
that is, a+b=d+ec.
Thus ¢ has been moved from the left-hand side of the
equality to the right-hand side, but it appears on the
right-hand side with the opposite sign to that which
it had when on the left-hand side.
Next, returning to an equality like
a+b—c=d,
let us subtract b from each side, or (in other words) add
—b. This, by axiom (ii), is permissible.
La+b—c—b=d-0b,
that is, a—c=d->b.
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Thus b has been moved from the left-hand side of the
equality to the right-hand side, but it appears on the
right-hand side with the opposite sign to that which
it had when on the left-hand side.

Terms which are thus removed from one side of
an equality to the other with a change of sign are said
to be transposed. :

If we transpose all the terms from each side of an
equation to the other side, the sign of every term will
be changed. This is equivalent to multiplying both
sides by —1, which we already know, by axiom (iii), is
permissible. We can thus change the sign of every
term of an equation.

96. We shall confine ourselves in the rest of this
chapter to some of the easier examples of simple equa-
tions which involve only one unknown quantity.

97. Method of Solving Simple Equations,
The method of solving a simple equation will be readily
understood from the following examples. The usual
process is as follows.

(i) First, we clear the equation of fractions, remove
brackets, and perform any other algebraical operations
which are indicated.

(ii) Next, we transpose all the terms involving the un-
known quantity to one side of the equation (usually to the
left-hand side), and all the other terms to the other side.

(iii) Then, we simplify each side of the equation
‘as far as is possible, combine like terms, and in par-
ticular collect all the terms which are multiplied by
the unknown quantity into one term with it as a factor.

(iv) Lastly, we divide both sides of the equation by
this coefficient of the unknown quantity: and we then
have the required root, which must involve nothing
but numbers and known quantities.

It is desirable to write each successive step in a
separate line, and also to indicate how it is deduced
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from the preceding step. The beginner should also
state his answer at the end of the work, so as to make
it quite clear what is the result arrived at.

Ez. 1. Solve the equation 3z-8=z-2.

(i) Transpose the term on the right-hand side which involves
2 to the left-hand side ; and transpose the term on the left-hand
side which doeg not involve 2 to the right-hand side.

Co3r—x=8-2,
(ii) Collect like terms, ... 22=6.
(iii) Divide by 2, oo 2=3

Thus the required root is 3. This value of & will therefore
‘“satisfy ” the given equation, that is, make it identically true.
We can verify this result by seeing whether this root does so
satisfy the given equation. If we put #=3 in the given equation
it becomes }

3x3-8=3-2,
that is, 9-8=3-2,

which is true. In the following examples we shall not in general

verify our results, but a student who is doubtful as to the correct-
ness of his work can always test the final result in the manner
above described.

Ezx. 2. Solve the equation 3y-}=y+3%.
Clear of fractions. The 1.c.M. of the denominators is 12;
multiplying both sides of the equation by 12, we have

4y -3=12y+86.
Transpose terms, oo dy—12y=6+3.
Collect like terms, .. —8y=9.
Change the sign of every term, ... 8y= 9.
Divide by 8, coy=-3.

Therefore the root of the given equation is —§.

Ex.3. Solve the equation Tx+4(2z—1) - 2(x+3)+5=5(x—-1).
Remove the brackets, ... 72+82-4—-2x—6+5=>5x-5.
Transposing, .. 7248z -22—52=-5+4+6-5.

Collect like terms, .~ 82=0.
z=0.
Therefore the root of the given equation is 0.



ONE UNKNOWN QUANTITY. . 65
Ex. 4. Solve the equation ‘2x+3=1-"3x.

Transposing, s 2r+3r=1-3.
Collect like terms, Y

- 2 2
Divide by °5, R T - -4,

Therefore the root of the given equation is — 4.

[We might also have at once expressed the decimals as vulgar
fractions, or have multiplied both sides of the equation by 10,
and so got rid of the decimal fractions; and then solved.]

Ex. 5. Solve the equation ax+b=czx+d.

Transposing, oo ax—cr=d-b.
Collect like terms, o (@a-c)z=d-b.

. . . d-b
Divide by a -¢, S =

Therefore the root of the given equation is (d—b)/(a —¢).

The following examples are rather harder. We shall
follow the above procedure, but only indicate the more
important steps.

Ez. 6. Solve the equation
7(-1)(z+2)=1122-4 (z+1)(x-2).
Multiplying out the products, we have
7(P+x—-2)=1122-4 (22 -2 -2),
that is, 123472 -14=1123— 42+ 42 +8.
Transposing, ... 722-1122+ 4234+ 70 - 42=8+14.
Collect like terms,
v (T44-11)22+ (7T 4) 2=22.
o =22,
cox=32=T1

Ex. 7. Solve the equation ‘6z+3=-16z+21.
Express the decimals as vulgar fractions,
<oz Hi=145t r+43.
lr+i=}r+43.
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The 1.c. M. of the denominators is 30. Multiplying by 30, we have

1.

182+10=56x2+63.

.. 182~ 5x=63-10.
. 132=>53.

PR EVES

EXAMPLES ON SIMPLE EQUATIONS. V.
Is 2 a root of any of the following equations; and if so, of

which is it a root ?
(i) z-3=22-5; (ii) 2v—-3+2="Tr-4; (iii) 22-2=2.

2.

Shew that 2, 4, and — % are roots of 22(6x—11)=4(z—1).

Solve the following equations, numbered 3 to 45.

13.
14,
15.

16.

17,

18.

10x-1124+1=0.

-132="5(z—24).

42-74+20-1=32+6-2-1.

4{z-3[r-2(x-1)]} =24.

22 -1-2(32—2)+3(4z - 3)—4 (5x - 4)+5 (62 —5)=0.
}z+3r=9. '

4x+7—‘”+2+§=34.

9
8 —*067="473+°071x,
‘0062 — *491 + 723z = — "005.
21:;1+4x;2+*=2ﬁ.
$(z+1)-}(z-1)=4.
S5z-% (4z-1)=4(2+1).
$r-fo+17=4(x-2).
3o+l 20+l _20+1
11 5 3 °
z—3+fla:—3_7x—4=0.

9 15 20

3r+2 12-3 _ bzx+7
5 t'T g 13 ¢
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5

:v+3+.z'+4=.1:+5) z+12
4 5 11 13 °
z-7 =x

Az} (B-2)-}(1+2)+]=0.
#(2r-1)-§ (2 - 8) =4+ (42 +1).

}(2z-1)-§ (¢ ~3)+4(3r—8)=25.
$z+]) -+ =R(=-})-F (-}
4.«:;-3+7 ;g§=zz17~11 _ 9:»;11&.

2z
w-4 3-}(@-5)_ -7 _

7 ) 3 >

‘0322 - 3.6—5——_;—-‘22+ 084=0.

24 (z+1)(x-1)=2 (v - 2)(r+3).

(z-1)(z+2)(x-3)=2a%(r-2)+2 (r+4).

(22 - 3)(62 - '7)=(42—5)(3x—4).

(5x+2)(z+7) - (3z—1)(z+10)= (22— 1)(z+14).

(42— 3)(32+7)=(Tz - 11)(3z— 4) - (92+10)(z - 3).
5—2
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(x+4)(2r+5)— (z+2)(Tx+1)=(x - 3)(3 - 5z) +47.
(#-2)(z+1)+(z-1)(z+4)=(22-1) (z+3).
(z-3)(x—4) (z—5)=(x—1)(r—14) (»+3) - 24.
(xr-a)(z+b)+c=(x+a)(zx-0b).

z-a z-b a+3c 2_.1:_—_b

=2 t3 =3 "2
(z+a)(x - b) —2a%b=(x+ b)(x - a) — 2b%a.
te-ilr-2@-} {z-3a})D=1.

47. Find the value of ¢ which will make 24+ 5434 722+ c2 — 2¢
divisible without remainder by z2+3z+2.

55 & BRES

48, Find a value of « (other than zero) which will make
25— 823+ 11424+ 72— 1780
exactly divisible by #2+72—1.



CHAPTER VL
PROBLEMS LEADING TO SIMPLE EQUATIONS.

98. A problem leading to an equation consists of a
verbal statement of the relations between certain quan-
tities, from which statement it is desired to determine
the values of some of the quantities.

If these quantities can be represented by algebraical
symbols, and if this verbal statement can be expressed
as an algebraical equality (or algebraical equalities)
involving these symbols, we obtain an equation (or
equations) whose roots are the required values of the
unknown quantities.

The beginner will find that his chief difficulty
consists in the translation of the given statement
(which is expressed in ordinary language) into alge-
braical language. -

99. We shall confine ourselves in this chapter either
to (s)roblems where there is only one unknown quantity
and the given relation involving it can be expressed
algebraically as a simple equation, or to similar problems
where all the unknown quantities can be expressed in
terms of one of them.

The following examples cover some of the more
common cases.

Ex. 1. What number is that which exceeds 7 by as much as
its double exceeds 171

Let = represent the number. Then its double is 2z.
By the question, x exceeds 7 by as much as 2z exceeds 17,

L x-T=22-17.
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Transposing, r-2r=T7-17.
. 2=10. )

Thus 10 is the required number; and the reader will see that it
fulfils the conditions laid down in the question.

Ez. 2. Divide 18 into two parts such that one part is five
times as large as the other.

Let x be one part. Then the other part must be 78 — .
One part is five times as large as the other,

©. x=5(78-%)
=5 (78) - 5.
Transposing, z+bx=>5 (78),
that is, 6z=>5 (78).
Divide by 6, oo 2=5(13)
=65.

Therefore one part is 65, and the other is 78 — 65=13.

We might however have supposed that 78 —z was equal to 5
times the part denoted by x. In this case our equation would

have been 78 — x=>5uz.
Transposing, —6x=-1T78.
Divide by -6, oo x=13,

Therefore one part is 13, and the other is 78 —13=65. This
therefore leads to the same result as before.

Ex. 3. Demochares has lived a fourth of his life as a boy; a

JSifth as aﬁouth; a third as a man; and has spent 13 years in his
e. How old is he? [From the Collection of Problems by

Metrodorus, circ. 310 A.D.

Suppose Demochares to be z years old.

Then the sum of }x years, }x years, 3z years, and 13 years
must amount to his present age,

z z

B Z+ 5 +§+]3=.‘L‘.

The L.c. M. of the denominators is 60. Multiply by 60.
.o 1624122 + 202 4+ 780 =60z,
that is, 47x+780=60x.
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Transposing, 472 - 60x = - 780.
Collect like terms, .. —13z= -780.
Change the signs throughout, .:. 132=780.
Divide by 13, .. £=60.

Thus Demochares is 60 years old.

Ez. 4. A’s age 15 u{;:ur times B's ;ge, and in twenty years
ti:;; g’a age will be double that of B. Find the present ages of A
a .

Suppose that B is now  years old. Then 4 is 4z years old.

In 20 years time, B will be (x+20) years old, and 4 will be
(4x 4 20) years old.

But, by the question, 4’s age will then be double that of B,

. 42+420=2 (2 +20).

.o 424 20=22+40.

.~ 4z —2r=40-20.

oo 2=10.
Therefore B is now 10 years old, and 4 is 40 years old.
Note. 1t will be observed that in all these examples x is an

abstract numnber, the unit that it multiplies in the two last ex-
amﬂles being a year. The beginner should notice that in every
pro

lem the symbol for the unknown quantity will similarly
stand for an abstract number only [see Art. 2].

Ez. 5. A train running 30 miles an hour starts from a
certain station at 1.0. Another train running 40 miles an hour
s ten miles bekind the first station at 1.15. When and where
will it overtake the first train?

Suppose that the second train overtakes the first « hours
after 1.0.

In that time, the first train has gone 30z miles.

The second train has been travelling for # hours minus 15
minutes, that is for (#—}) hours. It is running 40 miles an
hour, and has therefore gone 40 (# ~ }) miles.

But when the second train overtakes the first, it must have
altogether travelled 10 miles more than the first,

.. 40(xz-}) =30z +10.
.. 402 —-10=30z+10.
.. 40z - 30x=10+10.
. 102=20.
=2,
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Therefore the second train overtook the first at 3.0. o’clock.
Also the distance covered by the first train in that 2 hours was
30x 2 miles=60 miles. Therefore the second train overtook
the first-at a place 60 miles from the station whence the first
train had started.

Exz 6. A and B play o game for money stakes. At the
beginning of the game A has 38s. and B has 30s. At the end
q/‘qttlw game A has twice as muck as B. How much did A win?

Suppose that 4 won 2 shillings.

.*. at the end of the game 4 has (38 + ) shillings,
and- ” » » ” B has (30 — z) shillings.
- But, by the question, 4 has then twice as much as B.
.~ 38+2=2(30-2)
=60-2x.
. 3r=60-38=22.
cox=2g =T}
Therefore 4 won 7} shillings, that is, 7 shillings and 4 pence.

Ex. 7. Four pipes discharge into a cistern: ome itsel
would fill it tn_one day; another in two days; the thz'rdbzgt thra{
days; the fourth in four days. If all run together, how soon will
they fill the cistern? [From the Collection of Problems by
Metrodorus.]

Let 2 be the number of days required. Let v represent the
cubical contents of the cistern.

The first pipe discharges a volume » of water in one day.

The sec".ond Wy v now»
The third ,, ” ” ” v ” » ”
The fourth ” ” ” ” ” ” ”»
.. all four pipes discharge ,, (v+3v+3v+}v) ,, 9 ”
v
but ,, ” ” ” » z ” ”» ”»
v v v v v
"z-itetaty
1
L a1+
=3.
. x=1%

The answer therefore is 3% of a day.
This question might have been solved by arithmetic.
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If we had supposed that the third and fourth pipes let the
water escape, while the first and second had suppllefevsvawr to
the cistern, we should have had the equation

from which we obtain
r={%.
Ex. 8. One of the sides of a rectangular court is longer than
the other by 10 yards. If the s side were increased by 4 yards,

and_the longer one diminished by 5 yards, the area of the court
would remain unaltered. What are the lengths of the sudes?

Let the shorter side be # yards long, therefore the longer
side is (x+10) yards long, and the area of the court is « (x+10)
square yards.

In the second case, the lengths of the sides are respectively
(v+4) yards and (r+10-5) yards, and therefore the area is
(# +4)(x+5) square yards.

These areas are equal,

o 2 (24 10)=(x+4) (z+5).
. 224102 =2%+92+20.
.. 2=20.
Therefore the shorter side is 20 yards long, and the longer side
is 30 yards long.

Ezx. 9. Find four numbers, the sum of every possible arrange-
ment of them taken three at a time being respectively 20, 22, 24,
and 27. [From the Arithmetic of Diophantus, circ. 350 A.p.]

Let z be the sum of all four numbers.
.*. the numbers are x-20, z—22, x—24, and z—27.
» w=(x—20)+ (2 - 22)+(z — 24)+ (v — 27).
o o=3L
.*. the numbers are 11, 9, 7, and 4.

Ex. 10. At what time between 1 and 2 o'clock do the hour and
minute hands of a watch overlap one anotherf

Let the required time be 2 minutes after 1.0.

The two hands of the watch were together at 12.0. Since
that time the minute hand has swept through an angle which
is represented on the dial by (60+ ) minutes.
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Again the minute hand moves round twelve times as quickly
as the hour hand, for in 12 hours the former has gone 12 times
guite round, while the latter has only been round once. There-
ore since 12.0 the hour hand has swept through an angle which
is represented on the dial by {4 (60+ ) minutes.

Now, by the question, the required time is that time between
1.0 and 2.0 when the hands overlap. The minute hand has
therefore gone round a little more than once, and the whole
angle it has covered will exceed the whole angle covered by the
hour hand by an angle represented on the dial by 60 minutes.
Therefore we have
(60+z) — 45 (60+2)=60.
.. } (60+2)=60.
.. 11(60+2)=12 x 60.
.. 660+112="720.
.. 112=60.
oo =B
The answer therefore is 5,% minutes past 1.0.

100. We now proceed to some problems where in
certain cases the results are apparently inconsistent with
the given question, and we shall explain in what way
such results should be interpreted.

Ez. 11. A man who i3 now a years old has a son who is b
years old. How long will it be before the father is three times as
old as his son?

Let the time required be x years. At the end of this time
the age of the father will be (a+x) years, and the age of his son
will be (b+x) years. But, by the question, the father is then
three times as old as his son,

. at+2x=3(b+x)
s a=3b=3r—2r=2z.
oo z=%(a-3b).

Now a may be greater than, equal to, or less than 3b.

Si) If a>3b, then x is a positive number, and there is no
difficulty in the solution. The event takes place » years after
the present time. For example, =36, b=10.

ii) If a=3b, .. £=0; that is, the father is at the present
time three times as old as his son. For example, =30, b=10.




SIMPLE EQUATIONS. 76

(iii) But if ¢<3b, the answer is a negative number of
This will mean that the event took place before the
present time [Art. 10]. For example, =28, b=10.

Thus our result sums up all the cases in a single statement,
which we must interpret according to the usual algebraic rules.

Ezx.12. Two courters, A and B, travelling in the same direction
along a certain road, start at the same time from two stations, H
and K, whose distance a 18 n miles. A travels at the uniform
rate of a miles an hour, B travels at the uniform rate of b miles an
hour. A starts bekind B, when will ke overtake Bf

A starts from H, B from K. Let 4 overtake B at the end of
¢ hours after they start, and suppose that 4 overtakes B at P.

H K P
Then the distance travelled by 4 is equal to HP=at,
and ” ”» ” ” B ” KP=bt;
oo at—-bt=HK=n.
n
=Ty

i) If a>b, then ¢ is a positive number, and there is no
difficulty in the solution.

(ii) If a<b, then ¢ is a negative number. In fact, as 4
travels more slowly than B, he can never overtake B. But, if the
couriers be assumed to have been travelling in the same direction
and at the same rates before they reached H and K, then at
some time before that at which 4 is at H and B at K, they were
together, and it is this time that is given by the answer.
Moreover, since HP=at and KP =05t and ¢ is a negative number,
it follows that ZP and KP are both negative, and therefore are
to be taken as measured in the opposite direction to that in
which motion is taking place.

(iii) If a=b, then z=:-;. Now we know from arithmetic

that the smaller the denominator of a fraction the bigger does
the value of the fraction become (if the numerator remain
the same), and when the denominator vanishes the value of the
fraction becomes indefinitely large. In this case it will take an
infinite time before 4 overtakes B, which is the same as saying
that 4 never overtakes B. In fact, as they travel at equal rates,
they will always be a distance » miles apart.



76 PROBLEMS LEADING TO

Ez. 13. As one more example, consider again the problem
of filling a cistern by means of four pipes which is given on p. 72,
Ex. 7. If we had supposed that the second, third, and fourth
pipes had let the water escape, and the first had supplied water
we should have had the equation
v v v v w

from which we obtain z=—12.

To determine what meaning can be attached to a negative answer,
we notice that if we had tried to find the number of days in
which the cistern, supposed full, would have been emptied when
the last three pipes were emptying it and the first pipe filling it,
we should have obtained the equation

v v v v

v
z"1tet3ty

and therefore #=12. Hence the negative answer to the problem
as stated in the first part of this Example shews us that the
problem as it stands is impossible, but that the analogous
problem of emptying a cistern which is already full is capable
of solution.

101. The following rules may help the beginner to
form correctly the equations of the problems hereafter
given.

First. In problems concerning distance, time, and
(uniform) velocities, we have [see Art. 5] s =vt, where
s is the distance traversed (i.e. the number of units
of length in it), ¢ is the time occupied in traversing
it (Le. the number of the units of time occupied), and
v is the velocity with which it is traversed.

But in all cases the same unit of length should be used
throughout the same question; that is, all distances should be
expressed either in feet, or in yards, or in miles, and so on—
whichever unit is most convenient being chosen. Similarly all

durations should be expressed as multiples of the same unit of

time; and so for other quantities.
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Second. In problems concerning work done by
men, taps filling cisterns, &c., we notice,

(i) that if a man do a piece of work in a days, he

does - of it in each day; if a tap fill a cistern in

a hours, it must fill }z of it in each hour;

(ii) that if # men complete a piece of work in one

day, then each man must do ;} of it in 1 day;

(iii) that if # men complete a piece of work in a
days, then za men would do it in 1 day, and therefore

1 man would do a:l_a, of it in each day.

Should the student feel any difficulty in writing down the
foregoing results, a numerical illustration (such as putting a=2,
z=3) will probably guide him aright.

EXAMPLES. VL

[Some additional examples on ﬁroblems leading to simple
equations will be found in Chapter X1I.]

1. Divide the number 46 into two parts, such that when
the one is divided by 7 and the other by 3, the quotients to-
gether may amount to 10.

2. Find a number such that the sum of it and of another
number m times as great may be a.

3. Divide the number 237 into two parts, such that one
may be contained in the other 1} times.

4, A person has 264 coins of two kinds, and times as
many of one sort as the other. How many has he of each sort?

5. The difference between the third and eighth parts of a
certain number exceeds five times the difference between the
eighth and ninth parts by 10; find the number.

6. The difference between the fourth and ninth parts of a
certain number exceeds four times the difference between the
ninth and tenth parts by 34 ; find the number,
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7. Find a number which when multiplied by 6 exceeds 35
as much as 35 exceeds the original number.

8. Find a number such that if it be subtracted from the’
sum of its half, third, and fourth parts, the remainder may be 1.

9, An army is defeated, losing Jsth of its numbers in
killed, and 4,000 prisoners. It is then reinforced by reserves
amounting to 5,000 troops; but, in retreating, its rear-
which consists of }th of the numbers now with the colours, is
completely cut off. There remain 21,150 men. What was the
original force ?

10. A man sold a horse for £35, and half as much as he
gave for it. He gained £10. 10s. ; what did he pay for the horse?

11, A fortress has a garrison of 2,600 men ; among whom
are nine times as many foot soldiers, and three times as many
artillery soldiers as cavalry. How many of each corps are there?

12. I think of a certain number. I multiply it by 7, add
3 to the product, divide this by 2, subtract 4 from the quotient,
and obtain 15, t number did I think of ?

13. Gun metal is composed of 90 per cent. of copper and 10
per cent. of tin. Speculum metal contains 67 per cent. of copper
and 33 per cent. of tin. How many cwt. of speculum metal
should be melted with 4 cwt. of gun metal in order to make
an alloy in which there is four times as much copper as tin ?

14, An express train runs 7 miles an hour faster than an
ordinary train. The two trains run a certain distance in 4h. 12m.
and bh. 15m. respectively. What is the distance ?

15. A man drives to a certain place at the rate of 8 miles
an hour. Returning by a road 3 miles longer at the rate of 9
miles an hour he takes 73 minutes longer than in going. How
long is each road ?

16. A tourist finds that, if he spends sixteen shillings a day,
the money at his disposal will enable him to go on for two days
longer than if he spent eighteen shillings a day. How much
money has he? _

17. Find two consecutive numbers such that the sum of the
fifth and eleventh parts of the greater may exceed by 1 the sum
of the sixth and ninth parts of the less.

18, The difference of the squares of two consecutive numbers
is 17. Find the numbers.
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19. In an examination paper one boy A got three marks
more than half of the full marks, and another boy B got six
marks less than one-third of the full marks. The marks ob-
tained by 4 were twice as many as those obtained by B. What
were the marks that each obtained ?

20. I rode one-third of a journey at the rate of 10 miles an
hour, one-third more at the rate of 9 miles an hour, and the rest
at the rate of 8 miles an hour. If I had ridden half the journey
at the rate of 10 miles an hour, and the other half at the rate
of 8 miles an hour, I should have been half a minute longer
on the way. What distance did I ride?

21. A train travelling at the rate of 373 miles an hour passes
a person walking on a road parallel to the railway in 6 seconds ;
it also meets another person walking at the same rate as the
other, but in the opposite direction, and passes him in 4 seconds.
Find the length of the train.

22. A cash box contains three equal sums of money, one in
sovereigns, one in shillings, and one in pennies. If the total
number of coins is 1305, find how much money is in the box.

23. A person wishes to raffle a gold watch, and for that
purpose sells a certain number of tickets. If he sell each ticket
for 5s. he would lose £5, because the watch cost him more than
he would in this case get ; but if he sell each ticket for 6s., then
he gains £4. How many tickets did he sell ?

24. A father’s age is equal to the united ages of his five
children. In 15 years his age will be only one-half their united
ages. How old is the father?

26. A father’s age is three times that of his younger son.
In seven years’ time he will be twice as old as his elder son, who
is 5 y?ea.rs older than the younger son. What are their present
ages

26. The prices of the stalls, pit and gallery of a theatre are
respectively ten shillings, half-a-crown and one shilling. The
pit holds twice as many and the gallery three times as many
people as the stalls. If the receipts are £90 when all the seats
are full, find the number of people present.

27. A train travels for 35 miles, completing the whole dis-
tance in 464 min. The first 11 miles are accomplished at
a uniform rate; the speed is then increased 26 per cent. and
remains constant for the next 10 miles, after which it is
diminished in the ratio of 14 to 15, at which rate the rest of
the journey is performed. Find the original speed of the train.
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28. What number is that to which if 13 be added then one-
third of the sum will be equal to 137

29. A man leaves home with a certain sum of money in his

ket ; he spends one-eighth of it in travelling expenses, one-
E:lcf of the remainder in purchases, and the rest, amounting to
21s., he loses. How much did he start with ?

30. A bankrupt pays a dividend of 7s. 6d. in the pound. If
his debts had been £1200 more he would have paid only 6s. 8d.
in the pound : what were his debts ? ‘

31. In the same time 4 can do twice as much work as C,
B one and a half times as much work as ¢. The three work
together for two days, and then 4 works on alone for half a
day. In what time could 4 and C' together do as much as the
three will have thus performed ?

32. A purse contains 28 coins which together amount to £7.
A certain number of the coins are shillings, one-fifth of that
number half-sovereigns, and the rest are sovereigns. Find the
number of each.

33. At a cricket match the contractor provided dinner for
24 persons, and fixed the price so as to gain 124 'ller cent. upon
his outlay. Three of the cricketers were absent. The remaining
21 paid the fixed price for their dinner, and the contractor lost
ls. What was the charge for dinner ?

34. A cattle-dealer spends all his money in buying sheep,
and sells them at a profit of 20 per cent. He spends the money
which he now has In the same way, and gains 26 cent. He
again spends all his money, and makes a profit of 16 per cent.
If the profit which he e upon the last transaction be £300,
find how much money he had originally.

85. A has 6 more shillings than B, but if 4 gives B half
his money, and then B gives back to 4 one quarter of his
increased sum, they will each have the same sum: find what
each had at first.

38. At what time between 4 and 5 o’clock are the hands of
a watch together ?

37. At what time between the hours of 10 and 11, will the
hands of a clock be equally inclined to the vertical ?




EXAMINATION QUESTIONS.

[The following questions are taken from papers on Elementar
Algebra set in recent years totlwlowerfomugfmrioml’ubh‘z
under the aut’vuml' y of the Oxford and Cambridge Schools
Examination Board.)

1. Find the numerical values, when a=3, b=2, ¢=1, of
(i) a*+bc-a; (i) (a+d)(@a—-b)-ac+b(c—a).

2. Add together 2a+3b—4c, 3¢ —2b+3c, a—b, and 4a-c.

3. Subtract r—y2+ar from zy+3z+y%. What is the co-
efficient of ' in the result ?

4. Solve the equation 2(z—1)-3(z—2)+4 (z-3)=4,

5. A father makes the following agreement with his son.
For every day on which the boy is among the first ten boys in
his class he is to get three pence ; but if he is lower than tenth
he is to give his father a penny. At the end of 12 days the
boy has 1s. 4d. During how many days was he among the
first ten ?

6. Define factor, term, coefficient, power, index.
Given a=3, b=2, c= -1, find the value of

3b%c  bbc?  6a?
. 37 _ S, _ h3n2. i) — — — ——
(i) 3a3b-—5ablc—b%?; (i) e Ya—e byge

7. Remove the brackets from the expressions

(i) 4a+ {a- (3a—2b)+2b}; (ii) 7[8a—4{a—-b+3(a+d)}]
8. Multiply 2y2+42y =22 by 323 (z—y) -2y (z+y)+73
9. Divide 22— («-b)x—ab by z—a.

10. When 4 and B sit down to play, B has two-thirds as
much money as 4. After a while 4 wins 15s., and then he has
twice as much money as B. How much had each at first ?

B. A, 6
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11. Subtract -2134 3%+ 5y° - 4xy?
from dxyd - 23— 3+ 4a%y.
12. Simplify the following expressions:
(i) 2z—-(b-c)-(3a—~ 2b—c) — (a— 3b—4c);
(ii) -2[x-3{x-4(z-bz-1)}];
o T-%y+3 22-3y+4  2w-y+12
(iii) 3 3 + ig .
13. 'Enunciate the rule of signs in multiplication.
Multiply 3a®—ab+2b% by 3a%+ab—20%; and verify your
result when a=1, b=2.
14. Solve the equation
2z+1 4xr-3 bzr+1l

3 5 e — &

15. A coach travels between two places in 5 hours; if its
speed were increased by 3 miles an hour, it would take 3} hours
for the journey : what is the distance between the places ?

16. If 2=0, y= -1, 2=2, find the values of
PP+ -3ays; (P + (P -az); N2y - ys+1laly 422
17. Simplify (i) 7a-[2e¢+3(a+1)];
(i) 3z-[22-3{x—(2+1)}];
(iii) (@—"0)[(@a+c)+{b—c}]—a?+b(b+c)—cxb.

18. Form the continued product of a+b, a+2b, 2¢+b, and
a—b. What are the dimensions of the product ?

19. Distinguish between an equation and an identity.

Solve the equations:
@) z+6a 22-3a_br Tzr+6a
3 7 6 14 .

(i) bz (z+3)~7(@+2)(& -11)+2 (2% - 32+7)=0.

20. In an examination paper one boy, A, gets 8 marks more
than the third part of marks, while another, B, gets 11
marks less than the half of full marks. The marks obtained b
A are eight-elevenths of those obtained by B. Find the full
marks for the paper.
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21. Multigly a+b by 2a+3b; 3a?+2ab+ b2 by a2 - 2ab - b?;
and a+b—-cby a-b+ec.
22. Divide 6abc by 2a; a3-a8 by a—ux;
and 323 — 493 — 322 — 4xy + 822+ 8yz by x—2y+32.
23. Prove that

24y +S-3ays)
z+y+2 n

2P+ (- 2P+ (z-g)%

24. Solve the equation
37-8 #-1,7-x_8-3¢ 8-5«
b 4 3 6 10 °
25. A piece of work could be done by 240 men in 20 days,
but when it is half completed 144 workmen strike, and the work

has to be finished by the remainder. How many days’ delay
are thus caused ?

26. Multiply (i) 23+ 22 — 1 by 2+ 2; and (ii) multiply together
a+b-c,b+c—a, and c4+a—b.

27. Divide the sum of x4-17, 14x 418, and 224-15 by 10+ x;
- and test your result by putting x=2.

28. Divide 44%-8s4+43+4%2+4 by 222-2-2;
and (@2 + b33 — (2ab)® by (a-0b)%

29. Shew that a term may be moved from one side of an
equality to the other side, provided its sign is changed.

Solve the following equations:

i) (#-3)(2r+5)—(x+4)(Tx+1)=(r+2)(3—5r)—48;

(ii) (bz+3)(7x—4)—(3x+5)(82—11)=(11x—2)(z+1).

30. A man walks up a mountain at the rate of two miles
an hour and down again by & way six miles longer at the rate of

3} miles an hour. He is out eight hours altogether. "How far
has he walked ?

6—2



84 EXAMINATION QUESTIONS.

31. Simplify
() a(2b+3c)~[c(2a+b)—b(c—2a)];
(i) 2[x-a-3{r-4(x-52—a)-a}]
Explain what is meant by a cogficient. Write down the
coefficient of = in the second of the examples in this question.

32. Multiply a?-8b2 by a2+8b%; subtract 175* from the
result, and then divide by a— 3b.

33. Divide 2a*+7a%b — 424?63+ 47ab® — 14b* by a®+6ab — 752
34, If x-y=2a, shew that 12 - 6ar+9a?=(y —a)?.

35. A man starts to walk from A4 to B at the rate of 4 miles

r hour, and on the way is overtaken by a dog-cart; if the cart

ad started an hour later than it did, he could have walked

8 miles further before he was overtaken : find the rate at which
the dog-cart travels.

36. If a=0, b=1, c=2, d=3, find the numerical value of
(3abe+ 2bed) N a¥be+cbd + 3.

37. Multiply 22+(J2-1)x+1 by 22— (J2+1)z+1.

38. Ifa=aB-yz b=y -2z, c=22—zy; prove that
ax+by +cz=(a?- bc)/x.

39. If a+b+c+d=0, prove that
@3+ b3 + A+ dP=3 (bed + cda + dab + abe).

40. The gross income of a certain man was £40 more in the
second of two particular years than in the first, but in con-
sequence of the income-tax rising from 4d. in the pound in the
first year to 6d. in the pound in the second year, his net income
(after paying income-tax) was unaltered. ind his income in
each year.




CHAPTER VIL

FACTORS.

102. WE proceed now to the consideration of some
of the simpler algebraical processes. This chapter is
devoted to the discussion of factors.

Our investigations will often be greatly facilitated
if we can resolve a given expression into factors. This
cannot always be effected, and we shall here.confine
ourselves to a few expressions where it is possible to
obtain the factors by inspection.

We shall consider in succession (i) expressions
which have.a factor common to every term, (ii) certain
known forms, (iii) quadratic expressions, and (iv)
lastly, a general theorem which enables us to tell by
inspection whether any given expression of the first
degree is a factor of another expression.

103. Factor common to every term. If a
certain letter or quantity divide every term in a given
expression, it will divide the whole expression; and it
will therefore be a factor of the expression.

In general we confine our attention to literal factors.
All the numerical factors are usually combined into
a single numerical coefficient, which is prefixed to the
rest of the expression, but is not reckoned as a factor
of it.
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Ez. 1. Find the factors of Ta®—3ax.
Here a is a factor of each term,
.~ Ta—3azr=a (Ta-32).
Therefore @ and 7a — 3z are the required factors.

Ez. 2. Find the factors of 15ab%® —12a%bc? — 21act.
15ab3%3 — 12a%c® — 21 ach = 3ac® (5b% - 4a2b — Tc?).

Ez. 3. Find the factors of a(2x—3)+b(2r-3).
a (22— 3)+b(2x-3)=(a+Db)(22—-3).

Ex. 4. Resolve 4ax —12bx — 6ay + 18by into factors.
dax —12bx — 6ay + 18by =2 {2ax — 6bz — 3ay + 9by}
—2 {20 (a—3b) - 3y (a— 3b)}
=2 (22 - 3y) (a - 3b).

This last example is less obvious than the others, but we
shall see later how we can obtain the required factors in another
way.

EXAMPLES. VII A.
Resolve the following expressions into factors.

1. ar+ba. 2. 5z-2022%

3. a?-3ab. 4, 3lm?—9%m.

5. 2y+axy’+ay. 6. 11p%—2p% —3pgs.
7. 8ay%i+122%22-16zyt 8, a(z-y)-b(x-y).
9. ac+ad+be+bd. 10, 2%+1lx—3x-3l

11, ar+tay+az+pr+py+pe 12 ay*+(a-1)y-1.

104, Known Forms. We proceed next to the
consideration of certain known forms, and under this
head shall discuss in succession (i) expressions which
can be written as the difference of two squares;
(ii) trinomial expressions, which are perfect squares;
(iii) certain expressions of the third and fourth degree.
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105. DIFFERENCE OF TWO SQUARES. We
have already proved [Art. 61, Ez. 3] the formula

a'—-b'=(a—-b)(a+bd)
Hence the difference of the squares of two expressions
can always be resolved into factors.

Ez. 1. Resolve x®— 84 into factors.
23-64=23-82
=(z-8)(x+8).
Thus 2 -8 and x+8 are the required factors.
Ex. 2. Resolve 4922 — 8432 into factors.
4923 — B4y3=(Tx)* - (8y)?
=(Tx-8y) (T +8y).
Thus 72—8y and 7z + 8y are the required factors,
Ex. 3. Resolve 100 -9 into factors.
100 -9=10%—32=(10—3) (10+3) =7 x 13.
Thus 7 and 13 are the factors of 91.

Ex. 4. Find the factors of 2®-3.
22 -3=23-(/3)%
=(z-4/3) (x+4/3).
That is, #-4/3 and x+,/3 are the required factors. A factor
involving the square root of » is not a factor such as we want,
but 4/3 is a number and may properly form a term in a factor.

Similarly, if @ be a given quantity or a number, then the factors
of 22— a are # —,/a and z+./a.

106. The squares of compound expressions are
subject to the same rule, for @ and b in Article 105 may
stand for any expressions.

Ez. 1. Find the factors of (2x+y)?—(2y —x)3.

22+y)* - (2y —2)*= {27+y) - 2y - 2)} {@2r+y)+(2y - 2)}
=(3w-y)(z+3y).
Ex. 2. Find the factors of (x2+1)2—22

(22+1)2-22= {(22+1) - 2} {(22+1)+2},.
that is, 42 +1=(22-2+1) (22 +2+1).
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EXAMPLES. VIIL B.

Write down by insiection the factors of the following
expressions, each of which is the difference of two squares.

1. a*-121 2. 81-144. 3. 2%2-121.
4 1-e4d 5. 2-1. 6. 23-5.
7. 4-a2 8 -4 9. 9-4a%

10, 1212-25m® 11, 8lp?-—afds. 12, i -als®

13, a%b—a%yt, 14, 22-1442m2 15, a*—144m%2
16, at- . 17. 162%-8lat 18. 4a?bict -9t
19. (r+y)y-121. 20. (a—b)2-9ct

2L (z+y)?-(x-y) 22, (a?+0%)2-ad

23. (a®-b2)2-02 24. (a+b+cP—(a+b—c)
25. (3z-4y)*~(4x-3y). 2. a*-4(a-b2

21. (2a-12—(a+1) 28, at—(22+22y+37).

29. (I+m)t—(m+n)t. 30. (2r+1)t-(x-2)%

107. PERFECT SQUARES. We know [Art.
61, Ezs. 1, 2] that ' .
a'+2ab+b*= (a +b)*,
and a'—2ab+ b= (a—b)".
Thus any expression which can be put in either of these

- forms (where a and b may stand for any compound ex-
pressions) can be resolved into factors.

These examples can however generally be solved
more simply by the methods given later, Arts. 113,114,
and Chap. xv.

Ex. Find the factors of 4x2—4x+1.

The first term is the square of 2z, and the last term is the
square of 1. Hence, if the given expression be of one of the
above forms, it can be written

(2z)2 -2 (27) +1.
This is the case, .-. the given expression=(2z—1)2
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EXAMPLES. VIL O.

Find the factors of the following expressions, each expression
being a perfect square. .

1. 2342zx+1. 2, 22-6x+9.
3. 428122y +94% 4, r-8s3+16,
5. at—3ab+303. 8. (a+b)—4(a+b)(a—b)+4(a—b).

108. EXPRESSIONS OF THE THIRD DE-
GREE. The factors of the following expressions of
the third degree are known.
a’+b° =(a+b)(a’—ab+?d")

a’ -0 =(a—>b)(a*+ ab+d")
a® +3a%b + 3ab* + b*= (a +b)* ‘
a’ —3a’b + 3ab® — b* = (a - b)*
a’+ b+ —3Babe = (a+b+c)(a’+b* +c*—adb—ac — be).
Hence an expression which can be written in any one
of these forms can be resolved into factors.
Ex. 1. Find the factors of x3—217.
3-27=23-33
=(2-3)(2*+32+3?)
=(2-3) (2243 +9).
Ex. 2. Find the factors of (2x—y)3+(x—2y)>.
This expression is of the form a3+ 43, hence, it
={@s-9)+(=-Y} {(2r-9)*-22-y) (+ -2+ (-2}
Simplifying, = {32 - 3y} {32 - 3y +3y?%
=9 (r-y) (- 2y+y?).
Ex. 3. Find the factors of 8a’+12a%b+6ab?+ b3.
843+ 12a% +6ab? + b3 =(2a)3 + 3 (2a)2 b+ 3 (2a) b2+ b3
=(2a+b)’.
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EXAMPLES. VIL D.
Find the factors of the following expressions,

1 28-1L 2. a3+1, 3. 8a%s3-1.
4, (2r-yP-(r-2)8 5. 234322432+ 1.
6. 1-3y+3y2-33 7. 23+a3+1-3ax.

109. EXPRESSIONS OF THE FOURTH DE-
GREE. The factors of the following expressions of the
fourth degree are also known.

— b= (a1 (a"+57) =(a—b) (a-+b) (a+5°)
a‘+4a‘b+6a’b’+ 4ab*+b'=(a+b)*
a'—4a’b+6a'’—4ab®+b* =(a—b)*
a‘+a'D*+ b =(a'—ab+b") (' +ab+ b*)
Hence an expression which can be written in any one
of the above forms can be resolved into factors.

Ex. 1. Find the factors of 2*—(2y)t.
- ()= {=*- (%)%} {*+(2)%
=(z-29) (z+2y) (+*+49”).
Ex. 2. Find the factors of 8la*+144a2b2+ 25654
8lat+ 144a2b? 4-256b* = (3a)t 4 (3a)? (4D)2 4 (4b)*
= {(3a)* - (3a) (4b)+(4)} {(3a)*+(3a) (4D) + (40)%}
= {9a®— 12ab+16b% {9a%+12ab+165%.

EXAMPLES. VIL E.

Find the factors of the following expressions.

1 1-at 2. at-16.

3. (Br+4y)t-(z+29)4 4, 14+4a+6a?+4a3+at.
5. y-42+62-4y+1.

6.

(@+ 104 (a+1)2(b- 1)2+(b- 1)L
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110. The beginner may find the following table, containing
the factors of some of the forms above considered, useful for
reference. A4 and B may stand for any expressions.

A% —B=(A-B)(A+B).
A?4 B3, has no real factors,
A3+ B*=(A+B)(AF AB+ B?).
A*—Bi=(A-B)(A+B) (A2 + B?).
A*+ B*...has no real factors.
A24+24B+ B*=(A + B)%
A3+342B+34AB*+ B3=(A + B)*.

111. It may be noticed that, if we can resolve an
expression into factors, the result of dividing it by one
of those factors is obvious. This is sometimes useful if
the expression be of one of the forms given in the last
article.

Ex. Divide (x-y)p*+(x—2)3 by 2v—y—=.
‘We know that
(z-yP+(@@-2P={(z-y)+(@-2H(z-9)* - (z-y)(z-2)+(r-2)}
=@o-y -3 {(z-g)P~ (-y) (&-2) + (z—2)3.
Hence the result of dividing the left-hand side by 2z —y—z is

(z-y)2—(z-y) (—2)+(r-2)},
which reduces to
P-gy-zz4yt-yz+22

EXAMPLES. VIL F.

The results of the following examples can be written down
by inspection. ’

Divide (2r)*+(3y)® by 2x+3y.

Divide (3a-b)*-(2a—0b)* by 5a - 2b.

Divide (42+43y—22)2—(32—2y+32)? by x+5y -5z
Divide (3z+2y+2)°+(2+2y+323 by 2+y+2.
Divide (2a¢+3b+4c)®—(a+b+c)® by a+2b+3e.
Divide (ac—bd)? - (bc- ad)? by (a—b)(c+d).

I S
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112. Factors of Quadratic Expressions. We
proceed next to the consideration of the factors of
quadratic expressions.

. A quadratic éxpression in z is one which is of the
second degree in «, and therefore is of the form

p+qr+r,

where p, ¢, r are any numbers, positive or negative.
The factors of such an expression (if they exist) can
always be found. Before proceeding to the general
rule, we shall consider a few cases where they are
obvious by inspection.

113. We know, by multiplication, that

2+ @+b)a+ab=(z+a)(z+b)

Hence, if we have to factorize an expression like
2*+qz+r, and we can guess or find two numbers,
a and b, such that their sum is ¢ and their product is r,
then the required factors will be 2+ a and 2+ b. For,
if a+b=¢q and ab=r, then

L+egr+r=a"+(@+db)z+ab
: =(z+a)(x+D).

Under the same conditions,

—qr+r=a"—(a+d)z+ab=(x—a)(z—-0D)

These results can be expressed in one formula, thus :

Litgqr+r=a"+(a+db)z+ab=(rta)(z+bh),
where, in the ambiguity +, either the + is to be taken
throughout, or the — is to be taken throughout.

Ex. 1. Find the factors of 2%+ 8x+12.

We want to find two numbers whose product is 12 and whose
sum is 8. Now the only pairs of positive integral factors of 12
are 12 and 1, 6 and 2, 4 and 3; and the only one of these pairs
whose sum is 8 is 6 and 2. Hence

224+ 82+12=(x+6) (z+2).
Similarly, 22— 8x+12=(z-6) (x—2).
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Note. An exactly similar rule enables us to determine the
factors of 2%+ 82y +12y* and 42— 8xy+ 12y? namely,
22+ 82y + 1242 =(2 + 6y) (z +2y),
and 2% — 82y +12y%= (2 — 6y) (z —2y).

Ex. 2. Find the factors of a?-13a+-12.

We want two numbers whose product is +12 and whose
sum is —13. These are clearly —1 and —12. Hence we have

a?-13a+12=(a—-1)(a—-12).

Ex. 3. Find the factors of 12+ 17zy+ 60y2

We want two numbers whose product is +60 and whose
sum is +17. These are clearly 5 and 12.

. 224 172y 4+ 60y% = (2 + by) (2 +12y).
Ez. 4. Find the factors of z%—6x+9.

‘We want two numbers whose product is +9 and whose sum
is —6. These are — 3 and -3. : .

o 23 —-6249=(x-3)(#-3)=(x-3)%
Thii example might have been treated as a known form [Art.
107

114. In the cases considered in the last article,
the term independent of x, which is often called the
absolute term, (i.e. r), was taken as positive ; and thus
the numbers @ and b were of the same sign. But
had r been negative, they would necessarily have been
of opposite signs: in such a case, we want to find two
numbers, ¢ and b, so that the given expression may be
the same as 2* + (a — b) z — ab, that is, as(z + a) (z — D).
Thus the coefficient of # must be equal to the difference
of the two numbers selected. '

For example, to find the factors of 22+ — 12, we want to find
two numbers whose product is 12 and whose difference is 1.
The only pairs of integral factors of 12 are 12 and 1, 6 and 2,
4 and 3, and the only one of these pairs whose difference is 1 is
4 and 3. Hence

22+ z—-12=(x+4)(x-3).
Similarly, 22—z -~12=(z—4)(z+3).

If however we regard the rule given in Art. 113
as referring to an algebraical sum and an algebraical
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product, it will cover all the cases. The only practical
points to be observed being that, if the term inde-
pendent of & be positive, the numbers found must be of
the same sign, and the sign of each of them must be
the same as the sign of the coefficient of # ; but if the
term independent of z be negative, the numbers found
must be of opg:site signs, and the sign of the greater
number must be the same as the sign of the coefficient
of z.

Ex. 1. Find the factors of 2*—z - 20.

Here we want to find two numbers whose product is 20 and
whose difference is 1; that is, using algebraical notation, whose
product is — 20 and whose algebraical sum is —1. The fact
that the product is negative shews that the mumbers must be
of opposite signs, and since the sum is negatiye the one which
is arithmetically the greater must be negative. The required
numbers are —b5 and +4.

o B2—2-20=(x-5)(x+4).
Ezx. 2. Resolve 146a—Ta? into factors.

Here we want two numbers whose product is —7 and whose
sum is +6. These are —1 and +7.

. 146a—T7a=(1-a)(1+7a).

EXAMPLES. VIL G.

‘Write down the factors of the following expressions. )

1 2*+92+18. 2. a?-Ta+12. 3. 124+7y+32

4 22-192+88. .5, 72'-14n+49. 6. y2--19y+84.

7. a*-5ab+6b%. 8, a%?-29xy+54. 9. 1-130+2202
10, 22244132241, 11. a®—19ab+ 8802 12, a2 - 17a'b’+ 665,
13. p2-11p+18. ‘14, 1-82-84:2 15, 23+2-2.
16, a*-a-2. 17. 2?-8x-20. 18. y*-y-42.
19. a?+3ab—-28b%2 20. 1-5m—24m% 21. 22—92-36.
22, +b-42. 23, 2%-922-90. 24, @*+a-110.
25, 22-z-42. 26, 234+6sy—16y% 271, 3*-11y-102.
28. 29

%~ 122 - 86. a2 —16a,-57. 30. a?b?+1lab—242.



FACTORS. 95

115. Method of writing a quadratic expression as
the difference of two squares.

We know that the factors of o'—b* are (a—b)
and (a+b). If therefore we can write a quadratic
expression as the difference of the squares of two
compound expressions we can resolve it into factors.

To write a quadratic expression as the difference
of two squares, we try to find some quantity which
when added to the terms involving 2* and « will make
a perfect square. Adding that number to the terms
involving 2* and &, and at the same time subtracting it
from the rest of the expression, will make no difference
to the value of the expression ; and if the result of this
latter subtraction be a negative quantity, we can apply
the rule.

In the following examples the coefficient of 2 is unity, and
in such cases the require‘f number (which we add to the terms
involving 22 and z, and subtract from the other terms) is the
square of half the coefficient of .

Ex.l.  22+820+12=(22+82+16)+12—16

=(s+4)2-4
={w+4)-2} {(z+4)+2}
=(z+2)(x+6).

Er.2.  2+5-20=2+z+(})F-20-}

=(z+3)- ()
={@+3)-B{=+H+§
=(x-4) (z+5).

*Ex. 3. Similarly
2+ —1=(2?+22+1)~1-1
=(z+1)2-2 .
=(@+1-42) (+1442).
These factors are rational so far as  is concerned.
*116. If we want the factors of pa’ + g +r, we can

write the expression in the form p (a:" +12) x +;—)) . The
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factors of the terms in the bracket can then be obtained
as described above, and thus the factors of the given
expression are known.

For example, to find the factors of 82! 52+ 2.
23— 5x4+2=2{s-fx+1}
=2{*—§z+(§)*+1-1§
=2{(=-P*-1%}
=2{z-H-P{=-d+§
=2{r-2}{z—§}
=(z-2)(2x-1).

*117. Lastly, consider the case of any quadratic
expression, such as &'+ gx+ r, where ¢ and » stand
for any numbers whatever. The form az*+bz+c is
reducible to this form by the method given in the last
article.

The result of adding (3q)* to #* + ¢z is 2* + gz + }¢’,
which is the square of (z + 3¢)"
Hence
F+gz+r={@+q+ A} -1g' +r
=(z+439’ - ({¢' - 1)
={e+ig—Vig-r} e+l +Vi -1}
This is a general formula which includes all the cases given

above; and if we write for ¢ and r the values which they have in
any particular expression, we obtain its factors.

For example, consider the expression #2422 —1 given above ;
here ¢=2, and r=1, and we at once obtain (z+1-,/2) and
(z+1+4/2) as the factors required.

Similarly, to find the factors of #2+48fzx+1, put ¢g==4& and
r=1, and we find that the factors are

81 x 49\ 81 x 49
<$+¥§— A/ IXT) and (2+§§+ A/ %) '
that is, are (z+3) and (2+8).
*118. In the analysis given in Art. 117, we took the

square root of §¢°—». This is always possible (though
the result may be a surd whose value cannot be exactly
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found) }:rovided 1¢" —r is a positive quantity. If how-
ever 1¢'—r be negative, we are landed in a difficulty,
since 1t is impossible, by any rules given in arithmetic, to
take the square root of a negative quantity. In fact, a
negative quantity, no less than a positive one, when mul-
tiplied by itself gives a positive quantity; and hence
no real quantity (whether positive or negative) when
squared can be a negative quantity. Thus it is only
possible to find real factors of a* + gz +r when 1¢* >,
that is, when ¢"> 4.

*119. For example, if we want to find the factors of
22+22+2, we put it in the form (22+22+1)+2-1, that is,
(z+1)2+1; and we can proceed no further.

If we choose to write this result as (#+1)2— a, where a stands
for —1, we can express this as (z+1—,/a)(x+1+,/a). The
product of these factors is (x4 1)%— @, that is, (x+1)2+ 1, provided
a is supposed to stand for —1.

A quantity like 4/(—1) is unknown in arithmetic; but if we
define it to be a new kind of quantity, which is such that its
square is — 1, then we can find the factors of 22+ 22+ 2.

A quantity, such as ,/(-1), is said to be imaginary, and
expressions involving such quantities are called imaginary. We
shall not concern ourselves in this book with the meaning or the -
properties of imaginary quantities; but as the student will find
them occur constantly in the more advanced parts of mathe-
matics, it is desirable to call his attention to their existence.
It may be added that they are not the merely artificial quantities
which would be suggested by the arithmetical interpretation of
them given above. There are other branches of mathematics,
besides the arithmetic with which alone the student is here
supposed to be familiar, and a study of those branches enables
us to assign a definite intelligible and useful meaning to a
quantity like /(-1).

EXAMPLES. VIIL H.

Write down the following expressions as the difference of two
squares, and thence resolve them into factors.

1 22-2-2 2. P-Ty+12. 3. n2—24n+95.

4 at4a-—-42 5. 22— 21x+104. 6. 1— 1258502
7. a®—11ab-26b2 8, 24+822+7. 9. 98a2—Tab- b2
10. 10224792 -8. 11, 11a®+75ab - 1483, 12. 14y%—25yz+ 622

*13. 2241, *14, 22— 4245, *15, 22432 +3.

B. A. . 7
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120. Tt is always possible to tell whether a quan-
tity, such as z —a, 18 a factor of a given expression by
dividing the expression by it; because, if there be no
remainger, then z—a is a factor of the expression.
The same conclusion can however be obtained at once
by the aid of the following theorem.

Theorem. If an ewpression involving x vanish
when a 18 put for x wherever x occurs, then the expres-
ston 18 exactly divnisible by x —a.

Let us denote the given expression by X. If we
divide it by z — a, we shall get a certain quotient, which
we will denote by @, and a remainder, which -we will
denote by R. Hence,

X=Q(z—a)+R.

Now this equation is true for all values of z, and
therefore will be true if we put a for  wherever 2
occurs in it. This will leave R unaltered; for R does
not contain x, since if it did we could continue the
division. Also, by hypothesis, the effect of putting
a for z in X is to make X vanish. Hence, putting a
for z, we obtain

0=0+R.

Therefore R =0, that is, there is no remainder, and
z—a is a factor of X.

Note. The reader will remember that we are here confining
ourselves to algebraical expressions in which all the numbers
denoting powers of x are positive integers, and in which no roots
of guantities involving z are involved. Such expressions are
said to be rational and integral. It is only of rational integral
algebraical expressions that the above theorem is necessarily true.

121. For example, 2% - 72+ 6 vanishes if = be put equal to
1. Therefore 2—1 is a factor of it. Dividing by -1, we find
that the other factor is z—6.

Again, 2*—523—"72%2+4+52x+6 vanishes if # be put equal to
--1, gince it then becomes 145-7-5+6, .. it is divisible
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:I z+1. Dividing by 2+1, we find that the quotient is
—-62%-2+6. Again, this latter expression vanishes when z
is put equal to -1, .. z+1 is a factor of it. Dividing by
z+1, we find that the quotient is 22-72x46. The factors of
this last expression are x—1 and 2—6. Hence the given ex-

pression
=(@+1)(z+1)(x-1)(z-6)
=(z+1)3(x-1)(z-6).

122. As another example of this theorem, we will take the
following important application to determine whether 2* +a* is
divisible by z+a or by z —a, where n is any positive integer.

(i) To see if 2*—a* be divisible by x—a we put #=a in
it. It then becomes a* —a® which obviously is zero. Therefore
% — a* 18 always divisible by x — a, whatever integer n may be.

(ii) Again, to see if 2*—a" be divisible by z+a, we put
Z= —ain it. It then becomes (—a)*—a™ If n be even, this
is equal to a*-a* [Art. 59], which i3 zero. If = be odd, it is
equal to —a*—a* [Art. 59], which is not zero. Therefore
2% —a 18 or i3 not divisible by x+a, according as n is even or
odd.

(iii) Next, let us see whether 2"+ a* is divisible by = —a.
If it be divisible by x—a, it must become equal to zero when
z is put equal to a ; but if z=aqa it becomes a*+ a*, which is not
zero. Therefore 2%+ a* i3 never divisible by x — a.

(iv) Lastly, to see if 2#+a* be divisible by 2+a, we put
z equal to —a. Now if z=—a, 2*+a* becomes (—a)*+a™.
If n be odd, this is equal to —a”®+a® [Art. 59], which is zero;
but if 7 be even, it is equal to a*+a®, which is not zero. There-
fore a*+a* i or i8 not divisible by x+ a, according as n is odd or
even.

EXAMPLES. VIL L

1, Determine by inspection whether 2 -1 is a factor of each
or of any of the following expressions; and if so, find the other
factors.

(i) 23+22—-2—-2; (ii) 23-62+5; (iii) +3-4r+2.

2. Determine by inspection whether z+1 is a factor of each
or of any of the following expressions; and if so, find the other
factors.

(i) 234522472 +3; (i) 23-322+1; (iii) 23 -22+42+6.
. 7—2
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3. Each of the following expressions has either -1, -
z+1, or -2 as a factor. Determine all the factors of each
expression.

(i) a3-22%-2+2; (il) 23-T22+6x;

(iii) 23+(a—3)22+(2-3a)2+2a; (iv) 2%+52%-4x-20;
*v) 2A+32%8-32%-11z-6.

MISCELEANEOUS EXAMPLES ON FACTORS. VIL J.

Resolve into the simplest possible factors the following
expressions, numbered 1 to 18.

1. 23-36a. 10. at-ya®+a—2y.

2. (2z+30—(z—3) 11. (a2+4a)— (b 4b).

3. (z-2y)3+° 12, 622+ 7ax—2x—3a?-3a.

4, 72920 —gf. 13, a?-b248bc—16c2

5. (3a2-bB2—(a?-3b%)% | 14. o+ bE+2(ab+ac+bo).

6. ab?-a?-b2+1. 15. 9a%+6ab—16¢2 - 8be.

7. $#+yi-y-L 16. 72(a?-1)-17a.

8. 22(z+y)l-(22+y%)>% 17, (a+2b+3c)2—4(a+b-c)2

9. 9a+6ab— 4c?+ 4ch. 18. (22+44x)2—2(22+47)—15.
19. Resolve into four factors 2%—622+1.

8

Resolve into factors of the first degree
a?(b+c)+b%(c+a)+c®(a+b)+2abe.

21. Provethat a*+ma2h?+ bt is divisible by a2+ abn/2 —m + b2,
and find the other factor.

22. Find the continued product of
B2taxr+ad, 2-azr+a? A -a?+at;
and deduce (without division) the quotient of x84 16a%r4 + 25648
when divided by 2%+ 2ax + 4a2.

23. Find the factors of {#®— (y — 2)}{y* - (z - 2)?}{22 - (x—»)%}.
*24, Prove the following identity
a3 (¢~ B)+ 5 (a— )+ & (b—a)=(a=B)(b—c)(c—a)(a-+b+0)
Find the factors of the expressions, numbered 25 to 27.
*25. (be + ca+ab)? - (b3 + cla?+ a?b?).
*26. (a-d) (B -c)+(b-d) (- a))+(c-d) (a®-bP). |
*27. (a+b)(a+2b)(a+3b)—9b(a+b)(a+2b)+18b%(a+b)— 653,



CHAPTER VIIL
HIGHEST COMMON FACTORS.

123. THE Highest Common Factor of two or
more algebraical expressions is the expression of the
highest dimension which will exactly divide each of
them. The letters H. C. F. are often used as an
abbreviation for highest common factor.

Some writers call this factor the Aighest common divisor,
and denote it by H.C.D.; others call it the greatest common
measure, and denote it by a.c.M. The latter name is properly
used in arithmetic, but in algebra our symbols stand for any
numbers, and we cannot with correctness speak of one symbol
being greater or less than another.

124. We shall first consider the rule for finding
the H. C. F. of simple expressions and of expressions
which can be resolved into factors on inspection, and
then the rule for finding the H.c.F. of compound
expressions of which the factors are not obvious.

125. Rule for finding the H. C. F. of Simple
Expressions. The H. C.F. of two or more simple
expressions is the product of every factor common
to them all, each such factor being raised to the
lowest power which it has in any of them.

This is obvious from the definition, and is illus-
trated in the accompanying examples.

If the expressions have numerical coefficients, it is
usual to find the G. c. M. of these coefficients, and prefix
it to the H.C. F. as a numerical coefficient.
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Ez. 1. Find the B.C.F. of af, @® and a2
The H.c.F. required must be a power of @, and obviously
is o )

Ex. 2. Find the H.C.F. of 4zy? and 22%. :

Here z will divide both quantities, but no power of # higher
than the first will divide both. Similarly, y will divide both

uantities, but no power of y higher than the first will divide

them both. Lastly, the a.c.M. of 4 and 2 is 2. Therefore the
H.C.F. of the given expressions is 2zy.

Ex. 3. Find the H.C.F. of 6ab’3d4, 9a?b%d? and — 3abb3c2.

The only letters common to all these expressions are a, b,
and c. The first expression involves a to the first power only,
and therefore is not divisible by any higher power of . Similarly,
b will divide them all, but any higher power of b will not
divide the first or second of them. Similarly, no power of ¢
higher than the first will divide them all. The @.c.M. of 6, 9,
and 3is 3. Therefore the H.c.F. of the given expressions is 3ab.

EXAMPLES. VIII A

Find the H.c.F. of the following quantities.
L 3abdh dafbt Gabich and Sae.
. 1624322, — 20: , & and —252%y522.

3. mﬁg:w, 125°g7s5, na 29p5Pr s, 4

126. Rule for finding the H. C. F'. of Com-
pound Expressions which can be resolved into
factors of the first degree. This case is covered
by the rule just given; since, if we place a factor of
the first degree in brackets, we may treat it as if it
were a simple quantity.

Hence the required H. C. F. is the product of every
factor common to the expressions, each such factor
being raised to the lowest power it has in any of them.
Numerical coefficients are treated in the manner ex-
plained in Art. 125.

Ex. 1. Find the B.C.F. of 6(a?—b%) and 9 (a—b)%

The given expressions must be resolved into factors of the

first degree. They then become respectively

6(a—d)(a+b), and 9(a-b)
The H.C.F. required is 3 (a—2b), since «—b is the only factor
common to the two expressions, and the @.c.M. of 6 and 9 is 3.
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Ez. 2. Find the H.C.¥. of
(#?-a®?, (z-a)’, and (2-a)}(z-D)%

The first of these expressions can be resolved into factors,
(z—a)?(x+a). All the quantities are now expressed as products
of factors of the first degree. Their H.C.F. is (# —a)}, since it is
clear that the only factor common to them all is a power of

(#-a), and no power of it higher than the second will divide
them all,

Ex.3. Find the B.C.F. of
6atb + 6a3b% — 36a25® and 9 (2203 + 4a2b3 + 3abt).
Here 6atb + 6a3b2 — 36a%h* =6a%b (a — 2b)(a + 3b),
and 9 (a®b?+ 4a?b? + 3ab*) =9ab? (a + b)(a + 3b).
Hence their H.c.F. is 3ab (z+3b).

EXAMPLES. VIIIL B.
Find the H.c.F. of the following quantities.
2?-zy and 2%-y2 2. a®-2ab and a®+2ab.
A —at and (z+a). 4. 22-4 and 22+2-6.
23742, 22-1, and 23+62—"T.
222 — 3z —2, and 422+8x+3.
3a’b? (a3 - b3), 6atb (a?—b?), and 9ab3(a—b)
127. It is worth noting that if one of the ex-
pressions can be resolved into factors of the first degree,
we can tell by trial whether each of these factors is
also a factor of the other expressions; and we can thus
obtain the H.C.F. of the given expressions.
Ezample. Find the H.C.F. of
2(a-b)(11a—21b) and 209a3— 399a3h+ 407ab? — 77703,
Here we can try whether the factor a — b divides the second
expression, and on trial we find that it does not do so ; hence it
cannot form part of the H.c.F. Next, in the same way trying

the factor 11a—21b, we find that it divides exactly into the
second expression. Therefore.lla — 21b is the required H.C.F.

EXAMPLES. VIII O.
Find the H.C.F. of the following expressions.
1. 3(a+b)? and 17a%+19a?b - 5ad® - 703
2. 7a(a®-b% and 29a*- 60a3b+ 12a%b%+ 19ab’.
3. 322-3r-6 and 34%—624+31%-322 - 11r+4.

NeowrE
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128. Rule for finding the H.C.F. of two
Compound Expressions. We confine ourselves, in
the first instance, to the case where there are only two
compound expressions. To determine their H.C.F. we
begin by removing all the simple factors involved. The
H.C.F. of the factors so removed must be found, and
will be a factor of the final H. C. F. required.

The remaining part of each expression must then
be arranged in descending powers of some letter, say .
Next, the expression of higher dimensions (or if both be
of the same dimensions, then either of them) must be
divided by the other. The remainder, if any, will be
of lower dimensions than the expression used as a
divisor. This remainder is now used in turn as a
divisor and the former divisor as a dividend. Con-
tinuing this process until there is no remainder, the
last divisor will be the H.C.F. of the two expressions.
If there be a final remainder which does not involve z,
then there is no factor involving z common to the
expressions. The H.C.F. of these expressions (if any),
when multiplied by the H. c.F. of the factors removed,
will form the H. C. F. required.

129. Before proving the rule, we will illustrate the method
by finding the H.C.F. of #3—243+1 and 223+a22+42-17.

The first step is to divide one expression by the other,

P-241) 25+ a2+4r-T7(2
20— 422 +2
T b+ 4r-9

We have now to divide 23— 222+ 1 by 522+4x-9. To avoid
the introduction of fractional coefficients, we will multiply the
first of these expressions by 5. This cannot affect the factor
we are seeking, since this factor is to be a compound expression
common to the two given expressions. We may therefore at
any stage of the process multiply or divide either the divisor or
the dividend by any number or simple factor without altering
our result.” This will often enable us to simplify the working of
an example,
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The next step therefore will be as follows,
5at+4r—9)525-1028  +5(x
523+ 443 -9z
14234+ 95 +5
ll;‘iaulﬁply the dividend again by 5 so as to avoid fractions, .". we
ve

ba3+4x-9 ) — 7023+ 452+ 2 (-14
=702~ 56z+126
101z - 101

We have now to divide 522+ 42 —9 by 1012 — 101, that is, by
101 (z—1). In the same way as before, we may reject the
numerical factor 101, since it can form no part of the required
H.C.F. The next step will then be,

x2-1)52%+42x-9 ( 5x+9
ba-5z
9z -9
9z -9
There is no remainder, and there is no numerical factor

common to the two expressions, therefore -1 (which is the
last divisor used) is the H.c.F. required.

130. Proof of the rule. The rule enunciated in
Art. 128 depends on the principle that any quantity
which is a factor of 4 and B will also be a factor of
mA + nB, where A and B are two algebraical expres-
sions, and m and n stand for any quantities (except
fractions involving the factor in the denominator).

If we suppose the above process to terminate in
(say) three steps, the method used will be-represented -
as follows: :

4) B (@
AQI :
C) A (@,
DY C
)DQ,(Q'

That is, @, is the quotient, and C' the remainder

when B is divided by A. Next, 4 is to be divided by
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C; here, Q, represents the quotient, and D the remainder.
Next, C is to be divided by D; here, Q, represents the
quotient, and if the process terminate in three steps,
there will be no remainder. Thus we have
B=A4Q,+C, that is B—A4Q,=C ...... i),
A=CQ,+ D, that is A -CQ,=1D...... (i) ;
C=DQ,
From (i), we see that any quantity which divides
B and A must divide C. It follows therefore that the
required H.C.F. must divide A and C, and therefore
from (ii), that it must also divide D. It is therefore
a factor of C and D, that is, of DQ, and D. Hence it
must be D.

131. A direct application of the principle will
sometimes enable us to write down at once the H.C.F.
of two expressions.

Ex. 1. We might thus have obtained the H.C.¥. of the two
expressions given in Art. 129 directly by the use of this principle.

The argument in that article was that any quantity which
is a factor of (23— 22 +1) and (223 +22+44—17) is a factor of

(283+ 224+ 42— T7) - 2(23 - 22+1),
that is, of 522+4x—9. This was the first step in Art. 129.
Now the factors of ba2+4x —9 are readily seen to be z—1 and
5x+9. The latter factor does not divide the given expressions,
the former factor does; and since there are no other factors of
6522+ 4z — 9, it follows that »— 1 is the required H.C.F.
*Ex. 2. Find the H.C.F. of
ar*tl—(a+1)2*+1 and 2*—ax+a-1,

n being any positive integer.

Any factor of az**!—(a+1)2"+1 and a*—az+a-1 is a
factor of {aa"*!-(a+1)a*+1} - {ax—(a+1)} {z*—ax+a—-1}.
The last expression reduces to a?(xv—1)2 The coefficient a? is
rejected in the same way as a numerical coefficient, not common
to the two expressions, would be rejected. Hence the required

" H.C.F.is (z—1)%

132. H. C. F. of several compouﬁd Expres-
sions. The rule given in Art. 128 for finding the
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H.C.F. of two expressions can be readily extended
to include the case of the H. C.F. of several expressions.
Let A, B, C, ... stand for the expressions. Find the
H. C. F. of two of them, say of A and B: this will include
every factor common to A4 and B. The H.C.F. of this
quantity and of C will therefore include every factor
common to 4, B, and C': and so on.

Ezxample. Find the B.C.¥. of

B-T3-2+7, 234322 —2-3, and 23 —22-51+5.

The B.C.F. of the first two expressions can be found either
_ by the method of Art. 126 or by that of Art. 128. The student
should perform the analysis, and he will find that 22—1 is the
H.C.F. of these two expressions. He must then determine the
H.C.F. of 22—1 and 2*—22-b62+5. This H.c.F. will be found to

be z—1. Hence x—1 is the required H.c.F. of the three given
expressions.

Note. The student ought to be able to resolve the above
expressions into factors, in which case the answer is at once
obvious,

MISCELLANEOUS EXAMPLES ON H.C.F. VII. D.

[In working the following examples, the student is recommended
to resolve every we’g)reuion into factors- when these are obvious—in
which case_he will generally be able to write down the answer by

inspection.]

Find the Highest Common Factor of the following expressions
numbered 1 to 36.

422432 - 10 and 428+ 722—3v-15.
a@?+a—-2 and a’-3a+2.

a’—2a+44 and a3+a?+4.

23 -6xr+9 and 2344229,

843 -1022+72—2 and 643—1122482—2.
23—192%+1012—-99 and 23—16x%4 722 —81.
84341842 —11x—-30 and 613 —1122— 142+ 24.
923+2124%2— 172+ 3 and 323+1722+4212-9.
723—1022 -T2+ 10 and 243 -22-22+1.

©PON POk
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723 -322-T7r+3 and 223-522—2x+5.
44— 9 and 24— 223+ 22— 32-3.
744323 +12¢-16 and 2°-13s+12.
23— 4224+ 22+3 and 224 - 22 -5z -3.
24— 23-1022— 11248 and 223 - 343 -9z +5.
33— 23-62+2 and #A+23-2w-4.
24 - 16234282 -12 and 223 - 150+ 14.
24— 32420 and 5% — 343+ 64.
22 =523452%—xr—12 and 24— 23— 124%+ 1124 20.
344723 - 222+ 2 +1 and 24+2° - 202+ T2+3.
2744223~ 11224132 -3 and 224 —223 - 622+ 112 6.
24423 -422 4112 -4 and 224 - 72341442 - 142+ 8.
224 — 328 — 223+ 6243 and 224 -T2 — 102242+ 2.
224 — 72341222~ 112+4 and 32* - 823+ 522+ 2x— 2.
32t + 523 — 722+ 22+ 2 and 224+ 343 — 222 +122+4-5.
244422416 and 22%—23+ 16z 8.
oty — 8%y +172%3 — 162y +9y° and

a5 — 9oty + 2643y% — 39223+ 2Tyt
Ay — 23%y?% — 16233 + 38xy* — 14y° and

75— T2y + 212%y? — 34a%S + 28y,
623 — 5224102 -3 and 623+22—102+3.
a8 —2ax2 — a’r+2a3 and &3+ 2aa? — alr — 2a3.
8a3+16a%x — 40ax?+ 1623 and 8a* — 1243z — 8aad+ 1224
12a3 — 2402z — 60022 — 2423 and

12a% + 1843z + 12a23 + 1824,

23+ 22% + 422+ 3y® and 24+ 2%y +42%2 + 2y3 + 3yt
2741 and 212423,
1+2+23—25% and 1—at—a8+ 27,

223+ 322 —112x—6, 423—1622+ 112410, and
4234 422 —292—15.

ab (2% +y%) +zy (a?+b%) and ab(a®+3°)+y (a®x +b%).
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37. What value of # will make both the quantities in ex-
ample 4 above vanish ?

'#38, What value (other than zero) must be given to a in
order that 23— z—a and 22+ ~a may have a common factor;
and what is their highest common factor when @ has this value ?

39. Find the H.c.F. of the expressions
4a3 - 47ab2 4 76% and 6a®+11a?% —3lab®+1453%;
and the a.c.M. of their numerical values when a=4, b=1.
40. Find the H.C.F. of 203+22—2 -2 and 28 —a3—222 4 22;
and shew that its square is a factor of the latter expression.

*41. Find a value of « (other than zero) which will make

254 723 — 4922+ 82 + 25685
exactly divisible by 22—7z+1.



CHAPTER IX.
LOWEST COMMON MULTIPLES,

133. THE Lowest Common Multiple of two or
more algebraical expressions is the expression of the
lowest dimensions which is exactly divisible by each
of them. The letters L.C.M. are often used as an
abbreviation for lowest common multiple.

Some writers call this expression the least common multiple.
This name is properly used in arithmetic, but in algebra our
symbols stand for any numbers, and usually we cannot with
correctness speak of one expression being less than another.

134. We shall first consider the rule for finding
the L.c.M. of simple expressions, and of expressions
which can be resolved into factors of the first degree on
inspection, and then the rule for finding the L.c.M. of
compound expressions of which the factors are not
obvious,

135. Rule for finding the L.C.M. of 8imple
Expressions or of Compound Expressions which
can be resolved into factors of the first degree.
The L.C.M. of two or more simple expressions (or of
expressions which can be resolved into factors of the
first degree) is the product of every factor which occurs
in them, each such factor being raised to the highest
power it has in any of them.

If the expressions have numerical coefficients, it is
usual to find the numerical L.c. M. of these coefficients,
and prefix it to the required 1.C.M. as a numerical
coefficient.
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Ex. 1. Find the L.c.M. of 23 22, and 2%,

The required L.c. M. must be some power of x; and, since it is
to be exactly divisible by each of the given quantities, it must be a4,

Ez. 2. Find the L.c.M, of 3ab®c3, 2a%b*?, and 6a3blc.

The L.c.M. required must contain a3 as a factor, otherwise
a’b’c will not divide exactly into it. Similarly, it must contain
b% and ¢S as factors, The L.c.M. of 3,2, and 61s 6. Hence the
required L.C. M. is 6a%h3c3

Ez. 3. Find the L.c.M. of
(# - a)(y — b)z - 0%, (z - a)¥(y - b)*(z - c)%, and (z - @)*(y — b}}(z—¢).

This, by the same method, will be (2 — )3 (y — b)2 (2 - ¢)3.

Note. The L.c.M. of expressions like the above can be ob-
tained in a manner analogous to that used in arithmetic; but

the method described above is so easy of application that it is
unnecessary to use a more elaborate process.

EXAMPLES. IX. A.
Find the L.c. M. of the following expressions.
323, 224, and 5.
27abc%r, 24a2bcy, 60ac?z;, and 15abexy.
5o 'asfas’s? Tafale,tzy, and 3ayta,le,yt
22—y (z+y)? and (z-y)%
2®— 43, (z+2y)? and (z-2y)%
9 (2*-3%), 8(x-y)% and 12(2*+3°).

136. Rule for finding the L.C.M. of two
Compound Expressions. The L.c.M. of two com-
ound expressions, whose factors are not obtainable by
inspection, is found by dividing one of them by their
H.C.F. and multiplying the quotient so obtained by the
other of them.
For let A and B stand for the expressions, and let
H be their H.c.F. Then 4 and B are each exactly
divisible by H. Suppose the quotients to be respectively
a and b. Therefore A =Ha, and B=Hb. Now a
and b have no common factor, because otherwise we

N
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could obtain an expression of dimensions higher than H
which would divide 4 and B.

Therefore the L.c.M. of Ha and Hb is Hab.
But Hab = (Ha) (b)=A4b,
also Hab = (Hb) (a)=Ba;
and these results are a statement (in algebraical nota-
tion) of the rule given at the head of this article.

Note. We can also obtain the L.c.M. of 4 and B by dividing
their product by their H.c.F. For we have

_ _(Ha) (Hb) _AB
the r.c. M. qu and B-Hab———————H =g -

137. Rule for finding the L.C.M. of several
Compound Expressions. The L.C.M. of three or more
algebraical expressions can be obtained by first finding
the L.c.M. of two of them ; next, finding the L.c.M. of
that result and of the third of the given expressions;
and so on. The final result is clearly the L.c.M. re-
quired.

MISOELLANEOUS EXAMPLES ON L.C.M, IX. B.

[In working the following examples, the student is recommended
to resolve every expression into factors, when possible, and to make
use of the method given in Art. 136 only when the factors of the
expressions cannot be otherwise obtained.

Find the L.C.M. of the expressions given in examples 1 to 18.
22-1, 22+1, 28-1, 23+1, and at+2%+1.

(=%+9%), (327+20y —y") and (2° - 2% +23%).
222 —bx+3, 322—2-2, and 622-5x—6.
2424 and 210427,

23-322+3r-1 and 23-a2-2x+1.

23 —-1522+ 6562 —"72 and 23— 1822+ 912 —88.

SO
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8.
9.
10.
11
12,
13.
14,
15,

16.
17.

18,
19,
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923 —2-2 and 323-1022-T72x-4.

922342045 and A+525+ 1208+ 13545,

24 —23482—8 and 23 +42% - 824 24.

A~ 234223+ 2+ 3 and 223 — 1423+ 262 — 30.
23-82+3 and 284325+2+3.

234 2% + 22y + y® and A - 2%y —ayP+ YA
3244728+ 1322+ 7o+ 6 and 62441123+ 1022472+ 2.
23—t —dx+4, 23—-202-2+2, and 23+24%-2-2.

1223 4 82% — 272 — 18, 123 — 8%~ 27+ 18,
and- 18234 2723 - 8x - 12.

z(z-y)P, 2% (v+y)}, xy(22-yP), 23—y +ay?,
2%y +ayt+y5, and 2°-g5

&"(x % P e+y), A-ap, Sy+yh, P -ay+yh
and 22+2y+yL

2%y — 3a2%y% + 5x33 — 6y and 23— 32ty + 2wy,
The L.c.M. of two quantities is 2%-5a%2%+4at, and

their H.C. F.i8 22— a?. One of the quantities is 23— 2a2?% — a,”x+ 2a3,
Find the other quantity.

20.

The H.C.F. of two expressions is 2—7, and their L.c.M.

is 23—-10224+112+70. One of the expressions is z%—bzr-14.
Find the other.



CHAPTER X.
FRACTIONS.

188. Fraction. The fraction, denoted either by

%' or by a/b, is defined as such a quantity that, if it be

multiplied by b, then the resulting product is a.

139. In arithmetic, a fraction is sometimes defined as above.
But it is also sometimes otherwise defined by saying that if unity
be divided into b equal parts and & of them be taken, the result

will be the fraction %; and it is thence shewn that its value is

the quotient of @ by b. This latter definition requires that a

and% shall be positive integers, but the one given in the last
article will allow us to assign any values whatever (simple or
compound expressions, positive or negative numbers, integral or
fractional numbers, &c.) to our symbols @ and b, and is therefore
better suited for the purposes of Algebra, since we there suppose
the symbols to be unrestricted in value.

140. Reciprocal Fractions. Two fractions are -
said to be reciprocal when the numerator of the one is
the denominator of the other, and vice versd.

Thus, gand (b—z are reciprocal fractions, and each is said to
be the reciprocal of the other.

Similarly, %and }z are reciprocal; thus é is the reciprocal
of a, and a is the reciprocal of }z.

141. Properties of Fractions. We now proceed
to consider some of the properties of fractions.
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142. The fraction 2 is the quotient of a when
divided by b. b 1 4

The student may perhaps regard this proposition as
obvious; but we must deduce 1t as a consequence of
the definition which we have selected.

By definition, g xb=a.
Divide each side by b, g =a=+b
4r-3 1 . ce
Thus -1 =4 o5 for if 42 —3 be divided by #—1, the .
quotient is 4 and the remainder is 1.
. 2tar+b_ c—ac+d
Similarly, Zde  ote-ck— .

143. The value of a fraction s unaltered if both
its numerator and its denominator be multiplied by the
same quantity.

Let us denote the fraction g by «, and let m be the

multiplier. We want to prove that

a_ma

b mb’
By definition, [Art. 138], «xb =g x b=a.
Multiply both sides by m, . gmb = ma.
Divide both sides by mb, z= %

144. Since we may multiply the numerator and
denominator of a fraction by the same quantity without
altering the value of the fraction, we can (by taking
—1 as the multiplier) change the sign of every term
in both numerator and denominator.

For exampl —2a%+3ab - 46® _ 2a%—3ab+4b?
P& T3a- ab+28®  3aP+ ab-25

8—2
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145. Again, if we have a relation like
4_c
B D
where A, B, C, D stand for any expressions, we may.
multiply each side of the equality by BD. We thus
obtain - AD=CB.
This process is known as multiplying up.

i—t;=;—-—3,then(w+l)(x+4)=(x—3)(.1:—2).

146. The value of a fraction ts unaltered if both its
numerator and its denominator be divided by the same
quantity. .

For example, if

Let us denote the fraction by @, and let m be

: b
any quantity. We want to prove that
L p=a_am
b bm’
By definition [Art. 138], zb=a.
Divide both sides by m, . s _a .
m m
a
.. . b m
Divide both sides by ponlt L= -E .
m

147. Removal of factors common to the numerator
.and the denominator of a fraction. It follows from Art.
146 that if the numerator and the denominator of a
fraction have any common factor, and both of them be
divided by it, the value of the fraction will be unaltered.

a’b _(ab)a _a
Ez 1. aT’ = m =3
(x+a)(x—a,)={v_ﬂ

Es. 2. L
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148. Simplification of Fractions. The last
article enables us to reduce a fraction to its lowest
terms, that is, to express it in such a form that the
numerator and the denominator have no common factor.

To do this, we have only to find the H.C.F. of the
numerator and the denominator, and divide each of
- them by it. Wherever any factors common to each
are obvious, it will generally be better to divide by them
first; but the beginner must remember that a factor
cannot be thus cancelled unless it is a factor of
every term in both numerator and denominator.
By thus successively removing factors we can often
reduce the fraction to its lowest terms without having
to find the H.C.F. of the numerator and the denomina-
tor; and even when the complete simplification cannot
be thus effected, we can so simplify the fraction that it
is comparatively easy to find the H.C.F. of the numera-
tor and the denominator of the fraction thus simplified.

e o , ab?(a®— b
Ex. 1. Simplify the fraction GW,_I,,;.

" Resolving the numerator and denominator into factors [Art.
110}, we have
ab?(a®-b%) _ab?(a-"0)(a*+ab+b%)
a?b(a?-88)  afb(a-b)(a+d)
Cancelling the factors common to both numerator and denomi-
nator, the latter form becomes
b(a®+ab+b?)
a(a+bd)
Since a+b and a?+ab+ b2 have no factor common to them, the
fraction is incapable of further reduction.

(z4+1P-(z-1)
323+ 2 :
Resolving the numerator and denominator into factors, we

have
(@+1P—(r—1p _3(32+1) 2
323+ Tx(323+1) z°

Ez. 2. Simplify the fraction
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EXAMPLES. X. A.
Reduce the following fractions to their lowest terms.

1 22-142+413 2 z4 — 622 — 1644
* 22 _8x-65" . -6yt
g = W:«ﬁ 18y* o (@F1)-(a-1p
. A8l (@+1p3-(a—-1)3"
5. 102% - 7234 22 6 24— 1522 + 282 - 12

424 - 223 -22+1" * 223 -152+4+14
7 23— 8a2% +17xy% — 6y° 8 a*hi-a?-b2+1
© 248—-92%+102y2 - 33" ab+a+d+1 °
12a* — 4a%h — 230202+ 9ab’ — 9bt

8a*—14a%% - 9b* :
(a®+ b2 — & — a2+ 2ab+ 2¢d) (a? + b2 — ¢ — d — 2ab — 2¢d)
(a2 +c2 - b2 — A2+ 2ac + 2bd) (a® + 2 — b — d? — 2ac — 2bd)

9.

10.

149. Addition or Subtraction of Fractions.
If two or more fractions have the same denominator,
their sum (or difference) will be equivalent to a fraction
having the same denominator, and having for numera-
tor the sum (or difference) of the numerators of the
separate fractions.

The method of proof will be sufficiently illustrated

b
by finding the value of & ata:

Multiply by d, d(
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150. If the given fractions have not the same de-
nominator, we must begin by expressing them as equi-
valent fractions having a common denominator. This
is always possible. For the value of a fraction is un-
altered if 1ts numerator and its denominator be each
multiplied by the same quantity [Art. 143]. If then
we find the L.c.M. of the denominators of all the
fractions, the -denominator of any one of the given
fractions will divide exactly into it; and if both the
numerator and the denominator of this fraction be
multiplied by this quotient, the fraction will be changed
to an equivalent fraction having this L.c.M. for its
denominator. Thus all the fractions can be reduced to
equivalent fractions having a common denominator;
‘and these equivalent fractions can be added by the
rule already given in Art. 149.

Note. The converse problem of resolving a given fraction
into the sum of a number of simpler fractions (called partial
fractions) will not be considered in this book.

Ev. 1. Find the valus of = +% +2.

Here the L.C. M. of the denominators is abe.

_.';:'bc_+ yea+ zab
- abe :

, 22 a?
Ez. 2. Find the value of at—+—.

Here the L.c. M. of the denominators is az.

22 a?® afr 23, & a*r+a%+ad
At A= =
a x ar ar ar ax
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1
z-a z+a

Here the L.c.M. of the denominators is (x+a)(z— a).

Er. 3. Find the value of ——

1 1 r+a r—a
"rz-a z+a (z-a)(z+a) (v+a)(z-a)
_(#+a)—(z—a) (a)
y: Jy= p O
2a
T

Er. o, Simplify

1 1
@G- B-e-a T Ea @b’
. First, arrange each factor in every term in descending order
of a, b, c. The expression then takes the form

1 1 1

@-0)0-¢) B-9a-¢ (a-d)(a-0)"
The L.c.M. of the denominators is (a—b)(b- ¢) (e —c).
(@=9)=(a=h-(-0) @

@=B) o) (a—g) s
a—c—a+b-b+e
@ @-0)(@-0)
0

T@-0(-9(@-0
=0,

*. the expression=

2 + 1
1- a:)” 1-22" (1+4a)%°
The denominators of the component fractions are (1- )
(1-=2) l+z), and (1+2)3. Their L.c. M. is (1 — 2)2 (1 + )% which
is equal to (1 -22)3. Hence
(I+22+2(1-22)+(1-2)* (@)
Ao e
_(1+22+2%)+(2- 2% +(1 - 22+ 2%
(1-2%2

Ex. 5. Simplify

+

the given expression =

“T—
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EXAMPLES. X. B.

[In solving the following examples, the beginner will find it
convenient, when he 18 adding together the numerators of the com-
t fractions, to insert a step in which the separate numerators
are enclosed in brackets and added together, before he commences
to simplify their sum. This step 13 shewn in the lines marked (a) tn
the Examples 3, 4, and b above. The lines of dots and the letter
(a) are only inserted to facilitate this explanation, and form no
part of the process of simplification.]
Simplify the following expressions by reducing them to
single fractions in their lowest terms.
1 a?+ab+b® a?-ab+B?

a+bd a-b
atb btc cta (at+d)(b+e)(cta)
Pte s T @

z-a a43ar z+a

8. z+a’ ad-2® " zr—a’
o 2% 8(-dar)  3a
z+a a? - a3 zr-a’
5 12 .1
C(z=-1)(z+]1) (z4+1)(z+3)  (z+3)(z-1)°
3 2 z-6

z-8 z-4 (x-2)(z-5)"
b+ b-
7. d+b,%+#.
a-3b a+3b _ 5ab
a+2 a-2b ad+4b°
1 1 __z+3y
-2 2(z+2) 2(22+4y%)°
1 1 2
7=3t A 5246 F—6s+8"
Sz+4 3r-2 22-2r-17
2-2 2-3 22-bx+6°
a-b + at+b a?4d?
2(a+b)  2(a—bd) a2-0%"
3zt-8 5z+'7 2
F-1  Brerl Tl

10

11.

12,

13.
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14,

15.

" 16.

17.

18.

19. .

S

]

8 B B B B

2 8B =

FRACTIONS.

_1 _._ab_;+ a-b
a-b a3-b " al+ab+d?’
1, 1 e
2—-2 " 22-3x+2 22—4r+3°
1 b o
a-b al+ab+b% a3-03°

1 + 2 _ 3
23-T24+12  22-92+20 22-82+15°
R R N
A+29(1-42%) " 1+22 1-22°

1 1

G-e-Dr@E+) T @-Dz@+) @+
1 1

@=2)@@-1) (z+1) (z-1)(x+1)(z+2)

-0+ 24 2a+at-b

* B—+2a—a? b242bct+ci—at’

1 1 2 2,9 20
izt -2t 0-na+ra T0ra A7

x Y z
@ N G-AG-o " -aGe-9)"
a+b b+c a+e
G=oe-a)te=a)@=5 T @=b)(5=c)"
2a—b—c 2b—-c—a 2c—-a-b
@Ba-0tE-006-a) " c-a) -5’
o b2 e
@-bt@-0tE-06-a)" t-a)ec-5"
1 1 1
-9 yG-n -9 T E-DG-9)
ma?4-nyz +‘_71§‘1/a_+ﬁ+ ma® +nay
E-N@-2 G-9@-» " -0 G-y)
b-c ct+a a+b
a’—(b—c)“+b’t(c+a)2+(a+b)2—cg'
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151. Multiplication by Fractions. The product
of two or more fractions is a fraction whose numerator
18 the product of their numerators and whose denomi-
nator 18 the product of their denominators.

First, consider the case of two fractions such as

%'andf—l. Toﬁndthevalueofgxf—l.
a ¢
Let a:=b-x‘—i.
Multiply by b x d, a'bd=gx(%xbxd
@ ¢
=(EXb)x<¢_iXd)
=@ Xc=ac
Divide each side by bd, .a:=Z%.

Similarly, the product of three fractions may be
determined. For

eacea,ce
5% XFTbd X FT bdf

The method is clearly applicable to any number of
fractions.

a
b_. .
As partlcular cases of the last prols)osltlon, we have the
%2 a? @
=2 . Theseareinstances

lations (7 d
relations () =z xg=p5,a0d () =5
of the general theorem which we are about to prove.

*152. Theorem. 7o shew that (%’). =
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We have, by the definition of indices [Art. 22],

(‘_1). =2xZx%x...... (n factors)

b bbb
_aaa...... (n factors)
“bbb...... (n factors) [Art. 151
- % [Art. 22
; 7ab 3cd
Ex. 1. Find the product of pae and X2,
Tab  3cd abed
The pl‘Oduct—_- H X TJ =91 M=21-
. o axt+ad r+a
Ex. 2. Find the product of B and Z¥2
The product
ar®+ad r+a a(a,-’+a2) (-Z‘+a) 2 4al

TP Cwr-a (@-a)@ta)a@-a) (z-ap’

EXAMPLES. X, C.

Reduce the following expressions to their simplest forms.

1 22-2-6 . 22-22-8 2. 2+yt zy-yt =z
© Hidr+d F_Tzyi2 B-zy Ayt Ty’

g @ta%-ab-B  a-b :g( 1 ___1_) -yt
© T a-2ab+B  (drab - \a-y z+y) Bytag’

(%)

z+3y) " 2@—-y’
2\ (y\® (2\®
s ()60
153. Division by Fractions. 7o divide any
quantity by a fraction is equivalent to multiplying by the
reciprocal of the fraction.
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Let @ be any quantity, integral or fractional, and
suppose that we want to divide it by Z Let 2=Q + %’.

Multiply each side by 7, w%' =Q.
. . b . ab__b
Next, multiply each side by 2 Cha= Q o’
that is, @ = é .
a
Thus « is equal to the product of @ and the re-
. a
ciprocal of 5
ivide T2 b, U2
Ex. 1. Dlmmbyabzca
. 2 abic
The quotient = ;:sy;,c x :‘:_‘3/’? .

Cancelling the factors common to both numerator and denomi-
nator, this

=2
= a0
axd—at by 22+ ax+a?
22— ar+al 23+a?

__ar’-at x S +ad
TB-arta?” BPtartad’

Ez. 2. Divide

The quotient

a(x—-a)(@+ar+a?) (r+a)(2®-ar+a?)

Resolve into factors= P —antd e Ty

Cancelling the factors common to both numerator and denomi-
nator,

=a(z-a)(z+a)
=q (22— al).
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EXAMPLES. X. D.

Reduce to simple fractions in their lowest terms the follow-
ing expressions which are numbered 1 to 6.
22— Toy+12y° | 22— bxy+4y?
22450y +6y2 T Ptay-2y”
2 2342016 , 224+92+20 x _az_)éa:"+a2
* 22482-33 " 22+Tx—-44" T \w—-a¢ zx+a)  st-ax’

2y sy . P+
4, (x+w_y)x(x o4y T 3/’

e M A (e &
wzé_[i%(m—'ﬂ)w.,{‘l(r 5, r-# }]

man " | T(r+8) = | 2lay® 4 (mP—n?)
- 422 202 | 178 15y 9y, 2 3_1/
*7. Divide el + - + {67 by 73/ +

*8, Shew that the first four terms in the quotlent of a+dc
divided by a+ bc are

1-(b-d)> P G d) (b d)
154, Simplification of Expreuionl involving
Fractions. The rules given above frequently enable

us to reduce expressions of considerable complexity to
a simpler form. The following are a few examples

Ex. 1. Simplify ——+_L. _

i

¥
This expression =i+_‘L..L
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5 . 5 3 5 4
£ 5. Simplify | 5y~ g ) <[ 1)
. _[6(x+1)-3(x+3)|[B(x-1)—4(x-2
This _[‘2(x+l)(x+3)] ((a;—;)(x(—l) )
-4 z+3
T2@+1)(@+3) (-2 (z-1)
= 2(z=-2(@+3)
2(x+1)(r+3)(z-2) (x-1)

1
T(@+1)(z-1)
=1
Tat-1"
.. a?
Ex. 3. Simplify —_—
z+ 3
@
X —-—
z

A fraction of this form is known as a Continued Fraction.
The best way of simplifying a fraction of this form is to begin

with the last denominator, and work up, as illustrated by the
following analysis.

2
The fraction =—ar

a
'1'+a:2—a2

x
a2

Tt @%
22— a?

aZ

=; - a’x+a’x
z%—at
_ai(22-a?)
.

155. Additional examples on fractions, especially

on the comparison of unequal fractions will be found
in Arts. 181, 296.



128 FRACTIONS.

MISCELLANEOUS EXAMPLES ON FRACTIONS. X.E.
1. Find the value of
—Tac— {2¢(a—3b)—3a (5c— 2b)}, when ¢=

+b

2. If a;—b ° y—&;—a, z—a—_b, prove that

xyz+x+y+2=0.

3. Prove that the sum of two quantities divided by the sum
of their reciprocals is equal to the product of the quantities.

4. Shew that the expression —+ has the same
r—a z— b

value when 2=a+b as it has when £=2ab/(a+b).
5. Resolve into their simplest possible factors each of the

b

Reduce to their simplest forms the expressions given in
Examples 6 to 48.

¢ [sem9-5en]*[-7n)

" (‘—i—ﬁz-%ﬂ—:‘i’i")(‘%—"})-

g (Btwyty _2-ayty’\ Loy

expressions w’—(‘f— é)x—l; m’—-(a+l)x+l.

Bogy+yt Bray+yt) -
a a-1) . o, a—1
5. {m‘T}*{m’f—a—}-

at— a?—ay az_w)z
10. <—3/ w)(“.f/ x)+(3/ z) "

1L @b (G +3+]) - LrACEa LD,

abe
2
1°
*3

a

12, —— }
a

. (e ) e ()

3.::—3/ 9x2+y 3x—y 3x+y

1+

(S TR~
e
"'J°'
RI




14,

15.

16.

17.

18.

19,

21.

5
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a3
+1 =442
K y 22— zy

;

X X .
T 2 ¥ Ytay
y x

a?
z
z
;

1 1 % e 28 845
1-2 1+z 1428 (1-2)(0+2%) (Q+2)(1+2%) 1-at"
(w’_z/_+ e (w z=y

-yt 2rt) T2y z+y)"

11

(T+yf-2t-9 y =
@tyF-at-y zﬂ"h'

3a+2b 1
(3a % 3a+2b) 9 +ab” (3a—2b+3a+2b)'
(b—cp? (c—a)? (a—b)?
@00 T-0t-a) T c-a)c=b)
A~ B42e—c@  A42a+at— b
B-E+2%a—a? B42ctc—at’
(@=b2—(b=c)? , (b—c)®—(c—a)?, (c—a)*—(a—D)®
@tab—be—c* T Btbe—ca—a® T Ftca—ab—b%"
(b+¢) (2 +a?) +(é+a)(as+ba)+(a+b)(x=+cﬂ)
(c—a)(a-0) (a—b)(b—c) (b-c)(c—a) *
a->b ab?
= +a’ Bt Fp

09 T T

1 1 | (a-b2+(b—c)2+(c—a)?
az b+b etosat 2@ob-9c-a)

a+2 4da+b 142 1422
20+3  5a+6 27 1+22 1448
2a+3 3a+d’ CIFeE 1A
3a+4 4da+5b 1122 1+a4

B. A. 9
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a+ 1 _1 (
a—b @& B
BoowmrTT B
a4+ a b
b P
(m"v_—cs)(”’*“’)’
30 — . 3L
b=¢ b+c
a—-b+ b-c
gg 1tab Tibe 33..
1~ \2=9)0=¢)
(1 +ab) (1+be)
34. ——§X7—(x_y
x—y+% 75 g
ab 1 1 z Y
*“23b BB -f“ﬂf”z}
36 am-xl 1 37. +
] -
a+a’-—b’ a b ¥y =z
1
B T »
R
a+a+l
(2+1) 2y L+l
w0 M/, L .
P_g TELPLy P,
g » ¢q q'»
x y [z
1+ () 1
g L7 o x L+

By 2P 4P 9P (- )
@r2y—02 T Qurp— T Betay-4gt

r ___Y 2y z+y
8. {(w+y)’ w’—y’+(w+y)’(w-y)}xw—y°
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x + 2y + x __2
(@+y) (2 +2y) " (@+3) (@ +3y) " (2+2)(s+3y) <+3y’

{1—;f—1+,¢1723}{1+$ - oo}
“. frats+ aropt {1 -ara) .
{5l

&

b24-c2—a? (a—b+c)(a+b—c)
5 Y=o (atbt0)
(z+1) (y+1)=2.

*49, Ifx=

, prove that

Py g, L"%p, =2
*50. If x+y—a’ vFe b, Pl shew that

(1-a)(1-b) (1 - &) =(1 +a) (14+) (1 +0).



CHAPTER XI.
SIMPLE EQUATIONS CONTINUED.

156. WE return now to the further discussion of
simple equations. We shall give in this chapter some
more examples of simple equations—particularly of
those involving fractions—and of problems leading to
simple equations. We shall iollow the cafrocedure ex-
plained in Chapter V. without specifically indicating
every step.

1 2 3
PR GRS RS
The r.c.M. of the denominators is (z-1)(z+1)(x+2).
Multiplying each side of the equation by this L.c.M., we have
(z+1) (x+2)+2(x—1) (z+8) =3 (z— 1) (z+1).
22430 +24+ 2%+ 2r—4=32%-3.
22420832024+ 30+ 20=—-3-2+4.
. br=-1.
wr=-%

_ Ex. 1. Solve the equation

Ex. 2. Solve the equation x+2 z"-;

The L.0.M. of the denominators is (x-1)(3zr—2). Multiply-
ing each side of the equation by this L.c.M., we have
(#+2) (83— 2)=Bz+1)(x-1).
o 324+ 4r—-4=322-22-1.
3.2"-3x’+4r+2r 4-1.
. Br=3.
ooz=3
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. 2-2 2-1_2-10 z-11
Ezx 3. Solvetheequatum m—;3= m—m.
We will begin lzrtdividing the numerator of each fraction by
the denominator [Art. 142). The equation may therefore be
written

(452 (eZs) (52 -(-2%)

2 2

Divide each side by 2; and then, instead of at once bringing
all the fractions to a common denominator, simplify each side of
the equation by itself,
. @-3)-(z-4) _-(x-9)+(x-8)
U @-9@-3) (z-8)(z-9) °
. 1 _ 1
VU @-9(@-3) (z-8)(x-9)’
Multiply up [Art. 145],
S (2-8)(x-9)=(x—4)(x-3).
co 221724 72=22-Tx+12.
) *. —10z=-60.
S 2=6.

Ex. 4. Solve the equation
+234+22 T -3 _ 24+623+222- 1624
22 4-3z+5 - 22 +72+10
Here the numerators are of higher dimensions than the
denominators, and it will be convenient to begin by simplifying
each fraction by dividing the numerator by the denominator
[Art. 142]. The equation then becomes

) z+2 _ A_.z:ﬁl-ﬁ_
Pod-lt s =02 5 e o
z4+2 z+6

Simplify, " FrBe b " T 10"

Multiply up, .. (z+2) (#®+72+10)=(2+6) (22+32+5). -
Simplify, oo 234922+ 240 + 20 =23+ 922+ 237 + 30.
.. z=10,
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a->b ax 4a2 (b—ax)
atb~ars T @r @)
The L.C. M, of the denominators is (a4 b) (a3+5%). Multiply-
ing every term by this L.c.M., we have .
z (a+b) (a3+ %) — (a — b) (a®+ b%) =4dax (a®+ b%) + 4a? (b — ax).
‘. z(a+Db) (a?4 b%) — 4ax (a?+ b3) + 4adr =4a%b + (a — b) (a3 + b2).
o z (a8 +a2b - 3ab*+ b%) =ad+3alb+abd - b3,
. z (a=b) (a3+2ab - b3%) =(a+b) (a®+2ab - b3).
. z(a—b)=a+b.
a+b

- =

a-b"

- Ex. 5. Solve the equation x—

Ex. 6. . A certain number is added both to the numerator and
to the denominator of the fraction §. The value of the resulting
Sraction is f. What was the number added ¢ ’

Let the required number be z,
Lo _8
Tt 3+x 137
Multiply up, . 13(242)=8(3+x).
ce b= -2,
L r=-%

This is negative. Hence the answer is that $ must be sub-
tracted from both the numerator and the denominator of § to
make it equal to %. It is easy to verify that this answer
satisfies the conditions of the question.

Ex. 1. Of the candidates in a certain examination 36
cent. failed. If there had been 11 more candidates, and if of
these 11 candidates 2 had passed, the total number of failures
would have been 37°5 per cent. How many candidates were there f

Let # be the number of candidates. The number of those
who failed was 36 per cent. of z, that is, was i 2.

If there had been (z+11) candidates, there would have been
9 more failures, that is, the number of failures would have been
(B2 +9).

This latter number would, by hypothesis, have been 375 per
cent. of a total of (x+11) candidates. Hence, by the question,
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%x+9=¥—.§ (z+11).
.. 362+4900=37"5x+4125.
o 1'52=487°5.
o x=4338 =325,
Therefore the number of candidates was 325,

Ezx. 8. A can row a mile in § of a minute less time than B.
In a mile race, B gets 250 yards start, and loses by 14 yards. Find
the time A and B take to row a mile, on the assumption that they
row at the same pace throughout.
Suppose that 4 can row a mile in 2 minutes.
.. B can row a mile in (z+ ) minutes.
Now B rows (1760 — 250 — 14) yards, that is, 1496 yards, in the
same time that 4 rows 1760 yards.
But B rows 1760 yards in (x+%) minutes.
oy 1, 17850 (‘”+¥) ”
S 1498, HE§@+D
Hence, by the question, }43§(¢+§)=x.
cH@]) =
.. 68x+51=80z.
oo z=§3=4}

Hence 4 can row a mile in 4} minutes, that is, in 4 min. 15secs.

EXAMPLES. XI.
Solve the following equations numbered 1 to 22.

Lo hitimar 2 ohtrmis
5. ;%g+f;;=4. e i
g FH7T5-6 _z+l 10, D-6+10 (@-3¢_

B+55-10 z-1" Br8z+17  (w+4ap
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11. b iTa 12. T+T=T

18, 2 _ai 14 ﬁ?z‘a%fg'

15, 220,70 A )
a;—l x—i .z——% 1+‘%? :—Z+l

a — —
0. —=+—2tg=0 B —p===3

V. o+t tm-atete
20 #-234+2 -T2 +4 _ 24+ 251022 — 6249
g 22+2+43 - 2245z +4
g TH6+135410_at+3043
* Th3+260+38  Sa+1l °
b4+c—a c+a->b a+b-c _
R S brdatbe T A—(cra)ztac T F-(atbyztab

23. A person sells 100 acres more than the third of his
estate, and there remain 2 acres less than the half. at was
the extent of his estate

24, Find a number such that if we divide it by 12 and
then divide 12 by the number and add the quotients, we obtain
a result which is equal to the quotient -of the number increased
by 9 when divided by 12.

25. A man’s income rises £10 agdyear. But, owing to a
change in the income-tax from 4d. to 84. in the pound, he finds
his net income the same in two successive years. What was it ?

28. A man can walk from 4 to B and back in a certain
time at the rate of 4 miles an hour. If he walk at the rate
of 3} miles an hour from 4 to B, and at the rate of 4} miles an
hour from B to 4, he requires 3} minutes longer for the double
journey. What is the distance AB?

27. The time required to walk from 4 to B, at a uniform
rate of 3} miles an hour, is 5 minutes less than that required to
walk half the distance at 3 miles an hour and the other half at
4 miles an hour : what is the distance ?
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28. If you have an hour and a half between school and
calling over, how far can you go out on a bicycle at 10 miles an
hour, and walk back at 4 miles an hour, 8o as to be just in time?

29, A and B start together to run a mile race. 4 runs at
a uniform s till he gets within 110 yards of the winning-
post, when he increases his speed in the ratio of 88 to 65. B
runs level with 4 till he gets within 135 yards of the winning-
post, when he increases his speed in the ratio of 36 to 25, and
wins the race by two seconds, Find the time in which the mile
was run by each.

30. A man can row from 4 to B up stream in 30 minutes,
and can row from B to 4 down'stream in 25 minutes : find the
rate of the stream as compared with the rate at which the boat
is rowed in still water.

*31. If two boats 4 and B row in a race at their usual s ,
A will win by 80 yards; but the day proving unfavourable, 4
only rows at §ths of its usual speed, w]inile B rows at f;ths of
its usual s A wins by 26 yards. Find the length of the
course.

32. A tradesman marks his goods at a certain rate Eer
cent. above the cost price, and, deducting 10 per cent. on this
marked price for money, finds that he makes 21} per
cent. on his outlay. H‘;w does he mark his goods ?

33. A farmer buys sheep and oxen, paying for an ox 4 times
as many shillings as the number of sheep he bought, and for a
sheep 20 times as many shillings as the number of oxen he
bought. He sells them, gaining as much per cent. on the sheep
as he loses per cent. on the oxen, and gains on the whole 5
of his outlay. Determine the gain per cent. on the sheep.

34. The expenses of a tram-car company are fixed. When
-it only sells threepenny tickets for the whole journey, it loses 10
per cent. It then divides the route into two parts, selling two-
penny tickets for each part, thereby gaining 4 per cent. and
selling 3300 more tickets every week. How many persons used
the cars weekly under the old system ?

*35. A wine-merchant buys spirit; and after mixing water
with it, sells the mixture at two shillings per gallon more than’
he J)aid for the spirit, making 23 per cent. on his outlay : if he
had used double the quantity of water he would have made 373
per cent. profit. What proportion of water was there in the
mixture ?
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38. In a certain examination, the number of those who
fa.ssed was three times the number of those who were rejected.
f there had been 14 more candidates and if 4 fewer had been .
rejected, the number of those who passed would have been four
(tlilgxaes the number of those rejected. Find the number of can-
idates.

37. One quarter of the candidates in a certain examination
failed. The number of marks required for passing was less by
2 than the average marks obtained by all the candidates, was
less by 11 than the average marks of those who passed, and
was equal to double the average marks of those who failed.
How many marks were required for passing ?

38. Find the two times between 5 o’clock and 6 o'clock,
when the hands of a watch are separated by 14 minute spaces.
Find also the interval between each of these times and the
time when the hands are together.

39. A watch has a seconds-hand on the same axis as the
other two hands. All three hands are together at 12 o’clock.
Findhat what time the hour-hand and seconds-hand are next
together.

40. A man started for a walk when the hands of his watch
were coincident between three and four o’clock. When he
finished his walk, the hands were coincident between five and six
o’clock. What was the time when he started, and for how long
did he walk?

*4], A clock gains 4 minutes per day, what time should it
indicate at noon that it may give the true time at 715 in the
evening ?

*42. Two clocks are both set right at noon on a certain day ;
one gains as many minutes in a day as the other loses seconds
in an hour; they are first again together after 600 days. What
time do they then shew ?

*43, Two anchorites lived at the top of a perpendicular cliff
of height %, whose base was distant m% from a neighbouring
village. One descended the cliff, and walked to the village; the
other flew up a height #, and then flew in a straight line to the-
village. The distance traversed by each was the same. Find .
(Brahmagupta, circ. 640 A.D.) '

*44, If a men or b boys can just mow m acres of grass in
n days, how many boys will be required to assist a—p men so
a8 to enable them to mow m +p acres in 7 —p days?



CHAPTER XII.

SIMULTANEOUS EQUATIONS OF THE FIRST DEGREE.

157. Simultaneous Equations. Equations, all
of which are to be satisfied by the same values of the
unknown quantities, are said to be simultaneous.

158. Degree of an Equation. The degree of
an equation which contains more than one unknown
qltllantity is the degree of that term in it which is of
the highest dimensions in the unknown quantities.
(See Art. 26.)

Thus ax+by=c is an equation of the first degree in » and y.

But ax? + bx+cy? +d =0 and ax+by=cxy are each of the second
degree in x and y.

159. We shall confine ourselves in this chapter to
simultaneous equations of the first degree, where the
number of equations which are given is the same as the
number of unknown gquantities contained in them.

Thus, if there be two unknown quantities, there will be two
equations ; if there be three unknowns, there will be three

equations; and so on. Similarly, in the last chapter, only one
equation was given when there was only one unknown quantity.

160. Principle of the Method of Solution.
The principle on which the method of solution depends
may be illustrated by the following example, where we
are required to solve the two simultaneous equations

3z + 2y =21, }
S5 — 7y = 4,
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involving two unknown quantities: and it is required
to find values of # and y which will satisfy both
equations.

Before describing the usual procedure, we may
observe that the first equation gives

=321 —=29) eeerene. reveens(i).

Therefore to every value of y there is a value of 2 which
satisfies this equation ; and we can thus get an infinite
number of pairs of solutions of this equation.

Similarly, the second equation can be written
2=34+TY) ceeerreniinnnnnns (i)

and we can get an infinite number of pairs of solutions
of this equation.

Now we want a pair of solutions which shall be the
same for both equations, and therefore shall satisfy
both equations.

Hence the values of = are to be the same, and
therefore we must have

§(21-29) = 44 +Ty)

The solution of this equation is y=3; and if in either
(i) or (ii) y be put equal to 3, we obtain z=>5. Hence
this pair of solutions is common to both equations.

The above method of solution consists in forming
from the given equations another equation in which only
one of the unknown quantities enters. This equation
can then be solved, and thus the value of one of the
unknowns is determined. The other unknown quan-
tity can be obtained in a similar manner, but its
value may generally be found more simply by making
use of the value of the unknown quantity already
determined.

161. The princi{)le on which the method of solution depends
is explained in the last Articlee. We now proceed to describe
the usual process for effecting this solution in the most conve-
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nient way. We will take the pair of equations given above,
namely,

32+ 2y=21,

bz —Ty=4.

162. Furst method of solution. Multiply every term in the
first equation by the coefficient of # in the second equation, that
is, by 5. Next, multiply every term in the second equation by
the coefficient of z in the first equation, that is, by 3. The
resulting equations are

162+ 10y =105,
152-21y= 12.

The coefficients of # in the two equations are now equal.
Hence, if we subtract the left-hand side of the second equation
from the left-hand side of the first equation, and also the right-
hand side of the second equation from the right-hand side of the
first equation, we shall eliminate z, that is, shall get rid of the
terms involving it. This process gives

10y - (—21y)=105-12,
that is, 3ly= 93.
Divide by 31, Soy= 3
To obtain the corresponding value of z, we now substitute this
value of 7 in one of the given equations (say, the first). This gives
3r+2.3=21
o 32x=21-6=15.
o =5,
Hence #=>5 and y=3 is the required solution. The beginner

should verify for himself that these values satisfy botk the given
equations. '

163. The object of the process above described is to multiply
the equations by such numbers as will make the coefficients of
one e& the unknowns numerically equal in the two equations.
Then, by addition or subtraction, we can eliminate that unknown.
In this way, we get a simple equation involving the other un-
known which can osolvedP by the methods given in Chapter V.

Note. We might have obtained the value of # by a method
similar to that by which we obtained the value of y. We might
also have commenced by finding the value of z, and then
deduced the value of y. To do this, we should have multiplied
the first equation by 7 and the second by 2. This would have
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made the coefficients of y equal but of opposite signs. We
should then have added (instead of subtracting) corresponding
sides of the resulting equations. .

The analysis would be as follows.
21+ 14y=147
102~ 14y = 8}
Add, .. 3lz=1665.
Divide by 31, .. x=H.

Note. We add or subtract the two equations, according as
the two equal coefficients have opposite or the same signs.

ba 164. Second method of solution. From the first equation we
ve
3r=21-2y.
oo r=3(21-2y).

Substitute this value of « in the second equation,

o §(21—29) - Ty=4.
Multiply by 3, and simplify,

-~ 105-10y-21y=12.
Transposing, o —3ly=-93.

Soy=3.
The corresponding value of z can be obtained as in Art. 162.

165. The following are additional examples. We
may remark that if we can simplify our given equations
by adding, subtracting, or in any way combining them,
before we eliminate one of the unknowns we shall be
at liberty to do so, since our methods of solution
depend only on combining our two equations so as to
give us a new equation.

Ex. 1. Solve the equations 2z —3y+13="Tx+6y—235=0.
The equations are

. 22—3y+ 13=0 ..coevrereererrrrerenn. (i),
and T24+6y—235=0...ccc0vurrerirerrennnnn. (ii).
Multiply (i) by 2, ... 4z—6y+ 26=0. .
The other equation is T2+ 6y —236= 0.}

The coefficients of y in the two equations are now the same;
hence, adding, we obtain

11z —209=0.
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Transpose, and divide by 11, oo 2=19,
Substitute this value of  in (i), .. 38—3y+13=0,
the solution of which is y=17.
Thus the required solution is =19, y=17.
Or we might proceed thus.
From (i) 2r=3y—13.
2=3(By—13) ..coevrrrrrniaennnns (iii).
Substitute this value of 2 in (ii),
. §(3y—13)+6y—235=0.
The solution of which is y=17.

Hence by (iii), Tox=19.
Ex. 2. Solve the equations
10z—- 9y=1,
-122+11y=1. }
Multiply the first equation by 12 and the second by 10, -
1207 — 108y = 12}
: ~1202+110y=10f
Add,’ - 2y=22.
) s y=1L
Substitute this value of y in the first of the given equations,
v 100-99=1,
. =10,

Hence =10 and y=11 are the required roots.
Ex. 3. Solve the equations
3r+2y—1=22+5y—-18=x+4y—11.
The equations are "
3r+2— l=a+4y- 11}

and 22+ 5y —18=x+4y—11
These reduce to 22 —2y=—10
r+ y= 7} )
That is, r—y=-5
. r+y= 7}'
Adding, we get, 2= 2
Subtracting, we get, 2= 12}'

Hence =1, y=6 are the required roots.
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Ex. 4. Solve the equations
ar +by =c, }
dz+by=c.
Multiply the first equation by a' and the second by a,
». dar+aby=a'c
ad'z+ab’ =ac’} :
Subtract, o (a'b—ab)y=d'c—ac.
a'c—ac

Similarly, if we multiply the first equation by &' and the
second by b and then subtract, we find that
r= b -be (ii)
TEal s .
The solution consists of the values given in (i) and (ii).

By giving the proper numerical values to a, b, ¢, @', ¥, and ¢,
this example can be made to include the results of all the
examples hitherto treated in this chapter. For instance, in the
eguatlons worked out in Art. 160, we have =3, b=2, ¢=21,
a’'=b,b'=-17, and ¢'=4.

Ezx. 5. Solve the equations

2 3
2+y=10

Here we proceed to find — and -]1, from which 2 and y can
z Y
be found.

First method. Eliminate (that is, get rid of) the absolute
terms, If these terms had been unequal we should have multi-
plied the equations by such numbers as would have made these
terms equal, and then have subtracted the equations; but in the
mn le&u]?tions these terms are equal. Subtract the equations

o Yy—2=0,
oL y=2a.
Substitute this value of ¥ in the first equation,

2 3
. ;+;=10.
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Multiply by x, . 24-3=102.
ooz=3.

Also we have proved that y=2, and .. y=%.

Hence the required solution is =4, y=%.

" Second method. Or we may proceed as in Art. 162, Multiply
each term in the first equation by 3, and each term in the second
equation by 2,

2230
z Yy
6 4
Subtract, . §=1°'
Hence y=%

. Substituting this value of ¥ in one of the given equations, we
obtain an equation of which the solution is #=4}.

Third method. Or we may proceed as in Art. 164. The first
equation gives
=10- 8 .
K
3

g
Substitute this value of ‘% in the second equation,

. 3 2 -_—
.. 3 (5 - s?5/) +5=10,
the solution of which is y=4.
The corresponding value of # can then be obtained.

Ezx. 8. Solve the equations
2 3

=b

Rim 8|00

If we treat (#—1) and (y+1) as the unknown quantities, we
have, by Ex. 5,

: z-1=4%, and y+1=4.
oo z=$, and y=-4}.
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Ex. 7. Solve the equations
(-0 +D - (o) Dot}
(z—-b)(y+a)—(z+b)(y—a)=2b%
Perform the multiplications indicated, and simplify. Hence we
have

br—ay=a® ...c.coeviviniiiinnnnnnns @),
and ax—by=b0.....cccceviiiiniinnnnnn. (ii).
Multiply (i) by @, and (ii) by b,
abx—a’g/=a3}
abz - b2y=03) "
Subtract, ce —(a3-0N)y=a®-b3
aB3-b
R Al
_ _a*+ab+b?
) T T T a+b
Similarly, r=- &%.

166. The method for solving three simultaneous
equations of the {ﬁrst degree involving three unknown
quantities 18 as follows.

Suppose z, y, z to be the unknown quantities.
Take one pair of the equations (say, for example, the
first and second), and eliminate z between them ; this
can be effected in either of the ways described in Arts.
162, 164. The result will be an equation involving «
and y only.

Next, take another pair of the equations (say for
example the first and third), and eliminate z between
* them also. The result will be an equation involving
z and y only.

We now have two simultaneous equations involving
only # and y; and these can be solved in the manner
already described.
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For example, to solve

= Y—22= O .icvivricrnrinrecennnnns @),
—Z+2— z2=—liiiiiiiiiiiniinnnnen, (ii),
20— Y- 2= b .ciirirerirnnannnn. @iii). ¢

First, eliminate 2 between (i) and (ii). [To effect this, multiply
(ii) by 2, and subtract from (i); or find 2 from (ii), and substitute
the value in (i).] The result is
BT = BY=2.curereererreeirrerrennne (iv).
Next, eliminate z between (ii) and (iii). The result is
=32 43Y=—6 cierrriirnirniinnnnn ).
' We have now to solve (iv) and (v).
Add, o —2y=—4.
- coy=2.
Substituting this value of y in (iv), we obtain
3r—-10=2.
. s r=4
Lastly, substituting x=4 and y=2 in (i), we obtain
4-2-2:=0. .
oo —2=-2.
ooz=1.
Hence the required solution is x=4, y=2, z=1.

167. It is however clear that, if the elimination of
z between the second and third of the given equations
had led to the same equation as the elimination of z
between the first and second equations, we should have
only had one equation between z and y, and this could
have been satisfied by an infinite number of pairs of
roots. In such a case, the equations are said to be
indeterminate or not independent.

A system of three equations is indeterminate when-
ever from two of the equations the third can be deduced.

Thus the equations
3r—-2y+2=-1
20— y+ z= 0}
r— y+ z=-1
10—2
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are not independent. In fact, if the second be subtracted from
the first, we obtain the third. The given equations are thus
equivalent to only two independent equations.

*168. The above remarks will enable us to complete the

discussion of the solution of the equations ax+by=c, a'z+b'y=¢
which is given above in Ex. 4 on p. 144, and which includes all
possible cases.

If %-—- g, = 3 , then one of the equations is a multiple of the

other, and is therefore deducible from it ; that is, the equations
are indeterminate because they are not independent. In this case,

the solution found in Ex. 4 on p. 144 becomes x=g,y=g. .

Again, if g, = g,, and if the value of each of them be not equal
to g, , the equations cannot be solved, because they are inconsistent :
in fact, the second equation can (sinoe g,= g,) be written in the

form ax+by=¢ g,, and since c’aﬁ, is (by hypothesis) not equal

to ¢, this is inconsistent with the first equation. In this case,

the solution found on p. 144, Ex. 4, becomes x=w5bc,

a'c—ac' ’
o

EXAMPLES. XII

In solving the following questions, the beginner should remember
tlwu[ ke must ﬁndftke values of each of the unknown quantities,
and also that each root must contain nothing but numbers and
known constants. ‘

In using the method of solution given in Art. 162, i is generally
better to elvminate that unknown which has the simpler coefficients.
When the value of one of the unknowns is determined, it s better to
select the simpler of the original equations as the one in which it is
to be substituted.]

Solve the following systems of simultaneous equations,
numbered 1 to 74,
1 11y -2z=10, 2. 3r+2y=43,
11z -101y=110. z+5y=49.
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9x—4ly=40,} 4 Tx- y= 3,}

4z-19y= 3. b2+ 4y =10,
Tz—2y= 1)} 6. Tr-3y= 3,}
3z 4 by=59. 5a+7y=25,
2+17y=>53, 8. 4+ by=49,
8z+ y=19. 3r—11y =95,
33z +35y= 4,} 10. 7z+1ly= 68,}

© 55z —bby=—16. 9z— 4y=33,
7w—93/=17,} 12 144:—93/=5,}
9z —Ty="T1. 352+ 6y=3.
2bzr— ay= ab,} 14, 3abz+ y= Sb,}
bz +2ay =3ab. dabz — 3y=15b,
ar +by =2, 16, az+by=2,
a?r+by=a+b. ab(z+y)=a+b.
bz —4y=3r+2y=1 18, z+19y="79, 924y=381.

4r—6y—3="Tzr+% 4= — 2w +3y+24.
br+2y—-1=32-y+14=2+19y+6.
122+13y=19, 13z +12 =31

71z —15y=8, 14z+2ly=62,
91+ 8y =15, 21z 35y= — 575,

5 8=1, 2w+ 26y=2.

Ty -3 o z_y_,

3 6 > 83
11 ., x-5
o+ ¥m=15, T4 ay=36.
Yo+ 99%_1y 0p AT o
11 17
f’—’.','—4+3:z/=13, 4x+‘1%§=13.
T334 ay=13, 2047 E -1

Y(z-y)+i(x+y)=2, z+y-b=3@y—2).



150

31

45.
47.

49,

51,
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Y Z Y- r, Y_ z. Y_
7% 37, gty 38, 32 8ts 14, gta=2
WAy _rty_o -1 Ty+2_o .-
5 = 3 =2, A, i 8 =2 -y=0
y_ % % 3 3. Y _13 T_Y_
34:-}-5—2+3 i 36. 5 +3 13,3 8_3
2 3y g 52 _9%_ 3 by __, br_ y_
373°% g~k B gog=-bL gH=U4
3 _by_ _, & _y_, r,.Y g Z,Y_
27— b g-g=l 40 3+5=8 F+3=b.
T, Y _43 T Y oY 15 Z_9Y_
gTE=1% gtj=4® 42 F+i=15 =4
x x
mHE=T G-i=t W jo-}y=3, jo-fy-u
fz-3y=1,3x+§y=26. 46. Jr+§y=22, }r-dy=-"T.
4z by .. r ¥ 22x+1 3y+2_,
y_16z_ y 11 z Y _x-y_
4.9 5 31,1 9 4 g 13,7
;—?7_2, 3—/—5+6—-0. 52, e y—8, .r+3/_101'
4 3 3. 2 3 5 2 3
;:—5:3, ;+§—32. ;—§=1, ;+§=26.
3. 5 7 9 2 7 5 6
5+2;=19, ;—5—3- 56. ;""5—29, —x—':y-=2.
ax—by=0, c(x-y)=a->b. ’
bz —ay=ax—by=ab.
aztby=c, a(a+z)=b(b+y).
. z+y=a+bd, a(r+a)=b(y+b).

. y=}@+a)+3b, s=}@y+b)+}a

(a=b)x—(b—c)y=c—a, (c——a)x—(a-—b)y=b;c.
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63. (a+c)z—(b+c)?/=(a-b)(a+b+2c).}
(a—c)a:—(b—c)y=a"—b’.

64. =2, aa:—b.l/=a3+bs.

LY

a+b+a—b

65. }(z+y)=%(zr-y), 3r+17y=2.
4oty  2+y bz—1 x-y

67. Y(z+y)=1(z-9) 3zr+1ly=4

68. 3}(z-11)+y=18, 2o+}(y-13)=29.

3

;‘_
1 1 1 1
70. 9 (3_@'-‘-5;):8 (5—‘0"‘"3_:“,)—_'2-

a b b2
. 5—§+1=0, ;

69. 2y+ 4=5y+l;2+2=y—§+4.

a?
+—=a-b.
Y

72. x+%+3:=32, 42-by+6:=27, Tr+8y—-9=14.

8. 2=3(y-2), z=4(y-2), z+z=2-5.
*4, a(y+2)=b(z+z)=c(r+y)=d2

151

*75. Shew that the following system of equations is indeter-

minate. 2zr+y=10, z+z-3y+4=0, 2y+6=3z+-2.




CHAPTER XIIIL

PROBLEMS LEADING TO SIMULTANEOUS
SIMPLE EQUATIONS,

169. . We discussed in Chapters VI. and XI. the
solutton of problems which could be expressed alge-
braically by simple equations. We shall now treat of
problems involving more than one unknown quantity,
and such that the given relations between the unknown
quantities can be expressed by two or more algebraical
equations of the first degree. .

The chief difficulty is the translation of the ex-
pression of certain relations from ordinary language
into algebraical language. As soon as the given re-
lations are expressed by algebraical equations, the
methods given in the last chapter will enable us to
solve the equations.

It is however worth remembering that we can only
solve a system of equations when we have as many
equations as there are unknown quantities. To ensure
this, the beginner will generally find it advisable to
begin by writing down all the equations without
attempting to simplify them, and not to commence the
actual solution of the equations until he has seen
that he has as many independent equations as un-
known quantities. To facilitate this, it is convenient to
number the equations as they are written down.
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- 170. The following examples are typical of some
of the more common problems.
Eh:f.dl. 4 %mber of eet(zo digits i ;gual dto Jfour times the sum
of the digits, and it exceeds the sum of the digits by twenty-seven.
Wi is fe amber ¢ it by tenty

Let x be the digit in the tens’ place and y the digit in the
units’ place. Then the number is 10z + 3.

Then, by the question, (10z+y) is equal to 4 times (z a5

o 10z24+y=4(2+Y) ...... sereeensreniens ).
Again, by the question, (102 +y) is greater than (x+y) by 27 ;
co 1024+ y=24Y+2T. e, (ii).

‘We have now two equations involving two unknown quantities.
Simplifying these equations, and collecting like terms,

(i) becomes ‘ 6r=3y,
and (ii) becomes 9z=217.
Hence z2=3,
and y=2r=6.

.. the required number is (3 x 10)+6=236.

Ez. 2. When unity 8 added to the numerator and denomina-
tor of a certain fraction, the result is 3, and when unity s sub-
tracted from its numerator and denominator, the result i 2. Find
the fraction.

Let # be the numerator of the fraction and y be its deno-
minator. Then we have, by the question,

z+1_3 .

ﬁi T greeeeesessenacntnnennens veeree (l),

r-1 Vg
and .'F"_l =2 iierieirninniiennineddie (ll).

We have therefore two equations involving two unknown
quantities. Multiplying up, they become respectively

22 =3y =1.ecirirrrrrricennnnccnnns (ii),
and R T D s @iv).

The equations (iii) and (iv) can be solved by any of the
methods given in the last chapter. For example, multiply
(iv) by 2, and subtract from (iii),

oo y=3.
Substituting =3 in (iv), we obtain x=5.
.. the required fraction is §.
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Ex. 3. A and B together can do a piece of work in fifteen
day MAftef 'u;torh?q together fordaix % Alwmkaaaoay, m
nished 1 imself twenty-four days n what time
'ﬁ alone dobtylw wlwlcf ? 7 Y

Suppose that 4 working alone would take 2 days to do the
whole: and that B working alone would take y days.

Then in one day 4 does :% of the whole.

o in 15 daysd L Do
Similarly, - in15days B ... —..cecciiiiiennnnns
But in 15 days 4 and B would finish it ;
a2 %‘=1 ........................ Q.

Again in 6 days they had done g+;§y of the whole.

In the next 24 days B did 2; of the whole.
This served to finish the whole,

We' have thus two equations involving two unknown
quantities. Simplifying, they become respectively
5, 16_,
z 'y
6 30 ’
z + ?—l

Multiply the first of these by 2, and subtract the second,

and

S r=24,
Hence 4 working alone would take 24 days to do the piece of
work.

We are not asked to find y; but if we substitute this value of
z in either of the equations, we shall find y=40.
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Ex. 4. A mule and a donkey were going to market laden with
wheat. The mule said “ifgq/‘ou ave me one measure, 1 should
carry twice as muck as you; but if I gave you one, we should bear
equal burdens.” Tell me what were their burdens.

qll'his roblem is said, by tradition, to have been given by
Euclid in his lectures at Alexandria, circ. 280 B.c., and is perhaps
one of the earliest problems of this kind ever asked.]

Let 2 be the number of measures carried by the mule; and
let y be the number of measures carried by the donkey.

Then if the mule had received one measure from the donkey,
the mule would have carried z+41 measures and the donkey
would have carried y — 1 measures ; hence, by the question,

But if the mule had given one measure to the donkey, the
mule would have carried £—1 measures and the donkey would
have carried 7+ 1 measures ; hence, by the question,

Z=1=y+1 .iviiriinniinennnnne (ii).

Thus we have two equations involving two unknown quanti-
ties.

From (ii), R R o S (idi).
Substitute this value of # in (i),

. o @+ +1=2(y-1).
oo y=b.
Therefore from (iii), z="1.

Therefore the mule carried 7 measures, and the donkey

carried 5 measures,

’ Exbu? ﬂﬁr man atagt:z to cgg{k @ certsz'n dz‘atazoe in a certain
time, after a time being obliged to diminisk his pace by ome-
Jifth, he is four minutes late in reaching his destination. byIf he
had walked another mile be{ore diminishing his pace, he would
have been only ome minute late. What was kis™ original pace,
and I;m for from the end of his journey did he slacken his

Sup; that he starts at the rate of » miles an hour; and
let the distance from the end of his journey at which he begins
to slacken speed be & miles. .

Now, if he had not slackened his pace, he would have walked
z miles in g hours[Art. 101} But when he diminished his pace
by one-fifth, he walked at the rate of 4v miles an hour, and he
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therefore took % hours to cover z miles. The difference
between these times is stated in the question to be 4 minutes,
that is, {i hour;

‘. 5 - '-'; = ﬁ ........................... (l)

. .Aga.in, if he had walked a distance of (#— 1) miles at these
rates, the difference of times would by the question have been
1 minute, or g; of an hour. Hence

—%—v-—'—w‘=@ ............ acesesecence (ll).

We have therefore two equations involving two unknown
quantities. Simplifying them, they become respectively

162=4v
and 15(z—1)= e:}'
Subtracting, we obtain 16=3v, .*. v=>.
Hence 152=20, .. z=4=13.

Therefore the man started at the rate of 5 miles an hour, and
slackened pace at a distance of a mile and a third from the end of
his journey.

Ez. 6. The value of 112 coins, consisting of half-crowns,
shillings, and sizpences, amounts to £5. 16s. 6d. " If ¢ were
twice as many swwpences, half as many half-crowns, and three
times as many skillings, the total value of the coins would be
£16. 3s. How many coins are there of each kind ?

Let x be the number of half-crowns, y the number of shillings,
and z the number of sixpences.

The number of coins was 112 ;

R 2 s o 2l 3 2N ().

The value. of the z half-crowns was fx shillings, since
2s. 6d.=4§ shillings. .

The value of the y shillings was y shillings.
The value of the z sixpences was }z shillings.
The value of the whole was £56. 16s. 6d., which is equal to

1163 shillings ;
coBrty+3e=116}....ccuuieenn. (ii).
If there had been 3z half-crowns, 3y shillings, and 2z six-
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ences, the value of the whole would have been £16. 3s., which
18 equal to 323 shillings ;
o (32)+3y+3(2:)=323 ... (iii).
We have therefore three equations involving three unknown
quantities. )
Getting rid of fractions, these reduce to
2+ y+ =112
Sz+ 2y+ 2=233 }
bz + 12y + 42=1292

‘We shall proceed to eliminate 2.
Subtracting the first of these equations from the second, we get
4z4+y=121 .ciciiiriiiiiinnineenn. (a).
Multiplying the first by 4, and subtracting from the last, we get
T+8Y=844 ..ccuvrriririiiinninnnnns (b).

We have now two equations involving two unknown quantities.
To solve these, multiply (b) by 4, and subtract (a),

. 31y=3265.
.. y=106.
Substitute this value of y in (b),
.. x+4840=844.
oo r=4.
Substitute these values of # and y in (i),
oo 441054+2=112.
. 2=3.
. Therefore there were 4 half-crowns, 105 shillings, and 3
sixpences. i
Note. Several of the examples given in Chapters
VI. and XI. might have been treated as simultaneous
equations. For example, in Art. 99, Ex. 4 (p. 71), we
might have supposed that B was z years old, and that
A was y years old. We should then have had the
simultaneous equations y =4, and y+ 20=2 (z + 20).

But in this instance, and in all other similar cases
in those chapters, it was not necessary to introduce
more than one unknown quantity.
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Similarly, many of the problems given in this
chapter can be solved by the introduction of only one
unknown quantity.

EXAMPLES. XIII

1. Find two numbers, whose difference is 1, such that the
sum of the fifth and the seventh parts of the less is less by 1
than the sum of the fourth and the ninth parts of the greater.

2. A number of two digits is equal to four times the sum
of its digits : shew that one digit is double the other.

3. A number of two digits is added to another consisting of
the same digits reversed, and the sum is 55. The difference of
the numbers is 27. Find the numbers.

4. A number, consisting of two digits, is such that when
divided by the sum of its digits, the quotient is 7 and the
remainder i8 3. The number formed from the given number by
reversing the digits is less than the given number by 36. Find
the num%)e .

5. A number consists of two digits, one of which is treble
the other. Another number is formed from the first by revers-
ing the digits. The difference between the numbers is equal to
18. Find the numbers.

6. In a certain J)roper fraction, the difference between the
numerator and the denominator is 12, and if each be increased
by 5 the fraction becomes equal to §. Find the fraction.

7. What is that fraction which becomes § when its numerator
is doubled and its denominator is increased by 1, and becomes
ghenz its denominator is doubled and its numerator inc

y 4

8. If 1 be added to the numerator of a fraction it becomes
equal to }, if 1 be added to the denominator it becomes equal
to }: find the fraction. )

9, The sum of three numbers is 21. The greatest exceeds
the least by 4, and the other number is half the sum of the
greatest and least : find the numbers.

~10. Two workmen save one-third and one-fourth of their
daily earnings respectively. At the end of a year their united
savings amount to £20, and the total amount of their earnings
was £67. 10s.? What did each earn during the year?

11, 4 and B have £70 between them; but if 4 were to lose
half his money, and B were to lose one-quarter of his, they
would then have only £43. How much has each ?
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12, 4 has 6 more shil]ing:cthan B, but if 4 give B half
his money, and then B give back to 4 one quarter of his in-
creased sum, they will each have the same sum; find what
each had at first.

© 13, Three rabbits cost 6s. 4d. The second was worth 10d.
more than the first, and the third 4d. less than the second.
Required the cost of each.

14, When 4 and B sit down to ]l)!la.y, B has two-thirds as
much money as 4. After a time 4 has won 15s., and then he
has twice as much money as B. How much had each at first ?

15, A n bought 40 yards of cloth for £18, some at 10s.
a yard, and the rest at 7s. 6d. a yard ; how many yards of each
kind did he buy ?

16. A grocer buys a quantity of tea at 3s. a lb. and also
an equal weight of tea at 2s. 6d. a lb. If he had divided his
money equally between the two kinds he would altogether have
bought one lb. more of tea. What amount did he buy, and how
much did he spend ?

17. A father’s age is four times that of his elder son, and
five times that of his younger son: when the elder son has lived
to three times his present age, the father’s age will exceed twice
that of his younger son by t! years. Find their present ages.

18. A boy is one-third the age of his father, and has a
brother one-sixth his own age ; the ages of all three amount to
50 years. What is the boy’s age?

19. - Seven years ago, the eldest of three sisters, who is three
years older than the next, was twice as old as the youngest, and
their united ages were 22. What are their present ages, and how
long is it since the age of the eldest sister was equal to the
sum of the ages of the two younger ones?

20. A boy is a years old; two years after his birth, his
mother was 25 years old ; his father is now half as old again as
his mother was when the boy was b years old. Find the present
ages of his father and mother.

21. In a certain community, consisting of p persons, @ per
cent. can read and write. Of the males alone, b per cent. can
read and write ; and of the females alone, ¢ per cent. can read
and write. Find the number of males and females in the com-
munity.

22. An income of £120 a year is derived from a sum of
money invested, partly in a 34 per cent. stock, and partly in a
4 per cent. stock. If the stock be sold out when the 3} per cents,
are at 108 and the 4 per cents. at 120, the capital realised
£3672. How much stock of each kind was there?
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23. £1000 is divided between 4, B, C, and D : B receives
half as much as 4 ; the excess of C’s share over D’s share is
equal to one-third of A’s share; if B’s share were increased
by £100, B would have as much as C'and D have between them ;
find how much each receives.

24. Two trains, 92 feet and 84 feet long respectively, moving
with uniform velocities, on parallel rails, in opposite Xirections,
Sf.ss each other in 14 seconds. If they move in the same

irection, their respective velocities being the same as before,
the faster train passes the other in 6 seconds. Find the rate at
which each train moves.

%#25. In a contested election 728 votes were polled ; the first
of three candidates obtained only 10 less than the second and
third obtained together, and he could have given enough votes
to the third candidate to have brought him in above the second.
How many votes were recorded for each candidate ?

26. A person buys 9 oxen and 20 sheep for £230 ; he sells
the oxen at a gain of 25 per cent., and the sheep at a loss of
20 per cent., gaining by the transaction £35. Find the price he
gave for each.

27. A man spent £200 in buying heifers and lambs, pur-
chasing in all 20 animals. If the animals that he bought
had al% been heifers, he would have paid £160 more than he
did ; if they had all been lambs, he would have paid £160 less
than he did. How many were there of each kinds)m

28. The rent of a farm consists of a fixed money payment,
together with the value of 325 quarters of corn, partly wheat
and partly barley. When wheat is at 56s. per quarter apd barley
at 40s., the rent is £900 ; but when wheat is at 48s. and barley
at 36s., the rent falls to £810. Find the amounts of money,
wheat, and barley payable as rent.

29, By investing a certain sum in railway shares paying 3
r cent. per annum, at a certain discount per cent., an
income of £315 is obtained. If the same sum be invested in
the shares of another railway, paying 4 per cent. per annum at
a premium equal to the former discount, the income is increased
by £65. Find the amount invested, and the prices of the shares,

30. Divide the number 28 into 4 parts such that, if the first
part be increased by 2, the second diminished by 4, the third
multiplied by 3, and the fourth divided by 2, the results shall
all be equal -
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31. Find the number of three digits which is equal to 6
times the number formed by its first and third digits, and also
is equal to 12 times the sum of its digits, and also is equal to
half the number formed by adding 1 to each of its first and
second digits and subtracting 2 from its third digit.

32. Divide 48 into three parts such that the first part shall
exceed the second part by 2, and be less than the third part by 3.

" 33, A certain number of 4 digits is unchanged when the
digits are reversed : the sum of the digits is equal to the number
formed by the first two digits. What is the number ?

34, The number of candidates who entered for a certain
examination was a number of four digits. The sum of the
digits was 20, the two middle digits were alike, and when the
whole number was divided by 100 the remainder was 70. Find
the number of candidates.

35. A train travelling from 4 to C, at a uniform rate of
54 miles an hour, accomplishes the distance in the same time
as a train which travels from 4 to a station B (between 4 and C)
at the uniform rate of 60 miles an hour, and without stopping
at B, proceeds from B to C at the uniform rate of 50 miles an
hour. If the distance between B and C be 3 miles greater than
that between 4 and B, find the number of miles between each
pair of stations. :

36. A and B run a long-distance race round a }-mile course;
they start together, but when 4 has completed his first lap, B
is 40 yards behind ; in 15 minutes after starting 4 overtakes B
by overlapping him. How long does B take to run a mile ?

37. A and B run a mile race. If B receive 12 seconds’ start,
he is beaten by 44 yards. If B receive 165 yards’ start, he
arrives at the winning post 10 seconds before 4. Find the
time in which each can run a mile.

38. 4 and B work together upon a piece of work for six
days, 4 then leaves off work, and after B has worked alone for
two days more, it is found that the work is half done. B then
leaves off work, A4 resumes work, and is joined by a third
workman who can do in one day twice the excess of the work
done by A in one day over that done by B in one day; and
the work is completed in eight days. Find the time in which
each workman could do the whole work, and the proportions in
which they should be paid.

B. A. 11
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39. A and B start simultaneously from two towns to meet
one another : 4 travels 2 miles per hour faster than B, and they
meet in 3 hours : if B had travelled one mile per hour slower,
and 4 had travelled at two-thirds his previous pace, they would
have met in 4 hours. Find the distance between the towns.

40. A man has £100in sovereigns, half-crowns, and shillings ;
the weight of the coins is 235 ounces, and the number of coins is
852. How many coins of each kind has he? [Assume, for the

urpose of this question, that a sovereign weighs } ounce, a
ga.lf-crown 4 ounce, and a shilling } ounceﬁ[I

41, A has a certain number of coins, all being sixpences ;
B has eight coins less, all being half-crowns; C has the same
number of coins as 4 and B together have, all of them being
shillings. The value of (s coins is the same as the sum of the
values of A’s coins and B’s coins. What sums have they
respectively

42. A sum of £2000 is divided into two unequal portions,
and these are lent out at rates of interest which differ by one

r cent. per annum. It is observed that the income arising

m the portion lent at the higher rate of interest, is twice that
arising from the other portion; also that the whole income
arising from the £2000 1s twice that which would be obtained
by lending out at the lower rate the portion which is lent at the
higher rate. Find the rates of interest, and how much is lent
at each rate.

43. The change for a shilling consisted of & certain number
of pence together with twice as many half-pence and some three-
penny pieces, making 11 coins in all; how many coins were
there of each sort ?

44. Nineteen shillings’ worth of silver consisted of a certain
number of florins, twice as many sixpences, and the rest half-
crowns, making 13 coins in all ; hew many of each sort were
there ?

45. A boy spent his week’s pocket money in oranges: if he
had got 5 more for his money, each orange would have cost a
ha.lfpen;y less ; if 3 fewer, a halfpenny more. How much was
his week’s pocket money ? ,

*#46, A gardener took to market two baskets of the same
size, one filled with currants and the other with raspberries. He
sold all the fruit, except 6 quarts, for 8 shillings, obtaining 4d.
per quart for the currants and 7d. per quart for the raspberries;
and then found that the value of the raspberries sold was seven
times that of the currants unsold. Find how many quarts each
basket contained.
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'47. A quantity of land, partly arable and partly pasture, is
sold at the rate of £60 an acre for the pasture, and £40 an acre
for the arable; and the whole sum obtained is £10,000. If the
average price per acre had been £50, the sum obtained would
have been 10 ‘[:er cent. greater. How much of the land is arable,
and how much is pasture { .

48. A and B enter into partnership with unequal sums of
money. They agree that each shall receive interest on his
capital at the rate of 4 per cent. per annum, and that all re-
maining profits shall be equally divided. At the end of the
first year they receive £428 and £508 respectively; and it is
found that 4 thus receives £77 more than he would have got if
they had shared in proportion to the capital invested by each.
Find each man’s capital.

49, An income of £196 is derived from two sums invested,
one at 4 per cent., the other at 7 per cent.: if the interest on
the former had been 5 per cent., and on the latter 6 per cent.,
the i:lecg.me derived would have been £212. Find the sums
invested.

650. The gross income of a certain man was £30 more in
the second of two particular years than in the first, but in
consequence of the income-tax rising from 5d. in the pound in
the first year to 8d. in the pound in the second year, his net
income after paying income-tax was unaltered. Find his income
in each year. .

61. A ship, provisioned for a certain voyage, encounters a
storm 16 days after starting, which it is calculated will delay it
for 8 days : the daily rations are therefore reduced to % of the
original quantity : a boat is subsequently picked up containing
9 men without provisions, in consequence of which the daily
rations are reduced to § of the original quantity. What was
the number of men at starting, angl how long was the voyage
expected to last ?

*52. A newspaper proprietor finds that his receipts are
reduced by a shilling in the pound through his town customers
paying for their penny papers in foreign bronze and his country
subscribers in postage stamps. The bronze pence are pur-
chased from him by the Post Office at the rate of 13 for a
shilling, and the stamps at a charge of 2/{ per cent. The
number of his country subscribers exceeds the number of his
town customers by a thousand. Find the number of each.

11—2
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53. A cask contains a certain number of gallons of water,
and another contains twice as many gallons of wine : six gallons
are drawn from each, and what is (frawn from the one cask is
then put into the other. If the mixture in each cask be now of
the same strength, find the amounts of water and wine which
they originally contained.

54. A, B,and C walk from P to @, a distance of 30 miles ;
A starts 24 hours before B, and B 1} hours before C, and they
arrive at ¢ together. If B had started 3 an hour earlier, he
would have passed 4 2 hours before 4 reached @. Find the
rates at which 4, B, C walk. -

55. A man takes five times as long to run a quarter-mile as
he does to run a hundred yards ; but if he could run the quarter-
mile at the same pace as t{ne hundred yards he would do it in 63
sec(l)lnds less time than he does. How long does he take to run
each ? :

56. A journey is performed in a certain time. By travelling
2 miles an hour faster, it would be performed in half-an-hour less
time; by travelling 2 miles an hour slower, it would take one
hour longer. Find the length of the journey.

67. A person with a sum of £2,596 to invest finds that
he can obtain £750 more nominal stock in the 3 per cents. than
in the 4 per cents., and 10s. greater income : what is the price of
each stock ?

58, If each of the two greater sides of a rectangle be
increased by 3 yards, and each of the two smaller sides be
increased by 2 yards its area is doubled : if each of the greater
sides be diminished by 3 yards and each of the smaller sides be
increased by 2 yards the area is unaltered. Find the sides.

§9. A ger is anxious to reach his destination 21 miles
distant at the earliest possible time. Two steamers go there, a
slow one which starts at 6 .M. and a more rapid one which
starts at 8 A.M. Sixteen hours after the latter passes the former
they are 80 miles apart; but if the slow steamer after being

had inc its pace by one-fourth, and at the same
time the quick one its by one-fifth, they would have then
bﬁen 9? miles apart. ich 1s the better steamer for him to
choose




CHAPTER XIV.
MISCELLANEOUS PROPOSITIONS AND EXAMPLES.

171. 'WE here add a few miscellaneous examples
which require the application of algebraic processes,
but do not come exactly within the range of the
preceding chapters.

EXPRESSION OF THEOREMS IN ALGEBRAIC NOTATION.

172. We can often render theorems involving pro-
perties of numbers immediately obvious by the use of
the notation of algebra. The following are a few
simple examples.

Ex. 1. Shew that if the number 4 be divided into any two
parts, their product is less than 4 by the square of half their
difference.

Let  be one part, ... 4—z is the other part.

‘We want to shew that the product # (4 — ) is less than 4 by the
square of half the difference between » and 4—2. We want
therefore to shew that

. (4—2)) 2
x(4—x)=4—{7’"——;—x—)} ,
that is, dr—23=4- {x-2}2
=4—(22-4x+4)
= —a%44x,
a result which is obviously true.



166 MISCELLANEOUS PROPOSITIONS.

Exz. 2. Shew that the difference between the squares of two
consecutive integers is equal to the sum of the integers.

Let « be any integer, .. the next higher integer is +1.
‘We want to shew that
) (z+1P2—22=(z+1)+2,
that is, (22420 4+1)—a8=2z+1,
a result which is obviously true. '

EXAMPLES. XIV. A.

[In this set of examples, the word number refers only to
integers.]

1. Prove that, if the sum of two numbers be equal to 3,
then their difference is equal to one-third of the difterence of
their squares.

2. A boy is told to think of a number ; to subtract 1 from
it ; to multiply the result by any number, » ; then to subtract
1; and finally to add the original number. Shew that the
number he originally thought of is one more than the (n+1)th
part of the final result.

3. Prove that the sum of the squares of two quantities is
equal to twice the sum of the squares of half their sum and
half their difference.

4, Express the following statement in algebraical symbols.
“The difference of the cubes of any two numbers divided by the
difference of the numbers is equal to the sum of the squares of -
the two numbers together with their product.” Prove that the
statement is true.

5. From the difference of the squares of two numbers
subtract the square of their difference, and shew that the result
is a multiple of the smaller of the given numbers,

6. From the difference of the cubes of two quantities
subtract the cube of their difference, and shew that the result is
a multiple of both the given quantities,
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SUBSTITUTIONS.

173. The following examples may be treated as
illustrations of substitution, though many of them can
be proved (often more elegantly) by other processes.

Ex. 1. Shew that, if z—y=1, then (2?—y?2=a%—y3+zy.
Since z-y=1, * r=y+1.
Hence (2*-y%)=(z-y)*(@+y)*
=1x(y+1+y)p3=(2y+1)2=4y2+4y+1.
Also  2*-gP+ay=@F+1P -y '+y G +1)=4"+4y+1.
These results are the same, .. (22— y2)?=23—- 33+ 2y.
Ez. 2. Find the value of a3—b2—(a—b)% when a+2b=13
and 20 +b=32.

The equations a+2b=13 and 2a+b=232 are simultaneous
equations, They can be solved by the methods given in the
last chapter, and it will be found that a=17, b= —2.

Hence a? -0 —(a—-DPE=172—(-2)2-(19)?
=-76.
o sy o st beop
The relation (+y)+(y +2)2=(r+2)?
is true, if 2%+ 22y +y2+y%+ 2y +2=224 222422
Transpose all the terms to the left-hand side, .. it is true if
293+ 22y + 29z — 242=0,
that is, if Y (y+2+2)-22=0,
that is, if (¢7) (p8) - (pg) (r8) =0,
which is the case.
Ex. 4. Shew that, if 2=z —2, then 25= —z+6.
We have B=z-2.
L at=(z-2)?
=2?—4r+4.
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But 22=2-2, o at=(r-2)-4r+4
=-3r+2.
o=z xrt=2(-32+2)
= - 322+ 22.
But 22=2-2, o a8= —3(2—2)+20=—2+6,
which was to be proved.

Ez. 5. If z+y+2=0, prove that
' z (@~ y2) +y (4 - 2) +2(2 - 2y) =0.
Multiplying out, we have
z(2*~y2)+y (y° - 22) +2 (22~ 2y)
=23+ +23 - 3zyz
=(@+y+2) 2 +y:+ 22— 2y — 22 —yz) [Art. 108.]
oo =0x (24 Y+ 22—y — 22— y2)

=0.

EXAMPLES. XIV. B.

1. Find the value of (- c)(a+c) — (a+c)?, when 3a+2c=45
and 3¢+ 2a=15.

2. Ifa+b=1, prove that (a?—b2)2=a3+ b3 - ab.

3. Shew that, if 22=2+1, then 25=52+3.

4. Shew that the expression & (y2—2%) +y (22— 22) +2(2% - 3?)
is not changed by adding the same quantity to z, to ¥, and to z.

5. Ifa+%=l, and if abc+1=0, then will b+§=].

6. Ifa+b+c=0, prove that a3(b—c)+b3(c— a)+c*(a— b)=0.
7. Shew that, if ¢ +b+¢=0, then
ab (a+b)+be(b+c)+ca (c+a) +3abe=0.
If 4+ y+2=0, prove that (23+y3+23)3=272%%3.
9, Prove that, if s=a+b+-¢, then
(as+bc)(bs+ca)(cs+ab)=(b+c)*(c+a)?(a+b)2
1 1,1 2

. 1 2
10. Shew that, if aTb-I-m-E’then 3te=a-




MISCELLANEOUS PROPOSITIONS. 169

ELIMINATION.

174. - We solved two simultaneous equations of
the first degree between two unknown quantities by
eliminating one of them—that is, we combined our
equations in such a way as to get rid of one of the
quantities involved [see Art. 160]. In general we
can eliminate one quantity between two equations, two
quantities between three equations, three quantities
between four equations, and so on; in each case ob-
taining one equation as the result.

The following are a few simple examples.

Ex. 1. Eliminate y between the equations y—x+1=0 and
y2+222=3.
The first equation gives y=x—1. Substituting this value
for y in the second equation wherever y occurs there, we have
(z—1)2+222=3,
.. 322 — 20— 2=0,
an equation in which y does not occur, and which is therefore
the required result.

Note. Wherever we are given two equations involving a certain
quantity (such as y in the above example), and one of these
equations is of the first degree in it, we can always eliminate the
guantity by finding its value from the equation which is of the

rst degree in it, and substituting this value in the other equation.

Ex. 2. Eliminate x between the equations ax?+by*+c=0 and
ba? - ay*+d=0.
The second equation gives bz?=ay?—d.
. pny-d
o= 5
Substitute this value of 22 in the first equation,

2
a(“-’/b d)+b,y’+c=o.

Simplifying, this reduces to a2y2— ad+ b%?2+be=0.

(@24 0%y — ad 4+ be=0,
an equation which is independent of z, and is therefore the
required result.
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EXAMPLES. XIV. C.

Eliminate # between the equations given in examples 1, 2, 3.
1. 2243y-1=0 and 32-2y+1=0. -
2. ar—by=0 and 2*+zy+yi=ab.
3. z+a-1=0 and 22-a?+1=0.
Ehmmate y between the equations given in examples 4,5, 6.
‘4, y—2=0 and 222+ 3y2+4=0.

. y=mz+c and yi=4axz.

b,
6. _+y 1 and 'f+y =1.
7

a b 2
Eliminate y and 2 between the equations
2243y —2=3r—-2y+2=4r+y—52=3

SYMMETRY.

175. Symmetrical Expressions. If an expres-
sion involving certain letters be such that its value is
unaltered when two of the letters are interchanged, it
is said to be symmetrical with respect to them.

Thus each of the expressions @ +b and 242+ 3ab+ 2b2 is sym-
metrical with respect to @ and b; for, if ¢ and b be interchanged,
the values of the expressions are unaltered.

If an expression involving certain letters be such
that its value is unaltered when any two of those
letters are interchanged, it is said to be symmetrical
with respect to all of them.

Thus each of the expressions abc and a3+ b3+ c3+d3+3abe
is symmetrical with respect to o, b, and ¢; but the second of them

is not symmetrical with respect to a, b, c, and d; since if @ and
d be interchanged, its value is altered.

Similarly, the expression
1 1 1
@-006-0  F-0@-a) ' c-a)@a-"b

is symmetrical with respect to a, b, and c. .

176. Cyclical interchanges. The value of the
expression at the end of the last paragraph was found
in Art. 150, Ex. 4 (p. 120). As written in Art. 175,
the three terms which compose it are so arranged that
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the second term is obtainable from the first by writing
b for a, ¢ for b and a for ¢; the third term is obtainable
from the second by the same rule; and if we apply
the same rule to the third term, we get back to the
first term. Letters so arranged are said to be taken
in cyclical order.

One advantage of writing the above expression in
this way is that from one term each of the other
terms can be written down by symmetry.

And always, if the letters of an expression, such
as a, b, c, ..., be arranged round the circumference of a
circle, then to make a cyclical change in the expression
we replace every letter by the letter immediately in
front of it.

177. The form in which an expression can be
written is a matter of great importance, and the
student will find that his power of successfully applying
analysis to the problems he has to solve will often
depend to a large extent on his power of arranging his
symbols in a symmetrical form.

178. Attention to the symmetry of expressions
will moreover frequently save the student from mis-
takes in his work.

For example, if in the product
(x+a)(x+bd) (z+c)
the coefficient of 22 were said to be a+b+ 2¢, it is obvious (by
inspection) that there must be an error; for the given expression

is s&mmetrical with respect to a, b, and ¢, and therefore the
coefficient of every power of  in the product must be so.

179. Examples of the following kind are not un-
common in the applications of algebra.

A rational integral algebraic ession of two dimensions in
xandyqu;mﬂw%calafvgnd‘ e.:pr us. Its value is 4, when
x=1 and y=1; and its value @8 1, when =0 and y=1. Find
the expression.

Since the expression is homogeneous and of two dimensions
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in z and y, every term in it must be of one of the forms as?® bzy,
and cy®. Let « stand for the expression,

oo u=axd+bay+cy’,
where a, b, ¢ are numerical coefficients which we have to find.
Again, the expression is symmetrical in 2 and y; that is, if 2
and y be interchanged, no change is made in the expression.
This requires that a shall be equal to ¢. Hence we must have

u=az®+bxy +ayd.
Now we are also given that if =1 and y=1, then u=4,

R e 2 Y 2 ).
Also, if =0 and y=1, then z=1,
1=040+4@..cccceerrirrreceurarcnees (ii)

The equations (i) and (ii) give, when solved, =1 and b=2.
Substituting these values, we obtain
u=2+22y+3%
which is the required expression.
It will be observed that we first wrote down a homogeneous
expression, next we made it symmetrical, and lastly we deter-

mined the coefficients that were then unknown by means of the
given relations.

EXAMPLES. XIV. D.

1. Which of the following expressions are symmetrical, and
with respect to which letters are tgey symmetrical ?
(i) abr+aby?; (iii) a®+b3+2¢2;
(i) a*+b+c2; (iv) (a-Db)+(b—c)ad+(c—a)bl
2. Can a+2b+c be the coefficient of 2® in the product
(z+b—c)(@w+c—a)(x+a—>b)? Can a®+ b2+ c? be the coefficient
of 22'in this product ?
3. Write down by cyclical interchanges of a, b, and ¢ the
quantities corresponding to
(i) b-c; (i) d2-¢c®; (ill) a(db—c); (iv) (a-0b)(b+c).
4. Find a rational integral homogeneous expression of the
first degree in = and y, which is equal to 3 if =1 and y=1, and
is equal to 4 if x=2 and y=1.
5. Find a rational integral homogeneous and symmetrical

expression of the first degree in x and y, which is equal to 6 if
2=1and y=1.
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COMPARISON OF UNEQUAL QUANTITIES.

180. Comparison of unequal quantities. The
comparison of the magnitudes of unequal quantities
depends on the following propositions.

An inequality is unaltered in character (i) if equal
quantities be added to each side of it, or (ii) if equal
quantities be subtracted from each side of it, or
(1i1) if each side be multiplied or divided by a positive
number ; but (iv) an inequality is reversed 1n character
if each side be multiplied or divided by any negative
number.

To prove these propositions, consider the definition -
of an inequality. A quantity a is said to be greater
than a quantity b, that is, a > b, if a —b be positive
[Art. 48]. But, if @ — b be positive, then (a + z) — (b + #)
18 positive, and therefore a + >b + =, that is a + = is
greater than bt+a. Similarly,if a <b,thena + z<b + .
This proves (i) and (ii).

It follows from (i) and (ii) that we may transpose a
term from one side of an inequality to the other, pro-
vided its sign is at the same time changed [see Arts.
94, 95].

Again, if a > b, then a — b is positive. Therefore, if
m be a positive number, m (a —b) is positive, and there-
fore ma >mb: but, if m be a negative number, then
m(a—b) is negative, and therefore ma < mb. This
proves (iii) and (iv).

As a particular case of (iv), we have the result that an

inequality 18 reversed in character if the sign of each side be
changed (that is, if each side be multf{)lled by —-1).

181. To compare two or more unequal fractions,
we must express them in an equivalent form having a
common positive denominator. To do this, we must
find the L.c.M. of their denominators and make this
L.CM. the denominator of each fraction.
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The following examples will illustrate the use of
Arts. 180, 181. Other examples will be found in
Art. 296, which the student may here consult.

Ex. 1. Arrange the fractions %, §, ] tn order of magnitude.
The L.C.M. of then- denominators is 24 ;

. we have §=1%, and f 5.
Hence 3<ii<i

a+3b a+2b

Ex. 2. Determine which of the fractions atob ™ g

18 the greater, a and b being positive quantities.

. a+3b a+2b
The fraction aF e B 8> or < a¥b’
(a+3b) (a+D) . (a+2b)?

accordmgas (a+2 )(a+ )ls>0r<(a—_‘_b)—(a-'_2b),
thatis,as  (¢+3b)(a+b) is > or < (a+2b)?,
that is, as a?+4ab+3b is > or < a?+4ab+ 482,

that is, as 3B is > or < 4B
But 3b2 is < 483,
. a+3b is a+ 2?
" a+2b a+b’
‘Ex. 3. Determine whick is the greater of the fractions giz

and & ——b, where a is any positive number and b is a positive
number less than 7.

The fraction S—I—am>or<7 :,

. (6+4+a)(7-0) . (6-0)(7+a)
accordmg 38- m—-b) is>or< 6T(7+a) y
that is, as (6+a)(7-b)is > or < (6-0)(7+a),

[if 7 > b, Art. 180 (iv).
that is, as 424+ 7a—-6b—ab is > or < 42— 7b+6a —ab,
or, transposing, as 7a—6a+7b—6b is > or <0,
that is, as a+bis >or<0.

But, if both a and b be positive, a + b is > O.
. 6+a . -b
7—_"a 18> 7_b.
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Ex. & Shew that, if a and b be unequal quantities, then the
sum of a? and b% will be greater than 2ab.

We see that a?4-b2 > 2ab,
if i a?—2ab+b2 >0,
that is, if (a—b)2>0.

Now a is not equal to b, and the square of any quantity
(whether positive or negative) is a positive quantity and there-
fore greater than zero; i

. <o (@=b)2>0.
Hence a2+ b%> 2ab.

Note. If a=b, then a—b=0, ... (a—b)2=0. .. a®+b2=2ab.

‘We may therefore say that, in all cases, a?+ b2 2ab.

Ex. 5. Shew that, if 12=a2 + b, and y2=c+d? then xy will
be greater than ad+be, provided that ac is not equal to bd, and
and y are of the same sign.

We see that zy > ad+be,
if 2% > (ad+be)?,
that is, if (224 b%) (c®+d?) > (ad+bc)?,

that is, if  a%?+a?d?+ b%c?+ b2d? > a?d?+ 2abed + b%c?,
or transposing, if a?c? — 2abed + b2%d? > 0,
that is, if (ac—bd)? > 0.
Now ac is not equal to dd, and therefore (ac — bd) is not equal

to 0. Also the square of any quantity (whether positive or
negative) is a positive quantity and therefore greater than zero,

.. (ac—bd)? > 0.
.~ 2y > ad+be.

EXAMPLES. XIV. E.

s . x+3 r+4
1. Which is the greater of the fractions 756 and 77
b
7 ?

?

2. For what values of » is :g—g greater than

. T+3 42
3. For what values of z is P greater than m?
1

. . 1/1 1
4. Shew that o5 18 never greater than 3 (gé + 32) .
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MISCELLANEOUS EXAMPLES. XIV. F.

1. Shew that half the difference between the cubes of two
consecutive odd integers is greater by unity than three times
the square of the intermediate even integer.

2. A number is equal to the product of two factors ; if one
of these factors be increased by 1 and the other diminished by
2, the product is increased by 1. Prove that, if the factors be
again increased by 1 and diminished by 2 respectively, the
product will be less by 2 than the original number.

3. Prove the truth of the following statement. Take any
two proper fractions such that their sum is unity, subtract the
square of the smaller from the square of the greater, and add
unity to the remainder ; the result will always be equal to twice
the greater of the two fractions.

4, At anelection there are two candidates, 4 and B, of whom
one is to be chosen. A4 has a majority of those who vote by
proxy and also of those who vote in person, and it is observed
that if a certain number of those who voted for him in person
had voted by proxy and thus trebled his majority by proxies
only, then his majority by voters in person would be } of what
it was .before. Shew that his whole majority is four times his
majority by proxies only. .

5. A common conjuring trick is to ask a boy among the
audience to throw two dice, or to select at random from a box a
domino on each half of which is a number. The boy is then told
to recollect the two numbers thus obtained, to choose either of
" them, to multiply it by 5, to add 7 to the result, to double this
result, and lastly to add to this the other number. On men-
tioning the final number thus obtained, the conjurer knows the
two numbers originally chosen. How is this done ?

6. Shew that, if z—3y=2x+y—15=1, then 22+ y2=4xy 3.
z. Find the value of 25a2+(a+4b)?% when 3a+2b="7 and
a—-b=4. .
*8, If x=1+4/2, prove that z(z—-1)=2+1.

9. If (2+1)%=ux, find the value of 1143+ 822+8x—2.
1 1 2 1.1 2
10. Ifa+a—_—c—-a—_5,8hewth&ta+z=;.
11. Shew that the expression #2432+ 22— yz—22—2y is not
changed by adding the same quantity to z, to 3, and to 2.
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1\2 1
12, If (a+&) =3, prove that “s+gs=°'

13. If a+b+c=0, prove that
@ a"+b3+c3+3(a+lb)(b+c)(c+iz)=o;

W) Fre—atazaptare_a

*14, Write down the most general possible rational integral
algebraical expression of the second degree in # and , (i) which
is homogeneous in x and y, (ii) which is both homogeneous and
symmetrical in z and . 80, write down a rational integral

gebraical expression which is of a degree not higher than the
second and which is symmetrical.

*15. A homogeneous expression of two dimensions is sym-
metrical in 2, y, and z. Its value is 9 when r=y=2=1, and
its value is 36 when z=1, y=2, 2=3. Find it.

16. Eliminate 2 between the equations 222 - y3=3y3—22=2.

#17. Eliminate z, , and z between the equations

ax+by+cz=br+cy+az=cx+ay+bz=0.
s A= -3 -
18, Of the fractions ate and g which is the greater ?

*19, If 2%+ y2=23 then will 234 33<2
20, Ify+%=l and z+{%=l,provethatz+§=landxyz= -1

#21. Prove that if z+y+2=0, then
(i) Bray+yi=p2+yrt+l=2+4wtad;
(il) (+z—2P+E+r-yP+(@+y—2)>3+242y2=0;
(iii) 2(25+35+25) - bayz(2?+ 32 +22)=0.
22, If a(by+cz—ax)=>b(cz+ax—by) =c(ax+by— cz), and
if a+b+c=0, shew that x+y+2=0.
*#23, Prove that if a+b+c+d=0,
then a3+ B3+ S+ dB+3 (a+b) (b+c) (c+a)=0,
and (a+d)(a+c)(a+d)=(b+c)(b+A)(b+a)=(c+d)(c+a)(c+D]
(atBa+al =((i¢)i+$z)(d?|sb)(g)-isc)=)—(a(t+bc)l)( +c))(¢(:+a)?
*24. Shew that, if a, b, ¢, d be positive quantities of which
the sum of any three is greater than the fourth, and if
(c+dp—(a—b} (d+ap-(b—cf_,
- (@+c+dp-0 7 (a+b+dp-c 7
then a+b=c+d.
: B. A. 12




EXAMINATION PAPERS AND QUESTIONS.

[The first two of the following papers (A and B) contain those
questions on Elementary Algebra on which Junior ;Szt'udents n two
of the recent Cambridge Local Examinations were expected to
aatu{y the Examiners—Dbut the two questions in each paper which are
marked with a * are concerned with subjects treated in Chapters
XV, XVI. The next two ﬁera (C and D) contain all those
questions on Elementary Algg a on which Candidates in two of
the recent examinations for Higher C’ztgiaues of the Ozford
and Cambridge Schools Examination Board were required to pass.
These papers are followed %groui:’:f questions taken papers
set in recent years under the authorty of the same Examination
Board to boys in the lower forms of various Public Schools.]

Paper A.
1. Simplify (b-c)(c+a)-(c—a)(a+b)-a(a+b-c).
cooligy 2 . 2=y 2(@-)
Simplify x’—y3+x3+y’ ATt
Divide (22-2%)2-2(22+%2)+1 by 22— (y+1)%
Resolve 822+ 132 - 6 into factors,
Resolve ab (c?+d?)+cd (a2+ b2) into factors.
Extract the square root of
284227 428 — 425 — 1224 — 8243+ 422+ 162+ 16.
7. Solve the equation
(x - 3a)(3z — a) - (r - 2a) (22— a)=(z — a).
*8, Solve the equation
30 _3-x
z+2 5
9, Prove that, if a¥+a+1=0, and if a3=1, then
23—1=(z-1)(x—a)(z—a?).

10. The Eiffel Tower is 580 ft. higher than the spire of
Salisbury Cathedral, while the number of inches in the height
of the spire is 45620 greater than the number of yards in the
height of the Tower. Find the height of each building.

o

S oopow

=z-1,
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Paper B.
1. If a=3, b=4, ¢c=5, d=86, find the numerical values of

e+ B+ VS + B+ and @Hd)Nct+d)—(b+c)d+a)
‘ d—c+b-a ’ ab—-be+cd—da :

2. Divide 27-132-30 by 2%2—22+3.

3. If 224 72+c be exactly divisible by x+4, what is the
value of ¢ ?

4. State and prove the rule for finding the Least Common
Multiple of two algebraical expressions,

Find the L.c. M. of 923 -2 -2 and 323- 102272 -4,

*5. Find the relation between a, b, ¢ in order that ax®+bx+¢

may be a perfect square.

Extract the square root of

928 — 1225+ 2224 + 22+ 120+ 4.

() (49 30+
6. Simplify 177 + 1_3_1 .
y = ¥
.. 4 12 4 12
8. Solve the equations

B I

o tz—11 3r-2 2245
* = .
@ G tmoi~ e’
@{iii) 1ly-2=10, 11z—101y=110.
9. A boy spent one-third of his money in cakes, one-fourth

in apples, one- in oranges and one-sixth in nuts, and has
14d. left : how much had he?

10. In reducing a quantity of ore, it is passed through three
processes which remove respectively ;};th, ’l‘ th and Lth of

whatever is subjected to them. If the weight left be 1201bs,,
and the weight lost in the third process be 301bs., 401lbs,, or
60 1bs. according to the different orders in which the processes
can be performed, what was the original weight ?

12—2



180 EXAMINATION PAPERS.

Paper C.
1. Remove the brackets from a2 [(b—c)2— {c*— (a—b)3}].
2. Find the value of 23+ (p — 8)2%+ (¢ — 3p)x — 3¢, when =3,
3. Divide (3°— b3A+ bly® — ) (48 + byt + by®+ 1) by y*—bt.

4. In finding the H.C.F. of two given expressions, can we
reject either altogether or temporarily a factor occurring in both
expressions ? Justify your answer.

Find the B.C.F. of

27 -3a8+ 28— 422 +122 -4 and 2rt—623+32%-3r+1.
. 1. a+bd 20  afb-ad
5. Slmphfy T_m+m'
6 Ifz= 4ab z-2 x+2  16ab
’ T a+b z+2 2-2b 4bT—a®"
7. Solve the equations :
) 2r+1 402—3w__9_ 471 -6z
29 12 2 ’
-2 _, Y-y BT _gp_1)-32T7

, find the value of

@) a- g *

8. Two persons, a certain distance apart, setting out at the
same time, are together in 25 minutes if they wa?l?%n the same

direction, but they meet in 15 minutes if they walk in opposite
directions. Compare their rates of walking.

Paper D.
1. If a=4, b=>5, and ¢=3, find the value of
Y6 ¥~ - o + YT @- A1),

2. Express 2% — 82— 84 in factors.

3. Find the factors of (22+3)2— (2 —3)3

4. Divide a3(b—c)+b%(c—a)+c3(a—b) by a+b+¢, and find
the factors of the quotient.

5. Shew that if a quantity = divide 4 and B exactly, it will
also divide m4 + nB.

Find the BH.C.F. of 62%—22%49224+ 92— 4 and 9244 8022—9,
What value of > will make both these expressions vanish ?
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ma
;n.b .
Reduce the following fractions to their simplest forms :
ey
a3-3x+ 2’
(ii) (b — c)ﬁ + (c - a’)’+ (a - b)’
(a-b)(a-c)+(b-c)(b-a)+(c-a)(c-b)’
7. Solve the equations:
. 2z  3r—-1 bx-11
@ it ores e %
...y (@+b)2—(a—b)y=3ab,
(i) (a+b)y—(a-d)z= ab}
8. Find the difference of the squares of the highest and

lowest of any three consecutive numbers in terms of the middle
number.

6. Define a fraction, and hence prove that %’:

Ezamination Questions.

1. Remove the brackets from the expression
—3[(a+Db) - {(2a - 3b) - (ba+ Tb—16¢c) — (—13a+2b—3c - 5d)}],
and find its value when a=1, =2, ¢=3, d=4.

2. Find the highest common factor of 2%+1 and 2% —2a%-2.

8. Find the lowest common multiple of

22 -5x+6, 22 —4x+3, and 22—3r+2.
4. Reduce the following fractions to their simplest forms
@ Ste-lo o atte-6
23— 322+1"° 24 -1322+36"

5. At an election where there are three candidates 4, B, C,
and two persons to be chosen, 4 obtained 486 votes, B 461,
C 457. Every elector voted for two candidates. How many

voted for B and C'; how many for C and 4 ; and how many for
A and B?

6. Prove that, if a3+ pa®+ga+r=0, then 23+ ps2+qr+ris
a multiple of z —a.
Find the factors of #3+842%- 792+ 70.
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7. Prove the rule for finding the highest common factor of
two algebraical expressions: and state the circumstances under
which a factor may be introduced or omitted at any stage of the

rocess.
Find the H.C.F. of a®— b? and 27a%+16a2b+30ab® + 4155,
8. Add together the fractions
a?+2bc b2+ 2ca © c®+2ab
(c-a)(@a-?)’ (a-bd)(b—c)’ (b-c)(c—a)
9. Solve the equations:
. v+8 2z-14 .. 2-2 242 18
0 ;5=%=2 W a=z-#-1
10. A vessel can be filled by three pipes, L, ¥, N. If ¥
and & run ther, it is filled 1In 35 minutes; if & and Z, in
98 minutes; if L and &, in 20 minutes. In what time will it -
be filled if all run together ?

11. A boyis a years old, his mother was b years old when he
was born, his father is half as old again as his mother was ¢
years ago. Find the present ages of his father and mother.

12. Prove that every common multi;*le of any number of
algebralical expressions is also a multiple of their lowest common
multiple.

Find the highest common factor and lowest common multiple
of a?—3ab-10b% a?+2ab- 3502 and a?— 8ab+ 1502

13. Simplify the expressions :

2a-3b 3b
2+z_3-z_ 6-x, o 20—6b  2a
745 z-4 Ty’ ™ s 3

%2 T 22-6b

14. A merchant added to a cask of wine ten per cent. of
water. If he were now to add nine gallons more water, the
mixture would contain fifty per cent. of water. How many
gallons of wine had he at first ?

15. Hi’/;;z+:;2+f;g/=' , prove that two of the

quantities z, g, z are equal to one another.

16. Find the continued product of

(o 2) x (w4 2) (5 ) x (3 a).
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17. Find the H.C.F. of 27 —2 and #*—2:24+32—2; and also
the a.c.M. of their numerical values when r=2. Account for
the fact that this a.c.M. is not the same as the numerical value
of their H.C.F. when 2=2.

18. Subtract 1 from 1

24112 +30 224+82+15°
19. Solve the following systems of equations:
() 1lz-17y=17z-28y+2=28;
(ii) (a+d)z—ay=ad, (a*+b%)x—aby=a’
20. A farmer bought a certain number of sheeﬁ for £30. If

he made a t‘Eroﬁt of 20 per cent. (on those sold) by selling all
but five of them for £27, find how many he bought.

. e [T-y x4+ -y 234y
n smptty (535-52) | (- 525)-
22. What must be the value ofxinorderthatM
’ a?+70ax + 322
may be equal to 1} when a is equal to 67 ?

23. Solve the equations:
o 48—z 512-%0s bs-24 3
0 —g-+—F —=—F %
(ii) -4z--0lz+-0022=11'7—-0001x.
24. Solve the simultaneous equations
ar+cy—bz=a? cox+by—az=0, br—ay+tcz=ct
25. A can walk forwards four times as fast as he can back-
wards, and undertakes to walk a certain distance (} of it back-
wards) in a certain time. But, the ground being , he finds
that his rate per hour backwards is 1 mile less than he had
reckoned, and that to win his wager he must walk forwards two
miles an hour faster. What is his usual rate per hour forwards ?

26. Find the factors of 20a2+21ab— 2752

27. Shew that the following system of equations is indeter-
minate :

Te+y-5:=24, br-3y+2%=11, dy—Tz+2r=13.
28. An egg-dealer bought a certain number of eggs at 1s. 4d.
r score, and five times the number at 6s. 3d. per hundred.

ge sold the whole at 10d. per dozen, gaining £1. 7s. by the
transaction. How many eggs did he buy?



CHAPTER XYV.

EVOLUTION (SQUARE ROOTS AND CUBE ROOTS).

182. - WE have already explained [Art. 23] that
the n™ root of an expression is a quantity such that
its n* power is equal to the given expression; and that
if the given expression be denoted by X, its »* root is
represented by ¢/ X. .

A quantity which has an exact 2 root is called
a perfect n™ power. In particular, a quantity which
has an exact square root is called a perfect square,
and a quantity which has an exact cube root is called
a perfect cube.

When no exact quantity can be found which when
raised to the n™ power is equal to a, then the n™ root
of a is called an vrrational quantity.

An expression which involves no irrational quantity
is said to be rational. :

183. The process of finding a root of a given
expression is called evolution.

The most direct test whether a certain quantity
(which we may denote by y) is the »* root of a given
expression (which we may denote by X) is that the
n™ power of y is equal to X.

That is, y will = {/ X, provided y"=X; and if y"=X,
then y =y X.

Of course (/X )*= X,




EVOLUTION. 185

*184. Since a?=(za)? it follows that J/a?= +a; that is,
either +a or.—a is the square root of @. Thus, strictly speaking,
there are two square roots of a quantity denoted by 2. Again,
we shall see presently that there are three roots of the equation
23=a®, and strictly speaking, there are therefore three cube roots
of a quantity denoted by a’. The student will find later that
similarly the number of n' roots of a given quantity is n, but
some of these are imaginary, and since we here confine ourselves
[see Art. 119] to real values of the quantities considered, we shall
make no attempt to find more than one root out of all the n**
roots of the given quantity. We shall moreover adopt the usual
notation and speak of any n** root as the n'® root, though it would
be more accurate to say an n** root.

185. Roots of Simple Quantities. If we want
the »** root of a power of a simple quantity, and if the
index of the power to which that quantity is raised
happen to be a multiple of n (say, p times =), then
the root required will be the quantity raised to the
p™ power: in other words, we must divide the index of
the power to which the quantity is raised by =.

For, if y be the n™ root of a quantity like a™, we

have
y=va"
Y =a"=(a")" [Art. 76]
y=a’ :

For example, the cube root of af is @ raised to the power of 2,
(that is, 6 divided by 3), which is expressed in symbols thus,

Yab=al
Similarly, Ya®=ab; Yr0=22; and YaH=a7.
186. Roots of Products. The n™ 700t of a

product of any factors ts the product of the n™ roots
of the different factors.

Suppose there are two factors, « and b. We want
then to shew that

{/(ab) is equal to /a . /b.
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Now {a. b =@/a)>. (/b - [Art. 75]
=a.b. [Art. 183]
=ab.

. S Ya b=/ (ab).

* Similarly, /(abc) =Y a.Yb.c.

Ez. 1. \J(a*h?)=4A/at. \/B2=0a?b.

- a® a
Ezx. 2. T
Er. 3. Y(a%)=Ya?x Yp3=Ya?xb.
Ezx. 4. Y(arrbm)=(Jar) (Jb™)=ar b

EXAMPLES. XV. A.
Find the values of the following quantities.
— 1
1L Jam, 2. J@b). 3. via. & A%,

b2
144 — Blafyt " —
5. ?. 6. V 491«4y°. 7. i——‘UE‘bs. 8. ‘\/ 23,
3 S Joa..04
y—3 3 5 _ .:l'_" 64a%ct
9. Y=a5. 10, V27a%0. 11, J 8 7 12. T’

5
18 YFR U Y. 15 A/ -3 16 Y

187. Square Root of a Compound Expression.
The general method for obtaining the square root of a
compound expression is somewhat more complicated.
We shall first confine ourselves to the comparatively
simple cases of expressions containing only three terms,
and of expressions which are of the second degree in
some quantity; and after discussing them shall consider
the general case of any compound expression.

We shall assume that the expressions considered
are perfect squares. We shall also suppose that every
expression has been reduced to its simplest form, and
arranged in descending powers of some letter.
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188. 8quare Root of a Trinomial. First, consider the case
of a trinomial expression, that is, an expression consisting of only
three terms. Suppose it to be arranged in descending powers of
(say) =.

Let us sup that its square root is an expression like
A + B, where the quantities, 4, B, are arranged in descending
powers of z.

Then the given expression must be the same as (4 + B)? that
is, a8 4A2+24 B+ B? the terms of which are arranged in de-
scending powers of z.

If then the trinomial be a perfect sg\mre of a quantity like
A+ B, and if it be arranged in descending powers of z, then
its first term will be 42 and its last term will be B2 Hence
the square root of the first term will be equal to 4, and the

uare root of the last term will be equal to B; and their sum or
difference will be the square root required—the sum or difference
being taken according as to whether the sign of the middle term
is positive or negative.

The rule applies only to those cases where the given trinomial
is a perfect square. Hence (unless we know this to be the case)
the correctness of the result must be tested by forming its square
and comparing it with the given trinomial.

Example. Find the square root of 92* — 6%+ at.

Here we take the square root of the first term, which is 342 ;
and then the square root of the last term, which is 2; also, since
the middle term is negative, we take their difference. Hence the
required square root is  3z%—a?

The correctness of the result can be tested by forming its
square, which will be found to be equal to the given quantity.

The reader will remember that either +(322—a?) or
— (322 - a?) may be taken as the square root required [Art. 184].

EXAMPLES. XV. B.
Find the square roots of the following expressions.

1. a?22—2abx+ b2 2. 1212% - 3742+ 289.
3. }r+3yz+3 4. 9a,%a,?+16a%,? - 24a,a.0,a,.
5. 64—8p+}pt 6. 5702mn+ 361/2m?+ 22502,
1 1 x2 1 x2 1
7. w_a_y+&’_yzo 8‘ i@'{'@s_@-
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189. Square Root of a Quadratic ression. A quad-

ratic expression is one which contains only first and second
powers of some quantity, such as z. We can therefore arrange
the terms in three groups, namely, those that involve 22, those
that involve 2, and those that are independent of z. When thus
written as a trinomial, the preceding rule applies; but since it is
sometimes difficult to write down by inspection the square root
of one of these groups of terms, we can (i.?e:'e prefer) proceed by
the following method. )

Let us compare the given expression with the square of an
ex][))ression like 4+ B, where we will suppose that 4 involves
« but that B is independent of .

If A+ B be the required square root, then the given expres-
sion must be identically equal to (4 + B)3, that is, to 43+24 B+ B3,
the terms of which are arranged in descending powers of z.
Hence, if 4 be taken equal to the square root of that part of
the given expression which involves 2% then the terms in the
%Ken expression which involve x to the first power must be 24 8.

us, the remaining part of the square root gmmely, B) will
be obtained by dividing by 24 those terms in the given expres-
sion which involve the first power of . :

[It may be noticed in passing that the sguare root of a®+ b2
is not a+ b ; since the square of @ +b is a®+ 5%+ 2ab.]

Ex. 1. Find the square root of

, 22+ a3+ b2+ 2ax — 2bx — 2ab.

Arranging the expression in descending powers of z, we have

2242 (a-b) 2+ a®—2ab+ b2

Hence the first term in the square root is the square root
of 22, that is, 2. .

If the expression be a perfect square, then the rest of the
square root is the quotient of 2 (a - b) x by 2z, that is, (@ — b).

The remaining terms in the given expression, namely
a?—2ab+ b3, are-the square of a—b.

Hence the required square root is 2+a—b. _

Note. If the square of @ — b had not been equal to the group

of terms in the given expression which were independent of z,
the given quantity would not have had an exact square root.

Ex. 2. Find the square root of
at+ a%0? — 20°7 — 2024 22 + 20° + 20 + 22+ 3a2 + 1.
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Arranging the given expression in powers of 2 and a, we have
(a®-2a+1)22—2 (a®— 1)z + at +2a3+ 3a2+2a + 1.
The square root of the terms involving #2?is (# —1)#. This
then is the first term of the required square root.

If the given expression be a perfect cube, then the quotient of
-2 (a%- 1?.@ by 2(a-1)z will give the remaining terms of the
root : this quotient is —(a®+a+1).
The square of this last quantity is equal to the terms in the
given expression which are independent of #, namely,
at+2a%+3024+2a+1.
Hence the required square root is
(@ -1) z—(a®+a+1).
Note. If the square of —(a®+a+1) had not been equal to
the group of terms in the original expression which were in-

dependent of z, the given quantity would not have had an exact
square root.

EXAMPLES., XV.OC.

Find the square roots of the following expressions.

1. 22422+ 2b2+a242ab+ b2

2. a?2?+2abzr—2ax+b02-26+1.

3. a4 2abr+ b2 —2bx+ a2 - a2,

4, a¥r?-daa+ 422 - 2abr+4br+2ax — 42+ b2 - 2b+ 1.
5. a%+9b2+25¢2 — 30bc + 10ca — 6ab.

6 a® b 2 ab

.’L‘a+g+z+~3——3—bx‘.

190. Square Root of a Multinamial. The

greceding rule can be extended so as to enable us to
nd the square root of any multinomial expression.

We shall, as before, assume that the expression is
a perfect square, and that it is arranged in descending
powers of some letter, such as . Let us suppose that
its square root is an expression like A+ B+C+...,
where the line of dots after C signifies that there may



190 EVOLUTION.

be a number of similar terms, and where the successive
terms, 4, B, C..., are arranged in descending powers of z.

The given expression is equal to (A + B+C+...)"%
Denote B+C+... by P. Then
(A+B+C+...)'=(4+ Py

=A'+ 24P+ P
=A'"+24(B+C+...)+(B+C+..."

The term of the highest dimensions in this last ex-
pression is A* and since this last expression is the same
as the given expression, the term of the highest dimen-
sions in the given expression must be equal to A"
Hence the first term of the required square root, that
is, 4, is the square root of the term of highest dimen-
sions in the given expression.

Now, since 4, B, C ... are arranged in descending
powers of z, therefore 24 B is of higher dimensions
than any of the other terms in 24 (B+C+...). Again,
B is the term of highest dimensions in the expansion
of (B+C+...)", but 24 B is of higher dimensions than
B*, because A 18 of higher dimensions than B. There-
fore (except for A*) the term 24 B is of higher dimensions
than any other term in the square of (A +B+C +...).
Hence, if we subtract 4* from the given expression, the
terms of the highest dimensions in the difference must
be equal to 24 B: if therefore these terms be divided .
by 24, we obtain B, which is the second term in the
required square root.

We now know 4 and B. By similar reasoning to
that given above, we see that if we subtract (4 +B)*
from the given expression, the terms of the highest
dimensions left will be equal to 24C: if therefore
these terms be divided by 24, we obtain C, which is
the third term in the required square root.

Proceeding in this way, every term in the required
square root can be successively obtained.
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191. Process of extracting a square root. The process
of extracting the square root of a given expression is usually
arranged in three columns, as shewn in the following example,
where the square root of

. 284425424 - 2234522 - 20+ 1
is determined.

The first term of the s%:lare root is the square root of 25, that
is, 23, This is written to the right of the given expression in the
column III. Subtracting the square of this from the given
expression, we obtain 415 + 224 — 225+ 522 — 22+ 1. Twice the part
of the root already determined is then written in the column I.
to the left of the expression. By the above rule, we have now
to divide the first term of the remainder, which is written in
column IL, by 223. The quotient, namely + 242 is then written
both in the column I. and the column III. Thus

L IL IIL
A48 20— 204 621 B 41 (254208

234222 | 4084 224 — 234+ 502 — 20+ 1

‘We now have to subtract (23+ 242)2 from the given expression,
that is, we have to subtract 28+ 222 (223 + 222). e have alread
subtracted 2%, and we have thus only to subtract from the re-
mainder the product of 22% and the expression in the column I.
Writing this product below the expression in the column II., and
subtracting, we obtain — 24— 22345622 —22+1. Twice the part
of the root already determined is then written in the same ll)ine
a8 this and in the column I. Dividing the expression in the
column II. by 243, we obtain —z as the next term of the square
l;ﬁt. Tllxﬁs is then written both in the column I. and the column

. Thus

L IL IIL
::+4.z'5+2.z‘—21,-’+5.z"—2t+1 (22422 -2

223+ 222 425422 — 2234+ 522 - 2r + 1
- 425 4424
3+ 422 -2 —-274— 2234522 - 22 +1

We have now to subtract (23+2s2—2)? from the given
expression. This is equivalent to subtracting from the ex-
ression in the last line of the column II. the product of the
Bsst term in the column III. (namely, — ) and the expression in
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the last line of I. Writing this below the expression in II., and
subtracting, we obtain 223 4 422 — 22+ 1. Twice the part of the root
already determined is then written in the same line as this and
in the column I. Dividing the expression in the column II. by
225 we obtain +1 as the next term in the square root. This is then
written both in the column I. and the column III. Proceeding
as above, we have now to multiply the quantity in the last line
of the column I. by the last term in the column III, and sub-
tract it from the expression in the last line of II. There is no
remainder. Hence the original quantity is a perfect square,
and its square root is 2%+22%—2+1. yl'he whole process is
exhibited as follows:

::‘:+4.z'5+2z‘—2.v‘+6x’—2x+1(x3+2r2—x+1
223422 425 424 — 234522 - 22 41
425 4424
34422 -2 — 24— 234522 — 22 +1
—27A— 48+ 2®
20344222 +1| - 23 4+422 -2 +1
2084422 - 2r+1

192. The following is another example, and exhibits the
process for finding the square root of 42— 4a23%—a2s2+ o’z + }at.

ﬁ“‘“‘”" a2 +a%r +Jat (223 —az—Ja®

42— ax —daxr’~ a®2%+a’r+}at
' — 4028+ a’s?
422 — 2ax — }a? —2a%°% + a2 +}at

— 20222+ a8z + }at

The process exemplified in this and the last article is analo-
gous to the process used in arithmetic for finding the square root
of a number.

193. S8quare Roots by inspection. If however
the given expression be of a degree not higher than the
sixth, and if we know that it is a perfect square,
then we can generally write down its square root by
inspection, as illustrated by the following method of
obtaining the two square roots which are given in Arts.
190, 191.
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194. The first term in the square root of
28+ 425 4 224 — 223+ 6522 — 22+ 1

is the square root of 2%, that is, 23. The next term is obtained
by dividing 445 by twice the term already obtained, that is, by
223 ; hence it is 222,

Similarly, if we write the given expression in ascending
powers of z, that is, write it backwards, as

1 — 22 + 522 — 2% 4 24 + 425 4 28,

the first term of its square root, as now written, will be the
square root of 1, which is 1. This therefore is the last term
of the square root of the expression as originally written.
Since however the square root of a? is either @ or —a, we
cannot tell whether, if we begin the square root with the terms
23427% we shall end with +1 or —1. It is better therefore to
leave it ambiguous, and take the last term as +1. The term
before this is got by dividing —2+ by twice the term just
obtained, that is, by +2; hence it is F.

Thus four of the terms of the required square root are in
order 23, 242, Fz, and +1. Moreover, since the required square
root is of the third degree, there can be no other terms. us,
the required square root is one of the forms

TRy E G ) W (a).

. . Inspection, or at the longest a trial by squaring, will deter-
mine which sign in the ambiguity must be taken. In this case,
if we form the square of (a) we find that the coefficient of #4, is
4F2, and since the coefficient of 2* in the given expression is 2,
we must take the upper sign in order to make these coefficients
the same. Thus the required square root is

234+222%-2+1.

195. Similarly, the first term in the square root of
424 — daad — a®s% + oz + fat
is the square root of 4«4, that is, 2¢% The next term is the
quotient of — 4ax3 by 2(229), hence it is —az. The last term is
similarly the square root of ia‘, that is, +4a2 The term before
that is the quotient of a’s by 2(+3a?); hence it is +ax. But
we have already found that it is —axz, hence we must take the
lower sign in the ambiguities. Thus the required square root is
222 — ax — }a?
B. A. 13
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*196. Square Roots of Expressions which are not perfect
squares. If we apply the method of Art. 191 to a multinomial
which is not a perfect square, we obtain a series of terms whose
square is approximately equal to the given expression. -

Example. Find three terms (in descending powers of x) of the
square root of x®+ax+b.
a b—}a®

:‘:+ax+b (.‘t+§+?+...

ax+b
ad

0|8

a b-}a? a?
gt g b-3
a  4b—a?
2t &

will find that the next term in the square root is —

Hence the required terms are 2+

' The student
4ab—a3
1622 °

EXAMPLES ON SQUARE ROOTS. XV. D.

Find the square roots of the following expressions numbered
1 to 15.

1. 2*+4°5-82+4. 2, 2*—-82%+4102%+242+9.
424 - 1223 +4522 - 642+ 8l. 4. 42'— 43+ 32 +}.
364 - 3623+ 1722 - 42+4. 6. 4044+9(1 - 2a) + 3a2(7 — 4a).
404 4+9(1 +2a)+3a2(7T+4a). 8. 4(z—1)(23—1)+92%
(22 +1) (2x+3) (22 +5) (22 +7) +16.

10. 928—122% 4 3023+ 442 — 202 + 25.

11. 9251245+ 2204 +2% + 122+ 4.

12, 92— 122% + 10222 — 4oy + 4.

13. 9a% — 2423y +402%2 — 3223+ 1644

14, 42442023~ (4a — }D) ba?® — ab®v +a?b2.

15, (a?4b2)2+(c2+d?)2+(a+b) (c— d)2+(a — b) (c+d)?+ Babed.

L o
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16. Shewthat,ifo=""
perfect square.

17. Prove that the product of any four consecutive even
integers increased by 16 is a perfect square.

*#18. The first two terms of a certain perfect square are
492 — 2823, and the last two terms are 6z+4. Find the expres-
sion, and its square root.

*19, Extract the square root of a’"‘x:"+10ca’m-2x3"“
Bam*+1gn =14 8Bctat~ 4z +3— 300a™ 12" +9 ;.
*197. Cube Roots of Multinomials. The method

for finding the cube root of a multinomial expression is
analogous to that given above for finding the square
root. We shall not here discuss the general method,
which is strictly analogous to that explained in Arts.
190, 191 ; and shall only briefly indicate some methods
for finding the cube root by inspection in a few simple
cases. ‘

The following articles apply only to expressions
which are perfect cubes.

*198. Furst, consider the case of an expression whick i a
perfect cube and consists of four terms. Suppose it arranged in
descending powers of some letter. We know that

(A+ByP=A4%3+34?B+34B%+ Bs.
If then the given expression be a perfect cube of a quantity like
A+ B, its first term will be A3, and its last term will be + BS.
Hence the cube root of its first term will be 4, and the cube root
of its last term will be +B. The algebraic sum of these quanti-
ties is the required cube root. There is only one real cube
root of any given real quantity, and thus there is no ambiguity.

Ez. 1. Find the cube root of
823 — 36a22 4 54atr — 27a8. '
The first term is the cube root of 823, that is, 2z.
The last term is the cube root of —27a3, that is, — 3a.
Hence the required cube root is
2z - 3a.

;, then (@ — cx)®+ (22— 1) (B2 - d?) is a

13—2
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The cube of this is equal to the given expression. If this had
not been the case, the given quantity would not have had an
exact cube root.

Ex. 2. Find the cube root of 12548 — 7 azt 415 a%22 — kad.
The cube root is  ¥/(1252%) — J/3a?,

that is, 622 - }a.
The cube of this is equal to the given expression.

*199. Next, consider a multinomial of a degree not kigher
than nine. In this case, we may proceed as in Art: 194. Arrange
the expression whose cube root is required in descending powers
of some letter, such as 2. Let us compare it with the expansion
of (A+B+C+...)% where 4, B, C... are arranged in descending
powers of x. Then the two terms of highest dimensions in
(A+B+C+...)% are 4% and 342B. Thus, if the required cube
root be 4+B+C+..., the cube root of the first term in the

iven expression will be 4, and the quotient of the second term
%ly 342 will be B.

Similarly, the cube root of the last term in the given expres-
sion will be the last term of the required cube root, which we
will denote for the moment- by A ; and the quotient of the last
term but one by 3H2 will be the last term but one of the required
cube root. Thus the two first terms and the two last terms of
the required cube root can be written down by inspection.

This rule will enable us to write down the cube root of any
compound ezgression whose degree, say in z, is not higher than
nine, provided it is a perfect cube, since the only possible terms
in the cube root are terms involving 23, 22, 'z, and an absolute
term.

Exz. Find the cube root of
829 — 3625+ 6647 — 8748 + 10525 — 8724 + 6123 — 4222+ 122 - 8.

The first term is the cube root of 849 .e. is 225 The next
term is the quotient of —364® by 3(22%)%, d.e. is —32%. The last
term is the cube root of —8, ne. is —2. The term before the
last is the quotient of 12z by 3(—2)? t.e.is . We thus have
the terms involving z3 22, z, and the term independent of z.
There can be no other terms. Therefore the cube root is

228 - 322+ 2 - 2.
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*200. Lastly, consider the case of any multinomial. To find
the cube root of any multinomial, we can either use a method
analogous to that given in Arts. 190, 191, or we can write down
the two first and the two last terms of the cube root, determined
as in Art. 199, and insert between them terms involving the
intermediate powers of » with unknown coefficients. By cubing
this expression, and comparing it with the given one, we can at
once obtain these unknown coefficients.

Ex. Find the cube root of
212 - 311 4 310 4 229 — 928 4 927 — 925+ 9ot — 223 — B2+ 32— 1.

The two first terms are 2#* and — 23 [Art. 199]. The two last
terms are similarly x and —1. The only other term which the
cube root can contain is one involving #2?: suppose that its
coefficient is 2. Therefore the required cube root is

A-B+hat -1,
The cube of this is
212 - 311 4210 (3 +4-20) + ...

This must be the same as the given expression. Comparing
the coefficients of z1% we see that :

3+2h=3.
o k=0,
Hence the required cube root is
A-tr-1.

*EXAMPLES ON CUBE ROOTS. XV.BE.

Find the cube roots of the following expressions.
a*+6a?+12a +8.
85+ 6094 + 1502 + 125,
27 - 135z 4- 22542 — 12543,
al—6ab+15a4 — 20a3 + 15a2 — 6+ 1.
828—1245+184% - 1343+ 922~ 3z + 1.
82" — 3625 4 11424 — 20723 + 28522 — 2252 + 125.
2738 — 5dazd + 632yt — 44a%° + 21 a'y? — 6ady +a®.
(@ +2b)3+ (b —2c)3+3 (a4 2b) (b — 2¢) (2 + 3b — 2¢).
aam —_ 6a2m+ lxa_'_ lgam-ﬁzx‘bl_ 8@3.1,'3".

ddidagdgp



CHAPTER XVI.

QUADRATIC EQUATIONS.

201. WE have already defined [Art. 93] a quad-
ratic equation involving only one variable, say , as an
equation in which no power of the symbol representing
the unknown quantity is involved except the first and
second, namely « and 2*.

Thus, 222=3, 32242r=0, and ax®+br+c=0
are quadratic equations,

A quadratic equation in which the term involving the first
power of the unknown quantity is absent is sometimes called
a pure quadratic. Other quadratic equations are called adfected
quadratics.

We proceed now to consider the solution of a
quadratic equation involving only one variable.

202. Any term of an equation can be transposed
from one side of the equation to the other side [Art.
95]. It is therefore possible to move all the terms of
an equation to one side, and the equation will then
take the form that the algebraical sum of those terms
is equal to zero. Thus '

02+ L+ € =0 @),

is the general form of a quadratic equation, all the terms
having been brought to the left-hand side.

If we divide by a so that the equation takes the form
b c :

[or, what comes to the same thing, if a =1 in (i)] it is’
said to be expressed in its stmplest form.
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When written in tl;e above form, the term which
does not involve z (or the sum of such terms) is called
the absolute term of the equation.

Thus the absolute term in (i) is ¢, and in (ii) is 2

203. First method of solution. Resolution
into Factors. This method of solution depends on
resolving the left-hand side of (i) or (ii) into factors.
This can always be effected by Arts. 115—117, but if
the factors be not obvious by inspection, it will be less
trouble to find the roots by the process of completing
the square, as hereafter explained, than to use the
results of the articles above mentioned. We shall
therefore here confine ourselves to cases where the
factors are obvious.

This method depends on the following self-evident
proposition.

204. If the product of two quantities be zero, one of
them must be zero.

Let P and Q be the two quantities, then by hypo-
thesis PQ =0.

Now, if neither P nor @ be zero, their product
cannot be zero, which is contrary to the hypothesis.

Hence either P or  must be zero.

Conversely, if either P or Q be zero, their product is
zero (unless the other be infinite).

205. Thus, if the product (z—1)(2#—2) be zero, then either
z—1=0,0or 2-2=0;
that is, either z=1, orz=2,

If therefore we have the quadratic equation (# - 1) (x —2)=0,
either (« — 1) must be zero, or (»— 2) must be zero.
That is, either z—-1=0, orxz-2=0.
That is, z=1, orx=2.
That is, the roots are 1 and 2.

Hence, if we had to solve the equation #2—3z+2=0, then
since we can express it in the form (vr-1)(z-2)=0, we are
able to write down the roots at once.
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206. Conversely, if we want to form an equation whose
roots are 1 and 2, we have merely to reverse the process. We

have z=1 orax=2.
oo 2=1=0 orz-2=0.
- (8=1)(x—2)=0.
~ 22 -3r42=0.

207. In the following examples the resolution into
factors can be performed by inspection. In every case we
(i) simplify the equation,

(i1) take all the terms to one side of the equation,
(ii1) resolve the resulting expression into factors.

It follows from Art. 204 that, if we remove a
factor involving «, or if we divide each side of the
equation by such a factor, we shall obtain one root of
the equation by equating that factor to zero. The
student must carefully bear this in mind when he is
simplifying any equation which he is trying to solve.

Ezx. 1. Solve the equation z%=a?
This is equivalent to 22— a?=0.
o (z—a)(z+a)=0.
s 2-a=0, or x4+a=0.
S x=a, or 2=—a.
Hence the roots are *a, that is, are @ and —a.

We can therefore solve an equation of this form by taking
the square root of each side of the equation, and prefixing to one
square root the sign .

Ex. 2. Solve the equation x*=aux.

This equation is xt—ar=0.

. #(z—a)=0.
s 2=0, or z=a.

Hence the roots are 0 and a.

Ex. 3. Solve the equation 22+5x+6=0.

The equation is (z+2)(z+3)=0.

So24+2=0, or z+3=0.
‘v x=-2, or x=-3.

Hence the roots are —2 and - 3.
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Ex. 4. Solve the equation 2®—2z—-6=0.
The equation is (-3)(z+2)=0.
. #—3=0, or z4+2=0.
. x=3, or x=—2,
Hence the roots are —2 and 3.

Exz.5. Solve the equation aba?®—xz(a®+b)+ab=0.
The equation is (ax - b) (bx — a)=0.
. ax—b=0, or bx—a=0.
... z=bja, or x=alb.
Hence the roots are b/a and a/b.

EXAMPLES. XVI. A.
Solve the following equations by resolution into factors.

1. 22-32=0. 2. aa?+br=0. 3. 22=9.

4. 2%=a2+2ab+ 02 5. 2243r+2=0.

8. 22+3ax+2a%=0. 7. 22—11x=60.

8, 22+92+20=0. 9. 22-T2=30.

10, 28-3r-4=0. ' 11. #2+72=60.

12, 72%+62-1=0, 13, 2+3y+1=0.

14. 224+10=13(x+6). 15, (#-1)(#—-2)=5(x-3)+2.
16. 22+(a+b)xr+ab=0. 17. #-y=2.

18. 2(22+1)=—5z. 19. - 9ay+20a?=0.

2. 6(22-1)=—a. 21, (20— 3)(3v+4)=39.

22 322+ 2ax—65a2=0. 23. 22—(a-b)x=(c—a)(c—-b).

r+3\? (243
n () -(5e)-2
25, (z+5)2—9 (x+5)(2r+1)+20 (2z+1)2=0.
26. (b+c)a?—(c+a)r+a—b=0.

208. Second method of solution. Completing
the square. Where the factors are not obvious, we
might find them by the method given in Arts. 115—117;
but it is generally better to proceed directly by completing
the square, as is illustrated by the following solution of
the equation

£—138=—17z.
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First. Transpose the absolute term to the right-hand side

and all the terms involving x or 22 to the left-hand side,
. 2%4-172=138. ,

Second. Divide by the coefficient of 22 In this case it is 1,
and the equation is not thereby altered.

Third. Add to each side the square of half the coefficient of
z, that is, (L)%,

c 231724+ (B1)2 =138+ (B1)%
Fourth. Collect the numbers on the right-hand side into

a single term,
oo 224172+ (37 )2=138 4252
_ 5524289

4
a4,

Fifth. Express each side as a perfect square. The left-hand
side is written in such a form that it is a perfect square, viz.
(#+11)% hence its square root is z+37. The square root of the
right-hand side must also be found. Where it 18 a number, we
can do this by arithmetic; if letters or algebraical symbols be
involved, the result will generally be obvious, but if not, we must
use the method described in the last chapter. In this case the
square root of 841 is 22, .

Hence the equation is equivalent to

(w+ 2= (3
Sizth. Take the square root of each side of the equation.
[Art. 207, Ex. 1, p. 200

Sor+il=420,
If we take the upper sign in the ambiguity +, then
r+4=+%P.
=317
If we take the lower sign, then .
4+ Y =32
cox=—Ap-Ar
=-23.

Hence the roots of the equation are 6 and — 23.

Note. If we had seen that the factors of #2+172—138 were
2423 and -6, we should have obtained the answer at once;
and generally, we only make use ‘of the above method of com-
pleting the square when we cannot see the factors.
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209. The following are additional examples.
Ex. 1. Solve the equation 23—6x+3=Tr-2s3-1.
(i) Transposing, we have 32 -13r=-4.
(ii) Divide by 3, ;- APpr=—4.
(iii) Complete the square: that is, add (} 4#)? to each side,
v =Rt (P = — 4+ (R,

(iv) Simplify, : = -t
2.
(v) Express each side as a perfect square,
: L (w-3@P=Cg)
(vi) Take the square root of each side of the equation,
Lx-ig=d L
Hence the roots are =241 =24=4d,
and r=tp-Y= §=}.
Ex. 2. Solve the equation %+ 6x—100=0.
Transpose, . 23462 =100.
Complete the square, .. 224624 (3)2=100+(3)2
=109.

Take the square root of each side, ... z+3=+/109.
Hence the roots are = —3+4/109, and = — 3 — 4/109

203

We cannot find the exact square root of 109; and in such
cases it is usual to leave surds in the result. But we can, if it be
deemed desirable, take the square root of 109 to as many places

of decimals as we like, and thus approximate to the roots.
this case

A/109=104403...
Hence the roots are
r= —3+104403 7-4403...,
and Z = —3-104403...= —13'4403....

*Ex. 3. Solve the equation x*+2x+2=0.
Following the above order of procedure, we have

242 =-2
424 l=—2+1=—1
v (@+)=24/"1.

In

That is, the roots are —1+4/—1 and —1—4/—1, both of which

are imaginary [Art. 119].



204 QUADRATIC EQUATIONS.

Ezx. 4. Solve the equation aa3+bx+c=0.

This is the lfeneml form of a quadratic equation, and there-
fore includes all the preceding examples.

Transpose the absolute term ... a2+ br=—c¢,

Divide by a, x’+2x=—g.

a
. b [ A b\2
Complete the square, RS z’+ax+(%) _—a+(271)
_b—dac

4a®

Take the square root of each side, .. z+ £= + ‘&2-;&

__b__'t‘Jé.z’_—iac_)., that iS, are

b, JBi-dag) b _ - dao)
=-mt e ™Mo a

Hence the roots are z=

210. It is convenient to recollect the result of
the last example, namely, that the roots of the equa-
tion

ax’ +bx+c=0,
—b+ Jb = dac —b— /b —4ac
are T og and 7
These roots are real if b*> 4ac.
They are equal if b*= 4ac.
They are imaginary if b*< 4dac.

The student will notice that one root exceeds —2—1; by as

much as the other falls short of it.

*211. ‘Third method of solution. Method by
Substitution. The following is another method of
solving a quadratic equation, but the student will not
find it so convenient in practice as the methods already
given. It is known as the method by substitution.
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Suppose the equation to be
ar® +br+c=0.

Let us put £=y+A, where % is some quantity which we will
ultimately fix as may be most convenient to us,

. a(y+h2+b(y+h)+c=0,
that is, ay?+2aky + ak?+ by + bk +c=0,
that is, ay®+y (2ak+b)+ ak®+bh+c=0.

Now we may give any value that we like to 2. Let us choose

it so that 2ah+b=0; that is, take h=— 1 O.

2a
The equation last written will then become
o, 1 02 1 B2
Wty aT0
. b2 —4ac
that is, y2=~_4;2-._ ,
the roots of which are y= i‘/(—b;;;“w).
1b
But z=y+h= “3a
Hence the values of z, which are the required roots, are
g NB—dac) b
-— 2a 2a ’

which agree with the results given in Art. 210.

EXAMPLES. XVL B.

Additional examples will be found in the collection at the end
of the chapter, and numbered X V1. C.)

Solve the following equations.

1. 2%46x=>55. 2. 20243r=2
3. 23-3r=2. 4. 522—17z+14=0.
5. 42%+4r—3=0. 6. 472—132+3=0,
7. 1528+434z+415=0. 8. 153+2-6=0.
9., 1322-902-7=0. 10, 422-112-3=0.
11, 1422—132+3=0. 12, 5a%-122=9.
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322472 76=0. 17224192 - 1848 =0,
2123 - 27=3. 42— 652 +126=0.
428~ 8743=0. 8(s2—1)=3(2r-3).
3% +1=3p2. 2024 6972 =349,

(3z—4)(4z - 3)=10.
(z—19)(x—21)=8.
a2+ br=2a—-b.

(z-0)(z+b)=as- 3.

(z—-22+(z-3)*=(2+6)%

234 2(a—b)x+b2=2ab.

a(2z3+1)=z(a®+1). 2as? — Ar=2a+alz.

abz®+(a+b)z=—1. (a®— b%)(2® - 1) =2z(a%+b%).

5—z{zr—3(3x—5)+2(2r—12=0,

22— (a—-b)x+(a—b+c)e=2¢cr+abd.

(r-9)2*-(p+9)z+24=0.

323 —Bax — 12b=42— 9bx - 8a.

. 8(z+a)(z+d)(x+c)
=(r—-a+b+c)(@r+a—-b+c)(2r+atbd—c).

ERRERBERR

SRBRBEBRBRBESSER 8

212. The equations may contain fractions, involy-
ing # in the denominators. In such cases we must
multiply throughout by the L.c.M. of the denominators,
and simplify the resulting equations, before we can apply
the above rules.

We must however be careful to multiply only b
the L.c.M., as we may otherwise introduce a factor whic
will apparently give us a root of the given equation,
but which will not really satisfy it. This is illustrated
in Example 2 which is worked out on the next page.

Should the numerator of any fraction be of equal or of higher
dimensions than the denominator, it may be convenient to begin
by dividing it by the denominator [Art. 142] This is illus-
trated in Example 3 on page 208. But although this may
simplify the work, it is not necessary.

We may add that the simplification of equations involv-
ing fractions, and the combination of the fractions involved,
ﬁ-eq,l(lently afford opportunity for ingenuity in arranging the
work so as to enable the solution to g i
but no precise rules can be laid down, and nothing but practice

obtained in a few lines;
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combined with a certain natural astitude will give the re(Luisite

skill. All the examples at the end of this chapter are soluble by

3irqct analysis, and do not necessarily require the use of special
evices.

213. The following examples illustrate these re-
marks,

Ex. 1. Solve the equation —— -2 _ 3

The L.c. M. of the denominators is (x— 1) (z+1)(z+7). Multi-
plying throughout by this, we have .
5+1)(z+7)—-4(z-1)(z+7)=3(z—-1)(z+1).
.. 5(22 482+ 7)—4(23+62—-T)=3(22—1).
.. 222 —-162—-66=0.
;. 23 —87-33=0.

-~ (z—11)(z+3)=0.

. x=11, or x=-3.
Hence the roots are 11 and —3.

Ex. 2. Solve the equation a+1 z-1 1

Fro-8  Frsere PF-1

The L.C. M. of the denominators is (x+2) (2 —1)(z+1). Multi-
plying throughout by this, we have

(4124 (z—1)%2-(2+2)=0.
o228 —-2=0,
o 2(22—-1)=0.
. =0, or 22-1=0.
. =0, or z=4.
Hence the roots are 0 and 4.

[El'ow if we had multiplied the given equation by the product
of the first two denominators, instead of by the L.c.M. of the
three denominators, we should have obtained as the resulting
equation

(z+1)(22+32+2)+ (2 - 1) (22 +2— 2)— (4®+42r+4)=0,
which reduces to 2234312 —2x=0. If we divide by x, which is
a factor of the left-hand side, we get =0 and 2%+3r—2=0.
The latter equation may be written (22—1)(x+2)=0, and its
roots are therefore =4 and = —2; and we might think that
0, 3, and —2 were all roots of the given equation. But the root

=0.
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2= —2 arises from the factor z+2 in 224+3r-2; and this
factor was introduced by our having multiplied every term in
the original equation by x+2 in addition to the L.c.M. of the
denominators. The resulting expression of course had x+2 as a
factor, but +2 was no factor of the expression which was
given as equal to zero.

‘We may say generally that no factor of an expression by which
the given equation is multiplied will be a root of the equation.
Hence we must be careful to multiply the given equation only
by the L.c.M. of the denominators, and we shall then avoid the
introduction of any unnecessary factor.]

) -

Ezx. 3. Solve the equation "Lill- + 13—22=

Since the numerators of the two fractions on the left-hand
side are of a higher order than their respective denominators, it
will be better to begin by dividing each numerator by the cor-
responding denominator. The equation then becomes

(:v+l+x—§ l) + (w+2+‘%2)=2z.
2x+3+—2—+-—2—=2.z'.
r—1 z-2
2 2
.. 3+‘ﬁ+;:—§=
The L.c.M. of the denominators is (z—1)(x—2). Multiplying
throughout by this, we obtain
3(x-1)(x-2)+2(r—2)+2(x—-1)=0.
. 322 - 52=0.
.. 2(3x—5)=0.
.. =0, or 3r-5=0.
Hence the roots are 0 and §.

2z,

0.

ate @ _ b _ b-c
z+a+e zr+a z+b z+b-c
Since the numerator of each of these fractions is the same as

the part of the denominator which is independent of x, we had
better begin by writing the equation in the form

xr x x z
(l"m) - (“m)=(1‘m) - ("m—_—c)~

*Ez. 4. Solve the equation



QUADRATIC EQUATIONS. 209

x x z z
" Tztavetava zrbtrvboc
"z i8 a factor of every term, and therefore [Art. 206] #=0 is
one root. The other root is determined by the equation
1 1 1 1
“z¥ate ata s+t z¥b-c
This equation is equivalent to
—(z+a)+@+atc)  —(x+b-c)+(x+d)
(z+a)(z+a+c)  (z+bd)(z+b-0)
c c
*C (w+a)(@+ate) (24d)(z+b-c)”
Divide by ¢; and multiply up,
ce (@4 0)(z+b—c)=(z+a)(@+a+c).
oo B4 2(20-c)+ 02— be=22+2(2a+c)+ad+ac.
oo 2(2b-2¢—2a)=a2+ac— b2+ be.
. —2z(a—b+c)=(a+b)(a—b+c).
oo —22=a+b.
o= —%(a+d).
Hence the roots are 0-and —3(a+b).

MISCELLANEOUS EXAMPLES. XVI C.

1, Shew that the definition of the roots of an equation is
satisfied by the statement that 1 and 2 are roots of the equation
22 -32+2=0. . -

2. Determine whether 1, }, — 4§, or any of them, are roots of
the equation 3(423+41)=2(72+8).

3. Determine whether +1, — 1, or either of them, is a root of
the equation (222+1) /227 + 3z +1 = 22— 992 — 100.

4, Form equations of which the roots are resfectively @1
and 2; (ii) —3 and —5; (iii) 0 and 4; (iv)-@ and b.

Solve the following equations. .
© B, a?-4z=5. " 6, 622—z-1=0. .
7. 5a%—-26x45=0, 8. 1322-172x=66.
-9, 1722-142=40. 10. 272%—-24x-16=0.

B. A. 14
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11.
13.
15.
17,
19,

QUADRATIC EQUATIONS.

15234+ 72=2. 12, 77(23-1)="72x.
523462 —104=0. 14, 20s3-2-1=0.

15224+ 72="74. 16. 1243 —-952-8=0.

1222 —2—-6=0. 18. 643-11x-35=0.
1623422 —-77=0. 20, Bad+4r-1=0.

423 - 172+4=0. 22. 1823 -11x-24=0.
2842 - 132 —-6=0. 24, (3r-11)(2z-10)=2a2-9.
5(x —9)2— (22— 11)2+(3r — 21)3="53.
(2z+1)(3z—7)+(2r - 5)2=(z+2)(2x - b).

(z-22+(z+5)2=(2+T7)%
6(27—"T)*— (z—13)3+ 52— 15=0.

2{2x — 4(b2—3)} =2(3z— 2)%

(32 +1)2-3(3z+1)(2+5) +2(z+5)2=0.
(z-1)(z-2)(x-3)=(2*-2)(z+25). .

ax?+-br=cx. 33. ab(x+1)z+a=(a+20%)x+4b%
23— 2ax —2b2+4ab=0. 35, ax®+42br=a—2b.
a b at b
x—b+x—a_2' 8. a+x+b+x=a+b'
12: -8 a1 39, 587, % .
x 4 x-3
S x 2+1 z+2 1 _
it =R ottt
13 1 3
}(-‘v'l's)—-@- 43. m—m —-915
4 _ 5 z+1 2+2
-6 Tyl o 6 etz it
7x-11 3z-2 2zr+5 z2-5 4 3z—-1
e RS TS fubery Rl sl ey S
1 2 6 2 4
2tz 19, 7‘x+4+(x+6)(z+4)=°'
x-—l_w—2_z_—_@_x—3 51 2x+3+3x+2_2a:—1
-2 -1 x-3 z2-2° * -3 3r-2 “z+41°
3z‘+2+3x—2=4w’+12r+2. *53. 1 1 9

z+3 2-9 g P W P v
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54 1+@—_”%§)=J:T:’. 55. 1-x—f—3=m.
56. 2z—ﬂ’+§f—l=g—f. 57. %’ﬁ%";—si:;lﬂ.
58. 3’aﬁlz=(z+z)'(ju—3)+4ie'

60, x’f;xlw*'ﬁ—z:a_x’f;:n:o'

61, 16(;—2)+16(::+2)_8(xf+4)=2(x1—1)+2(a:l+l)_:_:'
62. 4(.1:1—l)+4(x:-l)_2(z3x+l)=8(xl—2)+8(xl-l-2)_47117'
8. 7(x—31)(x—2)+(x-€)—(:—3)'(x_ai)—(:-z)=°‘

66. ?:—1—%’1+a+1=0. 2+x—f§

or. 12242ty 6. SV

6. ;i—x+3i;=ﬁ;’—bf’. 70. &—,f—a-ﬁ%)ﬂ.

L %15a+zz_5—5=§, 7. x—lcz"'.r_l-b:%b

73. ‘Z—I—g+§=”—z;—'gf. T4, ﬁ—a+”—x—b=;%+b%°.
B amms ity B mprere=C i

14—2



CHAPTER XVII

SIMULTHEOUS EQUATIONS, OF WHICH AT LEAST ONE
IS OF A DEGREE HIGHER THAN THE FIRST.

214. WE now proceed to consider the solution of
two or more simultaneous equations, one or more of
them being quadratics, or at least of a degree higher
than the first. We shall begin by ‘treatin% the case
where there are only two equations involving two
unknown quantities, and one of the equations is of the
first degree. We shall next discuss the solution of
two simultaneous equations involving two unknown
quantities, where both the equations are quadratics.
The theory of simultaneous equations of a higher order
and not reducible to one of these two cases lies out-
side the limits of this work.

215. Solution of Two Simultaneous Equa-
tions, one being a Simple Equation and the
other a Quadratic Equation. We commence with
the case of two equations involving only two un-
known quantities, where one of the equations is of
the first degree. We can always solve such a system
by the following rule.

First. From the simple equation, find the value of
-one of the unknown quantities (say «) in terms of
the other unknown quantity (say y) and the known
quantities. o
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Second. Substitute this value of # in the quadratic
equation. The result will be a quadratic equation
involving only ¥ and known quantities.

Third. The solution of this quadratic will give
two values of y.

Fourth. To each of the values of y so determined
will correspond a certain value of «, which can be
determined from the value of # in terms of y which
was originally obtained from the simple equation.

216. The following examples illustrate the method.
Ez. 1. Solve the simultaneous equations
{ 22 4+3y=1 .covcvrerererenene verer(@),
88— 2y +33=16 .verrrererrnnnee vee (D).

(1{) It is usually best to solve the simple equation for that
variable whose numerical coefficient is the smaller. In this case,
therefore, we solve it for . From (a), we have

2r=1-3y,
<o r=4(1-3y).
(ii) Substitute this value of x in (b),
oo §(1-3y) -3y (1-3y)+29%=186.
Multiply by 4, collect like terms, and simplify,
. 413320y - 61=0,
(iii) This quadratic must now be solved. Resolving into

factors, we have
i (y+1) (41y - 61)=0.

[These factors ought to be obvious by Art. 114, since the
only positive integral factors of 41 are 41 and 1, and of 61 are 61
nd 1. If however the factors be not obvious, then the quad- -
ratic in  must be solved by the method of Art. 208.]

<. ¥41=0, or 41y—-61=0.
soy=-1,0r y=4}.

(iv) We have now to find the values of 2 which correspond
to these values of y. We have =4 (1-3y).
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If y=-1, oo r=3(1-3y)=4(1+43)=2.
Ify=4, . a=}(1-3y)=}(1-3. )=~}
Hence the roots of the original system are
z=2, y=-1; and r=-H, y=H
Ex. 2. Solve the simultaneous equations

at b
;,+y—x=2 ........................... \11).

Here, we treat ;: and 3 as the unknown quantities.

From (i), g=2 —-I-’

Substitute this value of }: in (ii), (2 —= ——2

Simplifying, . Y- 2by 4+ 52=0.
o G- bp=0.
Hence the two roots of y are equal to one another, and each
is equal to b.
We have now to find the values of # which correspond to these

values of y. We have ‘—"=2—9.
& y
. a b b
-~ ify=b, ;}:2—:}:2_1_)=2_1=1
. r=a.

Hence the roots of the original equations are

x=a} and x=a}
y:b ’ y:b *

Ex. 3. Solve the simultaneous equations

{ e +3_2.............-... .............. @

ar-by=a2-02......... ceseeerranined (ii).
3 _

From (ii), we have x=‘%ﬁb-y ........................ (iii).

Now (i) may be written  ay+bzr=2zy.
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Substitute in this latter equation, the value of # given in (iii),
3 _ 2_
ay+ba I:+b_c/=2a I::-'-byy.

This, on simplification, reduces to
: byt 4y (a2 - 3b%) - b(a?—b%)=0 ............ (iv).
<. (y—b)(2by+ad-%)=0,
[If these factors be not obvious to the student, he must

solve equation (iv) by one of the methods given in the last
chapter, when he will obtain the roots given in the next line.}

a®—b?
2b
These values must now be successively substituted in (iii),
and we shall thus obtain the corresponding values of .

aAA-V+by a?-0 40
a

..o y=b, or y=-

a.

a
2 _ 2_ 3_
Second, if y= -4 2bb2, .. by (iii), x=‘%‘t@ =‘f—2a—b2.
Hence the roots of the original equations are
ad— b _ at-P
%2 YT

Ex. 4. Solve the equations x —y=3, 22— y*=6.

Although the method by which the three preceding examples
were solved is always applicable, yet the work may sometimes
be slightly facilitated by noticing whether the terms involving
z and y in the given simple equation form a factor of part of the
quadratic equation. In this case, the second equation may be

written

(#-9)(z+y)=6.
Dividing each side by the corresponding side of the first
equation, we obtain

(@-9)(@+y)_8

-y 3’
Soxty=2
‘We have now the simultaneous equations
) r-y=3, x+y=3,
the roots of which are =%, y=-14.
The equations given in this example might have been solved

z=a, y=b; and z=

" in the same way as the equations in Examples 1, 2, and 3

above.
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EXAMPLES. XVIL A.

Solve the following systems of equations.

{ 2 {x’+y’=4l,
r+y= 8 z+y =9,
g, [95°-4°=bT6, . {25.7:’ 9y’—-675
%y —3¢ =-12. 3y+bx=45
+y =8, 234+ 20y =5,
& {a;’+y’ =50. 6. { z+y=3.
7 { z—-y=3, 8. { +y =1,
* \at+ay+92=93. a3 +y2=3T,
o { +6y=21, 10 { +3°=10a%+ 105%— 12ab,
3y +6r=4xy. * \x +y =2(a+d).
1 z(y+7)+y (z+5)=5, 12 23+ y3=351,
* Ty+4r=1. z + y=9.
13 £+{= Ny ' .14. -5
2 z
o z+y=6.
bz - ay=a®- b3, b2 (v — @) +ad (y — b) =0,
15. %z’ ¥ _ad b 16. {L 1 1
B R & z—b y-a a-b

217. Solution of Two Simultaneous Quad-
ratic Equations, The solution of any two simul-
taneous quadratic equations involving two unknown
quantities is not always possible by the methods which
are explained in this book. But any simultaneous
equations of the form

ax’ + boy + cy' = }
Az'+ Bey + Cy*=D
(where all the terms involving the unknown quantities

are of the second degree) can always be solved by the
following method.
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Dividing each side of the first equation by the
corresponding side of the second equation, we have
ad*+ boy+ cy' _d
A2 + Bry+Cy D’

Now put y =z, and substitute vz for y wherever

¥y occurs,
' . Alatbv+ o) _d
" #A+Bv+Dv) D’
This equation reduces to a quadratic in ». Solving
this, we obtain two values of v; let us denote them by
a and 8.

(i) If v=a .. y=ax. Put y=ax in the first
of the given equations; we can from the resu]t,‘iv_niﬁ
equation obtain two roots of z, to each of which wi
correspond a value of y, which may be obtained from
the equation y =az.

(ii) If v=4, we can similarly obtain two values
of z; and, thence, the two corresponding values of y.

Hence there are altogether four pairs of roots.

218. The following examples illustrate the method.

Ex. 1. Solve the simultaneous equations
{x’ +3zy=10,
zy+ 4y*= 6.
Dividing, we have '

#+3zy 10
zy+4y® 6

Let y=vz, S oy
This reduces to 3 (1430)=>5 (v+40?).
.. 2002 -4 —-3=0.
oo o=4, or v= -
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(i) If v=3, .. y=32. Substitute this value in the first of
the given equations,
o 22 4-822=10.
<. 2234 348=20.
o.oat=4,
Soa=#2, .
If 2=+2, Soy=3r=1 e, (i).
If 2=-2, Coy=fr=—1 i, (ii).

(i) If v=—%, ... y=— 2. Substitute this value in the
first of the given equations,

». 22— Hat=10.
oo x=+10.
If z=+10, LY== —3 i (Hii).
If z=-10, RS TR W . S (iv).

Hence the four pairs of roots are

r=2) x=-2) z=10 md:c=—10
y=1’ y=-1’ y=-3)° " y=3 J°
[The student, in writing down the roots of simultaneous

equations, must be careful to arrange them in. their proper pairs:
thus, in this example, #=10, y= —3, satisfy both the given
equations. Values of x and y taken from different brackets will
not in general satisfy the given equations: thus x=10, y=3,
satisfy neither of the given equations.]

Alternative method. We can sometimes arrive at the result
more simply by first forming from the two given equations a new
one, of which both sides are perfect squares, but this method
is only applicable in particular cases. Thus, in the above case
where the given equations are

22432y =10,
zy+4y*=6,
we obtain by addition
3""*‘4-"”'J+4!/’=13;
that is, (z+2y)2=16.
S x4 2y=+4.

(i) If 2+2y=4, we have the simultaneous equations
z+2y=4,
224+ 3ry=10.
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The roots of these can be found by the method of Art. 215,

and are
z=2 =10 .
y=l} and y=-3 } ..................... (i).
(ii) If x+2y= -4, we have the simultaneous equations
z+2y=-4,
224+ 32y=10.
The roots of these can be found by the method of Art. 215,
and are
z= -2 x=—10 ”
y= —l} and y= 3 } .................. (ii).

Ezx. 2. Solve the simultaneous equations
2+ay=21, yP+ry=28.

If we adopt the first method of solution, [Art. 217}, we have

ftzy 21 _3

yi4+zy 28 47
. #(1+v) 3
(e +e) 47

[The quantity 1+ is a factor of both the numerator and the

denominator of the fraction on the left-hand side. For the
reason given in Art. 213, Ex, 2, it does not lead to a root of the
quadratic.] .

Dividing the numerator and the denominator of the fraction
on the left-hand side by 1+, we have

Let y=vz,

1.3
v 4
cov=4
But y=vz, hence y=4x.
Substitute this value of ¥ in the first of the given equations,
oo ot fad=21
.~ 320 4+427=63.
22=9,
r=+3.
But y=4z, Coy=%4.
Hence the roots are  2=+3, y=+4.
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The alternative method of solution explained in Ez. 1, is
applicable to the equations given in this example. If we adopt
it, we obtain, by the addition of the given equations,

2+ 27y +33=49.
corx+y=+T.
If x+y="1, this, combined with the first of the given equations,
gives, zy the method of Art. 215, r=3, y=4.

If x+y= -1, this, similarly, gives 2= -3, y= -4

*Ex. 3. Solve the equations 2*=y+12, yP=z+12
These equations are of such a form that they can be solved
by a process analogous to the second method used in the last
two examples.
Subtracting, we obtain
B-yi=y—a.
“@-y)(@ty)=—(@-y)
(z-g) (@+y+1)=0.
o x—y-:O, or 24+y+1=0.

(i) If xr—y=0, . y=a.
Substitute this value of y in the first of the given equations,
s 2=z +12.

. (z—4)(2+43)=0.
.. rx=4, or x=-3.
But y=ux, .. the corresponding values of y are 4 and —3.
Hence =4, y=4; and = -3, y= -3 are two sets of roots.

(i) Ifzr+y+1=0, ... y=-(1+x).
Substitute this value of y in the first of the given equations,
o at=—(1+2)+12.
o B4z —-11=0,

—-1+4/35
—g

The corresponding values of y are y-_-_‘_’l__‘;L""i’ .
These form two more sets of roots.

Thus altogether there are 4 sets of roots, namely,
.z'=4} x=—3} a:=§(—l+J45)} and x=§(-1—.,/45)}
y=4)" y=-37 y=§(-1-J45))" " y=4(-1+y45)f "

the roots of which are z=
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219. We may sometimes combine the equations so
as to get rid of all the terms of the second ee and
thus obtain an equation of the first degree. e case
will then be reduced to one similar to that discussed in
Arts. 215, 216.

Ez. 1. Solve the simultaneous equations
(z+l)@/+2)=10}
Subtracting, we obtain 2z+y+2="7.
. y=b-2z.
Substitute this value of y in the second of the given equations,
. z(5—-22)=3.
.. 223 -52+3=0.
.. (z-1)(2x-3)=0.
oo x=1, or z=4%.
But y=5-2r, .. (i) if z=1, y=3; and (ii) if z=3, y=2.
Hence the roots of the given equation are’
z=1, y=3; and z=§, y=2.

Ex. 2. Solve the equations .
azy=c (br+ay), bry=c(az-by).

e a_bztay
‘We have, by division, 3= aw—by"
Multiply up, a(aa' by)="b (bz+ay).
: -, (a¥- 1) a=Saby. -
ab .
=2 p iy <Y [T RTINS @.
Substitute this value of # in the first equation,
. a®h 2ab?
A 2a’ b"’/ =c (a’ bzy+ay),
which on reduction gives
2
yg() or y=§a__.—!-_bz)c.

The corresponding values of . will, by slibstltutlon in (i), be
found to be
@+¥)c

=0, and 2= pe o A0
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EXAMPLES. XVIL B.
Solve the following systems of equations,

1 z4y= 9} g -yi=33 }
* P-ay+yi=27)" " 7y—33z=200f "
m. . n 4, b:c+ay—a’+b’
2%y = L pob o
ny —mx=n3—m3 ’+ a3
5 .z"+3.zy=2} 6. 2242y = }
* 3yttay=1)" zy+2y3=65) "
7 a:’—ba:y=ll} 8. x’+9.'cy=32}
* P+3y=-2f° 23+ ay=16f"
AL A B 0. Soav=20h
T Ptay+yi=T " Y+bay=14
11 322 -T2y + 4y’ =5}. 12, 222 - 92y+ 9= 5}-
423 - T2y +3y3=2 47% - 102y +11y2=35
w’+w.'/—.'/’=29} 327+ by =22
I N M. lla,:r/—3y’=l9}
15 w-m=14} 16 A+ay= 7}
* 3y2-a%4+1=0 * 3xy+y2=18§"
x=+4.zy=35} B ay= 10}
. gy 1697 1° 8. LT,
19 x’—y’=8x—16} g9, 2 +imy= 39}
* Bwy=6z+7Ty)° * 2y3-3ay=6 J°
oL x’+.zy=104}. o1, 3.1:’—5.1.y+2y’=14}.
zy-y*=15 2% - bay +3y*= 6
x’+y’=50} 4.1:’+3xy=10}
B ety % ayrrany=30f°
2%, 22— zy= 2%. B —zy+yi="7 }
© 8yR-Txy=4)" * a4 atyP4 =133
3248 — 2y =11 2430y ="7 }
2. :z-’+4y’=10}' 2. zy+3y3=14

x’—w=—2} 30. 2+ gy =p + 3pg +2
g +bay=11 J° oy=p+q ’
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B+gY=p - pg+3T) g Hay=a

zy=p-g ) y+ay=b)°
x’+y’=5a’+5b’+8ab} . xy+x=15}
zy=2a%+2b%+5ab) xy-y=8)"
234 zy=yt—2oy—4=12. 36, 23— wy=2y'+ay+4=16.
(x+2)@/+3)=15} 38 .1:3/—2.@'=2l}
ay=2f" " y+3y=50f"
9x+8y+7xy=0} 0, S+3=
T2+4y+6zy=0) " ¢ z-y=a8)"°
1 1
f--’_/=1‘n}. 2. “y-?}. PR
y =z 1 1
z-y=3 yz=1 y-;—4

(a:—3)’+(3/—3)’=34} & Bz -y) (By—z)=21 }
2y—-3(x+y)=6 ) ° : 3x(3z—2y)=49-9% "
(%—y)(ﬂy—w)=10} 47, @HWEr+y)=20 1
(e+y)(x-3)=17}° ) dr(z+y)=16-33

z,9_.95 x_ Y
y+x 2}. 8. b+y a+x ;
23+ 32 =28 ax+by=(x+y)>
2”’+3"?/=27} 51 (x+5)’+(1/+5)’=85}
ry+yt=4 )" * 2Y+5(x+y)=17J"

1 1 1 1 1 b a?
E—?—a, @—z—y-l-y‘—s—'?-g. 53. x—§=a—b=;—-y.

7(22+1)  5(zy+1) x+1 55 .z~’+:y3=468}

10(y+1) " 7@ +1) g+1° > zy= 35

(x+y)(x5+y3)=1216} *57 ry=a(x+y) }
B-yt=49(z-y)) " * atyi=bt (4 4y)Y

2%y + 298 =180 a3+ 8=407
a,~"+;y3=189}° *59. a:%v/+x7/’=308}'

a2 +boy + eyt =bat+cry +ayt=a+b +ec.

B4yz=1 yPia=1 2A+ay=1L

zy+ou=444, yz+ur=1566, zx+yu=180, 2ywu=5184;
where £>y>z>u. (Porson’s Problem.)



CHAPTER XVIIL
PROBLEMS LEADING TO QUADRATIC EQUATIONS.

220. WE }ilroceed now to the consideration of
problems in which the given relations can be ex-
pressed by means of quadratic equations. We shall
first confine ourselves to problems whose solution de-
pends on that of a single quadratic equation, and shall
then proceed to problems which require the solution
of simultaneous equations.

Here, as in the problems leading to simple equations
which have been previously considered, the formation
of the equations is a mere translation from ordin
language into algebraical language. The solution of
the resulting equation or equations can be effected by
the processes explained in the two preceding chapters.

221. The following examples are typical of some.
of the more common problems in which the relations
can be expressed by means of quadratic equations.

We may add that though there are always two roots of a
quadratic equation, {:;t the student will sometimes find that
it 4 only one of these roots that will satisfy the problem
under discussion. The other root will generally be found to
satisfy some analogous problem, the algebraical expression of
which leads to the same quadratic equation as that formed
from the given problem.

Ex. 1. Divide sizteen into two parts such that their product
shall be siz times their difference.

Let x be one part.
Therefore the other part is 16 — .
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Now the product of the two parts is, by the question, six
times their difference, .

e 2(18-2)=6{r—(16—2)} .veeverrennnns (),
that is, 162 — 23=62— 96 + 6.
o 22— 42 —-96=0.
- (#-12) (z+8)=0.
oo x=12, or = -8.
The latter root is not applicable to this problem ; therefore
one part is 12, and the other is 16 — 12, that is, is 4.

Note. In forming the equation (i), we subtracted (16—x)
from x to get their difference. Had we subtracted # from 16 —»
to get their difference, the equation corresponding to (i) would
have been
o 2 (16 - 2)=6 {(16 - ) —z},
which would have led to the equation

2% —282+96=0,

of which the roots are 4 and 24. The latter root is inapplicable
to this problem, since it is greater than 16. Hence the answer
would have been, that one part was 4 and the other part was
16 — 4, that is, 12. This is the same answer as before.

Ex. 2., The price of photographs is raised 3s. per dozen, and
customers consequently recevve T £os than before for a guinea.
What were the prices charged ?

Suppose that before the price was raised, the charge was z
shillings a dozen ;

. for 1s. a man got l;? photographs,

12x21
z

After the price was raised to (#+ 3) shillings a dozen,

' 12x 21

z+3

This, by the question, was 7 less than before,
12x21 12x21

oo z = m +7.

oo for2ls 4y,

»

then for 21s. a man got

photographs.
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Divide each term by 7, and multiply up,
.. 36(2+3)=36z+2(x+3).
’ .~ 23432r-108=0.
o (2-9) (z+12)=0.
.~ =9, or 2=-12,
The latter solution is obviously inapplicable to this problem, '
hence the answer is 9 shillings a dozen.

" The student can verify that at this price the given relation
would be true.

Note. We can find what is indicated by the negative root
of the resulting quadratic equation by observing that if the tfiven
relation had been that when the price was lowered 3s. a dozen
the number received was 7 more than before, we should have
obtained the equation

12x21 12x21
z  z-3
which reduces to the equation 22— 3z — 108=0, of which the roots
are 12 and —9; hence in this case the price would have been
12s. a dozen. The root — 12 in the original problem corresponds
to this solution of this problem.] .

’

Ex. 3. A boa¥'s crew can row at the rate of 9 miles an hour
in stull water. What 18 the speed :Zat/w current of a river, if %
take them 2} hours to row 18 miles, of which 9 males- are up
stream and 9 miles down stream ?

. Suppose that the river is flowing at the rate of # miles an
our.

The crew can row at the rate of 9 miles an hour in still water.
.*. the crew row » w (9-2) , » up stream,
and ,, 4, » yw (O+2) » down stream.
Therefore to row 9 miles up stream takes 5—3—5 hours [Art. 101},
9
9 + x ”
The sum of these is stated in the question to be 2} hours,

L4 9 2}::2.

i

R T

and »” sy down ”

.
.



QUADRATIC EQUATIONS. 227

Divide by 9, and multiply up,
v 4(9+2)+4 (9-2)=(9—12) (9+2).
o 36+4r4 36 - 4r=81 -2
o a3=9.
S x=%3.
The negative root is obviously inadmissible.
Hence the answer is 3. miles an hour.

*Ex. 4. The perimeter of a rectangular field s $4 times its
diagona?l, and the length exceeds the breadth by 70 yards. What is
s area

Suppose that the breadth of the field is 2 yards,
.*. the length of the field is 2470 yards ;
.. the perimeter is 2z +2 (z+70) yards,
and the diagonal is J/{z®+ (z+ 70)? yards,
and the required area is z (¢ + 70) sq. yds.
By the relation given in the question, we have
2x+2 (2 +70) =34 {22+ (x4 70)%.
. 13 (224 70) =17 /{228 + 1402+ 4900}
Squaring both sides, we obtain
169 (422 + 280 + 4900) = 289 (222 + 140z + 4900).
Simplifying, this reduces to
22+ 702=6000.
Completing the square,
.~ 234702 4 (35)2=6000 4 (35)*
=7225.
s £+35= %85,
.*. =50, or —120.
The latter root, being negative, is inadmissible,
.*. the breadth is 50 yards, and the length is 120 yards.

Hence the area is 50 x 120 square yards, that is, 6000 square
yards. o .
15—2
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222. We proceed now to give a few examples of
problems which lead to simultaneous equations, of
which one or more is of a degree higher than the
first.

Ex. 1. Find two numbers whose sum is 34 and product s 145.

Let 2 and y be the numbers,
ZHY=34 ccririeiiiorncincaniaene (i),
and ZY=14b....covrrrreniiiiinnnnnnns (ii).

We have therefore two equations involving two unknown
quantities.

From (i) we have r=34-y.
Substitute this value of  in (ii),
o (34-y)y=145,
< yE-34y+145=0.
. (y-5) (y—29)=0.
[If these factors be not obvious, the equation must be solved

by completing the square, and it-will be found that the roots are
the same as those given in the next line.]

.. y=5, or y=29.
If y=5, .. x=34-y=34—-5=29.
If y=29, ... ¥=34-y=34—29="5.
Hence the required numbers are 5 and 29.
Ex. 2. Find a number of two digits such that, if it be divided

%ﬂwproduct of s digits the quotient is 2, and if 27 be added to
the number the order of the digits is reversed.

Let « be the tens’ digit, and y be the units’ digit,
.*. the number is 10z+y.
We are given that 10'z%=2 .............................. ().
The number formed by reversing the order of the digits is 10y + .
Hence, by the relation given in the question,
1024y 4+27=10Y+2 «ceovvrrrierennnne (ii).



QUADRATIC EQUATIONS. 229

We have therefore two equations involving two unknown
quantities,
The equation (i) may be written 10z +y=2zy............ (iii).
The equation (ii) reduces to —y+3=0.
S y=z+3.
Substitute this value of ¥ in (iii),
o 1024+ (2 +3) =22 (2 +3).
Simplify, .. 20252 —-3=0.
s (22 +1) (- 3)=0.
. z=-4, or z=3.
To satisfy our problem + must be an integer, hence the only
root suitable for our purpose is
r=3.
But y=x+3, and therefore if =3, y=2+3=3+3=86.
Hence the required number, which is 102+, is 36.

The student can satisfy himself that this number satisfies
the given conditions.

Ex. 3. The number of apples which can be obtained for a
shilling s two more than the number of pears which can be obtained
for a shilling, and tIZiprzbe of seven pears exceeds that of seven

the

apples by a penny ; fi prices charged for apples and pears
respectively.
Suppose that each apple costs 2 pence,
and that each pear costs y pence.
The number of apples obtained for a shilling is g ,
12
and ,, of pears ” ) » ; .
Hence, by the question, !;2 = 13/—2+ 2,
which reduces to By =62+ TY.cervirneiniiiniennnnnninns ).
Also the price of 7 apples is 72 pence,
and ” »y (pears isT7y
but seven pears cost one penny more than six apples.
S Ty=Trd b (ii).
We have therefore two equations involving two unknown

quantities.
From (ii), we obtain y=z+%}
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Substitute this value of y in (i),
o6zt =6r+z (x+})
.~ T2t 42 -6=0.
.. (T2 -6) (z+1)=0.
. =%, or z=-1.
Now 2 cannot be negative, .. z=4%;
also, if z=%, .. y=r+}=§+3}=1
Therefore the cost a penny each, and the apples cost §

of a penny each, that is, the apples were sold at the rate of seven
for sixpence.

Ex. 4, Find the sides of a rectangle, whose area is unaltered
if its length be increased by 3 inches while its breadth is diminished

2 inches, and whose area s diminished by one rter if its
length be increased by 9 inches while its breadth s diminished by
5 inches.

Suppose that one side is 2 inches long, and that the next
side is y inches long,

.. the area is zy square inches,

Had the length been (v+3) in. and the breadth (y-—2)in.,
the area would have been (z+3) (y — 2) sq. in.
Hence, by the question, zy=(z+3)(y-2),
which reduces to 3Y—22—-6=0 ..ccooerrrirrecrrannce (i).

Had the length been (r+9)in. and the breadth (y—5)in. '
the area would have been (x+9) (y —5) sq. in.
Hence, by the question, §zy=(z+9)(y-5),
which reduces to 2y +36y —202—-180=0........ccuuv..... (ii).

We have therefore two equations involving two unknown
quantities.

From (i) we obtain  #=3y-3.
Substitute this value of 2 in (i),

<. (3y—3) y+36y—20 (3y - 3)- 180=0,
which reduces to ¥2+2y—80=0.
<. (¥+10)(y-8)=0.
. y=-10, or y=8.

Now y cannot be negative, ... y=8;
also, if y=8, ... r=3y—-3=§8-3=9.

Hence one side is 9 inches long, and the other is 8 inches long
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Ez. 5. Two places, A and B, are 168 miles apart, and trains
leave A for B and B for A simultaneously. Tkeyg«ua each other
at the end of 1 kr. 52 min., and the first reaches B half-an-hour
before the second reaches A. Find the speed of each train.

Suppose that the train from A to B travels at the rate of »
miles an hour ; and that the train from B to 4 travels at the
rate of y miles an hour.

At the end of 1hr. 52 min. the first train has gone 1§% x x miles,
and » ” » ” second ,, » 188xy
The sum of these is the whole distance of 168 miles,

o 1 x 2+ 158 xy=168,

which reduces to ZH+Y=90 ciiireiienniiriiiernnnenes ().
The train from A goes 168 miles in 1%8 hours,
168
and » w B » » » T »n

y
but the train from 4 travels 168 miles in } hour less than that
from B,

. 168_168 1
Ty T2
which reduces to 336y=3362~ZY ccoeerrrnnnnen cseeencen (ii).

We have therefore two equations - involving two unknown
quantities,
From (i) we have r=90-y.
Substitute this value of  in (ii),
.. 336y=336(90-y)-(90~-%) .
. y3—1762y= —30240.
Completing the square, .°. y2—762y+ (381)2=(381)3— 30240

=114921.
<. y—381=+339,

.~ y="T20, or y=42,
If =120, .". 2=90—y=90-"720= — 630.
If y=42, .. £=90-y=90-42=48. ,

Both 2 and y must be positive, hence the only solution
suitable for the problem is =48, y=42. Therefore the train
from A to B travels at the rate of 48 miles an hour, and the
train from B to 4 travels at the rate of 42 miles an hour.
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EXAMPLES. XVIIL

1. Divide 18 into two parts whose product may be 12 times
their difference.

2. The product of two consecutive odd numbers is greater
than the sum of the numbers by 79. Find the numbers.

3. A distributes £180 in equal sums amongst a certain
number of people. B distributes the same sum, but gives to
each person £6 more than 4, and gives.to 40 persons fewer than
A does. How much does 4 give to each person ?

4 On a certain road the number of telegraph posts per
mile is such that, if there were 3 less in each mile, the interval
between the posts would be increased by 93 yards. Find the
interval between two consecutive posts.

5. A rectangular room is 14 feet longer than it is broad, and
7 feet broader than it is high. If 1 foot were added to its height,
2 feet added to its breadth, and 6 feet taken from the length of
the room, its cubical content would be unaltered. Find its
dimensions,

6. The area of the floor of a certain room is 224 square
feet ; it is found that, by leaving a margin of 18 inches all
round, a saving of 12 yards of carpet, which is three-quarters
of a yard wide, is effected : what are the dimensions of the room ?

7. A colonel draws up his whole regiment in two solid
squares ; he then increases the side of the smaller square by
6 men, and finds that he must diminish that of the larger by 4;
he next increases the side of the (original) large square by
6 men, and finds that he has one man over. How many men
are there in the regiment?

8, The men in a regiment can be formed into a solid
square, and also into a hollow square 4 deep, the number of men
in the front in the latter formation exceeding the number of
men in the front in the former formation by 25. Find the
number of men in the regiment.

9. The men in a regiment can be arranged in a hollow
square 4 deep ; if the number of men be increased by 129 they
can be arranged in a solid square having on each side 10 men
less than were on each outer side of the hollow square. Find
how many men were in the regiment at first.



QUADRATIC EQUATIONS. 233

10. The men in a regiment can be arranged in a column
twice as deep as its breadth ; if the number be diminished by
206, the men can be arranged in a hollow square three deep
having the same number of men in each outer side of the square
as there were in the depth of the column ; how many men were
there at first in the regiment ?

11. The area of an oblong room is 221 square feet; its
perimeter is 60 feet. Find its length and breadth.

12. Two vessels, one of which sails faster than the other
by 2 miles an hour, start together upon voyages of 1152 and 720
miles respectively ; the slower vessel reaches its destination one
day l;e:‘:le?the other : how many miles per hour did the faster
vesse)

13. A man travels 39 miles on a bicycle; if his wheel had
made 13 more revolutions per minute he would have covered the
distance in 10 minutes less time, and if the circumference had
been 1 foot ter, and had made the same number of revolu-
tions as it did, he would have gone 3} miles farther. What
time did he take ?

14. A man travels 24 miles on a bicycle; if his wheel had
made 8 more revolutions per minute he would have covered the
distance in 10 minutes less time, and if the circumference had
been 1 foot greater and had made the same number of revo-
lutions as it did he would have gone 2 miles farther. What
time did he take?

15. Two steamers ply between the same two ports a distance
of 420 miles. One travels half-a-mile per hour faster than the
other, and is two hours less on the journey. At what rates do
they go?

16. Two bricklayers.can together build a wall in 18 days.
Find how long it would take each of them to build it by himself
if it be known that one takes 15 days longer than the other.

17. A farmer bought a number of oxen for £240, and after
losing 3, sold the remainder for £8 more a head than they had
cost him, and gained £59 on the transaction: what number
did he buy?

18. A merchant lays out £16. 3s. in buying silk. If it had
cost 6d. less per yard, he would have got 8 yards more for his
money. What was the cost per yard ?

19. A man bought a number of articles for £20, if each
had cost 2s. less, he would have got 10 more for the same
money : how many did he buy ?
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20. The number of pence which & dozen apples cost is less
by 2 than twice the number of apples which can be bought for
1s. How many apples can be bought for 8s.7

21. The number of eggs which can be bought for one shilling
is equal to the number of pence which 27 eggs cost. How many
eggs can be bought for one shilling ?

22. What are eggs a dozen, when if two more were %iven
for a shilling, the price would be lowered a shilling a dozen

23. What is the sgrice of orangm per dozen, when if two
less were given in a shilling’s worth the price would be raised
one penny per dozen ?

24. A woman spends five shillings in eggs ; if she had paid
threepence a dozen less for them, she would have got a dozen
more for the same money. How many did she buy ?

25. The number of fives-balls which can be bought for a
pound is equal to the number of shillings in the cost of 125 of
them. How many can be bought for a pound ?

26. A man bought a number of articles for £21. If he had
got 6 more for the same money they would have cost 1s. 3d. less
apiece : how many did he buy ?

27. A number of articles were sold for £6. 5s., and the seller
by charging for each 6d. more than the cost price received for
aﬁ but 10 as much as all had cost : how many were there ?

28. A number of apples were bought for 5s. 10d. Half of
the apples cost 1d. a dozen more than the others, and 12 more
of the cheaper than of the dearer were obtained for 1s. How
many apples were there ?

29. A man bought a certain number of shares in & company
for £375: if he waited a few days until each share had
fallen £6. 5s. in value, he might have bought five more for the
same money. How many shares did he buy ?

30. What two numbers are those whose sum is 47 and pro-
duct 3127

31. Find a fraction such that the denominator exceeds the
square of half the numerator by unity, and the product of the
sum and difference of the numerator and denominator is 225.

32. A number consists of 2 digits of which that in the units’
place is the greater; the difference between their squares is
equal to the number, and if they be inverted the number thus
formed is 7 times their sum. Find the number.



QUADRATIC EQUATIONS. 285

33, A number of two digits is equal to double the product
of its digits and also equal to four times their sum. Find it.

34. A certain number exceeds the product of its digits by
52 and exceeds twice the sum of its digits by 53 : find the
number.

35. Find two numbers expressed by the same two digits in
different orders, whose sum is equal to the square of the sum of
the digits and whose difference is equal to the cube of the
difference of the digits.

36. Find a number of three digits in which the digits in the
hundreds’ and tens’ places each exceed that in the units’ place by
1, and which is such that if it be divided by the digit in the
units’ place the quotient has 1 in the hundreds’ place, and the
other two digits are equal to half the digit in the hundreds’ place
in the original number.

#37. Find two numbers such that their product is 48, and
the difference of their squares is to the sum of their cubes as
13 to 217.

*38, " Divide the number 26 into three parts such that the
sum of their squares may equal 300, and the square of the
middle part may be half the sum of the squares of the greatest
and least parts.

39. Find the sides of a rectangle whose area is unaltered, if
its length be increased by 4 feet while its breadth is diminished
by 3 feet, and which loses one-third of its area, if its length be
increased by 16 feet while its breadth is diminished by 10 feet.

40. The area of a certain rectangle is equal to the area of a

uare whose side is three inches longer than one of the sides

of the rectangle. If the breadth of the rectangle be decreased

by one inch and its length increased by two inches the area is
unaltered. Find the lengths of the sides of the rectangle.

*4]1, The diagonal of a rectangular field is 182 yards, and its
perimeter is 476 yards. What is its area ?

42, Tt costs twice as much per square yard to stain the floor
of a room as to paper the walls, but it is found that the total
sum spent on the floor is equal to that spent ‘on the walls;
moreover, if the room had been 2 yards shorter and 1 yard
broader, the total sum spent on the floor would also have been
the same as that spent on the walls. Given that 8 sq. yards
of the walls are occupied by doors and windows and that the
room is 12 feet high, find its other dimensions.
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43. A rectangular grass-plot, the lengths of whose sides are
as 3 to 4, is swrrounded by a gravel walk of uniform width,
the outer boundary of which is also rectangular. The area of
the walk is to that of the grass-plot as 2 to 3, and the length
of a diagonal of the grass plot is 100 feet: find the width of
the walk, and the dimensions of the grass-plot.

44, Two rectangular fields were supposed each to contain
4 acres, but on measurement it was found that one contained
140 sq. yards more, the other 160 sq. yards less than that area,
and that one was 10 yards longer and also 10 yards narrower
than the other : find the dimensions of the fields.

45, Sixty-four square yards of the wall surface of a room
which is 12 feet high are occupied by doors and windows, and
the rest of the wall is papered at one shilling a sq. yd. The
whole of the floor is also stained at a shilling a sq. yd. It is
found that equal amounts of money are spent on paper and on
staining, and that this would also ge the case if the room were
one yard shorter and two yards broader. Find the length and
breadth of the room.

46. Two elevens 4 and B play a cricket-match. The total
of A’s first innings is the square of the difference of the totals
of B’s two innings, and the total of A’s second innings is
one-fourth the sum of the totals of B’s two innings; 4 scored 215
more in their first innings than in their second, and lost the
match by three runs. What were the respective scores ?

47. A, B, C are candidates at an election. A4 polls a number
of votes equal to the square of B’s majority over C, and C polls
a number equal to the square of A’s majority over B: A4 polls 27
more than C. Find what each polls.

48, Two trains run, without stopping, over the same 36
miles of rail. One of them travels 15 miles an hour faster than
the other and accomplishes the distance in 12 minutes less.
Find the speeds of the two trains. .

49, A starts to walk from P to @: B starts 1 h. 40m. later to
drive from P to @. B overtakes A at 10 miles from P, and
picking him up brings him to @ in 5 hours from the time at
which A4 started, which is 2 h. 30 m. less than 4 would have
occupied in walking the whole distance. Find the rate at
which 4 walks and B drives.

50. A man bought a certain number of articles of equal
value for £75. By selling them at £1. 16s. each, he gained
as much as ten of them cost him. How many did he buy?
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51. A boy intends to spend a certain sum of money in
lawn-tennis balls. There are two prices, each of the cheaper
ones being 3d. less than each of the better ones. He finds he
can buy as many of the better kind as he gives pence for each;
but he can get 4 more of the cheaper ones. How much has he
to spend, and what are the prices of the balls ?

52. A person has ten guineas to spend in books of equal
value ; if, however, he has a.gmzf them bp:t?nd, they will cosegsix
shillings a volume extra. He reckons that if he gets half of
them bound he will nine more volumes than he would
were they all bound: what is the cost apiece of the books
unbound ?

53. A girl worked two square pieces of worsted work of the
same kind, one of which was an inch longer than the other; the
first took 12} skeins, the second 18 skeins. What was the length
of the side of each square?

54. A sum of £19,950, if invested in the 4 per cents., would
give an annual income of £8. 8s. more than if it were invested
in the 3 per cents.: if however each stock were 1 per cent.
higher in price, the former would give £9. 17s. 11d. more. What
is the price of each stock ?

*55. John and Hodge met together at market, John had
bought sheep, and Hodge pigs and geese. Whilst taking a
friendly pot together they aﬁreed to an exchange of goods, viz.
John to {ve his sheep for Hodge’s pigs and geese. e value
of each sheep was the same as that of a Eig and goose, and that
of each goose was two shillings. Now the number of the pigs
and geese together exceeded the number of sheep by 16; and
the number of geese exceeded that of the pigs by 10. What
was the number of each, the pigs and geese together being worth
five pounds? (Z'he Ladies’ Diary, 17586.)



CHAPTER XIX.
EQUATIONS REDUCIBLE TO A QUADRATIC FORM.

223. It is customary to exclude from elementary
algebra any discussion as to the gemeral solution of
equations of a degree higher than the second, but to
include a few equations which are immediately re-
ducible to a quadratic form.

We may remark that the solution of an alﬁbraical equation
can always be reduced to the solution of one which is gi?g:ational
[Art. 182] and (ii) intﬁr&l [p. 98]. Rational integral algebraical
equations are classified according to the number of variables
involved and their degree, and a rational integral algebraical
equation involving one variable can always be solved, if it be of
a degree not higher than four.

224. Quadratics. The following examples are
typical of the more common equations which are
quadratics in a power of z, and are at once reducible to
a quadratic form.

Ezx. 1. Solve the equation 2*— 422 +3=0.
This is a quadratic in 22
Resolving into factors, (#2-3)(2?-1)=0.
o 22—8=0, or 23-1=0.
v &= %438, or z=%1.
Hence there are four roots, namely, +./3, +1.
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We may also begin the solution by putting 23=y. The
given equation then becomes

y’_4:7+3=0v
the roots of which are y=3 and y=1.
oo 23=3, or 23=1.
cox=44/3, or x=+1.

Ez. 2. Solve the equation 18+ 823+12=0.
This is & quadratic in 23,
s (#346) (£342)=0.
. 2346=0 or 234+2=0.
S 23=-6, or 3=-2.
=Y (-6) or x=Y(-2).

As a matter of fact there are three cube roots of —6, and also
three cube roots of — 2, but we shall not here concern ourselves
with finding them. Thus there are six roots of the given
equation. Similarly, if the given equation be of the degree 2,
there will always be # roots.

‘We might also have begun by putting +3=y, and then have
proceeded as in the last example.

Note. Any equation of the form

ax® 4+ baxr+c=0

is a quadratic in 2%, or is reducible to a quadratic by putting
a*=y. The solution of this quadratic gives two values of 2",
The n** roots of these values give the roots of the given equation.

EXAMPLES. XIX. A.

Solve the following equations.

1. 2A-132+36=0. 2. 3rA-44224121=0.
3. 1624 —40a22z3+9at=0. 4, 28-723-8=0.
4 6
5. x”‘+2¢w"+a’-b’=0. 6.. m-az—aj=l.
2416, 25 BB @
7. -—25—+m=2. 8. pe +x2_b2—2.
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225. The method of solving another similar class
of equations is illustrated by the following example.

Er. Solve the equation (*+ 2z~ 8)*+3 (2*+ 20 +2)—13=0.

Put 224 22=y,
o (9-3)24+3(y+2)-13=0.
o y2-3y+2=0.
o (-2)(y-1)=0.
s y=2, or y=1.
(i) Ify=2, o 224 20=2,
the roots of which are —-1+4/3.
(ii) Ify=1, coat2z=1,
the roots of which are 1442

Hence the four roots of the given equation are
—143, —1+2

If we put 2242« in a bracket, and treat it like a separate
symbol, we need not introduce y; but the beginner will probably
find it easier to use a subsidiary symbol as in the above example.

A ]

Note. Any equation like
- p(az+ba+c)?+q(ar? +br+d)+r=0,

can be solved in a similar way. Because, if we put az?+br=y,
we obtain a quadratic in . Suppose the roots are % and £.

Then, (i) if y=4A, .*. ax®+bxr=~, which gives two roots of z.
And, (ii) if y=*%, .’. aa®+bx=Fk, which gives two more roots of .
Hence there are altogether four roots of 2.

EXAMPLES. XIX. B.

Solve the following equations.
1. (a?-4x+5)(2?—42+2)+2=0.
2 (B+z+1)2-4(2?+2—-1)-5=0.

3. (2243z-172-12(2?+32-2)+15=0.

616
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226. Equations involving Surds. Equations
involving surds may frequently be reduced to quadratic
equations.

Examples of these are glven later in Chaptar XXIV. (pp. 208
)-

227. One root known. If one root of an equa-
tion be known or be obvious, we can reduce the degree
of the equation by unity. If the given equation be of
the third degree, we can thus reduce it to a quadratic.

Ex. 1. One root of the equation x3+1022~2=10 i 1. Find
all the roots.

Since x=1 satisfies the uatlon, therefore 23+ 1022 —2-10
vanishes when » is put to 1 [Art. 90], and therefore is
divisible by -1 [Art. 120]. Dlvuhng 2341022 -2-10 by -1,
we obtain

224 112x+10=0.
. (2410)(z+1)=0.
. 2=-10, and z=-1.
Hence the other roots are —10 and —1; and therefore all the
roots are 1, —10, —1.

Note. Before dividing by 2 — 1, we have to take all the terms
to one side of the equation.

Ezx. 2. One root of the equation 13=a® 78 a. Find the other
roots.

Since 73—a® vanishes when r=a [Art. 90], .. 23-a3 is
exactly divisible by z— a
. 3—as=0

can be written (a;—a)(a:’-l-aa:+a’)=0.
One root is given by z-a=0.
The other roots are given by 23+ ar+a?=0, and .. by Art. 210,
are . z=}(-axa/=3d%).
Hence there are three cube roots of a3, namely
‘@, }(-a++/=3a%), and §(-a-/=3a%);
for each of these when cubed is equal to a3, This was what was

asserted in Art. 184. Of these three cube roots, two are imagi-
nary, and only one is real.

B. A. 16
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EXAMPLES. XIX. C.

One root of each of the following equations is printed in
square brackets by its side. Find the other roots.

1l B8+4224+2-6=0, [-3]

2. 625-132%—132+21=0, [1}.

3. 623-—6lax?—127a%r—60a3=0, [—a)
*, 234+8=0, [-F]

228. Reciprocal Equations. An equation in
is said to be reciprocal if, when%‘ is substituted for

@, and the resulting equation simplified, the form of
the equation is unaltered.

An equation of the form
art+ b3+ el +br+a=0

is reciprocal, since, if 1 be substituted for 2 and the resulting

equation be simplified, 1ts form is unaltered. An equation of this
form can be solved by dividing by 22, and putting

1
r+ ;; =Y.
An equation of the form

art+ b3+ c®Fdr+a=0
can be solved by dividing by 22, and putting

O
z 7

If —1 be substituted for = in this equation and the resulting

equation be simplified, its form is unaltered. Such equatlons are
analogous to reclprocaj equations,
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229. The following are examples of reciprocal
equations.

Ex. 1. Solve the equation 2* — 32°+ 442 - 3r+1=0.

1.1
;+;,—0.

(x*+-1§)—3(x +1)+4=0.
' x

1 1 1
Letz+ 2=y, .. 2%+2+5=9% .- B+ 5=y"-2,

Divide by 22, ... 2?-32x+4-3

.*. the given equation becomes
(#*-2)-3y+4=0.
<. ¥ -3y+2=0.
o (y-2)(-1)=0.
.. y=2, or y=1
i) Ify=e, x+%=2.
o224 1=22,
the roots of which are 1 and 1.
(i) If y=1, x+£=l.
o B l=z,

the roots of which are  }(1+./—-3).
Hence the four roots of the given equation are1,1,3(1+ ./—3).

i 2 | z+1
Ezx. 2. Solve the equation o W 2 m—&

2241

Lot T Y

.. the given equation becomes

1

+2-=3.
y K

<. y2-3y+2=0,

the roots of which are y=2 and y=1.
16—2
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(i) If y=2, S =2,

(i) If y=1, -t

Hence the four roots of the given equation are 1 +4/2,0,and 1.

EXAMPLES. XIX. D.

Solve the following reciprocal equations.
204+ 23— 622+ 2+2=0.

624+ 3523+ 6222+ 3524+ 6=0.

224 — 923+ 1422 - 92+ 2=0.

624 — 2523+ 1222 + 262 +6=0.

224 — 523+ 622 — 5r+2=0.

S powpr



CHAPTER XX.
THE THEORY OF QUADRATIC EQUATIONS.

230. WE discussed, in Chapter X VI, the means of
solving a given quadratic equation, and we also there
explained [Art. 206] how we could form a quadratic
equation which has given numbers for its roots. We
shall now proceed to investigate some of the general
properties of the roots of any quadratic equation, and
shaﬁe conclude the chapter by shewing how the form
of the solution of a quadratic equation sometimes
enables us to determine the greatest and least values
which a given expression can assume.

231. We will begin by rem'inding the student [see
Art. 210] that the roots of the equation

ar’+bx+c=0,

—b+ /b —dac
are = T—-.
Hence the roots are real if »*> 4ac,

”» ”» » equal if b*= 4!0'6’

» . »  tmaginary if b*< dac.
Moreover, if b*—4ac be a perfect square, then we
can take the square root of it, and the roots of the
iven equation will be rational [Art. 182]; but if b* — 4ac
ﬁ:a not a perfect square, then the roots of the given
equation will involve an irrational quantity. :
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232. Sum and Product of the Roots of a

Quadratic Equation. The following is an important
proposition. The sum of the roots of the quadratic

equation ax’+bzx+c=0 8 equalto-——- and the pro-
ductoftherootsisequal#oa

If we solve the equation, we find that the roots are

__ b N -
& %"'——27—_)
_ b N(b'—4ao)
and ®="%" " %a
The sum of these is —i——b—, that is -Il.
2a 2a A a

The produet of the roots

b Wb —4 b (b —dac
={_%+ﬁTM)}{_%—« %a )} 4
- - [*/ Laws )] [Art. 62, Ex. 3.
_ b b —dac

4a’ 4a®
4ac
=

=¢
o

Note. The sum of the roots of the equation
z"+pr+q=0 is —p, and their product is +g.
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Hence, if we are given that the sum of two quan-
tities is A and that their Eroduct is k, we know that the
two quantities must be the roots of the equation

& —hz+k=0.
Ex. 1. Find the sum and the product of the roots of the equa-
tion 22 +72+6=0,
The sum is -7, and the product is 6.

If the equation be solved, the roots will be found to be
—6 and —1, which agrees with the above statement.

Ex. 2. If a and B be the roots of the equation 223 — bz +3=0,
Jind the value of a3+ p°.

We have a+8=4, and a8=3%;
< (a+BP=(8),
that is, a®+8%+3a8 (a+B8)="4E.
oo dS+F+3. 5. §=138,
co @ HFI=138 4888,

EXAMPLES. XX. A,

Write down the sum and the product of the roots of the
following equations, numbered 1 to 6.

1. 22-3r+4=0. 4, 2:3-3=6(z—1).
2, 22?-4245=0. ' 5. 3z(r—2)=2(1-3x).
3. as?-bex+a*=0. 6. (px—q)(gz-p)=(r-p)(z—q)

7. If a and B8 be the roots of the equation 32%2—7x+4=0,
find the values of a2+ 3% and (a—pB)%

8. If a and B be the roots of the e&uation px’+q:c+j)=0,
what is the value (i) of a— g8, and (ii) of a® - 8°1

9. If a and B be the roots of the equation #? - px+¢=0, find
the values of a?+ 8%, and (a + %) (34.%) .
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233. Resoclution into Factors. If A and k be
the roots of the equation ax’ + bz +c=0, then will

azr’+bz+c=a(z—h)(z—k).
Wehave h+k=—>, and hk=S; [Art 252)

b=—a(h+k), and c=ahk.
Substitute these values of b and ¢ in az*+ bz + ¢,
a+bz+c=ar—a(h+ k)z + ahk
=a{e*—(h+k)z+hk}
=a(z—h)(z—k).

234. Hence, if we want to resolve the expression
ax® + bz + c into factors, we can proceed thus. Put the
given expression equal to zero, and solve the resultin
equation. If the roots be A and k, then the reqmreg
factors will be a(z—h)(z—k).

Ex. 1. Find the factors of 422*—5z—63.
If we equate this to zero, we obtain the equation
4222 - 52—~ 63=0.
'I('ihe s;tudent, on solving this, will find that the roots are
and -§.
' . 4202 -52-63=42 (- $) (@ +§)
=(Tz-9)(6z+7).

Ez. 2. Find the factors of the expression
(ab+1) (22 +1)+(a+d) (22 - 1) - (a*+ - 2) z.
If we equate this to zero, and arrange it in descending powers
of z, we obtain the equation
(ab+a+b+1) 22— (a?+ 62— 2)r+ab—a—-b+1=0.
The student, on solving this by one of the methods given in

Chapter XVL, will find that the roots are >~ and =1

ati® g
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Hence the given expression is equal to
(ab+a+b+ 1) (.v—g%) (z-—%——;: ,
- which reduces to {(a+1)2—-(b—-1)} {(b+1)z—(a—-1)}.
EXAMPLES. XX. B.
Find the factors of the following expressions.

1. 942-242+16. 2. 1622+16x+3.
3 (=-1)(z—-2)-6. 4, 22-2azx+a?-02
5. a2?—a?—2cx—b%+2ab+c%

6. 22-2(a+b)x—ab(a—2)(b+2).

7. (z=-b)(z-c)+(z—c)(z-a)+(r—a)(x-b).
8, ya(y—2)-+a0(z—2)+ay (@—y).

235. If one root of a quadratic equation be
obvious, the other root can be obtained after
division. For if 2 be a root of the equation, ob-
tained by equating a quadratic expression to zero,
the expression vanishes when  is put equal to A
[Art. 90], therefore the expression is exactly divisible
by & —h [Art. 120]. The quotient will be an expression
of the first degree in «, v%ich gives a simple equation
for the other root.

This is the same principle which we used in Art. 227 to

reduce the degree of an equation by unity when one root was
known.

. r.a b a
Example. Solve the equation “tz=ats
It is obvious that this equation is satisfied by x=5, ... b is
one root of it.
On reduction and simplification, the equation becomes
bz — z (a®+b%) +a?bh=0.
Since the left-hand side is known to vanish when z=¥b, it
must be exactly divisible by #—b. Dividing by z — b, we obtain
2
bz —a?*=0. Hence the other root is % .
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EXAMPLES. XX, 0.
Solve the following quadratic equations, numbered 1 to 3.

1L a+b+ =%b+ac 2. x—a—i=b—a—b—1—.

- -a
3. (.z 1)(x-2)=(a-1) (a-2).

4. Find for what other value of 2, the expression 'g— :—;; has
the same value as it has when z=a.

236. There cannot be more than two unequal
roots of a Quadratic Equation.

First proof. For suppose, if possible, that there are
three roots of the equation az®+ bz + ¢ =0, no two of
them being equal. Denote them by &, k, 1.

Since % and k& are roots we have [Art. 233]
ad+bz+c=a(x—h)(z—k).
But since [ is a root, it satisfies the equation [Art. 90]
a(l-k)(l-k)=0.
Therefore one of the factors of this last expression
must vanish. [Art. 204.] But a cannot be zero, and if
either I—h or I —k vanish, then I is not different

from h and k. That is, two of the assumed roots must
be equal, which is contrary to the hypothesis.

Thus there cannot be three unequal roots.
Second proof. This proposition may also be proved thus.
Since & andp k are roots OP the equation ax?+ bz +¢=0,
we have ak?+bh+c=0 and ak®+4bk+c=0.
Subtract, oo a(h2—k%)+b(h—-k)=0.
‘o a(h—k)(h+k)+b(h—k)=0.
<o (h=Fk) {a (h+k)+b}=0.

Now % —£ is not equal to O, therefore the other factor of the
product must vanish [Art. 204];

.. a(h+k)+b=0 ........................ ().
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Similarly, since %2 and ! are roots of ax?+ bz +c=0, we have
the equations

ak?+bh+¢=0 and al-bl+c=0;
and from these, in the same way as above, we obtain
AR+D+D=0 curcerrnnrnrenneiennnns (ii).
Subtracting (ii) from (i), we have
’ a(k-0)=0.
And since @ is not equal to 0, therefore £ — /=0, that is, two of
the roots must be equal, contrary to the hypothesis.

Note. The proposition that there cannot be more than one
root of an equation of the first degree can be proved in a similar
way.

237. The use of the propositions in Art. 232
enables us to form equations whose roots are con-
nected in a given manner with the roots of a
given quadratic equation.

Ex. 1. If a and B be the roots of x*+pz+q=0, form the
equation whose roots are }l and 1

]
The required equation is
(-
a -7
that is, (az—1) (Bzr—1)=0,
that is, apx?—(a+B)z+1=0.
Now by Art. 232, a+8=—p and af=gq.
Hence the required equation is
qx’+px+l=0.

Ex. 2. If a and B be the roots of the equation x*+4x+2=0,
find the equation whose roots are % and g.

F
The required equation is (x_g) ( -g)___o’
tvh&tisy xz—(%+9x+l=o;
g
that is, 2 0.

aB
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Now, in this case, a+B=-4 and a8=3, [Art. 232.
. a?+@=(a+B)" - 2a8
=(-42-2x2
=12,
Hence the required equation is
22 -2 x+1=0,
that is, 8- 62+1=0.

MISOELLANEOUS EXAMPLES. XX, D.

The following miscellaneous examples on the subject of this
c/za};ter a{e to be solved by the use of the foregoing articles, and not
by finding the roots of the quadratic equations which are given.)

1. If aand B be the roots of 422=3z—1, find the value of
a B
B ot

2, Shew that, if a and 8 be roots of the equation
22— pz+q=0, then .

@ . B
‘ FErA) Eras
3. Shew that, if a and 8 be the roots of 22— cx+d=0,
then (a®+d)}— (B2 +d)2=c3(a—B).

4, Prove that the difference of the roots of #2+pzr+¢=0
is equal to the difference of the roots of 22+ 3px +2p2+¢=0.

5. If a and 8 be the roots of the equation #3—2pz+¢=0,
prove that a3+ 83=8p3—6pq. .

6. If the roots of 2%+ pr+¢=0, and those of w’+qx+p¥0
differ by the same quantity, then p+9+4=0.

7. Find the value of ¢ in terms of « and b, in order that the
sum of the roots of the equation #2+ax+b=0 may be equal to
the difference of the roots of the equation 2#2+cx+(a+c)b=0.

8. Shew that one root of the equation az?+bxr+c=0 will
be the reciprocal of the other root, if a=c.

9, If a and 8 be the roots of the equation 22—5x43=0,
a

B8

find the equation whose roots are - and g.
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10. If a and B8 be the roots of the equation px®4-¢z+r=0,
form the equation whose roots are -0 -1 .

B

11. Prove that the roots of 284-2mz+4n=0 are 2a and 28,
where a and 8 are the roots of 22+ mx+n=0.

12. If a and B are the roots of the equation 742=2z+1, find

the values of a3+ 8% and of %+f§.

13. If the roots of the equation az®+x+b=0 be equal to a
and b, what are their numerical values ?

14. If the roots of the equation pa®+gx+1=0 be equal to

11’ and ;, what are their numerical values

15. If a and B8 be the roots of the quadratic 22+rz+8=0,
shew that the roots of 422+ 2rz+8=0 are 4a and 3.
16. Shew that, if a and 8 be the roots of 22— bz +¢=0, then
(=0t~ (8= =b (a— )",
17. Find the quadratic which has equal roots, each being
equal to the sum of the roots of the equation 322+ 52 +1=0.
18, If a and B be the roots of pa?+gr+r=0, shew that the

equation pga?+ (pr+¢?) 2+ ¢r=0 has roots aﬂﬂ— and a+8.

+8
19. Prove that, if a and 8 be the roots of p2®+gz+r=0,

then g¢r2?+4(pr+9?%) 2+ pg=0 has roots 1 and }l+1_

a+B ]
20. If a and B be the roots of the equation 22— px+49=0,
then will @ B p 9.,
) Bra= g ¢ %

21. Find the relation that must exist between the quantities
a, b, ¢, so that the equation a2?+bdzr+c¢=0 may have one of its
roots double of the other.
22. Prove that, if a+b+c=0, then each pair of the equations
. 22+ ax+be=0, 22+ br+ca=0, and 22+cr+ab=0
will have a common root.
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23. If the roots of ax®—bxr+c=0 be the reciprocals of the
roots of a,2%— b,z +c,=0, prove that ab,=bc,, and aa,=cc,.

24. Prove that, if az2+baz+c=0 and a2®+d2r—c=0 have
a common root, then their other roots will be equal in magnitude
but opposite in sign.

25, If as®+b2+c=0, ca®+kxr+a=0 have a common root,
prove that £ must be a root of the equation

ac (22452 — b (a%+c3) 2+ (a® - c3)2=0.

*28, The expressions 22+462+b and 2%+ 12x+3b have a
common factor. t numerical values can b have ?

*27. How can you tell, without solving, whether the roots,
supposed real, of a quadratic equation are positive or negative ?

Prove that the positive root of 22—-82-8=0 is greater
than 8.

*28. The numerical term in a quadratic equation of the form
224 pr+¢=0 is misprinted 18 instead of 8, and a student in
consequence finds the roots to be 3 and 6. What were they
meant to be?

%29, Two.boys attempt to solve a quadratic equation. After
reducing it to the form 224 pz 4 ¢=0, one of them has a mistake
only in the absolute term, and finds the roots to be 1 and 7; the
other has a mistake only in the coefficient of 2, and finds the
roots to be —1and —12. Find the roots of the correct equation.

#938. Application to Maxima and Minima,.
The maximum or minimum values of expressions in-
volving a variable quantity (say #) to a power not
higher than the second can often be found by equating
the expression to y, and solving for 2. The method is
explained and illustrated in the following examples.

Ex. 1. Find the least value which the expression x3—6zx+10

can have for any real value of z.-
Let 22 -62+10=y.
- 28— 62410-y=0.
. z=3+4y—1L.

Now, if = be real, 7 — 1 cannot be negative, .". yis not less than‘l.
Hence the smallest possible value of y is 1. ‘
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Ex. 2. Divide a line into two parts so that the rectangl -
tained by them shall be a mximwn.pa co " oo

Let the length of the line be a; that is, suppose that it
contains ¢ units of length. Let z be the length otP one part into
which it is divided, .. a—x is the length of the other part.
Thus # (@ —z) is to be a maximum.

Let z(a—-z)=y.

- 2i—aw+y=0.

_a* a4y
=—="a—.
Now, if # be real, a®—4y cannot be negative. Therefore the

greatest possible value of 4y is a?; that is, }a? is the greatest
possible value of .

If y=}a?, then 2=4a ; that is, the line must be bisected.

Ex. 3. Find the greatest and the least values which the ex-

pression ::-'_'—:I: can have, where x 8 any real quantity.
2z+l_
Let PSS
oo B2t l=y (2 -2+1).
<o B2 (1-g)+2(1+y)+1-y=0.
- e —4(1—y)2
Solve for z, .. r= L+y) V1 +yP-4(0 3/),

2(1-9)

Now z is real, ... (1+%)2—4(1—y)? must be positive,

that is, {1+2)+2(1-)}{(1+y)-2(1 -y)} is positive,
that is, {8—-u} {3y — 1} is positive.

Hence the factors 3—y and 3y — 1 must be of the same sign.
Now, if y>3, the first of these factors is negative and the
second positive ; also, if 3y<1, that is, if :{1<%e the first is

itive and the second negative, But if y lie between 3 and

, both factors are positive. '

Therefore y is not greater than 3 and is not less than }.

That is, the greatest value y can have is 3 and the least value
¥ can have is }. :
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EXAMPLES. XX B

Shew that 22— 82+ 19 can never be less than 3.
Shew that 42348 — 42 can never be less than 2.
Find the least value of the expression § (z+1) (z+2).
Find the greatest possible value of

(42— 8y +9)+ (492 +8y+9).
5. What is the least value which the expression
(22— 62+5)=+(r+1)?

Lol N

can have?
6. What is the greatest possible value of 5+ 41— 2%?

7. If the sum of two numbers be always equal to a, what
are the numbers when the sum of their squares is as small as

possible ?

#8, Four men, 4, B, C, D, went to market to buy sheep.
4 bou(gjht 8 sheep more than B, and B bought 16 sheep more
than C. The number of sheep bought by C and D was 72.
The sum of the squares of the number of sheep that each person
bought was a minimum. Find what number' each person bought.



CHAPTER XXIL
INDETERMINATE EQUATIONS,

[The student who is reading the subject for the first time may
omat this chapter.]

*#239. A single equation between two or more un-
known quantities, such as az + by =c, can be satisfied
by an infinite number of values of the unknown
quantities. For, if there be two unknown quantities;
any number or value may be given to one of the
unknown quantities, and we shall then get an equa-
tion to determine the corresponding value of the other
unknown quantity.

Such equations are called indeterminate.

More generally we may say that a system of simultaneous
equations where the number of equations is the same as the
number of variables is usually determinate, that is, the equations
enable us to determine a finite number of values of the unknown
quantities which satisfy all the equations. But if the number of
equations given be less than the number of unknown quantities
contained 1n them, the system is indeterminate.

*240. It may however happen that in a numerical
indeterminate equation the number of roots which are
whole numbers or integers is determinate. The general
method of obtaining such roots lies beyond the scope
of this work, but it may be illustrated by one or two -
easy examples.

B. A 17
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*Er. 1. Find all the positive integral solutions of the equation
We begin by dividing every term by the coefficient of z or
the coefficient of ¥, taking the smaller of the two. In this case,
therefore, we ahnﬂ divide by 3,
cor+gr+y=T+3
‘We now take all the integral terms to one side of the equation,
and the fractional terms to the other,

R R A 2 T T U (i).

Now x and y are integers, .. 4y — 7 is an integer, .". }— 2
must also be an integer. Let us denote it by p,

oo 3—fz=p.
o 1-32=3p. :

This is another indeterminate equation between » and p,
but of a simpler form than that from which we started. Con-
tinuing the above process, we must now divide by 2, and then
transpose the integral terms to one side of the equation and the
fractional terms to the other side. We thus obtain

TH+Pp=3—-4p .veririnnnis veneno(il).
Now z and p are integers, .". $ —4p must be an integer. Let
us denote it by g, i
< 3-dp=g.
R O ./ A (iii).
This is another indeterminate eqbnation between p and g, but
as the coefficient of one of the variables, namely p, 18 now unity
we need not continue the process any further.
From (iii), we have p=1-2q
Substitute this value of p in (ii), and we obtain
2z=3¢-1
Substitute this value of 2 in (i), and we obtain
R - y=9-"5¢.
The integral solutions of the equation are all included in
the values
x=3¢-1, and y=9-"5q.
where ¢ may be any integer whatever. It is obvious that, if ¢
be an integer, the corresponding values of z and y will also be
integers; and it is easy to verify that whatever value ¢ may have,
these values of z and y satisfy the given equation.
Now in this case # and y are not only to be integers, but
are also to be positive. To make y positive, ¢ must be less
- than 2; to make x positive, ¢ must be positive. Hence the only
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value which ¢ can have is 1. The only positive integral roots
are thus given by putting ¢=1, and are
r=2, y=4.
- *%x. 2. Find all the positive integral solutions of the equation
—_ y =63.

‘We have (z+y)(x—y)=63. :
Since x and y are positive integers, .*. #+y and 2 — y are integers.
Also, z+y 1% positive and greater than z—y. I'z)w the only
gbsitive integral factors of 63 are 63 and 1, 21 and 3,9 and 7.

ence the only solutions are given by
x+y=63} x+y=21} z+y=9}
z-y= 1’ z-y= 3J°’ and z—-y="7)"
These give =32 and y=31; #=12 and y=9; =8 and y=1.

*Ex. 3. Find in how many ways a debt of 3s. 8d. can be paid
in sixpences and francs—the value of a franc being taken as 10d.

Let z be the number of francs, and y the number of sixpences,
which are used in paying the debt : the value of these is equal
to (10x+6y) pence.

This, by the question, is equal to 3s. 8. or 44d.,

< 10246y =44.
< 5z4+3y=22,
But by Ex, 1, there is only one solution of this equation in posi-
tive integers; namely =2 and y=4. Therefore there is only
one way of paying the debt, namely, by paying two francs and
four sixpences.

*BEXAMPLES. XXI.
Solve the following equations in positive integers.
1. 22+3y=9. 2 3z+7y=58. 3. 13z+2y=119.

Find the general solution of the following equations, and

also the least positive integral values of » and # which satisfy
each of them.

4, 3z-2y=10. 5 Tr-9y=29. 6. 13z—17y=9.

7. In how many ways can a sum of 15s. 5d. be paid in
threepenny pieces and fourpenny pieces ?

8. In how many ways can five pounds be paid in dollars
(worth 4s. each), and francs (25 of which are worth £1)?

9, Find in how many ways the sum of £4. 15s. 6d. can be
paid in bhalf-guineas and half-crowns.

17—2
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10, The sum of two numbers is 35, and their highest com-
mon factor (or greatest common measure) is 7. Find all the
positive integers which these numbers may be.

11. A boy had between 150 and 180 nuts. He divided them
into parcels of four, and found there was one over. Then he
divided them up into parcels of five, and found that none were
left over. How many nuts had he?

12. Three Arab jugglers, travelling to Mecca, with a per-
forming monkey, purchased a basket of dates. The basket con-
tained enough dates to divide equally between the three and one
over. During the night one juggler awoke, and, after giving one
date to the monkey, secretly ate one-third of the remainder.
Afterwards, each of the others in turn awoke, and, after giving
one date to the monkey, secretly ate one-third of the remaining
dates. In the morning, enough dates remained to divide equally
between the three, with again one over. What is the least
number of dates which must have been purchased to make this _

possible ?
13, A owes B 4s. 8d. A has only half-crowns, and B has
only fourpenny pieces. How can 4 most easily pay B?

14, Shew that the e(auation 4z - 6y=11 cannot be satisfied
by integral values of z and y.

15. Divide 25 into two parts, such that one of them is divi-
sible by 3 and the other by 2.

. 16. The sum and the product of two integers are ther
equal to 41. What are the two integers? toge

17. A person bought an exact number of shares in a certain
company at £24. 10s. per share, spending between £200 and
£300. Some time after, he bought another exact number at
£4.10s. He then sold out the whole for £400, which was the
money he gave for them. Find how many shares he bought on
each occasion.

18, “There came three Dutchmen of my Acquaintance to
see me, being but lately married ; they brought their Wives
with them. The Men’s Names were Hendrick, Claas, and
Cornelius ; the Women’s Geertruij, Catrijn, and Anna : But I
forget the Name of each Man’s Wife. ey told me they had
been at Market to buy Hogs; each Person bought as many
Hogs as they Hgave Shillings for each H(:f; Hendrick bought
twenty-three Hogs more than Catrijn ; and Claas bought eleven
more than Geertruij ; likewise, each Man laid out three Guineas
more than his Wife: I desire to know the Name of each Man’s
Wife.” (The Woman's Almanack, 1739.)
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1. Find the square root of
14424 — 60043 +9132% — 600z +144;
and prove that the square root is divisible by 32 —4.

2. Solve the equations:
. 35-3 2-5
@ 3~ -1l
(i) 20-3y=1, #(s-3y)+y(y-22)+26=0;
(iil) 22-y?+22—4y+5=0, zy+2+y=1.

3. Shew that the sum of the squares of the roots of the
equation 2%+rz+8=0 is equal to 73— 2s.

If a, B be the roots of the equation az?+ bz +a+b=0, prove
that (1 —-a?)(1 - 8?)=4aB.

4. A man buys a number of yards of cloth for £20. He
sells three-quarters of them at 3s. per yard, and the rest at two-
fifths its cost price, when he finds that he has neither gained nor
lost : how many yards did he buy ?

5. A rectangular plot of grass is surrounded by a gravel
walk of equal area 6 fget wide. The diagonal of the rectangle
formed by the outer boundary of the walk is 58 feet: find the
dimensions of the grass plot.
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6. Find the square root of 16a®—8at—16a%+a?+4a+4.

7. Solve the equations:
(i) 823-162+16=0;
. 35 s _o%+3
(i) (z.—__g)—r(-”‘i'g) =3_—3;
a4+ r y at4bt
@) sty=—gp— 3t
8. Shew that there cannot be more than two unequal roots
of a quadratic equation. -
Form the equation whose roots are the reciprocals of those
of the equation (z+5)3— 42=160.

9. A starts to walk from Wimbledon to London, and B
from London to Wimbledon at the same time. As they pass
one another, 4 diminishes his pace one mile an hour, and B in-
creases his one mile an hour. g‘.ach arrives at his destination at
the same time. Find how much faster one started than the other.

10. The length of a rectangular room is twice its height, and
its height is two-thirds of its width. If b feet were taken off its
length, 5 feet added to its breadth, and 5 feet added to its he%ht,
its cubical contents would be increased by 1500 cubic feet. Find
its dimensions.

11." The united ages of a man and his wife are six times the
united ages of their children. Two years ago their united ages
were ten times the united of their children, and six years
hence their united ages will be three times the united ages of
the children. How many children have they ?

12. Find the cube root of
64a8 — 48a5 — 84at+47a3+ 4242 — 122 - 8.
13. Find the factors of 4 (z*+1) — 202 (23+ 1)+ 3322

14. Solve the equations:
(i) 1122-13z=18;-
(i) 2%+2z¢y=3, 23-3y*=6.
15. A bag contains 180 gold and silver coins of the value
altogether of £60. Each gold coin is worth as many pence as

there are silver coins, and each silver coin as many pence as
there are gold coins. How many are there of each kind ?
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16. In a cricket-match, the score of the captain is three times
that of the next best player, and the scores of these two together
make up three-fifths of the total of the innings. The av of
the rest of the eleven is seven runs, and nine runs are scored for
extras. Find the captain’s score and the total of the innings.

7. If X=—pgz+(py+¢2)(p+9)
Y= —pgy+(pz+92) (2 +9),
Z=—-pgz +(Pr+9y)(p+9),
X34+ Y34 Z:=(pP+pg+ ) (23432 +4%).
18. Solve the equations:
Ly
a+z b+x ’
(i) 2ow+y=22—20+6y3+4y=5.
19. Shew that the product of the roots of the equation
B+pr+g=0isq.
Find the equation whose roots are the reciprocals of those of
22+ px+g=0.

20. From a square field is taken as much ground as is -
required to form a road of uniform breadth skirting the sides of
the field. The ground so taken is yi of the whole field. The
total length of the road measured along the middle is 700 yards.
Find the breadth of the road. .

prove that

21. Find the square root of
9a? + 452 + 2+ 25d2 — 12ab — 10cd + 4bc — 6¢a + 30da — 20bd.

22. Solve the equations:
G Zr2,.o-2 20+53,
z-2 z+2 xz ’
o a—bad ax®-b _a-b
W artat e 2ars’
(i) a2?+42y=22, 3+yzr=-18.
23. If in a number of 3 digits, the sum of the tens’ and

hundreds’ digits be 3 times the sum of the units’ and tens’
digits, prove that the number is divisible by 7.

24. The sum of the cubes of three consecutive integers is
33 times the middle integer: find the numbers.
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25. A man buys two kinds of cloth, black and brown, the
brown cloth costing 6d. a yard more than the black. He pays
£5, 55, for the black cloth, and £4. 10s. for the brown, but
obtains 3 yards more of the former cloth than of the latter. Find
the cost of a yard of each kind of cloth, and the number of yards
he bought.

26. Find the square root of
(323 —5)2 — 4z (3234 5) + 6422,

27. Solve the equations:
0 Sl ool 2y,
z-1" z+1 x
@) z-y=1, #B-3°=19.

28. Find the least value which the expression 23— 4x4-7 can
have for real values of x. .

#29. A and B are two stations on a railway. A fast train
leaves A for B at the same time that a slow train leaves B for 4.
They arrive at their destination three-quarters of an hour and
an hour and twenty minutes respectively after they passed each
other. Find how long each took for the journey.

*30. On two different railways the stations on each are at
equal distances. A train on one runs at the rate of 20 miles an
hour, and a train on the other runs at the rate of 24 miles an
hour, while both trains lose two minutes at every station. The
arrival at every station on the first line coincides with the
arrival at every fourth station on the second line. Find the
distances between the stations, supposing that neither train can
run more than 20 miles without stopping, and that on each
r?ilway the distances between the stations are an exact number
of miles.




CHAPTER XXIIL
FRACTIONAL AND NEGATIVE INDICES.

241. WE have hitherto supposed that the indices
which have been employed are positive integers; and,
in fact, the definition of #", given in Art. 22 (namely
the product of n quantities, each equal to «) is un-
mtelﬁgible unless n is a positive integer. -

We shall now proceed to see whether we cannot
frame some other definition of z*, which shall be in-
telligible whatever n may be; but of course, the
definition must be so framed that when 7 is a positive
integer, it shall agree with that a.lrea.dy given.

242. The method we shall adopt is strictly analogous to
that used in Art. 40, when we were seeking to extend our
definitions of addition and subtraction to include the case of
negative quantities. In that case, we first proved that certain
formulae were true so long as ¢ was greater than b, and, next,
by assuming those formulae to be true whatever numbers were
adpreseni:ed by a and b, we were able to extend our ideas of

dition and subtraction to include negative as well as positive
quantities.

The process by which, in Art. 55, we obtained the mea.mn%”
be assigned to the product of two negatlvo quantities was sim1

243. We have already proved some propositions
about indices, and in particular have shewn [Art. 72]
that

" x g* =a™",
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when m and n are positive integers. We shall now
assume this result to be true, whatever m and n may
be, and from it shall deduce a meaning to be assigned
to «", when n is either negative or fractional ; and this
meaning we shall take as our definition of «*

244. The only other propositions about indices
which we have proved are [see Arts. 76, 86], that, if m
and n be positive integers, then

if m>n, ™+t ="
if m <n, & rat=1=+2"";
and : (™) =a™

These results may be regarded as true for all values
of m and n, provided we can shew that they are satis-
fied by the values which we are going to assign to 2™
and 2* when m and n are fractional or negative. This
we shall do in Art. 246.

245. We shall begin then by assuming the formula
oz = ™", and shall thence deduce in succession the
meanings to be assigned to a quantity raised to the
power of (i) a positive fractional index, (ii) a zero
index, (iii) any negative index (integral or fractional).

4
Theorem (1). To shew that a* s equal to the ¢* root
of @, where p and q are any positive integers.

Whatever numbers m and n may be, we have
o™ x &t =a™";

and similarly, 2 xa™x a*x...=a4""" ... (a).
2 2z 2 .
Hence (a;:)" =2 X o' X 2 X ... (q factors) [Art. 22

E*’;’*f*"‘" terms) [by (a,)

=x?,
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Take the g™ root of each side of this equality,

. afis equal to the ¢™ root of «*.

Theorem (ii). 70 shew that «° s equal to unity.
Whatever number m and » may be, we have
™ x o =™

Let m=0, St xal=a"
Divide both sides by 2®, .. 2*=1.

Theorem (iif). 7o shew that «™ s equal to the
reciprocal of o, whatever number n may be.

Whatever number m and n may be, we have

™ x o* =™,
Let m = —n, St xat=a"""
—
-1,
Divide both sides by 2%, . a™* = — .

Thus, whatever » may be, positive or negative, inte-
gral or fractional, we have found a meaning to be given
to 2™,

246. Next, we have to shew that this meaning is
consistent with the results of the propositions collected
in Art. 244.

Whatever number m and n may be, we have, by
Art. 245,

z" 1 m N __ N
;,,—w"x;—:c Xxt=a""

, P 1 1.1 1
and ?=w"x;‘—;.—;x;—w..,.
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Thus the first two propositions quoted in Art. 244 are
consistent with the extended meaning now given to z™
and a”

We have next to shew. that, whatever numbers m
and n may be, we always have (¢™)* =2™; and here
we shall consider in succession the cases where n is a
positive quantity, zero, or a negative quantity.

(i) If m be any number, and n=p/q, where p
and g are positive integers, then we have to shew that
2 m
@)y==".
This, by Art. 245 (i), means that Y(@) = 3x™, a result
which 18 true. [Art. 76.]
(i) If m be any number, and n =0, then we
have to shew that (z™)°=a™.
This, by Art. 245 (ii), means that 1 =1, a result which
is obviously true. )
(iii) If m be any number, and n=—3s, where
8 is a positive quantity, then we have to shew that
() =a™

. 1
This, by Art. 245 (iii), means that @

which by (i) of this section is always true.

,=—1"—‘,aresu1t
x

247, Index Laws. All the above results_ are
included in the statements that, whatever numbers m

and 7 may be,
" X gt =z,

and (@) = 2™,
These results are known as the index laws.
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248. The following examples illustrate the appli-

cation of the index laws to the simplification of algebraic
- expressions.

Ex. 1. Simplify aP+¥xaP+izqi=p,

The given expression =aP+3¥xar+ixar—¢

This fraction =

.

=qP+Q+p+@+(p~9@

=q%+3q,

(z.,n:q)u . ($q+9r)n . (a:-fﬂp)n
(xP.29, 27 '

rp+m.w+w'w+ﬁp

= (xp+q+r)u
24D + 28g) + (ng + 1) + (nr + Inp)

= ™ pre+n
29D+ 3nq + Snr

= zap+nq+ﬂr

Ex. 2. Simplify the fraction

= 2{3np +3ng + 3nr)—(np + ng + nr)

=P+ g+ 2y,

EXAMPLES ON THE INDEX LAWS. XXII A,

Simplify the following quantities.

a®tax qrtl Z—a+bte ga-bte gatb-e
at=p ° . P2

am=® gm—m gm—bn (29 () (29
ar—™, qn-Im  gn—bm 4 WXF W.
(za+0)3, (ad+e)2, (ae+aye (aP—9x ga-r)3

(0. 2. 2t : * @Px (a9
au—n.an-h.au-h b".c’”" B\ve—z+1
P e = 8. e (5)

1 8 )y

L 5 77
BxaixaYaixalix & o3 X (a %8,
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249. The following examples illustrate the use of
the index laws in questions involving the application
of algebraic processes—mul (Phcatxon division, evolu-
tion, &c.—to quantities raised to fractional or negative
indices.

The work will usually be facilitated if all the
expressions be arranged in descending powers of some
letter (see Art. 65).

11 1 1
Ez. 1. Multiply z-32%%+y by 222532
Following the usual process, we have

11
z — 3a¥yit+y
1 1
2ad — 5y‘ _
!
ﬁwy’+ 2x’y s
- 5.ry2+l5x’y 53/’

Add o 2 llayhs l7a:‘y 5y

3 1 1 s 1 1
Ex. 2. Divide 2% - 1Ty +172% - 15y® by 22%— 1535,
Following the usual process, we have

11

2;2 15_1,2)9.»5 17.zy’+l7x’y lbyi(x ity
2@" lﬁry’
- zzy';nvziy
- 2.@7/’+l5xiy ‘
ﬂw’y 153/’
2y 16y -

' 11
Thus the required quotient is z— 232+ .
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Ezx. 3. Find the square root of

54 8 83 43
— 12a358+ 953+ 16a3cA — 24534 + 1663

Following the usual process, we have

405 — 1905 + 16034 + 903 — 24BA + l6c’(2a; 305+ 4d
H 4 e
4a® - 3b3 —lza’b3+ 16a’04+963
- l2a‘b3 +9b3
4a;— Gb§+4c§ l6a’c4 - 24b’c‘+ 160’
164130’g - 24b3d+ 161:s

Hende the required square root is 2a§—3b5+4c‘.
Ex. 4. Find a root of the equation 3%*!49*=6804.

We have 3 x 3%+ (32)*=6804,
that is, 3% 3. 3*=6804.
This is & quadratic equation in 3%.  Let 3*=y,
‘. y*+3y=6804.

Completing the square, .. y2+3y+(8)?=6804+ §=21§25,

Take the square root of each side, .. y+§= i*gﬂ.
=-g+1§5=81, or y=-§-2ff=-

Now if » be real, 3* must be positive, hence the negatlve value

of y is inadmissible,
. 3*=81.

But 81=3%, ... 3*=3%, which is satisfied by z=4.
Therefore 4 is a root of the given equation,
Ex. 5. Find a solution of the n'multamom equations

954v=128, 2 g

These equations can be written
52y
g =g, T =b;

that is, Qe+ =01 BW-z=p,

=5.
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These are obviously satisfied by
z+2y=7, 2y-x=1
Adding, we get 4y=38, .oy=2
.Subtracting, we get 22=6, .:. r=3.’
Hence a solution of the given equations is z=3, y=2.

#950. The use of the index laws also enables us, in
some cases, to extract roots of expressions of an order
higher than the second or third. .

For example, the fourth root of an expression can
be found by extracting the square root of the square
root of it. For suppose that we desire to find the
fourth root of X, Then we have

yX =xt=(x)i=JIVX].
Example. Find the fourth root of
6561at — 43740a3b — 5832a3¢ + 1093504252 + 29160a2bc + 194402
— 121500ab® — 48600ab2c — 6480abc? — 288ac® + 5062504+ 27000b3%¢
+ 5400032+ 480b¢® + 164

Extracting the square root of this expression by any of the
methods given in Chapter XV., we find that it is
81a2 — 270ab — 36ac-+ 22553+ 60bc + 4ct.

The square root of this latter expression is 9a — 15b — 2¢, which
is therefore the required fourth root.

*251. Similarly, the siath root of an expression can
be found by extracting the cube root of its square root.
For suppose that we want to find the sixth root of X.
Then we have

yX =Xt = (Xh = J[JX]

The same method shews that we might also obtain the
sixth root of an expression by extracting the square
root of its cube root.
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MISOELLANEOUS EXAMPLES ON INDICES. XXIL B.

11
(ab’) b 303
a’b ‘c‘

1. Simplify , and find its value when a=2, 5=3,

c=432.
Simplify the followmg expresslons, numbered 2 to 9.
2 (Ya")x(Ya)xa 3—a5 3. (Ya?)x(Ja')xa ’—a”l

R s VT
N ’ P ya—-x+
CVET T SO

8. a6 . 5G9, 9 { x,.._..) -Z-[z"""‘..z""]"}

10. Prove that a—b= (a’ b’)(a’+b”)
2 11 2
11. Prove that a— b= (a3 b3)(a3+aW+M)
2 11 2
12. Prove that a+b= (a3+b3)(a3 a3+ B3).
1 1 1 1

13, Prove that a—b= (az.i — bY) (af + bA) (a? + b'z)

3 3 1
14, Multiply 322—b62+4 by 222—-a%—-4.
11 1 111
16. Multiply b-14-2a% 2—c+a? by c+a?—2a22+b-L
1 1 1 1 1 1
16. Multiply (s—gi+43 by (A+yA2+9%
17. Find the continued product of
1101 1 11 1o
(x+a+a¥?), (a¥+?), (@ —a’2?+2), and (22—a?).
1 1 1
18, Divide by af— 253 — ¢? the expression
3 1 1 1 1 111 1 1

3 3
2 — ab? - ac? - 3a2b + afc — 2a2b3c? — bic + 3bc? + 262 - 2.

1 1 1
19. Divide (z—522+6)(x - bz% - 14) by z—103+21.
B. A. 18
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111

20. The proclu'ctl of two qtlw.ntities is 248y — 2724 1823333,
and one of them is .z~"i+i'.3/~i 3:: ﬁnd the other.

21. Simplify w;)%w—y

2. Simplity {1-2-% ”f+‘1+_2’}{’”2“}.
20841

23. Simplify
1 1 A
.w:‘
+ y‘ 1 1 + 1 1
(z‘ 3/‘)(-@‘ z‘) (y‘ 2‘)(.1/‘ o) (A- %‘)(z4 .1/‘)
Extract the square root of the expressions numbered 24 to 27.

9 12
2%, $’+ﬁ—4$—;+10.

4 2 1 .
25, 42%— 12.z5+28x+9x3 4223449,
ll 2 l 111

2. z- 4.z4a6+sx=cz+4m3 124%a8c3 + 9c.
27. a8+ b-84+4a5b—142b-5a+2a%b-2—3b—4a?— 6a3b3.
%28, Extract the fourth root of
8124 — 21643+ 21642 — 962+ 16.
%29, Extract the sixth root of
x8 baty? 5 Zz
+ R S

64 48
Find solutions of the following equations, numbered 30 to 33,
30, 4z=2¢+H, 31, 9(9*143)= 28x3'
2 22

32. (a3+l)(.z-’ b"’) (b3+1)(.r‘ a¥)= (ot“’lﬁ-l-l)(ats b’)

33, (gm0 ) (40— g~ mn
(W B (g + W2y g~ mm) — ),

34. Prove that #°V®=(z/2)* is satisfied by z=2}.
35. Solve the simultaneous equations 27%=9v, 817/3%=243.

36. Solve the simultaneous equations’ o, ”_2_3;; ?:: l;} .



CHAPTER XXIIL
LOGARITHMS.

[The results of this chapter are not required in the immediately
following chapters, and the discussion of logarithms may be deferred
for the present of the student desire 1t.]

252, Logarithm. The logarithm of a number to
a given base is the index of the power to which the base
must be raised to be equal to the number.

Thus, if a” = n, then # is called the logarithm of » to
the base a. This is written as

z=log,n.
The equations a®=n and z=Ilog,n express the
same relation between a, x, and n; and this relation

may be written in whichever of these forms is the more
convenient.

253. We can approximately calculate the loga-
rithm of a number to any given base in the manner
described later [Arts. 414, 416]; but in some cases, the
exact value can be at once obtained from the definition.
The first two of the following examples are important.

Ex. 1. The logarithm of 1 is zero, whatever the base may be.
For let a be the base, and let log, 1=2x.
Therefore, by the definition, a*=1.
This equation is satisfied by z=0. [Art. 245, (ii).
18—2
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Ex. 2. The logarithm of any number to that number as base
8 unity.
For let @ be the base, and let log, a=u.
Therefore, by the definition, a*=aq.
This equation is satisfied by r=1. [Art. 22.
Ez. 3. Find the value of log,}.
Let log, §=2.
. o E=4,
that is, 22 =91,
This is satisfied by 2= ~1, .*. z=-13.
Ex. 4. Find the value of log% 27)-1L.
Let r=logys(27)~1.
- (Vay=27-1.
1
o (PPE=(3%)-L
32

. 3 =38,
This is satisfied by §2=-3, .. 2=-4.

EXAMPLES. XXIII A.
Determine the values of the following logarithms,

1. log,,100. 2, log,,10. 3. log,64. 4. log, 81.
5. logo;100. 6. logiy'001. 7. loge2 8. log., 1000,
9. log,,/528. 10. log, 4. 11, log,ge "0001.
12. log,/;32. 13. log,s;008. 14, log,125.

15. log,, t74s 16. log,,32. 17. log,; V49,
18, log.;'027. 19, logw,,(243)-;. *20. log0.

254. We now proceed to discuss some of the ele-
mentary properties of logarithms: these are at once
deducible from the two fundamental propositions re-
lating to indices, namely, #"z"=2a"" amfo @)Y =a™
[Art. 247].

We shall suppose that the logarithms are calculated
to any number, a, as base.
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255. Logarithm of a Product. The logarithm
of a product 13 equal to the sum of the logarithms of its
Jactors.

Let m and n be factors of the product.

Let m=a*, .. z=log,m;
and let n=a', .. y=log n.
L mn=a*.a"=a"".
o log, (mn) =z +y
= log, m + log, n.
Similarly, if m, n, p,... be factors of the product, let

m=a’, n=a', p=a’, &c.,

then mnp ... =a’a'a"...=a""",
s log,(mmp...)=2z+y+z+...
=log, m + log,n+log,p+....

256. Logarithm of a Quotient. The logarithm
of a quotient 8 equal to the logarithm of the dividend
dvmimshed by the logarithm of the divisor.

Let m be the dividend, and let » be the divisor.

Let m=a*, .. ae=log, m;
and let n=a', .. y=log,n.
m_a_ e
n a¥ )

. (%) =2~

=log, m — log, n.

257. Logarithm of a Power. The logarithm of
a power of a number is equal to the product of the
index of the power and the logarithm of the number.

Let m be the number, and let y be the power to
which it is raised; y may be either an integer or a
fraction.
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Let m=a", .. z=log,m.
m’ = (a®) =a™.
log, (m") = xy
= ylog, m.

258. It follows from the result of the last article
that logarithms can be used to extract the roots
of numbers. ‘

For suppose that N'is some given number, and that
we want to find the 2™ root of it.

Let JN =a.
Nt=a.
11‘ log, N =log, z. [Art. 257.

Hence, if the logarithm of N to any base a be known,
then we can deduce the logarithm of # to that base;
and hence, by means of certain tables which are
published, we can find the value of .

In numerical calculations, the number ten is usually
taken for the base [Art. 262].

259. "It is on the results of Articles 255, 256, 257,
that the use of logarithms largely depends; and in’
order to apply those propositions, it is necessary to
express the number, whose logarithm is requireg, in
the form of a product or a quotient. This is illustrated
by the following examples.

Ex. 1. Having given log2=-30103 and log 3="47712, find
the log;rithm of (i) 5; (ii) 225; and (iii) ‘003-—the base in all
cases being ten.

We are given the logarithms of 2 and 3, and we know by
Art. 253, Ex. 2, that the logarithin of 10 (to the base 10) is
unity. Hence, i)y Art. 257, we know the logarithms of any

wers of 2, 3, and 10. Therefore, by Art. 255, we know the
ogarithms of any product of powers of 2, 3, and 10. We shall
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therefore in each case begin by expressing the number, whose
logs.rilthm is required, in factors which are powers of 2, 3, and
10 only.

(i) We have 5=12.
.. log 5=1og10-1log 2 [Art. 256.
=1--30103
=69897.
(ii) Dividing 225 by 2, 3, and 5, as often as we can, we find
that 225=32%x 5.
.*. log 225 =1log (3% x 5%)
=log 32+ 1log 52
=2log3+2logh
=2log 3+2log 12
=2log 3+2 (log 10-log 2)
=2 (-47712) +2 (1 - *30103)
=235218.
{iii) In the same way, 003=g3;=335=3"1x10"2
.. log ("003)=1log (3-1x 10-2)
=log (3-1)+log (10-2)
=-log3-2log 10
=—"47712-2
= —247712.

Ex. 2. Having given log 4= 6020600 and log 36 =15563025 ;
Jfind log 9 and log *15—the base in all cases being ten.

We must first resolve 4 and 36 into the simplest possible
factors.

We have 4=2%, ... 2log2=log 4="6020600.

Also, 36=22x3%, .. 2log2+2 log 3=log 36=1"5563025.

Solving these two equations for log 2 and log 3, we obtain
log2=3010300, log 3="4771213.

We now know log 2 and log3. Hence, if we can express the
given numbers as products of powers of 2, 3, and 10 (or 5), we can
obtain their logarithms as in the last example.

Now, 9=32%
.. log9=2log3=2(-4771213)="0542426.
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Again, 15=106=20 " 2x10"
.~ log (-15)=Ilog 3 —log 2 —log 10
=4771213 - 3010300 -1
= —8239087.

EXAMPLES. XXIII B.
In the first four examples, of the numerical values
of£g2 log 3, l«f)y7loglluasmmed T values are
log2= 3010300,
log3= 4771213,
log 7= 8450980,
log 11 =1-0413927.

AU the logarithms in the following set of examples are calculated
_ to the base ten.]

1. Having given the numerical value of logz (see above);
find the logarithms of

() 3s; (i) 3125; (i) ~V02B; (iv) {10-24}5.

2. Given the numerical values of log 2 and log 3 (see above);
find the Jogarithms of the following numbers.

i) 15; (ii) 1944; (iii) 4'5; (iv) 2400; (v) 75;
(vi) ‘0045; (vii) +0036; (viii) -003; (ix) 14; (x) 072;
(xi) °75; (xii) 7-29; (xiii) -00125.
3. Having given the values of log2 and log 7 (see above);
1 1 1
find the logarithms of (1°75)2; (24'5) 3; (-0056)2, )
4, Having given the numerical values of log 2, log 7, and
10

log 11 (see above); find the logarithms of 14 ; 0154 ; and w11
5. Given log2=°3010300 and log 6=-7781513; find the
logarithms (to the base 10) of 15, and -0025.
! 6. Given log21=1'3222193 and log 49=1'6901961; find
og 3.
7. Given that log 27=1'4313638 and log 5=0'6989700 ;
find log 135, and log 3.
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8. If log125=2'0969100 and log49=1'6901961; find the
3
logarithm of (35)%
9. Calculate log 14, it being known that log 392=25932861
and log 1715=3-2342641.

10. Given log 72=1'857332 and log 45=1'653212; find
log 30, and log -0135.

11. Having given log242=a, log80=b, log45=c; find
log 66, log 3993, and log 36 in terms of a, b, c.

260. To find the relation between the logam'thm of
the same number to different bases.
Let m be the number, a and b the bases.
Let log,m =2, and log, m =y.
. m=a" m =0
oat=d.
Therefore a= bg,

that is, % =log, a.

y=zlog, a.
log, m =log, m xlog,a............ @).
Similarly, b= af’,
that is, T=logb. -
¥ 8.

. x=1ylog,b.
log,, m=1log, m xlog,b ......... (ii).

Also, we have log,b x log, b =?—Ix %: 1.

Thus log, b and log, a are reciprocals each of the other.
Example. Having given log,, 2= 3010300, log),3="4771213;
Jind log, 27 correct to four plagg; %f decimals. ”

It is better to work examples like these from first principles
than to quote formulae.



282 LOGARITHMS.

Let z=log; 27.
o 57=27=33%
*. xlog5=3log 3.
Now log 5=log 12=1—log 2=1 — "30103090 = "6989700.
.. 2(°6989700)=3 (4771213).
_3(-4771213)
T -6989700 T

We are asked to determine x correct to four places of
decimals. To obtain the last decimal fi it is necessary to
find z to five places of decimals, in order to see whether x is
more nearly equal to 2:0478 or 2:0479. As the fifth decimal
figure is leas than 5, the answer will be 2-:0478. .

EXAMPLES. XXIII. C.

1. Having given log,,2=3010300, log,,3="4771213; find,
correct to three places (()? Qecimals, PR ’
(i) log;6; (i) logs5; (iii) logg3.

2. Having given log,,2="3010300, log,,7="8450980; find
log, 4, and log; 70.

3. Given log,, 3="4771213, log,,7="8450980 ; find log,/7,
and logy; 3.

261. Common Logarithms, In practical nu-
merical calculations, all logarithms are calculated to
the base 10, and the symbol shewing the base to which
they are calculated is usually omitted. Logarithms to
the base 10 are called common logarithms.

The only logarithms considered in the rest of this
chapter are common logarithms, and the base 10 need
not be inserted.

Tables of the logarithms of the numbers from 1 to
100,000 have been calculated. That is, values of  which
satisfy the equations 10” =1, 10” = 2,... have been found.
The method of finding the values of these logarithms
will be explained later, [Art. 416], but it may be stated
that the exact rootsof these equations cannot in general
be found, though the numerical values of the roots can
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be obtained as accuratély as is desired. Most tables
give the results to at least five places of decimals.

262. Advantages of taking ten as the base.
The advantage of using 10 as the base arises from the
consideration that

log10 =1 ‘ [Art. 253, Ex. 2,
log 100 =log(10*) =2log10=2 [Art. 257,

log 1000 =1log (10*) =3 log 10 = 3,

and, universally, log (10*) =z log 10 =n.
Hence log (N x 10%) =log N + log (10*) =log N +=,

and log l%r; =log N — log (10™) =log N —n.

Thus, if the logarithm of any number, such as N,
be known, we can immediately determine the logarithm
of the product or quotient of that number by any power
of 10.

Thus, if we know that log 2=030103, we have at once
log 20=1log (2 x 10)=log 2+log 10=1-30103.
Similarly, log ‘02 =1og (2/100)=log 2 —log 100= — 2+4--30103. )
The latter example illustrates the advan of keeping the
decimal part of the logarithm positive, since then the logarithm

of all multiples or quotients of the number by powers of 10 will
have the same decimal figures, and will only differ in their

integral parts.

263. Mantissa. Characteristic. When a log-
arithm is written so that it is the algebraic sum of
a positive decimal fraction and a certain integer
(whether positive or negative), the positive decimal

rt is called the manfissa, and the integral part is
called the characteristic.

If the characteristic be negative, it is usual to write
the negative sign above the number.



284 LOGARITHAMS.

Thus 270516 stands for —2+0 70516 ; while — 2-70516 would
signify —2-070516. The latter nusmaber

= —3+(1-070516) = — 3+ 29484 =3-29484..

264. Characteristics can be determimed by
inspection. In the common system of logarithms the
charactersstic of the logarithm of amy number can be
determined by wnspection.

For suppose the number to be greater than unity,
and to lie between 10* and 10**; then its logarithm
must be greater than n and less than # + 1; hence the
characteristic of the logarithm is n.

Next, suppose the number to be less than unity,

. 1 1 .
and to lie between o ™ and o that is, between

10™ and 107" ; then its logarithm will be some
negative quantlty between —n and — (n+1); hence,
if we agree that the mantissa shall always be positive,
the characteristic will be — (n + 1).

265. Since the characteristic of the logarithm of a
number can be written down by inspection, it is suffi-
cient to give in the tables the mantissa only.

Ezample. Find the value of log 2173.

We find in the tables opposite to 2173 the number 3370597.
The characteristic is 3. ence the required logarithm is
3-3370597.

266. Conversely, if we know the characteristic of
the logarithm of a number, we know the number of
digits in the integral part of the number. If therefore
the arrangement of figures in the number be given, we
can tell where the decimal point must be.

Ezample. Find the number whose logarithm is 2:4560774.

Opposite to 4560774 in the tables is the number 28581,
Therefore log 2:8581 =4560774.

.. log 028581 =2-4560774,
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EXAMPLES, XXIII D.
Add together 8-2152630, 6:3312579, and 3:3725700.
Subtract 31527943 from 2'4984732.

Divide 25188142 by 6, and 8-5502766 by 7.

Given that log,,95:883=1-9817371; write down the
logarithms of 9588200, 956882, and 0095882.

5. Given that log,,6°4145="8071628; find the numbers whose
logarithms are 3'3071628 and 38071628.

6. Find the characteristic of log,350, of log, 065, and of
the logarithm of 500 to the base 3. ’

7. Find the characteristics of the following logarithms,
log, 21; log;, & ; log; 95; logy, 29; logy,°0003; log; 63; log, 16829.

8. Find the logarithms to the base 10 of -001|™, and of

-0001] *™*,

267. Uses of Logarithmic Tables. The chief
purposes for which we want tables of logarithms are
(i) to find the logarithm of a given number, and
(i) from a given logarithm to find the number of
which it is the logarithm. If the number or the
logarithm be given in the table, this can be done at
once. It will be convenient to postpone until Chapter
XXXII. the explanation of how a table of logarithms
is used to find numbers or logarithms which are not
expressly given in the tables [see Arts. 418—422];
but if the student will assume the result of Art. 418,
he may read here the examples which are worked out
in Arts. 419—422.

268. A few miscellaneous éxamples on logarithms
are here added.

Ex. 1. Having given log,,3="4771213, find how many digits
there are in 3%, 97 o » f Y g

Let »=31%,
.*. log =100 log 3=47'71213,
.*» the characteristic of log « is 47.
.*» there are 48 digits in .

Lol SO o
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Ez. 2. Find, correct to three places of dectmals, values of x
and y which satisfy the equations 273V =1=3%*+12v=1; having grven
log 2="3010300, log 3="4771213.

Take the logarithms (to the base ten) of each side of the two

given equations,
.. zlog2+ylog3=log1=0, [Art. 253, Ex. 1.

and (z+1)log 3+ (y—1)log 2=log 1=0.

These are two simple equations between x and y. Solving
them, we find :
o= — log3 ©o log2
T log2+log3’ Y=log2+log3"
Substituting for log2 and log3 their numerical values, we

obtain .
4771213
r= —m= --6131...
*3010300
Y= m= 3855...

The value of z is nearer — 613 than — 614, and that of y is
nearer ‘386 than 385. Hence the answer is x= — 613, y="386.

Ezx. 3. Find how long it will be before a sum of money put out
at cmr?mmd interest at the rate of 3 per cent. per annum, payable
ly, has doubled itself: it being given that log 2="30103, and

log 103=20128372.

Let » be the number of years required, and P the sum
originally put out at interest.

At the end of the first year, the amount is P+ 1§z P=2P(1-03).
Call this amount P;. Then, at the end of the second year, P, has
amounted to P, (1-03), that is, to P(1'03)% Similarly, at the
end of the ntt year, the total amount will be 2 (1°03)*. This, by
the question, is 2P.

».o P(103)=2P.
oo (103)r=2.
.*. nlog (1°03)=log 2.
. 30108 ..
Sem =W2_23 45, very nearly.

It will therefore take a little less than 23} years before a sum
of money doubles itself under these conditions.
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MISCELLANEOUS EXAMPLES. XXIII. BE.

[In the first nineteen examples the values of the following
logarithms are supposed to be given,
log,, 2="3010300,
log,, 3="4771213,
log,y 7="8450980,
log,, 11 =1-0413927.
AUl the logarithms in the following wples are supposed to be
taken to the base 10, unless tﬁzoiontrary 18 stated.] a
Find the logarithms of the following numbers, numbered 1to 9,
1. -032. 2. °36. 3. 720. 4, log 729, 5. 7'5.

6. ‘00045. 7. ¥°00012. 8. (29'7)“785. 9. 4/1002835.

10. Find log; /2, and logy; 7.

11. Determine which is greater, (i) ‘01 or (2)°; (ii) ‘1 or ($)1
2. Determine which is the greater ($3)'® or 100.

. Find how many digits there are in 5% and (54)%, and in
e integral part of (3})1%0,

How many ciphers are there between the decimal point
the first significant figure in (*6)107

5. If the number of births in a year be J; of the popula-
fon at the beginning of the year, and the number of deaths 2; ;
find in what time the population will be doubled.

16. In what time will £100 amount to £500 at 5 per cent.
per annum compound interest ?

/17. In how many years will a sum of money double itself at
m

pound interest, interest being payable yearly at the rate of
10 per cent. per annum ?
18, Solve the equations 31—=-r4r=3=—3rg2-1—-1,
7 19, Given log,;36=aq, find log,, 48.
20. Given log24=1-3802112 and log 36=1-55663025; find
log 8:64, log 1'5.

1 2. Given log,, 864=29365137, log,, 486=26702459 ; find
P 8. -
- 0gyo 64 -
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<22. Find the numbers whose logarithms to the base 64 are 2,
- 2&’ 2*9 2}’

. What is the smallest number of logarithms (to the base
required in order to calculate the logarithms (to the base 10)
of each of the following numbers? 64; 125; 50; 30; 4; *6; 375.

Find the characteristics of the logarithms of these numbers
to the base 2.

/4, If log(134)+1log (6%)=1, what is the base ?
5. If there be 27647 digits in the integral part of
Q/B%;‘W, find log 1890.

7 . Given that the integral part of (3-981)1%%% contains
' d:.:y thousand digits; find log,,39810, correct to five places of -

_21. Shew that the square root of 37286 is very nearly ten
_ times its ninth root; having given log 37286=45714203. :

28, Assuming that the sixth and seventh powers of 7 are
117649 and 793543 respectively ; prove that the first digit im the
mantissa of log,, 7 is 8.

29, How many positive integers are there whose logarithms
to the base 2 have 5 for a characteristic ?

30. Find x and A if (aw)“’!“:(cy)hﬂ and closz = glogy,
a? b c?
3L Prove that log .- +log—+log -5 =0.

32. Find the value of 7 log; }§+5 log, $§+3 log; §3.

33. Find the sum of the logarithms (to the base 10) of the
roots of the equation 22— 142+100=0.

34. Express (a?+b%)2—(a?—02)3—(a?+b3—c?)? in a form .
fitted for logarithmic calculation.
*35, If log,, a=a, and log,, 2a =y, shew that 21-=r=3v-=,

*36. Prove that, if the logarithm of y to the base 2% be equal
to the logarithm of # to the base ¥, then each of them is equal

ao’
to (w) :
*37. If log,b=log,c, then will each be equal to log,b+loge.
> a

#38. A man borrows £500 from a money-lender. The bill is
renewed every half-year with an inorease of 12 per cent. What
time will elapse before it reaches £50007 [log 112=2'049218.]



CHAPTER XXIV.

SURDS.

[The results of this chapter are not required in the tmmediately
Jollowing chapters, and the discussion of surds may be deferred
Jor the present, if the student desire 1t.]

269. IT may be convenient if we repeat here that
the root of a quantity is called a surd. The n™ root of
a quantity X 18 denoted by X, and is such a quantity
that its n™ power is X ; it 1s called a surd o? the n*
order. If there be no exact n* root of X, the surd is
said to be irrational [Arts. 23, 182].

270. Surds which have the same irrational factor -
are called lvke surds.

Thus, 24/3, 34/3, and -3 /3 are like surds, because the
irrational factor, 4/8, is common to each of them.

The sum of like surds can be combined into a single
term in the sameé way as any other like quantities.

Thus, 24/3+4v3-3/3=(2+4-3)V3=—33.

Surds which have not the same irrational factor are
said to be unlike.

Thus, 2/3~34/2 is the algebraical sum of two unlike surds,
and cannot be simplified further.

271. We shall consider in this chapter some of the
more simple propositions about surds. We shall begin

B. A, 19
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by discussing surds formed by the roots of simple
expressions ; next, we shall treat of compound expres-
sions involving surds; and lastly, of the solution of
equations which involve surds.

SIMPLE EXPRESSIONS INVOLVING SURDS.

272. The extension of the meaning of indices,
which is given in Chapter XXII, enables us to write
the root of a quantity either as a surd or as the
quantity raised to a fractional power. The latter
method of expression enables us to reduce two or
more expressions to surds of the same order.

273. Any rational quantity can be expressed as a
surd of any required order.

For, if a be any quantity, and » any positive integer,

1

a=y/a'= @),

which is a surd of the n* order.

1
Thus, to express 2 as a quadratic surd, we have 2=/4=42
1
Similarly, 2 can be written as a surd of the third order, 2=8=83,

274. The product of a rational quantity and a surd
can be expressed as a surd. :

For, let a be the rational quantity, and {/b the surd.
Then, ‘ L
ab=ya"x b=xa,
which is a surd of the n™ order.
This proposition may also be proved thus.
1 1 1
a x b= (a")" x b*= (a"b)".

For example, T/5=nTx 5 =A/245.
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275.  If the quantity under the root-sign of a surd,
can be resolved into factors, the surd can be expressed
as the product of surds.

For we proved, in Art. 186, that
Vab=3a x {/b.
Hence, if one of these factors, such as a, be the
n" power of any quantity, we can resolve the given surd

into the product of a rational factor and an irrational
factor.

For example, &/2"y = Yz x Yy=x 3y,
N =Yad x Yo =a b2,
N2 = N 195%? x Ny ="Tayly,
NZ =N yt=ziz - yJi=(z -y,
NNy =gz + 2y =2z +\/Y).

276. Where we have a fraction with a surd (or a
product of surds) in the denominator, it is usually con-
venient to make the denominator rational. Thus, if a
surd like y/a occur in the denominator, we multiply
numerator and denominator by v/a*”, and thus make
the denominator rational and equal to a.

For example,
2 _ 22 _2/2_
N2 Ve,

NN N )
2/3 _2J/3x4/5 _ 2416
VETTWEr T

277. A surd of the n® order can be expressed as a
surd of the mn™ order, where m and n are positive

integers. \
This proposition is proved by a method analogous
to that given in Art. 273.

For, if {/a be the given surd, we have

va=Y{a =y /a") = '"\’Va"'-g \
19—
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This proposition may also be prdved thus.
1 m
va=a=d" ="y a"
For example,

() Ja=¥ab (i) Jb=Yb. (i) (4% =2Nr=20Y2"
3 3 81 3
(iv) (4%) =2onfy3=22 x (1= 2ayh =20 Y3P.

278. Any two surds can be expressed as surds of
the same order.

= ®
For, if a* and b* be two surds, we can express each
of them as a surd whose order is the L.c. M. of n and g¢.

m mg —
For, a=a"=Ya™,
2 —
and ==V
The above surds are each of the order ng. But the
process depends on reducing the fractions %" and Ltoa

common denominator. Therefore if n and ¢ have a
common factor, the order of the resulting surds will be
the L.c.M. of » and g, and not nq.

Example. Which ts the greater Y4 or /3%

Reduce the surds to equivalent surds.of the same order; in
this case, the order will be the L.c.M. of 3 and 2, that is, will be 6.

1 1 1
Then, J4=43=(428=(16),
1 1 1
and V3=3%2=(3%=(27)8.
1 1
But, since 27>16, .. (27)5>(16)E.
Hence, V3> /4

279. The product or the quotient of any two surds
can be written as a surd.

For, by the last article, we can express the two surds
as surds of the same order. Also, we know that the
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roduct or quotient of two surds of the same order can
e written as a surd, for

vaxyb=vab, and Va+/b=+v/alb.

Tbus,
2 mg g
@ x b= a" x b™ = (a™ x b”")“' =%/ (a™ x b™).
d ’l’ ’L" 2
@+ b =g =(a™ b”")“" =%/ (a™ + b*).

1
Ex. 1. Jxx{/y=x§ x y§=(z~‘*y2)"*=~°/@-
3 9 8 1 —
Er. 2. Yats Ypiechsbimalls = (ab+ by NaT .

EXAMPLES. XXIV. A.

1. Express 3 as a surd of the second order, a surd of the
third order, and a surd of the fourth order.

Express the following quantities, numbered 2 to 6, as surds.
2. a¥b. 3. 342 4 2J3. 5. 22Jy. 6. %2z

Express each of the following fractions, numbered 7 to 11, as
a fraction havmg a rational denominator.

2 5 AJab =Yy
1. :/—2 8. 7 9. Nis 10. T 11, gz
12. Prove that (i) 3V&=27Y3; (i) (J3)*V3=(3./3)"5.
13. Is Y84 greater or less than /281
14. Of the following quantities, which is the greatest and

which the least?
V35, Y214, J1290.

COMPOUND EXPRESSIONS INVOLVING SURDS.

280. The rules for the multiplication or the division
of expressions by quantities like a + /b are the same as -
those for multiplication or division by rational quantities.

If we have to divide one such expression by
another, or if the work involve the multiplication of
surds of different orders, it is usually convenient to
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express all the surds with fractional indices; but simple
cases of multiplication may be treated directly.
Ez. 1. Multiply a+Jz by b+

We have a +i/z
b +~/&' )
ab+-byJx
aJz+x
ab+(a+bd)Jr+x

Ex. 2. Find the square of 5—3./x.
‘We have 5— 3.z
b— 3.z
B_15Jz
—154/2+92
25-30Vz+92
Ex. 3. Find the product of \Jz—\y and \Jz+A/y.
We have (4-B)(A+B)=A4%-B?,
o Wz Jp Wz +y)=W)E - (V)

=z-y.

EXAMPLES. XXIV. B.

Find the product of 2 —3,/z and 4 —5.4/.
Find the square of 7 —2,/a.

Divide 6 —2a—./a by 3—2/a.

Divide 4/23-11,/2+6 by Jz-3.

Divide z—81 by Yz+3.

Prove that, if z=2+4/2, then (z-1)(z-2)=2.

I I S

281. Where we are dealing with a compound expression in-
volving surds, it is generally desirable to begin bg writing every
term and the whole expression so that the denominator is
rational. Where the denominator is & surd or a product of
surds, this can be effected l:{ the rules given in Art. 276. If the
denominator be & compound expression, the process is somewhat
more complicated, but it will be sufficient here to remark that
a fraction, whose denominator is of the form a+./b, will be
rationalized, if both its numerator and its denominator be multi-
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plied by a—,/b, since the denominator will then take the form
a?—b. Similarly, a fraction, whose denominator is of the form
a— /b, will be rationalized, if both its numerator and its denomi-
nator be multiplied by a+4/b.

X X@-JyB) _ X(a-ub)
Thus, T b= @B a-B) - @b
wd X X(atyh) _X(atyh)

a-Jb~ (a—vb)(a+Jb)  aP—b
For example,

5-42 (5--/2)(3+42) 15+2,2-2 13+2,2
3-J2 (B-J2)B+J2) 9-2 7T

282. The following is an important proposition.

If z++yy=a+b, where z and a are rational
quantities, and /'y and /b are irrational surds, then usll
z=a, and y=>.

We have z+y=a+ b

" x—a+/y=\b.
Squaring both sides of this equation,
(x—a)+y+2(=—a)Vy=>.
s 2(@—a)Wy=b—(z—a) —y.
Therefore, unless (z— a) is equal to zero, we have a
multiple of an irrational quantity equal to a rational
quantity. This is impossible, and therefore z—a =0,
that is, z=a. Again, if #=a, the given relation re-
duces to 4/y = /b, and therefore y =b.

Note. We have assumed that the square root of y is not
rational, and our g‘roof requires that ./ and ./y shall both be
irrational surds. Thus, from the relation 2+./4=3+./1 where
~/4da.nd /1 are not irrational surds, we could not infer that 2=3
and 4=1.

983, We have just shewn that, if z + vy = a + vb,
then z=a and yy=4b It therefore follows that
z—Ay=a—+b.
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Expressions like z +4/y and « —/y are said to be
conjugate. Thus if two expressions be equal, their
conjugates are also equal.

284. The square root of an expression like a 4 b A/c
can sometimes be found as the sum of two quadratic
surds.

Suppose V(a+bJc) = vz +y.

Square both sides, ... a+byc==z+y +2.Jzy.
Hence, by Art. 282, a=z+y, and byc=2./zy.
These are two equations from which we can obtain z and
y: and, since z +y=a and xy = }b%, it follows [Art.
232] that 2 and y are the two roots of the equation
) Z—az+ }c=0.
These roots are
2 __ 7% V775 1
a+V(; —b%) and & J(c; b%) .

Therefore the re(juired square root, namely, v/ + 4/y, is '

l\/{a + V(t;’ - b'c)} + )\/{a— J(c;’ — b’c)} -

This expression is however more complicated than
the original expression unless a* — b’ is a perfect square.
In any particular case where a? — b% is a perfect square,
the square root reduces to the sum of two quadratic surds.

The square root of a — b /c can be similarly deter-
mined. .
. Ezample. Find the square root of 27 -10,/2.

Let N(27-10/2) =z —\/y.

[Note. It is convenient to assume that J/z and ,/y have
opposite signs when the two given numbers (in this case, 27 and
—10,/2) are of opposite signs; and that they have the same
sign when the two given numbers are of the same sign.]

Square both sides, .*. 27—-10,/2=2+y—2./(zy),
. o 27=xz+y, and 10,/2=2./(2y), [Art. 282,

’
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that is, y=27-2, and zy=>50.
C o 2(27—2)=50.
oo (2 —25)(z—2)=0.
But y=27-2. Hencs, if #=25, y=2; and if =2, y=25.
The first solution is alone applicable to this problem.
Therefore 27102 =5 /2.

If we had tried to find the square root of 27 +10,/2, we should
have assumed it to be equal to /2 +,/y, where /= and /¥ would
have to be taken of the same sign. In this case, we sbmﬁd have
obtained the same quadratic equation for » as that written
above; and the answer would be 5+./2.

MISCELLANEOUS EXAMPLES ON SURDS. XXIV. C.

Simplify the following expressions, numbered 1 to 5,

1 — —
{vs-l}”i g VP-gtz VPty-y
v+l Na+yity  w—nat-gt
2 a_N/az_bz;‘\/aHb’—b . l+2.1:2!+a:4!+2a:
STl b 1 s -
Vai+B+b " atwai- B 143084204 4 32
5 Jz +1—~/.1;); Nz _I—Jx)
() ()

6. Shew that, if 7=3— 3, then ﬁ+?;—6,=24.

1 1
142 2 2 2-1
T ..

1
1-22  ai41

7. If 2=2+./3, find the value of

2 11 2 1o
Multiply 2%+2%3+3® by 2335
4 2
9. Divide 22+3y® by 28+35.
10. Divide 2s%3-6x+5 by x¥/2+¥4+1.
11. Divide (2*+*)/3+62%+zy (22 +3%) (V6+2) by
22 +2y N2+ N3,
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Find the square roots of the expressions, numbered 12 to 15.

12. 30+12/6. 14, 107-42.2.
5,42
13. 7+246. 15 5+5-

Find the square roots of the expressions, numbered 16 to 20,
16. 9246234 24x8 41 -t

17. -+’-’+3—2\/-—2N/Z. 18, THV2-gt
y x ¥y z

2
19. a+J(a®+2bc— b2 —c2). 20, 4+45+4/(17 -44/15).
21. Simplify +/30+10./5.

e 1 J3 242
2. Simplify m—m+ i~ B-1-

2+y3 . 2-43
NZHA2HJ3 J2-N2- B

%24, Simplify (‘”"'y w‘;y_'_&/t}:\/?/_*_\/t/y\/?/_*_ )

*23. Simplify

201

EQUATIONS INVOLVING SURDS,

285. It not unfrequently happens that an equa-
tion proposed for solution contains surds in which the
unknown quantity appears under the radical sign, and
in such a case we must get rid of the surd before we
can solve the equation.

The usual method of effecting this is (after sim-
plifying the equation as far as possible) to transpose
one radical to one side of the equation, and to transpose
all the other quantities to the other side. By then
squaring both sides (or raising them to a suitable
power) we get rid of that radical. Repeating the
process again, we can get rid of another radical. Con-
tinuing the process, we finally obtain an equation
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which is rational and integral in the unknown quantity;
and this equation must then be solved by the methods
already described.

We may add that the roots of the equation thus obtained may
contain surds which involve nothing but numbers or known

quantities [see Art. 105, Ex. 4], though such surds should always
be simplified as far as possible.

It may also be well to warn the beginner to be careful
that the square of that side of the equation which contains a
radical and another term is written down correctly. It is a not un-
common mistake to write the square of @+ /b as a®+ b, whereas it
is a2+2a./b+b. In a similar way, beginners sometimes think

1

that (22 +3%? is equal to x+y; tihis is not the case, for we have
already shewn that (22 +2xy +32)2 is equal to +(z+).

286. The method is illustrated by the following
examples.

Ez 1, Solve the equation Jz—4=0,
Here Jx=4.
Squaring both sides, oo 2=16.
Ex. 2. Solve the equation 28z —1+4z+5=9.

Transpose one radical to one side, and all the other terms to
the other side,
o 2Nz —1=9-44z+5.
Square both sides,
< 4(2-1)=81-1844zx+5+4z+5.
Transpose the radical to one side of the equation, and all the
other terms to the other side ; collect like terms, and simplify,
. 18 /4z +5=90.
oo N4z +5=b.
. 4r+5=25.
. x=35. ’
The two examples just given led to simple equations.
The two following examples lead to quadratic equa-
tions, :
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Ex. 3. Solwe the equation 24/22+1—-34/z-3=3
Transposing, 34/z—3=24/2¢v+1-3.
Squaring both sides, .*. 9 (z—3)=4(22+1)—124/27+1+9.
Transpose the radical to one side of the equation, and all the
other terms to the other side, and simplify,
~124/8241=40-2.
Squaring both sides, .. 144 (22+1)=1600—80x+ 2%
. 23— 3682+1456=0,
the roots of which are 4 and 364.

If now we proceed to verify this solution, we find that
x=4 satisfies the given equation, since on putting #=4 in the
equation it becomes 2./9—3./1=3, which is clearly true.

If however we put =364 in the equation, it becomes

2./729 -3 /361 =3,
that is, 2x27-3x19=3, or 54—57=3,
which is clearly not true.

Hence, only one y the roots which we have found satisfies the
original equation. 1t is only by trial that we can which
of the two roots 13 the one we requare.

[The explanation of this paradox is that we shall obtain the
same quadratic equation for » from another equation involving
surds, and the root 364 satisfies this other equation. In fact, if

we solve the equation 24/2r+1—3 4/z— 3= —3, we have
3Vz=3=24/220+1+3.
<9 (w—-3)=4 (2w +1)+124/20+149.

. —124/2241=40-2,

and squaring both sides of this last equation, we obtain the
same quadratic as before, whose roots are 4 and 364. The root
364 satisfies the equation above considered, but the root 4 does
not satisfy it.

The equation 24/3z+1+34/z-3=3 also leads to the same
quadratic equation for 2; but neither of the roots of the
quadratic will satisfy this equation. This equation has no root.]

Ex. 4. Solve the equation Jz+Nz+a—z+5=0.

We shall follow the above procedure without specifically
indicating each step. .
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We have Je=Nz+b-Nzta.
. w=(z+b)-24/(+0) @+ D)+ +a.
- 2N (z¥b) (w+a)=2+b+a.
. 4(x+b) (z+a)=(z+a+b)
<o 32242 (a+b) 22— (a—-0)3=0.
" o=} {-(a+b) £ V4 (a¥ - ab+ b))

. We cannot determine which of these two roots satisfies the

ilven equation unless we know the numerical values of a, or of
, or some relation between them.

If radicals appear in the denominator of a fraction,
the equation must be simplified so as to get rid of
them.,

Ex. 5. Solve the equation Nz —a-+N 7= ——e .
Nz—a

Multiplying up, we have
r-a+JrxAz—a=a.
coNEXNT—a=2a -z
. & (x—a)=4a%— dax+ 2%
. Bax=4ad
<. x=4a.
. 6
Ex. 6. Solve the equation Jx+3=m.
Multiplying up, we have (/z+3)(4-4/2)=6.
ooz +12-2=6.
oo Ne=x2-6,
. z=(w-6)
o 23 -132+436=0.
o (- 4) (2-9)=0.
Of these roots, =9 alone satisfies the original equation.
In some cases, it is convenient to introduce a sub-
sidiary symbol in the same way as we did in the ex-

amples worked out on pp. 239, 240, 242, 243. This is
illustrated by the following examples.



302 SURDS.

Ex. 1. Solve the equation *—3}x++/222 —3x+5=2+15.
Simplifying the equation, it becomes
2% - 32 +2 V225~ 35 +5=30.
Let 222 —3x=y, then the equation becomes
¥+24y+5=30.
S 2NYFDB=30—F i ()
.. 4(y+5)=900—60y+ %
.. y¥—64y= —880.
. 93— 64y +(32)2=(32)- 880
=144.
coy—32=+12
o y=32+12=44, or y=32-12=20.

Of these two roots, the latter alone satisfies the equation (i);
therefore y=20.

But y=2:—37, .. 22%-3r=20.
oo 22 —3x=10.
o 2= o+ (3)P=10+(§)
=11ﬂ09'°
cor—f=433
r=§+13=4, or r=3§-13=—§,
Hence the required roots of the given equation are 4 and —§.
Ex. 8. Of a swarm of bees clustered on o tree, the square root
of half their number flew awag/t;t Eight-ninths of the original

number then departed, leaving two behind. How many were
there at first? (Bhaskara’s Byja Ganita, circ. 1160.)

Let # be the number of bees. Then we have, by the question,
Niz+§e+2=x.
oo Nlw=z-fr-2=}x-2
Square both sides, ., dz=(}x-2)%
Simplify, % 222 - 1532+ 648 =0,

of which the roots are 72 and §. The latter root is not applicable
to the problem. Hence there were 72 bees.
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EQUATIONS INVOLVING SURDS. XXIV. D.

Solve the following equations, numbered 1 to 46,

Nz=d+z=10. 2. Natz+Na—z=nb.
Nz F e+ Nz +9=T. 4. Viz—A3z+1=1.
N8r+5-24/22-1=1. 6. Vz+19+4/743=8.
x4 Naz—at=3a. 8. 32=10-4/5z+6.
- N
l\/.z’+‘\/a,+x=—£_. 10. 24/Z+2z 2=5,
Nz

1 1 -1 _

. P (a+) =2z 2. 12, Nz43+42z—1=9.

NTz+1 -3z +4=1. 14, V10x—1=3+4+/3z+1.
Niz¥5-24r—1=1. 16. Nz+Abr+i=5.
V3+z+/T-2=N1322. 18, Vi+74+16-2=AGT%2.
NZ+5+2 Nz +1=432+17.
NZ+28+4/92—28=44/22 _14,
NIZ—6-Naz+1=4/32z_17,
V14z+9+2 N2+ 1+4/3z+1=0.

V122 -3+ Nz +2+4/T5-13=0.

N2z +T+432—18=NT2+1.
Ne+3-2/z+1=Abz+4.

N3z +1 iz +5+Nz-4=0,

N8z +1-Nz+1=437. 28. aNFtat=a?-dl.

¢, 4 _ a7, [T
«/7-_-Ti+l\/5—c_2' 30. 3 + 3 7.

mAE=zt—n(c+z) ma-nb

" mNE—R+n(c+x) mat+nb

224 (z—-2) (v —3)+4/227~ 5z +6=6.
2 (2w —3) (- 4) - A/22% — 11z + 15=60.
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522+ 11z — 12 /(z+4) (5 — 9)=36.
M+4/\/3.z’—7x+3=3.1;(z—1)+6.
P+ N3 +35+5=T-3x.

8
P+ S0y M\/{ +2ﬁ-|;c a} 0.

- 4234 A 422 — 102 4+1=10z+1.
23-32-3422—3r—10=118.
NP1+ 2N 2E+6=3.

*4), 2N+ ad+ 2 NP+ B=a- :

2, P+t + NP+ ai=2aV 22+t at.

! .1,‘—:)/=7 . x—y.—_'] "
»45, x—«/}y_—26=0}' % 3@—2«/@?+9=0}.

3Vy-2Nz-T=0 5 V/z—34/y—3=0

*47, Explain the fact that the value of x obtained by solving

the equation Nz +8+4/2-1=1 does not appear to satlsfy the
equation.

588 8 88§



CHAPTER XXV.
RATIO AND PROPORTION.

287. Ratio. The relation which two quantities
bear to one another in magnitude may be regarded in
two ways. We may consider how much one of them
is greater than the other: we call this their difference.
Or, we may consider how many times one of them
contains the other : we call this their ratio,

288. The quantities in the definition of ratio must be of
the same kind. Thus, we can compare a length with a length,
or an area with another area, or a sum of money with another
sum of money, but we cannot compare inches with shillings, or
acres with weeks.

Moreover, the quantities to be compared must be expressed
as multiples of the same unit. Every quantity, as we have
already remarked, is measured by the number of times it con-
tains a certain unit of its own kind. Thus, if we take a mile
as our unit of length, then any length will be measured by the
number of miles it contains. If, for example, a certain length
be equal to a } mile, the numerical measure is } when the unit
of length is & mile. The same distance might have been ex-
P a8 440 yards, in which case a yard is the unit of length,

and 440 is the numerical measure of the magnitude.

To compare quantities, we must express each as a multiple
of the same unit, and we shall then only have to com
their numerical measures. Thus, whether the quantities in the
definition of ratio given in Art. 287 be abstract or concrete,
their ratio will be measured by the number of times which one
number contains another number. . e

B.A. . 20
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289. Notation. The ratio of a to b is written
a : b, which is read as a fo b.

The quantities a and b are called the ferms of the
ratio; of these, a is called the first term or antecedent,
and b is called the second term or consequent.

A ratio is said to be a ratio of greater inequality
if the first term be greater than the second term; a
ratio is said to be a ratio of less inequality if the ﬁrst
term be less than the second term.

290. Definitions. The following terms are used :

The duplicate ratio of a : b is the ratio a2 : b2,

The triplicate ratio of @ : b is the ratio o® : b3

The subduplicate ratio of @ : b is the ratio \/a : J/b.

The subtriplicate ratio of @ : b is the ratio Ja : Jb.

The sesquiplicate ratio of a : b is the ratio Ja® : JB3.

The rat;; compounded of the ratios @ : b and ¢ : d is the ratio
Tac o

291. Ratios are measured by Fractions. The
number of times which one number g contains another
number b is found by dividing @ by 5. Hence, the
measure of the ratio a : b is the fraction g .

292. Incommensurable Quantities. If two
numbers have no common measure (as, for example, if
one number be an irrational surd and the other number
be an integer), we cannot with accuracy speak of the
number of times that one is contained in the other.
Such numbers are said to be tncommensurable, one to
the other.

Two numbers are tncommensurable, one to the other,
when their ratio cannot be expressed as the ratio of
two integers. Two numbers are commensurable, one
to the other, when their ratio can be expressed as the
ratio of two integers.

A number is said .to.be incommensurable or com-
mensurable according as it is incommensurable or
commensurable to unity. . :
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Thus % is commensurable, for the ratio £ : 1 is measured
by the fraction § [Art. 291], and this fraction is also the measure
of the ratio 2 : 3 [Art. 291]. But /2 is incommensurable, for
no integers can be found whose ratio, one to the other, is the
same as that of \/2 : 1.

293. Ratios of Incommensurable Quantities.
We have hitherto given no means of comparing the
magnitudes of two incommensurable quantities. We
shall therefare extend the result of Art. 291 by defining
the measure of the ratio of two incommensurable
quantities, @ and b, as the fraction %’.
294. The value of a ratio is unaltered, if each term

be multiplied by the same number, or if each term be
divided by the same number.

The ratio of any two numbers, whether commen-
surable or incommensurable, is measured by a fraction
whose numerator is the first term of the ratio and
whose denominator is the second term of the ratio
[Arts. 291, 293]. Hence all the properties which in
Chapter X. were proved true of fractions are also true of
ratios. Hence [Arts.143,146] the required result follows.

Thus the ratio a : b is equal either to the ratio ma : mb, or
to the ratio a/m : b/m.

295. Comparison of Ratios. Since ratios are
measured by fractions we can, by Art. 181, compare the
values of two or more ratios, for we can express them
as fractions having a common positive denominator.

Thus the ratio @ : bis > = or <theratio ¢:d,
as the fraction g i8 > = or < the fraction gl’
. ad . be
that is, as B> =or<g

that is (provided bd i3 positive) as ad is > = or < be, [Art.180 (iv)
20—2
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296. Since ratios are measured by fractions, many
of the following examples may be considered as examples
of the properties either of fractions or of ratios.

Ez, 1. What number must be added to each term of the ratio
7 : 10 to make it equal to the ratio 2 : 31

Let 2 denote the required number. Therefore, by the question,
T4z 2 :

10+z 3
Multiply up, o 3(T+2)=2(10+2).
o 214-32=20+22.
r=-1

Hence the number required is —1. The interpretation of this
result is that unity must be subtracted from each term of the
given ratio to make it equal to the ratio 2 : 3.

Ez. 2. Of the ratios 2 (z+1)3+1 :322+6x+5 and 2:3, |
whick s the greater?
2(z+1)2+1, 2 |
3746s1+5 >~ T <3
according as 3 {2 (x+1)2+1} is > or < 2(322+6x+5), [Art. 295.

that is, as 622+ 12x+9 is > or <62%+122+10,

The quantity

that is, as 9is > or <10.
. . 2(z+1241. 2
But918<10, .-mlq<§.

Ex. 3. Determine whether the ratio a+z : b+z (formed from
a given ratio a : b by adding a positive quantity x to each term
of it) 18 greater or less than the given ratio a : b.

o atz ., a
The quantity  pyazs>or<y
as C b(a+z)is > or < a(b+7),
that is, as ab+bz is > or < ab+az,
that is, a8 bz is > or < ax,

that is, (since « is positive) as b is > or < a.
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Hence a ratio of greater inequality is decreased by adding
any positive quantity to each term of it. For in this case,
b<a, and therefore a+z : b+xr<<a : b; that is, the new ratio
i8 less than the given ratio. [For example, 3+1 :2+1<3 : 2.]

Similarly, a ratio of less inequality is increased by adding
any positive quantity to each term of it. For in this case,
b> a, and therefore a4+ : b+2 is >a : b; that is, the new ratio
is greater than the given one. [For example, 141 :2+1>1 :2]

Ez. 4. Determine whether the ratio a—x : b—x (formed from
a given ratio a : b by subtracting a positive quantitl;y x from each
term of it) is greater or less than the given ratio a : b.

The quantity ';%": is >or < %’
as b(a—x)is > or < a(b—2),
that is, as ab-bx is > or < ab-ax,
that is, as -bzis > or < —ax. .
Transposing, that is, as ax is > or < bz, [Art. 180 (iv).
that is, as ais > or <b

Hence a ratio of greater inequality is increased by subtracting
any positive quantity from each term of it. For in this case,
a>b, and therefore a—z : b—x>a : b; that is, the new ratio
is greater than the given one. [For example,3—-1:2-1>3:2]

Similarly, a ratio of less inequality is decreased by subtracting
any positive quantity from each term of it. For in this case,
. a<b, and therefore a—=x : b—x<<a : b; that is, the new ratio
is less than the given one. [For example, 3-1:4-1<3:4]

EXAMPLES ON BRATIO. XXV. A,

1. Ifx=2and y=1, find the ratio of 22—y2: 22432

2. Express in fractional indices (i) the subduplicate ratio of
z : g, (ii) the subtriplicate ratio of x : g, (iii) the sesquiplicate
ratioof x : g.

3. Find the ratio compounded of
(i) the ratio 3 : 2 and the ratio 2 : 3,
(ii) the subduplicate ratio of 4 : 9 and the triplicate ratioof 2 : 1,
(iii) the duplicate ratio of @ : band the sesquiplicate ratio of b : a.
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4, Ifa:b=4:7, find the ratio of
(i) ab : B*—a?; (ii) o/(7ab) : 3b—2a.

5. Which is the greater of the ratios 4—x:3 -2 and 4:3,
(i) if 2 be positive, (ii) if # be negative ?

6. If 7(x-y)=3(r+y), what is the ratio of z to y 1

7. If 8(x+y)=11(x—y), what is the ratio of x to y ?

8. If 14x=35y, find the duplicate ratio of x to y.

9, Find what number must be added to each term of the
ratio 6 : 6 to make it equal to the ratio 20 : 21.

10. What number must be added to each term of the ratio
9 : 7 to make it equal to the ratio 12 : 11?

11. A certain ratio becomes 2 : 3, if 2 be added to each of
its terms; and becomes 1 : 2, if 1 be subtracted from each of its
terms: find the ratio.

12. If a : b be a ratio of greater inequality, prove that the
subduplicate ratio of @ : b is less than the ratio of a : b.

13, Prove that, if the ratio a : b be compounded with a ratio
of less inequality, the ratio thus formed will be less than the
ratioa : b.

14. Shew that the ratio a+z : @ —a is greater or less than
the ratio a?+2? : a?— 2% according as the ratio @ : x is one of
greater or less inequality.

15. If P : @ be the subduplicate ratio of P~z : Q—x (P
and @ being each greater than z), prove that z=P@/(P+@).

16. Find the quantity which, when subtracted from each
term of the ratio o? : b% gives two quantities whose ratio is
equal to the triplicate ratio of @ : b. )

17. Two numbers are in the ratio 4 :11; the numbers
obtained by adding 10 to each of the given numbers are in the
duplicate ratio of 3 : 4. Find the numbers.

18, A is 24 years old, B is 15 years old. What is the least
number of years after which the ratio of their ages will be less
than 7 : 57

19, At present B’s age is to 4’s in the ratio of 3 to 2, but
in fifteen years time it will be in the ratio of 4 to 3. Find their
ages.

20. Two numbers, each less than 50, and having the same
digits, are to one another as 4 : 7. What are the numbers ?
21. Find two numbers such that their product is 91, and

the difference of their squares is to the difference of their cubes
as 20 to 309.
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22, In a certain examination, the number of those who
imssed was three times the number of those who were rejected.
f there had been 16 fewer candidates, and if 6 more had been
rejected, the numbers of those who passed and of those who
were rejected would have been as 2 : 1. Find the number of
candidates.

23. The number of girls in a mixed school increased 7 per
cent. during a certain year, while the number of boys diminished
4 per cent.; the total increase in the school during the year
was 3 per cent. Compare the numbers of boys and girls.

*24, Divide £900 between three persons, so that, if their
shares be increased by £10, £15 and £20 respectively, the sums
shall be in the ratio 4 : 5 : 6.

25. Find two numbers such that their sum, their difference,
and the sum of their squares are in the ratio 5 : 3 : 51.

*28, If nbe the ratio of the roots of the equation 2% - pz+¢=0,

1 1 2
prove that (nB+n 2)2=% .

PROPORTION.

297. Proportion. Four quantities are said to be

oportional, or in proportion, when the ratio of the

first of them to the second is equal to the ratio of the
third of them to the fourth.

Thus a, b, ¢, d are proportional if
a:b=c:d,
which is read as a w fo b as ¢ 18 to d.

The relation is sometimes written in the form
a:b::c:d

298. The quantities a, b, ¢, d are called the terms
of the proportion ; a is called the first term, b the second
term, ¢ the third term, and d the fourth term. The
terms @ and d are called the extreme terms or extremes,
and the terms b and c are called the mean terms or means.
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299. The product of the extremes of a proportion s
equal to the product of the means.

For if a, b, ¢, d be in proportion, then, by definition,
the ratio of a to b is equal to the ratio of ¢ to d. That
is,

a_°
b d
Multiply each side by bd,
s ad=bec.

300. Conversely, if four quantities a, b, ¢, d be so
related that ad = be, then a, b, ¢, d wnll be in proportion.

We have ad = be.
. . . . ad_bc
Divide each side by bd, . Mo
e_°
b d’
that is, a:b=c:d.

301. Note. Any one of the four following proportions
a:b=c:d, a:c=b:d, b:a=d:¢ b:d=a:c
leads to the result ad=be.

Conversely, from this latter result any one of the four pro-
portions above written can be obtained. Thus, if in the last
article, we had divided each side of the relation wd be by cd,
we should have been led to the proportion & : ¢=b:

Hence, if one of the four proportions given above be true, so
also are the other three.

302. If we are given a proportion, and if we desire
to deduce another proportion, we may proceed in one
of two ways, as illustrated by the following examples.
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Ex.). Shewthat,if a:b=c:d,thena+b:a—b=c+d:c—d.

First method. We are given that g;g,
a [
Let =% =%

. a=bz, c=dux.

Now, take successively each ratio in the result; and, wherever
an a or a ¢ appears, substitute respectively the values bz and dz.
We shall then find that each ratio will reduce to the same
expression, and therefore the two ratios will be equal.

a+bdb br+b_b(r+1) z+1
Thus, a-b bzr-b b(z-1) x-1°
Al ) c+d_dr+d_d(z+1) z+1
’ c—d do—-d d(z-1) z-1°
. atd_ctd
‘a-b c-d’
which is the required result.
Second method. Or we might proceed thus.
. a+b c+d
The relation a-b=c=d
is true, if (a+b)(c—d)=(a-Db)(c+d),
that is, if ac+bc— ad - bd=ac— bc+ad - bd,
that is, if 2bc=2ad,
that is, if be=ad,

which, by the given proportion, is true. Hence
at+b:a-b=c+d:c-d.

Ex. 2. If a:b=c:d=e:f, then will each ratio be equal to
the ratio a+c—e : b+d~f.

Let %=x, ¢£1=‘”’ and;=x.

.. a=bz, e=dx, e=fr.
atc—e bride—for x(b+d-f)
b+d—f b+d-f ~ b+d—f
which is equivalent to the required result.

Hence

= x’
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Ez. 3, Shew that, if a : b=c : d, then will
a?+c? ; (a—-c)(2a+c)=b2+d?: (b-d)(2b+d).

Ilet %:x, o . (Ei =x’
. a=ba, c=dz,
A a4t b2 + dPa? 2 +d)
T (a—c)(2a+c) (br—dz)(2bx+dr) 22 (b-d)(2b+d)

_ bya
T (b-2)(2b+d)’

. attet:(a—c)(2a+c)=b2+d? : (b—d) (2b+d).

Ez 4. If (a2-c?)(b2—d?)=(ab—cd)?, then will a : b=c : d.
Here the given proportion is more complicated than the .
result we want to prove; and we must.therefore use the following
method.
We have (a3 —c?)(b% - d?)=(ab—cd)2
*. a2b?— a®d?— b+ 2d?=adb? — 2abed + c?d?.
.. a%d?— 2abed + b2 =0.
o (ad—be)t=0.
.. ad—be=0.
cSoatb=c:d

303. The following is an important proposition.

Ifa:b, c:d, and e: f be unequal positive ratios,
thenfthe ratio a+c+e : b+d+f is intermediate in
magnitude between the greatest and the least of the three
given ratios.

For suppose the three given ratios to be arranged
in order of magnitude so that @ : b is the greatest and
e : f the least of them: thus we have

a_oc_e

b d” [
' a_, . 2
First, let F=% <& and f<w.

a = bz, c< dz, e< fa.
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Add, coat+cte<br tde+ f,
that is, at+ct+e<z(b+d+f)
_a . atct+e _a
But z=p, . b¥d+f <F
: e a
Next, let —f:y, 3> and 3> Y
e=fy, c>dy, a>by.
Add, sooatc+e>by+dy+fy,
that is, a+c+e>y(b+d+f).
=¢ ., Gtcte e
&my—f, S b+d+f>f'

Similarly, if we have any number of unequal positive ratios
a:b c:d,e:f,g:k,..,and we form a new ratio

atetetg+ ot b+d+f+h+ ...,

whose first term is the sum of the antecedents of these ratios
and whose second term is the sum of their consequents, then its
value will be intermediate in magnitude between the greatest
and the least of the given ratios.

EXAMPLES ON PROPORTION. XXV. B.

1. Shew that,if @ : b :: ¢ : d, then
(i) ma+bd:me+d :: pa+b:petd.
(ii) ma+nd : ma—nb :: me+nd : mec—nd.
(iii) a2+-6% : 2 +d2 :: (a+b)? : (c+d)%
2, If a:b=c:d, prove that (a?+c?)(b%*+d?2)=(ab+cd)2

3. Ifa:b=c:d, prove that a?+ b2+ c2+d?, (a+b)2+ (c+d)?,
(@+c)*+(b+d)? and (a+b+c+d)? are in proportion.

4. Shew that,ifc:d :: 2 :y, then ed : 2y :: E+d2 : 22442

5. Shew that, if @ : b :: ¢ : d, and & be the greatest of these
four quantities, then & will be the least.

8. Prove that,if » : 7 :: @ : b, then a2 : 0? :: 22+ 42 : a2+ b2
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7. Iff a:b::c:d::e:f, prove that each of these ratios is
matnetpe 4 also to ab+cd+ef
mb+nd+pf’ Vyrdiifre

Shew that, if @ : b=c: d—e : /; then the results, numbered
8 to 13, will be true.

8. a+3c+2:a-¢::b+3d+2f:0-f.

9. a+4c+3¢:a+tc::b+4d+3f:b+d.

10, a*+c3—ace : ab?+cd?—adf :: (a— e)’ (b -2

1. a+2+3e\*  actce

b+2d+3f) " bd+df’

12, (a6l +cA)(bf +d)= (B34 %) (ae-+ ).

13, P+ge _ (getre)(latme)

pb+gdt  (¢gd+rf)(Ib+mf)

14, If the ratios @ : =, b:y, c: 2z be all equal, prove that
pbc+qoa+rab Pyz+ qax+rvy, pa’+qb2+rc2 and pa:s)+qy 242t
are in proportion.

16, If 2 :5.::y : 8, find the ratio of z+5 to y+8.

16, If #-3y :y—22::3:2, find the- value of the ratio
22—y : 224295

17, Shew that, if z—2 : y—2=23 : 32, then

equal to

z4z :y+z='f+2 Y e,
y z

18. The first and fourth terms of a proportion are 5 and 54,
and the sum of the mean terms is 39. Find the mean terms.

19. Having given a+c:b=c: a=a :c-b, determine the
ratiosa : b : ¢

20. Shew that, if 2a+3b, 2a '3b, 2c+3d, and 2¢—3d be in
proportion, so also are a, b, ¢, d

21. Shew that, if a+b—c : c+d+a=a—~c : 2d, then

b:a—c=a+c—-d:2d.
22. If a®+c?: ab+cd :: ab+cd : b+ d? prove that
a:buc:d

304. Continued Proportion. Quantities are said -
to be in continued proportion when the ratio of the first
of them to the second, the ratio of the second to the third,
the ratio of the third to the fourth, and so on, are equal.
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Thus e, b, ¢, d, ... are in continued proportion, if

a:b=b:c=c:d=...,
. a_ b _c_

If a, b, ¢ be in continued proportion, a is called the
first term of the proportion, b 18 called the mean propor-
ttonal between a and c, and c is either called the third
proportional to a and b or is called the third term of the
proportion.

805.  The mean proportional between two given num-
bers 18 the square root of their product.
For suppose that a, b, ¢ are in continued proportion.

Then

a_b

b ¢
o O=ac
. b=Wae.

806. The following examples illustrate the methods
of treating questions concerning quantities in continued
proportion.

Ex. 1. If three quantities be in continued proportion, ‘the
ratio of the first to the third is equal to the duplicate ratio of the
Jirst to the second.

Let a, b, ¢ be the quantities.

We want to prove that a : c=a? : b2

‘We have %::Iz
¢
b
Let ‘ %=z, S g=h

From the last of these relations, b=cz.
From the first of these relations, a=bzx=cz x z=c22

Thus each term of the proportion is expressed in terms of ¢ (the
last term of the proportion) and of #. In a continued propor-
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tion, this is always possible. Now take each of the ratios which
it is desired to prove equal, and wherever a or b appears sub-

stitute the values just found.
Thus ¢_2_
¢ ¢
a2
Also ﬁ=xz.
a a?
Therefore TR B

Ex. 2. Prove that,if a, b, ¢, d be in continued proportion, then
a-d:b—c=bd(b+ctd): & ’

We have %=g=§i’
Let %=x, g=x, and :—;=x.
From the last of these relations, ¢=dx.
From the second ,, » b=cx=(dz)r=da2
From the first » » a=br=(dz?)x=das.
a—d _da*-d d(3-1) 224z+1
Hence b_-c=dz2—¢zx=da(:(x-1))= z
Also  btetd) desd(det+dotd) _aP+a+]
e d3s3 z
., a—d_bd(b+c+d)
*tb-c e :

EXAMPLES ON CONTINUED PROPORTION. XXV. C.
1. If a-b:b—c::b:c, shew that a, b, ¢ are in continued
proportion,
2. Ifa, b, ¢, d be in continued proportion, shew that
(a=b): (b—c)P=a:d.-
3. Find the mean proportional between 3 and 13.
"4, Find the mean proportional between a2 —-z—l,— and 22— %2 .

5. Shew that, if #—y be a mean proportional between y and
y+2— 2, then z will be a mean proportional between y 2
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6. Find a quantity, such that when it is subtracted from
each of the quantities a, b, ¢, the remainders are in continued
proportion.

7. Find a quantity, such that when it is added to each of
the three quantities a+b, b+¢, c+a, the sums are in continued
proportion.

8. If b be the mean proportional between e and ¢, and if
the same quantity « be added to a, b, ¢, determine which is the
greater ratio, a+2 : b+zor btz : ct+a.

9. If the mean proportional between a and & be equal to
that between b and ¢, shew that a : b :: c : d.

10, Ifa:bd:c: d, prove that the mean proportional between
b and ¢ is a mean proportional between the mean proportional
between « and b an that between ¢ and d.

11. If a+bd, b+¢, c+a be in continued proportion, prove
that b+c, c+a, c—a, a—b are proportionals.

12. The third proportional to two numbers is 48, and the
mean proportional between them is 6. Find the numbers,

*13, If a:b=b:c=c:d=...... , prove that each of these
ratios is equal to
24242 +...... a_d+bB+l+......
abvbotodt.... 2 et o= S Py

MISCELLANEOUS EXAMPLES. XXV. D.

1. If5x—4y :32-2y=4:1, find the ratio of = to 7.
2. Find the new ratio formed by subtracting the quantity

pb (p—1)ab from each term of the ratio a : b.

3. If 4 : B be the duplicate ratio of 4+ : B+.z', prove
that 2?=AB.

4. Find what quantity must be added to each term of the
duplicate ratio of a : b, in order that the new ratio thus formed
may be equal to that of @ :

5. If r—4y:y-3z= 3 2, find the value of the ratio
@2y +y? 1 Bt ay+y

8. If the ratio a : b be compounded with a ratio of greater
inequality, é)rove that the resultmg ratio is greater than the
ratio of @ :
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7. What is the least integer which must be added to the
terms of the ratio 9 : 23 8o as to make the new ratio so formed
greater than the ratio 8 : 137

8. Find a number which when subtracted from each term
of the ratio 9 : 13 will make the new ratio so formed equal to
13:9.

9. A4 is 32 years old, B is 5 years old; what is the least
number of years after which the ratio of their ages will be less
than 3 : 17

10, The terms of a ratio are seven and three; what number
must be added to each term in order that the value of the ratio
so formed may be half that of the original ratio ?

11, If @ and x be positive quantities, shew that the ratio
a?—-22 : a?+4- 4% is greater or less than the ratio a®—2a3: a3+22
according as the ratio @ : x is one of less or greater inequality.

12. The age of the eldest of three children is equal to the
sum of the ages of the other two, the ages of these two being
in the ratio 2 to 3: in ten years time, the age of the eldest will be
five years more than half the sum of the ages of the other two.
Find their present ages.

13. 'The ages of a man’s three sons areas1:2:3. In12
years time, his age will be equal to the sum of the ages of the
three sons; and in 14 years more, his age will be equal to the
sum of the ages of the two elder. What are their present ages?

14. If axtby : a3+ b3=aly— b3z s afbi(a—b), find 2 : g.
15. Ifa:b::c:d,shew that a®— 02 : 2—-d? :: ab : cd.
16. Shew that, if a :'b=c: d, then
2 .

%+%+$+§=W ‘ﬁ*&%ﬁ”&ly_ffﬁz) .
If @ : b=c : d=e : f, prove the relations numbered 17 to 21.
17. pa+ge+re: pb+gd+rf=e: f.
18, ac¢:cd=bf:d2
19 Prtclyte¥ _ cexteaytac .
* Vr+d¥+f%  dfr+fby+bdz
2. (a+e)t: (b+fEcAad—c : dybBE_d2
2. a:b: J(miat+nPct - pPed) ; \/(mPb+nid? —pif?).
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22. If o, : by=a, : by=ay : by, prove that
(@) anhtonttang ol
C1boby+csbsby +esbyby b2’
(i) Wby +n agby+ v aby=+/ (o + a3+ a3) (by + by +by).

23. If x:a=y:b=z:c, then will each of these ratios be
lyz+mazx+na?
equal 0 N/ 5o moa+nct”

24, Prove that, if I :m=p : g=r : s then each of these
- impg + Ur — 1Tmpgr
ratios is equa.l to Wm .
25. Shew that,ifa:b:c:d:e:f:1g:hk:: ..., then
a:b:x «/Ea’+qc’+re’i-_sg“+ : \/pb’+qvl”+ff2+skss

26, Shew that, if = -6-— = - , then each fraction will be
l

1% +)2a2m+ -+ 2P }
equal to {A WX WA WA

27. Prove that, if a, b, ¢, d be in continued proportion, then
T (b—cP+(c—a)+(d-bE=(a-d)

28. Shew that, if 3z+2u, 3z—-2u, 3y+2v, 3y—2v be in
proportion, so also are z, ¥, %, v.

20, If y: s+y=2+2-y : y+z—zs=z+y+z: 2w+y+2s
find the l‘&tl%s.’l,‘ HRE ’

30. If a(y+2)=b(z+2)=c(r+y), prove that
z-y:c(a-b)=y-z:a(b—c)=z—z:b(c—a).
31, Prove that,ify—z:a:z—-2:b::2-y : ¢, then
a(y-2+b(e—2p+e(z—y)
=a(z-2)(z-y)+b@-9)(y-2)+c(y~2)(e~2).
32, Shew that,ifx:y :z=a+2b+c:2a+b-c:4a—-4b+e,
thena : b :c=x+2y+2:2x+y—2:4x—-4y+2.
33. If the fourth Proportlona.l to a, b, ¢ be equal to that to
a, b, ¢, shew that b : o' :

2 _
*34, If %— ‘% _ZZ ﬁ, prove that each of these equal quan-
tities is either zero or 1.

B. A,

21
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*35. If ar+by+cz=0, and a2z +b%+c%=0; prove that
R L il Pl
A iy Skl
*36, If q, b, ¢, d, e, f be in continued proportion, prove that
, at® & a ¢
e + d-e}'f— b + ,7 .
37. If a, b, ¢ be in continued proportion, then will
J@-8) o Ja-o) Ja
a  "N@+0)7 Ja T fate)
#38. Give the algebraical and geometrical definitions of pro-
portion : and deduce the latter from the former.

39, What number must be added to each of the numbers
3, 4, 13, 16 that the sums may form a proportion ?

*40, Find two numbers such that their difference, the differ-
ence of their squares, and the difference of their cubes, are in the
ratioof 1 : 9 : 61.

41, The third proportional to two numbers is 162, and the
mean proportional between them is 6. Find the numbers.

42, Two numbers, each less than 100 and having the same
digits, are to one another as 5 : 6; what are the numbers?

43. Divide £1230 among three persons, so that if their
shares be diminished by £5, £10, and £15 respectively, the
remainders shall be in the ratio 3 : 4 : 5.

44, £3000 is to be divided among 4, B, and C: if each
received £1000 more than he actually does, the sums received
would be proportional to the numbers 4, 3, 2. Find what each
receives,

45, A vessel is half full of a mixture of wine and water, If
filled up with water the quantity of water bears to that of wine
a ratio ten times what it would ie were the vessel filled up with
wine, Determine the original quantities of wine and water.

46. Two cisterns, connected by a pipe, contain 25 and 244
gallons of water respectively. Find how much water must be
allowed to flow out of one cistern into the other, so that the
quantity of water in the first cistern may be to that in the
second 1n the ratio of 5 to 6.

47. A rectangular court has a grass-plot in its centre, sur-
rounded by a gravel walk of uniform width. If the a.rea.trg,f the
grass-plot be the area of the court, and the length of the

lot be equal to the width of the court, find the ratio of
the width of the grass-plot to that of the gravel walk.




CHAPTER XXVIL
VARIATION.

307. Variation. When two quantities are so re-
lated that the ratio of their numerical measures is
always constant, each quantity is said to vary directly
as the other.

We shall see later [Arts. 312, 314] that there are other kinds
of variation besides direct variation; but if one quantity is said
to vary as another, it is understood that the former varies
directly as the latter.

Thus z varies directly as y (or varies as y), if ;be

constant.
For example, the distance traversed by a man walking at a
uniform varies directly as the time during which he walks.

If he walk at a pace of three miles an hour for one hour, he
will walk three miles; if he walk for two hours, he will walk six
miles; and so on: the ratio of the numerical measures of the
distance walked and the time occupied being always the same.

308. Notation. The symbol o is used as an
abbreviation for the words varies directly as.

Thus z « y, is read as « varies directly as y, or
sometimes (for brevity) as & varies as y.

309. If # < y, we have Z = m, where m is some
constant quantity, that is, a quantity which contains
neither # nor y. Therefore z = my.

The beginner, when he is dealing with questions
involving variation, will generally find it convenient

21—2
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to introduce a symbol, like m, to denote this con-
stant ratio of the variable quantities. If the particular
value of z corresponding to any particular value of y
be known, then the value of m can be at once deter-
mined

Ex. 1. If zxcy, and if y=3 when =2, find the relation
between x and y. ’

We have z=my, where m is a constant.
But if =2, y=3, . 2=3m.
. m=4%.
. r=%y.

Ez. 2. If (x+12« 33 and if y=2 when z=2, find the
relation betwefe'nxand . ’ ’

We have (4 1)2=my°, where m is a constant.
If »=2, y=2, s (241)2=m28
o 9=8m,
o.om=§.
S (+12=848

310. When one quantity varies directly as another,
any tncrease or decrease in the one causes a proportional
tnerease or decrease in the other.

For let z « y; and suppose that when z is increased
to # + &, then y is increased to y+ ¥’

a—"=m, and also g_-l-_w’___m’
y y+y
where m is the constant value of the ratio of the nu-
merical measures of the quantities,

z=my, and z+ 2z =m(y +9).

Subtract, s 2 =my.
LA
Yy y

That is, the ratio of &' to 3 is the same as that of 2 to y.
Or, in other words, the increase of # bears the same ratio
to the corresponding increase of y as « does to y.
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EXAMPLES ON DIRECT VARIATION. XXVI A.
1. If x vary as y, and if =7 when y=4, find the value of
x when y="17.

2. If x vary as the square of g, and if y=2 when #=9, find
the equation between x and y. ‘

3. If ac b, and if a=2 when b=3, find the value of ab
when a—-b=1.

4. If 32« 2?-1, and if y=1, 2=,/5 be simultaneous values
of y and z, find the value of x when y=2.

5. Shew that, if a®— b2 vary directly as ¢?, and if c=2 when
a=5 and b=3, then b is a mean proportional between a—2¢c
and a+2c.

6. If xc y+2 and 2 , and if =2 when y=4, find the
value of ¥ when z=1.

7. If z vary as (x+a)(y+b), and be equal to (a+b)® when
r=b and y=a ; shew that when x=a+2b and y=2a+5, then
z=4(a+b)p3 ’

8 Ifzca+bacy andbc l, and if #=18 when y=1,
and r=254 when y=2, find x when y=7.
9, If ax b, and a « ¢, shew that bc c a2

311. Inverse Variation. One quantity is said
to vary tnversely as another quantity when the first
varies directly as-the reciprocal of the second.

Thus « varies inversely as y if @« ;, that is, if
T = m; , where m is some constant quantity.

Also, since if = m—l- , then y= mi, it follows that
if # vary inversely as y, then y varies inversely as a.
Again, if x=m 1 , then zy =m, hence the product

of two quantities, one of which varies inversely as the
other, is always the same.
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312. As an example of inverse variation, consider the case
of a man walking at a uniform rate. Then the time required to
walk a given distance varies inversely as the rate at which he
walks. In fact, if & be the distance traversed, ¢ be the time
occupied in traversing it, and v be the velocity with which it

is traversed, we have s=vt. Therefore t=§. Hence, if s be
constant, ¢ varies inversely as v.

Again, suppose that the length of the base of a triangle is
a feet, and tﬁ)at its altitude is b feet. Then we know that the
area of the triangle is }ab square feet. Hence, if we have a
number of triangles whose bases and altitudes are different but
such that the total area of each triangle is the same, then we
have ab=constant=m (say),

. a=m é—, that is, @ varies inversely as b. Similarly, b=mé s
and therefore b varies inversely as a.

EXAMPLES ON INVERSE VARIATION. XXVI. B.

1. If x vary inversely as y, and if y=3 when x=5, find
the value of # when y=5.

2. If x vary inversely as y, and if y=3 when =10, find
the value of x when y=8.

3. If a3 vary inversely as b7 and if b=3 when =2, find
the relation between a and b.

4. A man, walking at a uniform pace, walks from one
town to another. He can cover the distance in 4 hours, when he
walks at the rate of 3 miles an hour. How long will he take,
when he walks at the rate of 3} miles an hour?

5. If x vary as p+gq, p vary as gy, and ¢ vary inversely
as g, and if x=18 when .;/:-l, and x=’19§ when y=2, find x
when y=11.

6. Shew that, if x vary inversely as yz/(y —z), and be equal
to 5 when y=7 and z=2, then 2yz=14(y—2).

7. Prove that, if —lx—+§ vary inversely as x+y, then 22442

varies a8 zy.
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313. Joint Variation. One quantity varies jointly
as two (or more) quantities when it varies as their pro-
duct. - :

Thus z varies jointly as y and z when x « yz Hence
r=myz, where m is some constant quantity, that is, a quantity
independent of z, y, and 2.

314. A quantity « is said to vary directly as y
and inversely as z when it varies jointly as y and the
reciprocal of z.

In this case, xczy;, that is, a;=m'g, where m is some
constant quantity.

315. The following is an important proposition.

If x vary as y when z is kept unchanged, and z vary
as z when y 18 kept unchanged, then x unll vary jointly
as y and z when both y and z are changed.

Let » denote the value of the ratio 2 :yz. Then
the proposition will be true, if we prove that u is a
constant quantity, that is, one which involves neither
& nor y nor z.

. z
Since a= o T=uye

Now, by hypothesis, if z be kept unchanged, z o y.
Therefore uz cannot involve # or y. [Art.309.] Thus,
u cannot involve & or y. '

Similarly, » cannot involve « or zz Hence % is con-
stant, and therefore the proposition is true.

316. For example, consider the case of a man walking for
¢ hours at the uniform rate of » miles an hour. If v be constant,
the space traversed varies as ¢ If ¢ be constant, the space
traversed varies as ». Hence, if both » and ¢ vary, then the
space traversed varies as the product of » and ¢ In fact, we
know that s=uz, and therefore in this case the constant value of
the ratio of the measures of this space and this product is unity.

Again, the area of a triangle varies as the length of
its base if its altitude be kept constant (Euc. vi 1); and a
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similar proof shews that it varies as its altitude if its base
be kept constant. Hence, if both its altitude and its base be
changed, the measure of its area varies as the product of the
measures of its base and altitude. In fact, if the lengths of the
base and altitude of a triangle be respectively a feet and b feet,
we know that the area contains 4ab square feet. In this case,
the constant value of the ratio of the measures of this area and
this product is §. ’

*317. Similarly, physicists have shewn by ex}l)]eriment that
the volume of a quantity of gas varies inversely as the pressure to
which it is subjected if the temperature be kept constant (Boyle
and Mariotte’s Law); and that the volume varies as the absolute
temperature if the pressure be kegt constant (Dalton and Gay-
Lussac’s Law). Hence, if both the pressure and temperature
vary, the volume of the gas varies directly as the pressure and
inversely as the absolute temperature.

. Again, it has been shewn by experiment that the space
described by a bod{‘ falling from rest varies as the square of the
time occupied if the accelerating effect of gravity be constant
(which at any given place is the case); and varies as the accele-
rating effect of gravity (at different places) if the time of fall be
constant. Hence, if both the time and the accelerating effect of
gravity vary, the space varies as the product of the measures
of the accelerating effect of gravity and of the square of the time.

EXAMPLES ON JOINT VARIATION. XXVI. C.

1. If z vary directly as y? and inversely as z, and if when
y=22 and z=3 then x=1, find the value of # when y=3 and
2=2.

2. If x vary inversely as 32 and directly as z, and if when
x=; and y=2 then z=4, find the value of 2 when 2=2 and
y=%

3. If 4 vary directly as the square root of B and inversely
as the cube of C, and if 4=3 when B=256 and C=2, find B
when 4=24 and C=4}.

4, If 2? vary jointly as y—z and y+z and if =2 when
y=b and 2=3, shew that z is a mean proportional between
y—2x and y+ 2.

5. Shew that the number of years in which the simple

interest on a sum of money will accumulate to a certain fixed
amount varies inverselg' as the sum of money put out to interest
and also inversely as the rate per cent. of the interest.
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318. A few miscellaneous examples on questions
involving variation are here appended.

Ez. 1. If z vary directly as y and also directly as z, shew
that y will vary directly as .

Since x«<y, .". r=my, where m is a constant.
Also, since x« z, .'. x=nz where n is a constant.
. my=na.
=—z
m

But 7—';; is a constant. Therefore y « 2.

Ez. 2. The volume of a right circular cone varies jointly as
its hewght and the szwre of the radius of its base. If the 'vogtme
;facmw7ﬁ. kigh with a base whose radius vs 3 ft. be 66 cubic

eet, find that of a cone half as high, standing on a base whose
radius i3 twice as large as the other one.

Suppose that the height of a cone is % feet, and that the
}'sdius of its base is r feet, and suppose that it contains » cubic
eet. :
Then, by the question, voc kr?,

‘. v=mhr? where m is a constant,
If h~=7 and r=3, v=66, ... 66=m x7x 3%,
oo m=%§=3%%.
. v=3%%hr2

The height of the required cone is 3} ft., and the radius of its

base is 6 ft.,
. its volume = 2% x § x 62 cubic feet
=132 cubic feet.

Ex. 3. If the quantity of water, which flows through a pipe tn
a given time, vary as the square of the diameter of the pipe, and if
two vessels whose contents are in the ratio of 8 to 3 be filled by
two h;:pes tn 6 and 4 minutes respectively, compare the diameters
of the pipes.

Suppose that the diameters of the two pipes are x and
(that 1%, x and y units of length). pipes Y

The quantity of water which flows through the first pipe in
1 minute « 2% and may therefore be taken equal to ma?, where
m i8 a constant. Hence the quantity of water which flows
through the second pipe in 1 minute is equal to my2
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The quantities of water flowing through the pipes in 6 and
4 minutes respeetively are therefore 6ma® and 4my?; these (by
the question) are in the ratio of 8 to 3,
. 6ma? : 4my3=8 : 3.
. 18ma=32my3.
22
o~ :y—2=?§=1¢ﬂ'.
x
"y

=4
Hence the diameters are in the ratio of 4 to 3.
Ex. 4. The volume of a sphere varies as the cube of its radius.
If three spheres of radit 6, 8, 10 inches be melted and formed into
a single sphere, find its radius.

If the radius of a s;l){here be r inches, its volume varies as 73,
and may therefore be taken equal to ms3 cubic inches, where m

i8 a constant,
.*. the vol. of a sphere of radius 6 in.=mx 63= 216m cub. in.,
” ” » » 8in.=mx 8= 512m cub. in.,

» ” » » 10 in.=m x 103=1000m cub. in,
.. the vol. of the single sphere=(216m + 512m + 1000m) cub. in.
. =1728m cub. in.

Let the radius of this sphere be & inches, therefore its volume
is max® cubic inches. :
Hence, by the question, ma3=1728m.

oo z=y/1728=12.
Hence the required radius is 12 inches.

Ex. 5. The price of a er’s ticket on a certain French
railway is propoﬂ:uma{ to It’g‘;"gmm ke travels; he is allowed
25 kilogrammes of luggage free, but on every kilogramme beyond
this amount he is charged o sum proportional to the distance he
travels. If a journey of 200 miles with 50 kilogrammes of luggage
cost 25 francs, and a journey of 150 miles wnth 35 kilogrammes
cost 164 francs, what will a journey of 100 miles with 100 kilo-
grammes of luggage cost?

Su, that the nger is charged x francs for each mile
that hgpt(f:vels, and lgasc?learged frz.rngcs per mile for each kilo-

. gramme of luggage over the 25 kiiZgrammes which are caxried free.
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Then, if & miles be the distance travelled and » kilogrammes
the total weight of lt?gage, we are told that the price of the
ticket is sz francs, and that (if w > 25) the sum charged for the
luggage is sy (w— 25) francs.

Hence the total sum charged is

{8z + sy (w— 2b)} francs.
If s=200 and w=>50, the charge is 25 francs,

v 25=200{Z+25%} .covvrrierirrirnnnnn, @)
If =150 and w=35, the charge is 16} francs,
v 163 =150 {£+ 108} .cvvererrnrennnene. (ii).

Solving (i) and (ii), we obtain =5, ¥=1d9g-
Therefore, if 8=100 and »=100, )
the charge= {100z + 100y (100 —25)} francs
=174 francs.

EXAMPLES ON VARIATION. XXVI. D.

1. If z vary as  when y is constant, and vary as 2 when x
is constant, how does z vary when neither + nor y is constant ?

2. If z vary inversely as yz and y vary directly as 22, shew
that z varies inversely as Jz.

3. If z vary directly as g, and y vary inversely as 7% shew
that z varies inversely as /.

4. If g2 2?1, and if y=4, =,/2 be simultaneous values
of y and , find the value of x when y=2.

6. Prove that, if v« ¥, and z « 7, then will z « o/(2).

6. Given that x varies directly as (y +;) , and that »=202
when y=10, find # when y=5.

7. If % —; vary inversely as x -y, prove that #%+y? varies

as xy. .
8. If x vary directly as the square of ¥ and inversely as
the cube root of z, and if =2 when y=4 and 2=8, find y
when #=3 and 2=27.

9. Prove that, if z vary as the sum of the reciprocals of
and z, and be equal to 3 when y=1 and 7z=2, then xyz=2 (‘y+z{
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10. If x vary as the sum of the squares of two quantities, ¥
and 2z, whose product is constant, find the value of » when y=2,
it being given that =3, when y=3 and z=3.

11. If x vary as the sum of the cubes of two «Luantities, Y
and z, whose sum is constant, find the value of + when y=2, 1t
being given that #=3, when y=3 and z=3.

12, If A vary directly as P, inversely as @, and directly as
R; and if when P=bc, @=ca, R=ab, A=abc; find 4 when
Piat, Q=12 R=c*

13. If z vary as (#+a)(y+D), and be equal to ab(a+b)
when =0 and y=0, prove that z=(a+b)? when z=b and y=a.

14. If ar+by+1=0, where a and b are constants and x and
y are variable, and if the values of » be 2 and —9 when the
values of y are 1 and —4 respectively, what is the value of
x when y is zero?

15. Given that w varies as x+y, and that y varies as 22,
and that z=2, when the values of w, z, and y are 26, 1, and 12
respectively ; express w in terms of z and z.

16. Shew that, if # vary directly as y —z and inversely as yz,
and be equal to 5 when y=7 and z=2, then xyz=14(y -2).

17. If a mixture of gold and silver, of which three-quarters
of the weight is gold, be worth £49, what will be the value of
a mixture of equal weight, of which a half is gold, the value of
gold being 16 times that of silver ?

18. If a mixture of gold and silver, of whose weight seven-
eighths is gold, be worth £15, what will be the value of a mixture
of equal weight, of whose weight five-eighths is gold, the value of
gold being 16 times that of silver?

19. It being given that the arc of a circle varies as the
length of the radius and also as the angle the arc subtends at
the centre, find the length of an arc of a circle of radius 20 feet,
subtending a certain angle at the centre, when the length of an
arc of a circle of radius 4 feet, subtending three times the former
angle at the centre, is 9 feet.

20. Given that the area of a sector of a circle varies as the
product of the radins and the arc on which the sector stands,
find the area of the sector of a circle, of given radius, standing
on an arc 15 feet long, when the area of the sector of a circle of
5 times the radius, standing on an arc 12 feet long, is 100 square
feet.
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21. The volume of a right circular cone varies jointly as its
height and the square of the radius of its base. If the volume
of a cone 14 ft. high with a base whose radius is 3 ft. be 132 cubic
feet, find that of a cone twice as high, standing on a base whose
radius is half as large as the other one,

22. The volume of a cylinder varies jointly as its height
and the square of the radius of its base. Shew that, if the
heights of three cylinders of equal volume be in continued pro-
portion, 8o also are the radii of their bases,

23. The volume of a sphere varies as the cube of its radius.
If three spheres of radii 9, 12, 15 inches be melted and formed
into a single sphere, find its radius.

24, If the quantity of water which flows through a pipe in a
given time vary as the square of the diameter of the pipe, and if
two vessels whose contents are as 16 : 7 be filled by two pipes
in 7 and 4 minutes respectively, compare the diameters of the
pipes.

25. The value of a diamond varies as the square of its
weight, and the value of a ruby varies as the cube of its
weight, If the values of a ruby and a diamond, each weighin
a carats, be equal, compare the values of a ruby and a diamon
weighing respectively b and ¢ carats.

26. It is found that the quantity of work done by a man in
an hour varies directly as his pay per hour and inversely as the
square root of the number of hours he works per day. He can
finish a piece of work in six days, when working 9 hours a day
at 1s. per hour. How many days will he take to finish the same
piece of work, when working 16 hours a day at 1s. 6d. per hour?

27. The price of a passengers ticket on a certain French
railway varies as the distance he travels; he is allowed 30 kilo-
grammes of luggage free, but on every kilogramme beyond that
amount he is charged a sum proportional to the distance he travels.
If a journey of 200 miles with 55 kilogrammes of luggage cost 25
francs, and a journey of 150 miles with 40 kilogrammes cost 164
francs, what will a journey of 200 miles with 105 kilogrammes
of luggage cost ?

28. The amount of fuel consumed in a slow-combustion
stove varies as the square of the diameter of the stove when
the time for which it is kept burning is constant, and varies as
the time for which it burns when the diameter of the stove is
constant. A stove 10 inches in diameter can be used for 21 days
at a cost of 3s. 6d., what will it cost to use a stove 12 inches in
diameter for 50 days ?
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29. The value of a silver coin varies directly as the square
of the diameter, if the thickness remain the same, it also varies
directly as the thickness, if the diameter remain the same. Two
silver coins have their diameters in the ratio of 5 :4, find
the ratio of their thickmesses if the value of the first coin be
twice that of the second.

30. The pressure of the wind on a plane area varies jointly
as the area and the square of the velocity of the wind. The
pressure on a square foot is 1 1b. when the wind is blowing at the
rate of 16 miles an hour. Find the velocity of the wind when
the pressure on two square yards is 50 lbs.

3l. The amount of the collection made after a public meet-
ing, held in aid of a certain cause, was found to vary directly as
the number of persons present, and inversely as the length of
the speeches miade. If £40 were collected after a meeting at
which 450 ns were present and the speeches lasted for 2
hours, find how much would be collected at a meeting at whic]
600 persons were present and the speeches lasted for 4 hours,

*32. At a certain Regatta, the number of races on each day
varied jointly as the number of days from the beginning and end
of the Regatta up to and including the day in question, On
three successive (gx 8, there were respectively 6, 5, and 3 races.
mhich days were these, and how many days did the Regatta

t 7 .

*33. The expense of running a goods train on a railway varies
as the square of the number of trucks in it. The price charged
for each truck is the same. If the receipts from a train of 40
trucks just pay the expenses of working it, shew that a railway
company will make the same profit on each train by running
trains t&ade up of 17 trucks as they would by trains made up of
23 trucks.

Find also how many trucks should be put in each train in
order that the profit may be as large as possible.

*34. If the number of oxen a eat up the meadow b in the
time ¢; and the number of oxen & eat up as good a piece of
ture ¢ in the time f, and the grass grow uniformly; find
ow many oxen will eat up the like pasture g in the time 4.
(Sir Isaac Newton. Untversal Arithmetick, 1707.)



CHAPTER XXVIL
ARITHMETICAL PROGRESSIONS.

319. Arithmetical Progression. A series of
numbers is said to be in arithmetical progression (or
to form an arithmetical progression, or to be in arith-
metic progression) when the difference between any
number in the series and the one immediately pre-
ceding it is always the same. The letters A.P. are
often used as an abbreviation for the words Arith-
metical Progression.

Each number is called a term of the series.

The constant difference, obtained by subtractin
from any term the term immediately before it, is calleg
the common difference of the progression.

820. Condition for an A.P. The condition that
the series of numbers denoted by the letters a, b, ¢,d ..
shall be in A.P. is that

b—a=c—-b=d—-c=....

321, Each of the following series is an example of an arith-
metical progression,

1,2 3,4, 5, ccciniiiiiiiinninnennes (common difference=1),
2 5,8, 11, 14, ...cccvvriniinncnnns (common difference = 3),
4,20, -2 —4, ..ooreiiannanns (common difference= - 2),

a, a+d, a+2d, a+3d, a+4d...(common difference=d).

But the series 2, 4, 8, 16,... is not an arithmetical progression,
since the difference between the third and second terms (8 —4=4)
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is not the same as the difference between the second and first
terms (4-2=2). ’
Similarly, the series 2, 5, 8, 12,... is not an arithmetical pro-
gression, for though the difference between the second and gmt
terms is the same as that between the third and second terms,
gat it is not the same as that between the fourth and third
rms,

Where all the terms of a series, which are given, form part of
an arithmetical progression, it is usual to assume that the whole
of the series is in arithmetical progression.

322. Expression for the n® term of an A.P.
The n™ term of an arithmetical progression, whose first
term 18 a and common difference 18 d, 1s a+ (n—1) d.

The second term is a + d.

The third term is obtained from the second term
by adding d to it, hence it is a + 2d. :

Similarly, each successive term is obtained by
adding d to the term before it. Thus, the fourth term
is a + 3d, the fifth term is @ + 4d, and so on; the co-
efficient of d in any term being 1 less than the number
of the term.

Hence the n* term consists of the sum of @ and
(n—1)d; and, if we denote the n™ term by [, we have

l=a+(n~1)d.

Erx. 1. Find the 21* term of the series 1, 3, 5,...

This is an arithmetical progression. The first term (denoted
above by a) is 1, the common difference d=3-1=2.

Hence the 21% term=a+(z—-1)d

: =14(21-1)x2
=41,

Ex. 2. I3 2001 a term of the series 2,7, 12,...7

Suppose it to be the #** term. Then, using the formula
{=a+(n—1)d, we have [=2001, a=2, d=T-2=5,

s 2001=24(n-1)5, ..

that is, 5n=2004.
This would require » to be a fraction, which is impossible.
Hence 2001 is not a term of the given series.
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Since »=4004, the given number will lie between the 400t
and 401% terms. The 400 term of the series will be found to
be 1997, and the 401* term to be 2002.]

. Bz, 3. The 9™ term of an arithmetical progression is zero, and
the 21% term is —36. Find the series.

‘We shall know the series if we know the first term and the
common difference, since in that case we can write down as
many terms of it as we like.

Let a be the first term of the series and & the common differ-
ence. Then, using the formula

l=a+(n-1)d,
we have =0 if n=9, 0=a+ Sd}
and [= 36 if n=21, ~-36=a+20d]"

These are two simple equations for ¢ and d.
Subtracting, we have  —36=20d —8d=12d.
cod=-3.
But a+8d4=0, o a=—8d=24.
Thus the series is 24, 21, 18, 15,....

EXAMPLES. XXVII. A.
1. Which of the following series are in A.p.?
@ 1, -2 —4, -7,...; .
(ii) -4, 0, 4, 8,...;
(iii) 11, —10, —31, —51,....
2. Write down the first five terms of an arithmetical series,
whose first term is 6 and whose tenth term is 20. '
3. . Write down the 17" terms of the following series, each
of which is in A.P.
i) 4,7, 10, 13,...;
@ii) 3, -1, =5, =9,...;
(iii) (@+0)?% a2+8% (a-b),....
4, 1s 1000 a term of the series (ii), given in question 17
5. Find the »* term of an A.P., having given that a+b is
the first term and a—b the common difference of the series.
6. Find the arithmetical series whose 10* term is — 100
and whose 48 term is 128, .
B. A, 22
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7. Find the 15% term of an arithmetical progression whose
8t and 12% terms are respectively 17 and 25.

8. Find the 18* term of an arithmetical progression whose
6% and 13t terms are respectively 22 and 43.

9, The 5% term of an arithmetical Rrogression is 64, and the
10 term is 729: find the 3™ and the 7™ terms.

10. Every term of a series of numbers in A.P. is multiplied
by the same quantity. Is the new series so formed in A.p.

323. Sum of n terms of an A.P. The sum of n
terms of an arithmetical progression, whose first term
15 @ and common difference ts d, 18 in {2a+ (n — 1) d}.

Let s be the required sum, and let 7 be the n** term.
Writing down the terms of the series, we have

s =a+(a+d)+ (@+2d)+...+ (I -2d)+(I-d) +1.
If we write the series in the reverse order, we have
s=1+(l-d)+({1-2d)+...+(a+2d)+(a+d)+a.
Adding these series together, we get n terms as follows:
2s=(a+0)+(a+ O)+(a+ 1) +...4+(a+ 1) +(a+])Ha+l),
that is, 2s=n(a+1).

=T2-°(a+z) ........................ o
But l=a+(n-1)d,
s=g{a+a+(n—1)d}

=520+ (=1 d} e, (ii)-

324. Note. If the first and last terms of the series
had been given, the formula (i) would have given the
sum.

If any three of the four quantities a, I, n, s be given,
the equation (i) will serve to determine the fourth
quantity. .
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Similarly, if any three of the quantities a, d, n, s
be given, the equation (ii) will serve to determine
the fourth quantity.

Ex. 1. Find the sum of 21 terms of the series 17,11, 5, —1,....

This is an arithmetical progression, whose first term is 17
and whose common difference=11-17= -6.

Hence, in the above formula, a=17, d= -6, n=21,
. a=g{2a+(n—1)d}
=31 {34+(20) (- 6)}
=21{17— 60}
="—903.
Ex. 2. Find the sum of n terms of the series 1+3+5+7+....

This is an arithmetical progression, whose first term is 1
and whose common difference=3—-1=2.

Hence, in the above formula, a=1, d=2,
a=§ 2a+(n-1)d}

=3 @+(n-1)g)
=7 {2}
=n
Ex. 3. The 4 term of an arithmetical progression s 8, and
the 11% term 48 22. Find the sum of 9 terms. .
Let a be the first term, and d the common difference.
Then, using the formula {=a+ (n—1)d, we have,
ifn=4, =8, .. 8=a+ 3d
and if n=11, =22, .*. 22=a+ md}'
Solving these two equations, we find a=2, d=2.
We want the sum of 9 terms of this series, .*. n=09.

- s=g{2a+(n-1)d}

=3{4+8.2}
=90.
222
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Ez. 4. How many terms of the series 1§+3+4§+6+ .. must
be taken in order that their sum may be 99

‘We use the equation a=§{2a+(n— 1)d}.
Here =99, a=14, d=14, and » is required,

" 99=7 B+(n-1)x§
n 3rn+3

=2 g
. ni4n—-132=0.
. (n+12)(n—11)=0.

s m=-—12, or n=11.

To make the solution intelligible, » must be a positive integer.
Hence the root —12 is inapplicable to this problem, and the
answer is 11.

Note. The interpretation of the answer n= —12 is that if,

beginning with the first term, we count 12 terms backwards, then
the sum of those terms will be — -99.]

EXAMPLES. XXVIL B.

Sum the series of numbers (each series being in arithmetical
progression) given in examples 1 to 17.

P NSO R

10.
11.

8, 12, 16, 20,... to 20 terms.
9, 26, 43,... to 90 terms.
8, 27, 46,... to 100 terms.
32432} +32%+... to 19 terms.
3+23+13+... to 10 terms.
343%+3%+... to 156 terms.
2+2}+24+... to 12 terms.
§+13+2+... to 10 terms.
—3+3+1+... to 29 terms.
21, -3, -5L,... to 9 terms.
131, 114, 97,... to 15 terms.

12, 1'6+24+32... to 6 terms.
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13, 16'6+14+11+4... to 10 terms.

14, 35+4+414474+53+... to 12 terms.

15. 25+32+39+4°6+... to 12 terms,
z+1 +z+2 z+3

16, — +——+——+... to a terms,
a a a
17. n—l, 30&-3, M—g,... to n terms,
n n n

18, The first term of an arithmetical progression is 38, and
the fourth term is 86. Find the sum of the first 12 terms.

19. The first term of an arithmetical progression is 36, and
the fourth term is 90. Find the sum of the first 10 terms,

20. The 20* term of an A.P. is 15, and the 30* term is 20.
Find the sum of the first 25 terms.

21. Find the sum of 24 terms of an arithmetical progression,
whose 13" term is 25 and whose 19* term is 37.

22. In an arithmetical series, consisting of 15 terms, the
sum of the last five terms exceeds the sum of the first five
terms by 100. Find the common difference.

14
23, If the sum of = terms of an arithmetical progression
whose first term is 11 and common difference is 3, be equal to
377, find the value of =.

24, The sum of n terms of the series 3, 7, 11,... is 820.
Find #.

25. If » be so chosen that the sum of the first » odd numbers
is 900; find n.

26. If the sum of n terms of an arithmetical progression
be 73, and the common difference be 2, find the last term.

27. If the common difference of an A.P. be double the first
term, prove that the sum of n terms of the series varies as 72

325. Arithmetic Mean, When three quantities
are in arithmetical progression, the middle one is called
the arithmetic mean or average value of the other two.
The letters A.M. are often used as an abbreviation for
the words Arithmetic Mean.



342 ARITHMETICAL PROGRESSIONS.

326. The arithmetic mean of two quantities s half
their sum.
For let a, z, b be three quantities in arithmetic
progression.
ex—a=b-—ua.
s 2x=a+b.
soe=%(a+bd).

327. Arithmetic Means, When any number of
quantities are in arithmetical progression, the terms
intermediate between the two extreme ones are called
the arithmetic means (or arithmetical means) of the two
extreme terms.

328. To insert p arithmetic means between two
quantities a and b.

We have two quantities, @ and b We want to insert p
quantities between them, so that the (p+2) terms so formed may
be in A.P. The first of these p + 2 terms is a; the last of them
is b. Let d be the commpon difference of this progression. Then
the (p+2)* term must be a+(p+1)d. -

o b=a+(p+1)d.
b-a
TP+l
Hence the required series is
b-a b-a b-a
a, a+p—+‘i, a+2m, ...... ) a+pm, b
And the arithmetic means are
b-a b-a b-a
a+m, a+2m, ...... y a+P}’—_’:i)
. pat+d (p-1)a+2b a+pb
that is, are P pEL e

Ex. 1. Insert three arithmetic means between 4 and 1.

We want to insert 3 terms between 4 and 1, so that the
5 terms so formed shall be in A.p. Let d be the common
difference of the required series. Therefore 1 is to be the
b term of an A.P. whose first term is 4 and whose common
difference is.d.
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Using the formula /=a+(n—1)d, we have
1=4+44d,
cod=—4
.*. the series is 4, 34, 23, 13, 1;
and the required means are 3}, 2}, 13.
Ex. 2. Find the sum of the p arithmetic means inserted
between a and b.

The sum of an A.P. of »# terms, whose first term is @ and last
term is [, is 4n(a+17) [Art. 323 (1)) Therefore the sum of the
(p+2) terms, whose first term is @ and last term is b, is

3 (p+2)(a+bd).
Hence the sum of the arithmetic means is

3 (p+2)(a+d)—a—-b=4p (a+bd).

EXAMPLES. XXVII C.

1. What is the arithmetic mean between 4 and 8?
2. Insert three arithmetic means between

(i) 4 and 8; (ii) 1 and 9; (iii) 3 and —4.
3. Insert seven arithmetic means between } and 7.

Insert two arithmetic means between a and b. Insert
also two arithmetic means between the reciprocals of the means
just found.

5. Insert four arithmetic means between 2% and z-2.
6. Insert five arithmetic means between (@ —b)? and (a+5)2

7. Provethat the sum of % terms of an arithmetic progression
is equal to n times the arithmetic mean between the first and
n® term.

8. Find the sum of the arithmetic means inserted between
each two consecutive terms of an arithmetical progression of
which the first term is a and the last 7.

9. A man training for a mile race runs the distance every
day for 24 days, his time improving at a uniform rate. On the
first day he takes 8 minutes, on the last 4% minutes. What
is his average time ?

10. The square of the arithmetic mean of three numbers in
arithmetical progression is less by 1 than the arithmetic mean
of the squares of the extremes, and the cube of the mean is less
by 18 than the arithmetic mean of the cubes of the extremes.
Find the numbers,
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329. The student will notice that all the propo-
sitions about arithmetical progressions are deduced
from the three formulae,

l=a+(n-1)d,

s=4n(a+1),

s=in{2a+(n-1)d},
where a is the first term of the series, d the common
diﬁ'erence,’l the »® term, and s the sum of n terms.

MISCELLANEOUS EXAMPLES. XXVIIL D.

[The following miscellancous examples are on arithmetical

essions. Other evamples on arithmetical progressions will

ound on pp. 377—379.

1. Sum the following series, each of which is in a.p.

(1) 7432+57+... to 20 terms;

(i) 14+¢+%+... to 12 terms;

(iif) (@—3b)+(2a— 5b)+(3a—"Tb)+... to 40 terms;
@(iv) (n-1)+(n-2)+(n—3)+... to n terms,

2. How many strokes are struck in a day by a clock that
tells the hours, but not the quarters or halves ?

3. Prove that, if every alternate term of an arithmetical
Pproj ion be struck out, the remaining terms will form an
arithmetical progression.

n—-1 n-2 n-3

If the terms that remain be = TR Tt supply

the terms that have been removed.

4. Shew that, if any odd number of quantities be in a.P.,
the first, the middle, and the last of them will be in A.p.
5. The 4™ term of an A.P. is 15, and the 20* term is 23};
find the sum of the first 20 terms.
6. The sum of the first three terms of an arithmetical pro-
ion is 9, and the sum of the three subsequent terms is 27.
ind the series.

7. Shew that the sum of the first 5 terms of the series
]ﬁl-s{-9+7+... is equal to the sum of the first 7 terms. Explain
this.
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8. Find the arithmetical progression whose sum to 5 terms
is 45 and whose second term is 7.

9. How many terms of the series 29+27+25+23+... must
be taken so that their sum may amount to 200?

10. The sum of # terms of the A.P. 2, 5, 8,... is 950; find n.

11. The sum of # terms of the series 3, 6,9,... i8 975; find .

12. Find the number of terms of the arithmetical progression
18, 15, 12,..., which must be taken so that their sum is 45; and
explain the double answer.

13. Find the last term in the series 201, 204, 207,..., when
the sum of all the terms is 8217.

14. The sum of a certain number of terms of an a.P. is 36,
and the first and last of these terms are 1 and 11 respectively.
Find the number of terms and the common difference of the series.

15, If the sum of the first #» terms of an A.P. be 32n2
where 7 is any positive integer; find the 7 term.

16. If the 7 term of an A.p. be 32r—16, where » is any
positive integer; find the sum of the first # terms.

17. Shew that, if unity be added to the sum of any number
of terms of the series 8, 16, 24,... the result will be the square
of an odd number.

18, An arithmetical progression contains 22+ 1 terms, Shew
that the sum of the odd terms : the sum of even terms=n+1 : 2.

19. Find the sum of 2m terms of an arithmetical progression,
of which the two middle terms are a —b and a+b.

20, How many terms of the series 19+17+15+13 + ...
must be taken to amount to 10Q?

21. Shew that the sum of an arithmetical progression, whose
first term is @, whose last term is z, and whose common difference
is b, is

2-a® 2+a
- T®m Tty

22, Shew that, in every arithmetic progression in which the
first term is equal to the common difference, the (p—¢)™" term
is equal to the difference between the p** and ¢** terms.

23. If each of two arithmetical progressions be composed of
2r+1 terms, and if their middle terms be equal, shew that
their sums are also equal,

24, Find the sum of all the numbers between 200 and 300
which are divisible by 3.
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25. A man stands by a heap of 100 stones. How far must
he walk, carrying one stone at a time, to place the stones sepa-
rately, at intervals of 20 feet apart, in a straight line having
one end where the heap is?

28. The sum of n terms of an A.P,, whose first two terms
are 43 and 45, is equal to the sum of 2 terms of another A.P.,
whose first two terms are 45 and 43. Find the value of n.

27. The first term in a series of numbers in A.P, is 7, the
middle term m, and the sum of the series is m2—man+m. Write
down the last three terms of the series.

2. Show that, if -2, ,% 52 e in arithmetical pro-
gression, then a, b, ¢ will be also in arithmetical progression.

29. The sum of four numbers, which are in arithmetical pro-
gression, is 16; and the product of the second and third of these

numbers exceeds by 8 the product of the first and fourth. Find
the numbers.

30. There are four numbers in arithmetical progression, such
that the sum of twice the square of the first and the square of
the last is equal to the square of the sum of the first and second,
and the square of the last exceeds three times the square of the
first by 1. Find them.

31. Divide 15 into 5 parts which are in arithmetical pro-
gression, and such that the sum of the squares of the least and
greatest of them is less than the sum of the squares of the
other three parts by 3. -

32. Find three numbers in the ratio of 3 : 6 : 10, such
that, if each be increased by 1, the square roots of the sums are
in arithmetical progression.

33. The common difference of an a.P. is 2, and the square
roots of the first, second, and fourth terms are in A.p. Find
the series.

34. Write down the 2** term and the last term of the series
14+4+7+... continued to 2n+1 terms; and shew that, if S; and
S, be the sums of the first n and the last # terms respectively,
then 8,—8;=6S, where § is the sum of the first » natural
numbers 1 2, 3, &ec.

35. Prové that any even square, (2n)?, is equal to the sum of
n terms of one series of integers in arithmetical progression, and
that any odd square, (224 1)? is equal to the sum of z terms of
another such series increased by 1. )
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36. The =t terms of the two series
2+3%+53+... and 187+184} +181}+...
are the same. Find x.

37. The first terms of two arithmetical series are a and 2a,
and their common differences are respectively d and 3d. Prove
that, if 40 be a multiple of d, it will be possible to find a number
n such that the sum of » terms of each series is the same.

38. Ten balls are placed on the ground in a line at equal
distances apart. A boy, standing in a line with them and 12
feet from the nearest ball, places a basket on the ground, fetches
each ball in succession, and places it in the basir:t When he
has returned with the last ball, he finds he has walked a quarter
of a mile. How far apart were the balls placed ?

39. A man starts to explore an unknown country carrying
provisions for 10 days. He can walk 15 miles a day when carry-
ing provisions for 10 days, and he can go an extra mile a day
for each day’s provisions he gets rid of. What distance will he
have walked by the time he has just exhausted his provisions ?

40. The cost of boring an Artesian well 500 feet deep is
2s. 8d. for the first foot, and a halfpenny in addition for each
succeeding foot. What is the whole cost ?

41. A man, who is training for a race, runs on the first day
a number of miles equal to one-sixth part of the number of
days he is in training, and each succeeding day runs three miles
farther than he did the day before. Altogether he runs 51 miles.
How many days is he in training ?

42, Three squares of ground, the lengths of whose sides are
in A.P., are paved with square tiles of equal size. In the two
smaller squares together there are 45 tiles more than in the
largest square; and, if there were 9 tiles more in the middle
squareﬁthe numbers of tiles in the three squares would be in
A.P. ow many tiles are there in each square ?

43. A man walks a distance of 21 miles in 5 hrs, 37 min.,
starting at the rate of 3} miles per hour, and increasing his rate
by a certain quantity after completing one-third of the distance,
and again by the same quantity after completing two-thirds of
the distance. What is his final rate ? -

44. A and B start to walk to a place 96 miles off and back
again, B always walking at the rate of two miles a day faster
than 4. A starts at the rate of 10 miles a day and daily in-
creases his rate by two miles. Determine when and where he
will meet B coming back.



CHAPTER XXVIIL
GEOMETRICAL PROGRESSIONS,

330. Geometrical Progression. A series of
numbers is said to be in geometrical progression (or to
form a geometrical progression) when the ratio of any
term in the series to the one immediately preceding
it is always the same. The letters G.P. are often
used as an abbreviation for the words Geometrical
Progression.

Each number is called a term of the series.

The constant ratio of any term to the one imme-
diately before it is called the common ratio of the
progression.

331. Condition for a G.P. The condition that
the numbers represented by the letters a, b, ¢, d ...
shall be in geometrical progression is that '

b _c¢_d_
(",,' - E - 6' = sse o
Thus a, b, ¢ ... are in continued proportion [Art. 304].

332. Each of the following series is an example of a geo-
metrical progresssion,

1,2 4,8 ..ccciviiiiinnnnnns (the common ratio being 2),
L3, 5L (the common ratio being }),
2, -3+ —1de ooeee (the common ratio being —}),
a, ar, ar?, ard, .....cooeenneee (the common ratio being 7).

Where all the terms of a series, which are given, form of
* a geometrical progression, it is usual to assume that the whole of
the series is in geometrical progression.
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333. Expression for the n™ term of a G.P.
The n™ term of a geometrical progression, whose first
term 18 a and common ratio 18 r, 18 ar™,

For the second term is ar.

The third term is obtained from the second by
multiplying it by 7, hence it is ar®.

Similarly, each successive term is obtained by multi-
plying the term before it by ». Thus, the fourth term
18 ar®, the fifth term is ar*, and so on; the index of »
in any term being 1 less than the number of the term.

Hence the n™ term consists of the product of a
and 7*7; and, if we denote the »™ term by [, we have

»n—1

l=ar* ™.

Ex. 1. Find the 6™ term of the series 1, 2, 4, ...
This is a geometrical progression. The first term (denoted
above by a) is 1, the common ratio r=§=2.
Hence the 6* term =qr -1
=1x25
=32.
Ez. 2. The fourth term of a geometrical progression is 4 and
the seventh term 18 —%. Find the series.

‘We shall know the series if we know the first term and the
common ratio, since in that case we can write down as many
terms of it as we like.

Let a be the first term of the progression, and » the common
ratio. Then using the formula /=ar*-1, we have
4=ar3
e}

Dividing, we obtain 3= 1= 3,

cor=-4
Substitute this value of r in the equation 4=as3,
. d=a(=}),
. a=-32.
Hence the series is
—32, 16, -8, 4, 2, 1, —},....
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EXAMPLES., XXVIII A.
1. Which of the following series are in G.P.?
@ 21 % §.. (i) L, -1, 1, —1,...;
(iii) 2, 4, 8, 12,...; (iv) 48, 2%y, 238 9,...

2. Write down the sixth terms of those series given in
question 1 which are in a.P.

3. Find the 6% term of the series 3, 6, 12,...
4. What is the eighth term of the geometrical progression
whose first and second terms are respectively 2 and —31

5. What is the sixth term of a geometrical progression
whose first and second terms are 3 and —4?

6. The 2™ term of a geometric progression is 21, and the 3
term is 147. Find the 5 term.

7. The 2™ term of a geometric progression is 15, and the 3™
term is 75. Find the 1* and 6% terms.

8. Find the geometrical progression whose fifth and ninth
terms are respectively 1458 and 118098,

9. The sum of the second and fourth terms of a geometrical
progression is 20, and the difference of the first and fifth termsis
30. Find the series.

10. Shew that, if the terms of an A.P. be written down and
mﬁ %eua.ntxty be raised successively to those powers, the results
in G.P.

334. Sum of n terms of a G.P. Thesum of n
terms of a geometrical progression, whose first term 18 a
-1

and common ratio 18 1, 18 @ 1"

Let s be the required sum. Then
s=a +ar +ar+..+ar*? +ar" .. L(0)
Multiply by r,
sr=ar+ar’+ar’+ ...+ ar"'+ ar ....(ii).
Subtract (ii) from (i).
. . 8—sr=a—-ar" .
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since all the other terms on the right-hand side cancel.
' s(l—=r)=a(l-7".
1-r =1
=7 = %71
335. If any three of the four quantities a, r, n, and
8 be given, this equation will determine the fourth
quantity ; but, if @, n, and s be given, and if n> 2, it
will not generally be possible to solve the resulting
equation for 7. ‘
If ! be the last term, we have [ =ar*,
_art—a_rl-a
T -1 r-1"
which gives a different form for s.
Ex. 1. Find the sum of 8 terms of the series 1, 2, 4,....

This is & geometrical progression whose first term is 1 and
common ratio =2. Hence, in the formula of Art. 334, a=1,r=2,
n=_§, .

m—1

Ez. 2. Find the sum of n terms of the series a?, ab, bl,....
This is & geometrical progression whose first term is a2 and

whose common ratio = = agb = Hence the formula
_a1
$=aT 3
G-
gives s=a? B
2.1
a
bu_an
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Ex. 3. It is said that chess was invented by Sessa for the
amusement of an Indian rayah, named Sheran, who rewarded the
by pr to p 1 grain of wheat on the 1% square
ofachmboard 2gmm.s on the 2", 4 grains on the 3%, and so
on, doubling the number for each successive square on the board.
Find the number of grains which Sessa 2 kave recetved.

The number of grains on the successive squares form a 6. P.
whose first term is 1 and common ratio is 2. There are 64 squares,

.*. in the above notation a=1, r=2, n=64.
Therefore the total number of grains is given by

™1
3I=a

21
2-1
=281,
This number has been calculated, and is equal to
18,446,744,073,709,551,615,
a quantity far greater than all the wheat in the world.

=1x

Ez. 4. How many terms of the series 3, 9, 21,... must be taken
in order that their sum may be equal to 1207

Using the formula s= a'“ ll , we have a=3, r=3, s=120,

3 —
- 120=3ﬁ=g(3n—1),

. 40%x2=3"-1,
.. 3n=81.
Now 81 =92=3%, oon=4.
Hence 4 terms of the series must be taken.

*Ex. 5. How many terms of the series 1, %1,%, .. must be
taken in order that their sum may be equal to 2

Using the formula s=a1:_ 11 , we have a=1, r=4}, and 8=2,

. 2= lx@) '1

=2{l- (é)"}a
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s l=1-()n
o ()r=0.

Now the greater we take 7, the smaller does (4)* become.
We can never make (3)* quite zero, no matter how great we
take =, but by taking n great enough, we can make (3)* smaller
than any quantity that is mentioned. Therefore an indefinitely
large number of the terms of the series can he made to differ
from 2 by as small a quantity as we please.

336. Bum of a G.P. containing an infinite
number of terms. The sum of an infinite number of
quantities in geometrical progression, whose first term 18
a, and whose common ratio, r, 18 numerically less than

a
1-7"
We proved in Art. 334 that the sum of n terms of
1—~s
1-¢°

unity, 18

the progression is given by the formula s=a
This can be written §= 0 — 2
l—r 1-7r

In the case we are discussing in this article, r is a
proper fraction, and therefore the larger we make =,
the smaller will 7* become. Moreover, by taking n
sufficiently large, we can make 7* smaller than any
assigned quantity. But the difference between the
sum of n terms of the series and 1;"7' is 1——“’ ot and
therefore this difference may be made as small as we
like by sufficiently increasing the number of terms
taken, that is, by increasing n.

This is expressed by saying that the limit of the
sum of an infinite number of terms of the series

atar+ar+... is ——.
1-7r

This however is only true provided that r is a proper
fraction, either positive or negative.

Examples, illustrative of the use of this result, are given on
pp. 355—357.
B. A, - 23
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*337. Infinite Series. Series containing an infi-
nite number of terms are of constant occurrence in
mathematics. They are sometimes called infinite series,
but by this is only meant series containing an indefi-
nitely large number of terms.

*338. Convergent and Divergent Series.
Whenever the sum of n terms of a series containing
an infinite number of terms can, by sufficiently increas-
ing n, be made to differ from some finite quantity by
less than any assignable quantity (no matter how
small), such a series is said to be convergent (or con-
verging): in any other case, it is said to be divergent
(or diverging).

A convergent series may in general be safely em-
ployed provided a sufficient number of terms be
taken into account; but a divergent series should
only be used with extreme caution.

The rules for determining whether a given series is
convergent or divergent lie beyond the limits of this
book.

*339. As an illustration of convergent and divergent series,
let us consider the following example. If we divide 1 by 1-,
we find that the quotient is 142+ 22+ 23+ ... and the remainder
(if we stop after the »™ term in the quotient) is z". We might
therefore think that

1—-1_‘~”=1+x+x2+x3+ ...(to infinity).
If 2 be less than unity, this result is true, for the further we
roceed in the division the smaller does the remainder, 2%,
me, and thus the series converges. In fact, this is a geo-
metrical progression whose common ratio is #, and if # be a
proper fraction, the sum of the series—or more accurately the

limit of its sum—is 1—132 [Art. 336].

If however 2 be ter than unity, then the further we prodeed
in the division themer does the remainder 2" become. Thus
the difference between i_l_—‘-” and the series 14 2 + 22+ 23+...
becomes greater as we take more terms of the series into account.
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The series diverges, and the limit of its sum is not represented
by &” . For example, if we put z=2, then l_i—x becomes l,_l:_é,
that isi)e_;'l; while the series 1+x+24%+... becomes the sum of
a number of positive quantities. Thus, if any one had been so
careless as to put the series equal to 1—1;, he would have been
led (in this case) to the absurd result that the sum of a number
of positive quantities was equal to a negative quantity. The
accurate result, namely,
1 %

— = -1 U

1z l+z+224...+am" 14+ iz
shews however that the mistake would arise from the neglect of

the term -~ This term can be neglected only when (i) # is

1-2
numerically less than unity and (ii) # is infinitely large.
Ex. 1. Find the sum of the series 1+%+3+}+... (fo infinity).
This is a @.P., whose first term is 1 and whose common ratio

is 3. Hence, in the formula s=£—;, we have a=1, r=4.

Ex. 2. If n be positive, find the sum of
1 1 1 . e .
m+('rz_-}-l—)§+(rt_+l—)3+"' to infinity.

This is a a.p., whose first term is ;_:Ti and whose common

1 . . " . .
Pys & also, since n is positive, » is less than unity.

. 1 1
Hence, in the above formula, a= ey Kl Amiers B

a
§=—

ratio is

3
F=
-

L]

-
|

]

+"—

ot

]
S~

23—2
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Ez. 3. The rule for finding the value of recurring frac
tions in arithmetic affords another llustration of the rule for
finding tlafc sum of a gaometrwal . progression containing an infinite
wrumber o

This will be suﬂiclently illustrated by two examples.
(i) Find the value of 0-21.

We have 0'27=0'2771...
2 7 7T 1
_+W+1_63+ﬁ4+""
7
7 7.7 s T@ _1
_2 7 _(@x9)+7_2(10-1)+7_27-2
027‘10*"90‘ 90 90 90 °’

which is the form in which the result is given by the usual arith-
metical rule. It reduces to .

(i) Find the value of 0312,

We have 0-312=0-31212...
3 1 2 1

=10+ 108+ 10+ ok + i+
3 12 12
_F)+1—()—3+W+"’
12
12 12 . . 108 12
Now 103+105+...b0mﬁmty-. _L”!TQ_O’
10®
12 3x99+412 3(100 l)+12 312-3
0312”1_0*'990 990 990 990

which is the form in which the result is given by the usual arith-
metical rule.

Ex. 4. Find three numbers tn G.P., such that their sum is T
and their product 8.

Let the middle number be a, and let » be the common ratio
of the progression.
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.*. the numbers are g, a, ar.

The product of the numbers is 8, ..

]
-.a.ar=8.
r

. a3=8,

S a=2,

The sum of the numbers is

But a=2,

7, .. g+a+ar=7.

§+2+2r=7.

. 22— 5r42=0,
cor=2 0or d.

Whichever value of r is taken, we obtain for the required
numbers 1, 2, 4. Hence the numbers are 1, 2, 4.

Note. Wherever a problem

is concerned with an odd number

of quantities in an unknown a@.P., it is generally convenient to

select the middle quantity of

the a.p. and the common ratio

of the series as the unknown quantities.

EXAMPLES. XXVIII. B.
Find the sum of the following series, numbered 1 to 16,

each of which is in a.p.

1. 324+48+472+... to 6 terms.
2. i +}+d5+... to 4 terms.
3. 3%, -3, 3L,... to 6 terms,
4.3-%4+3-... to 8 terms.

5. }-3+4—... to 8 terms.

6. —F+3—g5+... to 6 terms.
7. $+4+8+... to 12 terms.
8.1-124144—...t09 terms.

9, 250, 100, 40,... to infinity,
10. 108, 72, 48,... to 5 terms,
11, 16+ 1249 +... to infinity.
12, 33+2}+13+... to infinity.
13, 3-143}-... to infinity.
14, 96, 72, 5°4,... to infinity.
15, 35+35+-0035+... toinf

16. V3 -2+ %—...to 10terms.

17. Find the sum of five numbers in geometrical progression,
the second term being 5 and the fifth term being 625.

18. The first term of a a.P. is 27, and the third term is 48.
Find the sum of the first 6 terms. :
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19. The first term of & @.P. is 36, and the third term is 81.
Find the sum of 6 terms.

.20, The sum of the first 6 terms of a geometrical progression
is 9 times the sum of the first three terms. Find the common
ratio,

21, The sum of the first 8 terms of a G.P. is 17 times the
sum of the first four terms. Find the common ratio.

22, Find the geometrical progression whose sum to infinity
is 4 and whose second term is §.

23. The third and fifth terms of a geometrical progression
are respectively 12 and 48. Find the sums of eight terms of
the two progressions which satisfy the conditions,

24, The first term of a a.P. is 5, and its sum to infinity is 4.
Find the sum of the first 5 terms.

25. The sum of a number of terms in G.P. is 20 ; the last
term is 13}, and the first term is 4. Find the common ratio,
and the number of terms.

26. The sum of 2n terms of a .P., whose first term 18 ¢ and
whose common ratio is r, is equal to the sum of # terms of a
@.P., whose first term is b and whose common ratio is 72 Prove
that b must be equal to the sum of the first two terms of the
first series.

#27. Shew that, if s be the sum of » terms of a geometrical
progression, p be the product of all the terms of the given series,
and ¢ be the sum of the reciprocals of the terms composing the
given series, then p2g®=s

340. Geometric Mean. When three quantities
are in geometrical progression, the middle one is called
the geometric mean of the other two. The letters
G.M. are often used as an abbreviation for the words
Geometric Mean.

341. The geometric mean of two quantities vs the
square root of their product. '

Let a, «, b be three quantities in geometrical pro-
gression.

b
-2

1
I8
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o* = ab.
z=1~ab.
It is usual to take the positive sign of the square root.

Note. The geometric mean of two quantities is the same as
their mean proportional [Art. 305].

342. The arithmetic mean of two unequal
quantities is greater than their geometric mean.

_Let a and b be two unequal quantities. Their
arithmetic mean is }(a + b), and their geometric mean

is Vab. We want to shew that

}(a + b) > Vab,
that is, that a+b—-2Jab>0,
that is, that (Wa — 4/b)*> 0.

But the square of any quantity (whether positive or
negative) is itself a positive quantity, and therefore
greater than zero. Hence (va — 4/b)'is > 0.

3(a+ b)>Vab.

Note. If we have two equal quantities, @ and b, then their
arithmetic mean =4 (a+b)=4%(2a¢)=a; and their geometric mean
=+/ab=+/a?=qa. Thus, in this case, the arithmetic mean is equal
to the geometric mean.

We may therefore say that the arithmetic mean of any two
quantities is not less than their geometric mean.

343. Geometric Means. When any number of
quantities are in geometrical progression, the terms
intermediate between the two extreme ones are called
the geometric means (or geometrical means) of the two
extreme terms.
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344. To insert p geometric means between two
quantities a and b.

We have two quantities, @ and b. We want to insert p quan-
tities between them so that the p+2 terms so formed may be in
G.P. The first of these p+2 terms is a; the last of them is b.
Let » be the common ratio of this progression. Then the
(p+2)* term must be arP*1,

b=arr+t,
wrl
a
p+l é
2

r=

Hence the required series is

P P ey
a, a\/;, a,\/;, e @ o’ b,

of which the terms intermediate between a and b are the
required geometric means.

Ex. 1. Insert two geometric means between 1 and 21.

We want to insert 2 terms between 1 and 27, so that the
4 terms so formed shall be in @.P. Let 7 be the common ratio of
the required geometric progression, Therefore 27 is to be the
fourth term of a @.Pp. whose first term is 1 and whose common
ratio is 7,
s 27=1xm"0,

o 27T=03,
oo r=3,
.*. the series is 1, 3, 9, 27; and the requu'ed means are 3 and 9.
Ex. 2. Find the sum of the p geometric means inserted
between a and b.

Let r be the common ratio of the progression, of which « is
the first term and b is the (p+2)™ term.
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- The sum of the p means is

rr—1
r—1
rptl_p

ar+art+...+arP=ar

And we know, by Art. 344, that »="/b/a, hence the sum can be
expressed in terms of p, a, and b.

L

)

o o

&

7.

EXAMPLES. XXVIII. C.

Find the geometric mean between

(i) 2 and 8; (ii) (#+a)? and (x—a)%
Insert three geometric means between
(i) 1 and 168; (ii) (#+a)? and (x—a)?; (iii) 1 and 2.
Insert two geometric means between 28* and yn,
Insert six geometric means between 103 and }§.
Insert eight geometrical means between 512 and 19683.

Find the geometrical mean of
42% 12249 and 92°+122+4.

Prove that, in a geometrical series containing an odd

number of terms, the middle term is a geometric mean between
the first and last terms.

8.

Determine the ratio of two numbers, when the ratio of

their arithmetic mean to their geometric mean is as 13 to b.

9,

The arithmetic mean between two numbers is 39, and the

geometric mean between them is 15. Find the numbers.

10. If one geometrical mean, G, and two arithmetical means,
p and g, be inserted between two given quantities, shew that

@*=(2p-q)(2¢ —p)-
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11. If one arithmetical mean, 4, and two geometrical means,
p and ¢, be inserted between two given quantities, shew that

P+e=24pg.
#12. " Between each consecutive pair of terms of a series of

numbers in @.P., m arithmetic means are taken. Find the sum
of all the means thus obtained.

345. The student will notice that all the pro-
positions about geometrical progressions are deduced
from the formulae

l=ar,
g=al =1
TV r—-1"

where a is the first term of the series, » the common
ratio, ! the »* term, and s the sum of n terms.

It has been shewn [Art. 336] that it follows from the
latter of these formulae that the limit of the sum of an
infinite number of quantities in geometrical progression,
whose common ratio, 7, is numerically less than unity, is

a

1—-7r"

MISCELLANEOUS EXAMPLES. XXVIII D.

[The follo*wmz miscellaneous examples are on geometrical
progressions. Other examples on geometrical progressions will be
Jound on pp. 377—379.]

1. Sum the following series, each of which is in a.r.
(i) 14+42+126+... to 8 terms;
(ii) 8644129641944 +... to 6 terms;
(iii) 8+6+44+... to infinity;
@iv) 2./5—-5,/64+15,/6—... to 8 terms.

2. Find, to four places of decimals, the sum to infinity of

the series 1+.—;ﬁ+;}+""
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3. Can any of the following geometrical series be summed,
the number of terms in each being infinite? If so, find their

respective sums.
(i) 1-3+3—...; (i) 1-3+4—...;
(ili) 9+ 814+-729+...; (iv) ‘1+-5+25+...;
") WRH+D+1+(W2-D+....
4. Sum the following series:
() x(z+y)+22 (22 +y2)+23 (23 +3%) +... to n terms;
(ii) (z+a)+(#2+2a)+ (23 +3a)+ ... to n terms.
5. Find the sum of » terms of the series whose 7 term is
(- a), r being any positive integer.
6. The first term of a geometrical progression exceeds the
second term by 1, and the sum to infinity is 100: find the series.

#7, Find the sum of 7 terms of a series in which each term is
the sum of all that precede it, and in which the first term is a.

8. The alternate terms of any .. form a series in @.P.

9. If an odd number of quantities be in @.P., then will the
first, the middle, and the last of them be in @.P.

10. Shew that, if every fourth term of a geometric series be
picked out, these terms will themselves form a geometric series.

11. Provethat, if each term of a @.P. be squared, these terms
will also form a a.P.

/IZ. Shew that the lo%arithms of a series of numbers in
geometrical progression will themselves be in arithmetical pro-
gression.
13. Prove that, if an odd number () of consecutive terms of
a geometrical progression be multiplied together, the product
will be the n** power of the middle term of the progression.
14. Each term in a certain infinite geometric progression is
ual to the sum of all that succeed it. Find the common ratio
of the progression.
15. Prove that, if S be the sum to infinity of a a.Pp. whose
first term is o, then the common ratio of the series is 1 —% .

16. An odd number of consecutive terms in a certain geo-
metrical edprogression is taken; the middle term is 3, and the
continued product of all the terms is 243. How many terms
are taken ?
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17. If the ratio of a @.P. be not less than 2, shew that any
term is greater than the sum of all that preceds it.

18. Three quantities are in @.p. The. first exceeds the sum
of the other two by unity; and the excess of the first over the
second is greater t the excess of the second over the third
by unity. Find the numbers.

19. The sum of four integers in geometrical progression is
255, and the fourth exceeds the second by 180: ﬁntf the integers.

20. Find three numbers in @. ., such that if they be increased
by 4, 7, 1 respectively, the sums form a @.»., whose common ratio
is less by 1 that of the original series.

21. From three numbers, which are in geometrical pro-
greasion, three others, which are also in . p., are subtracted. Prove
that, if the remainders be in G.P., all these series have the same
common ratio.

22, The sum of three quantities in geometrical progression
is §, and the sum of their squares 133, at are the quantities?

23. The continued IE)roduct. of three numbers in geometrical
progression is 64, and the sum of the products of them in pairs
is 84; find the numbers.

24. If =, y, a be in arithmetical progression and if 2, y, b be
in geometrical progression, shew that x, x—y, b—a are in geo-
metrical progression. '

25, Shew that, if s,, 8,, 3,... be an infinite series of sums of
infinite geometrical progressions, whose common ratios are the
same, and whose first terms are respectively the terms of the
series 8, then s,+38,+... i8 greater or less than s, according as the
common ratio is greater or less than one-half,



CHAPTER XXIX,

HARMONIC AND OTHER SERIES.

*346. WE are constantly concerned in mathe-
matics with series of numbers, of which the successive
numbers (or terms) are formed according to various
rules. Anthmetical and geometrical progressions are
instances of such series. A few series whose terms
are formed according to other rules are reducible to
arithmetical or geometrical progressions, and we shall
deal in this chapter with some of the more simple
of such series.

‘We shall discuss in suceession (i) Harmonical Progressions
[Arts. 347—356], (ii) Series whose terms are the squares or cubes
of numbers which are in arithmetical progression [Arts. 357—361],
and (iii) Series whose terms are the products of corresponding
terms of a series of quantities in A.P. and a series of quantities
in @.p. [Arts. 362—365].

HARMONICAL PROGRESSIONS.

347. Harmonic Progression. A series of
numbers is said to be in harmonical progression (or
harmonic progression, or to form a harmonical pro-
gression), when their reciprocals are in arithmetical
progression. The letters H.P. are often used as an
abbreviation for the words Harmonical Progression,
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348. Condition for an H.P. The condition that
the series of numbers denoted by the letters a, b, ¢,d ...
shall be in harmonical progression is that

1111
a’b’¢’d’”

shall be in arithmetical progression ; that is, that

For example, 3, 4, and 6 are in harmonic progression because
t }, 1 are in arithmetical progression, the common difference

ing — Y.

349. Fundamental Property of three num-
bers in H.P. If three quantities be in harmonic
progression, the ratio of the difference between the first
and second of them to the difference between the second
and third of them is equal to the ratio of the first of them
to the third of them.

This property is sometimes taken as the definition
of a harmonic progression.

Let g, b, ¢, be in harmonic progression;
1 1. 11

5= b [Art. 348
Multiplying throughout by the rL.c.M. of the denomi-
nators,
ac—bc=ab — ac,
that is, c(@a—by=a(b—c)

a—-b:b—-c=a:ec
*350. The n* term of a H.P. 7o find the n term of a
harmonic progression, whose first and second terms are given.

Let a and b be'the two first terms, and let = be the required
ntt term.
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Therefore i is the n** term of an arithmetical progression
I

b
.*. the common difference of this a. P.=1 _1_a-? .
b a ab

Hence, by the formula /=a+ (n —1)d [Art. 322], the required
term is given by

whose two first terms are (ll and

1 1 a—>b
z-at-Dop

_b+(n—1)(a—b)
_—Tb———.

. x — — ab__‘v
T b (n-1)(a=b)"
*#351. It is impossible to express the sum of a number of

terms of a harmonical progression by an algebraical formula of a
concise form similar to the corresponding formulae in A.p. and a.P.

*352. Harmonic Mean. When three quantities
are in harmonic progression, the middle one is called
the harmonic mean of the other two. The letters

H.M. are often used as an abbreviation for the words
Harmonic Mean.

*363. The harmonic mean between a and b i3 2ab/(a+b).
Let the harmonic mean between @ and b be 2.
Therefore a, x, b are in harmonical progression.
S U T S
o (—l’ 5, sal'elnA.P.

*354. The geometric mean of two quantities is also the geometric
mean of their arithmetic and harmonic means.

Let a and b be two quantities; and let 4 be their arithmetic
mean, (¢ their geometric mean, and A their harmonic mean,
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L o4_atd o _ 2ab
..A——S", G—‘\/ab, H—&‘_‘-_—b-
- Ax =a—;i,x:%bg=ab=0’,

which is the condition that & may be the 6. M. of 4 and H [Art.
341).

Since A H=G?, we have 4: G=G : H. But 4G, [Art. 342],
.*. G< H, that is, the geometric mean of any two quantities is
not less than their harmonic mean. This property can be
proved directly by a process similar to that given in Art. 342.

*355. Harmonic Means. When any number of
quantities are in harmonic progression, the terms inter-
mediate between the two extreme terms are called
the harmonic meuans of the two extreme terms.

*#356. To insert p harmonic means between a and b.

We have two quantities, @ and b. We want to insert p quan-
tities between them, so that the p+2 terms so formed may be
ibx:a H.P. Therefore the reciprocals of these p+2 quantities will

in A.P. -

We want, therefore, to form an arithmetical progression, con-
taining p+2 terms, of which the first term shall beé, and of

which the last term shall be ;’ . The series so formed can be con-

structed by the method given in Art. 328, and will be found to be
1 (p+D)b+(@—b) (p+1)b+2(a—b) 1
a’ GP+hab  ° (p+Dab * "7 b
The reciprocals of these terms will be in harmonical progression.
Hence the required harmonic means are
(p+1)ab (p+1)ab (p+1)ab
@+1)b+(a-b)’ (p+1)b4+2(a-03)’ " (p+1)b+p(a-b)’

Ex. 1. Insert two harmonic means between 2 and §.

We want to find 4 terms in an A.P. of which the first term
is 4 and the fourth term is 2.
Let d be the common difference of this a.p. Then using
the formula l=a+(n - 1) d [Art. 322], we have
a 2=4%+3d,
ood=4
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Hence the a.P. is §, 1, §, 2. The corresponding H.P. is 2, 1 ;
and the required harmonic means are 1 and §. Lt

Ex. 2. Shew that, if a, b, c be in 6.P., then a+b, 2b, b+c will

be in B.P.
Since a, b, ¢ are in 6.P., we have ac=>53.
Now the quantities a+b, 2b, b+e¢ willbein mH.P,
1 1 1

if m, 2—b, m be in A.P.,
o s 1 1 1 1
thatlﬂ,lf 2—b—a—+b=m—-2—-b,
. a-b b-e¢
which reduces to atb - b¥e’
This is true, if  (a—b)(b+c)=(b—c)(a+b),
that is, if ac—b2=b2—ac,
that is, if 2 (ac—-b2)=0,
which is true. . a+b, 2b, b+¢ are in H.P.

Ex.3. The sum of three numbers in H.P. is 11, and their con-
tinued product is 36. Find the numbers. :

Let the numbers be z, v, 2.
Since they are in H.P., .-. }-, l, ~ are in A.P.
z y 2z
1 1 1 1 .
; - ;} = ; - ‘:; ........................ (1).
.The sum of the numbers is 11, .:. z+y+z=1l............... (ii).
The product of the numbers is 36, .". 2yz=36 ............... (iii).

We have therefore three equations to determine three un-
known quantities.

Equation (i), on simplification, reduces to
222=Y (Z+2) ceeerrrrerrriernnireanes @iv).

Now by (ii), @#+z=11—y; and by (i), xz=¥.
Substituting these values of x4z and a2 in (iv), we have
36
2 7Y (11-g),
o 98- 11524+ 72=0.
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This is & cubic equation, and we have not discussed the rule
which enables us to solve such an equation. This particular
equation can however be written in the form

¥ -3y =8y2-T72,

that is, 2 (y—8)=8(y--3)(y+3).
Hence one root is given by y—3=0. [The other roots are given
by y2=8(y+3), hence they are not integers, and therefore they
are not applicable to this problem.] us the required root
is y=3.

If in equations (ii) and (iii) we put y=3, we obtain 2+2=8,
2z=12. From the two latter equations, we obtain =6 and
2=2, or =2 and z=6.

Hence the required numbers are 2, 3, 6.

*EXAMPLES. XXIX. A,

1. What is the fourth term of.a H.P. of which the second
term is } and the fifth term is J;?

2. Find the sum of four terms of a H.P. of which the first
term is 1 and the third term is }.

3. Write down the fourth, fifth, and sixth terms of the H.P.
of which the first term is 1 and the second term is 2.

4. Find the harmonic mean of
(i) 1’and 4; (ii) 2and 5; (ii) a and —;-.
5. Insert three harmonic means between
(i) 1and &; (ii) 17 and 1; (iii) § and }; (iv) a+b and b.
6.. Shew that, if @, 2, b be in B.P., then x—a : 2—b=a? : b3,
7. Shew that, if a, b, ¢ be in geanetric progression, and if

2, ¢ be the arithmetic means between a, b and b, ¢ respectivel
then b will be the harmonic mean between: p and ’q. v
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SERIES EACH OF WHOSE TERMS IS A POWER OF THE
SUCCESSIVE TERMS OF A SERIES OF NUMBERS IN A.P.

-*357. We proceed next to the consideration of
series each of whose terms is the square (or the cube)
of the successive terms of an arithmetical progression.

‘We shall begin by considering the special case of the deter-
mination of the sum of the squares of the numbers 1, &, 3, 4....
These numbers, when written in this order, are sometimes called
the natural numbers. To this case, we shall reduce one or two
other series.

We shall then determine in a similar way the sum of the cubes
of the natural numbers,

*358. The sum of the squares of the first n natural
numbers 18 equal to }n (n + 1)(2n +1).
First proof. Let S, denote the required sum,
S, =1"+2"+3"+...+n"
It is easy to verify that
n+1)—2n"=3n"+3n+1.
Write » — 1 for n on both sides of this identity,
nw-n-1'=83n-1*+3(n-1)+1
Similarly,

Continuing this process, we finally get the identities
3¥-2=3.2"+3.2+1,
22-1"=3.1"+3.1+ 1

Now, add all the right-hand sides of these n identities
together, and also all the left-hand sides. The sum of
the left-hand sides reduces to (n + 1)°— 1%, since all
the other terms cancel one another. Therefore
n+1P-1=31"+2"+...+2)+8(1+ 2 +...+n) +n.

24—2
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But1+2+...+nisan AP, and its sum =}n(n +1);
(n+ 1-1=38, +§n(n+1)+a
_(n+1y-1 —%n(n-l-l)-—n
3 -
Slmphfymg the right-hand side, and resolvmg the
result into factors, we obtain
s, _n(n+1)(2r+1)
= 6 .
This result is sometimes written Zm’—ivn(n+ 1)(2z+1),where
zm’ stands for the words “the sum of all quantities like m2,
for integral values of m from m=1 to m=n».”

¥359. Second proof. This is an important series,
and we shall give another proof of the result.

Suppose that we knew or had guessed the value
of the sum, and merely wanted to verify the result.

We could effect this in the following manner, which .

is an illustration of what is known as mathematical
snduction.

We assume that we know or suspect that
S,=1"+2'+...+n'=jn(n+1)(2n+ l) ..(i).
Add (n + 1)* to each side,
P2+ttt (1) =in(n +1)(2n+1)+(n+1)’
, =(n+1){In(2n+1)+(n+1)Y,

which on simplification = }(n +1) (n + 2) (2n + 8).

Now this result is exactly what we obtain from
(i), if in it we write n+ 1 for n. Hence, if the formula
(i) enable us to find the sum of the squares of the first

n natural numbers, it will also enable us to find the
sum of the squares of the first » + 1 natural numbers,

Baut, if n =1, the formula (i) is true, since
1'=3.1.2.8;
hence, it is true for the case of n=2. But, since it
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is true if n=2, .. it is true if n=38. Again, since it
18 now known to be true when n=3, .. it is true
when n=4. Continuing this process, we see that the
formula (i) is- true for any positive integral value
of n

Ex. 1. Find the sum of n terms of the series
1.242.34+3.4+....
Let S, denote the required sum,
oo 8,=1.242.343.4+...+n(n+1)
=11+1)+22+1)+3@B+1)+...+n(n+1)
=(12422+32+ ...+ %)+ (1 +2+3+...n)

=n(n+ l()s(2n+l)+n(n2+ 1) [A 358, 323,
=in(n+1)(n+2).
Alternative proof. This result is sometimes proved in another

way. We have
1.2=3(1.2.3)

2.3=}(2.3.4-1.2.3)
3.4=3(3.4.5-2.3.4)

n (m+1)=}{n(n+1)(n+2) - (n—n(n-+1)).
Add,
o0 1.242.34+...+n(n+1)=3n(n+1)(n+2), since all the other
terms on the right-hand sides cancel one another.

Ez. 2. Find the sum of the squares of n terms of an arith-
metical progression. .
~ Let the series in A.P. be q, a+d, a+2d,...
Denote the required sum by S,. Then
Sy=at+(a+d)2+(a+2d)2+...+{a+(n—-1)d}?
=al+{a®+2ad+d% +{a?+2.20d + (2d)%} + ...
+{a?+2 (n—1) ad+(n—1)%d%.
Collect like terms, °
oo Sy=na?+20d{1 +24...+(n - 1)} +d2 {12+ 224 ... +(n-1)3}.
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But 142+4+...+(n~-1) =4 (n-1)n, [Art. 323
and 124224...+(n-12=}(n-1)n(2n-1), [Art. 353
. Sy=nat+n(n—1)ad+}n(n-1)(2n—1)d2

*360. The sum of the cubes of the first n natural
numbers 18 equal to  }n* (n+1)%
Let S, denote the required sum, .-, Sy=13+2%+ ... +75.
Now (n4+1)t—-nt=4n346n’+4n+1.
Write n—1 for » in this identity,
o sent—(a—-1p=4(n-1P+6(n—-12+4(n-1)+ 1
Similarly, ,
(-1 - (n—2)=4(n-2B3+6(n—2)*+4 (n—-2)+1
Continuing this process, we finally obtain the identities
3-20=4.2346.2244.2+1, '
$4-1/=4.1346.12+4. 141
Adding these results, we have
(n+1)t—14=48,+6 (12422 +... 4+ 02 +4 (14 2+...4+n)+n,
=48,+6.3n(n+1)(2n+1)+4.4n(n+1)+n.

Transposing S, to one side of the equality, and all the other
terms to the other side, and simplifying, we finally obtain

Sy=}n?(n+1)%

This result can also be proved by induction in the same way
as the proof given in Art. 359.

The result of this article gives us the theorem that the sum of
the cubes of the first » natural numbers is equal to the square of
the sum of.the first » natural numbers.

For 13428+...+n3=}n2(n+1),
and 142+...+7 ={n(n+1),
1328 nd=(14 24, +0)2
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Ezample. Find the sum of n terms of the series
-1.2.342.3.44+3.4.5+....
Let S, denote the required sum.
The n* term is n(n+1)(n+2),

which may be written #343n242n. The other terms can be

obtained from this by successively writing for » the numbers
1,23,...

Hence
Se=(134+3.124+2.1)+(2243. 224+2. 2)+... 4+ (#3+3. n2+2n)
=(134+2B4...+7%)+3(12+22+... 428 +2 (1 +24...+n)
=}n?(n+12243. }n(n+1)(2n+1)+2. 3n(n+1).

[Arts. 360, 358, 323.
Simplifying the right-hand side, we obtain

Sy=}n(n+1)(n+2)(n+3).
*361. By a process similar to that used in Arts.

358, 360, we can find the sum of the fourth (or higher)
powers of quantities in A.P.

*EXAMPLES. XXIX. B.
1. The sum of the squares of the first 7 natural numbers is
equal to 20n. Find =

2. Shew that the sum of the squares of the ﬁrst. n odd
numbers is equal to 7 (4n?—1).

3. Shew that the difference between » and the sum of the
squares of any 2 odd numbers is a multiple of 8.

4, Sum to » terms the series 1.3+2.443.5+....
5. Find the sum of m terms of the series
1.2m+2.(2m—-1)+3.(2m—2)+....

6. Find the sum of 15 terms of a series whose n** term is
(2n—1)(3n+ 1), where n is any positive integer.

7. Shew that the sum of the cubes of the first » odd numbers
is equal to n?(2n2—1).

8. If » be an even number, prove that the sum of the series

14243 +44 ... to n torms js WFDEAD)
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SERIES WHOSE TERMS ARE THE PRODUCTS OF CORRE-
SPONDING TERMS OF AN A.P. AND A G.P.

*362. We proceed next to determine the sum of
the terms of a series of which any term, such as the
n™, is the product of the n™ term of an A.P., and the 2*
term of a G.P.

*363. _ To find the sum of n terms of the series
1+22+32"+4+....
Let 8 denote the required sum,
S=1+4+2z +32%+...+(n-1) 2% 241
. Se=x4+223+4+32%+...+(n—1) 2" V402",

Subtract,
. 8-Sr=1+z+22+...+2™1-na",
that is,
SA-2)=1+z+22+...4+2% ) —nan
1=an
1% an
A=z "1-x
*364. The following is the general case. To find
the sum of n terms of the series
a, {a+b}r, {a+2b} 7, [a+ 3b} 3
Let S denote the required sum,

8=a +{a+b)r +...+{a+(n-2)b} 24 {at(n— l)b}f" 1,
. Sr=ar+{a+b}r2+...+{a+(n—-2)b} 14 {a4(n—1)b}
Subtract, and simplify the result on the right-hand side,
oo 8=8r= a+br+br3+ .+b1"‘1—{a+(n—l)b}r".

. 8(1- r)_a+br

—m+m 1)b}r=.

. Q- {a+(n—1)b}r" 1-m-1
o 8= - +br A=
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*365. Note. In Art. 363, we formed Sz from S, and by sub-
traction obtained S(1 —x); thus we multiplied § by (1 -x), and
reduced the question to summing a geometrical progression. In
a similar way, if

) §=12422 43824 ...+ (n+1)242,
the multiplication of § by (1-z) reduces the determination
of S to the summation of a geometrical progression.

*MISCELLANEQOUS EXAMPLES. XXIX. O.

[The following examples are on arithmetical and geomeirical
progresu'bfn, as w”gll as on the subject-matter of this chapter.)

1. Determine whether the following series are in arithmetical
or in geometrical progression, and sum each of them to six terms.

(i) 18+15+12+...; (iv) $+1+8+...; .
(i) 34+43+54+...; (v) 148-222+333—~...;
(iif) 1244413 +...; (vi) 13-31-75~....

2. Sum the following series to n terms:
() (en-1)+(2n-3)+(2n-8)+...;
(i) (z+a)+(23+3a)+(25+5a)+...;
(iii) ab+2ab®+3abd+....

3. The first and eleventh term of a series are a’ and a~5.
Find the sum of 11 terms of the series, (i) on the supposition
that it is in A.P,, (ii) on the supposition that it is in G.p.

4. Find the difference between the sums of the series

§+n—;! +n—;§+... (to 2n terms),

n
n n n . .
and m + W + m-}- e (tO lnﬁmty).

5. The sum of 10 terms of an A.p. is 100, and the second
term is zero. Find the first term.

6. Prove that, if a, b, ¢c. be in arithmetical progression and
@, b—a, c—a be in geometrical progression, then a=3b=}c.
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7. If 1, z, y be in arithmetical progression, and 1, y,  be
in geometncal progression, find z and y.

8. The arithmetic mean between two numbers is 25, and
the geometric mean between them is 15. Find the numbers.

9. Find three numbers in the ratio of 6 : 11 : 20, such that
if each be increased by 1 they become in @.P.

10. Shew that in every geometric progression in which the
common ratio is 5, the arithmetic mean between the 2* and 4%
termsnsl3t1mesthe2"‘berm.

11. If xy, 3%, 22 be in arithmetical progression, shew that
% % 3y —x are in geometrical progression.

12. If a, b, ¢ be in @.P., and if x be the A.M. between a and
b, and y the A.M. between b and ¢, prove that 2 +§=2.

- 13. The first term of a geometrical series is a, the sum to
infinity is pa. Find the n* term.

14, The sum of an infinite geometrical progression is 4}
and the sum of the first two terms is 2%, Fms the series. ’

15. The first terms of an arithmetical and of a geometrical
progression are equal to 8, the second terms are equal, and the
third term of the latter series exceeds the thlrd term of the
former by 2. Find the two arithmetical and geometrical pro-
gressions which satisfy these conditions.

16. Insert between 6 and 16 two numbers such that the
firat three terms of the series so formed may be in A.p. and the
last three terms in @.P.

17. If z, y, a be in A.P, and z, y, b in G.P, shew that,
whether the series proceed in ascendmg or descendmg order of
magnitude (provu‘letf) only that = and y arereal positive quantities)
b must be greater than a.

Find the values of # and g, if a=21 and b=25.

18. If q, b, ¢ be in arithmetical progression, and 4, @, be the
arithmetic and’ geometric means between a and b, and A' @, be
the arithmetic and geometnc means between b and ¢, prove that

—-GP=4"7-@"

19, The sum of three numbers in G.P. is 14, and the sum of
their reciprocals is : find the numbers,
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20. The sum of 3» terms of a @.P., whose first term is ¢ and
common ratio is 7, is equal to the sum of » terms of another
G.P. series, whose first term is b and common ratio is 3. Prove
that b is equal to the sum of the first three terms of the first 6.p.

21. Shew that, if a, b, ¢ be three numbers in 6. p., and if p
and 5)’ be respectively the A.M. and H.M. between a and b, and
gean ¢’ the A.M. and H.M. between b and ¢, then p, p', ¢, ¢’ will

proportionals,

22, Three numbers are in H.P.; if 4 be taken from each,
they are in a.p.; if 1 be added to the middle one, they are in
A.r.: find them.

*#23. An arithmetical, a geometrical, and a harmonical pro-
gression have the same first and second terms; and the third
terms of the three series are z, y, 2 respectively. Shew that

(-3 i)

24, The m*™, n't, and p* terms of an A.P. are in G.P. Shew
that the common ratio is (n—p)/(m —n).

25. 1If z, y, z be in arithmetical progression, and if the har-
monic mean between x and z be o their geometric mean as 4 to
5, prove that 3z, 1y, 1z are in geometrical progression.

26. The sum of four numbers which are in arithmetical pro-
gression is 24, and the square of the geometric mean between the
second and third of them exceeds by 8 the square of the geo-
metric mean between the first and fourth. Fiz% the numbers.

*27. The first terms of an endless series of geometrical pro-
gressions, having the same common ratio f;, which is less than
1, themselves form a geometrical p: ton with a ratio fj,
which is also less than 1. Shew that the sum of all the terms
of all the progressions is a/(1-f,)(1-f;), where a is the first

term of the first progression.

%28, -Shew that, if a, b, ¢ be three numbers in H.p., and » be
any positive integer, then a™+c" is greater than 25

%29, Find the sum of x4 44? + ... + 722" + ... (to infinity),
where & is less than unity. '

*30. Find the sum of the first # terms of the series whose
72 term is 3r (r+2)(r+3), where 7 is any positive integer.



EXAMINATION PAPERS AND QUESTIONS.

[The two following papers were set recently in the Previous
Ezamination and the General Ezamination at Cambridge. These

s are followed by groups of questions on the subject-matier
o;‘J the last few chapters.]

1.

2. Reduce to its lowest terms

Paper A.

Multiply 22+ 33+ 22+ yz + 2r — 2y by £+ y— 2, and divide
(pg+rey—(ps+gr)® by (p—r)(g-9)

1224+ 44° — 2322 — 92 -9
824 — 14229

3. Simplify the expressions:

5.
6.

@) 32i-5 4z+b + 1
B-1 22+x+l 2-1°

o z 2+l . (x> | z+1
(i) {x—l‘ x }T{x—l+ x }
Solve the equations :

. 3(6-5z) 63z 3z 36

O =5+ =7 i

oy B2—4x+b r-2N2_
() x=+6x+10—(x+3 =0;

i) Z4¥_90 T _ Y _
(iii) 44+3—20, i1 ]3-—19.

Extract the square root of 16s* — 242% 4 2522 — 122 +-4.
A man can walk from 4 to B and back in a certain time

at the rate of 4 miles an hour. If he walk at the rate of
3 miles an hour from 4 to B, and at the rate of 5 miles an

hour

from B to A, he requires 10 minutes longer for the double

journey. What is the distance 4B?
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7. Prove that, when m and % are positive mtegers,
a™ x ar=am*»,

How is a meaning given to ai?

8. Prove that, if ¢ : b=¢ : d,
bla+b—c—-d)=(a+b)(b—-d).
‘What number must be added to each of the numbers, 3, 5, 7,
10 that the sums may be in proportion ?
9. Solve the quadratic equations :
(i) 242—21z+40=0;
. 1 5 2
@) 67—6a " 6r—a a’
10. Sum the series :
(i) 1296+864+576+... to 7 terms, and to infinity ;
(ii) 1296+1080+864+... to 12 terms.

Paper B.

1. Solve the equations :
@) (z-1)(z-2)(z~3)+(z—4)(z-5)(«-6)
=(z-2)(z-3)(z~4)+(z-3)(z-4)(z-b);
3z+5 x+3 z+1_x43  5(z+3)

M it 6t =zxit 13
(iii) g (z+y)=2+1, }(y-2)=22-1.

2. If the difference between the roots of the equation
224 (a+b)x+c2=0 is the same as that between the roots of
22+ cx+(a+b) ¢=0, prove that a +b is equal either to c orto — 5¢.

3. Solve the equations :
244  3w+10_2243
O gyt o —T-1
(i) VT—z+42(1+2)=A6—2z;

oy [P 42y4+y=137,
(i) 24+ 2y + 2=205.
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4 Ifp:g:r::a+2b+42:b+2+2a:c+2a+2b prove
thata :b:c::29+2r—3p :2r+3p—3¢ : 2p+2¢—3r.

5. If x vary as the sum of two quantities, one of which
varies directly as y and the other inversely as 42, and if =37
when =1, and =11 when y=2, find the value of + when y=3.

6. Find two numbers whose sum is to their difference as
9 : 2, and whose product exceeds the difference of their squares
by 5.

7. A starts to walk from P to @ at 10 A.M. ; B starts to walk
from @ to P at 10.24 A.M. They meet 6 miles from @. B stops
1 hour at P, and A stops 2 hrs. 54 min. at @ ; returning they
meet midway between £ and @ at 6.564 p.M. Find the distance
from P to @.

8. The areas of two rectangles are as 9 : 10; the greater side
of the less : the less side of the greater as 3 : 2; the diagonal of
the less is equal to the agea.t:er side of the greater, and the
difference of their diagonals is 2 feet. Find their sides.

9, Find the n* term of a geometrical progression whose first
two terms are a and b.

If @ and b be the first two terms of an arithmetical p: jion
and also of a geometrical progression, and if the ratio of the third
term of the former to the third term of the latter be 5 : 9, find
the ratio of their sixth terms.

10. Sum the following series:

(i) 26+20+15+... to 8 terms;
(ii) 25+20416+... to 8 terms;
(iii) 13- 14+ $-... to-infinity.
11. Insert four arithmetical means between a and b.

If the square of the arithmetical mean between two quantities
be in by the square of half their difference, the sum is
the arithmetical mean between the squares of the two quantities.

12. The difference of the first and second terms of a geo-
metrical progression is 8, and the sum of the second and third
terms is 12. Find the series.
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Ezamination Questions.

1. Explain how meanings are assigned to a® and a1
33 33 11 11
Divide 2ty *+2+2 % by oty 4*—1+42 9

2. Prove that, if @, b, ¢, d be proportionals, then
ad B 2 d?
'F"';-a"";'--ab.d-
3. Find the sum of » terms of an arithmetical progression,
having given the first term and the common difference.
Find the sums of the series :
(i) 16+24+32+... to 7 terms;
(i) 16+24+36+... to 7 terms;

(iii) 36+24+16+... to infinity.

4. Find the a.M. of a and b.

The A.M. between two numbers is 1. Shew that their H. M, is
is equal to the square of their 6. M.

5. The velocity of a train varies directly as the square root
of the quantity of coal used per mile and inversely as the number
of carriages in the train; and the train is supposed to travel
with uniform velocity. In a journey of 25 miles in half an hour
with 18 carriages, 10 cwt. of coal are used. How much coal will
be consumed in a journey of 15 miles in 20 minutes with
20 carriages? -

6. Prove that, if the equations 22+ bz +ca=0, 23+cz+ab=0
have a common root, their other roots will satisfy the equation
22+ ax+be=0.

7. State the index laws. Explain what is meant by
3 £
a ? and ob
231
Simplify the expression (23y2) 2x—3yA
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8. If a :b=c : d, shew that
3a—-2c: 3b—2d=2a—3¢ : 2b—3d.
1232 08 %Y yhen will each fraction be equal

+z ex—az ay-bx’
to y/x unless b+c=0.

9. Find the n* term of a geometrical progression whose
first two terms are @ and b.

The 5% term of a geometrical progression is 64, and the 11
term is 729. Find the 7*® term.

10. Two clerks were awarded pensions, the amount of which
was proportional to the square root of the number of years they
have served. One had served 9 years longer than the other, and
received a pension greater by £50. If the length of service of the
first had exceeded that of the second by 4} years only, their
pensions would have been in the ratio 9 : 8. What were the
amounts of their respective pensions ?

11. Define a continued proportion.
“If @ : b=b : ¢=c : d, shew that ad®=c*
12. If x vary directly as y¥ and inversely as 2%, and if =1
when y=2 and z=3, find the value of 2 when y=3 and z=2.

13. Find the sum of
(i) 16+19+22+... to 20 terms;
(ii) 16+16+14+... to 30 terms;
(iii) 16—12+9+... to infinity,

14. Divide 76 into three parts in @. P. such that the sum of
the first and third is tc the second in the ratio of 13 : 6.

15. A carrier charges 3d. each for all parcels not exceedin,
a certain weight; and on heavier parcels he makes an additionj .
charge for every pound above that weight. The charge for a

parcel of 14 1bs. is 1s., and the charge for a parcel of 121bs. is twice
that for a parcel of 71bs. What is the scale of charges ? -
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L ete) J@ea)  Je-a)
6. smpity {7250 - V5D e tata

17. Shew that § (J3+1)2—2 (V2—1)2=4/(59 — 24 /6).

18. Find the sum of an infinite number of terms in a.»P., the
first term and common ratio being given. Determine the limits
&tween which the ratio must lie in order that the formula may

true.

Find the sum of 1--14-01-... to six terms and to infinity.

The first term of a geometrical progression exceeds the
second term by 2, and the sum to infinity is 50: find the series.

19. Find z, y, and 2z where a, #, b are in A.P.; a, %, b are in
@& P.; and @, z, b are in H. P.

If x—a,y~a,z—b be in . P, find (in terms of a and y) the
H.M. between y —z and y—2.

20. If G be the G.M. of two quantities 4 and B, shew that
the arithmetic and harmonic means of 4 and G and the arith-
metic and harmonic means of G' and B are in proportion.



CHAPTER XXX,
PERMUTATIONS AND COMBINATIONS.’

366. Permutations. Combinations. The dif-
ferent groups which can be formed, each consisting of
a certain definite number of things selected from a
given collection of such things, are called permutations
when the order in which the things are arranged in
each group is taken into account; and are called com-
binations when the order in which the things are
arranged in each group is not taken into account.

For example, suppose that we have three things, denoted
by @, b, ¢ respectively, and we form all possible groups of
them taken two at a time. Then there are six permutations
namely, the groups ab, be, ca, ba, cb, ac; the groups ab an
ba being regarded as different, since the order of arrangement
is taken into account. On the other hand, there are only three
combinations, namely, the groups ab, be, ca, since arrangements
like ab and ba are the same combination,

367. Notation. The number of permutations of
n things taken r at a time is commonly denoted either
by the symbol _P,, or by the ‘symbol *P,, or by the
symbol P(n, r). It follows from the definition that
r cannot be greater than n.

The number of combinations of n things taken r at
a time is commonly denoted either by the symbol ,C,
or by the symbol *C, or by the symbol C(n, r). It
follows from the definition that » cannot be greater
than «.
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Using this notation, the results of the illustration given in the
last article would be written 3Py=86, and C;3=3.

368. It is obvious from the definitions that P, =n,
and ,C, =n, since n things can be taken one at a time in
n separate ways.

369. Number of permutations of n things
taken r together. The number of permutations of n
different things taken r at a time 18 given by the formula

L.=nm-1)..... (n—r+1).

Let us denote the things by the letters q, b, ¢, ....
"Suppose that we knew all the different permutations
of n things taken r—1 at a time; the number of
these is denoted by the symbol _P_.. Then, by pre-
fixing to any one of these permutations any one of the
n—7r+1 letters which it does not contain, we obtain
one of the permutations of n things taken r at a time.
Repeating this process on each of the permutations in
uylr,» We obtain all the permutations in ,P,. Now
every permutation in P, gives rise to n—r+1 of

" r-1

the permutations in P,,
S P,=m—-r+1) P, .

This relation is true for all values of » which are
not greater than n. Therefore, writing for r successively
r—1,r-2,...... , we have

L,=(n—-r+2) P,
uPH= (n -r+ 3) u‘Pr—a‘
nP!=(n—1)ul)l’
also Li=mn [Art. 368.

The product of all the right-hand members of these
equalities must be equal to the product of all the left-
hand members. Cancelling the factors common to both
sides, we have .

L=n—-r+1)(n—7r+2)...... (n-1)n.
25—2
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Reversing the order of the factors on the right-hand
side, we have "

P=n(n—-1)(n-2)...... (n—r+1).

870. If in the result of the last article we put
r=mn, we obtain the theorem that the number of permu-
tations of n things taken all together is

n(n—1)(n—2)...... 2.1

371. Factorials. The product of the first n natural
numbers (that is, of » consecutive integers beginning
with unity and ending with =) is called fa,ct«maf n.

Factorial 7 is denoted either by the symbol |z, or by
the symbol n! In foreign books, it is sometimes de-
noted by the symbol I' (n +1).

872. The factorial notation enables us to express
the results of Articles 8369, 870 in a more concise form.

We have P.=n(n—-1)...(n—r+1).
- Multiply and divide the right-hand side by |n—1.
P = {n(n—-1)...(n=r+1)} {(n—r)(n—r-1)...2.1}

cwtr n-—r)y(n—r-1)...2.1
[ﬁ .

[n—r'
Similarly, ,P,=n(n—-1)...2.1=|n.

373. The product of » consecutive positive integigers, of which
n is the greatest, is denoted either by the symbol [z],, or by
(n)yy or by n,. Thus, the result of Art. 369 would be written
either as

wPr=[n);, or a8 WP, =(n),, or 88 LPr=n,.

374, Note. The method of proof given in Art. 369 is sug-
gested by the form of the answer. For, if the result be true for
all values of r less than », then we have

. wLr=n(n—-1)(n-2)...(n—7r+2)(n—r+1),
and wProy=n(m—-1)(n—-2)...(n—r+2).
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Hence wr=(n—r+1)3Pyr_,,
which is the relation we commenced by proving.
We might, in a similar way, have proved the relation
wLr=n.q 1Pr_;,
which would have given us a different form of the proof.

Ex. 1. How many different numbers can be formed by using
3 out of the 9 digits 1, 2, 3, 4, 5, 6, 7, 8 and 91

We have 9 different things, and we are to take them 3 at a

time, .
.*. the required number=,P,
=9.8.7
=504.

Ex. 2. How many of the numbers formed as in Ex. 1 lie
between 300 and 4007

Each number contains three digits. Hence the digit in the
hundreds’ place must be a 3. There remain 8 different digits,
and any pair of these can be put in the tens’ and units’ places.

.*. the required number=,P;=8. 7=56.
Ex. 3. Four men kire a four-oared rowing boat. In how
many ways can they be arranged as a crew?

They are all to row at the same time, ... we want the
number of permutations of 4 men taken all together.,

.*. the required result=,P,=[4=4.3.2.1=24.

375. To find the number of permutations of n things
taken all together, when the things are not all different.

Let the n things be denoted by the letters a, b, ....
Suppose that p of them are alike, all being “a’s;
g of them are alike, all being “b”s; r of them are alike,
all being “c”s; and so on.

Let P be the required number of permutations.

Each of the permutations contains all the letters,
and therefore contains p “a”s. If, in any permutation,
the “a”s were replaced by p new letters (quite distinct
both from one another and from the letters already
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used), then by changing the arrangement of these new
letters amongst themselves, and keeping the other letters
unaltered in position, we should get |p different per-
mutations. If this were done to each of the P per-
mutations, we should get altogether P x |p different
permutations.

Similarly, if in any one of these P x |p permuta-
tions, all the “b”s were replaced by ¢ new letters, then
by J)ermuting these new symbols amon(glst one another,
and keeping the other letters unaltered in position, we
should get |¢ different permutations. If this were
done to each of the leaj_{ permutations, we should
get altogether P x |p x |g different permutations.

Similarly, if we replaced all the letters of which
any one was like any other by new symbols distinct
both from one another and from all the others used,
then we should get altogether P x |px [g X |r...
different permutations. But the case is now reduced
to finding the number of permutations of n things,
which are all different, taken all together; and the
number of these is [n. [Art. 370.] )

.. P @ |_qt'= | n.

n
S P==—
lplglr---
Ex. 1. Find the number of permutations of the letters in the
word ALGEBRA taken all together.

Here there are 7 letters, of which 2 are alike; that is, n=7,
P=2, in the above formula.

7
.*. the required number= 1% =2520.
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Ex. 2. Find the number of permutations of the letters in the
word COMBINATION taken all together.

Here there are 11 letters, 2 of them are “0”s, 2 of them are
“%”s, and 2 two of them are “=n”s.

. 11
.*. the required number = ——-=4989600.

121212

EXAMPLES. XXX. A.

1. Write down the values of ,P;; ,Py; Py &P;-
2. If ,P;=110, what is the numerical value of »?

3. In how many different ways can the letters of the word
woman be arranged (i) taken all together, and (ii) taken three at a
time?

4. How many different arrangements can be made of the
letters of the following words, in each case all the letters of the
word being used in every arrangement?

(1) sckool; (ii) number; (iii) feeler; (iv) cricket.

5. Find the number of permutations of the letters in the
words fiddle-de-dee and Missussippi, in each case all the letters
being used in every permutation.

6. If the number 'of permutations of 12 things taken r
together be 42 times the number taken » — 2 together, find r.

7. In how mang ways can six boys stand in a line to
receive an electric shock, two only being willing to stand at the
extremities of the line ?

8. With three consonants and three vowels, how many
words of six letters can be formed, each word beginning with a
consonant and ending with a vowel ?

9. If the number of permutations which contain a par-
ticular thing be etﬁal to the number which do not contain it,
prove that # must be even, and » must be equal to §n.
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376. Number of Combinations of n things
taken r together. The number of combinations of n
different things taken r at a time i8 given by the formula

c _n(rn=1)(n—-2)...n—r+1)
Yy — l_’_' .

First Proof. Each of the combinations of n things
taken r at a time contains r different things: and by
arranging these r things in every possible order, it
would give rise to |r permutations. Hence the number

of permutations of n things taken r at a time is ,C, x|

0. x |r =P,
=n(m—1)...(0—r+1). [Art.369.

0 = n(n—-1)...(n— r+l)
r |’l'

Second Progf. The above proof reduces the determi-
nation of (C, to that of ,P,. We now proceed to give
an mdependent proof.

Let us denote the things by the letters a, b, c,....
Then those combinations of them (taken » at a time) in
which a occurs can be obtained by first writing down all
possible combinations of the n—1 letters b, ¢,... taken
r—1 at a time, and then prefixing a to them. Therefore
the number of combinations in which & occurs will be

. Similarly, the number of combinations in which
5 occurs will be w1Cr.: and so also, the number of com-
binations in which each of the other letters occurs will
be . ,C.,. Now, if we collect these n combinations of
n—1 letters taken r—1 at a time together, the number
of them will be n x ; and in this collection we
shall get all possible comlnna.tlons of n things taken

r together.
But in this collection, every combination will be

.
"
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repeated r times; because, if the combination happen
to contain the » letters hkl..., it will occur once with &
in the first place, once with £ in the first place, and so
on; and since the order of arrangement in a combination
is immaterial, these will all be the same combination.
Hence the number of arrangements in this collection is

also rx C..
nx, 0 =rx.0C,
n
uor = ; x N-lar-l

This relation is true for all values of » and » (pro-
vided of course that n and r are positive integers, and
that = is not greater than n). Therefore, writing n — 1
for n, and r—1 for r, we have

n—1
il = 1% wiCrs
Similarly, . C=2"2 %0,y
Finally, =T 0,
Also, wrOy=n—7+1 [Art. 368.

The product of all the right-hand members of these
equalities must be equal to the product of all the left-
hand members. Cancelling the factors common to both
sides, we have
c.=" n—1n-2 n—-r+2 n—r+1
rTrer=1'r=2"" 2 1

_nr-1)...(n—r+1)

Ir '

If we multiply both the numerator and the denomi-
nator by In —r, we have
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C _a—m-=1)...(n—7r+1) (n—7r)(n—r-1)...2.1

o r |n-—r ’

n - . .
that is, ,C, = Py ry—t which is sometimes a more con-

venient form for _C, than that given in the enunciation
of the proposition.

Ex. 1. Find the number of different whist parties which can
be made out of six players.

We want the number of possible sets of 4 people which can
be made out of 6 people.
6.5.4.3

R N

.. the required number=,C, =

Ex. 2. In how many ways may a cricket eleven, of whom two
at least must be bowlers, be formed from 14 players, it being known
that only 4 of the players can bowl ?

There are two groups of players, namely, 4 bowlers and 10
other players.

The eleven may contain only 2 bowlers, and 9 others selected
out of the remaining 10 players. Now from the 4 bowlers we
can select 2 in ,C, ways, that is, in 6 ways; and from the 10
non-bowlers we can select 9 in (0 ways, that is, in 10 ways.
Any of these 6 pairs of bowlers can be taken with any of the 10
possible sets of 9 non-bowlers which can be selected out of the
group of non-bowlers. Thus, altogether there are

103 % 140y,
that is, 6 x 10 possible elevens, each of which would contain two
bowlers only.

Similarly, the number of ways of forming an eleven which
would contain 3 bowlers and 8 players sel out of the group
of non-bowlers is

403 % 190

since the number of sets of 3 bowlers which can be formed out of
the group of 4 bowlers is ,C;, and the number of sets of 8 non-
bowlers which can be formed out of the group of 10 non-bowlers
is 00, and any of these sets of 3 bowlers can be taken with
any of these sets of 8 non-bowlers to make an eleven.

Lastly, the number of ways of forming an eleven which
would contain 4 bowlers and 7 non-bowlers will be

Oy X 190y
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Hence, the total number of possible elevens is
103 %100y + 03 % 1005 +40, X 190,
. 4.3 10 4 10.9 10.9.8
that is, ettt
which is equal to 6.10+4.45+120=60+ 180+ 120=360.
Thus, there are 360 possible elevens.

EXAMPLES. XXX. B.
Find the values of ,C5; §0y; 4Cis-
If .C;=21, find n. '
If «C,_;=10, find n.
If (C,=45, find z.

5. How many parties of 10 men can be formed from a com-
pany of 20 men ?

6. How many parties of 10 men can be formed from a com-
pany of 20 men (i) so as always to include a particular man, (ii) so
as always to exclude a particular man?

7. A boat’s crew of 4 men has to be selected from 6 men, of
whom two can only row on the stroke-side and two can only
row on the bow-side. How many crews can be selected, no
a.c{:oux}‘t being taken of the way in which the crew arrange them-
selves

377. The number of combinations of n things taken r
together s equal to the number of combinations of n
things taken n — r together.

For we have
C= L anac - [2
L] r’

=

The result of this proposition is otherwise obvious; since for
every combination of » things, which is formed out of the
n given things, there must be left a collection of the remaining
n—r things, which constitutes a combination of the = things
taken 2 —» together.

-
.

N

s n—r"

[n—r |n—-—(n—r)= p—r|r’

0 .C.=C

nr non—r
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378. To shew that .C,+ ,C,_, =,,,C..
By Art. 376, we have C, +.C

_nar=1)...(n—r+2)(n—r+1) n(n—l)...(:n—r+ 2)
- 1.2...(r=1)r 1.2...(r—1)

_n(n-1)...(n—7+2) (n—r+1
=T 12..0—)) { r +1}

_nn—=1)...(n—r+2) n+1
- 1.2...(r-1) Tor

_(n+1)n(n—1)...(n—r+2)
B Iz
=uﬂor'

This result, like that of the last article, can be obtained by
considering the meaning of the symbols. For sup) the n+1
things to be denoted by the letters a and » other letters b, c....
Then the number of combinations of these n+1 things taken r
at a time will be equal to the number of combinations of the =
things b, c,... taken r together plus the number of combinations
of these n things taken 7 —1 together when a is prefixed to each
of them; that i8, 44 ,Cr=uCr+nCr—;.

*379. The proposition given in the last article can be
extended by repeated applications of it, thus:

u+20r=n+lor+a+10r-l
={aCr+aCr—1} +{nCr -1 +1Cr_3}
=u0r+2n0r-l+n0r-—2‘
Slml]&l‘ly, n+80r=n r+3ucf—l+3nc —2+ﬂof—8'

Proceeding in this way, we can prove the following theorem,
by mathematical induction,

m(m—1
nem ,=.0.-+m,.0,_1+ 1 T ).‘Or-g+...+,‘0,-'.n.

The (£+1)* term is m(m—l).l.l;(m—k+l)“ »—x; and all the

terms (after the first) can be deduced from the (£+1)® term by
putting £ successively equal to 1, 2,...m. :
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This result can also be written in the form
n+m0r=u0r+m01 . nor—l +m02' aor—2+ oo +m0k~ nor—k +... +mar’

m(m—1)
1.2

It will be noticed that m, n, » are positive integers, and » must
be less than m and less th;m,n

since, by Art. 376, © m=,0,,

=uCs, &c.

380. To find what value of r makes ,C, greatest,
n being a given number.

n(n—1)...(n—r+2)(n—7r+1)

We bave ,C, = 2..r—1)r ’
. _nn—=1)...(n—742)
and =T v
,,O',=’" —r+1 x 0,

Therefore we can get ,C, from ,C,_, by multiplying the
latter by the fraction n—:+ !
tion be greater than unity, JC. will be greater than ,C,

Hence, if this frac-

» 7 re-1*
..0.>.C.,,
so long as n— r+1 >7,
that is, so long as n+1>2r,
that is, so long as r<g(n+1).

If n be even, ,C, will be greatest when r=4n. Ifn’
be odd, then }(n+1) is an integer, and if r=4(n+1)

the fraction " 1 is equal to unity, and therefore
this value of » makes ,C,=_C,  ; hence, if n be odd
then when r= %(n+1) or r= }(n+1) 1=}(n-1),

the number of combinations of n things taken » at
a time is greater than for any other value of r.
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381. The product of r consecutive positive integers is
divisible by |r.

The number of combinations of n things taken »
together is necessarily an integer. Hence, we have the
theorem that

n(n—-1)n-2)...(e—r+1)
r |
is an integer, that is, the product of r consecutive positive
integers 1s always divisible by |r.
Another proof will be given later [Art. 437, p. 455, Ex. 5.].

MISCELLANEOUS EXAMPLES. XXX. C.

1. How many of the permutations of the six letters a, b, ¢,
d, e, f taken four at a time contain @, and how many begin with a ?

2. How many of the permutations of the six letters q, b, ¢,
d, e, f taken four at a time contain (i) the letters ab in that
order, (ii) the letters @ and b next to one another ? .

3. Prove that the number of permutations of 2» things taken
n together is 2*.1.3.5...(2n—-1).

4. Out of 5 consonants and 3 vowels, how many words can
be formed, each consisting of 3 consonants and 2 vowels ?

5. Out of 30 oranges at a halfpenny each, how many selec-
tions can be made in buying a shilling’s worth ?

6. Two landing ies of 50 men each are to be formed.
The only men available are four English officers, four English
non-commissioned offi and 100 native troops. Each parg is
to contain two officers and two non-commissioned officers. How
many different possible parties can be made up ?

7. How many different numbers can be formed out of the
digits 1, 2, 2, 3, 3, 3, 4, all the digits being used in each number?

8. Shew that the whole number of permutations of the letters
of the alphabet, when each may occur once, twice, or thrice at a
time, is 17576.

9. How many words, each of seven letters, can be formed
from three vowels and four consonants, such that no two con-
sonants are next to one another?

10. If the number of permutations of n things 3 together
be equal to 6 times the number of combinations of them 4
together, find the value of x.
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11, If o 1Cr:0r: 0 41Cr=6:9:13, find » and ~

12. What value should ign the usual conventions as to the
meanings of algebraic symbols) be assigned to ,C,?

*13, Shew that ..o,,="§ {aCr X nemCp—r}-

14, There are n railway signal posts at a junction, and the
arm of each siﬁml can be moved into three positions: how many
different signals can be made ?

15. In a railway carriage, holding 5 people on each side,
there are 10 people, 4 of whom refuse to tmvefwith their backs
to the engine, and 3 of whom insist on doing so. In how many
ways can they be arranged ?

16. If the ratio of the number of combinations of 2z things
taken n—1 at a time to the number of combinations of 2(n—1)
things taken » at a time be 132 : 35, find n.

17. If the number of combinations of # things taken » to-
gether be equal to the number of combinations of » things taken
2r together, and if the number of combinations of » things taken
r+1 together be equal to 1} times the number of combinations
of » things taken »—1 together, find # and r.

18. In how many ways ma.{ a man vote at an election where
every voter gives six votes which he may distribute as he pleases
amongst three candidates ?

19. In how many ways can eight counters be arranged in
four groups, each group containing two counters ?

20. In the list of those who passed a certain examination,
21 candidates were placed in the first class, 27 in the second, and
17 in the third. In how many ways could a staff of 6 masters
be selected containing 2 from each class?

"21. How many trios can be formed by taking 1 girl and 2
boys from # girls and 2n boys; and in how many ways can they
be seated at » tables so that no two boys sit next each other ?

#22. In how many ways can two bishops be placed upon a
chess-board (i) upon squares of the same colour; (ii) upon squares
of different colours?

%23. Find the sum of all the integral numbers consisting of
5 fi , which can be formed by the digits 1,2, 3,4, 5, 6,7, 8,9,
no digit being used more than once in any number.

24. A boat-club consists of 15 members. Find in how many
ways a crew of 9 can be chosen, (i) so as always to include a
particular man, (ii) so as always to exclude him.
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25. There are 20 stations on a railway, find the number of
kinds of tickets required so that a person may travel from
any one station to any other.

26. Find how many different sums can be made with the
following coins: a penny, a sixpence, a shilling, a half-crown, a
crown, and a sovereign.

#27. 1In a college of 100 men there are 4 coxswains ; shew that
4 (96 s -
M, ways in which four crews, each consisting of
a coxswain and 8 men, may be chosen from the members of the
college. .
28. How many changes can be rung with five out of eight
bells, and how many with the whole peal?

29. In how many ways can a whist table be made up out of
six married cougles and four single persons, 80 as not to include
any husband and wife together ?

30. In how many ways can 5 people be arranged at a round
table ? -

*31. A pa.rtﬁof 4 ladies and 4 gentlemen contains two mar-
ried couples. How many different arrangements of the party
can be made at a round table, every lady sitting between two
gentlemen, neither of whom is her husband ?

¥32. - In how many ways can a pack of 52 cards be divided
into 4 sets, each containing 13 cards?

33, With 1 red, 1 white, 1 blue, and 3 black balls, in how
many ways can 4 of them be arranged in a row ?

34, I have four black balls (exactly alike), and also one red,
one white, one green, and one blue ball. In how many ways can
I make up a row of four balls, no two rows being alike ?

#35. A polygon is formed by joining = points in a plane.
Find the number of straight lines, not sides of the polygon,
which can be drawn joining any two angular points.

#38. On each of n given straight lines m points are taken.
No other straght line can be drawn through any three of these
mn points. How many triangles can be formed by joining the
points ?

*37. Find the number of combinations of the letters in the
word annunciation taken 4 at a time.

there are



CHAPTER XXXI.
THE BINOMIAL THEOREM.

382. WE have found by actual multiplication (see
Pp- 38, 42), expressions for the square and the cube of
a binomial, such as @ +b. The object of the Binomial
Theorem is to find an expression for the n™ power
of a binomial.

We shall first confine ourselves to the case where n
is a positive integer, and shall then discuss the extension
to cases where n is either a positive fraction or any
negative quantity.

THE BINOMIAL THEOREM FOR A POSITIVE INTEGRAL

EXPONENT.
383. To shew that, if n be a positive integer, then
N L 2O =D s
(a+b)*=a"+na™ 19 b* +
fre=D).. (” T+ oy 4 -+ nab™ + b

1.2..

It is evident that this result includes such results as we have
already proved. If, for example, we put »=2, we obtain

(a+b)2=a3+2ab+b%
-If we put n=3, we obtain
(a+DbP=a’+ 3a%b + 3ab?+ b3
B. A. 26
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The term "= 11)"2;(”;""'1) an-br is the (r+1)® term. It

is called the general term, because any term may be obtained
from it by giving r the proper value—the second term corre-
sponding to =1, the third term to »=2, the fourth term to =3,
and so on. )

The result that we want to prove may be written in the form
(a+d)r=ar+,0;.a* 10+ ,0;. a* 22+, +,Cp. a* 70" +... + %,
which is more convenient for our purpose.

384. First Progof (Positive Integral Exponent).
Every term in the product of n factors, each equal to
a + b, must contain one letter taken from every factor,
hence it is of n dimensions. The terms of the pro-
duct(;) consist therefore of certain multiples of a", a*™b,

The term involving a" arises from the product of
an “a” taken from each factor. Hence, a™ is a term in
the product.

The terms involving a"™'b arise from the product
of a “b” taken from one factor and n—1 “a” s, one being
taken from each of the remaining n—1 factors. But
the number of ways in which a “b” can be selected-
from n factors is the number of combinations of n things
taken one at a time, that is,n. Therefore there will be
altogether n terms in the product, each equal to a™b.
Hence, na™*b will be a term in the product.

A similar argument applies to every term in the
product. The terms involving a"”b" arise from the
product of r “b”s (one being taken from each of r of the
factors) and of n—r “a” s (one being taken from each
of the remaining factors). But the number of ways in
which r “4”s can be selected from n factors is ,C,.
Hence, ,C..a"7b" is a term in the product.

Hence, the expansion of (a + b)" is
(@+b)y=a+,0,.a7"b+...+,C,.a70 +... + 5"
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385. Second Proof (Positive Integral Exponent).
The proof of the binomial theorem given above is the
one which would naturally occur to any one investi-
gatmg the subject for the first time. But if the result

known or guessed, then the following proof, by
mathematical induction, is shorter and easier.

Let us assume that the theorem is true for » factors, that is,
(a+b)r=ar+,0;.a" b+ ... +4Cp.a" 0"+ .. +,C; . ab* 145", (i).

Multiply both sides by a+b,
o (a4 d)m e
=ar*14,01.0%  +,Cp. a2+ +,.Cp.av b . abt
+ard +,0,.a* 024,05 a3+ ...+, v Lovrlprly | ntl
=ar*14+ (40, +1) a*b+ (O3 +40)) a¥ 103 +...

+(aCr+aCry) @ T+ 4. +(1+,,(;’,)ab"+b""l

But oWCr+uaCry=n+10r; [Art. 378

o (@b tl=antiy, 0 arD 4 g 405 am 1024
Hui1Cre a0 O abr DM L (ii).

Now the formula (ii) is exactly the same as the formula (i),

except that n+1 is written for » wherever it appears in (i).

Hence, if the formula (i) be true for the exponent =, then (i1)
shews that it is also true when the exponent i1s n+1.

Now (i) is obviously true when n=1, therefore it must be
true when n=2. But since it is true when n= 2, therefore
it must be true when n=3. Continuing this line of reasoning,
we see that it is true for any positive integral value of 7.

386. If, in the formula given in Art. 383, we put
a=1, b=x, we have
Q+ay=14no+ 20Dy

n(n 1).(n —-r+1)
1.2....r

&+ ... +a
26—2

o+
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This result includes the expansion of (a+ b)®, for
(a +b)"=a" {l +’Z}n

n(n-1) b
el oS }
n(n l)

=a* {1 +n + ——

= a‘+M"‘lb +— ar—2p2 +..

Since the expansion of (1+x)* glven above includes the ex-
pansion of (a+b)*, it is often taken as the standard form.

If we change the sign of « in the expansion of
(1 +=)*, we have
(A-a)y=1-nz+ ”({‘ 21) ,

the last term bemg + " or —a", according as n is even
or odd.

Ez. 1. Write down the expansion of (a+b)s.

By the formula in A.rt. 383, we have

5. 4 3 5.4.3.2
6 — 16 4 —_ 3 2 A
(a+b) a+5ab+ b+ 2.3 12.3.4
=ab\+batb+ 10a362+ 10a2b3 + 5abt+ b5,
Ex. 2. Write down the expansion of (3x - 2y)4
In the general formula, Art. 383, put 3« for « and —2y for b,

. (30— 29)=(3a)+ 4 (32)(~ ) + §-o (3e)(~ 2y)*

+ 12 30 (- 2P (-2t
=811 - 2162% + 216222 — 96xy3 + 164
Ex. 3. Find the coefficient of &7 in the expansion of (1 —2x)°.
The term involving 27 in the expansion of (14 )* is
n(n-1)(n-2)... (e —r+1) -
lr
.*. the term involving #7 in the expansion of (1 —2z)? is

9.8.7..3 .-
1.2.3...7('2’”)7‘

4+ ...+ (—2z)
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9.8.7..3
1.2.'37.7('2)7
9.8
— e 7
1.22
— —4608.

Ez. 4. Find the 12 term in the expansion of (z — 3y)®3.
The (r+1)® term in the expansion of (a+ b)* is

n(n—1)..(n—r+1)
—

Hence, the coefficient of 27=

ar—rbr.
. the required tem:l%%f 23(~ gy
13.12
== 1.2 (i)llxﬁy“
= - bt

387. It is usual to add the following additional
propositions connected with the expansion of a binomial
when raised to a positive integral power.

388. To find the greatest coefficient in the ex-
pansion of (1 + z)"

The coefficient of the (r+1)* term is C..

If » be even, the greatest value of this is when
7= }n [Art. 380]. Hence, in this case, the coefficient
of the (3n+ 1) term is greater than that of any others.

If n be odd, the values of ,C, and ,C,, are equal
when r=}(n+ 1), and these values are greater than
for any other value of ». Hence, in this case, the co-
efficients of the }(n+1)*® and §(n+3)" terms are
equal, and either is greater than the coefficient of any
other term.

389. To find the greatest term in the expansion of
(1 +az)"

The (r+1)* term is ,C,.2". The 7 term is
WC._,. @, Therefore we can obtain the (r +1)™ term
from the " term by multiplying the latter by the
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fraction

C, n—r+1 (n+1 )
2= eg=(-——-1)a
«C.\ r r

This multiplier decreases as r increases, but it is greater

than unity so long as n;:_—l—l z>1,
that is,so longas (n—r+1)z>r,
that is, so long as (n+l)z>r+re,
. (n+l)a
that is, so long as < Nis

If this be not an integer, and if we take r equal to the
integer next below it; then the (r+1)" term is the

greatest. But if "1 be an integer, then for this

value of 7 the fraction above written is equal to unity,
and the 7* and (r + 1)* terms are equal, and each of
them is greater than any other term.

390. The expansion of (1 + «)" is sometimes writ-
ten as

A+az)y=c+cx+ca+...+ca + ... +ca",

and we shall use this notation in enunciating the fol-
lowing propositions, Arts. 391—395.

391. The coefficients of the terms in the expansion of
(1 +2)* which are equidistant from the two ends are
equal. .
This proposition follows from the fact that
c=c,=1,
6, =0C,,=n,
In

and ¢, =——=——=¢,,. [Art. 877.
Irin—r
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Note. This is equally true of the expansion of (a+d)®, %'o-
vided that the numerical coefficients of a and b are equal; but
if @ and b have unequal numerical coefficients, it may not be true.
Thus, in the expansion of (1—2x)5, the coefficients of powers
of # which are equidistant from the two ends are not equal.

392. The sum of the coefficients of all the terms in
the expansion of (1 + z)" 15 2"

For (1+a)"=c,+cz+...+ca"+... +c2"
Pat z=1, . 2=c¢c,+¢, +...+¢c,. +...+¢c,.

393. The sum of the coefficients of the odd terms in
the expansion of (1 + x)* is equal to the sum of the co-
efficients of the even terms.

For A+z)=c+cx+..+ca+...+ca"
Putz=-1. . (1-1) =c—c,+c,—c,+....

S 0=(c,+e+e,+..)—(c, 46+ ..

394. The coefficients of # in the expansion of (1+x)* are
the various combinations of = things taken different numbers
together. Hence, numerous theorems connected with the com-
binations of things can be proved by the binomial theorem,
and such proofs are often more simple than those suggested
by the last chapter. Thus, the theorems just proved may all
be read as theorems in combinations. For example, the result
of Art. 392 is equivalent to a statement that tgne sum of all

ible combinations of n things taken any number at a time
18 2% -1, for the required sum=c,;+¢,+...+¢,, and ¢;=1. [See
p- 440, Ex. 7.]

395. Numerous theorems concerning the binomial coefficients
can be obtained, either directly by making use of their known
values, or in some cases by using the binomial expansion.

Example. Find the value of c2+c?+c2+...+c,k
Wehave (1+a)*=cy+ex+ca?+...+ a2,
' 1\* 1 1 1
also (1+.;:) =co+015+031'§+...+ Cngm
Multiplying the two series together, we see that the quantity

whose value we want consists of the constant term in the
product,
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o et o2+ e+ ... +c 2=constant term in  (1+2)* (1 +‘%)'
_ (L+2) (142%)
= ” » - 5,.—_—
=coefficient of 2% in (1+2)*x (1+2)*
= ” ”» (142)™

396. Multinomial Theorem. We can expand
the n" power of a multinomial by repeated applications
of the binomial theorem.

The process will be sufficiently illustrated by considering the
expansion of the 7® power of a trinomial, such as a+b+ec.
{a+b+r={a+ b+

&

=a~+m~-!(b+c)+...+lL —

Now every power of the binomial (b+ ¢) which occurs on the
right-hand side can be expanded by the binomial theorem. If,
for example, we want the coefficient of a*—7b"~PcP, we see that it
must arise from the term in the original expansion which involves
a*~". The coefficient of b*—Pc? in the expansion of (b+c)" is

1% Honce the coefficient of ar~+br-c s
lelr=p
= LA
[la=r ¥ [plr=p’ """ la=rlr=plp’
Hence the coefficient of aPbic™ (where p+gq+r=n) is
=

lelglr”

397. The expansion of an expression like (@+b+c+d+...)"
can be formed in a similar manner; but the process is tedious,
and it is preferable (if possible) to express the multinomial
a+b+c+d+... in some simple form, which frequently enables
us to reduce the expansion to that of a binomial.

EXAMPLES. XXXI. A.
‘Write down the expansion of the following binomials;
1 1+ 2 (z-2). 3. (z—p)n
4. (2a+d)1. 5. (3z-—2y). 6. (2a+3d*
7. (Gr+3y)e. 8. (1-34a2y. 9. (22-3)5

ar—T(b+e)y+...+(b+e)m
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3\ 6
10. Find the coefficient of  in the expansion of (a:*-{- %) .

“11. Write down the value of (z+1)8+(2—1)8.
12, Write down the 6th term in the expansion of (z — 3)%.
13. Find the coefficient of #% in the expansion of (z+2)5.
14. Find the coefficient of 43 in the expansion of (22— 3y)'.
15. Find the coefficient of a®? in the expansion of (3a — 3b)!1.
16. Write out the expansion of (2a—2) in full.
17. Find the middle term in the expansion of (1+ ).
18. Find the 7 term of (a - 22)'2
19. What is the coefficient of 28 in (3x—3)°?
( 20. Find the term involving 1 in the expansion of (ax — 322)7.
‘ Find the greatest coefficients in the expansions of
2. (A+a)% 22 (1-2)2 23, (z+a)t. 24, (1422)°
25. Find the greatest terms in the expansions of
(i) (1+2)% when 2=10;
(i) (z+1)2, when z=4;
(iii) (#+2)Y, when z=3. -
% Find the greatest coefficient in the expansion of
(1+2)°(1 - 2).
27. Employ the binomial theorem to find the values of (101)7,
and of (99)°.
28. The third, fourth, and fifth terms of a binomial series
are 20412, 22680, 15120; find the expansion.

*29, If = be a positive integer, find the value of
(142)% 302 (1 +x)9-—2+3l(—13-”‘_2‘—3?z2(1 )t

3n (3n— 3)(3n—6) _
B P O Sl Gt S
30. Prove that

(1-z=1+2)*—-2n2(1 +x)"‘l+%n—(2—£———?2‘z"(l +a)m2—

3l. Write down the first four terms in the expansion of
(1422422 in powers of z.

32. Find the expansion of (1+2—2%)* in powers of 2.

33. Find the coefficient of a?b22 in (a+b+c)8.

34. Find the middle term of the expansion of (1 — 2z +22)»,
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35. What is the sum of all the coefficients in the expansion
of (2z—1)M

36. Find the sum of the numerical coefficients of (3a — 2x)5.

37. If 1+2)=cy+cx+cr®+... +c2®, find the value of
(1) ¢—cy+cg—...+(—1)cy;
(i) €oCntC16n—1+ ... +CuCo-
38. If » be a positive integer, prove that the middle coefficient

of (1+x)™ is equal to the sum of the squares of the coefficients
of (1+z)™

*39, If ¢y, ¢y, C5,... be the coefficients of the powers of x in the
expansion of (1+2)*; and if C,, O}, Cy,... be the coefficients of
the powers of « in the expansion of (1+z)™; prove that

e+ tel+ ... =(—1)*(Cy— C 2+ CA...).

*40, Prove that the sum of the sqbuares of the first, third, &c.,

coefficients in the expansion of (¢+b)* differs from the sum of
2n(2n—1)...(n+1)

the squares of the second, fourth, &c., by 3.

*4], Shew that, if p; be the coefficient of #* in the expansion
of (1+x)*, then
P1PyPa(n+1)*=(py+P1) (D1 +Py)- . (Pu—1+P) | 2.
*42, Employ the identity (1 + 2z + 22)*=(1 + )™, to prove that

2~+"(7;;1) -2, 20D -2 =3)g, ., _ 22

12,22 [ [#’

7 being a positive integer.

THE BINOMIAL THEOREM FOR FRACTIONAL AND
NEGATIVE EXPONENTS.

398. We have already shewn in Chapter XXIIL
that a definite meaning can be assigned to (1 + z)*
when # is fractional or negative. We now proceed to
discuss the possibility of finding an expansion for such
an expression in positive powers of z, and we shall find
that, if « be numerically less than unity, then

. n(n—-1) , n(n-1)...(n—r+1)
(1+w) —1+n&'+~1—2—-’0++ 1*_‘.2.“7‘ $’+...
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Note. The coefficients of » in the expansion of (1+z),
namely, the quantities
1 n(n—-1) n(n-1)(n-2)
’ 1.2 ° 1.2.3 ’
are known as the binomial coefficients.

399. The formula

(+7 ~=l’+w+£{'—;}-)xs+...+

n(n-1)...(n—r+1) .
1.2..r ke (),

has been shewn [Art. 386] to be true if » be a positive integer.
That, under certain limitations, it is true, whatever be the value
of n, is rendered probable by the fact that when we test the
result in a few simple cases we find that under certain conditions
it is true.

If we put n= —1, the right-hand side reduces to 1+ 2+ 22+...
while the left-hand side becomes (1 — ) -1, which is equivalent to
1-7 But, if we divide 1 by 1 -, we find that the successive
terms in the quotient are 14+ +2%+ ..., which agrees with (i).

This illustration is particularly valuable because it leads to a
series which we have already discussed at length [Art. 339];
and we have shewn that the series can only be represented by
the expression T%._z' , when 2z is numerically less than unity. Thus,
the expansion of (1—z)~!1in a series in positive integral powers
of by means of the formula (i) is only permissible provided
« is numerically less than unity.

400. In a similar manner, if we put =3, the left-hand side
of (i) is equivalent to 4/1+z. If now we proceed to extract the
square root of 1+ by the process given in Art. 196, we shall
find (however far we go) that the successive terms in the square
root are exactly the terms of the right-hand side of (i). But,
if 2 be numerically greater than unity, the remainder (which
represents the difference between the root so far as we have ex-
tracted it and the given expression 4/1 +le becomes larger and
larger the further we proceed, and thus, the further we go, the
less is the series on the right-hand side of &i) an accurate repre-
sentation of the expression on the left-hand side. On the other
hand, if # be numerically less than unity, the remainder becomes
smaller and smaller, and the further we go, the more accurately
does the series on the right-hand side of (i) represent the ex-
pression on the left-hand side.
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It can be proved that, if » be not a positive integer, then a
limitation similar to that given in this and the last article is
always necessary; and if # be not a positive integer, then the
formula (i) is only true when 2 is numerically less than unity.

*401. A rigorous proof of the binomial theorem for
any value of the exponent cannot be given without
introducing considerations beyond the limits of this
book, but the following sketch of one method of estab-
lishing it, which was suggested by Euler, is worthy of
careful study.

Let f(n) stand for the series on the right-hand side
of (i),

S f()y=1+nz+ 1.9 & tee

Then if n be a positive integer, we know [Art. 386] that
- f(n)=( +z)*; also, we have f(0)=1.

Writing m for n, we have

Fm)=1 +m+’"-(1’i;—1?z’+
Similarly,

......

f(m+n)=1 +(m+n)w+(m+n)§m;n_ l)a.’-}-...

Now Vandermonde proved that the coefficient of
«” in the product of f(m) and f(n) is equal to the
coefficient of " in f(m + n); and Cauchy proved that,
in that case, the equation f(m)xf(n)=f(m+n)
is true for all values of m and n, provided the series-
represented by these symbols are convergent. Lastly,
Cauchy proved that these series are convergent, pro-
vided # is numerically less than unity. We shall not
here prove these results, but the student will see that if
they be granted it follows from them that, if « be less

than unity,
S (m) % f(n) =f (m + n).
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[Euler arrived at this result in another way, which is an
illustration of the principle of the nence of equivalent forms,
and is an extension of the method used in Arts. 40, 55 to obtain
meanings to be assigned to the sum, difference, and product of
negative quantities. .

First, he shewed that the equation f(m) x f(n)=f g:n+n) was
true when m and » are any positive integers, since then it was
equivalent to the equation (1+z)™x (14+2)*=(1+4x)m*",

Next, he asserted that the product of the series f(m) and the
series f(n) must be of the same form, whatever be the values of
m and n. (This however is only true of series containing an
infinite number of terms if they be convergent; that is, in this
case, if z<1.)

Hence, he concluded that, since f(m) x f (n)=f(m+n) is true
when m and n are ?ositive integers, therefore this equation is
true for all values of m and n. If these series be convergent,
that is, if # be less than unity, this argument is valid.]

Thus, if # be less than unity, we have
S (m) x f(n)=f(m+n).
= f(m) xf(m) x f(p) =f (m +n) x f(p)=f(m+n+p).

Continuing this process, we obtain the equation

Jm)xfm)yxf(p)..=f(m+n+p+...).

In this result, m, n, p ... are any numbers whatever.
r P
Let m=n=p=..=-, where r and s are positive in-

tegers, and take s factors,
{f(:—;)}. =f(§ +§+ sterms)
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Transposing the sides of this equality, we have
o+ ) =f(§)
r (1' - 1)
A

r 8
—1+;$+ 1.2 $’+...

This proves the binomial theorem to be true when = is
a positive fraction (provided £<1). Hence, since we
know it to be true when = is a positive integer, it is
true for any positive index (provided z <1).

Returning to the equation f(m) x f(n)=f(m +n),
let m = —n, where n is any positive number (integral

or fractional),
S FCM X =fO) =1
S f=m)= 7
=(—1—4_1—‘7:—), , since 7 is a positive number,
=1+az)™
Hence (1 + z)™=f(—n)
=1+4+(—n)z+ (_—n)%z—ﬂlz’+....

Therefore the theorem is true for any negative index
(provided z < 1).

402. Hence the following expansion of (1 +«)* in
ascending powers of x, namely,

(1+a:)"=1+nw+"—(;‘——21)w’+...+" (n—1) '}’?:("’_Hl)ww...

may be used either, when n 8 a positi;e integer [Art.
386, or when z 18 numerically less than unity [Art. 401].

403. Should » be numerically greater than unity, we can ex-
pand (1 +x)* in powers of 1/z, in the following manner. We have
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(1+2)= GH)"

=an (l +~l->“ where 1 is less than unity,

1 11
=x"{l+ +"("2)x,+ }

Ex. 1. Ezpand (1+x)~! in positive powers of x, when x 18
less than unity.

We have

(L4a)-1=14(- Do+ i)( 2) g4 li( 22)3( Dt

=1-z+22-23+..

the general term, that is the term involving 2%, being +(—1)*z*.

Ez. 2. Ezpand (1-z)~% in positive powers of x, when z i3
less than unity.

We have

(-2 2=14+(-2)(-2)+ DD (e
LB (=2t ))
1.2.3.n (=2)
=1+22+322+423+ ...+ (n+1) 2" +...
Similarly, the (»+1)* term in the expansion of (1 - )" is
n(n+1)..(n+r— 1)
|r

Ex. 3. Find the general term in the expansion of (1 - x)’
The required term = $1@-1)3E-2)...(3- n+1)( ap

1.2.3...n
H-H-D ( 29
= 1.2.3. (=1
—(-1pmi L Benod) (§" D L (—1ypan

1.3...(2n-3)
="' T o3 (2)
1.3...(2n-3)
=T"T1.2.3.n (§)
1.3...(2n-3)
TT2.4.6..2n
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To justify the use of the factor (2n—3) in the numerator, we
must suppose that n is greater than 1.

1
Ex. 4. Find the general term in the expansion of (1 —z) 2.

The general term = (=(=3-1)(-3-2)...(-3- nt1) gy

.1.2.3...n
2n—1

(—i)(—%)(—%).--(—
= 1.2.3...n
_(-1pl :i 52 3(2nn 11

_ l.3.5...(2n—-1) 1
=" 33.a ="

) (~1pan

g (= 1)ran

Ezx. 5. Which is the first term in the expansion of (l+§z)
whose coefficient 18 negative? ’
n+ l)

The (n+1)* term in the expansion = it 28 i (.;‘a - A=)
This will first be negative, as sbon as 12—+ 1 is negative,
that is, 13 —4n+4 is to be negative,
. an>17,
. n=5,

Hence the sixth term (t.hat. is, the term involving .’66) is the
first whose coefficient is negative.

Ezx. 6. Find the greatest term in the expansion of (1+.z')3
where x=%.

The (r+1)* term is obtained from the 7** by multiplying it by
B-r+l

r

z.

Hence, as long as this multlpher is greater than unity, each suc-
cessive term is greater than the term before it. This multiplier
decreases as » increases, but it is greater than unity,

so long as ——]”*r—r§>l,
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that is, so long as 2 (3t —7r)>3r,

that is, so long as 5r<%f.

.. if =1, then this multiplier is > 1, but if » > 1, the multiplier
is <1. Therefore the second term is the greatest.

404. We can sometimes sum a given series of
numbers by shewmg that it consists of the successive
terms in the expansion of some binomial. This is suf-
ficiently illustrated by the two following examples.

*Ex. 1. Find the sum of the series
3.4 1 ,3.4.5 1
4+, e 5% 93 %
If the series can be expressed as the expansion of a binomial,
we can sum it. Comparing the glven series with the expansion
of (1+2)" namely 1+ 22+ ( )z3+ ., we must have nr=1,
n (n—-1) 3.4 1
and 1.2 2= '-—2 9.

The solution of these equations gives x=-}, n=-3.
These values make the fourth terms in the two series the same.
Hence we conclude that the given series is the expansion of
(1-3)-3 Its value, therefore, is

A-P2=@*=@P=%"
With practice, it is generally possible to write down the answer
to examples such as this one by inspection.
*Ex. 2. Find the sum of the series

4.7 4.7.10

9+9 1B8Y*5.18. 97

Compare the given series with the following expansion
_e(_P_,4

(1) 4= 1+(——)(+x)+————9 g 7/ (4ap

() (-5

S5+ ... to infinity.

28+ ... to tnfinity.

3.3 (£2)+...
—15k% plptq) - Pp(p+9)(p+29) (2\*
=1¥ 5 1. 2 ) 1.2.3 (q) +

B. A.. 27
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The given series can be written in the form
4 (2 4.7 /2\% 4.7.10/2\3
1 (§)+1_.§(§) t12.3 §) +
»
These terms are the same as those in the expansion of (1+x) ¢
if p=4, ¢=7-4=3, and $=§, that is, x=%§. Hence we

' -4
conclude that the given series is the expansion of (1-3%) 3,
except that the first term in the expansion is missing. There-
fore the sum of the given series

4 4 4
=(1-3 ¥ -1=@@) ¥ -1=3F-1=y81-1.

405. Application to approximations. The fol-
lowing typical examples illustrate one of the most im-
portant applications of the binomial theorem, namely,
the determination of the approximate values of given
quantities.

Ex. 1. Find the approximate value of -1%5;, when z i3 a
quantity so small that its square may be neglected.

We have Tl—x=l+x+x’+...

For, since we may neglect the square of z, therefore + must be
less than unity, and the series is convergent. Moreover, the
cubes and higher powers of # must be smaller than 2% and
therefore may also be neglected. [For example, if z=-4;,

2=3}5, 2°=1dv0> &¢.,)
. = =1+, approximately.

l1-2
"
Ez.3. Find the approzimate val of(‘;-:’:)“,

small compared with a or b that squares of zja and x/b may be

neg
(a+z‘)"=a“(l+§)
(b—x) ™ 1_"{ "
(20
=(g)“(l+n£+...)(l+n§+---),

when x 18 80
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z
[

are omitted. Moreover, since ';i:and ';: are so small that they

where all terms involving squares and higher powers of '2 and

may be neglected, .. :—;wﬂl be so small that it also may be

neglected.
" "
Hence ?Z-_"—:;“ = (Z—) (l +n §+n g), approximately.

Ex.3. Find approximately the value of the cube root of 1001.
1
Here /1001 =103+ 1)

o)

10(1 l§
=10(1+5)

_ 11 313-11
—1‘?{“31—0‘».* 1.2 m*---}

=10{1 400003 — 0:0000001 +...}
=10{1-0003332...}
=10003332...,

which gives the result correct to six places of decimals, since the
terms neglected cannot affect these figures.

406. The three following examples deal with ques-
tions involving the expansion of multinomials.

Ex.1. Find the first three terms in the expansion of
. 1

(142222
in ascending powers of z. “¥

Wohave (1-+(2—st)pi=1+3(2s- o0+ 13- Dior oy .

We only want the terms involving  and 22, therefore we need

not go further in the expansion, since (2 — 2#?)% must involve z3:

simiﬁrl , we may neglect #3 and higher powers of z in the ex-

pansion of (2 — 22)2 ‘

oo {1422 -2 =143 (22— 2%) -} (422+...)

=1+z-$22—3at+...

=l+x-22+..

, 27—2
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Ex. 2. Find the coefficient of ! in the expansion of
(1-2423-23+24)-2
in ascending powers of x.
The expression in the bracket is a a.P.,
) - -2
- { —x+x’—a3+.z4}-’={ll__'§}
=(1-28)-%(1 -z}
=(14225+321+...)(1 — 22+ 22).

The only term in this product which can give 2! is the product
of 321 and —2z. Therefore the coefficient of 11 is —6.

Ez. 3. A candidate i3 examined in two papers, the full marks
of each paper being n. In how many ways can he get a total of
n marks

In each paper he can get 0, 1, 2,... or » marks. These are
the coefficients of the powers of # in 242! +a%+...4+2% Now
in the product

142+ 2%+ ...+ 2% (1 + 2+ 23+ ... +2%),

the coefficient of z* will be the sum of the product of the co-

efficients of 2° and 2*, the product of the coefficients of 2! and

-1, &c. Each of these }iréoducts corresponds to one way of

obtaining a total of n marks; namely, 0 1n the first paper and

n in the second, 1 in the first paper and n—1 in the second, and

so on. Hence, the number of ways in which the candidate can
t a total of » marks is the coefficient of #* in this product.
ut

- +1\2
4z 423t tamp=( - . = = )
=(1—an*+1)(1 — )2
={1 - 2%+ 14 2%+ 1 4204 304 ..+ (a4 1) 2%+

Hence the coefficient of a* is n+41. Therefore the candidate can
get » marks in n+1 ways.

This particular example could be solved more sit:(fly, but the
above work is inserted as an illustration of the method of treating
such problems. .

Note. Similarly, the number of ways in which the number »
can be formed as the sum of % of the numbers a, b, c... is the co-
efficient of 2* in (294224 2°+...)%
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*407. Homogeneous Products. The number of
homogeneous powers and products of r dimensions which
can be fi Jrom n letters a, b, c, ..., where each letter
may be repeated any number of times, 18

n(n+l)...(n+r-1)
G .
This number is denoted by the symbol H,.
Consider the continued product

(1 +;‘:+%:+ )(1 +g+§+ ...)(1+f;+$+ )

where there are altogether n factors, and each factor
is an infinite series. Each factor is homogeneous and
of no dimensions. Therefore the product is homo-
geneous and of no dimensions [Art. 74]. Hence, the

coefficient of —:; in the product must be a homogeneous

function of » dimensions in a, b, ¢ ..., and clearly it will
be the sum of every power and product of » dimensions
in these letters.

Now we only want the number of such products, and
if we put a=b=c=...=1, we make each term in

the coefficient of % equal to unity, and therefore in

this case the coefficient of 1 will be JH,. There-

wf

fore, _H, is the coefficient of ‘;1- in the product

1 1 1. 1
(l+5+?+...) (1+;+?+ ...)...nfactors.

. 1. 1 1 "
.. H,= coefficient of in (1+E:+ a’—,+) .
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Let }:=y, ». JH, ='coefficient of y" in (1+y+y*+...)"

= in( 1 )-
- » ”» 1—3/

= » » in(l—y).-
- _ne+l)...(nt+r-1)
= r .
[p. 415, Ex. 2.

Nots. This result can be proved directly by a method analo-
ﬁous to that given in Art. 369. For, from the given result we
ave (see Art. 374)

ntr—1
.H,-= . nEr—v

and this relation can be proved directly, and thence the value of
«H, can be determined.

EXAMPLES. XXXI. B.

[1t may be assumed that the series involved in the following
examples are considered only for such values as will make them
convergent.] )

Write down the first five terms in the expansions of the
following binomials, numbered 1 to 12. .

1 (l—x);. 2, (1'+x)3. 3. (1—.@)2.

L Q4298 B (1-}a). 6. (l+az)e.

7. (a=baf. 8. (3-2)5. 9. (o—a91,
‘ (1+2p

1 1
10. o= 11, Ja== 12, Jita)"
Express, in their simplest forms, the (»+ 1)* terms in the
expansions of the following binemials, numbered 13 to 21.

13. (1-sz)‘3. o 14 (1-4z)‘3. 15. (l—x)-’!'.
1 3
18. (1-mz». 1T (1+2002 18. (l—k)'%-
1 1 ™
19. 7(T+_3a:)3' 20. m. 21. (""Z') . .
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22, Determine which is the first te:'m with a negative co-
4 2
efficient in the expansions of (i) (1+32)%; (i) (1+2)9.

23. Prove that, if #» be a positive fraction, all the terms in
(1) after a oerta.m term will have the same sign. What is
tﬁ:: sign if n=21? Write down the first two terms which have
this sign.

24, Find the greatest term in the expansion of (1 + z)%
when z=% and n=-4.

25. Find the greatest term in the expansion of (1-+z)~%,
when x=4 and n=

26. Find the gl'eabest term in the expansion of (1-2)-*%,
when z=§ and n=4%.

3.4 4.5.6 5.6.7.8
27. The series l+ .1:+1 2x’+1 23.7:’+1 334 z4+

is a binomial expansion, the index being fractional; find the
expression which is thus expanded.

. 1.3 1.3.5
28, Find the sum of l+§w+—x2+2 7 6.@8.;.
1 .3 .3.5
29, Fmdthesumofl+4+ 8+ﬂ+

%30, Find the sum of

2.5.7.11  2.5.7.11.14 2.5...(3n+8)
4+ =51 * op.e Tt ome
31 Prove that

+...

1 1.1 1.1.3 1.1.3.5
2J2 1= 3{2+2’L 23|3+ li W'l‘-..}.
1.3.5...(2r-3)
2.4.6...2r
1-py—pa— . = pu=2(n+1) puy,;.

33. Find the square root of 101 correct to five places of
decimals.

34. Find /255, correct to 3 plaoes of decimals.
35. Find /999, correct to 6 places of decimals.

36. Expand 4/ A2+ in ascending powers of z, as far as the
third power of z.

—

32 If p,= , prove that
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37. If x be so small that its square can be neglected, prove
NO+2r++/8-3z 13
3 3 =14 ;7 2.
V/271-62+4+/32+102 360
Vito+y/(1-ap
l+o+/1+a

that

38. Find the value of
rect to 3 decimal places.

-1

39, If » and ¢ be the nt terms of the expansions of (1-z) 2

and (1 - ) 2 respectively, shew that g=(2n—1)p.
40. Prove that, if p, and g, represent the coefficients of 2~
in the expansions of (1+)* and (1+z)—*, then
PatPa-rd1+Pa-ofat oo +P1In-1+90=0.
41. Prove that the sum ?f the coefficients of the first » terms
in the expansion of (1—x) » bears to the coefficient of the
term the ratio of 1+n(r—1)to 1. .

42, Shew that, if p, ¢, s be respectively the product, quotient,
and sum of two quantﬂ,leé ¢ being less than unll)ty, then ’
4 4.5 4.5.6
=l -Cpd 0205
# ’A{q 19137 1.3.3¢ +}
43. If(l+2)=cp+c@+62% +... +cu2™+..., find the values of
(1) cp—20,4+3cs—...+(—1)*(n+1)cy.
(i) (co—cgt+ey— .+ (cy—cg+cg—...)%

44, TFind the coefficients of 2% and of #%*+32 in the expan-
sion of .

/ l-2
JE
45. Find the coefficient of 23#+*1 in the expansion of
(1+x+2%)"L
46. Find the coefficient of 21 in the expansion of
3
(1-2z+422—828+...) &

47. Find the coefficient of £ in the expansion of
(1 -2+ 22% - 228+ 40t — 4254825 —,..) "L,
(1-3a)

2
a -—x)fis 272 —6n+1.

,when z=1, cor-

48. Prove that the coefficient of z* in
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*49, If » be a positive integer, and

(= n)=}:"n T3+

find a relation connecting ¢(z, %) and ¢(z+1, »—1); and thence
|n|z-1
shew that ¢ (z, n)= _7_-}:1»— .

#50, Prove that the sum of the homogeneous products of =
" dimensions of three things a, b, ¢ is ’
ar*3(b—c)+b**2(c—a)+cr*t2(a—D)
a2(b—c)+b(c—~a)+c2(a-b) °
#51. Shew that the sum of all homogeneous products of

a, b, ¢ of all dimensions from 0 to = is
an+3 3 o3

(a-b)(a—c)(a—1) +(b-—a)(b—c)(b—l) +(c—a)(c—b)(c—l)
1

Tl@-DE-1)(c-1)°
*52, Prove that the coefficient of 2*~! in the expansion of
{(1-2)(1 - az)(1 - atw)(1 - a3} -1 '
in ascending powers of x is
(L-a)(1-ar*1)(1—ar+?)
(1-a)(1-a®)(1-ad)
*53. A man enters for an examination in which there are

four papers with a maximum of m marks for each paper. Shew
that the number of ways of getting half marks on the whole is

3 (m+1)(2m2+4m +3).

*54, In a certain examination there are 3 papers for each of
which 200 marks are obtainable as & maximum ; but if less than
50 marks are obtained in"a paper, they are not counted towards
the aggregate. Shew that &zre are 1632 ways in which a can-
didate can just get a total of 200 marks.




CHAPTER XXXIIL
THE EXPONENTIAL THEOREM.

408. Definition of e. The series

1 1 1 o
|2 |3 + ... + — + ..., to infinity,

3 n
is denoted by the letter e.

This series contains an infinite number of terms, but it is
convergent [Art. 338), since
(i) it is greater than 2 and

(ii) it is less than 14143 +;,+ .|. 1 S+

1+1+4 =

that is, it is less than 1+ 1—% that is, it is less than 3. Its

value lies therefore between 2 and 3, and (by actual calculation)
is found to be equal to 2°718... We shall now shew that ¢ is an
incommensurable number, and therefore its numerical value is a
non-terminating and non-repeating decimal.

409. The number denoted by e 18 incommensurable.
For, if possible, let ¢ be commensurable; and suppose that

e= —7; , where m and » are posxtlve mtegers.

=1+1+ +..(to infinity).

.o +
L_ L l_ lﬂ J_+2
Multlplymg both sides by |z, we have
an integer =the sum of a number of integers
-1 1 1

Har I D ) T Er e 9w
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1 1 1
Ykl T ma D) A D@D

is obviously greater than

No .. (to infinity)

aFl’ and it is less than
1 1 1
a+1 T it et
This latter series is a geometrical progression of which the com-
mon ratio is less than unity, and its sum is . [p. 365, Ex. 2]
1 1 . 11 .
Thus m+m+... h“ between m&nd ;, a.nd 18
therefore a proper fraction. But a proper fraction cannot be
equal to the difference between two integers. Therefore e cannot
be commensurable. -
410. The Exponential Theorem. 70 shew that
& 4 Lo
e"--1+a:+|—2 + |§ + ... +|—r+...to infinaty.

We know that

{(1 + 1-1@)} - (1 + }‘)" S (a);

We shall now expand each side of this identity by the
binomial theorem. We shall suppose n to be greater

than unity; and therefore, since = is less than unity,

this expansion will always be possible. The right-hand
side, when expanded, becomes

(1+1) =1+ml+———m(m_l)l,—
n n 1.2 n
+nw(nw—1)(nw—2)l
1.2.3 n®

o(+=3), #(==0) (==3)

=lte+——-—+—753

+...
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Putting z =1, we obtain

-1 (1-5(-

12t 1.2.3

(1+1) =1+1+ +.
n,

Hence, the relation (a) may be written

o3, 000, |
1.2 1.2.3
1 1

=14+x2+ 19 + 1.9.3 +...

This is true for all values of n greater than unity, and
we may therefore make n as great as we like. Take n

infinitely great, then 1 will be infinitely small and there-
fore ultimately zero. This relation will then become

1 1 ® @& o
{l+l+—l—2‘+E+-..} =1+$+|'g+'|§+...,
that is, e’=1+w+£+£+...

EE
Note. It can be proved that this series is convergent for all
values of z.

411. If a be any number, then will
(zlog.a) | (zlog,a)’
—Ig + —_E— + ...
Let the logarithm of a to the base e be A.
~. log,a="h; that is, a =¢"

a“=1+zlog,a+

'
o @ = mgones =1 +aloga+ DB o [Ar. 410]

2
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412. The Logarithmic Series. 70 shew that, if
« be numerically less than unity, then

log,(l+w)=z—%'+a§— e +(— 1)'“;’+ ... (to nfinrty).

2
We have a*=1+nlog, a+ @éﬂ+...[Art. 411},
where a and n are any numbers whatever. Let us take
a=1+2,
S (A+z)=1+nlog,(1 +2)+ 12 {nlog, 1 +2)}*+...

2
(_l_"'_”:T)';l.= log,(1+2)+ |—12-7l {log, A+ 2)}' + ...

We now proceed to find another expression for the
left-hand side of this equality. If # be numerically less
than unity, we can expand (1+z)* by the binomial
theorem. Hence we have

Asap—1_ [1+nz+"(;";l)w’+ ...]—1
n - n

_ n—1 (n—-1)(n—-2) "
=z+35 o+ 123 &+ ...

Equating the two series to which Q“:;ﬁ is
equal, we have

-1)(n—2)
T.2.3 %%

This is true for all values of n. Put n=0. Every
term, after the first, on the left-hand side vanishes.

Therefore log, (1+2) =z + & l)a!' + 1) (-32)0:’+

2 1.2
2 o
=z-S+g—..

log, 1+ )+ ... =a:+n1~21a:'+(n
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The student should insert the general term in the expansion
of (14z)*, and satisfy himself that it reduces to the general term
in the expansion of log,(1+z), which is given in the enunciation
of the proposition.

EXAMPLES., XXXII. A.

. 1 1 1 cps |
1. Find the sum of T3 133 ig3a ...(to infinity). ‘

2. Find the sum of 1 —§+} —}+...(to infinity). :
3. Find the sum of |

2 2 9 i .
435 3+3 55+ 5 g 7+ (o infinity).
4, Shew that
1,1 1 1
(l+l+l§+§+"'>(l—l+@" @4'"')_1"

3.6 ,7
5. Shew that 1 +Tl +E+E+-..=3e.
6. Shew, by taking logarithms, that, if 2>y >z, then
(222 <(222).
Z~2 -

7. Shew, by taking logarithms of each side of the identity
234+1=(x+1)(22—2+1), and then expanding in powers of =z,
that, when 7 is a positive integer,

1 6n—2  (6n—3)(6n—-4) (6n—4)(6n-5)(6n—6)

- + - T +...=0.
1.2 1.2.3 1.2.3.4
- #8, Explain the following paradox. If we put 2=1 in the
logarithmic series [Art. 412], we find
log2=1-}+3-F-+3-3+} -+
oo 2log2=2-14+%—-3+3-3+%-}+5-...
Taking those terms together which have a common denominator,

we obtain
2log2=1+

-1
%9, Shew that 'n"'l—n(ﬂ—l)"‘1+n("|£-l)(n~2)n-l

n(n—1)(n-2)
—3

(n—-3)14...=0.
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413. Natural or- Napierian Logarithms.
Logarithms calculated to the base e are called natural
logarithms or Napierian logarithms—the latter name
being derived from that of John Napier of Merchistoun, -

iom the invention of logarithms is due.

In theoretical investigations, it is usual to assume that all
logarithms are calculated to the base e, unless the contrary is
expressly stated; and the symbol shewing to what base the
logarithms are calculated is frequently omitted.

414. Calculation of Napierian Logarithms.
The logarithmic series enables us to calculate the
numerical values of the logarithms of the successive
natural numbers, namely, of 1, 2, 3, &ec.

We have, if = be less than unity,
log, (14 2)=2— 24§23~ ... [Art. 412
and log,(1-2)=—x—322— 323 —...

.. 1og,3:"—” —log,(14z)—log,(1 - )

=2{zr+323+325+...}.
Put :-i-x m
less than unity, thls is permissible if m and = be positive integers.

" m m-n 1
.. log‘;=2 {—m+n+3<m+n) m+n) u.} -..

(i) To find log,1. This we know is zero. [Art. 253, Ex. 1.]
(ii) To find log,2. In (a), put m=2 and n=1,

. log2=2 (1+3 AP+ AP+
=0693...

, that is, let z= m . Since # is numerically

(iii) To find log,3. In (a), put m=3 and n=2,
. log,3-log,2=2 3+ 3 1P+ (BF+...)
. log,3—0693...=0405...
. log,3=1'098...
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The method is general. From .the logarithm of any number,
we can get the logarithm of the next greater number; and thus
a table of the Napierian logarithms of all the natural numbers
can be calculated.

The logarithm of any fraction or decimal can be deduced by
the aid of Art. 256. -

415. Common or Briggian Logarithms.
Logarithms calculated to the base 10 are called com-
mon logarithms or Briggian logarithms [Art. 261]—the
latter name being derived from that of Henry Briggs,
to whom their introduction is due.

In numerical calculations—especially where approximations
are muimd—it is usual to assume that all logarithms are cal-
culated to the base 10, unless the contrary is expressly stated;
and the symbol shewing the base to which the Yogarit.hms are
calculated is frequently omitted. -

416. Calculation of Common Logarithms.
The result of Article 260 enables us to deduce the
numerical value of the logarithm of any number cal-
culated to the base ten from the value of its logarithm
calculated to the base e.

In the result (i) of Art. 260, put m=2'; and divide each side
by logya, .

Put a= 10, and b=e,

. log,z
. logygz= fog, 10"

We have shewn how, to calculate the logarithm of any
number to the base ¢; and therefore we know the values of log, =
and log,10. Hence, if we divide the natural logarithm of any
number by the value of log,10, we shall have the value of the
common logarithm of the number.

The fraction E—ll—(—)-, by which the natural logarithm of any
number must be multiplied in order to produce the common
logarithm of the same number, is called the modulus. Its value
is 0°43429...
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417. Tables of Logarithms. The numerical
values of the common logarithms of the natural numbers
from 1 to 100,000 have been calculated, in some cases
to fourteen places of decimals; and their values to seven
(or five) places are published in a tabular form.

As an illustration, a table of the logarithms of the first 100
:331:&?1 numbers, calculated to 5 places of decimals, is here

No. Log. | No. Log. | No. Log. | No. Log. | No. Log.
1 00000 | 21 32222 | 41 61278 | 61 78533 | 81 90849
2 30103 | 22 34242 | 43 62325 | 62 79239 | 82 91381
3 47712 | 23 36173 | 43 63347 | 63 79934 | 83 91908
4 60206 | 2¢ 38021 | 44 64345 | 64 80618 | 84 92428°
5 69897 | 26 39794 | 45 65321 | 65 81291 | 85 92942
6 77815 | 26 41497 | 46 66276 | 66 81954 | 88 93450
7 84510 | 27 43136 | 47 67210 | 67 82607 | 87 93952
8 90309 | 28 44716 | 48 68124 | 68 83251 | 88 94448
9 95424 | 20 46240 | 49 69020 | 69 83885 | 89 94939
10 00000 | 30 47712 | 50 69897 | 70 84510 | 90 95424
11 04139 | 31 49136 | 51 707567 | 71 85126 | 91 95904
12 07918 | 82 50515 | 62 71600 | 72 85733 | 92 96379
13 11394 | 83 51851 | 63 72428 | 73 86332 | 93 96848
14 14613 | 34 53148 | 54 73239 | 74 86923 | 94 97313
15 17609 | 35 54407 | 55 74036 | 76 87506 | 95 97772
16 20412 | 36 55630 | 56 74819 | 76 88081 | 96 98227
17 23045 | 87 56820 | 57 75587 | 77 88649 | 97 98677
18 25527 | 88 57978 | 58 76343 | 78 89209 | 98 99123
19 27875 | 89 59106 | 59 77085 | 79 89763 | 99 99564
20 30103 | 40 60206 | 60 77815 | 80 90309 | 100 00000

It will be observed that the characteristics of the
logarithms are omitted from the table, and only the
mantissas are printed [see Art. 265]. The characteristic
of the common logarithm of any number can be written
down by inspection [Art. 264]. The result of multiply-
ing or dividing the number by any power of ten will
change the characteristic of the logarithm, but will not
affect the mantissa.

B. A, 28
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‘We however constantly meet with numbers which lie between
two numbers whose logarithms are known; and to determine
the logarithms of such numbers we want the theorem given in
the next article, which is known as the rule of proportional
Conversely, we frequently meet with a logarithm, opposite to
which in the tables no number is placed, though other logarithms
ve? nearly equal to it are the logarithms of known numbers ;
and to find the number of which it is the logarithm we require

the rule of proportional parts.

418. Rule of Proportional Parts. The numerical
value of log, N being given, to find approximately the
value of log, (N + ) where = is small compared with N.

We have
log, (V + %) — log, N =log, N}-x

—log, (1+Z) x ——  [Art. 260
- og.( t¥ log, @ [Art. 260.

1 2

= {Zif,— 3 (Tf') +...}. [Art. 412,

1 . . x

where “—Bgﬁ' Hence, if the squares and higher powers of ¥
x

may be neglected in comparison with » Ve have, approximately,

log, (I +2) ~ logs N=p -

If the tables give us the logarithms of the successive natural
numbers, we may suppose N to be an integer and z to be a
prodper fraction. From the tables, we know the values of log, &/
and log, (¥ 4+1). Hence, we have

loga (¥ +2) - logaN=p T,

and loga(N+l)—log,N=pl—:,.
. log, (N+z)—log, N
** log, W+1)—Tog, N~ >

If log, (¥ +x) be given, the equation last written determines
x ; if x be given, it determines log, (¥ +z).
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419. Therule of proportional enables us to find approxi-
mately the values of the logarithms of numbers intermediate
between numbers whose logarithms are known: and conversely,
from a given logarithm to find the number of which it is a
logarithm.

To take a simple illustration, we will suppose that we have a
table like that printed on page 433, which gives us the logarithms
of numbers of only two digits. Sup then that log 92 =196379,
and log 93=1-96848, are given in the tables, and we want to find
log 927.

By Art. 418, we have

log92-7-log92 7 7

log93—log92 1 10°
.*. log 927 —log 92 = {; (log 93— log 92).
.. log 927 =1og 92 + % (log 93 — log 92)
=1'96379 + {; (00469) = 196707,
if we retain only 5 places of decimals. Thus the value of
log 927 is known approximately.

Conversely, if we are told that 196707 is the logarithm of
some number, we find from the tables that the number is
between 92 and 93. We therefore take it to be 924+x. We then
have the proportion
x_lo_g(92+m)—-log 92

T log93-log92 °
r= 196707 —1-96379 _ -00328
7 1'96848 — 196379 00469

Thus the required number is (very approximately) 92:7.

that is,

='699...

420. We proceed now to take two examples, one of
each kind, which will sufficiently illustrate the rule.

421. To find the logarithm of a number not given in the
tables: for example, to find the logarithm of 575°056.

In the table, opposite the numbers 57505 and 57506 will be
found their logarithms, namely, 75697056 and 7597132—the cha-
racteristics being omitted.

.. log 57506 =2"7597132,
and log 57506 =2-7597056.
28—2
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The logarithm of the given number lies between these numbers ;
suppose it to be 27597056 +-x. The rule of proportional
shews us that the difference between the numbers is proportional
to the difference between the logarithms,
*. 575°056 — 57505 : 57506 — 57506 == : 2:7597132 — 2:75697056,
that is, 6 : 10=2x : 0000076,

.. =15 (-0000076) =-00000456.
Since we are only keeping 7 places of decimals, we write this
‘0000046, because this is nearer the truth than -0000045,
Hence log 575066 =2-75970566 - ‘0000046 =2-7697102.

422. To find the number whick has a ven logarithm gog
printed in the tables): for example, to find t number whose

arithm is 1'0211972.
In the table, opposite the logarithms 0211893 and 0212307
will be found the numbers 10500 and 10501,
.+ log '10500= 10211893,
. log "10501 = 1'0212307.
The required number is between ‘10500 and ‘10501. Suppose
it to be *10500+2. Then the rule gives us
2110501 — *10500=1-0211972 — 1-0211893:10212307 — 10211893,
that is : Z : “00001 = 0000079 : 0000414,
. &= (-00001)="0000019,
if we keep only 6 places of decimals, = -000002.
Hence 1-0211972=log (“10500+ '000002) =log *105002.

423. Examples similar to those given in Chapter
XXITIL can be worked out to a close degree of approxi-
mation by the aid of the rule of proportional parts.

Ezample. Find approximately the fifth root of 2, having given

log 2="30103, log 1'1482="060175, log 11483 =060554.

Let 2=28, )

<. log z=}log 2=1 ("30103)="060208.

From the ﬂven logarithms, we see that 2 lies between 1°1482
and 1-1483. Hence, by the rule of proportional parts, we have

L 80206 — 060175

=1-1482 + s (’00001) 1-14821, a.pproximatély.
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EXAMPLES. XXXII. B.

[AZ the logarithms in the following examples are calculated to
the base ten.)

1. Given log11111=4'0457531, and log11112=4'0457922;
find log 11-1112, and the number whose logarithm is 2:0457777.

2. Given . log8-6223="0356231, and log8:6224="9356282 ;
calculate log 86-22384.

3. Given log3-1156="4935417, and log 3-1157="4935556;
find log ‘03115625.

4, Given log1:3287 = 1234269, and log1-3288 = 1234596 ;
find log 00132874.

5. Calculate log-0361356 ; having given log 3:6135="5579281,
and log 3'6136 ="5579401. -

6. Find log172306; having given log1-723='2362853, and
log 17231 =2363105.

7. Find log 13664357, and find the number whose loganthm
is 21356053 ; having given

log 13664 =41355779, and log 13665=4" 1356096.

8. Employ logarithms to divide 32'0576 by ‘69665, having
given
log 3:2057 =5059229, log 4-6016 =-6629089,
log 3:2058 = 5059364, log 4°6017 =6629183.
log 69665 = '8430146,

9. Find the value of (1'25)* to six places of decimals, having
given log 2=-30103, log2-4414="3876389, log 2'4415="3876567.

10. Find (1-467799)" ; having given log 14677 =4:1666373, and
log 14678 =4-1666669.

11, Shew that the cube root of 19307 is very nearly ten
times its tenth root, having given log 19307 =4-2857290.

12. Given log 1'77837'2500050, and log 17782 ="2499806 ;
find the value of (17-7828)5.
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1
13. Find (13:89492)%; having given log 1-3894 = ‘1428273, and
log 13895 = *1428586.

14, Find the fifth root of 5-4; having given log 3=4771213,
log 5="6989700, log 14011 =41464691, log 14012 =4-1465001.

15. Find the fifth root of 6'4; having given log2="30103,
log '14495 = 11612182, log ‘14496 = 1-1612482.

16. Find the eleventh root of (39-2)?; having given
log 2=3010300, log 7= 8450980,
log 19484 = 42896781, log 19485 =4-2897004.

17. Extract the seventh root of 3115455 ; having given

log 31154 ="4935138, log3-1155="4935278,
log 8:4653= 9276424, log 8:4654 = 9276475.

1
18. Find the value of 2128 3610~3; having given
log 2=-3010300, log3="4771213,
log 4-239=627263, log 424 ="627366.

19. Prove that log7+log11+log 13 is approximately equal
to 3. To how many decimal places is this true?
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EXAMINATION PAPERS.

The first of the following papers was set to the Senior Students
at one of the recent Cambridge Local Ezaminations. The next
paper (B) was set recently in the Cambrid%e Higher Local Ex-
aminations. The next two papers (C) and (D) are two of those set
recently to candidates for admission into the Military Academy,
Woolwich.

Paper A.

1. Prove that

1 1 1 b c\fc a\fa b
2.4 32 Y24+ ( 242N (24+2)=
(@*+¥ +cg)(¢?’+bﬂ+c2) (c+b)(a+c)(b+a) L.

2. If a, B be the roots of the equation ax?+4bz+c=0,
find the value of a24-8%; and form the equation whose roots are

1 1
a+§ and B+;.
3. If ab+bc+ca=0, prove that
i) (a+bd+cP=a?+b+c%;
(ii) (a+d+c)*=a%+b3+c2—3abe;
(iii) (@+bd+c)t=at+bt+ct—4abec(a+b+c).

4. Solve the equations:

() azx+by=may=pr+q9y;
(ii) (B-c)2+(c—a)z+(a—b)=0;

(ii) ¥z +3-+Bz-T=2;
oy 2P +3vy+2y=12
") z::/+i§/z+ o= }

5. The distance from A4 to B is 20 miles by one road and 24
miles by another. A bicyclist goes from 4 to B by one road and
returns by the other; but in returning, travels 2 miles an hour
slower than in going. He finds that, if he goes by the longer
and returns by the shorter road, he takes 6 minutes less time to
travel than if he went in the reverse order. What is his speed
in going?

6. Insert z arithmetic means between @ and b, and find the
sum of these means.

If the 3", the (p+2)' and the (3p)* terms of an arithmetical
progression be in geometrical progression, prove that the (p —2)t
term of the arithmetical progression is double the first term.
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7. Find the number of combinations of » different things
taken r together.

Prove that the whole number of ways in which a selection
of one or more things can be made out of » different things is
2*—~1. If p of the things are alike, prove that the whole number
of ways in which such a selection can be made is (p+1)2*-7—1.

8. Prove the Binomial Theorem for a positive index.
If 14+ 2= Cy+ Oz + Cya?+... 4+ Cpa®, prove that
( - l)‘ q-\ — 1

G,G
00 2+§—..-+——7i_i_°i —m.

9. Define a logarithm, and prove
(i) log.,%"=log,m— log,n, (i) log,b.logya=1.

Find, correct to two places of decimals, values of # and ¥ which
satisfy the equations (2:5)*=1000, (-25)¥=1000; having given

1 1 1
log 2="3010300; and prove that PRt &
Paper B.

1. Prove that ab=ba, and (a+b) c=ac+ be, where a, b, and ¢
are positive integers.
Shew that
(a+bd+c+dP3+3(a+b-c—d)(a+c—-b—d)(a+d-b—c)
1. 1,1 1
=4 (a3+ b3+ 3+ d8) + 12abed (6"'5"'2’*2)'

2. Solve the simultaneous equations:
() y+s-ar=p, z+o-by=gq, x+y-cz=r;
(ii) 2%+ ay=y+ar=>%
3. Find the relations between the roots and the coefficients
of a quadratic equation.
If the length of a field were diminished and its breadth in-
oreased by 12 yards, it would be square. If its length were in-

creased and its breadth diminished by 12 yards, its area would
be 16049 square yards. Determine the area of the field.
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4. Define an arithmetical progression and a geometrical
Frogressmn and shew that, if a;, a4, a; etc. be a @.P., then
og a,, log a,, loga, etc. is an A.P.
If P, Q, R be the p*, ¢'* and 7** terms of a G.P., shew that
Pa- rQr—p Rr-9=1,
and deduce the relation between three given terms of an a.Pp.

5. Find from first principles the number of combmatlons of
« things taken r together.

In how many different ways can m shillings and m+n florins
be given to m’ boys and m'+7' girls, one coin to each, where
2m4n=2m'+n'?

6. Under what limitations does the Binomial Theorem hold
when the index is not a positive integer?

-n

Determine the greatest term in {1 —%) , where m and »
are integers and m is less than n.
7. Find the cube root of 100 to 3 places of decimals.

, Paper C.
1. Find the value of #*—52%—1222—13z—7, when
=-3(1+4-3).
2. Find the factors of
(a+b+c)2—a?4-b2~c? and of 25—38—(z—y).
3. Reduce to its lowest terms
224417234 30224+ 82— b
at4 4231842 —-292-10"

4. Simplify
) 62° -bay—6y> 1522 +8xy—12y%
YV 1422~ 23ay+3y® 3622+ 4y + 647

. c b a
) - ae-a T a@—00-0 k@-be-a

5. Apply the process for extracting the square root to find
m and 2, when 2%+ az3+ma?+cx+n is a complete square.

6. If the roots of the equation

(1-g+8) 4pa+garaq-n+]
be equal, shew that p?=4q.
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7. Solve the equations:
. 5 8 13
O 210t z4a =z’
(ii) V2r+6-4z-1=2;
... ad(z—-b) b (xr—a)
(i) P + b—a =a2
8. Find the value of

(4+~/rs)f+(4-«/ﬁ)?

3
(6++/35)"— (6 /35)°
9. The metal of a solid sphere, radius , is made into a hollow
sphere, whose internal radius is r; required its thickness. [The
volume of a sphere of radius r may be taken as §§73.]
10. Two rectangular lawns have the same area, which is

given and is equal to a?; but the perimeter of the one is one-
ourth longer than that of the other, which is a square. Find
the dimensions of the lawns.

11. Shew that, if the sum of the first » terms in an A.P. be

equal to zero, then the sum of the next ¢ terms is a@%q_ .
12. Is the coefficient of 2+ in the expansion of (1 — )™ equal

to the number of combinations of (n+r) things taken r together?
If not, amend the proposition, and prove it as amended.

Paper D.
1. Simplify the expression
{@+b)(a+d+0)+c}{(a+d) -}
: {a+ 57— Ha+b+0)

2. Shew that 23+ 33+ 2% — 32wz is divisible exactly by z+y+2;

and hence, or otherwise, shew that
(b-cP+(c-a)P+(a-bP=3(b-c)(c—a)(a—D).

3. Find the highest common factor -of 162*+ 3622+ 81,
and 823+427; and the lowest common multiple of 823427,
16243622481, and 622 — 52— 6.

" 4. Extract the square root of

42%a-2 416224 — 122— 24% +25.

5. Determine what relation must hold between «a, b, and ¢
in order that the roots of the equation az?+bz+6=0 may be
real and different,.
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If the roots of the equation (a2+b%)22 - 2b(a+c)z+ b2+ c2=0
betyea.l, prove that g, b, ¢ are in G.P., and that « is their common
ratio.

8. Solve the equations:
o 1 rz-b6 ,x-1
@) g-9-25 452 =0;

6
oy b a
@ zmatz—p 270
... T+y42=19, |, having given that y is a mean pro-
(iii) 22433 +22=133 portional to z and z.

7. Two casks, 4 and B, are filled with two kinds of sherry ;
in cask 4 they are mixed in the ratio 2 : 7, and in cask B they
are mixed in the ratio 1 : 5. What quantity must be taken from
each cask to form a mixture which shall consist of 2 gallons of
the first kind of sherry and 9 gallons of the second kind of sherry ?

8. Prove the formula for the sum of % terms of an arithmetic
progression, whose first and last terms are given.

If 3,, 8y, 3, &c., be the sums of m arithmetic series, each to
n terms, the first terms being 1, 2, 3, &c., respectively, and the
differences 1, 3, 5, &c., respectively, shew that .

8+ 33+ 83+ ... + 8, =4mn (mn+1).

9. The number of combinations of = letters, taken 5 together,
in which a, b, ¢ occur is 21. Find the number of combinations
of the n letters, taken 6 together, in which a, b, ¢, d occur.

10. Write down the two middle terms in the expansion of

tm+1
(x-!- %) ; and shew that, if x be a small fraction, then

N4z (1-2) .
———— ¥ "7 is very nearly equal to 1 - §z.
YW e ry nearly eq §

© 11.  Prove that the logarithm of the quotient of two numbers
is the difference of the logarithms of the numbers,

If the logarithms of a, b, ¢ be respectively p, ¢, r, prove that
a?=T . brep ep =1,

Prove that log {§ — 2 log § +log %% =1log 2.

12. If the number of persons born in any year be equal to
2™ of the whole population at the beginning of the year, and the
number who die ual to &4* of it, find in how many years
the population will be doubled. [In this question, the student is
supposed to have access to tables of logarithms.]



*CHAPTER XXXIII
PROPERTIES OF NUMBERS.

*424. THE properties of numbers, and the forms of
numbers, which are subject to certain conditions, are
treated better in works connected with higher arith-
metic than in connection with algebra. Some of the
more elementary propositions about numbers are how-
ever usually inserted in text-books on algebra, and a
few of these propositions are given in this chapter,
which may be regarded as an appendix to the present
work. -

SCALES OF NOTATION.

*425. Denary and other Scales. In arithmetic,
the ordinary method of expressing an integral number
by figures is to write down a succession of digits;
each digit represents the product of that digit and a
power of ten, and the number represents the sum of
these products. Thus every digit has a local value.

: For example, 2017 signifies (2x 10%)+(0 x 10%)+(1x 10)+7;
that is, the 2 represents 2 thousands, u.e. the product of 2 and
103, the O represents 0 hundreds, z.e. the product of 0 and 10%;.

the 1 represents 1 ten, ¢.e. the product of 1 and 10, and the 7
represents 7 units.

Similarly, a decimal fraction is the sum of a number
of fractions whose denominators are powers of ten.

7

3
Thus 0-317 stands for 10 +-=+ i

€1
10%
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This mode of representing numbers is called the
common scale of notation, or the scale to the base ten, or
the denary scale of motation; and 10 is said to be the
base or radiz of the common scale.

‘We shall now prove that, in a similar way, a number can be
expressed in a scale whose radix (instead of being 10) is any
positive integer greater than unity. We shall confine ourselves
to scales whose radices are positive integers.

*426. Whole numbers, A giwen whole number
can be expressed as a whole number wn any other scale of
notation.

By a given whole number we mean a number expressed in

words, or else expressed by digits in some assigned scale. If no
scale be mentioned, the common scale is supposed to be intended.

Let & denote the given whole number, and let » be the radix
of the scale in which it is to be expressed. We have to shew that
& can be written in the form ’

N=pur+pa—ir™ " +... +pgr* +P1r + 10y
where each of the numbers p,, p,, ..., p, is a positive integer
less than 7, or is zero. Following the analogy of the common
system of numeration, the numbers p,, p,, ..., p, are called the
2gits of the number in the scale 7.
Divide & by 7, then the quotient, say @,, is
P T A PR Py
and the remainder is p,. Thus p, is determined.

Next, divide @; by », then the remainder is p;. Thus p,
is determined. .

Continuing this process (and taking s as the highest power
of » which is contained in &), we obtain in succession the digits
Pos P1s +++3 Pn 88 the remainders of these divisions.

*427. The following examples illustrate Art. 426.

Ex. 1. Express 2176 in the septenary scale, that s, the scale
whose radiz 8 7. i ’ ’

The rule given in Art. 426 requires us to divide by 7, and
repeat the operation on each successive quotient. Thus
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712176
7 [310 with remainder 6
7 |ﬁ ” ” 2
6 ” ” 2.
Hence 2176=(6 X 73)+(2x 12)+(2x7)+6
=6226, when expressed in the scale 7.

Ex. 2. Transform 6226 from the septenary scale to the com-
mon scale.

This is the converse of Ex.1. We have to divide 6226 by 10.
Our first step in dividing 6226 by 10 is to find how often 10 will
divide into 6. Since 6 is less than 10, we cannot divide 6
by 10. Next, we have to divide 62, 7.e. (6x7)+2, by 10; this
gives 4 as quotient with remainder 4. Following the usual process,
we divide 42, t.6. (4x7)+2, by 10; this gives 3 as quotient,
with remainder 0. Next, we divide 6, 7.e. (0x7)+6, by 10;
this gives 0 as quotient, with remainder 6. Hence the quotient
obtained by dividing 6226 by 10 is 430 with remainder 6.

Next, we have to divide 430 by 10. Continuing this process,

“the whole work is as follows :

10 6236
10 | 430 with remainder 6
10 @ ” ” 7

2 ”» ” l'

Hence 6226 in the septenary scale=2176 in the common scale.

Ex. 3. Change 2418 from the undenary scale (radiz 11) to the
duodenary scaleﬂg'adix 12).

We shall want symbols for ten and eleven, since they may
now be digits. Denote them by ¢ and e respectively.

Following the same process as in Ex. 2, we have

122418
12| 21¢ with remainder 9
1201, o, e

1 ” » 9
Hence 2418 in the undenary scale=19¢9 in the duodenary scale.

Ex. 4. Determine whick of a series of weights 1 1b., 2 Ubs., 4 lbs.
and 8 lbs. must be used in a balance to weigh 13 lbs.—not more
than one weight of each kind being taken.

This is equivalent to requiring us to express 13 in the binary
scale (radix 2).
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The above process gives
13 in the denary scale=1101 in the binary scale,
thatis, 13=(1x2%)+(1x2%)4+(0x2)+1=8+4+1.
Hence the weights required are those marked 8 Ibs., 4 1bs., 11b.

Ezx. 5. A weight of 77 1bs. s placed in one scale-pan of a
balance. Shew how to place a series of weights 11b., 3 1bs., 3% bs.,
33 bs., 34 bs. in the scale-pans so as to make the beam of the balance
even—not more than one weight of each kind being taken.

If we express 77 in the ternary scale (radix 3), we find that
77=(2x3%)+(2x3%)+(1x3)+2. But since we have only one
weight of each kind, each of the digits by which we express it in
the scale of 3 must be unity or zero, tgough as we can put a
. weight in either scale we can make the digit itive or
negative. If therefore we have a 2 as a remainder in our
division, we must write it as 3—1. Hence we have

377 |
326 with remainder —1
3 |3 ” . ”» -1
3 |i ”» ”» 0
1 » ”» 0

o TI=(1x39)-(1x3)-1.

We must therefore put the 3*1bs. weight in one scale-pan, and
in the other scale-pan we must place the weights 1 1b. and 3 lbs.
in addition to the given weight of 77 lbs.

*428. Vulgar Fractions, A vulgar fraction in
one scale can be expressed as a vulgar fraction in
any other scale by expressing the given numerator and
the given denominator in the new scale.

*429. Radix Fractions, The term radiz fraction
is used to denote a fraction, expressed in the scale r,
in a manner analogous to that in which a decimal
fraction is expressed in the denary scale.

Thus, just as the decimal fraction 0. abe... stands for

a b ¢
otiEtiet
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80 the radix fraction 0. abe... in the scale r stands for

a b ¢

; + ot + At
where a, b, ¢,... are positive integers, each being less than the
radix of the scale. . .

*430. A given radiz fraction can be expressed as a
radiz fraction tn any other scale of notation.

Let F denote the given fraction, and let » be the radix of the
scale in which it is to be expressed. We have to shew that #" -
can be written in the form

F=liy By

where each of the numbers ¢,, ¢;, ¢3, ... i8 a positive integer or
zero, and is less than ~.

Multiply F' by r, then ¢, is the integral part of the pro-
duct, and qr~’+;’3:”+... is the fractional part, say F,. Thus

¢, is determined.
Next, multiply F, by r, then the integral part of the product
is ¢;. Thus g, is determined.
Contmum this process, we obtain in succession the numbers
' q,, e integral parts of these products.
%:ﬂ' of a number be mt.egra.l and part fractional, the parts
. must be treated separately: that is, the integral part must be
treated by the method of Art. 426, and the (radix) fractional
part by the method of Art. 430. -

Ex. 1. Express § as a radix fraction in the binary scale, that
18, tn the scale whose radiz vs 2.

We have
%4x2=14%; hence the 1* figure is 1,
_ Ix2=0+3; » 2%, 0,
and the figures now recur.
Hence % in the denary scale=0-10 in the binary scale.
In other words,
2 1 1

0 . .
3= =3+ 22+ st gt (to infinity).
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Ex. 2. Express 0261 as a radix fraction in the scale of 5.

We have to multiply the given number by 5; take the
fractional part of the product, and multiply it by 5; and so on.

The process is as follows

0-261

5

1-305 thus the 1* figure in the radix fraction is 1,
5

1'52g » 2“’ » ”» ” l’

2.622 ”» 3“‘ ”» ”» ” 2’

3'122 ) 4 ” » ” 3

0625 ’ 5t » » » 0,

and the last two figures recur.

Hence 0'261 in the denary scale=011230 in the scale of 5.

*431. The difference between any number tn a scale
of radiz r and the sum of its duigits 18 divisible by r —1.

Let N be the number, and S the sum of the digits;
N=p,+pr+... +pr"
and S=p,+p, +...+p,
N-S=p@r-1)+p,("=1)+... +p,(r-1).

The right-hand side vanishes if =1, therefore it is
divisible by »—1 [Art. 120]. Hence, N — 8 is divisible
by r—1.

For example, in the de scale, the difference between any
number and the sum of its digits is divisible by 9. Now any
multiple of 9 is divisible by 9, therefore the sum of its digits
is also divisible by 9.

*432. The rule for casting out the nines, which is given in some
text-books on arithmetic as a check on the accuracy of multipli-
cation, affords another illustration of the use of scales of notation.
Suppose that the product of two whole numbers 4 and B is
found to be P. Divide the sum of the digits in 4 by 9, and let

B. A. 29
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a be the remainder. Similarly, let b and p be the remainders
when the sums of the digits in B and P are respectively divided
by 9. Then the rule for casting out the nines is that the differ-
ence between ab and p will be either zero or a multiple of 9.

If 'we use the symbol X (9) to signify any multiple of 9, we
have A=M9)+a; B=M(9)+b; P=M(9)+p.
But P=4B, ... M(9)+p={M(9)+a}{M(9)+b}

=M (9)+ab.
oo ab-p=M(9).

Therefore, if ab—p be neither zero nor a multiple of 9, there
must be a mistake in the work. But it does not follow that
when the condition is satisfied the result must be right ; and in
fact, if the number found for the product differ from the correct
result by a multiple of 9, the rule will not serve to detect an
error.

*433. A number of m digits is necessarily less than
10", Hence, its square is necessarily less than 10™:
that is, its square cannot contain more than 2m digits.
Sit(llxila.rly, its cube cannot contain more than 3m digits;
and so on,

*#434, The last proposition can be used to determine some
of the digits of the square root of a number which is a perfect
square, by the following rule. If the square root of a dqwen
number (which 18 a perfect square) contain in all (2n+1) digits,
and if the first (n+1) of these digits have been obtained by the
usual arithmetical process, the remaining n digits can be obtained
by division.

Let N represent the given number. Let a be the part of
the root already obtained, which consists of 2+ 1 digits followed
by = ciphers; and let # represent the part of the root which
remains to be found. We have

NN=a+z.
oo N=a?+4-2ax+22%

N-a? 22
" Toq ~Ptag:

Now x contains n digits, .. #? cannot contain more than 2z

K

digits [Art. 433]. But a contains (2n+1) digits., Therefore ;—a
is a proper fraction.
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Therefore, if we subtract a? from X, and divide the result
by 2a, then the integral part of the quotient will be 2.

For example, the first four digits in the square root of
12088868379025 are 3476. Since there are 14 digits in the given
number, there will be altogether 7 digits in the square root.
Hence the remaining three digits are the integral part of

12088868379025 — (3476000)*
2 x 3476000
which will be found to be 905. Therefore the required square

root is
3476000 4905 = 3476905.

*EXAMPLES. XXXIII A.

The numbers in the following examples are essed in the
oomEnon scale, unless the o’tintraryn’;k statecll).] il
Express 725 in the scale 6.
Express 1171 in the undenary scale.
Change 1234 from the scale 5 to the common scale.
Change 111000111 from the scale 2 to the scale 12.
Express 1§ as a vulgar fraction in the scale 7.
Change ‘42 from the common scale to the scale 9.
Change 1423 from the scale 6 to the scale 5.
Express } as a radix fraction in the scale 6.

. A radix fraction in the scale 3 is *110201. Express it as
a vulgar fraction in the scale 7.

10. In what scale-is 712 expressed as 871; and in what
scale as 5987 :

11, Multiply together 1461 and 6253 in the scale 7.

12. Divide ‘1000000 by 10000 in the scale 2.

13. Extract the square root of 25400544 in the senary scale.
14, Extract the square root of 1032121 in the scale 3.

15. Extract the square root of 769 in the scale 12.

16. Shew that the difference between the square of any
number and the square of the number obtained by reversing the
digits is divisible by 72—1.

17. Shew that, if the radix of the scale be odd, the

difference between a number and the sum of its digits must be
even.

SO w0

© ™=

29—2
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18. Prove that a number is divisible respectively by 7 or 11
or 13, when the number expressed by the last three digits differs
from the number expressed by the digits before the last three, by
a quantity which is either zero, or a multiple of 7 or 11 or 13.

19. If, in & number, the difference between the sum of the
digits in the unite, huntireds’, ten-thousands’, &c. places, and the
sum of the digits in the tens’, thousands’, hundred-thousands’,
&c. places, be zero or a multiple of 11, prove that the number is
divisible by 11.

20. Prove that, if the digits of a number ¥, expressed in
the denary scale, reckoning from the units’ place, be a,, a;, ...au,
then 10" (a,+2ap—; + ... +2"ay) — &, is divisible by 19.

¥21. Shew that the figure nine cannot occur in the decimal
%of a fraction whose denominator, when expressed as a vulgar

ion, is less than ten.

In the scale whose radix is », what figures, if any, cannot
occur in the radix part of a fraction whose denominator, when
expressed as a vulgar fraction, is less than »?

22. How many numbers can be formed with 4 digits in the
scale of 7, no digit being used twice in the same number ?

‘What will be the sum of these numbers ?

23. If any number be multiplied by & number which exceeds
the radix by unity, shew that the result may be obtained by
adding each digit to the digit to the left of it, beginning from the
right, and carrying unity to the next pair when the sum of any
pair 18 not less than the radix.

. Multiply in this way by 11 the number 1243201 in the scale
of 5.

24. Enunciate and prove the proposition analogous to that
given in Art. 434, about the square root of a number which
contains in all 2» digits.

25. The highest digits in the square roots of the following
numbers, which are perfect squares, are given. Find the re-
maining digits.

(i) A/236144689=153...;

(i) £/1420913025=376...;

(i) /285970396644 =5347...;
(iv) A/48303584206084 =6950....

26. If the cube root of a given number, which is a perfect
cube, contain 2z digits, and if the first (n+41) of these digits have
been obtained in a.:({ way, shew how the remaining (n—1) of
them can be obtained by division.
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PROPERTIES OF NUMBERS.

*435. We have already seen [Art. 172] that we
can make use of algebraical notation to illustrate some
of the more obvious properties of numbers. We shall
here explain the notation commonly used in the subject,
and add a few examples to those given in Art. 172.

*436. Notation of the theory of numbers.
Either of the following systems of notation is employed.

When a number, denoted by N, is an exact multiple
of a number =, the relation is expressed by the symbols
N = M(n), which is read as N 18 equal to a multiple
of n. Similarly, N=M (n)+ m signifies that is
equal to the sum of a multiple of n and of m ; that is,
that if V be divided by =, the remainder is m.

If two numbers, X and ¥, when divided by =, leave
the same remainder, they are said to be congruent to the
modulus #n. This relation is expressed by the symbols
X = Y (mod. »), which is called a congruence; and is
read as X s congruent to Y to the modulus n. It is
evident that X — Y is exactly divisible by n, and there-
fore we have X — ¥Y=0 (mogt n).

#437. We shall confine ourselves to working out a few examples.
‘We shall, for brevity, use the word number as meaning a positive
integer expressed in the common scale of notation.

Ez. 1. Shew that a number, which is a perfect square, must be
of one of the forms bn or bnx1, n being a positive integer.

Every number, ¥, can be written in one of the forms 5m,
5m—1, bm—2, bm+1, or Sm+2.

If N=5m, .. N?=25m?=M(5)=>5n (say).
If N=bm=1, ... N2=M(5)+1=>5n+1 (say).
If N=5m+2, .. N2=M(5)+4=M(5)+5—-1=H(5)-1
=bn—1 (say).
All of these forms are included in 67 or 6n+1.
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Ezx. 2. :S’hewtha«tanmnber,z;hichic both a square and a cube,
must be of one of the forms Tn or Tn+1.

Every number, ¥, can be written in one of the forms 7m+a,
where a=0, or a=1, a=2, or a=3. Hence, a square is of the
form (7m +a)3, which can be written M (7)+a® If a=0, then
a?=0; if a=1, then a*=1; if a=2, then a*=4; if a=3, then
a®=9=7+2 Hence, a square number must be of one of the
forms 7n, or Tn+1, or Tn+2, or Tn+4.

Similarly, a cube must be of the form (7m +a)3, which can be
written M (7)+a% If a=0, then a®=0; if a=1, then a®=1; if
a=2, then a®>=8=7+1; if a=3, then a3=27=28-1. Hence,
z; cu1 number must be of one of the forms 7, or 7n+1, or

n—1.

Therefore a number which is both a square and a cube can

only be of one of the forms 7z or 7a+1.

Ex. 3. Shew that a number, which exceeds any odd power of
7 by unity, is a multiple of 8. ’
The number is of the form 73+141, where n is some posi-

tive integer.

Let ¢ (n)="Tm+141,
Ce (R l)=THREN 1L ] =T72+3 4],
cop(n41)—-49¢ (n)=1-49=-48=H(8) ...... (@),
*. if ¢ (n) be a multiple of 8, so also is ¢ (n+1).
Now $(0)=7+1=8.
Put 2=0 in (a), - §(1)=49¢ (0)+ M (8)=H (8).

Next, put z=1in (a), .*. ¢ (2)=49¢ (1)+H (8)=HM (8).
Proceeding in this way, by putting successively in (2) n=2, 3,...,
we see that if » be any positive integer, ¢ (z)=H (8).

Ex. 4. Shew that,if n be a positive integer, n(n+1)(2n+1) s
a multiple of 6.

If we recollect the result of the proposition [Art. 358] that

124234 . 4 nt=}n (n+1)(2n+1),

then, since the left-hand side must necessarily be an integer, we
see at once that 3n(n+1)(2n+1) is a whole number, which
proves the proposition.

‘We can however prove the result directly by induction.

Let ¢ (n)=n(n+1)(2n+1),

v+ ¢t 1)=(n+1)(n+2)(2n+3),
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o p(r+1) - (r)=(n+1) (n+2)(20+3)—n (n+1) @n+1)
: =6(R+12=H(6).ccc.c0rerrrrrrrecsarnrennens (a),
oo (n+1)=¢ (n)+ M (6).
.. if ¢ (n) be a multiple of 6, 80 also is ¢ (n+1).
Now . ¢(1)=1.2.3=6.
Put #n=1 in (a), co ()= (1)+H (6)=H(6).
Next, put n=2in (a), .. ¢ (3)=¢ (2)+H (6)=H (6).
Proceeding in this way, we see that if » be any positive integer,
& (n)=H(8).

Ezx. 5. Shew that the product of any n consecutive integers is
divisible by factorial n.

We deduced this result in Art. 381 from the fact that the
number of combinations of » things taken r at a time was
n:cessaﬁly an integer. We now proceed to give a direct proof
of it. .

‘We shall first assume that the product of any n—1 consecu-
tive integers is divisible by 1.2.3...(n—1); and shew that, if
this be the case, then the product of any n consecutive in-
tegers is divisible by 1.2.3...(n—1)n. But one integer is
always divisible by 1, therefore, the product of 2 consecutive
integers is divisible by 1. 2; hence, the product of 3 consecutive
integers is divisible by 1.2.3; and continuing the process, the
proposition will be proved.

We assume, then, that the product of any 2 —1 consecutive
il;i:fers is divisible by 1.2.3...(n—1). Let ¢ (r) stand for the
product of n consecutive integers from » upwards, that is, -

P ()=r(r+1)(r+2)...r+2-2)(r+n-1),
S e (r+H)=(+1)(r+2)(r+3)...(r+n~-1)(r+n),
S p(r41) = () =(+1)(r+2)...(r4+n-1)[(r+n)—-7]
=n(r+1)(r4+2)...(r+n-1).

But (r41)(r+2)...(r+n—1) is the product of 2—1 consecutive
integers, and is therefore a multiple of 1.2.3...(n—1),

o @ (r+1)—¢ (*)=multiple of 1.2.3...%,
Therefore, if ¢ () be a multiple of 1. 2. 3...n, 80 also is ¢ (r+1).
But ¢(1)=1.2...n, therefore the proposition is true of ¢(2);
hence, it is true of ¢ (3); and continuing the process, it is true
of ¢(r). Thus, if it be true for any n—1 consecutive integers, it
is true for any » consecutive integers, and therefore, as explained
above, it is true generally.
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*EXAMPLES., XXXIII. B.
1. Shew that a number, which is a perfect cube, must be
of the form 7z or Tn +1.

2. Shew that a number; which is a perfect square, cannot
be of the form 3n—1.

3, Shew that the fourth power of a number is of the form
5n or 5n+1; also, that it must be of the form 7z, or 72+ 1, or
Tn+2, or Tn+4.

4. Shew that the twentieth power of & number is of the form
25% or 26n+1.

5. Shew that the sixth power of a number is of the form 7n
or Tn+1.

6. Shew that 3¥+3 -8z —9=M(64).

7. Shew that 2W+1_9n84+3n — 2=} (54).
8. Shew that 8% +1_14n — 8= M (49).

9. Shew that = (n?—1)=H(6).




ANSWERS TO THE EXAMPLES.

Chapter I. Definitions and Notation.

I. A, Pages 9—10. ] 3abz. 9. ()1; (i)l 3.7;nu-
merical. 4, 23a. §, y; literal. @, 1; numerical. 7. 2. 8. 3.

9.2 10.4 11.3 12.4 13.1 14.8. 15.3
17. 2. 18. -£6. 8s. 19. -7 miles.

I.B. Page12. ], 108. 2.50. 3.4 4.2. 5.4%.
6.2 ‘7.4 8.3 9.5 15 11.5 12.%1 13.18.
14. 54. 15.18. 16.1458. 17.1. 18.0. 19.1. 20.0.
21.384. 22.0. 23.4. 24.24. 25 % 26.12. 27.9.
28. 75. 29.3. 30.22. 31.4 32.3. 33.49.

I1.C. Page14. 1, 2. 2.0. 3.0. 4. 4. 5 4. 6. 4
7.1 8% 9.3 10.%4 11.3 12 %4 13. (i) 10; (i) 7.

I.D. Page 17. ], Sevenis the coeflicient of a3; and three is
the indezx, shewing the power to which a is raised. 2. (i) 23 stands
for zxz xz; (ii) 3« stands for the product of 3 and z. If z=1,
then z3=1 and 3z=3, .. 3z>23% If z=2, then 23=8 and 8z=6,
o 28>3z. 8, 8b%y. 4 3+b+b+c+y. 5.3 6.5 7.3
8.4 0.1 10.n 11. (i) 1; (ii) 4; (iii) 1; (iv) 3; (v) 1; (vi) =.
12.1. 13.3. 14.n. 15.No. 16.180. 17.2. 18.7.
10. () 187; (i) 8. 20. () %3 (i) 16.

Chapter II. Addition and Subtraction.

II. A. Page 20. 1. 4b+e. 9. —2a-2b+%c+5n.
3. 322822 4, 0. 5. 3p*+32¢*+2r% -7, 6. 0.
7. Nb. 8. 3./a—A/b—2c.
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II. B. Pages 27—28. ], 1. 2 -1 3. -z-y.
4, -22%48y%+22 5, -a%. 6. -5. 7.-9. 8.a-b. 9, z-y.
10. He lost 30s., or he gained — 30s. 11. -a-z+y. = 13, 2z.
13. §+2:+y. 14. 2y. 15. -2a+5b—z. 16, 22+b? or - (28 +b2).

17. ab-be. 18. 3a+3b+3¢c; 88. 19, 26°-8b%. 20, -2y -=.
2L. b+d. 22, -5a. 23, Hatod+ae. 24 -it+iy'- 22
25. -l-¥fm+in. 26, b—a. If a be greater than b, the answer
will indicate that it is (a — b) years since the man was b years old.
27. -2 miles. 28. b-a. 29, -b. 80. 23— (a*+b?).
3l #*-y*-22zy. 32.z-y. 33.a-b.  34. 22

Chapter ITI. Multiplication.
III. A. Page 81. ], 6abry. Q. Sabed. 3. 49a%b%s5.

4, a%hics, 5. 2464a%%%d2. 6. abcdefz!. 7. abezyis?,
8. a’hiziyr. 9. asbizoyl. 10. #Pmind. 11. - Tabz®.
12. - Taba?. 13. -a%c2®. 14. -8Pm*nz%yt.

15. - 4800 tada, 16, - Booy'es.

II1. B. Pages 32—33. ], 243432y +2e.
., — Taln - Tabmn — Tacn3. 8. Bzylz - Imnzyz - Indzy?. 4 -3
0. 6. 20z —4y; a binomial; coefficient of z is 20.
, =100z +120a; a binomial; coefficient of z is —~ 100.
. —2b+48¢ -10z; a trinomial; coefficient of z is — 10,
. 86z — 78y; a binomial; coefficient of « is 86.
10. 7z - 6y; a binomial ; coefficient of z is 7. .
11. -802%+1122+16. 12. a®—ab+2b%. 18. zy+ay; z+a.

© 0o

IIL. C. Page 89. 1. (i) abay; (i) —abzy; (iii) 2%

2. zy - 3x+2y-6. 3. 22-3z+2. 4. 2?-az+bx-ad.
5. T22-50z+17. 8. 49a% - m?2. 7. 22— 83az +a?.
8. abz? - adz - b3z + a?®. 9, 4-at. 10. a%2? - abzy — 2b%3.

11. 6abl® ~ 9b3im? — 4a*Pm + 6abm®.
12. 12abz%? ~ 8a2z’ — 9b%3z + Babayz?.

III. D. Page 41. ]. 6+ 223 -1522+132+6.
Q2. 2124 - 5023 - 3322+ 50z + 21. 8. 23 +ad. . 4, *-ad.
. #+a%+at. 6. a*+b*+c2 - 3abe.
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III. E. Page 42. 1. x%-49. 2. 6460 -9=6391C
. 28+ 27. 4, 43-121. 5. (c-b)*—a®= —a?+ b2 2be +c2
y‘_b" 7. ys_(a"{'l)"

III. F. Page 45. 1, 2% 9, -21a%71%. 3, 12415320692,

o

4, z™-1. 5. 2™+ az™+ba*+ab. 6. 2™ -2z"— 22+ 1.

7, 22 — gmin _ G4 To™ 4+ Ta* 4+ 8.

8. ab® 4 bInch 4 cMa® — b — B — cha .

0. a™bI® — gAb® (%4 bY) 20 4 (a4 DY) g - s, 10, 21001001,

II1. G. Pages46—47. 1,375 2.9. 3. 4ab+6bd.

4, a®+ b 8. (i) a?+c?; (ii) 8ab. 7. 4ab+4cd.

8. —12% - 3022+ 1142 - 180. 9, 2%-92% + 26zy? - 24y3.
" 10. a®-72925. 11. 1§z + 2222 — 3323+ §art — R,

192. 2° —4a%23 4 3atz - ab. 13, ° - baxt+ 10a22® — 13a322 + 13a'z — 6as.
14. 8+ 828y — 3z4y? — 1125 + 62%* + 122y° — 8yS.

15. a2+ 0% 16. z3+y3 - 28+ 3ayz.
17. 6a3 - 4a2b — 11a% - 14ad? - 33adbc — 19ac? — 4b% — 16b% — 19bc? - 6¢3.
18. 6a®+ a%b — 11a%c — 19ab? + 40abc — 19ac? + 653 - 23b% + 25bc? — 6¢3.
19, - b — b — 24+ %3+ 22%3 + 22%2.

20. Fpat — Fa®h — Fabt + §3ab® - 3be. 21. 2z*-3.
22. & (x8 — 1424+ 4922 - 36). 24. a?b — abd + bic — be? + c%a — cal.
97. a®-8a%+23a-26. 928, (i) 0; (ii) 6abc.  30. 4ade. 32. - 6.

Chapter IV. Division.

IV.A. Page 50. ], 5 9 6azt. 3. 16abc. 4. 3m
5. 14a%a. 6. -80z. 7. -4l _ 8, 9% Q. 17bex’fy.
10. - 4p°z[39. )

IV.B. Page 52. ], a+2. Q. jazr—b%. 3. —42+5my.
4. - 3ax? - 4bx?+ fex - 38. 5. §z2+ 9+ 43.

IV.C. Page 56. 1 z-16. 9. 22425z +8.

, 2784+ 322+ 32+ 57, 4, r?’-azx+a? 5. 2*+ax+a2.
. B+ y3+28 - 2% — 2% ~ 2yd - 222 — Y22 — Y22+ 22y2.
. 25+224+2% - 422~ 11z - 10. 8. 422+ by +10y2.
, 204 —-443+3822-2z+1. 10. 22-az+a® 11, (a+3)z+(a-3)y.
12. 6adb+6ac. 13. & (2% - 1225+ 60% — 1602 + 24022 - 192z + 64).
14, bz?+cz-f.

O©O~JO W
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IV.D. Page 58. ], 112 2, -174/8z2. 3, 9a™.

T 4, -1, 5. z*+z-1.

IV.E. Pages 58—59. 1, 1+2¢+32%+42%
2. B-z(y-1)+y2+y+1. 8, (a+b)®-(a+d)c+¢> 4, 8z*-4r+5.
5. z’-sz+1s-%. 6. (a+b)—c(a+B)+cHa+b)— .
7. =4 - 8z% + 62%%- 97>+ 9yt. 8. 22+ 9zy - 4y2. 0, 22 - 4dzy+5y°%.
10. -a?-2ab+2b3% 11, 28+ 2z%% — 8xtyé — 6y + 2z%8 + 4zy10+ Y12
12. bz+ay+1. 13, 328 -4z%y+ 527+ 2% 14, 2?-(b+1)z +3.

15. 1+ 5z + 1023+ 2023 + 4024, 16. 2a%+3ab +20%
17. 22 -2y +9y* 18, 2ab®+8bt. 19. ¥*-2y.
20. y° - byt - bly +0°. 21. 2*+(a+2)z+3.
29, 28— 325+ 924 — 272% + 8123 - 248z + 729. 23, a?-2ab-2b2. -

24, z+1. 25. a®*-b—-c3-3abc. 26. 422 -8zy+ 42z +4y2-4yz +22
27. 8+ 222+ 8z +4. 28, 8+ 2%y - 23y® + 2y° +yo.
80. a*(b+c)(c+d)(d+b)+a (be+cd+ db)?+ bed (be + cd + db). 31, 12.
' Chapter V. S8imple Equations.

V. Pages 66—68. 1, (i) Yes; (ii) No; (iii) Yes[see Art. 90].
2, BeeArt. 90. 3. 1. 4,63 5.8% 6.3 7.% 8. 20
9. 65 10.20/27. 11.% 12.1. 13.2. 14.9. 15.20.
16.7. 17.12. 18.1. 19.72. 20.7. 21.18. 22.1.
23. 10. 24.7. 25.12. 26, 11. 27.5. 28.22. 29. 12i%}.
30.2. 31.% 382.2. 33 13¢. 34.3 35. 5% 36. -7

37.1. 38.2. 3011 40.-1 4L -1 41 48,7
44, a+b. 45, ab. 46, 6. 47, 1. 48. 2070/2079..

Chapter VI. Problems.

VI. Pages 77—80. ], 928,18. 2, a/(m+1), ma|(m+1).
3. 1053, 1313. 4, 48,216. 5. 72. @, 360. 7,10, 8. 12
9. 28, 800. 10. £49. 11. 200 cavalry, 600 artillery, 1800 foot.
12. 5. 13. 3¢ 14. 28 miles. 15. 15 miles and 18 miles.
16. £14. 8s. 17. 54, 55. 18.9,8. 19, 48,24. 20, 18.
21. 88 yards. 22. £15. 23, 180 tickets; £50. 24. 45.
25. 17, 22, 51. 26. 600; namely, 100 in the gallery, 200 in the

pit, and 300 in the stalls. 927. 40'miles an hour. 28. 26.
29, 48s. 30. £9600. 31. 8} days. 32. 20s. 33. 3.
34. £1250. 85. 6s. each. 36. 4h21m 2.

37. 9% past 10, and 21.% minutes past 10.
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Bxamination Questions.

Pages 81—84. ], (i) 8; (ii) 2. 2. 10a - 2¢.
3. zy+2c+23-22; y+2-2. 4. 4. 5.7 6. (i) 190; (ii) 343.
7. () 2a+4b; (ii) — 91a — 56b. 8, — 32+ 17xdy — 1323y2 — 192%3 4+ 2y5.
9. z+b. 10. 4 had 185s., B had 90s. 11. 8zy®+ 28 - 6y% + 22y.
12. (i) - 2a+4b - 4c; (ii) 100z ~ 24; (iii) 1. 13, 9a* - a%? + 4ab® - 4b4;
if a=1 and b=2, the given expressions become respectively 9 and -3
and their product becomes —27. 14, 7. 15, 35 miles. 16.7; -1; 4.
17. (i) 2a - 3; (ii) z - 8; (iii) 0. 18. 2a*+5a8b - 5ab3 — 264; four.

19. (i) 10a; (ii) - 23. 20. 528.
21. 2a3+ 5ab + 3b3; 3at - 4a3b — 6a3h?— 4ab® - b%; a? - b3+ 2bc —c2.
22. 3bc; a®+ax+2?; 8z+2y-2. 24. 3. . 25. 15 days.

26. (i) 2*+223+222 +32-2;

(ii) —a® - b3 - 3 - 2abc + a3b + ab? + a%c + ac3+ b% + bel.
27, (22+ 152+ 50)+(10+2) =z +5 ; if =2, 84+12=2+5.
28. 223 -3z%+z - 2; at+2a%b + 6a%b?+ 2abd + b4, 29. (i) 1; (ii) 3.

30. 22 miles. 31. (i) ac; (ii) —100z+124a; —100.
32. at-64b*; a®+ 3a3b+9ab®+ 278, 33. 2a% - 5ab + 202
35. 12 miles an hour. 36. 36. 37. a4 -223422-2z+1.

40, £4680; £4720.

Chapter VII. Factors.

VII.A. Page86. 1, z(a+d). 2. 5z(l1-4z). 3. a(a - 3b).
4, 3lm(m - 31). 5. zy(z+y+1). 6. p (11p%- 2pq - 8¢3).
7. 4xy2? (2y + 3z - 42%). 8. (a-b)(z~y). 9. (a+b)(c+d).
10. (z-3)(z+1). 11. (a+p) (z+y+2). 12. (ay-1) @y +1).

VII. B. Page 88. ], (a-11)(a+11).
2. (9-12)(9+12)= -8, 21= —63. 3. (zy-11) @@y +11).
4. (1-85)(1+80). 5. (@-1)(e+1). B, (x-/6) (c+n/5).
7. 2-2)(2+=). 8. (z-2) (z+2). 9. (3-2a)(3+2a).
10. (112-5m)(111+5m). 11. (9p - ab)(9p+ab). 1. a?(b-z)(b+2).
18. (ab - zy) (ab+zy). 14. (z-12im) (z+12im).
15. *(z - 12m) (z+12m). 16. (2-) (a+D) (a®+0).
17. (2% - 3a) (22 + 3a) (422 + 9a9). 18. (2ad%3 - 323) (2ab%c3 + 322).
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19. (z+y-11)(z+y+11). 20, (a-b-8c)(a-b+8¢c). 2l. 4zy.
22. (a*+b%-a)(a*+b*+a). 23. (a*-02-0)(a®- 1+ D).

24. 4(a+d)c. 25. -7(z-y) (z+y)- 26. (5a —4b)(4b - 3a).
27. 2a(a-2). 28. {Va- (z+y)}{Na+(z+y)}-

29. (1-n)(1+2m +n) (13+ 2lm+ 2m? + 2mn + n?).

30. 5(3z-1) (z+8) (2?+1).

VIL.C. Page 89. 1, (z+1)%. 2 (z-3)%. 3. (2z-3y)s.
4, (22-4)2 5. (a-3b)% 6. {a+b-2(a-Db)}3=(a—3b)2

VILD. Page 90. 1, (z-1)(z*+z+1). 2, (a+1)(a*-a+1).
3. (2az-1)(4a%*+2az+1). 4, (z+y)(72>- 182y +Ty%). 5. (x+1)3.
6. (1-y)p. 7. (z+a+1)(2*+a*+1-z-a—-az).

VIL. E. Page 90. 1, (1-a)(1+a)(1+4a9).
2. (x-2) (z+2) (23+4). 3. 8(z+y) (22 + 3y) 523+ 14zy + 10y3).
4, a(a+2)(a®+2a+3). 5. -1~
8. (a*+ab+b*+a—b+1)(a%~ab+b*+8a-8b+3).

VILF. Page9l. 1, 42— 6oy +9y° 2. a(13a?-10ab+2b%).
3. 1z+y+a. 4, 4(72%+4y?+ 723+ 8zy 4+ 8yz + 22a).
5. 7a?+ 1303+ 21c?+ 19ab + 33bc + 24ca. 6. (a+d) (c—a).

VII. G. Page 94. 1. (z+3)(x+6). 2. (a-3) (a~4).
3. (3+y)(4+y)- 4. (z-8)(z-11). 5. (n—17)2
6. (y-7(y-12). 7. (a-2b)(a-3b). 8. (zy - 2)(zy - 27).
9. (1-2)(1-11).  10. (112+1)(222+1). 11. (a—8b)(a-11b).
12. (& -6b)(a’~11%). 13. (p-2)(p-9). 14. (1-142)(1+62).

15. (z+2)(@-1).  16. (a-2)(a+1). 17. (z-10)(z+2).
18. (y -7 (y +6). 19, (a+7)(a—45). 20. (a ~ 8m) (a-+3m).
21, (z-12)(z+3). 22, (b+T7)(b-6). 23. (z?-15)(22+6).

24, (a+11)(a-10).  25. (z-T)(z+6). 26. (z+8y)(z-2y).
27. (y-17)(y+6). 28, (z-17)(z+5). 20, (a,-19) (a,+3).
30. (ab-11) (ab+22). .

VIIL. H. Page 97. 1. (z-17-(3)’=(z -2)(z+1).
2, (¥-9-@)P=(y-4)(y-3) 8. (n-12)* - T*=(n-19)(n - 5).
4. (a+31P-()=(a-6)(@+T7). 5. (z-341)?-(§)*=(x-13)(z-8).
6. (1-60%) — (7b)2=(1 - 17b) (1 + 5b). .
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7. (a—211)* - (32b)*=(a - 13b)(a + 20). 8, (2*+4)2- 3’—(z’+1)(x=+7)-
9. (34a)*- (fa+b)*=(Ta - b) (14a+bd).

10. {(=+§3)* - (§3)*} = (102 - 1) (z + 8).

11. 11{(a+§$0)* - (380)*} = (11a - 2b) (a+7b).

12, 14{(y - 3§2)? - (3¥2)*} = (Ty - 22) (2y - 32).

18, {z-N(-DHz+d/(-D)}. 14 {z-2-/(-D}{z-2+4/(-1)}.
15. {z+§-3M(-3)}Hz+3+1/(-3)}.

VIL.I. Pages99—100. 1, (i) Yes; (z+1)(z+2). (ii) Yes;

#3+x-5.  (iii) No. 2. (i) Yes; (z+1) (z+3). (ii) No.
(iii) Yes; 23— 22 +6. 8. () (z-1)(z+1)(z-2).
(ii) z(z - 1) (z - 6). (iii) (z-1) (= -2) (z+a).
(iv) (z-2)(z+2)(z +5). (v) (z+1)*(z-2) (z+3).
VIL J. Page 100. ], z(z-6)(z+6). 2 8z (z+6).

3, (x-y) (- 5zy +Ty?).
4. (272* - %) (2723 + %) = (8% ~ y) (3z +y) (922 + Bay +4?) (922 - Bzy + y?).

5. 8 (a~b)(a+b)(a*+bY). 8. (a~1)(@+1)(b-1)(b+1).

7. y-1) (y+1) 8. ¥ @-y) 2z*+ay +y9).

9. (3a+2¢) (3a+2b-2c). 10. (a-y)(a+2) (a*-ay +23).

11. (a-d) (a+b+4). 12. (224 8a) (3z-a-1).

13.- (a+b-4c) (a-b+4c). 14. (a+D) (a+b+2¢).

15. (3a-4c) (3a+2b +4c). 16. (9z+8) (8z-9).

17. (- a+5¢c) (3a+4b+c). 18. (z-1) (z+1) (x+8) (z+5).
19. (5-1-42) @-1+5/2) (e+1-y/2) (e +1+y/2).

20. (a+b) (b+c¢) (c+a). 21, a®—ab\/2—m+0b2

22. 28+ atzt+al; 26 — 2ax® + Badxd - 8245z + 6448,
28. (z+y-2P(y+2-2)(z+2-y)% 25, 2abc(a+d+o).
26. (a-b)(b-c)(c-a). 27. a(a-b) (a-20).

Chapter VIII. Highest Common Factors.

VIII. A. Page 102. ], abc2 - 2, 5a%yi. .. 3. Ipihr.

VIIL. B. Page 103. ], z-y. 2. a. 3.zx+a 4 z-2.
5 =z-1. 6. 2z+1. - 7. 3ab (a-~b).

VIII. C. Page 103. 1, a+b. 2. a-b. 3. z+1.
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VIIIL.D. Pages107—109. ], 4z-5. 2. a-1. 3. a+2.
4, z+3. 5. 2z-1. 6. z-9. 7. 2z +3. 8. 3224+8z-3.
9, 23-1. 10. z2-1. 11. 223+ 3. 12, z?+3z- 4.
13. 2*-z-1. 14, 2z-1. 15.22-2. 16.x-2. 17, 2*-3z+4.
18. z+1. 19. z2+8z+1. 20. 2¢*-4z+3. 21, 222-3z+4.
22, 222 +3z+1. 23. z2-2c+1. 24, z*+3z+1. 25, 23-2%+4.
26. *-Try+9y2. 27, 2*-5zy+Ty? 28, 3z-1. 20, z*-al
30. 4(z -a). 31. 6(z+a). 32. z3+zy+3y3. 33. z+1.
34, 1+a%-at 35. 2z+1. 36. ay+bz. 37. -8.
38.6; -2, 30.2a+7b; 75. 40.z-1. 41, -1.

Chapter IX. Lowest Common Multiples.

IX.A. Page 111. 1, 6s°. 2. 1080a2bcizyz.
3. 105ay'a,%as%a s> 4. (=*-y")* 5. (z+29)* (= - Zy)>
8. 12(z-yP = +y°).

IX.B. Pages 112—113. ], (*+1)(=*-1).

2. z(3z-y)(s*+9°). 3. (z-1)(6?-5z-6).
4, & (2°+1) (28 -2+ 24 - 23 +2l -2z +1). : 5. (-1@(z+1).
6. (z-8)(z?-Tz+9) (- 10z +11). 7, (z-4)(3z-2)(3z3+2x+1).
8. (z+1)*(z*- 3z +5)(z*+ 3z +5). 9. (z-1)(z+6)(z3+8).
10. (a3+z+1)(22% — 143 + 262 — 30). 11. (a5 +1)(z® - 82 +3).
12. (z2-?) (28— 9%). 13. (z%+ 22+ 8) (323 + 2+ 2) (2224 3z + 1).
14. (z2-1)(2*-4). 15, (92°-4) (42*-9).
16. =% (z-y)(=* - ¥*) (z* - ¢%). 17. 2%y (=* - %) (z* - ¥°).
18. 2y (z - y) (2® - 3ady + 5y - 6y%). 19. 23+ 2a2®- o’z - 2d>.

20. z?-12z+35.

Chapter X. Fractions.

X.A. Page 118. ], :%; 2 234+ 2y2 ], 2349y

. x2+8@/" z34+92°
4 4a (a3+1) 5 z3(5z-1) 6 23+223-112+6
* 3a%+1 * o 23-1 ' 223 +4x -7
%~ by + 2y*
7. Q;r_'g—zyﬂlg 8. (a-1)(b-1)=ab—a-b+1.
8a?-ab+b?
% mye - 0.1
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X.B. Pages131—122. 1 5. 2. -2

24:+a z+3a 6
3 T~ 40 z+a . 50 (—m .
2 (z-6) 2(6+7) 5ab (3% + 45%)
“EE-9E-h@=s) | boy - & a-1er -
9 y(8x’+8:y+l2y’) 10 z-5 1L z2-z+1
T T e Y P-5z+6
1 4(a 49 z-4
12,0 1.5 14 ey
a? _ 1 8 1
18. =% 7. e e—nE-s" 18. 7%

4(1+20)

2
21‘. 0. 22 Tz

4
B ayemg 20 EonE-g”
23.0. 24.0. 25.0. 26 1 27. z%z. 98, m+n. 29, 0.

: 1 a?+ab+b?
X.C. Pagel124. 1.1. 2 &= 38—
2zy3 ¥
4. z——w 5185 O
z-8y z-4 z
X.D. Page 126. . +3y 2. z3d" 3. z+a
o 2
4 s 5. 4evdia. 6323 . 7—:-5+i—z.
X.E. Pages 128—131. ] o.- 4 E.ch=1+%,
a -

o () (- .

R g el e L1 o120
13.332;_!'. 14,;—:. 15.0. 16,525 175 18 2F%
a?+ b2 1 a-ec

29, a*+d'. 30, dt+ct 31 zy° 32' (T+ac)’
B. A, 30
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- - . 2_p2
s8.000. T s 1TIE. - g T
z+y a@-a+l z?
37. y’ 38. 1. 39. “5a-1 " 40. 1. 41, el 42. 1
1 zty
43. z+y 44, 0. 45, 1. 46. 1. 47. 3"

48, 2*-zy+y* - 1.
Chapter XI. Simple Equations continued.
XI. Pages 135—138. 1.1 2.% 3.-% 4. 35016
5.7 6.-¢ 7.2 8.9 9.2 10.-% 1l a+l{-
12,0, 13 2e=¥@-) 4y t@-a. 15 d@-o).

a

16.c+d. 17 2 32C . 183 10.avbre 20,11

a2+ b3+ ¢ - 2ab - 2ac - 2be
21. 4. 22. - PR . . 23, 588 acres.
24, 16. 25. £580. 26. 7 miles. 27. 14 miles.

28. 43 miles. 29, 4 in 435°; Bin4™37". 30. Rate of boat is 11
times rate of stream. 31, 2} miles. 332, 35 9/, above oost price.

38. 69%,. 84. 4500. 85. 8 times as much water as spirit.
36. 136. 37. 50. 38. 5"12m and 524284 ™; 152 minutes.
39. 5¢1y seconds past 12. 40. 34 hours; 24 hours.
41, 14, minutes to 12. 49, 84 o'olock. 43 ”_"1';‘2 .

pb (mn - mp + am + an)
. mafm-p) - °

Chapter XII. Simultaneous S8imple Equations.

[The numbers placed first and second in the answer are respectively
the values of = and y which satisfy the equation. For example, the
solution of Ez. 1is z=111, y=11.]

XII. Pages 148—151. 1.111; 11, 2.9; 8.
3.91;19. 4.3;4 5.3;10. 6.4;:4 7.2;3 8. 39;2

9. -#;3 4 10.5;3 11, 16}; 10§. 12.4; -3 13.4a;0b.
3 1 1 1 1

14. a2 -b. 15. AR 16. A 17. fr5 & 18.8; 4.

19. 8; -1. 20. 6; 1. 21. 7; -5. 22. #5 ¢ 28. %; &
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24.8;5. 25.12;3.  26.15;17. 27.3;8. 28,8;4
29.4; 3. 30.4; -5. 31, 112; 168. 32, 36; 40. 33, 3; 4.
34. - 1/37; -2(37. 85 45 & 86,15 16. 37, -12; -144.
38. 12; 16. 39. 12; 14. 40. 15; 6. 4], 144; 216.
42, 40; 30. 43, 308; 21. 44, 15; 18. 45, 12; 24,
46,1418, 47612 48 f - 4955 50.1%; 8.
5L.4;%% 5244 3.4 S hid 65 & b
56. 4 & 57, -2i - 2. 58. 2 ~ oy

Bicl-a? c+al-0t

59, % T 60. 2b-a; 2a-b.

81. }(7a+8b); }(8a+Tb). 62. -1; 1. 63. a+c; b+e.

64. a+b; a-b. 65. 12; -2. 66. 3; 3. 67. 16; —4.

68. 14; 17. 69. 1; -17. 70. 228/65; 228/145.

71. -(a+?d); a+b. 72. 45 5; 6. 73. 8; 3%; 23.
d*(ab—be+ca) d*(bc—ca+ab) d¥(ca-ab+be)

4. 2abe ’ 2abe ’ 2abc .

Chapter XIII. Problems leading to Simple Equations.

XIII. Pages 158—164. 1. 36; 35. 8. 41; 14.
4.73. 5.81;13. 6. 81/43. 7.3 8.3 9.9 7;5.
10. £37. 10s.; £30. 11. £38; £32. 12, 12s.; 6s.
13. 1s. 8d.; 2s. 6d.; 2s. 2d. 14, 135s.; 90s. 15, 24 yds.; 16 yds.
16. 1201bs. ; £33. 1%7. 30 years; 74 years; 6 years. 18, 12 years.
19, 17 years, 14 years, 12 years, 9 years ago. 20. 23+a; §(23 +b).

a-cp bp-a
21. b5=c¢’ b-c’ 22. £2400; £900.
23. £450; £225; £237. 10s.; £87. 10s.
24, 50 and 30 miles an hour. 25. 859; 241; 128.
26. £20 for an ox; £2. 10s. for a sheep. 27. 10 of each.
28, £150, 125 qrs. of wheat, 200 qrs. of barley.
29, £9975; £95, £105. 30. 4; 10; 2; 12. 31. 108.
32. 153; 133; 183. ° - 83, 188l 34. 6770.
35. 12 and 15 miles an hour. 36. 6 minutes.
37. 4 in 5 minutes; B in 5 min. 20 secs. 88. 4 in 24 days,
B in 32 days, and C in 48 days; in the ratio 7:3: 2.
39. 48 miles. 40, 44 sovereigns, 208 half-crowns, 600 shillings.

41, A has 6s., B has 10s., C has 16s.
30—2
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432, £1200 at 8°/,, £800 at 4 /,.

43, 3 penoce, 6 halfpence, 3 three-penny pieces.

44, 3 florins, 6 sixpences, 4 half-crowns. 45. 2s. 6d.

- 48, 13 quarts. 47, 60 acres arable, 160 acres pastare,

48. A has £3000, B has £5000. 49, £32800 at 4°/,, £1300 at 79/,.
50. £2820 and £2350. 51. 40 men; 72 days.
52. 13000 town subscribers, 14000 country subscribers,

53. 9 gallons; 18 gallons.

54. 8 miles an hour, 4 miles an hour, 5 miles an hour.

55. 55 seconds; 11 seconds. 56. 12 miles.

57. £88; £118, §8. 9 yards by 4 yards.

59. The quick, which arrives at 10* 6=: the slow steamer arrives at
10* 15=,

Chapter XIV. Miscellaneous Propositions.
XIV.A. Page 166. ,i_::‘:,,.ﬂ.m,

XIV.B. Page 168. 1. 216.

XIV.C. Page 170. 1, 13y-5=0.
2. y*(a®+ab+ b®)=a®. 3. a-1=0. 4, 522+4=0.
5. m%?+2(mc-2a)z+¢3=0. @, 2}-az=0. 7. 61z -87=0.

XIV.D. Page 172. ], (i) Symmetrical to a and b; (ii)
Symmetrical to a, b, ¢; (iii) Not symmetrical; (iv) Symmetrical to
ab,ec 2. No (see Art. 178): no (see Art, 74).
3. (i) c-a, a-Db; (ii) c*-a? a?-b?; (iii) b(c-a), c(a-d);

(iv) (b-c)(c+a), (c-a)(a+D).
4, z+2y. 5. 8(z+y).

XIV.E. Page 175. 1, :%; . 2. Any positive value
ofz. 3 Ilfz>-1.

XIV.F. Pages 176—177. 1, (2n+1)'- (2n—-1)*=4(2).
5. Subtract 14; the result is a number of two digits, which are the
numbers thought of. 7. 226, 9. 1. 14, (i) az*+ by + ey
(ii) ax®+bxy+ay?; a(z*+y%) +bxy +c(z+y)+d.

15. 22 +y3+22+ 2 (zy +yz +2x). : 16. 5y®-6=0.
17. a®+ b +c3-3abc=0, 18. The first, if x> a; the second, if x<a.
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BExamination Papers and Questions.

Paper A. Page 178. 1, ab-ac-c?. 2. F%,
3. 22— (y-1p. 4, (8z-38)(z+9). 5. (ac+bd)(ad + be).
6. z*+2*-2z-4. 7.0. 8,5} -7. 10, 984,404 feet.

Paper B. Page 179. 1, s; -1.
2. 25+2z4+ 2% - 423-112-10. 3, 12. 4, The n.c.F. is 822 +22+1;

the L.c.x. is (923 — 2 - 2)(z-4). 5. V¥¥=4ac; 3232243z +2.
6. 55, mL 8 ()14 ()8 -4 () a=111,y=11
9. 2s. 6d. 10. 3001bs.

Paper C. Page 180. 1. 2ab - 2b 4 2be. 2. 0.
3. (409 4 23-8z+1. 5. a"—”. 6. 0.
7. (i) 72; (ii) z=5, y=4. 8 4:1.

Paper D. Page 180. L7 2. (z-14)(z+6).
3. 3z(z+6). 4, —(a-b)(d-¢c)(c-a). 5. 8z-1; z=3§.
6. (i) z*+3z+2; (ii) 2. 7. (i) 43; (ii) 14; (iii) =% (2a+D),
y=4%2a-1). 8. 4 times.

Examination Questions. Pages 181—-183.
1. 27a-39b+57c+15d; 180. 2, z2?+1. 3, (z-1)(z-2)(z-3).

. b2 1 " 1
4 (;)2?_:‘:—:’1; ) erye=y" 5. 216; 241; 245.
8. See Art. 120; (z - 1)(z - 5)(z+14). 7. a+b. 8. -3.
9. (i) 3; (ii) 8. 10. 174 minates. 11. a+b; §(a+b-c).
12. B.C.¥.=a - 5b; L. c.M.=(a - 5b)(a - 8b)(a+2b) (a +7b).
2 + 92+ 32— 166 _ 1
13. m{_ﬁ, 1. 14, 10 gallons. 16. ;a-ﬂs.
3
17. (z-1)(z?-z+1). 18. W.
. - ' 22493
19. (i) z=18, II=1°; (“) z=a, y=b. 20. 20. 21. T.
22. -1 23. (i) —3#; (ii) 3/28. 24, z=a, y=>, z=c.

25. 4 miles an hour. 26. (4a - 3b) (5a+9b). 28, 4320,

Prii S ———
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Chapter XV. Evolution.
XV.A. Page186. 1. o5 2 a' 3.4 45.

12 92ty

5. z° 6. Tz%5. 7. 10220t 8. z. 9. -z 10. 3a%?.
97 3, 3z

w -3, 1 e, 1y 1420 1, -

16. ab?.

XV.B. Page 187. ] az-b. 2, 11z-17. 3, jy+3z.

4. 3a,0,-4ae,.  5.8-4p. 6. 19m+15l. 7. % - 2%.
8 1 =z
o E—'@ .
XV.C. Page 189. 1. z+a+b. 2. ax+b-1.

3. (a-1)z+db. 4, (a-2)z-(b-1). 5, a-3b+5c. 6. z+4a-3}db.

XV.D. Pages 194—195. 1, 22+2:-2. 2 z'-4z-3.
3.2:2-8z-9. 4, 2:2-z+4. 5,67°-8z+%. 6, 2a’-3a+3.
7. 2a®*+3a+3. 8, 222-x+2. 9, 422+16z+11. 10, 32°-2z+5.
11. 323222+ 3z 4 2. 12. 323 -2zy +3° 13. 822 - dzy + 442
14. 22+ §bz - ad. 15, a?+ b2 +ci+d?

18. 4924 - 2823~ 1723+ 6z +%; 72— 2z - 3.
19. a™z"+ bca™—227H1 - 3a|z,

XV.E. Page 197. 1, a+2 2. 2y2+5. 8. 3-5z.
4, a*-2a+1. 5, 222-z+1. 6. 222-3z+5. 7, 3y?- 2ay+a’
8. a+8-2c. 9. a™-2azx".

Chapter XVI. Quadratic Bquations.

XVI.A. Page20l. 103 20,-2. 343

4, +(a+d). 5,-1,-2. B, -a -2. 7.0,11. 8, -4, -5.
9. 10, -3. 10.4, -1. 11 -12,5. 12.-1,% 13.-1, -4
14.17, -4. 15.8,5. 18. -a, -5 17.2, -1. 18, -2, -4.
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19, 5a, 4a. 20. - 3. 21. - 2§, 3. 22. -5, 43.

2.ccab-c. 24 -1 -% 2504 26.1%0
XVI. B. Pages 2056—206. ], -11,5. 2 -2 3
3. 2) —*' 4. 2n l%- 5- in —l*' 6. 3’ i' 7. "‘i’r —"
8-%3% 90.7-4& 10.-%13 1L %% 12.-33.
13. 4, -63. 14.-11,94. 15.4% -3 16.14, 2} 17 3% %
18. 4. . 19. 4, 4.  20. 4, -349. 2L 3, 4. 232, +a.

23.17,8. 24 -1,38.  25.-1,227%.  26.5,5-2.
1 2 a 11 a+bd a-b

27. 0, 3. 28. ;. 3¢ 29. 53¢ 30. .= “a
31.1,3. 82 a+c,c-b.  33.1, ,,2qu' 34. 13, 2a - 3b,

XVI.C. Pages 209—211. 3. All of them are roots.

3. -1 is a root. 4, (i) 23-32+2=0; (ii) 22+8z+16=0;

(iii) 22~ 42=0; (iv) 23— (@a+b)z+ab=0. 5,5 -1.. 6.3 -3.
7.5% 83 -15% 0.2 -14. 10.4 -4 1l -4, 1~
12. - /1, 3 13. 4, -5;. 14. -1, ¢ 15. 2, —37/15.
16. - ¥, 8 17. -4, 2 18. 4 -§% 19. ¥, -3 20.-1,%
21- ir 4' 22. _’;v ';" 23- -‘,» 2* 24. 1‘1’ 7' 25- 6' 11}'
26. %, 2. 27. -2, 10. 28. 5, 22/23. 29. %, ¢ 30. 2, 9.

3L -1, 44/31. 32. 0, °_" 33, a—b2b’ a-O;Qb.

34,2, 2. 35 -1,%22. 36, atb,4(a+b). 37.0, 22

38- —iy 2' 39- 2) 31I5' 40- _3: 2' 41- 3) 14. 42 !iy ';

43. 3,2. 4. -34,2. 45. -3, 1. 46. -1,3. 47 -3,6.

48. 4, 3. 49, -4, =% 50. 2,2 §1. 0, 1. §2. 1, 5.

§3. - %, 4. 54.8,9. 85. 4, 8. 56. 4, 7. §7. 4, 4.

58. -23/12,2. 59. 2, 5. 60. +2. 61, =4. 62. 4.

63.8. 64, 4 65.3. 66. -1 a’+a. 67. {(3a+2b), }(2a+30).
a? b a4

68. 5+ -  69.0, -7 5. 70. a-+b/(a?~ab+5).
2ab b(a+b)

71. 4a, 3a. 72. atd, . 73. a :
-ab(a+c) a4 c(a’+b’)

74. c, a+bc—ca’ 75. -a, - 0. 76. 0, c(@+b-ac—be)"



42 ANSWERS TO THE EXAMPLES.

Chapter XVII. Simultaneous Quadratic Equations.

. [The pairs of roots of each system of equations are separated by a
semicolon. For example, the roots of the equations 1 m XVIIL A. are
z=5, y=1; and z=1, y=5.]

XVILA. Page216. 1.51;1,5. 2 54;4,5.

3. 10, 9. 4, 6, 10. 5. 7,1; 1,17 6. 1,2; 5, -3.
7- 7v4; _4t -7 8- 6t1; 170- 9. 3’2; "’99
10. 8b-a,3a-b; 3a-b, 3b-a. 11. 2, -1; 15/8, - 13/14.
12. 7, 3; 2,7 13. 5/12, 3/16; 3/16, 5/12. 14. 4, 2; -6, 12,
at B at b a(2b-a) b(2a-D)

15-?1 ;- 16 b’ ;r T' ‘—a—'-

XVII. B. Pages 222—223. 1. 6, 3; 3, 6.

mi-n? n?-m

2, 19, 91; -47/13, 217/13. 3. m,n; Zm

2
eha:%. 5 555 T 6asas Toslen
12 £} 8, =4, £2, 9, 2, £1; +1, 2, ]0, +1, £2;
£} #3011, =1, %2, 12, £4, £1; £13,/(5/68), +10,/(5/68).
13. +5, £1; +13, 7. 14, £32, £1; &3¢, £19. 15, £2, £1;
§:7, +4, 16. *l’ *3; *lzn *12- 17- *5’ *§; *7N/*’ *'}\/g'
18. 2, £3; +5/%, ¥4/3. 19.7,8; 4, -3 20. %3, £5;
32, 3. 21. 8, £5; £13,/3, £3\/3. 29, %3, %=1,
23, +£1, +7; £7, 1. 24, 1, +2, 25. £2, £2; x4, 5.
26. 2,3; 8, 2, 27- *31 *i; *23\/*7 *&\/‘a" 28- ”‘19 £2,

29, £2, £1; +£§, £11, 30. *(p+q), *1; g, *P%.
; r-q +p?
8L +(p-g) +1; 2¢, +57. 32. J(a=+b’) Ja@e

38. £(2a+b), =(a+2b); *(a+2b), +(2a+b). 34.3,4; 5,2
35. +3, ¥2; +4/2, £4/2. 36. +2, +3; £4,/2, =,/2. 37. 1,2
*7‘3' 38. 7, 5; %,2’1. 39. 0|0;49 -1. 40. 0)0: 2, -2.
41.4,1; 3, -¥. 42, §, 75 i, 3. 43. 4,5; -4 -1
44.8,6; 6,8, 45, =3, £2. 44, x4, +3; *N(_l)’ *'g\/(_l)-
47, +1, £2. 48, 4, £2; £2/4, 4,/7.
+b/a xa\/b
9. ol oDy 50, £8, £1; £0J(-1), v8Y(-4).

51.1,2;2,1; -11, -12; -12, -11. 52, +}, #1. 53. a, b; a, b.
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2ab
54. -2, -8. 55.5,7;7,5. 56.5,3;8, 5 §7. (ba:a) #za)’
58. 5,4; 4, 5. 59 7,4; 4, 7.
z at+b+ec
60. z=y=i1 a—‘;_—-— \/{a(a’+b2+c’—bc—-ca—ab)}'

6l. z= %2, y=%1, z2=%3; z==1, y+2, 2=23; or x=y, which
gives another (but irrational) solution. 62, £=24, y=18, 2=6, u=2.

Chapter XVIII. Problems leading to Quadratic Equations.
XVIII. Pages 232—237. 1.12,6. 2. 9,11. 3. 60.

4, 25 yards. 5. 36 feet long, 22 feet broad, 15 feet high.
6. 16 yards by 14 yards. 7.2210. 8, 784. 9, 496. 10. 578.
11. 17 feet long, 13 feet broad. 12. 8 or 12 miles an hour.

13.2 hours. 14, 2 k. 45 m. 15, 10 miles per hour; 104 miles per hour.
16. 30 days, 45 days.  17. 16. 18, 4s.94. 10, 40. 20. 72.
21.18. 22.3s. 23,8 24, 48. 25, 50. 26. 42. 27. 50.
28, 240. 29.15. 80.39and8. 31.&. 32.48. 33. 36.
34.73. 35.74and47. 36, 665. 37. 16and3. 38, 2,10, 14.
39. 16 feet and 15 feet. 40, 16 inchesand 9 inches. 41, 11760 sq. yds.
30 feet and 18 feet. 43, 10 feet; 80 feet by 60 feet.
150 yards by 130 yards. 45, 9 yds. and 8 yds., or 8 yds. and 6 yds.
. 4,324and 109; B, 227 and 209. 47, 4,196; B, 183; C, 169,
45 and 60 miles an hour respectively.

‘4 at 3} miles per hour, B at 7} miles per hour.

25. 51, 12s.; 9d.and 1s. 52, 4s.  §3. 5 inches, 6 inches.
. £125, £95. 55, 10 sheep worth 10s. each, 8 pigs worth 8s. each,
18 geese worth 2s. each.

FEBESRE

Chapter XIX, Equations reducible to Quadratics.

XIX.A. Page 239. ], =3, 12 D2 =11, £,/30,
3. +ia, ia. 4, Y8=2, Y(-1)=-1. 5. /(-ab).
6. £4/3, =3, 7. £3. 8, £./(a*+b?).

XIX.B. Page240. 1,1,2,2,3. . 2.0,1, -1, -2.
3- 1) —4) 2! -5. 4. 2, _*1 -,!1(93:7\/33).
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XIX. C. Page 242. 1. -2,1 2.8 -%
3. - {a, 12a. 4. k{1/(-3)}.

XIX.D. Page244. 1.1,1,-3,-2. 2.-4,-2, -4 -3
3- lr 11 2! i' 4. "in 2! —ﬁ, 3. 5. 1, 1, i{—li;\/(—]ﬁ)}.

Chapter XX. The Theory of Quadratic Equations.
XX.A. Page247. 1.3;4 2. 2;% 8. befa; a2

. . p’+q’ r-q
4, 3; 4. 5.0; -%. 6. Tl*, 0. 7.%% 3

8. () “/"’; ¥ &) “’”””p.”""“" 9. p*-2¢; q+2+$.

XX.B. Page 249. 1, (3z-4)% 2. (4x+1)(4z+3).
8. (x-4)(z+1). 4, (x-a+b)(x—a->).
5. @+a-b-c)(x-a+b-c). 6. (z-2a+ab)(x-2b- ab)
7. 3{8¢—a-b-c+a/(a?+b?+c?-bc—ca—ab)}

{8z-a-b-c-4/(a®+b3+c?-bc—ca-ab)}.
8. (z-y)-2)y-2).
' a+d 1

XX.C. Page 250. Loe ——. 2.5 at+_—.
3.a8-a  4-%.

XX.D. Pages 252—254. 1, -3. " 7. c=a+4b.
9. 622-13z+6=0. 10. r2?- gz +p=0. 12. 135 - 88-

13. a==1, b==2. 14. p=-2, ¢=1. 17, 9224 30z +25=0.
21, 20*=9ac. 26.0,9. 28.1,8. 29, 26.

XX.E. Page 256. 3 -1 4.5 5 -3 6.9
7. Each is }a. 8. 4 bought 32, B bought 24, C bought 8,
D bought 64. [If z be the number bought by C, then z?-16z is a
mlmmum hence, z=8.]

Chapter XXI. Indeterminate Equations.

XXI. Pages259—260. 1 3,1;0,3. 2 17,1;10,4;3,7.
8. 1,53; 3,40; 5,27; 7,14; 9, 1. 4 x=92t,y=3t-5; 4, 1.
5, x=9t—1,y=Tt—4; 8, 3. 6. z=17t+2,y=18t+1; 2, 1.
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7. 15. 8. 26 or 24, according a8 payment in one kind of coin alone

is or is not reckoned as permissible. 0. 2. 10. 7 and 28;
14 and 21. 11. 165. 12. 79. 13. 4 gives 2 half-crowns and
receives 4d. 15. 3 and 22; 9 and 16; 15 and 10; 21 and 4.
16. 1 and 20; 2 and 13; 5 and 6. 17. 11, 29.

18. Hendrick and Anna, Claas and Catrijn, Cornelius and Geertruij,
were respectively man and wife.

Examination Questions.

Examination Questions. Pages 261 —264.

1. 1223 -252+12= (32 - 4) (4 -3). 2.(i) 4, $; (ii) 8, — 3}; (iii) 0, 1;
-2, -5; —-1£3,/(-1), -254/(-1). 4, 160.
54 28 feet by 30 feet. 6. 4a3-a—2. 7. () % 4;
(ii) 3, £,/(-3); (iii) a/d, bja; bla, afb. 8. 13522 - 62-1=0.
9. 1 mile an hour. 10. 20 feet long, 15 feet broad, 10 feet high.
11. 8.  12.4a%-a-2. 13. @z-1P2=-2) 14. (i) - & 2;
(i) =3, £1; £,/(-3), =4/(-3). 15. 60 gold coins, 120 silver
coins. 16, 81; 180. 18, (i) 0, —2ad/(a+b); (ii) 3, - 1; 32, §.
19. ¢2*+px+1=0. 20. 25 yards. 21. 3a-2b-c+5d.
22. (i) -1, 4; (i) 1, +£1; (ili) z= =11, y= 9. 24, 2,3,4.
25. 15 yards of black at 7s. a yard; 12 yards of brown at 7s. 6d. a
yard. 26. 3x2-2x+5.  27. (i) -8, 3; (i) z=3, y=2; z=-2,
y=-3. 28. 3. 29. 1 hour 45 minutes, 2 hours 20 minutes.
30. 12 miles, 3 miles.

Chapter XXII. Fractional and Negative Indices.
XXII.A. Page 269. ], qvtia, 9 1. 3, ai2m-im
4.1 5.1 B, a% % 7 a9 8, (bc). 9. a

XXIL'B. Pages273—274. 1.2 % 451 3, o
8.a. 41 5 1. @.a% 7.a¥. 8, a9, 9 g2mim,
5

3 1
“ 14, 628 - 102 - 327+ 3 + 20z - 427 - 16.

11 11 13 1 B
15. b2+ 2a% %+ 2aibic + 2a%b 1 — 3+ 2a%b1 + 2ab
1 1

11 1
- 242 2-3a+2ab3.
11 11
16. z+4y. 17. «3-ad. 18. a+a??-b- b3 +c. 19. z-4.

1
3
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1

2 2 3 11 11 11 z3
20. = +4y3 + 922 - 2233 + 6y323 + 3?23, 2. —.
D+yd
1 3 i
22. 3 23. 0. 24. z-2+-. 25, 22-3«2+ 7.
1-23
111 1
26. 22 —2a823+ 3c3. 27. a®+2a31-ab"3-5"3. . 28. 3z - 2.
29. 3z+3y. 30.5. 31.0,3. 32.ab. 33. a1t 351,43
36. z=3, y=2.

Chapter XXIII. Logarithms.

XXIII.A. Page276. 1.2. 2.3 3.3 4%
5.-% 6.-3% 7.1 8 -% 9.2 10 .-2. 1l -4
12.10. 13.-6. 14.3. 15.-%4 16.% 17.4. 18.3.
19. - 28, 20. An indefinitely large negative quantity.

XXIII. B. Pages 280—281. 1. (i) -2-1072100;
(id) -4948500; (iii) —53402; (iv) 2-53575. 2. (i) 1-1760913;
(i) 3-2886968 ;  (iii) *6532125; (iv) 3:3802112; (v) 1-8750613;
(vi) —3+-6532125= —2-3467875; (vii) — 3 +-5563025= — 2-4436975;
(viii) — 3+-4771218 = — 2-5228787; (ix) -2552725;

(x) —2+°8573325 = —1-1426675; (xi) — 1+ 8750613 = — *1249387;
(xii) -8627275; (xiii) — 8+ -0969100= — 2-9030900.

3. -121519; --129722; -1-125906.

4, -1461280; —4 +-1875207= — 38124793 ; — 9-8025455.

5. 1:1760913; -4+ 3979400 =— 3-6020600. 6. 4671213,
7. 2:1303338; *4771213. 8. 1:158051. 9. 1-146128.
10. 1-4771213; — 2+ 1303338 = - 1-8696663.

11. 3(3a+3b+38¢c-5); 3 (9a-2b+8c-1); b+c-2.

XXIII. C. Page 282. 1. (i) 1-631; (i) 898; (iii) -683.
2. '712; 6:129. 3, -886; 1-129.

XXIII. D. Page 285. ], 5-9090909. 9, 1:3456789.
3. 2-9357538. 4, 6-9817371; 3-9817371; 8-9817371.
5. 6414°5; -0064145. 6. 3; 4; 5. 7.2; 2; 4; 0; 1; 5; 5.
8. —-003=1-997; —-0004=1-9996.

XXIIL E. Pages 287—288. 1. 2:5051500. 2. 1-5563026.
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8. 2-8578325, 4, 1-8627275.° 5. ‘8750613. 6. 4-6532125.
7. 3-6980604. 8. 1-1163460. 9. 2-7262766. 10, *178; 5-615.
11. (3)°>01; ($)*°>-1. 12. (33)'°>100. 13. 18; 87; 58.
14. 22. 15, About 83} years. 16, 83 years nearly. 17, 7 years.
18. *=8293039/7048652, y=4771213/7043652. 19. (-1289387) a.
20. -9365137; 1760913, 21. 2-8115750. 22. 4096; 32768;
16384; 8192. 23. log,2 and log,,3. If log,y2=a and log;,3="0,
then the logarithms of the given numbers are 6a; 8(1-a); 2-a;
1+b; 8a-1; a-d; b-8a. The characteristics of their logarithms
(to the base 2) are 6; 6; 5; 4; -1; ~1; -2. 34, 10. 25, 3-27646.
26. 4:59999. 29, 82. 30. z=1/a, y=1/c. 32. 6. 33.2
34. (a+d+c)(a+b-c)(a-b+c)(-a+d+c). 38, 10 years.

Chapter XXIV. Surds.
XXIV.A. Page 293. ] .9; y27; ¢81. 3. 3/a%.
3./18. 412 5 Ji%y. 6 JFP T %2 . 8. “1}{3.
0.4 10. V"TW : n. Y=, 13. Less.

¥
14, /35 <.Y214 <, Y/1290.
XXIV.B. Page 294. 13 22~/a:+l5z 2.49-28,/a + 4a.

‘3. 2+a. 4. z+3/z-2. 5, a,‘ 3¢’+9x‘ 27.

XXIV.C. Pages297—298. 1 ¥2iv6 5 ¥

1 1

b2 1-284 2% 1
3. 5. 4 —. 5. 50— 7. 2(1-3).

“ 1- 24848 -1

¢ 13 4 2 1 PR
8. z-y. 9, 2~y +y3. 10, 2823~ (24 2%) z+ (28 28+ 1).
11. 2/3+zyJ/2+9% 12, 24/3+84/2. 13. 1+,/6. 14. 7,./2-3.
N3+4/2 4 2 y

15. %7 16 8*-1+ . 17. \/27—1+\/5.

18, ./m+y-;\/a:—y. 19. .,[mj;/a—bn. 20. 143,

2L 5+y5. 22.0. 23.v3. 24 /241 /L.
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XXIV.D. Pages 303-—304. 1 8 2, 3./(4ab-b2).
3.7 4% 65§ 6.6 7.2 8.2 9 1 10 }or4.
11. 4a. 12.13. 13.%. 14.5. 15.5. 16.% 17.6.
18. 5. 19. -1. 20.17. 21.6. 22, None: the roots of the
rationalized equation are 0 and 8, but neither satisfies the given
equation. 23, None: the roots of the rationalized equation are — 2
and 7; but neither satisfies the given equation. 24.9. 25.-%
26. 5 27. 0, 3. 28. a /3. 29. (c+d). 30. 25.

a. U9, smpe 88.-17 84-45 g

35.2,3,-%,4  36.-4,1 37 -c+.2atc>. 38,0, 4
2 _

3.-1,14  40.%  4lggmee. 420

43, z=16, y=9; z=8, y=1. 44, =16, y=9.
45. =169, y=121; =36, y=3%.
4. \Jz= -3, Jy=-6; \Jz=9, JJy=14.

Chapter XXV. Ratio and Proportion.

XXV.A. Pages 309—311. 1, 3:5. 2. (i) z;:y;;
(ii)z';:y;; (iii) z;:yz. 3. (i) 1; (ii) 16 : 8; (iii) a;: b§.

4, (i) 28:83; (i) 14:13. b, (i) If = be positive, 4 —~2:3-2>4:3;
(ii) If z be negative, 4 - :3 ~r<4:3. 6. 5:2. 7.19:3.

. a?h?
8.25: 4. 9. 15. 10. 15. 11. 4:7. - 16. FTaIR
17. 8, 22. 18. 7 years (actually to 74 years). 19. 45, 30.
20. 12, 21; 24, 42, 21. 7, 13. 22. 136. 23.4:17.

924, £242, £300, £358. 25. 8, 12, .
XXV.B. Pages 315—-316. 15 5:8 16, 9:209.
18. 9, 80. 19. 2:3:4.

XXV.C. Pages 318—-319. 3, :. 4 zo- L.
N xz
ac-b a®+ab+ac-b2—be-c?
8. a+c-2b' 7 b+c-2% . 8. The former.
12. 3,12,

XXV.D. Pages 319—322. 1.4:17 2. a : pb.
4, ab. 5,1:3. 7.14. 8,22, 9,9. 10.21. 12. 10,64
13. Ages of sons are 2, 4, 6; age of man is 36. 14, a2 : b2
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29.2:3:4. 39. 2. 40. 5, 4. 4]. 2, 18. 49, 45, 4.
43, £305, £410, £515. 44. A receives £1666. 13s. 4d., B receives
£1000, C receives £333. 6d. 8d. 45,1:2,0r2:1,

46, 2} gallons, 47.4:1.

Chapter XXVI. Variation.

XXVI.A. Page 325. 1,12} 2 4z=%%  3.6.
4, J17. 6. 2. 8. 78.

XXVI.B. Page 326. 1, 3. 2. 33 3. a%h="72.
4, 33 hours, 5. 78.

XXVI.C. Pages 328. ), 33. 9. 128. 3. 4.

XXVI.D. Pages 331-334. 1. zcc Y2 4, J17.

3
6.104. 8.6  10.% 1L4 125 14 -4
15. w=2(z + 322). 17. £34. 18. £11:%4. 19. 15 feet.
20. 25 square feet. 21, 66 cubic feet. 23, 18 inches. 24, 8:17.
25. b3:ac2. 26. 3days. 27. 40 francs. 28, 12s. 29, 32 : 25,
30. 263 miles. 31. £30. 32. The 4t 5t and 6t days; 6 days.

33. 20 trucks. 34, g {vaf ("b—‘_? ’i')(c— Tacf;(f -m}

Chapter XXVII. Arithmetical Progressions.

XXVIIL. A. Page 337—338. ], (i) Isin a.r.
2. 6, 75, 93, 108, 123. 3. (i) 52; (ii) — 61; (iii) a®- 30ab + b2,
4. Yes, the 252, § na-(n-2)b. 6. -154, -148, —142, &ec.
7.81. 8 58 9. -202430. 10. Yes.

XXVII. B. Pages 340—341. ], 920. 2. 68895.
3. 94850. 4,665. 5.0. 6.80. 7 404 8.363 9. 290.
10. -3033. 11. 18. 12. 21-6. 13. 49. 14. 163-2,

15, 1524.  16. z+3(a+1). 17. 3 (2n*-n-1). 18. 1512.
19, 1170. 20. 2873. 21. 576. 22. 2. 23, 13.
24, 20. 25. 30. 26. n2.

XXVII C. Page 343. 1. 6. 2. (i) 5,6, 7;
(i) 3, 5,7; (‘n) 1}, -4, -24. 3. 1, 14, 24, 34, 4%, 6%, 6}-
4 2a+b a+2h 4a+5b 5a+4b

3 ' 73 ' (a+20)(2a+b)’ (a+2b)(2a+d)’
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5. (4P +270), § (32742, (243270, } (2 +42Y).

6. a*+ b - §ad, a?+b*-ad, a*+ 0, a?+b*+ §ab, a?+ b+ $ab.
n-1

8. (a+) 4. 9. 6} minutes. 10. 5, 6, 7.

XXVILI. D. Pages 344—347. 1, (i) 4890; (ii) 25%;
(1) 8202 ~16800; (iv) §n (n-1). 2,166, g, 2=l =8 g
5. 869%. 6.1,357.. 8.5179,11... 9 100r20. 10. 25.
11. 25. 12, 100r13. 13,297. 14, 6;2 15, 82(2r-1).
16. 163, 19. ma. 20. 10. 24, 8217 (see Ex. 13).
25. 37} miles. 26. 10. 27. 2m-n-4, 3m-n-2, 2m —n.
29.1,8,5,7 30.4,567 31.1,23,4,5 32 24,48, 80.
33. 1, 2}, 4}, &o. 34, 3n-3; 6n+1. 36.41. 37, da=(n-1)d.
88. 12 feet. 39, 195 miles. 40, £82. 13s. 13d. 41, 6 days.
432, 12, 15, 18. 43. 4 miles an hour. 44, In 6 days; at
90 miles from the starting place.

Chapter XXVIIL. Geometrical Progressions.

XXVIIL. A. Page 350. 1], (i), (i), and (iv) are in a.».
2. 1§; -1; yof 3. 96. 4, -2187/64. 5. —1024/81.
8. 8; 7203. 7. 9375. 8. 18, 54, 162, +486, &e.

9. 2, 4, 8, 16, &e.; or - 33, 16, -8, 4, &o.

XXVIIL. B. Pages 357—358. ), 665. 2, 296/735.
3. 16383/9604. 4. -1261/384. 5, —8425/8748. @, - 25862/343,
7. 910, 8, 1098711/390625. 9, 4163.  10. 2813. 11, 64.
12. 103. 13.4. 14,384 15, 3535. 16, 211(yJ2+./3)/81.
17. 781. 18, 874}, 0or —534. 10, 748}, 0or -74}3.  20. 2.
21, +3. 22. 3, §, 5 &o.; or 1, 3, %, &e. 23. 765 or —255.
24, 4535, 25.8; 4.

XXVIIL C. Pagu 361—362 1. (i) +4; (n)i(.t’ a’)
2. (i) 2, 4, 8; (i) ﬂ:(a: a)’(z+a)’ 22— a? x(z- a)*(z+a)2.
1 1 83

(iii) 2¢, 23, 24, 3. ziny™, gy, 4.37,45,8,3 48

5. 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122. @, + (622 - 5 4 6).
8.25:1. 9.3,75. 12.a (""‘“—Z‘(f*)l()'ﬂl)nrn-l, where
a is the first term and r is the common ratio of the given a.».




ANSWERS TO THE EXAMPLES. 481

XXVIIL. D. Pages 362—364. ], (i) 45920; (ii) 17955;
(iii) 82; (iv) -3893./5(./30-2)/8. 2. 2:366. 3, (i) is not a G.p.;
(ii) *6; (iii) 9; (iv) the common ratio is greater than 1; (v) 4 (4+84/2).

o 23 (™ -1)  zy(@y*-1) : x(:c" 1) ﬂ(n+l)
4. (i) Py p -1 (ii) . nines)
5. a{( a:-); 1} 6. 10, 9, 81, &o. _ 7. 3)*a. 14. %
16. 5. 18. 4,2, 1.. 19. 3, 12, 48, 192, 20. 5, 20, 80.

22. 3, -1, & 28. 1,4, 16.

Chapter XXIX., Harmonic and other Series.

- XXIX.A. Page370. 1.4. 2§43 3. -2,-1,-4.

4. 6) 135 () 295 (i) . 5. ) d b i () 32, 3, 1

Loy 40(a+D) 2b(a+d) 4b(a+d)
(i) £, 5, 5 (V) a+4b ' a+26 ' Batdd °

XXIX, B. Pages 375—376. 1.7. 4, }n(n+l)(2n+7)
5. dm(m+1)(2m+1). @, 7305.

XXIX.  C. Pages 377—379. 1. (i) in a.p., 68;
(ii) in A.p., 862; (iii) in a.pr., 173%; (iv) in a.P., 134}; (v) in a.r.,
-615125; (vi) in A.P., - 58°2. 2. ()% (i) & 52 ot
(i) ab {(i o l"_—'b} : 8. () 3 (a8 +a™%); (i) ;‘(a‘ 11)
4, 1-1=0. 5. - 38 7. 2=%, y=-4. 8. 5, 45.
9. 24, 4, 80. 13, 122 14, 8,1, 8.5

or3t, -4 13 ., 15. Either the a.r. 8, 12, 16,..., and the a.P.
8,12, 18...; or the A.».8, 4,0, ..., and the 6.». 8, 4, 2,....
16. 9 and 12; or 1 and -4. 17, #=9, y=15; or x=49, y=35.

10.2,48 22681 269753 29 70
30, 1n(n+1)(3n1+23n + 46).
B. A. ' ’ 31
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_ Bxamination Papers and Questions.
Paper A. Page 380. ], z3+y3-23+82yz; (p+7)(g+9).

8224+ 241 . 1 "
2.’ el 3. (i) S-.10 (i) -1
4, (i) 1}; (i) - 3yy; (ili) z=808 and y=389. - 5, 423-3x+2.

8. 5 miles, . 8.5 9. (i) 2} or 8; (ii) ja ore.
10. (i) 36604, 3888; (i) 1296. .

Paper B. Pages 381—382.

1. (i) 8%; (ii) 8; (iii) z=9, y=111.

8. (i) -1 or 6; (ii) ¢ or 1; (iii) =7 and y=11,0r z= - 32 and
y=-5. 5,7 6, =11, %7, 7, 15 miles; 4 and B respectively
walk at the rates of 3% and 3 miles an hour. 8. 12 feet by 9 feet,
aud 15 foet by 8 foet. 0. Uy 11: 248, or - 8135 : 943,
10, (i) 60; (ii) 1690981/15635; (iii) 19/16. - 1L 1(4a+d),
$(3a+2b), }(2a+8b), }(a+4b) _ 12. Either 16, 8, 4,..., or
2, -6, 18,, ,

Examination Questions. Pages 383—385.
1
1. :c’y s+=n=‘ly :+z 1y4+a: ;ylﬂ 8. (i) 280; (ii) 514§; (iii) 108.

2 10 18
5. 6owt. 7. a ’=1+Ja3, ad=Ja; z 3yt. 9. 144.
10. £250, £200, 12. 3. 13. (i) 890; (ii) 45; (iii) 93.
14. 16, 24 36. 15. 3d. up to 51bs., and 1d. for every additional 1b.
999,999 10 ~
16. —— J(x+a) 18. 1,100,000° 11° 19, z=}(a+b),

2ab
y=4Jab, =0 2(g(—a).

Chapter XXX, Permutations and Combinations.

 XXX.A. Page391. 1 6;2520;2i;6 . 2 1L
3. (i) 120; (ii) 60. 4. (i) 360; (i) 720; (iii) 120; (iv) 2520.
5. 13860; 6930. © @, 7. 7.48. 8, 216. ot

XXX.B. Page 395. 1. 7;70; 108l. 9.7 3. 5.
4, 20r8. 5, 184756, 6. (i) 14Cs; (ii) Chor 7. 15. °
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XXX.C. Pages 398—400. ] 60;15. 2, (i) 6; (ii) 12.
4, 8600. 5. 598775. B, 36x,Cs- T.420. 9, 144. 10, 7.
11. n=13, r=4. 12. 1. 14. 8~ 15. 43200. 16. 6.
17. n=15, r=5. 18. 63. 19, 28. 20, 3,C; X 5,C; X 1,C;=10024560,

21, n.4Cy=(2n—1) 0% n.2n. @n-1). 23, (i) 992; (ii) 1024.
23. (11111)(3150)( é) 24. (i) 14Cs} (u) 1Cs- 25, 880. 26. 63.
28. 6720; 40320. 29, 1071. 30. 24. 31. 52.
33. (T53“"—’), 33. 64. 34, 209, 35. in (n-3).
86, 37 (n-1)m*(m-1). 37. 90.

Chapter XXXI, The Binomial Theorem.

XXXI. A. Pages 408—410.

1. 1+8x+ 2823+ 5623+ 7024 + 5628 + 2828 + 827 + 28.

2. 27 — 1426 + 8415 — 28024 4 56023 — 67223 + 448z — 128,

3. 28— 62% + 15243 — 20233 + 162%* — 6zy®+y°.

4, 2048al! + 11264a° + 28160a%b? -+ 4224045 + 42240a7b* + 29568a%H°
+ 147844308 + 5280a4b? + 1820a3b8 + 220a%)° + 22ab'0 4 B!,

5. 2432% - 81024y + 1080233 - 720a%3 + 240zy* — 82,5,

6. 16a*+32a%b + §a?0 + FHab®+ Frbd.

7. 28/64 + 28y /16 + 5xty3[48 + 5x3y3[54 + 5z3y4/108 + 2y°(81 + 8/729.

8. 1-17a%2+ 21a4/4 - 35a%/8 + 36a5/16 - 21a10/82 + 7a3/64 — a14/128.

9. 710 - §aB+ 1028 — 1929+ ;2% ~ g}y 10. 10a.

11, 2 (5:“ + 2829 4- 7024 + 2822 + 1), © 12, 53130z%, 18. 10.

14, —35.2¢. 3%z4= ~ 30240z, 15. -55/288.

16. 12847 — 4484z + 672a%22 - 560a'z® + 280a%r* — 84a%" + 14ax® - 27. "

17. |27/(|n)% 18. 591364828, 19. -2268. 20. -945a%)L

2], 3 term; coefficient =6. 22, 11t gnd 12t terms.

23, 6t and 7t terms ; each coefficient =462. 24, T term;
coefficient =5376. 25. (i) 10% term; (ii) 11t term; (iii) 8th term.
26. coeficient of z5=90. 27. (10+1)7=107223585210701;
(10 - 17 =9509900499. 28. (8+2)7. 29, (1+aY)".
31, (1+2z)4=1+142+912%+ 364z + ... ’

32. 1+42+222 - 828~ 24+ 82°+ 225 — 427 + a8, 33. 90.

o . o0 an 120
34 (-UM e 35_41, 36. B2-2)%.  37.()0; @
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XXXI.B. Pages 4232 —435.

R

2. 1+22/8 - 239+ 42%/81 — T24/243.

3. 1-5z/4 +52/32 - 52%/128 + 852+/2048.
4. 1-8z+3827- 3%+ 2jizh. 5, 1-22/8+2718+2%162 + 5arh/3888.
6.1 pw+ (p+q) atzd p(p+q)(p+2q) atz

7.4 9

H 7b
7. “'(l“'”as P e

8. 28 (l+n4z+ 616

9. =z ’(1+i$+§=’+:‘cx'+ﬂ®‘)-

11, 1432+ §25+ e+ $E2™%

13, 18- 5”(27 D,

5. (n+1)(2n+1).. (m+1)z'
rl o

1

3.1.1.3. 5...(21'—5)”

17 (-1 Ry

19, 1:8:8 = @r+1) .

2l. JHzx ™.

L2 2+ (:;r::z) (p+3q) .,

7.4.108 , 7.4.1.2%
e
16016 )

10. 1+32%+ 32" + e + {5
12. l+§z+l.iac’+,!.z’+ﬂa:‘.

.(2r+1)
14, 30 Grtd
16. _(n- l)(ﬂn—'l)...(m—l)”
11.14... (8r+8)
18. 4. r! e
4.7.10...(3r+1)
20. 8r.rl a0

22. (i) 5%; (ii) ;f” be negative, then the 24 if 2 4

be posmve and be >nand <n+1, then the (n+38)th,

23. If n=1f, the sign is +;

17.14.11.8.5.3. l

ang o142,y

87.71!

.71

24, The5"l 25, Theﬁ"'and'l"‘ 26. The lﬁandﬁ'“' 27. (1-4z)” ’ .

28. (1-2) ’ 29. 1-3) ’“~/2 30. (l ) ’-4’
36. N+~

34. 3-995. 35. 9-996666.

43, (i) 0; (ii) 2~
coeflicient of z2*t3=0.

44, Coefficient of 2=
45- - l-

33. 10-04987.
PO

3N~ ans t Tensc 387983

1.8.5...(20-1).

2r.rd ’

46, 429/256. 47, -1.

49, ¢ (5, W=¢ (z, n-1)~p(z+1,n-1).
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Chapter xxm The Exponential Theorem.
XXXII.A. Page430. 1 .. 2 log2 3. log4.

XXXII.B. Pages 437—438. 1, 1-0457609; 111-116.
2. 1-9356274. 3, 2'4935452. 4, 31234400, 5. 2'5579353.

6. 12363004, - 7, 11856911 ; 136-6486. 8. 46:0168.
9. 2:441406. 10. 14-67799855. 12, 1-778278. 13, 1-389495.
14. 1-401131. 15. 14495593. 16, 1:948446. 17, 8-465369.
18. 4239°33. 19. To 3 places.

Examination Papers.

Paper A. Page 439. 2, acs®+b(a+c)z+(a+c)2=0.

)o=YW W Bb ol e o=
4, (i) z_n?(a—p)’ y_m(q—b) s (i) 1, Pyt (iii) 3; (iv) #=8 and
y=-2,0orz=2andy=1. 5. 10 miles an hour.
6. See Art. 328, and p. 343, Ex. 2. 7. See Art. 394.

9, z=T754, y= - *498.

Paper B. Page 440. '

. be-1)+qc+1)+7(b+1
2.0 x=?( a-l)-b-‘ll-f:—ab)c+2( )
(ii) z=y=3(-a+/a3+4%), or 2=} (a+ /37— 3a3) and

' y=} (a5 /46" =307
8. 15481 square yards. 4, If P, Q, R be the pt, ¢**, and 7*! terms
of an A.p., then P (¢-7)+Q (r-p)+R (p-gq)=0. 6. The (r+1)®
term, where r is the integer just less than (n-1)/(m~1). 7, 4642,

) &0.;

Paper C. Page 441. 1. 0. 2 2(a+b)(b+c);
222 +8x-1 . Sdxy . 1
5zy(z-y)(@®*-zy+3?). 3. Za._g &0 1922yt (i) - .
5. m=%a?+2cla; n=c3la 7. () -20; (i) 5; (iii) a,5. 8, i
9. (¥2-1)r. 10, The sides of one are each equal to a; of the
other are 2a and }a. 12. The given coefficient=,,,,,C,.

Paper D. Pages 442—443. 1, 1. 3. 422-62+9;
(32 +2)(6425-729). 4, 2za~-3+4az-l. 5, b*>dac. 6, (i) 1iy;
(ii) a+b, } (a+0); (il) z=9, y=6, z=4, or z=4, y=6, 2=9.
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7. 8 gallons from the first and 8 gallons from the second. 9. 15.

[2m+1 ~3mtl 1 Between 114 and 115 years.
s m mEL mmtlz’ 12, Between an J
d ™ m+]

Chapter XXXIII. Properties of Numbers.

XXXIII. A. Pages 451—452. 1, 32005 9 975
3,194, 4 3le. 5 3§ 6. -505915343t0062¢68781¢. 7, 20-20.

8. -05. 9 111/282. 10, 9; 11.  11. 13565523. 12, -00001.
‘18, 4112, 14, 1011, 15. 29. 21. The digit (r - 1).

22, -1 J(P+P-1)(H-1%). 25, (i) ...67; (ii) ...95; (iii) ...62;
(iv) ...078.
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