LOVELL"; SERIES OF SCHOOL BOOK E

IN DRCIMA: CUIRIRENCY; DIESIGNHE FUR THE URE OP

CANADIAN SCHOOLS.

OHN HRRBELT'T SANGSIFER, MA. N. N.
 PILLOMORY IN THF SOIEMAL HUHOOR DO甘 UPPRTS GANADA.

FOURTHEDI

DRANTED AND I'UBLISIIED BY JOHN LOVHOL.L Corenta:
 1870.

513 18.6
1899

S226E
willlamestuaffield
Fecleaieh Cintario 1868

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

LOVELL'S SERIES OF SCHOOL BOOKS.

ELEMENTARY ARITHMETIC,

 IN DECIMAL CURRENCY; degianky por the dse or
CANADIAN SCHOOLS.

BY

JOHN HERBERT SANGSTER, м.A., м.d.

 PHILOSOPEX IF THR MORMAL MOHOOL FOR UPPER QAXABA

EHIRD EDITIOX.

解的atreal:

PRINTED AND POBLISHED BY JOHN LOVELL, Any for ball at the yooketozrs.
1866.

Entered, according to the Act of the Provincial Parliament, in the year one thousand eight hundred and sixty, by Jorn Lovell, in the Office of the Registrar of the Province of Canada.

JOHN F. TROW:
ELECTROTYPER
NEW YORE.

DEPT. OF EDUCST:ON HISTORICAL COLLECTION

PREFACE.

(n presenting the Elementary Arithmetio to his fellow Canadian Teacbers, the author respectfully solieits their attention o the following brief explanation of its arrangement and design.

First, then, with regard to the purpose it is designed to serve, It may be remarked that the Elementary Arithmetic is ejninently a practical treatise on numbers. Every rule in the boai is expressed as clearly and as concisely as possible; is then illnstrated by two or more examples worked out and fully explained; ind is finally enfored by an exercise containing a sufficient num: ar of problems to thoroughly impress it upon the pupil's memory. This ntter object is still more completely attained by the miscellancuus or review problems scattered through the work. It will, however, be obscred, that, with the exception of Notation, Numeration, the simple Rules, and Deeimal Money, no attempt bas been made to give the pupil worded reasons for the processes employed; that, except so far as the several rules are explained by the examples solved, the work of illustrating and explaining is left to the teacher. This plan has becn adopted chiefly from two considerations. In the first place, young children, those for whom the work is primarily intended, learn the reasons of the rules far more easily and expeditiously from familiar and repented illustrations by the leacher on the blackboard, than they can by studying printed demonstrations; and, in the second place, had these reasons and explanations been inserted, they would have increased the size of the book far beyond what was considered desirable.

It is however believed that in the greater number of instances the rule is so worded, and the solution and accompanying explanation of the two or three illustrative examples are so given, as to enable the pupil to master and comprehend the rationale of the procese employed. This remark does not, of course, apply to the extraction of the square and cube roots, but it holds with regard 10 almost every other ruie in the book. For a full elucidation and
diseussion of the principles involved in arithmetical operatione, the attention of the more advanced student is respectfully direeted to the author's National Arithmetic.

With respect to the arrangement, a few words will suftice. In commencing the Elementary the pupil is assumed to lave no previous knowledge of arithmetie, and accordingly great eare has been expended in wording the definitions, explanations, rules, \&c., as concisely as possible, and in making preliminary problems of the very easiest deseription. The author bas also tendeavored, at those parts of the subject at which the pupil invariably meets with more or less trouble and difficulty, to prepare him for the consideration of the rule and the solution of yroblems on the slate by a series of simple mental exercises. It is not for a moment presumed that these mental exercises contain all that is necessary in the way of preparation: they are rather designed to serve as a sample of the introductory drilling through which the class should enter the rule. The judicious teacher will continue *some such exercise as a mental training until he is convinced that his pupils can enter into the solution of questions on the slate without any sucb miserable artifices as the attempt to aid their ability to add or subtract by counting on their fingers or on the notches cut in their slate frames.

The teacher is earnestly recommended to begin, at as early a period as practicable, drilling the pupils on the Mental Arithmetic at the end of the book. He will find it the most efficient of all means for ealling forth and cultivating the intellectual faculties of his scholars, and at the same time the most unfailing and successful mode of making them thuroughly comprehend the priticiples of written arithmetic. Although the mental exereises alluded to contain a large number of problems, it is taken for granted the reacher will not confine his elass to these, but will from time to time supply them with similar questions of his own construction.
) The problems throughout the book are all rew, ald no paine have been spared in reading the proof-sheet to ensure the most rigid accuracy in every part.

Toronto, May, 1560.

CONTENTS.

sEction 1 .

PAGE
Defiuitions 9
Numeration 10
Numeration Table. 12
Notation. 13
Roman Notation 15
Recapitnlation and Examination Questions on Numer- ation and Notation. 17
Simple Addition 19
Recapitulation and Examination Questions on Addition 26
Simple Subtraction 27
Recapitulation and Examination Questions on Subtrac- tion 32
Simple Multiplication 33
Multiplication Tabie 34
To Nultiply hy a number not greater than 12 35
To Multiply by a Comnosite Number. 36
To Multiply by a number greater than 12 and not eomr osite 37
Proní of SIultiplication. 38
Recapitylation anc Examination Questions on Mfl- tip'ication 40
Simple Division. 42
Fhort Division 44
To Divile by a Composite Aumber 45
Lorg Division. 46
Prs if of Divisinn. da
Gempitulation a.c. ixamotion Questions on Division 48

SECTION II.

PAGB
Decimal Currency $\check{5}$
To Reduce Old Canadian Currency to Dollars and ('ents. 51
To Reduce Dollars and Cents to Old Canadian Cur-- rency 52
Addition, Subtraction, Multiplication, and Division of 53
Decimal Money
Decimal Money
Examination Questions on Decimal Money 55 55
T:ables of Money, Weights, and Measures. 56
Reduction Descending 62
Reduction Ascending 63
Compound Addition 65
Compound Subtraction 68
Componnd Multiplication. 70
Componad Division 75
To Divide by an Applicate Number 77
Miscellaneous Problems on Sections I., II 78
SECTION III.
Greatest Common Measure. 81
Least Common Muitipie 83
SECTIOX T.
Tulcar Fractions-Definitions, de. 95
Treduction or Vhiga: Feactions 88 88
 89
To Reduce an mprojer Fraction tn a Mixeu Numbe: $8 ?$
To Reduce a fraction to 16 s wowst 'erms 90
To Reunce Tractions is a Common Dencminator 91
To Reduce a Comnound Fraction to a Simole Fraction 03
TV Rewae a Complex Fraction to a Simple Fraction... 84

PAGE:

To Reduce a Denominate Fraction from one denomina-tion to another96
Fo lieduce one Denominate Number to the Fraction of another Denominate Number 97
To Find the Value of a Denominate Fraction 99
Addition of Fractions 100
Subtraction of Fractions. 101 101
Multiplication of Fractions. 103 103
Division of Fractions 105 105
To Multiply or Divide an Integral Denominate Number by a Fraction 106-7
Decimals--Definitions, \&c 108
Numeration of Decimals 108
Notation of Decimals 109 109
Addition and Subtraction of Decimals 111 111
Multiplication of Decimals 112 112
Division of Decimals 113
To Reduce a Vulgar Fraction to a Decimal 115 115 116
Circulating Decimals,-Definitions, \&c.
To Reduce a Pure Repetend to a Vulgar Fraction. 117
To Reduce a Mixed Repetend to a Tulgar Fraction 117 117
Addition, Subtraction, Multiplication, and Division ofCirculating Decimals118
To Reduce a giren Denominate Number to the Decimalof another Denominate Number.119
To Find the Value of a Deeimal of a Denominate Num- 120
ber
ber
Miscellaneous Problems on Sections I.-IV 121
SECTION V.
Ratio 123
Simple Proportion 126
Compound Proportion 132
sECTION VI.
Practice 136
SECTION VII.
PAGT
Percentage 140
Commission and Brokerage 143
Insurance 144
Buying and Selling Stoeks 148
SECTION VIII.
Simple Interest. 149
To Find Interest at 6 per cent 151
Compound Interest 159
Discount 555
Bank Jiseount 156
Simple Partnership 157
Compound Partnership 153
SECTION IX.
Profit and Loss 163
Barter 166
Exchange of Curreneics 168
Analysis. 171
SECTION X.
Involution 175
Extraction of Square Root 177
Extraction of Cube Root 180
Miscellaneous Problems -03
Mental Arithmetie 186
Answers to Exercises

ARITHMETIO.

SECTION I.

DEFINITIONS, NUMEIATION, SIMPLE ADDITION, SIMPLE SUBTRACTION, SIMPLE MULTIPLICATION, AND SIMPLE DIVISION.

1. Arithmetic is the study of numbers.
2. Numbers are expressions or characters that represent one or more things of the same kind. Thus one, two, three, seven, clev'en, twenty-six, \&c., are numbers.
3. Numbers may be expreseed either by words or by characters.
4. Notation is the art of writing numbers by means of characters.
5. Numeration is the art of reading numbers thus expressed.
6. The eharacters used for the expression of numbers are either figures or letters.
7. Arabic Notation is the expression of numbers by figures.
8. Roman Notation is the expression of numbers by letters.
9. The figures cmployed in writing numbers are 28 fol lows:-

10. All numbers bigher than nine are represented by writing two or more of these figures together.

Thus, Ten	is written	10
Eleren	6	11
Twelre	6	12
Thirteen	6	13
Twenty	6	20
Twenty-one	6	21
Twenty-two	6	30
Thirty	6	31
Thirty-one	6	40
Forty	6	50
Fifty	6	100
One Hundred	110	
One Hundred and Ten	6	11

11. When a number consists of sereral figures:

The first or right-hand figure is called the units' figure, and is said to stand in the units' place.
The second figure from the right hand is called the tens' figure, and is said to stand in the tens' place.
The third figure from the right hand is called the hundreds' figure, and is said to stand in the hundicods' place.
The fourth figure is called the thousands' figure, and is said to stand in the thousands' place, \&c.
12. The figures $1,2,3,4,5,6,7,8$, and 9 , are called Significant Figures, because cach of them nepresents or
stands for one or more individual rhings. They sre also called digits, from a Latin word meaning '• finger," because many uneducated persons are in the dabit or counting on the fingers.
13. The character 0 is itself of no value, and is used merely to change the value of the siguificant figures by making them occupy different places. Thus 7 standing alone is seven, followed by one cipher it is 70 or seventy, by two eiphers it is 700 or seven hundred, by three cipher3 it is 7000 or seven thousand, \&c.

Exercise 1.

1. Write neatly on your slate all the numbers from 1 to 100.
2. Write neatly on your nate all the numbers from 100 to 200.
3. Read the following nurbers : $27,164,19,91,107,780,426,999$.
4. Read the following numbers: $16,13,12,61,31,21,409,717,800$.
5. Write the following numbers: twenty-eight ; five hundrea and seventeen; eleven; sizty-five; two hundred and nine; forty ; nineteen.
6. Write the following numbers: one hundred and thirty-serell ; nine hundred and six; seventy-one; eight hundred and seven; two hundred and fifty.
7. Read the following numbers : $163,403,701,808,917,800,711$.
8. Write the following numbers: serenty-nine; eight hundred and forty; seren hundred and eleren; four hundred and sixteen ; five hundred and five.
9. Read the following numbers : $909,81,17,111,606,510,170,919$.
10. Write the following numbers: fifty-nine; serenteen; seventyone; nineteen; nine hundred and forty; sixty-one; fous hundred and twelve.
11. To facilitate the reading of large numbers, they are dirided into periods of three figures cach, beginning at the right-hand side.
12. The names of the periods are as follows:-

The first or right-hand period is that of Tnits.

The second period is that of
The third
The fourth " "
The fifth " "
And so on according to the following-

Thousands.
Millions.
Billions.
Trillions.

NUMERATION TABLE:

16. To read any number it is necessary to rememb;

1st. The names of the periods in their order.
2d. That each period consists of so many hundreds, lens, and units.
Example 1.- Read the number 742679.
Here we place a comma between the 2 and the 5 and thus divide the number into two periods, thus 742.679 , of which the left-hand one is that of thousands and the other that of anits. Then, reading each period separately, we find that there are seven hundred and fortr-two thotsand and six nundred and seventr-nine units, and, reading the whole ogetiner-seven hundred and fortr-two thousana, sis hundred and seventy-nins.

Example ¿. Read tho mumon 6304922 ts90n.
Fere dividing intn periods, we get 670,498,278,900, i e. four periods, the names of which, begiming at at-
lowest or right-hand period, are units, thousands, millions, and billions.

The 4 th period is six hundred and seventy billions.
The 3d period is four hundred and ninety-three millions.
The $2 d$ period is two hundred and seventy-eight thousand ; and
The 1st period is nine hundred units.
Then, reading these together, we find that the number is msix hundred and seventy billions, four hundred and nine-ty-three millions, two hundred and seventy-eight thousand, nine lundred.

Example 3.-Read the number 67040000000007.
Here pointing off into periods we get

$$
67,040,000,000,007 \text {, }
$$

i. e. five periods, the names of which, beginning at the lowest, are units, thousands, millions, billions, and trillions. Then reading each period separately, we have sixty-seven trillions in the highest period, forty billions in the next, nothing in the next, nothing in the next, and seven in the last. Finally, reading these together, we find that the given number is

Sisty-seren trillions, forty billions, and seven.

Exfrcise 2.

Read the following numbers:

1. $7040 ; 8101 ; 8009 ; 4070 ; 8019 ; 6111 ; 96003 ; 8674567$.
2. $91131140 ; 967004206 ; 61300400007623$.
3. $1001001001001 ; 670000000069 ; 81008100810081$.
4. $91234013402 ; 91234207109 ; 100000200003004$.
5. $67189456713427 ; 9100009134000671001$.
6. 71345671913461300041234.
7. $100001000001000000 ; 203040506070509$.
8. $908007000600005 ; 4003000200001$.
9. $2046008010 ; 11111111111111$.
10. 40007 ; 9000000009 ; 870008700087.

notation.

17. To write down numbers, we must attend to the fol-lowing-

RULE.

Begin at the left-hand side and write doun each period in its proper order, as though it were a period of units.

Place a cipher in each vacant place that occurs in any period; and if any period be wholly vacant, fill it with ciphers.

Example 1.-Write down as one number sixty-seren millions four thousand and eighty-nine.

Here the left-hand period is 67 millions, the next period to the right is 4 thousand, and the last or right-hand period is 89 units. Then writing these together and filling the vacant places in the thousands' and units' periods with ciphers, we get for the required number $67,004,089$.

Example 2.-Write down as one number seventeen billions four hundred and twenty-six thousand and one.

Here we begin by writing down 17 billions; this we follow by 000 in the period of millions, this by 426 in the period of thousands, and this by 001 in the period of units. Placing these together we get for the required number 17,000,426,001.

AERCISE 3.

Write down the following numbers:

1. Three thousand and twenty-nine ; fire thonsand and serenteen; six thousand five hundred; eight thousand and eight; nine thousand two hundred and seven; four thousand and ten; sereu thousand and sixty-one ; oight thoueand seren hundred.
2. Eighty-seren thousand four hundred and eleven; ninety-four thousand and six; thirty thousand four hundred and fifteen; twenty-four thousand and twenty-four ; seventy thousand six hundred; thirty thousand and one.
3. Five hundred and sixty-seven thousand; two hundred and four thousand and sixtr-three.
4. Seven hundred and sixty-two thousand seven hundred and nine.
5. Six hundred and four thonsand and ninety.
6. Serenteen millions and eighty-one ; forty millions two thoueard aud six.
7) He hundred and forty millions six hnndred and two thousand aud seven; twenty millions and eleren.
8. Eight hundred and seren millions twenty thousand one hundred and ten ; seven hundred millions and twenty thonsand.
9. Five billions five millions five thousand and five ; twenty billions and one.
10. Sixty trillions sixty millions and sixty.
11. Seventen trillions seven millions and seventy'.
12. Eight billions seventy millions four hundrod thousand two hundred and serenty-six.

ROMAN NOTATION.

18. The seven letters used in Roman Notation, with their values, are as follows:

19. All other numbers are expressed by repeating or combining these letters, as in the following

T.ABLE.

I I LX 60
II 2 LXX......................... 50
III
3 LXXX 80
IV
4 XC 90
V
C 100
VI
CC..... 200
VII..........................

CCC 300
VIII
CD 400
IX
D 500
X............................ 10

10 DC.......................... 600
XI
11 DCC 700
XII
12 IDCCC....................... \& 80
XIII.......................... 13
XIV.......................... 1

14
СМ.......................... 900
M 1001
XX......................... 20 M1.......................... 2000
XXX........................ 30 MMM 3000

XL 40 MМMD...................... 3560
L............................ 50 MDCCCLX................... 1860
20. From this table we learn that-

1st. As often as a letter is repeated its value is re. peated, wut no letter can be repeated more then thrice.
2d. When a letter of a lower value is written before one of a higher, its value is to be subtracted; but the only letters that may be thus writtey before others are I, X, and C.
3d. When a letter of a lower value is written after one of a higher, their values are to be added.
4 th. A bar or a dash written over a letter or combination multiplies its value by 1000 . Thus $\mathrm{X}=10$, $\overline{\mathrm{X}}=10000, \mathrm{C}=100, \overline{\mathrm{C}}=100000, \mathrm{CCXV}=215$, $\overline{\mathrm{CCXV}}=215000$, \&c.
5 th. The eharacters for 5,50 , and 500 never stand before others of a higher value, and never suffer repetition.
Gth. A character can never stand before any other than one of the two next higher in value. Thus \int can stand before V or X , but before no other letters; X can stand before L or C . C cas stand before D or M; and so on, according to the following scheme:

Exkrcise 4.

Express the following numbers in Arabie Notation, also read them in common language:

1. IX, XVII, N゙NXII, XLIV, XCIX, CDLIXVIII, CCCXXX, XLVII, LXXIV.
2. DCCLXIVII, COXCVI, DCCCALIII, CMX, MI, MCD.
3. CII, DXI, MDXXXIX, MMMXXX, MMDCCCLVIII, CCCI.
 XLCDNLIV.
4. MDCCCXCLX, MMCCXXII, M $\bar{V} D V, M \bar{X} D C I V$.

VMMMDCCCLAXXVIII.
Express the following common numbers in Roman Numerals :
6. $202,47,91,80,20,77,101,10,111,606$.
7. $437,908,899,763,497,829,827,999,888$.
8. $2233,3232,3333,4321,1234,5078$, S765.
9. 9999, 25671, 891347, 912342, 16713.
10. 191919, 2913士, 23476, $912 \div 45,1679942,3456713$.

RECAPITULATION AND EXAMINATION QUESTIONS.

1. Question. What is Arithmetic?

Ansicer. Arithmetic is the study of numbers.
2. Q. What are numbers?
A. Numhers are expressions or characters that represent one or more things of the same kind.
3. Q. What is unity or the unit of a number?
A. Unity or tho unit of a number is one of the equal things that the number expresses.
4. Q. In the number 19 horses what is the unit?
A. One horse.
5. Q. What is the unit in the number 26 shillings?
A. Ono shilling.
6. Q. What is the unit in 16 fays? 19 cows? 107 beans? 3 farthunge? 193 lbs ? 607? 43 bushels? 293? 769 pens?
7. Q. How many modes are there of writing numbere, and what are they?
A. There are two methods of expressing numbers, 1st, by worde, and 2 d , by oharacters.
8. Q. What is Notation?
A. Notation is the expression of numbers by characters.
9. Q. What is Numeration?
A. Numeration is the reading of numbers expressed by characters.:
10. Q. What different characters are used for the expression of numbers?
A Numbers are expressed either by letters or by figures.
11. Q. What is Roman Notation?
A. Roman Notation is the art of expressing nuralers in ans. tain letters of the alphabet.
12. Q. What are the zeven numeral letters employed in Finc in Notation, and what are their ralues?
A. $\mathrm{I}=1, \mathrm{~V}=5, \mathrm{X}=10, \mathrm{~L}=50, \mathrm{C}=100, \mathrm{D}=500$, and $\mathrm{M}=$ 1000.
13. Q. How many times may each of these letters, excej, $V_{\&}, \mathrm{I}_{\text {, }}$ and $D_{\text {, }}$ be repeated; and when thus repeated, what do they mean?
A. No letter can be repeated more than three times; and wbea a letter is thus repeated, its value is repeated.
14. Q. When a letter of a lower value is written before one of a higher, what does the netation imply?
A. When a letter of a lower value is written before nue of a higher, ite va?ue is to be subtracted from that of the higher.
15. Q. When a letter of a lower value is written after one of a higher, what does the notation imply?
A. When a letter or repetition of letters of a lower ralne comes after a letter of a higher value, the notation implies that their values are to be addcd.
16. Q. What effect has a bar or a dash over a letter or combination of letters?
A. A bar or a dash written orer a letter or combination of letters, increases the value a thousand fold.
2\%. Q. What lettere are never written before others?
A. V, L, D, are never written before letters of a hicher ralue.
18. Q. What letter is never written with a bar over it, and why?
A. I; becaase we have already an expression for 1000 , viz. is
19. Q. What are the figures used in Arahic Notation?
A. The figures employed in Arabic or Common Notation ar $1,2,3,4$, ⿹े, $, 6,7,8,9,0$.
20. © What are the figures $1,2,3,4,5,6,7,8,9$ called, ane *hy?
A. The fignres $1,2,3,4,5,6,7,8,9$ are called signiccunt figures, becanse aach of them represents one or mure iisdividual things.
21. Q. By what other name are they also known, and why?
A. They are also called digits, from a Latin word meaning "a finger," because many persons habitually count on the fingers.
22. Q. What is the character 0 called, and why?
A. The character 0 is called naught, nothing, eipher. or 7 erO , because it has no value in it-clf, and is merovy ent to give the digits their proper place.
23. Q. What is meant by the place of a digit?
A. A digit is said to occupy the firsi, semnd, third, fourtis. fifth, sixth, de., plare, according as it is the last digit to the right hand of the ummier, last bat one, last but two, laat hut three, last but tonr. last bat fire. \&c.
24. Q. What names are given to the different orders or places beginning at the right-hand side?
A. Unite, tens, hundrede, thousands, tens of thousands, hundreds of thorsands, millione, tens of millions, handreds of millione, billiones, \&c.
25. Q. In what ratio do numbers increase in value as we proceed from right to left?
A. In a tenfold ratio, i. e. ten units make one of the order of tens; ten tena, one of the order of bundreds; ten hundreds, one of the order of thousands, \&c.
20. Q. How does writing ciphers after a number affect its value?
A. Each cipher multtplies the number by 10 . Thus $9=$ nine, $90=$ ninety, $900=$ nine bundred, $9000=9$ thousand, \&c.
27. Q. What is a period of numbers?
A. A period of numbers is a set or sequence of three digits or ciphers.
28. Q. Why aro periods nsed?
A. Periods are used to facilitate the reading of numbers.
29. Q. What are the nomes of the periods beginning with the right-hand or lowest?
A. Units, thousands, millions, billions, trillions, \&c.
30. Q. What is the rule for reading any large number?
A. 1st. Begin at the right-hand side and point off into periods of three figures each.
2d. Then, commencing at the left-hand side, read each period in succession, unless it be wholly filled with ciphers, in which case pass it by altogether.
81. Q. What is the rnle for writing numbers?
A. Begin at the left hand and fill each period in succession with the digtts or ciphers that belong to it.

SIMPLE ADDITION.

21. Addition teaches us how to find the sum of two or more numbers.

MENTAL EXERCISES.

1. Count aloud ap to one hundred.
2. Now m:ns do 1 and 1 make? 2 and 183 and 1 ? 4 and 185 and 1? 6 and 1? \&ce.
3. IIow many do 2 and 2 make? 4 and $2 ? 6$ and $2 ? 8$ and 2 ? 10 a:d 2 e dic.
4. Mow many do 1 and 3 make? 4 and 3 ? 7 and 3 ? 10 and 3 ?
5. Jow many do 1 and 4 make? 5 and 4? 9 and 4 ? 13 and 4 ? se.
a How mapy do 1 and 5 make 6 and 5 ? 11 and 5? 16 and 5 ? sic.
6. How many do 1 and 6 make? 7 and $6 ? 13$ and $6 ? 19$ and $6 ?$ \&o.
7. How many do 1 a.sd 7 make? 8 and 7 ? 15 and 7 ? \&c.
8. How many do 1 and 8 make? 9 and 8 ? 17 and 8 ? \&c.
9. *How many do 1 and 9 make? 10 and $9 ? 19$ and 9 ? sec.
10. How many are $\S 7$ and $\$ 8$ and $\$ 5$ and $\$ 9$ and $\$ 2$?
11. How many are 6 apples and 2 apples and 3 apples and 5 apples and 7 apples and 9 apples?
12. How many are 6 pegs and 8 pegs and 7 pegs and 4 pegs and 3 pegs and 2 pegs and 9 pegs and 5 pegs and 1 peg?
13. 16 and 9 are how many ? 26 and 9 ? 37 and 9 ? 42 and 9 ? 71 and 9 ?
14. How many are 15 and 8 ? 23 and $8 ? 35$ and 8 ? 39 and 8 ? 17 and 8?
15. How many are 6 and 7 ? 21 and $7 ? 32$ and $7 ? 43$ and $7 ? 54$ and 7 ?
16. How many are 5 and $6 ? 7$ and $9 ? 18$ and $4 ? 23$ and 8 ? 37 and 3 ?
17. How many are 11 and 9 ? 13 and 8 ? 15 and 7 ? 17 and 6 ? 18 and 5?
18. How many are 9 and 5? 13 and 7? 27 and $9 ? 82$ and $7 ? 93$ and 9 ?
19. How many are 7 and 2 ? 9 and 8 ? 17 and 6? 23 and $9 ? 32$ and 7? 9 and 9 ?
20. Jane puid 7 cents for apples, 16 cents for cakes, 9 cents for nuts, and 8 cents for candy; how much did she pay for the whole?
21. William gave 23 cents for a ball, 9 cents for a top, 5 cents for a cord, 8 cents for a bat, and 9 cents for pencila; what did he pay for the whole?
22. A farmer receives $\$ 67$ for flomr, $\$ 9$ for potatoes, $\$ 7$ for hutter, $\$ 6$ for tumips, $\$ 9$ for stratw, $\$ 8$ for cheese, and $\$ 9$ for ponltry; how much docs he get fur the whole?
23. A gentleman bought 27 books in Junuary, 8 in Fehruary, 9 in March, 6 in April, 9 in May, 8 in June, 9 in July, 7 in Autgust, 8 in Septemher, 8 in October, 8 in November, aud 7 in December; how many diā he bay in all?
24. Fanny worked 7 prohlems on Monday, 9 on Tuesday, 8 on Wed esday, 9 on Thursday, 6 on Friday, and 8 on Saturday; how many did she work in the entire week?
25. The numbers to be added together are called the aldends, and the result of the addition is called the sum.

[^0]23. The sign + , eallerl plus, written hetween two mumbers, indieates that they anc: to be added together. Thus $2+6$, read 2 plus 6 , means that 2 and 6 are to be added tocether $; 6+9+5+7$ means that $6,9,5$, and 7 are to be added together.
24. The sign $=$, called the sign of equality, written between two quantities or expressions, indicates that they are equal to one another. Thus $6+7+9=22$, read 6 plus 7 plus 9 equals 22, means that the sum of 6,7 , and 9 is equal to 22.

RULE FOR SIMPLE ADDITION.

25. Write the addends under one another so that units come under units, tens under tens, hundreds under hundreds, de.

Add up each eolumn separutely, beginning at the righthand side. If the sum of the difits in any column does not cxeced 9, set it down under that colronn; but if the sume of the digits in any column docs cxeced 9, set down only the right-hand figure of the sum under that column, and carry the other or others to the next.

Proof.-First Method.-Begiu at the top and add the columus donomvards. The sum should be the same as that obtained before.

Second Method.- Cut off the top addend; add the others together, and to their sum add the top addend. The cutire sum thus obtained should be the same as that found by the rule.

Example 1.-Add together 4278, 1610, and 3001.
operation. Ilere we set domm the numbers aceording 4278 to the rule, and, adding up each column, we 1610 find the sum in each case docs not exceed 9, 3001 and accordingly set it down under its appropri-- ate column.

8889

Exercise 5.

(1)	(2)	(3)	(4)	(5)	(6)
123	1231	1111	1000	11000	906040
201	3412	-2222	213	1200	90349
22.2	1111	3100	4010	600	1306
383	3031	3103	1201	26104	2

7. How many are $713+80+3$?
8. How many are $12100+2210+1001+421+10002$?
9. How many are $1020+304+1111+3212$?
10. How many are $222+1111+3333+1212+90000$?
11. How many are $60004+8000+741+21000$?
12. Add tugether twenty-three, four hundred and sisteen, and three thousand and sixty.

Example 2.-Find the sum of 478,693 , and 492.
opiniation. Here we set down the numbers according to 478 the rule, and, adding up the first column, we 693 find its sum to be 13 , of which we set down the 4923 under the first column and carry the 1 to the - second. The sum of the second column, with

1663 the one carried, is 26 , of which we set down the right-hand figure, 6 , under the column added, and carry the 2 to tlis next. The third column, added, amounts to 16 , whieh we set down in full.

Example 3.-Add together 7149, 7132, 614, 9137, 123. ...d 59813.
oreliation. Here the first column amounts to 29 , of 7149 which we set down the right-hand figure 9 , 7132 and carry the 2 to the second columm. The G14 sum of the second column, with the 2 carried, 9137 is 17 , of which we set down the 7 and carry 1234 the 1 to the third column. The sum of the 79815 third column, with the 1 carried, is 20 , of 1050) 9 and earry the 2 to the fourth column. The sum of the fourth column, with the 2 carried, is 35 , of which we set down 5 or right-hand figure and carry the 3 to the fith column. The sum of the fifth or last column, with the 3 cilriod, is 10 , which we set down in full.

Exercise 6.
(1)

12345
67134
91317
19134
(5)

71461
9147
90061
876
4713
(9)

80476 9007
986147
91067
86 4071 937
(13)

987654	8000700
32109	600090
8765	1129000
432	47896
10	8104906
9	23497
87	9867
654	999999
3210	88888
98765	710
482109	9134761

(6)

11111
2222
333
44444
$-\quad 5555$

(10)
123456
789123
456789
123456
789123
456789
987654
(14)

8000700
1129000
8104906
4-7
99999
710
134761
(3)

718645
191371
234716
918130

(7)

78912 3456

78
9
98765
(11)

34567
8000
69
470000
109687
48001
290
(15)

8147137
913714
9100070
8000000
667755
44332
3355778
986754
71347
981675
19198
(4)

91600
7149
86004 19130 (8)

13456
7
987
29
98613
(12)

728
674
1674
19006
1916
986986 97979
(16)

98765
137867
149167
891371
919198
171296
147867
182371
929292
292929
7ร7ร77
17. Find the sum $1247+91679+27+1987+1800+1796$.
18. Fe pd the su af $13147+9+61940+27+1416+934+1346+$ $16137+2$ 24 $\mid 16649+8+967$.
12. Now many are $6+27+93+47+679+496+9993$?
20. How many are $12+21+679+975+769+9198+4615+$ 9560?
21. Ald together four hundred and sixty, seven thousaud and nincteen, four thousaind eight hundred and fifty, nine thoufand and twenty-six, feven thourald nine hundred and ninety-wine, one thousund four hundred, six thousaid and twenty-one, fire thoueand and eighty-seveis, and four thousand five huudred and sixty-seven.
22. Add together twenty-seven thousand and sixteen, eight thon. sand and seven, sixty thousand four hundred and twentyfive, cighty-four thonsand six hundred and eleven, nineteen thousand and nineteen, fifty-five thousand eeven hundred, and uinety thousand seren hundred and four.
23. Add together sixty-seven thousand and nine, forty-nine thousand aix hundred and eighty-six, fire hundred anditwentyfive thousand and sixteen, three thousand and eleven, eighty. five thousand eeven hundred and twenty-seven, and sixteen thousand and seven.
24 Add together two handred and seven thoufand six hundred and nine, eleven millions and sisteen, five millions four hundred thousand seven hundred and twer,ty: fixty-pix millions two hundred and twenty-nine thousand and eighty-seven, nine hundred and eighty-seven milions six hnndred and serenteen, and five thousind seven hudred and thirty-five.
65. In apple woman sold fort 5 -seven apples on Monday, eightynine on Tuerday, two hundred and serenteen on Wednes. day, one hundred and four on Thur-day, one hundred and twenty on Friday, and two hundred and eighty-seven on Satnrday : how many did she sell during tle week?
26. A farmer sent five loads of oats to market. The first load contaiued 63 bushels, the recond 58 busliels, the third 79 bushels, the fourth 57 bushels, and the fifth 83 bushele. How many bushels were there in the five loads?
27. The imports of the six prineipal ports of Canada for 1555 were as fullows: Moutreal, $\$ 13526156$; Toronto, $\$ 6420224$; Quebee, $\$ 4506376$; Hamillon. 83545508 ; Kinqeion, $\$ 849392$; and Iort Stanley, $\$ 524264$. What was the total ralue of the imports at these six places?
25. During 1848 there were exported from Canada 2245016 bushels of wheat ; in 1849 there were exported $20450: 2$ bushels: in 1550, 454224 bufhels; in 1851, 4258893 bushel- ; and in 1852. 599611 b bu-hels. Ilow many hushels of wheat wero exported from Canada during the five years ending 155:?
29. A furmer has four flelds of turnips; the firct yields lim $i 49$ hushela, the ecenud 1147 bushels, tho third 890 bushels, and the fourth 1273 bushels; how many bushels of tunips did be obtain from the fuur fielde?
30. At one of the large boot and shoe factorice in Xe: ireat, tho work turned out during a weck wats as follows: Bluthaty, 1497 pairs of shoes, Tuesday, 1509 pairs, W'eduesd;y, 1164 pairs, Thureday, 1447 paire, Friday, 1523 paire, and salurdny, 1499 pairs; how many pairs of shoes were made in this fartory during the week?
31. When will a person who was born in the year 1793 be 84 years of age?

(32)	(33)	(34)	(35)	(36)
12	987	27145	753	16
34	613	91913	197	61
56	479	16719	531	81
78	813	91871	975	47
91	271	49181	319	29
23	956	37162	864	87
45	129	34567	208	46
67	533	89134	642	98
89	400	56789	186	63
98	916	12345	421	42
76	713	67890	987	17
54	934	12345	565	93
32	716	67891	321	82
10	291	25456	123	54
98	816	78912	456	70
76	999	34567	789	62
54	816	89123	808	16
32	554	45678	707	17
11	735	91234	606	91
23	613	56789	404	87
45	491	71642	505	63
66	916	97531	660	22
77	813	24650	770	71
88	397	90406	880	33
99	491	71430	990	42
35	378	61311	169	71
79	613	44433	178	93
24	491	91671	144	45
68	351	32916	916	67
90	673	57127	723	16
81	916	91316	444	49
35	814	12471	718	98
71	716	91399	999	86
36	537	12916	800	73
98	981	71307	437	34
	-	-10		

Note.-These long eolumns are designed to practise the pupil upon rapidity in adding. Ifo is not to spell them up by saying 8 and G inake 14,14 and 1 make 15,15 and 5 make 20 , \&ce, but to read them up by simply touching each digit with his pencil and naming the sum ; thus, 8..14..15..20..21..29..33..42, dic.

REOAPITYLATION AND EXAMINATION QUESTIONRS.

1. Qu"s iou. What is Addition?

Ansucer. Adhition is the process of finding the eum of two or nore nambers.
2. 2. What are the numbers to be added called?
A. The uumbero to be addulare called addends.
3. Q. What is the result of the addition called?
A. The result of the addition is called the sum.
4. C. When two or more numbers are to be added together, what is the first thing to be done?
A. When ummlers are to be added, we firet write them under one another so that units come under units, tels under tens, sec.
5. Q. What is the next part of the rale for addition?
A. We next draw a line under the addends to separate them from the sum.
6. Q. What is the next thing done?
A. We next add up the units' column, set down the right-hsnd figure of the sum uniter the column of units, and carry the other figure or figures to the tens' column.
7. Q. What is next done?
A. We next add up the tens' column, together with what we carried from the unite, write down the right-hand figure of the sum under the column of tens, and carry the other figure or figures to the hundreds' column.
8. Q. Why do we set down the right-hand figure ander the column added, and carry the other figures to the next colunn to the left?
A. Because, when we have added up any column, the righthand tigure expresses units of that order, and the other figure or fizures so many tens, and ten of any one order make one of the next higher.
9. Q. How is the sign of addition written, and what is its name?
A. The sign of addition is written thus + , and is called plus.
10. 2. What is the sign $=$ called, and what does it mean?
A. The sign $=$ is called the sign of equality, and it means that the quantities between which it is written are egual to onc another.
11. Q. Explain what is meant by the following expression:
$17+200+40+3=167+9+11+33+40$.
A. It means that the sum of $17,200,40$, and 3 , is equal to the sum of $167,9,11,33$, and 40 .
12. Q. How may addition be proved?
A. We may prove addition by adding the columne over again from the top downward.
13. Q. In what other way may addition he proved?
A. We may prove addition by cutting otl the top addend. add fise the others together, and then to their sum adding the top addend. The entire sum thus obtained should agree with that found by the rule.

SIMPLE SUBTRACTION.

26. Subtraction is the process of finding the difference lie, reen two numbers.
27. The sign -, called minus, written between two numbers, indicates that the one following the sign is to be autracted from the one preceding it. Thus $16-9$, read 16 minus 9 , means that 9 is to be subtracted from 16 .
28. The number to be subtraeted is called the subtrahend, and the other number the minuend. What is left after the subtraction, is called the remainder or difference.

MENTAL EXERCISES.

1. From 100 take 1, and how many remain? From 99 take 1, and how many remain? From 98 take 1 , and how many remain? \&ec.
2. From 100 take 2, and how many remain? From 98 take 2, and huw many remain? From 96 take 2, and how many remain? \&cc.
3. From 100 take 3, and how many remain? From 97 take 3 , and how many remain? \&c.
4. From 100 take 4, and how many remain? From 96 take 4 , and how mamy remain? \&e.
5. How many aro $100-5 ? 95-5 ? 90-5 ? 85-5$? \&c.
6. How many are $100-6$? $94-6$? $88-6$? \&.c.
7. How many are $100-7$? $93-7$? \& : e.
8. How many are $100-8$? $92-8$? isc.
9. How many are $100-9$? $91-9$? \&c.
10. How many are $87-2-3-4-5-9-8-7-6-4-5$?
11. How many are $80-9-6-7-1-2-4-5-6-7-4$?
12. How many are $9+3+4+9+7+6-7-4-3-7-9-1-4$?
13. How many are $6+1+5+2+1+3+7-2-1-3-7+9+8$ $-9-4$?
14. Nuw many are $6+7+4-9-8+2+9-S+6+7-3-2+7$ -9 ?
15. Fow many are $19+6+7-3-4-7+8-6-2+1+9-3-$ $4-2+7-8$?
16. Fa me inas 17 apples and Martha 9 ; how many more apples has Fannic than Martha?
17. Enma worked 7 questions in arithmetic each thy of tl e weeck, while Maggie worked 3 questions on Monday, 5 on T'uesd:y, 10 on Wednesday, 7 on Thursday, 3 on Friday, atd 9 on Saturd:y; how many more questious did Emma solve during the week than Maggie?
18. Thomas went to market with 27 dollars. He paid 7 dollars for joultry, 3 dollars for regetables, 4 doltars for fruit, and 1 dollar for fish. How much money lad he left?
19. Gerre has 83 cente, and he qiven 9 cents to Florence and 8 conts to Clarles. How many has he remaining?
20. A farmer lasd a flock of 34 sheep. He lost 7 , fold 9 , gave away 8 , killed 4, and kept the rest. How many did he keep?
21. Lizzie has 37 cents. She spends 4 cents for a pencil, 7 cents for paper, 3 cents for ink, 9 cents for a copy-hook, and the remainder for a slate. How much did slie give for the rlate?
22. A man has 35 cords of wood to saw, an:d wishes to finish it in 5 weeke. IHe naws 3 cords the first week, 5 corde the scco: d, 8 corrls the third, and 9 cords the fourth. How many cords remain for lim to saw in the fifth week?

RULE FOR SUBTRACTION.

29. Write the subtrahend under the minuend so that units come muder units, tens under tens, de.

Commence at the right-hand side, and subtract each fig wre of the subtratiend from the corresponding figure of the mirnucnd, and set doun the remainder in the same colwmus If in any case a figure of the subtrahend is grocuter that this correxponding figure of the minumd, increase the latter by 10, and then carry one to the next figure of the subtratioud.

Proof.-Add the mifference to the stbtrahend, and the sum should cqual the minuend. Or,

Subiract the mfference from the mincexd, and the remainder should equal the subtrahend.

Example 1.-Find the difference between 167947 and 32717.
operation.
16ヶ947 Mimwend.
32717 . Subtrahend.
12nセ330 Difference.
167947 Proof. since the orm the diference to the subtrahend and conclude the work is correct.

Exercise 7.

(1)	(2)	(3)	(4)
69147934	4613598	619145	6191590
15003932	1203068	19143	6190840
		(7)	
(5)	(6)	(7)	
9476543	129147	914718	8989, ${ }^{\text {cos }}$
54321	20034	212208	287103

- From eight hundred and seven millious nine hundred and sixiy-five thousand seven hundred and seventy-eight, take six humbed and three millions eight hundred and sixty-one thous:ind seven bundred and twenty-hive.

19. From five millions seven hundred and four thousand nino humered and eighty, take five millions three hundred and four thousand six huadred and forty.

Example 2.-From 723 take 571.
operation. Here in the second column, we cannot 723 take 7 from 2, so we increase the 2 by 10 571 and thus make it 12 . Then we say 7 from - 12 and 5 remain. Next we add 1 to the 1525 in the subtrahend, and say 6 from 7 and 1 remains.
Example 3.-From 71006 take 9867.
operation.
71006
9867

61139

\qquad

Here we say 7 from 6 we cannot, but, inhave 7 from 10 and 3 remain. Then 9 from 1) we eamot, but 9 from 10 (i. e. 0 and 10) and 1 remains. 10) fro:n 1 we sannot, but 10 from 11 and 1 remains. Lastly, 1 from ? and 6 remain.

Exercise 8.

(1)	(2)
676643	S16427
12571	13518
(5)	(6)
\&16:119	1910342
1414067	191008

(3)
16134
5317
(i)
510006
79567

(8)

9000470
916439

1.	(10)	(11)	(12)
800013007	8043007	960007008	600400078
9149136	3429168	9959986	19140607

13. Find the difference between 70460 and 9086.
14. Find the difference between 800000 and 98647.
15. Find the difference between 407080 and 998 .
16. From seventy-six millions and eight take eleven millions nine hundred and seventy-eight thousand five hundred and twenty-nine.
17. From four millions seventy thousand and ninety take six hundred and eighty thousand eeren hundred and four.
18. From twenty-seven millions forty-three thousand ard six take twenty millions seven hundred thousand and eighty.
19. A farmer who had nine hundred and sixty bashels of potatoes sold five hundred and serenty-six bushels. How many buplecls had he remaining?
20. From a lib,rary containing forty-seven thousand and ninety volumer, twenty-eikht thousand eeren hundred and ninetysix were sold. How many volumes remained?
21. The entire polulation of Pritioh North America is about 4260000. The population of Canada is 3000000 ; Wlat is the 1.n)ulation of the remaining provinces of British North America?
22. Itenry lias 276 marbles; he gives 17 to Tom, 61 tn Willic, 63 (i) Kobert, and 24 to Jolin ; how many has he left ?
23. A merchant paid 12 dollars for fige, 17 dollars for raisins, 26 Whllars for apice, 164 dollars for sugar, 710 dollars for tea, (tM) dat ars for coffce and wine. He carried with him 2 of 1) allars; after paying for all these goods how mueh had he l.ft ?
24. Three merehants began bnsiness with a eapital of \$793; the firal hand sillt, the recoud had sis17, what did the ihird lave?
25. A man paid \$1-896 for a steamboat and afterwards fold it for s14nid. how much did he lope ly his hargain?
26. If you add 759 to 861 and then subtract 708 from the sum, what will remain?
27. What anril aulded to 6179 will make twenty-seven millions ant mevelle -11 ?
28. The lourthaion of Toronto ta 5000 , Montreal Su000, Hamilton
 ton lamin) ; how mull less is the (mitre population of these s.wen chtee thet that of New York, wheh is G00000?
29. What tive tmonhers wach greater than 100 together make 743?
30. Remolve the momin rotis into aty four addeuds none of which alall be leise than tive.
31. The minuend is 74967 and the remainder 6943 , what is the subtraheud?
32. The subtrahend is 64009 and the remainder 7143 , what is the minuend?
33. What sum will leave 1727 when 917 is taken from it ?
34. Four loads of wheat together weighed 9169 lbs . The first weighed 2007 lbs., the second 1963 llis ., and the third 2614 lba , : what was the weight of the fourth?
35. What two num , neither of them less than 740, will together make

(36)
1789437
-12371
-29867
-14371
-3198
1729630

-i)	(38)	(39)
[. 71	167142	987671
-. 12	-9347	-81432
-91314	-91671	-13427
-6713	-91S1	-90000
-8147	-76	-6714

Note. -1 dd np these numbers and subtraet at the ame time, Thus in qnestion 36 proceed as follows: 8 and 1 make 9 and 7 make 16 and I make 17 ; 17 from 7 we can't, borrow 10 , then 17 from 17 and 0 remains; 1 (rarried) and 9 make 10 and 7 make 17 and 6 make 23 and 7 make 30 ; 30 from 3 we can't, borrow 3 of the next order, then 30 from 33 and 3 remains; 3 (carried) and 1 make 4 and 3 make 7 and 8 make 15 ; and so on.

(40)	(41)	(42)	(43)
194362	734713	3427	314267
-7143	-23142	-6742	-267
21713	-61714	$9813 \pm$	-98
61429	91317	278	417132
21347	-23916	-6179	-98067
205588	-	-	

Note.-In these questions, bearing in mind that the numbers preceded by the sign - are to be taken in a subtractive sense, and those withont any sign in an additive sense, proceed as folJows: $-7+9=2$ and $-3=-1$ and $-3=-4$ and $+2 \xlongequal[=]{=}-2$ and 2 from $10=8$ to set down; next one borrowed, and therefore -1 , and $-4=-5$ and $+2=-3$ and $-1=-4$ and $-4=-8$ and $+6=-2$ and 2 from $10=8$ to set down; next -1 ($\mathbf{1}$ borrowed) and $-3=-4$ and $+4=0$ and $-7=-7$ and $-1=-8$ and $+3=-5$ and 5 from $10=5$ to set down, \&e.
(44)
2387674.297198716714301008647132097679 191805169120491816127189161713429181
(45)

01200012001 \& 1002106012041 ล2171320S16 $8079113406914: 18913 \pm 41346129131421956$
(46)

12345667890001230004560007890000043007 1119189167452371342912345675911254569

(47)

8091002000300040000500000678009720003
914867198671491813471986714986914271
(48)
$9 \$ 181000000000006000700040098167007100$
1234567590120071901300410910007180981
Note,-Questions 44-48 are intended to exercise the pupil in rapidity in subtraction. Simply touching the digit in the subtrahend and that in the minuend, he should at once name the figure to be set down. Thus, $1 . .9 . .8 ; 8 . .17 . .9 ; 2 . .6 . .4 ; 9 . .17 . .8$; 3..8..5, dic.

RECAPITULATION AND EXAMINATION QUESTIONS.

1. Question. What is Subtraction?

Ansucer. Subtraction is the process of finding the difference between two numbers.
2. Q. What is the number to be subtracted called?
A. The number to be subtracted is called the subtrahend.
3. Q. What is the number from which the subtrahend is to bs taken called?
A. The number from which the subtrahend is to be taken is ealled the minuend.
4. Q. What is the number resulting from the enltraction called
A. The number resulting from the subtraction is called the diference or remainder.
5. Q. How is the sign of subtraction written, and what is it named?
A. The sign of subtraction is written thas - and is called minus.
6. Q. What is the tirst part of the rule for subtraction?
A. We are first directed to write the subtrahend under the minuend so that onits come under unite, teus ander tene, sic.
7. Q. What is the sccond part of the rule for subtraction \&
A. After drabing a line below the subtrahend to selarate it from the remainder, we enbtract the righi-hand figure from that over it and set down the remainder in the eame column ; then we sulitract the tens' figure of the suhtrahend from the tens' figure of the minuend, bext the hundreds; and so on.
8. Q. When any figure in the subtrahend is greater than the figure of the minnend directly over it, how do we proceed?
A. When the aubtraloend-figure is greater than the correaponding minuend-figure, we increase the latter by 10 and then add one to the next subtrahend-figure to the left.
9. Q. How may eubtraction be proved \&
A. We may prove subtraction by adding together the remainder and the subtrahond: the eum should be equal to the minuend.
10. Q. How may subtraction be proved by subtraction ?
A. By subtracting the remainder from the minuend ; the rosult should equal the subtrahend.

SIMPLE IIULTIPLICATION.

30. Multiplication is a short process of taking one numb Ber as many times as there are units in another.
31. The number to be multiplied is called the multipricurel.
32. The number by which te multiply is called the oneitionlier.
33. The number resulting from the multiplication is ctalled the produci.
34. The multiplier and the multiplicand are called the feectors of the product.
35. An integer or integral number is a whole number. fntegers are either prime or composite.
36. A prime number is a number which cannot be exacery divided by any integral number except unity and itself. This $1,2,3,5,7,11,13,17,19,23,8$ c., are prime numbers.
37. A composite number is the product of two or more Integral numbers, neither of which is unity. Thus $4,6,8$, $0,12,14,15,16,18,20,21,24,25$, de., are composite numbers.
38. The sign x, called the sign of multiplication, writrel Lewten two mimbers, indicates that they are to be multiplimi together. Tlus 16×7, read 16 multiplied by 7 s arams that 15 is to be multiplied by 7.

MULTIPLICATION TABLE.

	times 4 1 are 1 1 $2-6$ 2 $3-9$ 3 $4-12$ 4 $5-15$ 5 $6-18$ 6 $7-21$ 7 $8-24$ 8 $9-27$ 9 $0-30$ 10 $1-33$ 11 $2-36$ 12	times 5 are 4 1 -8 are 5 -8 $2-10$ -12 $3-15$ -16 $4-20$ -20 $5-25$ -24 $6-30$ -28 $7-35$ -32 $8-40$ -36 $9-45$ -40 $10-50$ -44 $11-55$ -48 $12-60$	6 times 1 are 6 5 2 5 -12 3 -18 4 -24 5 $6-30$ 5 $7-36$ 0 $8-42$ 5 $9-54$ 0 $10-60$ 5 $11-66$ 0 $12-72$	$\begin{array}{rr} 7 & \text { times } \\ 1 & \text { ure } 7 \\ 2 & -14 \\ 3 & -21 \\ 4 & -28 \\ 5-35 \\ 6-42 \\ 7-49 \\ 8-56 \\ 9-63 \\ 10 & -70 \\ 11 & -77 \\ 12-84 \\ \hline \end{array}$
$\begin{aligned} & \hline 8 \text { times } \\ & 1 \text { are } 8 \\ & 2-16 \\ & 3-24 \\ & 4-32 \\ & 5-40 \\ & 6-48 \\ & 7-56 \\ & 8-64 \\ & 9-72 \\ & 10-80 \\ & 11-88 \\ & 12-96 \end{aligned}$	$\begin{array}{r} 9 \text { times } \\ 1 \text { are } 9 \\ 2-18 \\ 3-27 \\ 4-36 \\ 5-45 \\ 6-54 \\ 7-63 \\ 8-72 \\ 9-81 \\ 10-90 \\ 11-99 \\ 12-108 \end{array}$	$\begin{array}{\|r\|r\|} \hline 10 \text { times } \\ 1 \text { are } 10 \\ 2-20 \\ 3-30 \\ & 4-40 \\ & 5-50 \\ 4 & 6-60 \\ 2 & 7-70 \\ 1 & 8-80 \\ 9 & 10-100 \\ 9 & 11-110 \\ 8 & 12-120 \end{array}$	11 times 1 are 11 $2-22$ $3-33$ $4-44$ $5-55$ $6-66$ $7-77$ $8-88$ $9-99$ $10-110$ $11-121$ $12-132$	$\begin{array}{r} 12 \text { times } \\ 1 \text { are } 12 \\ 2-24 \\ 3-36 \\ 4-48 \\ 5-60 \\ 6-72 \\ 7-84 \\ 8-96 \\ 9-108 \\ 10-120 \\ 11-132 \\ 12-144 \end{array}$

MENTAL EXERCISES.

1. How many are twice 2 ? t wice 3 ? t wice 4 9 twice 5 ? twiso 0 ? \&
2. How many are 3 times 2 ? 3 times 313 tlmes 4 ? \&e.
3. How many are 4 times 2 ? 4 times 3 i 4 times 4 ? \&ic.
4. How many are 5 times 2 ? 5 times 3 ? 5 times 41 \&on
5. How many are 6 times 2 ? 6 times 3 ? 6 times 4 ? sc.
6. How many are 7 times 2? 7 times 3? 7 timea 4 ? dc.
7. How many are 8 times 2 ? 8 times 378 times 4 ? 8sc.
8. How many are 9 times 2 ? 9 timees 3 ? times 4 ? \&e.
9. Hor many are 10 times 2 ? 10 times ? ? 10 times 4 ? \&o.
10. How many are 11 times 2 ? 11 times 3 ? 11 times 4 ? de.
11. Nuw many are 12 times 2 ? 12 timos 3 ? 12 times 4 ? \&c.
12. How many are 3 times it 7 times 3 ? How many 7 's in 21 ! How many 3 's in 21 ?
13. How many are 8 times 9 ? 9 times δ ? How many 9 's in 72? How many s's in 72 ?
14. How maly are 6 times 737 times 6? How many 6's in 42? How many 7 's in 42 ?
15. How many are 8 times 8 ? Wow many 8 's are there in 64 ?
16. How many are 12 times $\%$ \& times 12 ? How many 12 's in 108 ? How many 9's in 10s?
17. How many are 11 times 11? How many 11 's in 121 ?
18. How many are 8 times 6 ? 6 times 8? How many 8 's in 48 ? How many 6 's in 48 ?
19. How many are 9 times 9 ? How many 9 's in 81 ?
20. How many are 7 times 8 ? 8 times 7? How many 8 's in 56 ! How many 7 's in 56 ?
Note. - The teacher should continue this exereise until his pnpils are thoroughly famillar with the multiplication table.
21. What are the factors of 4 ? (Ans. 2×2.) What are the factors of 8 ? (Ans. 4×2 or $2 \times 2 \times 2$.) What are the factors of 48 ? (Ans. 8×6, or 12×4, or $4 \times 4 \times 3$, or $2 \times 2 \times 4 \times 3$ or $2 \times 2 \times 2 \times 2 \times 3$, or 16×3, or 24×2.)
22. What are the factors of 18 ? of 20 ? of 24 ? of 32 ? of 36 ? of 81 : of 144 ?
23. What are the factors of 72 ? of 84 ? of 56 ? of 29 ? of 108 ? of 121 ?
24. What are the factors of $15 ?$ of 35 ? of 42 ? of $27 ?$ of 88 ? of 100 . of 64 ?

RULE FOR MULTIPLICATION.

39. When the multiplier does not exceed 12 .

Place the multiplim under the right-hand firure of the *2iltiplicand, and drav a linrizontal liue benecith.

Begin at the right-liand side, and multinl!l cach figure of the multiplicand b! the multiplier, set down the riahtband figure of the partial prodluct umise that frgure of the multiplicand vilich produced it, and earry the remaining figure or figures to the uext pariiel product.

Example.-Multiply 1497 by 12.

operation. Multiplicand 71497 Multiplier $\quad 12$ set down 4 and carry $8 ; 12$ times 9 are 108 and 8 carried are 116 , of which we set down the 6 and carry Product 857964 the $11 ; 12$ times 4 are 48 and 11 carried make 59, of which we set down the 9 and carry the $5, \delta$.

Exercise 9.

	$\begin{array}{r} (2) \\ 91818947 \\ 3 \end{array}$	$\stackrel{(3)}{91134719}$	$\stackrel{(4)}{67143917} 5$
$\begin{gathered} (5) \\ 918765421 \\ 6 \end{gathered}$	(6) 879165495	$\begin{gathered} (7) \\ 1235 \% 986 \\ 8 \end{gathered}$	$\begin{gathered} (8) \\ 987165408 \end{gathered}$
$\begin{gathered} \text { (9) } \\ 1671491345 \end{gathered}$	$\begin{gathered} (10) \\ 7861+91891 \\ 11 \end{gathered}$	$\begin{gathered} (11) \\ 4291498671 \\ 12 \end{gathered}$	$\begin{array}{r} (12) \\ 76674918 \\ 8 \end{array}$

13. What is the product of 791876×3 ? $\times 2 ? \times 4 ? \times 12 ?$
14. What is the product of $\$ 18619847 \times 7\} \times 8 ? \times 9$? $\times 11$?
15. What is the product of $6179 \times 37 \times 5$? $\times 7$? $\times 9 ? \times 12 ?$
16. What is the product of $6987159 \times 10\} \times 7 ? \times 8\} \times 6$?
17. Multiply 714719 by 12.
18. Multiply 1913476 by 9 .
19. How many are 8 times 76598 ?
20. How many are eleven times four hundred millions seren thou sand and nincty-six ?
21. What is the product of $714 \times 7 ? \times 11 ? \times 6 ? \times 5\{\times 12 ?$
22. When the multiplier is a composite number, none fof whose factors are greater than 12 :-

ntLLE.

Afultigly the giren multiplicand by any one of the fac. tore of the multijulier: then multiply the product thus obtaineil by a serome furtor of the multiplice, and this second
 all the factors of the "..st':-siuter are used.

aeration.
671908 Here the multiplier is 56 , of which the 8 factors are 8×7, and, according to the rule, we first multiply the given number by oise factor, and then the result by the other factu:

37626848
Exercise 10.

1. Multiply 719567 by 48 .
2. Multiply 916704 by 84 .
3. Multiply 714367 by 27.
4. Multiply 161714 by 16.

ऽ. Multiply 71698 by 81.
6. Multiply 81897 by 121.
7. Multiply 716914 by 144.
8. Multiply 167149 by 54.
9. Multiply 191878 by 42.
10. Multiply 801476 by 64.
11. Multiply 918978 by 108.
12. Multiply 765439 by 132.
13. How many are neventy-two times six hundred and four thousand five hundred and seveuty-nine ?
14. How many are forty-nine times eight millions nine hundred and sixty-eight thousand four hundred and seventy-six?
15. What will 49 horses cost at $\$ 147$ each ?
16. What will 63 cows cost at $\$ 48$ each ?
17. What will 987 hogsheads of sugar cost at $\$ 50$ a hogshead?
18. Suppose a book to contain 412 pages, each containing 42 lines, and that each line contains 56 letters, how many letters are there in the whole book?
19. If an apple-woman sells 121 apples a day, how many will she sell in a year, which, omitting the Sundays, contains 313 days
41. When the multiplier exceeds 12 , and is not a composite number:-

RULE.

I. Set the multiplier under the multiplicand so that units come under units and true under tens, de.

1. Multiply the multiplicand by each figure of the multiplier separately, and set down each partial product
thus obtained so that the first figure falls directly undse that figure of the multiplier by which it was obtained.
III. Adl the several partial produets together as they stand The sum will be the entire product sought.

PROOF OF MULTIPLICATION.

'. 42. First Method.-Multiply the multiplicand by one less than the multiplier, and to the product thus obtained add the multi. plicand. The result should be the same as the product obtained by the rule.

Second Method.-Cast the 9's out of the multiplicand and set down the remainder, also out of the multiplier and set doun the re. mainder; maltiply these tico remuinders together, and cast the 9's out of their product. The remainder thus found should be the same as that obtained by casting out the 9 's from the product of the multiplicand by the multiplier.

Thus to prove Example 1, we proceed as follows :

$7+4+9+6+3=29$, and $29+9$ gives a remain. der, 2 , which we write down to the left of a cross, aq in the margin.

Next, $2+9=11$, and $11+9$ gives a remainder, 2 which we write to the right of the cross.

Next, $2 \times 2=4$, and $4+9$ gives a remainder, 4 which we write above the crosis.

Lastly, $2+1+7+3+9+2+7=31$, and $31+9$ gives a remainder, 4 , which we write beneath the cross. Then, sinee the number abovo the cross agrees with that below it, we conclude the work is correct.

Example 1.-Multiply 74963 by 29.
operation. 74963

119926
2153927

Here we first multiply the given multipli cand by 9 , setting 7 , the first figure of the partial product, directly under the 9 ; next we multiply the given multiplicand by 2 , and sei down the partial product so that its first figure, 6 , falls directly under the 2 by which we are multiplying: lastly, we add the two partial products together 'ust as they stand.

Example 2.-Multiply 714987 by 23004.

OPERATION.
714987 23004

2859948 2144961 1429974

16447560948

Here we first multiply 714987 by 4, setting the first figure of the partial product under the 4 ; we next multiply by 3 , setting the first figure of the second partial product under the 3 , and so on; finally, we add the partial products together as they stand.

Note.-Since the multiplicand multiplied by 0 is equal to 0 , we pase by the 0 's in the multiplier.

Exercise 11.

$\begin{array}{r} (1) \\ 7191486 \\ 23 \end{array}$	(2) 314976 89	(3) 819715 698	(4) 7819164 908
	(6)	(7)	(8)
C540910	7190867	8491791	28700046
8040	8016	91008	90870
(9)	(10)	(11)	(12)
11400000	123456789	91845067	9870643987
900708	98067	900004	9060409

13. Wrat is the prodnct of 71476×91878
14. What is the product of 91476×8190 ?
15. What is the product of 8100070×81009 ?
16. What is the product of 5858857×506007 i
17. Mulitizy six millions three hundred and seven thousand nine hundred and eighteeu by twonty thousand seven hundred and ninety.
18. Multiply serenty.eight thousand four hundred and eighty-sis by twenty times seven thousand and nineteen.
19. Multiply seven handred and forty times nine bundred ana seven by thirteen times two hundred and seventeen.
20. If an acre of wheat picld 29 bushels, how much will 149 axe produce?
21. What will 21. jborree cost at $\$ 105$ emoh ?
22. If 1 hhd. of sugar cost $\$ 83$, what will 1149 hhds. cost ?
23. Montreal is 360 miles distant from Toronto; bow many perches are there in this distance, the mile containing 320 perches?
24. If a city contains 97 strects and on an arerage 304 bouses on each street and 17 persons in each house, what will be the entire population of the city ?
25. If a library consists of 183 shelves, each shelf coutaining 53 volumen, and if the average number of pages of reading is 307 to a volume, how many payes of reading does the library contain?
26. If a township contains 23 echools, and each school averages 47 pupils, how many children are there attending school in the township?

> (27)

987671513407198767985699756
(28)

817614923569871908147634567
11
(29)

130579S64213579843212345678
(30)

811476193457599986885776654
12
Note.-These long lines are intended to excreise the pupil in rapld multiplication. He should be required to name the figure to set down witb as few intermediate words as possible. Thus, instead of saying 8 timos 6 are $4 S$, eet down 8 and earry $4 ; S$ times 5 are 40 and 4 make 44 , set down 4 and earry 4 , \&c... be should be taught to simply tonch each figure with his pencil and merely name the digit in the multiplicand, the multiplier, and the figure to be set down, as follows : $8 \ldots 6 \ldots 8,8 \ldots 5 \ldots 4,8 \ldots 7 \ldots 0,8 \ldots 9$ $\ldots 8$ \& \&.

RECAPITLLATION AND EXAMINATION QUESTIONS.

1. Queslion. What is multiplication?

Ansuer. Multiplication is a hort method of taking one number as many times as there are units in another.
2. Q. What is the number to be multiplied called?
A. The number to be multiplied is ealled the multiplicand.
3. Q. What is tho number by which yon multiply called?
A. The number by which we multiply is called the multiplier.
4. Q. What is the resuil of the multiplication called?
A. The number resulting from the multiplication is called the product.
6. Q. What are the factors of a number?

1. The factors of a number are those numbers whicb, multiplied together, produce it. Thus the nultiplior and multiplicand are the factors of the product.
b. Q. What is an integer or intecral number?
A. An integer or integral number is a whole number.
2. Q. Of how many kinds are integers ?
A. Intogers are of two kinds, prime or composite.
3. Q. What is a prime number?
A. A prime number is a number which has no integral factors except itself and unity.
4. Q. What are all the prime numbers less than 100 ?
5. Q. What is a composite number?
A. A composite number is the product of two or more integral factors neither of which is unity.
6. Q. What are all the composite numbers Jess than 100 ?
7. Q. How is the sigu of multiplication written?
A. The sign of multiplication is written thus, \times.
8. Give the rule for multiplication when the multiplier does not exceed 12. (Sce Art. 39.)
9. Q. In this and the other rules for multiplication, why do we begin multiplying at the right-hand side?
A. We begin at the right-hand side in multiplication for the aame reason that we begin at the right-hand side in addition, i. e. in order to take advantage of the principle of earrying.
10. Q. What do you understand by the principle of carrying?
A. When we have obtained the product of any two digits in multiplication, or the sum of any column in addition, we set down the right-hand figure in that eolumn and earry the other figure or figures to the next prodact or next column, and are thns enabled to do by one process what would otherwise require several.
11. Give the rule for multiplication when the multiplicr ean be broken up into two or more factore, neither of them greater than 12. (Sce Art. 40.)
12. Give the rule for multiplication when the multiplier is not composite and is greater than 12. (See Art. 41.)
13. Q. In this latter rnle, why are you directed to write the righthand figure of each partial product dircetly under that figure of the multiplier by which it was obtained?
A. We are thus directed becanse units multiplied by any order will give that order for product. Thus, the units of the multiplicand, multiplied by the units of the multiplier, give units for product, and we set down the right-hand figure of this partial product under the units ; so the units of the multiplicand, multiplied by the tens of the multiplier, give tens for the product, and we therefore commence the partial product nnder the tens in the multiplier. Similarly, the units of the multiplicand, multiplied by the hundreds of the multiplier, give hundreds for the product, \&c.
14. Q. How do you multiply by $10,100,1000,10000, \& \mathrm{c}$. ?
A. We multiply any number by $10,100,1000$, dc., by annexing one, two, three, \&c., ciphers to the multiplicand.
15. Explain how multiplication may be proved, and illustrate tha proof, by casting out the 9 's, in examples 1-12 in Exer. cise 11.

SIMPLE DIVISION.

43. Division teaches the method of finding how many times one number is contained in another.
44. The number to be divided is called the dividend.
45. The number by whieh we divide is called the divisor.
46. The number showing how many times the divisor is contained in the dividend is called the quotient.
47. If the divisor is not contained in the dividend an exact number of times, there is left after the division a number called a remainder.

Nots.-The remainder is of the same name as the dividend, because it is a part of it and must always be less than the divisor.
48. The sign \div, called the sign of division, written between the numbers, indicates that the one preceding the sign is to be divided by that following it. Thus $16 \div 4$, read 16 divided by 4 , means that 16 is to be divided by 4 .

Note.-The division of one number hy another is aleo indicaiad by writing one above the other, or by writina a colon between them Thus $27+4$, or $\frac{27}{}$, or $27: 4$, each means 27 divided by 4.
49. When the divisor does not exceed 12 , the rule is ared short division; but when the divisor is greater than 15, it is called loug division.

MENTAL EXERCISES.

1. How many times is 2 contained in 8 ? in 10? in 18 ? in 11 ? in 23 ?
2. How many times is 3 contained in 9 ? in 15? in 271 in 33 ? in $17!$
3. How many times is 4 contained in 20% in 28 ? in $44 ?$ in $36 ?$ in 19?
4. How many times is 5 eontained in 35 ? in 10 ? in 50 ? in 25 ? in ${ }^{\ddagger}$ 28 ?
5. How many times is 6 contained in $18 ?$ in 42 ? in 54 ? in $36 ?$ in 40 ?
6. How many times is 7 contained in 35 ? in 7 ? in 21 ? in 63 ? in
7. How many times is 8 contained in 24 ? in 72? in $96 ?$ in 40 ? in 57 ?
8. How many times is 9 contained in 81 ? in 45 ? in 18? in 72 ? in 60?
9. How many times is 10 contained in 10 ? in 40 ? in 100 ? in 120 ? in 97 ?
10. How many times is 11 contained in 33 ? in 77 ? in 121 ? in 88 ? in 100 \&
11. How many times is 12 contained in 60 ? in 132 ? in 26 ? in 96 ? in 117 ?
12. How many times is 7 contained in 17% in 3 ? in 38 ? in $62 ?$ in $29 ?$
13. How many times is 8 contained in 53 ? in 7 ? in 71 ? in 90 ? in 21 ?
14. How many times is 9 contained in 23 ? in 100 ? in $48 ?$ in 80 ? in $10 ?$
15. How many times is 12 contained in $16 ?$ in 37 ? in 140? in 101? in 92 ?
16. Florence has 47 questions in division to work in the week; how many' must she do each day ?
17. George has 58 apples and he wants to make them last 7 weeks; how many may he eat cach week ? how many each day?
18. Charlio wants to read a book, containing 135 pages, through in 11 days: how many pages must he read each day?
19. Emma has to bouks, and wishes to divide them as nearly as possible equally amoug 7 shelves? how many must she put on each shell ?
CO. A farmer has IU7 sheep, and wishes to divido equally, or as nearly so as phuible, among 9 fields; bow many must be placed in eacis?

RULE FOR SHORT DIVISION.

50. Set down the divisor to the left of the dividend.

Begin with the left-hand figure of the dividend and divide each figure in succession by the divisor, setting the quotient-figure directly under the figure divided. If thers is a remainder after dividing any figure, prefix it to the next figure of the dividend, and divide the number thus formed as before. When the divisor is not contained onct in any figure of the dividend, write a cipher under that figure and consider that figure as a remainder.

Example 1.-Diride 271406 by 5.

operation.
Here we say 5 in 2, no times; but since 5) 271406 it is the left-hand figure, we do not set down the 0 in the quotient; next 2 written before
$54281 \frac{1}{5}$ the 7 makes 27,5 's in 27,5 and 2 over; 2 before 1 makes 21, 5's in 21, 4 and 1 orer; 1 before 4 makes 14,5 's in 14,2 and 4 over, $\& c$. It the end we hare a remainder of 1 , and since we cannot actually divide 1 by 5 , we indicate the division by writing it tbus $\frac{1}{6}$. (See Art. 48, Note.)

Example 2.-Divide 704653 by 8.
operation.
8)704653
$88081 \frac{5}{8}$

6) 987650432
7) 109147168
3) 91807146 0) 91471608

(9)	(10)	(11)	(12)
10)22223344	11)3121315161	12)914556677	9)111111111111
13. $9140201+2$ 19. $100610067+$			
14. $714632+3$		20. 999999	$9+10$
15. $1234610+4$		21. $\$ 88888$	$8+12$
16. $7000000+5$		22. 123456:	$9+9$
17. $8100406+8$		23. $9152 \div 65$	$3+11$
18. $9001629+7$		24. 2000000	$0+7$

b. Divide two hundred millions seven hundred and twei.ty - thousind seven hundred and eleven by twelre.
26. If 7 horses cost $\$ \S s 2$, what is the cost of one horse ?
27. If a field of 11 acres produces 746 bushels of oats, what is the sield per acre?
28. If 12 schonls together contain 1932 scliolars, how many is that on an average to each rechool?
51. To divide by a composite number, none of whose ractors is greater than $12:-$

RULE.

Divide the given dividend by one factor of the given divisor, and then divide the quotient thus obtained by the other factor.

To oltain the correct remainder, multiply the last remainder by the first divisor, and to the product add the first remainder.

Example.-Divide 71469 by 35.

operation.

5) 71469

ヶ) $14293.4=1$ st rem.
20 $41.6=2 \mathrm{~d}$ rem.
$6 \times 5=30+4=34$
-fiss. $20413 \frac{3}{5}$.

Here the factors of the divisor are 5 and 7 . In dividing by 5 we get a remainder, 4 , and in dividing the first quotient by 7 we get a itinainder, 6. Then, to get the thue remainder, we multiply 6 , thie ass- emainder, by 5 , the first divisor, and add 4 , the first remander, to the product. This gives us 34, which we write above the divisor, as before eximiLied.

Exercise 13.

1. Divide 714967 by 16.
2. Divide 100901 by 27.
3. Divide 9186713 by 81 .
4. Divide 16151712 by 144.
5. Divide 1671932 by 42 .
6. Divide $=2222222$ by 108.
7. Divide 617149324 by 121.
8. Divide 8182838485 by 100.
9. Divide 667788991 by 64.
10. Divide 78998778998 by 54.
11. Divide nine hundred and seventeen millions forty-eight thon. sand and six by one handred and ten.
12. Divide seventy millions four thoueand and nineteen by sixty. three.
13. How many times is fifty-six contained in seventy-nine times four hundred and eleven thousand six hundred and nine?
14. A bushel of wheat weighs 60 lbs ; how many bushels are there in 71496 lbs .?
15. How many bushels of rye are there in 918674 lbs., one bushe of rye weighing 56 lbs. ?
16. How many bushels of barley are there in 291717 lbs ., on bushel of barley weighing 48 lbs . ?
17. If 48 cows cost $\$ 1774$, what is the cost of one cow?
18. If 21 bushels of pease weigh 1260 lbs ., what is the weight a bushel?
19. Divide $71496 \times 7 \times 17$ by 66 .
20. Divide 71498 equally among 45 persons.

RULE FOR LONG DIVISION.

52. Set down the divisor to the left of the dividend, as in short division, and the quotient to the right, thus:
Divisor) Dividend (Quotient.

Find how many times the divisor is contained in the ferbest figures of the dividend that will contain it once or more, and place the figure thus fornd in the quotient.

Multiply the divisor by the figure put in the quotient, orrie the product under the figures divided, and subtract.

To the right of the remainder thus obtained bring down the next firwre of the dividend; divide the mumber thas formed as before, and proceed thus till all the figures of the dividend have been brought down.

When there is a remainder at the end of the process, write it over the dinisor and annex it to the quotient.

Pronf of Dirision.- Mulerply the quotient by the divi. sor, and rudel io the remastider. The sum shonld be equai to the dividend.

Example 1.-Divide 714986 by 613.
OPERATION.
613)71498し(11666295 613
$\overline{1019}$
613
$\overline{4068}$
3678
3905
3678
228

Here the fewest figures that win contain 613, the divisor, are three, viz., 714. 613 in 714 will go 1 time, we therefore set 1 in the quotient; then once 613 is 613 , which we set down under the 714 and subtract. We thus get a remainder of 101 , to which we bring down the 9 , and thus obtain 1019 as the new number to be divided. Next, 613 in 1019 will go one time; we therefore set down the 1 in the quotient, multiply and subtract as before, and thus obtain 406 for remainder, to which we bring down 8 , the next figure of the dividend. This gives us 4068 for the next number to be divided; 613 into 4068 will go 6 times, etc.

Example 2.-Divide 896714 by 8842.
operation.
 8842
12514
8842
3672 go once, and we thus get a remainder 125 , to which we bring down the 1. This gives us 1201 for the next number to be divided; 8842 into 1251 will go 0 times, and we accordingly put 0 into the quotient and bring down the next figare, viz., 4 , to the right of the 1251 , and thus get 12514 as the number to be divided, etc.

Exercise 14.

1. $8916749+227$
2. $8161413+1116$
3. $1999706+2106$
4. $92025=200+8161$ ir+2357+22
5. $6171112+17$
6. $8891576+28161$
7. $1122334+3344$
8. $91029394+81007$
9. $1916712 \div \div 19123$
10. Divide 9167492 by $7 \times 17 \times 93$.
11. L) livide $61+9511 \mathrm{l}, \mathrm{y} 13 \times 1 \overline{\mathrm{c}} \times 11$
12. Divide 8182700 by 017 times 23.
13. The procuct is 2526420017908695 , the multiplier is 27498765 ; what is the multiplicand?
14. The product of two numbers is 405768300 ; one of the numta. is 50406 , what is the other?
15. What number multiplied by 538362 will make 4984155396 ?
16. 723 times 417 is how many times 917 ?
17. 238 times 1476 is how many times $91 ?$
18. 271 times 777 is how many times 1027 ?
19. 1271 times 2986 is how many times 407×11 ?
20. If a ship sail 217 miles a day, how long will it require to com. plete a journey of 9142 miles?
21. If one acre of land cost 43 shillings, how much can be purclıased for £1798?
22. Diride twenty-seven millions four thonsand and nine by four thousand and seventeen.
23. Diricle eight billions seventy millions and six by forty thousand six hundred and ninety.
24. Diville seven hundred and four millions and one oy seventy. nine thonsand four hundred and ten.
25. If 29 tons of hay cost $\$ 677$, what will I ton cost ?
11) 123456789123456759123456789
(29)
12)778188999664422113332700614
(28)
12) 914768134298764714155986777
(30)
13) 120034005600780091400671478

Note. - The pupil shonld be excreised in these long lines by simply naming the divisor, partial dividend, and quotient-figure, as follows : 11..12..1,11..13..1,11..24..2, 11..25..2, 11..36..3, de

RECAPITULATION AND EXAMINATION QUESTIONS

1. Question. What is Division?

Ansuer. Division is the process of finding how often one number is contained in another.
2. Q. What is the dividend?
A. The dividend is the number to be dirided.
3. Q. What is the divisn?
A. The divisor is the number by which we divide.
4. Q. What is the quotient?
A. The ruotient is the result of the division, and expreases how many times the divisor is con tined is the divident.
9. What is the remaindei?
A. The remainder is what is left when the divifor is not contained an exact number of times in the dividend,
6. Q. How is the remainder written?
A. We write the remainder above a short horizontal line with the divisor beneath it, and annex the expression thus formed to the integral part of the quotient.
7. Q. Can the remainder be as great as the divisor?
A. The remainder cannot be as great as the divisor.
s. Q. How many modes are there of expressing the divieion of one number by another?
A. We have three modes of expressing the division of one number by snother, viz. : by writing between the two numbers the sign of division, + or cither of its parts : or -. Thus, if we wish to express the divisiou of 1798 by 16 , wo may do it thus, $1798+16$, or thus $1798: 16$, or thus $\frac{1798}{18}$.
*. Q. What is the distinction between short division and long division?
A. It is short division when the divisor is not greater than 12 aud long division when the divisor is greater than 12.
(i). Give the rule for short division. (See Art. 50.)

1s. Gire the rule for division when the divisor can be broken up into two factors, neither of which is greater than 12 ($\operatorname{Sec} \Delta r^{\prime}$. 51 .)
12. Q. In this last rule, when there is a remainder after cither division, how is the correct remainder found ?
A. To find the true remainder we multiply the first dirisor by the last remainder and add in the ôrst remainder.
13. Give the rule for long division. (See Art. 52.)
14. \& In long division, how can you tell how many times the divisor is contained in the part of the diridend under
A. Bj asking how many times the first figure of the divisor will go into the first figure, or first two figuree, of the dividend.
25. -2. How can you tell when the figure put in the quotient is too large or too small?
A. If it ve too large, the product of the dixisor by it will bo greater than the part of the dividend used; if too small, the remainder will be greater than the divisor.
6. Q. How do we prove division?
A. To prove division we multiply the divisor and the quotient together and to the product add the remainder, if there be any. The result should be the dividend.
$7 Q$. How do we divide by $10,100,1000, \& c$. ?
A. Wo divide by 10 hy eutting oft the right-hand figure of tho dividend: by 100 , ly cuttirg off the last two digits to the right ; bj 1000, by cuttiag off the last three digite, \&i

SECTION II.

decimal currency, tables of money, WEIGHTS, AND MEASURES, REDUCTION, AND COMPOUND RULES.

DECIMAL CLRRENCT.

1. The denominations of Canadian moner are dollars and cents, and 100 cents make 1 dollar. The íllowing explains the mode of writing and reading sums of moncy expressed in the decimal currency:

$\$ 7.00$	is read 7 dollars.	
$\$ 9.20$	"	9 dollars and 20 cents.
$\$ 16.89$	"	16 dollars and 89 cents.
$\$ 417.23$	"	417 dollars and 23 cents.

$$
\begin{array}{ccc}
423 \text { dollara and } 17 \text { cents is written } \$ 423 \cdot 17 \\
94 \text { dollars and } 99 \text { cents } & \text { " } & \$ 94 \cdot 99 \\
6149 \text { dollars and } 67 \text { cents } & \text { " } & \$ 6149 \cdot 67
\end{array}
$$

2. Dollars are converted into cents by annexing two cíphers.

Thus, $\begin{aligned} \$ 69 & =6900 \text { cents. } \\ \$ 17 & =1700 \text { cents. }\end{aligned} \quad \$ 479=47900$ cents. $\quad \$ 2161=216100$ cents.
3. Cents are converted into dollars by cutting off the two right-hand figures. These figures are cut off by placing a small dot between the second and third figures from the right-hand side. When thus cut off, the figures to the left of the dot are dollars, those to the right of the dot, cents, Thus:-

$$
\begin{aligned}
\$ 1934 \text { cents } & =\$ 719 \cdot 34 \\
4290 \text { cents } & =842 \cdot 90 \\
291671 \text { cents } & =\$ 2916.7
\end{aligned}
$$

Exeretse.

2 Real $\$ 79 \cdot 40$; $\$ 916.8$; ; ; $4 \cdot 64$; $\$ 79.09$.
8. Read $\$ 71226 ; \$ 08: 892 ; 11 \cdot 16 ; \$ 017.08\}$
4. Writo down in figures ninety-three dollare forty-seven cente.
5. Write down six hundred and nine dollars and twelre cents.
6. Write down four hundred and thirty dollars and eiglit cents.
7. Write down seven thousand aud seventy dollars and serenteen cents.
8. How many cents are there in three dollars?
9. How many cents are there in seventeen dollars and ninetyelght cents?
10. How many cents are there in $\$ 6194 \cdot 17$?
11. Reduce $\$ 471: 20$ to cents.
12. Reduce $\$ 17$ ' 43 to cents.
13. How many dollars are there in 16714 cents?
14. How many dollars are there in 9009 cente?
15. How many dollars are there in 6714927 cents?
16. Reduce 17147 cents to dollars and cents.
17. Reduce 6147 cents to dollars and cents.
18. Reduce 98765 cents to dollars and cente.
4. To reduce old Canadian money (pounds, shillings, and pence) to the new or decimal currency:-

RULE.

Multiply the pounds by 400 , the shillings by 20 , and the farthings in the given pence and farthings by $\frac{5}{12}$.

Add the three products together, ared the sum will be the answer in eents.

Note.-We multiply by $\frac{\pi}{12}$ by multiplying by 5 and dividing the product by 12 .

Example 1.-Reduce £ヶ9 4s. 11 条d. to dollars and cents.

operation.

$$
\begin{aligned}
79 \times 400=31600 & =\text { cents in } £ 79 \\
4 \times 20=80 & =\text { cents in } 4 s \\
47 \times 5 \div 12=19.7 & =\text { cents in } 11 \frac{8}{4} d .
\end{aligned}
$$

Sum $=$ s: $316 \cdot 99 \frac{7}{12}=$ dollars and ceuts in $£ 794 \mathrm{~s}$. $11 \frac{8}{4} \mathrm{~d}$.
Reason.-fl $=84=400$ cents; $1 \mathrm{~s}=20$ cents; and 12 farthings $=5$ cents, or one farthing $=\frac{5}{12}$ of a cent.

Example 2.-Reduce $£ 217$ 11s. $9 \frac{1}{2} d$. to dollars and cents.

opERATION.

$217 \times 400=86800=$ cents in $£ 217$.
$11 \times 20=220=$ cents in 11 s.
$38 \times 5 \div 12=15=$ cents in $9 \frac{1}{2} \mathrm{~d}$.
Sum $=\$ 870.35 \frac{5}{6}=$ dollars and cents in $£ 217$ 11s. $9 \frac{1}{2} \mathrm{~d}$.

Exercise 15.

1. Reduce $£$ ¢ 19 16f, $4 \frac{8}{4}$ d. to dollars and cents.
2. Reduce $£ 671$ 12s. 8 d. to dollars and cents.
3. Reduce $£ 1670$ 0s. $10_{1}^{1} \mathrm{~d}$. to dollars and cents
4. Reduce $£ 17$ 17s. $7 \frac{1}{2}$ d. to dollars and cents.
5. Reduce $£ 65519 \mathrm{~s}$. $\delta_{1}^{3} \mathrm{~d}$. to dollars and cents.
6. Reduce $£ 77711 \mathrm{~s}$. 3d. to dollare and cents.
7. Peduce £111 11s. 11d. to dollars and cents.
8. Rednce $£ 567 \mathrm{ss} .9 \frac{1}{1}$ d, to dollars and cents.
9. How many dollars and cents are there in $£ 578 \mathrm{~s} .5 \frac{1}{2} \mathrm{~d}$.?
10. How many dollars and cents are there in $£ 70 \pm 195.11$ zat
11. To reduce dollars and cents to pounds, shillings, and pence, old Canadian currency:-

RULE.

Divide the dollars by 4, and call the quatient pounds. Reduce the dollars in the remainder to cents, and to them add the given cents; then divide the number of cents thus obtaincd by 20, and call the result shillings. Lastly, multiply the remaining cents by 3, and divide the product by 5 ; the quotient is pence.
; Example 1.-Reduce $\$ 279 \cdot 10$ to pounds, ehillings, and pence.

operation.

$8279 \div 4=£ 69$ and a remainder of $\$ 3$.
$\$ 3 \cdot 10=310$ cents, and $310 \div 20=15$ shillings and a remainder of 10 cents.

$$
10 \times 3=30 \div 5=6 \mathrm{~d}
$$

Hence $\$ 279 \cdot 10=£ 6915 \mathrm{~s} .6 \mathrm{~d}$.
Reason.- $\$ 4=£ 1 ; 20$ cents $=1$ shilling; and 6 cents $=3$ pence.

Example 2.-Reduce $\$ \overparen{\$ 1} 29^{\frac{7}{12}}$ to pounds, shillings, and pence.

operation.

$\$ 71 \div 4=£ 17$ and a remainder of 83.
$\$ 3 \cdot 29 \frac{7}{12}=829 \frac{7}{\frac{7}{2}}$ cents $\div 20=16$ shillings and a remainder of 91_{12}^{7} cents.
$9 \frac{7}{18} \times 3=28^{\frac{8}{4}} \div 5=5 \frac{8}{4} \mathrm{~d}$.
Hence $\$ 71 \cdot 29 \frac{7}{12}=£ 1716 \mathrm{~s} .5 \frac{8}{4} \mathrm{~d}$.

Exercise 16.

1. Reduce $\$ 710 \cdot 40 ; \$ 917 \cdot 10 ; \$ 69 \cdot 70$, and $\$ 417 \cdot 95$, to pounde, shillings, and pence.
2. Reduce $\$ 171 \cdot$ il ; $\$ 190 \cdot 09$; $\$ 1674 \cdot 23$, and $\$ 777 \cdot 77$, to pounds, shillinga, and pence.
3. Reduce $\$ 144 \cdot 44 ; \$ 111 \cdot 20 ; \$ 70 \cdot 07$, and $\$ 191 \cdot \$ 2$, to pounds, shillings, and pence.
4. How many pounds, sliillings, and pence are there in $\$ 744: 23$? in

5. Since the denominations of decimal money increaso according to the scale of ten, the foregoing rules are applicable, without any alteration, to the addition, subtraction, multiplication, and division of dollars and cents.

Example 1.-Add together $\$ 719 \cdot 42, \$ 917 \cdot 87, \$ 429 \cdot 84$, and $\$ 918.76$.
operation. $8719 \cdot 42$
917•S7
$429 \cdot 84$
918•6
$82985 \cdot 89$

Here the sum of the first or right-hand column is 19 , and we put down the 9 and carry the 1 ; the sum of the second column with the 1 carried is 28 , we set down the 8 and carry the 2 ; the sum of the third column with the 2 carried is 35 , we set down the 5 and carry the 3 , \&c.

Example 2.-From 89147. 66 take $\$ 871.94$. operation.

Here we say 4 from 6 and 2 remain; 9 from 8 we cannot, borrow 1 from the 7 in the third column; then 9 from 18 and 9 remain; 1 from 6 (or 2 from 7) and 5 remain, \&c.

Example 3.-Multiply $\$ 67 \cdot 42$ by 247. operation.
$\$ 67.42$ Here we consider the $\$ 67 \cdot 42$ as being 6742
247 cents, i. e., we pay no attention to the separating -_ point in the multiplicand, and merely point off

47194 the two right-hand figures in the product, for 26968 cents.
18484
$\$ 16652 \cdot 74$
Example 4.-Divide $\$ 7149.80$ by 19.
operation.
19) $7149 \cdot 80\left(376 \cdot 30 \frac{10}{19}\right.$
$\frac{57}{144}$
$\frac{133}{119}$
$\frac{114}{5.8}$
$\frac{5.7}{10}$

Here we divide without regarding the separating point, except that, when we bring down the first figure to the right of the point in the dividend, we place a point in the quotient.

Example 5.-Divide $\$ 7194 \cdot 76$ by $\$ 29 \cdot 34$. operation.
$29 \cdot 34) 7194 \cdot 76\left(245 \frac{645}{2934}\right.$ 5868
$\overline{1326 \cdot 7}$
$1173 \cdot 6$
$153 \cdot 16$
$146 \cdot 70$

Here we divide without regarding the separating point, i. e., we consider the question as being how often is 2934 cents containcd in 719476 cents. We get as a result 2455_{2}^{64964} times, or 245 times with a remainder of $\$ 6.46$.

Exercise 17.

1. What is the sum of $\$ 749 \cdot 86, \$ 614 \cdot 91, \$ 9167 \cdot 14, \$ 918 \cdot 40, \$ 21 \cdot 74_{3}$ $\$ 614 \cdot 29$, and $\$ 29 \cdot 78$?
2. What is the sum of $\$ 888^{\circ} 77, \$ 916 \cdot 66, \$ 1147 \cdot 98 ; \$ 91867 \cdot 42, \$ 1919 \cdot 19$, $\$ 981 \cdot 92$, and $\$ 444.59$?

3. From $\$ 671498$ take $\$ 982 \cdot 49$.
4. From $\$ 4216-23$ take $\$ 2437$ - 86.
5. What is the dillerence between $\$ 314 \cdot 71$ and $£ \$ 7116 \mathrm{~s}$. $10+\mathrm{d}$. i
6. What is the ditference letween $£ 2918 \mathrm{~s}$. 9 d . and $\$ 0+9 \cdot 32$ \%
7. Nultiply $\$ 671 \% 1$ liy 48.
8. Nultiply $\$ 519 \cdot 26$ by 789 .
9. How much is 522 times $\$ 16.83$ \}
10. Divide $\$ 6149 \% 3$ by 67.
11. Divide $\$ 15793.67$ by 149.
12. Divide $\$ 1714.86$ by
13. Divide $\$ 9167 \cdot 42$ by $\$ 147 \cdot 83$.
14. Purchased a horac for $\$ 14780$, carriage for $\$ 21720$, harness for $\$ 63 \cdot 27$, and a saddle for $\$ 23 \cdot 87$; what did the whole cost me?
15. What is the twenty-serenth part of $\$ 016.74$?
16. Divide $\$ 671 \cdot 00$ equally among 13 persons; what is the share of each?
17. I went out to make purchases, having with me £71 168, Thd. I bought and paid for grocerien, $\$ 17 \cdot 80$; dry goods, $\$ 21 \cdot 63$; furniture, $\% 123 \cdot 76$; and books, $\$ 37 \cdot 26$. How much change did 1 bring home?
18. What is the cost of $\mathbf{1 7}$ tons of hay at $\$ 17 \cdot 45$ per ton?
19. From $\$ 723 \cdot 86$ take $\$ 297 \cdot 42$; multiply the result by 63 and divide the product by 217.
20. In 1558 the exports of Canada were as follows: Produce of the mine, 31483 ; produce of the fisheries, $\$ 718296$; produce of the forest, $\$ 9447227$; animals and their products, $\$ 2462765$; agricultural products, 87904400 ; manufactures, $\$ 325376$; other articles, $\$ 112538$; and goods not reported (estimated) $\$ 1443044$. What was the total value of the Cavadian exports for 1355s?
21. The importa into Canada for the year 1858 amounted to §29078527; how much did the Canadian imports exceed the exports in 1858?
22. If the population of Canada he 2954600 , what was the value n ? the intports for each individual in 1855 :

EXAMINATION QUESTIONS.

Nots. - The answers to these questions are found as indicated after each question.

1. What are the denoninations of Canadian money? (Art. X.\}
2. What are the Canadian eilver coins? (Table on next page.)
3. What is the diameter of the Canadian cent? (Table ou mext मage.
4. How many cents are equal in weight to 1 lb . Aroirdupa (Table below.)
5. Why is Canadian and Tnited States money called decimal?

- (Ans. From the Latin word decem, "ten," because the orderw increase in a tenfold ratio; i. e., 10 mills make 1 cent, 10 cents 1 dime, 10 dimes 1 dollar, \&c.)

6. How are dollars converted into cents? (Art. 2.)
7. How are ceuts converted into dollars? (Art. 3.)
8. Give the rule for reducing old Canadian currency into dollare and cents. (Art. 4.) Give the reason for the procese.
9. Give the rule for reducing dollars and cents to old Canadian currency. (Art. 5.) Give the reason for the process.
10. How do we add and subtract, multiply and divide dollars and cents?
(Ans. We regard the dollars and cents as so many cents, and then proceed as in the simple rules.)

TABLES OF MONEY, WEIGHTS AND MEASURES.

CANADIAN DECLMAL MONFF.

100 cents (c.) make 1 dollar, marked $\$$.
Note. - The coins are a five-cent piece, a ten-cent. pece, and a twenty-cent piece, all of which are silver; and a one-cent piec which is bronze.

The one-cent picce is exactly one inch in diameter, aud 100 centr weigh 1 lb . Avoirdupois.

OLD CANADIAN CURRENCY.

table.

4 farthings make 1 penny, marked d.
12 pence " 1 shilling, " 8 . 5 shillings " 1 dollar, " 4 dollars " 1 pound, " £.

ENGLISH OR STERLING MONEY.

table.

4 farthings (qr.) make 1 penny, marked	d.		
12 pence	" 1 shillins,	"	s.
20 shillings	"	1 pound,	.

Notr. - The Guinea is equal to 22 shillinge and the Suvareipo to 20 shillinge sterling.

UNITED STATES MONEY.

TABLE.
10 mills (m .) make 1 cent, marked ct. 10 cents " 1 dime, " d. 10 dimes " 1 dullar, " $\$$. 10 dollars " 1 cagrle, " E.

AVOIRDUPOIS WEIGHT.

table.

16 drams make 1 ounce,	marked oz.		
16 ounces	"	1 pound,	"
15 pounds	lb.	1 quarter,	"
qr.			
4 quarters	"	1 huudredreight,	"
cwt.			
30 cwt.	c	1 ton,	"

T- A?-This weight is used in weighing heary articles, as mea, grocersis, vegetablen, grain, etc.

TROY WEIGITT.

TABLE.
24 grains (grs.) make 1 pennytreight, marked dwt.
20 pennyweights " 1 ounce, " oz.
12 ounces " 1 pound, " lb.

Nore.-Tisy weight is used in weighing the precious metala whd stones ; also in scientific investigations.

APOTHECAIIES' WEIGHT.

TABLE.

Nore.-Apotheenrles and Plysicians mix their medicines by this weight, brit bleg h-y und woil Ly' A voirdupois.

LOXG MEASURE.

TABLE.

12 lines (1.)	make	1 inch,	mark	in.
12 inches	"	1 foot,		ft.
3 feet		1 yard,	"	yd.
$5 \frac{1}{2}$ yards		1 rod , pol	e, or perch,"	rd. or per.
40 rods or perches		1 furlong,		fur.
18 furlongs		1 mile, 1 learue	"	m.

Nots.-The degree, or 360 th part of the circumference of tha earth, is about $69 \frac{1}{6}$ iniles.

4 inches make 1 hand (used in measuring horses).
18 inches " 1 cubit.
3 feet " 1 pace.
6 feet " 1 fathom.
120 fathoms " 1 cable-length.

SQUARE OR LAND MEASURE.

TABLE.
144 square inches make 1 square foot, marked sq. ft. 9 square feet " 1 square yard, " sq. yd. $30 \frac{1}{4}$ square yards " 1 square rod, " sq. rd. 40 square rods 4 roods
640 acres
"، 1 rood,
" r.
" 1 acre, " a.
" 1 square mile, " sq. m.
Note.-Square Measure is used in measnring surfaces, az, for example, in estimating the work of painters, plasterer, Pavers, etc. ; also in measuring land.

In measuring land, Gunter's chain is used. It is dirided into 100 links.

$7{ }_{1} 920$ inches	make 1 link,	marked	
100 links or 4 rods	1 chain,	"	c.
80 chains	1 mile,	/	m.
0000 square links	1 sq. chain,	"	sq.
10 square chains	1 acre,		a.

CUBIC OR SOLID MEASURE.

TABLE.
1728 cubic inches (cub. in.) make 1 cubic foot, marked cub. ft .
27 cubic feet make 1 cubic yard, marked cub. yd.
40 cubic feet of round timber \} make 1 ton, marked 50 cubic feet of hewn timber $\}$ ton.
128 cubic feet of firewood make 1 cord, marked c.
A pile of cord-wood 4 feet high, 4 feet wide, and 8 feet long, contains 128 cubic fect, or 1 cord. One foot in length of such a pile is called a cord-fool; it is equal to 16 solid feet, and is consequently equivalent to the eighth part of a cord.

CLOTH MEASURE.

TABLE.

$2 \frac{1}{4}$ inches (in.) make 1 nail,	marked na.			
4 nails	"	1	quarter,	"
3 quarters	"	1 Flemish ell,	"	Fl. e.
4 quarters	"	1 yard,	"	Jd.
5	quarters	"	1 English ell,	"
6 quarters	" e.	1 French ell,	"	F. e.

Note.-The Seotch ell contains 4 quarters 1_{s}^{1} inch.

DRY MEASCRE.
 TABLE.

2 pints (pt.)	make	1 quart,	marked	
4 quarts	"	1 gallon,	"	gal.
2 gallons	"	1 peck,	"	pk.
4 pecks	"	1 bushel,	"	bu.
36 bushels	"	1 chaldron,	"	ch.

Nore.-This measure is used in busing and selling vegetables, frults, grains, so.

LIQUID MEASURE.

TABLE.

4 gills (gill) make 1 pint,	marked pt.			
2 pints	" 1 quari,	"	qt.	
4 quarts	"	1 gallon,	"	gal.
Sl gallons	"	1 harrel,	"	bar.
2 barrels	"	1 hogshead,	"	hhd.
2 hogsheads	"	1 pipe,	"	pi.
2 pipes	"	1 tun,	"	tun.

TIME MEASURE.

TABLE.

60 seconds (sec.) make 1 minute,
60 minutes
24 hours
7 days
4 weeks
marked min
" h.
" d.
" wk.
" mo.

13 lunar months or
12 calendar months or make 1 civil year, marked yr. $365 \frac{1}{4}$ days (nearly)
The names of the months and the number of days in each are as follows :

First	month,	January,	has		days.
Second		February,			
Third	"	March,	"	31	"
Fourth	"	April,	"	30	"
Fifth	"	May,	"	31	"
Sixth	"	June,	"	30	"
Seventh	"	July,	"	31	"
Eighth	"	Angust,		31	
Ninth	"	September,	"	30	"
Tenth	"	October,	"	31	
Elcventh	"	November,	"	30	
Twelfth	"	December,	"	31	

The number of days in the respective montle may bo recalle by recollecting the following well-known lines:

> Thirty days has September, April, June, and November February has twenty-eight aloneAll the rest have thirtyone; But leap-year coming once in four, February then has one day more.

The number of days in each month may also be recoliected by counting the months on-the four fingers and the three intervening spaces. Thus, January on first finger, February on space between first and second fingers, March on second finger, April in second space, May on third finger, June in third space, July on frexth fnc ger, Augnst on first finger, (since there are no more spaces Sep tember in tiret space, \&c. Now, when counted thus, all the months having 31 days come on the fingers, and Februars having 30 only, fall into the spaces.

CIRCE AR MEASURE.

TABLE.
j0 seconds (")
60 minutes
30 degrees
12 signs or 38u degrees
make 1 minute, marked '.
" 1 degree, "
" 1 sign, " s.
" the circumference of a circle, marked e.

PIare.-Thic, which is fometimes called Angular Measure is ${ }^{\text {P }}$ acei by astronomers, narigators, and surveyors for measuring a. fies, and fcr reckoning latitude and longitude.

MISCELLANEOCS TABLE

12 ajzen	"	1 gross.
12 gross	"	1 great gross.
20 individual things	"	1 seore.
24 sliects of paper .	"	1 quire.
20 quires.	"	1 ream.
200 pounds.	"	1 barrel of pork or beef.
196 "	"	1 barrel of flour.
14	"	1 stonc.

BOOKS

A sheet folded into two leaves is called a folio.
" fulded into four leares is called a quarto, or 4 to.
" folded into eight leaves is called an octaro, or 8 ro.
" folded into twelve leaves is called a duodecimo, or 12 mo .
" folded into sixteen leaves is called a 16 mo .
" folded into eighteen leaves is called an 18 mo .

REDUCTION.

η Reduction s the process of changing a number from edenomination to another without altering its value.
8. Reduction Ascending is the process of reducing a number from a lower to a higher denomination.
9. Reduction Descending is the process of reducing a number from a higher to a lower denomination.

RULE FOR REDUCTION DESCENDING.

10. Multiply the highest given denomination by that: quantity which expresses the number of the next lower contained in one of its units, and add to the product that numben of the next lower dcnomination which is found in the quan. tity to be reduced.

Proceed in the same way with the result, and continue thie process until the required denomination is obtained.

Example 1.-Reduce 427 miles to yards.
operation.
$427=$ miles 8
$\overline{3416}=$ furlongs 40
$\overline{136640}=$ perches
$5^{\frac{1}{2}}$
683200
68320

Here we first multiply by 8 , because each mile is equal to 8 furlongs; next we multiply the furlongs by 40 , to reduce them to perehes, because each furlong is equal to 40 perches; lastly we multiply the perches by $5 \frac{1}{2}$, to reduce them to jards.
$\overline{751520}=$ yards.
Example 2.-Reduce 6 bushels 3 pks. 1 gal. 1 qt. to quarts. OPERATION.
6 bush. 3 pks. 1 gal. 1 qt. 4
$\overline{27}=$ pks. in 6 bush. 3 pks.
2
$55=$ gals. in 6 bush. 3 pks. 1 gal.
$221=\mathrm{q}$ ts. in 6 bush. 3 pks. 1 gal. 1 qt.

Here we first multiply the 6 bushels by 4 to reduce to peres and add in the 3 pecks given; next we multiply the resulting pecks by 2 to reduce them to gallons, and add in the 1 gallon given, \&e.

Exercise 18.

1. Reduce 47 cords of wood to cubic feet.
2. Reduce 6497 lbs. Avoir. to ounces.
3. Reduce $£ 9716 \mathrm{~s} .8 \frac{8}{3} \mathrm{~d}$. to farthings.
4. Reduce 127 a. 2 r. 17 per. 19 yds .8 ft .121 in . to inches.
5. Reduce 569 tons 4 cwt. 3 qrs. 17 lbs .4 oz .7 drs. to drams,
6. Reduce 4 pipes 1 hhd. 1 brl. 19 gals. 2 qts. to quarts.
7. Reduce 17 miles 7 fur. 7 per. 2 jds. 2 ft .4 in . to lines
8. Reduce $5^{\circ} 17^{\prime} 49^{\prime \prime}$ to secouds.
9. Reduce 2 ch .17 bush. 2 pks. 1 gal. 1 qt. to pints.
10. Reduce 9 French clls 1 qr. 3 na. $1 \nmid \mathrm{in}$. to inches.
11. Reduce 17 weeks 4 days 9 bours 29 min .17 sec . to seconds.
12. Reduce 29 E. 0 dollars 6 dimes 2 cents 4 mills to mills.
13. Reduce 17 lbs .9 oz .16 dwt .11 grs , to grains.
14. Reduce 37 cub . yd. 9 cub. ft. 1111 cub. in. to inches.
15. Reduce 129 lbs .407 .2 ecr. 11 grs . to grains.
16. How many square feet are there in 127 square perches?
17. How many inches are there in 127 Eng. clis I qr. 2 na.?
18. How many cub. ft . of wood are there in 17 cords 63 cub. $\mathrm{ft}_{0} 3$
19. How many quarts are thero in 714 gallons?
20. How many scruples are there in $71 \mathrm{lbs} .11 \mathrm{oz}, 3 \mathrm{drs}$?
21. In 16 cwt .1 qr . 19 lbs . how many ounces are there?
22. In 11 miles 2 ft . how many inches are there?
23. In 123 acres 17 per. how many square yards are there?
24. In 27 years 16 days 4 min . how many seconds aro there?
25. In 101 days 14 hours how many hours are there?
26. In $£ 19781 \mathrm{is} .9 \mathrm{~d} \mathrm{~d}$. how many farthings are there?
27. How many pints are tiere in 17 bush. 1 pk .1 gal.
28. How rany grains are here in 9 ibs .17 dwt. ?
29. Reduce $9 \mathrm{sq} . \mathrm{m} .1$ a. 0 r. 9 yds. to square inches.
s0. Reduce $\mathcal{L} 171$ 11s. 14 d. to farthings.

RUEE FOR REDCCTION ASCENDING.

11. Divide the ginen number by that number which it takies of the given denomination to makic one of the next
hagncr. Fet down the remainder, if any, and preceed in the same manner uith caeh suceessive denomination tud you come to the one required. The last quotient, with the several remainders annexed, will be the answer required.

Example 1.-How many pounds Apoth. are there in 16719 scruples?
operation.
8) 16719 scr .
8) 5573 drs .
$1 2 \longdiv { 6 9 6 }$ oz. 5 drs . 58 lbs .0 oz .5 drs.

Here we divide the scr. by 3 to reduce to drams, because every 3 scruples make 1 dram. We thus obtain 16719 scr. $=5573$ drams. Next we divide the drams by 8 , because
every 8 drams are equal to 1 oz , and we thus find the given number of scruples to be equal to 696 oz .5 drs .0 scr. Finally, we divide the ounces by 12, and thus obtain 58 lbs .0 oz . 5 drs. for the answer.

Example 2.-Reduce $\uparrow 19864$ pints to bushels.
operation.
2) $719864=$ pints. 4) 359932 qts. 0 pts.
2) 89983 gals. 0 qts. 0 pts.
$4) 44991$ pks. 1 gal. 0 qts. 0 pts.
$\overline{11247}$ bush. 3 pks. 1 gal: 0 qts. 0 pts. Ans.
Exercise 19.

1. Reduce 71989 inches to miles, furlonge, \&cc.
2. Reduce 6142 minutes to wicels: daye, \&c.
3. Reduce 81427 grains to pounds, ounce区, \&cc., Apoth. weight,
4. Reduce 9141762 cubic nehes of woud to cord-fect, \&c.
5. In 7177 pints how many chaldrons, bushels, \&c.?
6. In 914 cubic feet how many cubic yarde?
7. In 61479 inches how many French ells, qre. \&cc.?
8. In 89 days how many wieks, \&c.?
9. How many tons, cwts., \&cc., are there in 1714964 rrams?
10. How many acres, roods, \&c., are there in 1714 f nches:
11. How many tura are there in 171409 quars ?
12. How many years, (e:ch 365룬 ditys, days, \&ec, are there ia $1: 1491042$ seconas !
13. Reduce 17149 is0t fartl-ings to pourda, shilings, and pence.
14. Reduce 2957145 m th to caleke, doila:- d mess, \&o.
15. Reduce 2111403 inclias to ruels, squate perches, sec.
16. Reduce 1 it 498 cubic feet of weod to cords.
17. Leduce $\{19817$ pence to poulds, slaillinga, \&c.
18. Reduce 998 ciwt. to pounds, sec.
19. Reduce 1771 gallens to bushele.
f0. Reduce 91656 Flemleh ells to French ells.
ع1. How many cwts. fres. and lbs, are there in 17149 lbs .
20. Hew raany miles, fur. per. \&c., are there in 17110 feet ?
21. How many degrees, mill. and sec. ©e., are there in 1111111 sea.t

24 Reduce 667789 cubic inches to cubic yards, do.
25. Lienluce $7891+27$ grains to pounds, Apoth.
20. Reduce 6788das graime to pouids, Troy:
27. Reduce 295714 drams to pounds, A voir.
25. In 61479867 equare inches how many acres, roods, \&o,
29. In 91999 yards how many leagues?
80. In 714956 inches bow many fathoms

COMPOUND ADDITION.

12. Compound Addition is the addition of applieate buabers of more than one denomination.

RULE.

set down the aulends under one another so that units of the sams orcher shall be in the same vertical column.

Bedin at the right-hand side and add the first column; invin the sum by the number of that order which make ons f tho rost kigher; set down the remainder, if any, under the co'turn cilded, and earry the quotient to the next column procesl thus througle all ilen ent:mns to the last.

Example 1.-Add together 9 weeks days 17 houro $11 \mathrm{~min} . ; 6 \mathrm{wks} .3$ days $11 \mathrm{hrs} .49 \mathrm{~min} . ; 9$ wks. 2 days 6 hrs. 53 min. ; and 17 wks. 5 days 21 his. 35 min .

OPERATION. whs. ds. hrs. min.

Here the minutes added up amcunt $\begin{array}{llll}9 & 4 & 17 & 11\end{array}$ to 148 , which we divide by 60 in order $6 \quad 3 \quad 11 \quad 49$ to reduce them to hours; this gives ?

9	2	0	53

$\begin{array}{llll}17 & 5 & 21 & 35\end{array}$
$\begin{array}{llll}43 & 2 & 3 & 28\end{array}$
Eyample 2.-What is the sufn of $£ 917$ 168, $4 \frac{8}{4} \mathrm{~d}$. $\mathfrak{£ 2 1 6}$ 11s. $11 \frac{1}{2} \mathrm{~d} . ; £ 16014 \mathrm{~s} .7 \mathrm{~d} . ; \mathfrak{f} 916$ 7s. $9 \frac{3}{4} \mathrm{~d}$. ; £100 0s. צ£70 17 s . $11 \frac{1}{2} \mathrm{~d}$. ; and $£ 1616 \mathrm{~s}$. $9 \frac{1}{4} \mathrm{~d}$. ?

£ \quad s. \quad d.
91716 4管
$216 \quad 11 \quad 11 \frac{1}{3}$

160	14

916 7 9
$100 \quad 0 \quad 91$
$70 \quad 17 \quad 11 \frac{1}{2}$
$\begin{array}{lll}16 & 16 & 9 \frac{1}{4}\end{array}$
$2399 \quad 6 \quad 3$

Here the farthings added mount to 12 , which we divide by 4 to reduce them to pence; this gives us 3 pence to carry and no fa things to set down. The pence column, with the 3 carried, amounts to 63 , which we divide by 12 to reduce to shillings; this gives us 3 pence to set down unde: the column added and of shillings to carrs to the shillings' solumn, and so on.

Ratercise 20.
(2)

miles	fur. per	yds	
63	7	16	2
19	6	11	4
7	0	36	5
29	2	6	27
11	6	22	47
63	7	2	1

(5)
(3)

(6)

bugh.	pks. gals.	g.
9	1	1
17	0	1
19	1	0
37	1	1
96	1	0

COMPOUND ADDITION.
(7)

- orcio cord ft. cub. ft.

17	0	15
19	7	11
29	6	8
37	4	14

(10)

Tos. oz. dwt. gra | 16 | 4 | 2 | 17 |
| ---: | ---: | ---: | ---: |
| 23 | 11 | 17 | 23 |
| 18 | 10 | 16 | 14 |
| 21 | 0 | 9 | 12 |

(13)			
nkz,			
27	4	hrs.	
19	6	23	
11	4	17	
21	3	12	
19	5	14	

(16)

(16)		
Eng. clls	qrs.	
27	1	1
43	2	2
91	3	2
16	1	3

?)

ros.	oz.	s.	c.:.	rs.
16	11	7	2	7
90	2	3	1	19
126	10	4	0	16
46	11	5	2	16

(18)
 (21)

yrs.	wks.	days
27	50	2
93	16	4
11	3	6
23	14	0
67	47	5

(23)

$$
\begin{array}{rrrrrr}
\text { a. } & \text { r. } & \text { per. } & \mathbf{y d} \text { d. } & \text { ft. } & \text { in. } \\
27 & 2 & 36 & 7 & 7 & 27 \\
43 & 3 & 37 & S & 6 & 126 \\
123 & 2 & 4 & 6 & 1 & 107 \\
86 & 0 & 13 & 27 & 6 & 23 \\
\hline
\end{array}
$$

(24)

lea. miles	fur.	per.	yds.	ft.	in.				lines
14	2	7	23	4	1	10	7		
16	1	3	16	2	0	6	10		
1	1	6	16	2	0	6	10		
17	2	6	33	5	2	6	4		
16	2	7	17	3	2	7	11		

COMPOUND SUBTRACTION.

13. Compound Subtraction is the subtraction of appli cate numbers of more than one denomination.

RULE.

Set the subtrahend under the minuend so that units of the same order come in the same vertical column.

Begin at the right-hand side and subtract the first tern of the lower line from the corresponding term of the upper line, if possible; but if not, incrcase the term of the upper line by the number of units of that denomination which make one of the next higher; then subtract and set the remainder under the first column and carry one to the given number of the next denomination containcd in the subtrahend.

Proceed thus through all the columns to the last.
Example 1.-Subtract 27 miles 7 fur. 6 per. from 98 miles 2 fur. 7 per.
operation.
miles fur. per. Here we say 6 per. from 7 per. and 1 per.
$\begin{array}{llll}93 & 2 & 7 & \text { remains, and we set down this remainder }\end{array}$
2776 under the column subtracted. Next, 7 fur. from 2 fur. we can't; and since 8 fur:
6531 make 1 mile, we increase the 2 fur. by 8 ; then 7 fur, from 10 fur, and 3 fur, remain
Again, adding 1 to the 7 , we say 8 from 3 we can't; bus 8 from 13 , \&c.

Example 2.-From 27 lbs .4 oz .7 drs .2 scr. take 9 lbs . L. oz. 16 gis .
operation.
lhs. oz. drs. scr. grs. Here 16 grs. from 0 , we can't; $27 \quad 4 \quad 7 \quad 2 \quad 0 \quad 16$ from 20 and 4 remain; 1 from $9 \quad 6 \quad 0 \quad 0 \quad 102$ and 1 remains; 0 from 7 and 7 10 remain; 6 from 4, we can't, but 6 $1710 \quad 7 \quad 1 \quad 4$ from 16, i. e. $4+12$ and 10 remains, \&c.

Exercise 21.

(1)			
cays	hrs.	min.	
147	20	8	
49	16	4	

(4)

gals.	qts.	pts.
729	0	0
247	1	1

(7)

lise.	oz.	dwt.
178	3	4
97	5	17

cords cord fin *ib. ft.

(13)

| cwt. qra. lbs.
 167 2 20
 93 1 24 |
| :---: | :---: | :---: |

(16)

r.	per.	yds
127	30	20
67	31	26

(19)
$\begin{array}{ccc}2 . & \& & d . \\ 2 \pi-1 & 14 & 6 \\ 10 & 14 & 114\end{array}$

COMPOUND MULTIPLICATION.

14. Compornd Multiplication is the multiplicatior of applicate numbers of more than one denomination.
15. When the multiplicand does not excced 12:-

RULE.

Set down the multiplier under the right-hand term.
Multiply every order of units in the multiplicand it succession, beginning with the lonest, by the multiplier, and divide each product, so formed, by the number of that denomination which makes one unit of the next higher: write down each remainder under units of its own order, and carry the quotient to the next product.

Example 1.-Multiply 6 hrs. 40 min .17 sec . by 8.
OPERATION.
hrs. min. sec.
$6 \quad 40 \quad 17$ which gives us $136 \mathrm{sec} .=16 \mathrm{sec}$. to sel 8 down and 2 min . to carry; $40 \mathrm{~min} . \times 8=$ 320 min . and 2 min . carried make 322 min ,
$\overline{53} \quad 22 \quad 16=22 \mathrm{~min}$, to set down and 5 hours to carry, \&c.
Example 2.-Multiply 7 lbs. 4 oz .3 dr .2 scr. 16 grs . by 11.
operation.
lbs. oz. dr. scr. grs.
Here $16 \mathrm{grs} . \times 11=176 \mathrm{gm}$
$\begin{array}{llllll}7 & 4 & 3 & 2 & 16 & =16 \mathrm{grs} \text {. to set down and } 8 \\ 8 \mathrm{scr} \text {. }\end{array}$ 11 to carry; 2 ser. $\times 11=22$ scr. and 8 scr. carricd, make 39 scr. $=3$ 0 scr. to set down and 10 drs. to carry, \&c.
DEPT. OF EDUCATION
HISTORICAL COLLECTION

Exercise 22.

Find the value of-

1. 5 dаун $4 \mathrm{hrs} .17 \mathrm{~min} .4 \mathrm{sec} . \times 8$.
2. 6 qrs. 17 lbs. $4 \mathrm{oz} . \times 11$.
3. 22 bush. 1 pk. 1 gal. 1 qt. $\times 6$.
4. $£ 17914 \mathrm{~s} .11$ 기. $\times 12$
5. 11 gal .1 qt. $1 \mathrm{pt} . \times 11$.
6. 167 lbs .7 oz. $10 \mathrm{dwt} \times 5$.
7. 29 miles 6 fur. 17 per. $\times 10$.
8. 164 years 11 days 17 hours $\times 7$.
9. 46 cub. feet 319 cub. inches $\times 11$.
10. 111 cord3 7 cord ft. 7 cub. feet $\times 12$
11. 26 r. 16 per. 4 ydś. $\times 8$.
12. $19 \mathrm{cirt} .1 \mathrm{qr} .23 \mathrm{lbs} \times 12$
13. £127 16s 8tl. $\times 9$.
14. 111 per. $4 \mathrm{y}^{\mathrm{d}}$. $2 \mathrm{ft} .7 \mathrm{in} . \times 7$.
15. 19 sq. per. 7 yds. 8 ft. $\times 3$.
16. 179 jds. 2 qrs. 1 na. 2 in. $\times 11$.
17. $16 \mathrm{lbs} .11 \mathrm{oz}, 2$ drs. $1 \mathrm{scr} . \times 10$.
18. $14 \mathrm{qrs}, 14 \mathrm{lbs} .11 \mathrm{oz} . \times 4$.
19. 278 miles 6 fur. 11 per, $\times 2$.
20. 64 weeks 17 hours 38 minutes $\times 11$.
21. 17 peckes 1 gal .1 qt. $1 \mathrm{pt} . \times 7$.
22. 10 e cwt, 2 qrs. $11 \mathrm{lbs} \times 12$.
23. £16917s. 11年d. $\times 9$.
24. 74 ล. 2 r. 7 per, 4 yds. $\times 9$.
) When the multiplier is a composite number, none of it hotors being greater than $12:$ -

RULE.

Waltinly the given meltiplicand by any one factor, then multiply the resulting product by a second factor, this second protuct by a third, if there be any, cond oo ore. The last prouluct is the one sought.

Examele 1. -Multiply 7 bush. 1 gal. 1 qt. by 490.

OPERATION.
bush. pks. gals. qts. Here the factors of the multiplics
7011490 , are $10 \times 7 \times 7$, and, according
10 to the rule, we multiply the givent

71	2	0	2	quantity by any one of them as 10, then the product by a secend factor, and this last product by the third.

500	3	1	2
7			

Example 2.-Multiply 5 miles 7 far. 19 per. 4 yds. by 72.
operation.
mailes fur. per. yds. Here the factors of the multiplier $5 \quad 7 \quad 13 \quad 4$ are 9 and 8 . We first multiply tho 9 given multiplicand by 9 , and they muki ply the result by 8.

Note.-We might have first multipliad 'y 8 and then the resalt by 9 , and wo ama have obtained the same result.

Exercise 23.

Find the ralue of -

1. $£ 7419 \mathrm{~s} .48 \mathrm{~d} . \times 16$.
2. 75 lbs. 4 oz 7 dwt. $\times 18$.
3. 18 days 4 hours 13 min . $\times 21$.
4. 37 Flem. ells 2 qrs. I na. $\times 3$.
5. 63 miles 4 fur. 7 per. $\times 56$.
6. 71 gajs. 2 qtc. 1 pt. $\times 77$.
7. 43 hours 19 min . $30 \mathrm{sec} . \times 81$.
8. 16 a. 3 r. 17 per. $\times 108$.
9. 91 oz .6 dre. 2 scr. $19 \mathrm{grs} \times 121$.
10. £116 11s. 11!d. $\times 42$.
11. 115 eq. per. $4 \mathrm{yds} .7 \mathrm{ft} . \times 144$.
12. 93 cwt. 3 qrs. 17 lbs. $\times 9 \Omega$
13. 16 years 110 days 11 houre $\times 50$.
14. 29 eub. yds. 17 cub. ft. 1110 cub. in. $\times 48$.
15. 126 bush. 1 qt . $1 \mathrm{pt} . \times 54$.
16. $£ 2716$ s. C\&. $\times 100$.
17. 74 per. 4 yds. $2 \mathrm{ft} .11 \mathrm{in} . \times 600$.
18. 93 hours $17 \mathrm{~min} .57 \mathrm{sec} . \times 1100$.
19. 5 а. 2 r. 7 per. $9 \mathrm{yds} \times 560$.
20. $£ 5314 \mathrm{~s}$. $9 \frac{1}{\mathrm{~b}} \mathrm{~d} . \times 8100$.
21. When the multiplier is not a composite number and is greater than 12:-

RULE.

Resolve the multiplicr into two or more composite numbers.

Find the product of the multiplicand by each of these separately, and add the results together for the required product.

Note.- If the multiplier is not greater than 100, we resolve it into tens and units; if greater than 100 and less than 1000 , Into hundreds, tens, and units; if greater than 1000 and lees than 10000 , into thousznds, hundreds, tens, and units, \&e.

Thus $89=80+9 ; 76=70+6 ;$ 太c.

$$
\begin{aligned}
147 & =100+40+7 ; 747-700=40+7 ; \& \mathrm{c} . \\
6497 & =6000+400+90+7 ; 9162=9000+100+60+2 ; \& \mathrm{c} .
\end{aligned}
$$

Example 1.—Multiply £ 71 16s. $4 \frac{8}{4} \mathrm{~d}$. by 79. operation.

£	s.	d.	Here the giren multiplier, 70
71	16	$4 \frac{9}{4}$	$70-9$, and the factors of 70 are
		10	$10 \times 7, \& c$.

Exaline 2.-Multinly $16 \mathrm{cwt} 2 \mathrm{qrs} .17 \mathrm{lbs} . \mathrm{br} 867$.

OPERATION.

cwt.	qrs.	lbs.
16	2	$17 \times 7=$cwt. 116\quadqrs.$\quad 10$

| $166 \quad 2 \quad 20$ | |
| :--- | :--- | :--- |
| | 10 |$\times 6=1000 \quad 0 \quad 20=60 \quad$ "

$166700 \times 8=\frac{13336}{} 0 \quad 0 \quad 0=800 \quad$ "
Exercisk 24.
Find the value of-

1. 4 bush. 1 pk. 1 qt. $\times 718$.
2. £16 14s. 11 $\frac{1}{6} \mathrm{~d} . \times 867$.
3. 9 days 4 hrs. 17 min. $\times 263$.
4. $47 \mathrm{yds} .2 \mathrm{ft} .7 \mathrm{in} . \times 83$.
5. 6 lbs .4 oz .7 dwt. $\times 197$.
6. 7 a. 4 per. $3 \mathrm{ft} . \times 985$.
7. 16 yds. 3 qrs. 1 na. $\times 1149$.
8. 23 oz .7 drs. 2 ser. $16 \mathrm{grs} . \times 6472$
9. $£ 9$ 11в. $4 \frac{1}{\text { d }} \mathrm{d} . \times 8298$.
10. 73 cwt. 1 qr. $16 \mathrm{lbs} \times 67$.
11. Multiply 7 miles 4 fur. 16 per. 2 sds. 2 ft .6 in . by 64
12. Multiply 17 Eng. ells 4 qre. 2 na. 1 in. by 217.
13. Multiply 6 cwt. 1 qr. $17 \mathrm{lbs} .4 \mathrm{oz} .7 \mathrm{drs} . \mathrm{by} 9 \Omega 2$
14. Multiply 8 a. 2 r. 14 per. 17 yds. 6 ft .117 in . by 2345
15. Multiply 11 years 217 days 23 hours 47 min . 18 ses. by
16. Multiply 2 cords 7 cord ft. 14 eubic ft. by 103.
17. Multiply 7 bushels 1 pk. 1 gal. 1 qt. 1 pt. by 321 L
18. Multiply 67 lbs .4 oz .5 drs .1 scr. 11 grs . by 97 c 。
19. Multiply $£ 174$ 16s. 0t d, by 780 .
20. Multipiy $23 \mathrm{lbs} .11 \mathrm{oz} .16 \alpha \mathrm{wt} .11$ grs. by 359.

COMPOUND DIVISION.

18. Compound Division is the division of applicate numers of more than one denomination.
19. Compound Division is divided into two cases.
lst. When the divisor is an abstract number.
2d. When the divisor is an applicate number.
20. When the divisor is an abstract number and not greater than 12:-

RULE.

Set the divisor to the left of the dividend.
Then, beginning at the left-hand side, divide the frrst term by it, put the quotient under that term, reduce the remainder, if any, to the next lower denomination, and to the number thus obtained add the given number of that lower. dinomination.

Divide the number thus obtained by the divisor, as before; and so on.
21. If the divisor is composite:-

RULE.

Divide, as in Rule 1, by each factor in succession. 22. If the divisor is not composite and is greater than 12 :-

RULE.

Proceed as in Rule 1, but write the qwotient to the right of the dividend.

Fxample 1.-Divide 679 lbs 4 oz .7 dwt. by 11.
oppration. Here we say 1l's in 67, 6 and 1 over;
lbs. oz. dwt. 11's in 19, 1 and 8 orer ; 8 lbs. $=96$ 11) $679 \quad 4 \quad 7 \quad$ oz. and 4 oz . make 100 oz . ; Il's in 100 , 9 and 1 orer; $1 \mathrm{oz} .=20 \mathrm{dwh}$ and 7
61 $9 \quad 2 \frac{5}{15}$ dwt. make 27 dwt., \&c.

Example 2.—Divide $£ 179$ 16s. 9d. by 84. operation.

$7 \times 9=63+6=69$, true rem. Art. 51, Sec. II.

Here the fantors 0 . the dirisor are 7 and 12 , and we divide by each, as in Example 1. From the two partial remein. ders we obtain the trus remainder by the rule है Then £2 2s. $9 \frac{69}{8} \frac{9}{4}$ d. Ans.

Example 3.-Divide 723 yds. 2 qrs. 1 na. by 146. operation.

146) | yds. | qrs. . na. | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 723 | 2 | 1 | | vds. qr8. na. |
| :---: |
| 4 | 584

$\overline{139}$ 4

558
438
120
4

481
438
43

Exercise 25.

Find the value of-

1. $£ 978$ 6s. $4 \mathrm{~d} .+4$.
2. $127 \mathrm{cwt} .2 \mathrm{qrs} 17 \mathrm{lbs},+11.$.
3. 172 days $16 \mathrm{~h} .29 \mathrm{~min} .+7$.
4. 614 bush. 1 pk .1 pt. +8.
5. 4179 miles 7 fur. 9 per. +6 .
6. 290 sq. per. 7 sds. 8 f- +9
7. 111 lbs .7 oz .4 dr .2 sch - -
8. 69 gals. 1 qt. 1 pt. +12 .
9. $£ 917614 \mathrm{~s} .91 \mathrm{~d} .+8$.
10. $796 \mathrm{emt} .1 \mathrm{qr} .16 \mathrm{lbg}+1 \mathrm{a}$
11. $£ 1967$ A. $8 \mathrm{~d} .+24$.
12. 149 fur. 17 per. $4 \mathrm{yds} .+35$.
13. $1479 \mathrm{hr} \mathrm{r} .47 \mathrm{~min} .16 \mathrm{sec} .+81$.
14. 1890 lbs .7 oz .12 dwt. +108.
15. 679 sq . per. $7 \mathrm{ft} .107 \mathrm{in} .+132$.
16. 3 qrs. $19 \mathrm{lbs} .11 \mathrm{oz} .7 \mathrm{drs} .+72$.
17. 1167 yrs. 119 daye $11 \mathrm{hrs} .+144$.
18. 987 oz .7 drs. 1 scr. $16 \mathrm{grs.+97}$.
19. 1679 r. 4 per. $7 \mathrm{ft} .96 \mathrm{in} .+117$.
20. 7967 wks. 4 days $17 \mathrm{sec} .+916$.
21. $£ 96749$ 16s. 11 녈. +117.
(22. 479 c. 7 c. ft. 11 cub. ft. +89.
22. $7174^{\circ} 17^{\prime} 19^{\prime \prime}+147$.
23. 1467 French ells 1 qr. 2 na. $1 \mathrm{in} .+267$.
24. 916 miles 6 fur. 4 yds. +67 .
25. $£ 1911$ 17s. 0 早 ${ }^{2} .+161$.
26. 9134 lbs. 4 oz. 17 dwt. +963.
27. 7149 bush. 1 qt. 1 pt. +417.
28. 2716 days 14 hours 17 mils. $9 \mathrm{sec} .+603$.
29. 4000 cwt .19 lbs. $11 \mathrm{oz} .+247$.
30. When the divisor is an applicate number the quotient is an abstract number, and means so many times, and we proceed according to the following

RULE.

Reduce both the divisor and the dividend to the lowest denomination mentioned in either, and then proceed as in common division.

Example 1.-Divide 73 oz. 4 dwt. 17 grs. by 9 oz. 7 dwt.
operation.

73 oz. 4 dwt. $17 \mathrm{grs} .=85153 \mathrm{grs}$. $9 \mathrm{oz} .7 \mathrm{dwt}=4488 \mathrm{grs}$.
 31416

8737

Here we reduce both the dividend and the divisor to grains, that being the lowest denomination contained in either. We then find that the divisor, 4488 , is contained in the dividend 7 times, with a remainder, 3737 , and according to the methods already explained, we set down this remainder above a line with the divisor beneath it. We may, however, read the answer, 7 times with a remainder of $\dot{\text { inchains g or } 7 \mathrm{oz} .15 \mathrm{dwt} .17}$ grains yet to be divided.

Example 2.—Divide £793 16s. $5 \frac{1}{4} \mathrm{~d}$. by $£ 17$ 14s. 9 d . oprration.

£793 16s. $5 \frac{1}{4} \mathrm{~d} .=762069$ farthings.
$£ 17$ 14s. $9 \mathrm{~d} .=17028$
17028)762069(441270378. Ans 68112

80949 68112

12837

UXERCISE 26.
Find the value of-

1. 739 days 4 hours 16 min . +23 hours 14 min . 42 sec .
2. $£ 4967$ 0s. $0 \frac{1}{2} \mathrm{~d} .+£ 6317 \mathrm{~s}$.
3. $£ 1192$ 17s. $8 \mathrm{~d} .+£ 917 \mathrm{~s} .4 \frac{8}{4} \mathrm{~d}$.
4. 986 cwt. 2 qrs. $17 \mathrm{lbs},+6 \mathrm{cwt} .1 \mathrm{qr} .17 \mathrm{lbs} .9 \mathrm{oz}$.
5. 426 a. 1 r. 23 per. +2 a. 8 per. 17 yds. 4 ft.
6. 71 fur. 16 per. 3 yds. $1 \mathrm{ft} .+27$ per. 3 yds .2 ft .7 in .
7. 1122 cords 3 cord ft. +12 cords 11 cubio It.
8. $111 \mathrm{lbs} .4 \mathrm{oz} .7 \mathrm{dwt} .+9 \mathrm{oz} .7 \mathrm{dwt} .17 \mathrm{grs}$.
9. 1468 Eng. ells 2 qrs. 1 na. +73 Flem. ells 1 na. 1 b.
10. 470 bush. $1 \mathrm{gal} .1 \mathrm{pt} .+3$ bush. 1 pk .1 qt .
11. Divide 6 lbs. 4 oz .1 dr . by 1 oz .7 drs .1 scr .7 \&
12. Divide £ 94 s . 7adl. by 3 z .11 td.
13. Divide 7 acres by 17 sq. yds. 6 ft .4 fn .
14. Divide 927 miles 4 fur. 7 per. by 6 miles 3 inohws.
15. Divide 11 years 47 days 1 hour by 23 weeks 2 dajw 7 hourss
16. Divide 167 busb. 1 pk. by 9 bush. 1 qt.
17. Divide 17 tons by 14 cwt. 3 qra
18. Divide 126 yds. 1 qr. 2 na. by 17 French ell qr. 1 in.
19. Divide 963 miles 420 yds. by 7 fur. 63 yds.
20. Divide $£ 1111$ 11s. $11 \frac{1}{d}$ by $£ 1213 \mathrm{~s}$. $4 \frac{1}{2} \mathrm{~d}$.

Exercise 27.

Miscellaneous Problems.

1. Reduce 1789 Flemish ells to fect.
2. Add together 97 lbs .4 oz .7 dwt . 16 lbs . oz. 16 grs ; 48 lbs .7 dwt. 9 grz ; 19 lbs. 4 oz .11 dwt . ; aid 12 oz .5 grs.
3. Exprees 714, 1111, 2704, 91671, 813471, and 31917169 in Romat 1.unterals
4. Divide £ $£ 1796 s .11$ dul, equally among 11 persons.
5. A sovereign weighs about 123 grains; what is the weight of ※7500 in gold ?
6. Read the following numbers:

1002000047006
900011110011110011
16714967904
71300400200
7. Sound travels at the rate of 1120 feet per second ; the flash o a cithnon, fired o.l one side of a river, is olsserved by a person standing directly "1 posite on the other side 11 seconds before he hears the report. How many miles, fur., \&e., is the river in width?
8. The new Canadian cent is exactly 1 inch in-diameter and 100 woigh cexactly 1 lb . Avoirdupois; what would be the weight and worth of that number of eents which woukd reach completely round the earth, the circumference being $24902 \frac{1}{2}$ miles?
9. How long would it require to count $\$ 794071$ in twenty-cent pieces, at the rate of 108 coins per minute?
10. If a person spends upon an average $\$ 2 \cdot 17$ per day, how mach does he spend during the year?
11. What is the weight of 3 dozen silver forks, each weighing 4 oz . 1 dwt .6 grs ?
12. Bought 1 lb . of tea for 75 cente, 3 lbs. of coffee at 14 cents per lb ., 6 lbs . of rice at 5 cents per lb ., 27 lbs of sugar at 11 ceuts per lb, 13 lbs. of raisins at 15 cents per 1 lb , and a barrel ot flour for $\$ 7 \cdot 20$; how much have I to pay for the whole?
13. Write the following expressions in common figures: $\overline{\mathrm{XI}}, \overline{\mathrm{LD}}$, MMMCCCXXXIII, MMDCLXC, L $\overline{X X X M \overline{X X L I V, ~}}$ $\overline{\text { CDLMDCOIX }} \overline{M X C M} \overline{\mathrm{~V}}$, and $\overline{\mathrm{M} M \overline{V C M D C C I I . ~}}$
11. How many times can 167 be subtracted from 271496 ?
15. When the multiplier is 714 and the multiplicand 9167 , what is the product?
16. That is the ninth part of $67 \mathrm{a}, 4$ per. 17 yds .8
17. Divide $£ 1611 \mathrm{~s}$. among 3 persons, so that one shall have $£ 42 \mathrm{~s}$. more than each of the others.
18. Divide $\$ 744$ among four persons, so that the first shall have ono-sixth of the whule, the second one-fourth of the remainder, and the other two, each half of what then remains. What is the whare of each?
15. Î̀ A has $£ 1764 \mathrm{~s} .5 \frac{1}{4}$. and B has $\$ 094 \cdot 70$; which has most, and how much?
2f A regiment of soldiers contains 1147 men; how much cloth would it require to make coats for the whole, each coat taking 4 yds. 1 qr. 3 na.?
21. What is the weight of $\$ 7196 \cdot 40$ in cent pieces, Canadian money?
22. Reduce 7 miles 4 fur. 17 per. to fathoms.
23. The quotient is 749 , the divisor 47 ; what is the dividend?
24. What is the difference between XMMCI and 16701 ?
25. The minuend is 71467 , the remainder 61794, what is the subtraliend?
26. Dlvide $\$ 679$ among two persons, so that the first shall have $\$ 146$ more than the second. What is the share of each?
27. What is the product of $714+16+179+42+93$, multiphed by $91467-234-946-1127-80040+27-67+83$?
28. How many bushels of wheat are there in 71498 lbs ?
29. Write down as one number, six trillions seven millions ninetysix thousand four hundred and tive.
30. The sum of two numbers is 1746 ; one is 974 , what is the other
31. What is the cost of 23 pair of shoes at 68.11 . per pair?
32. A gallon of water weighs 10 lhs , and a cubic foot weighs 62 lhs. ; how many gallons are there in 748 cubic feet?
93. Two men, A and B, run a race. A mives B a start of 17 yards but gains on him at the rate of 2 feet in 5 yarde; how much will A be in advance of B when B has run one mile?
34. Divide $\$ 749.60$ among A, B and C_{2} so that A shall have as much as B and C tocether, aud B and C equal shares. What is the share of each?
35. 2360 cabic feet of wood are to be divided among three charitable institutions, so that as often as the first receives 2 cubio feet the second shall receive 5 and the third 7 ; how many cords dues each receive?
36. A farmer owned 247 acres of land and dispoved of it as follows: he gave 1 a. 1 r. 17 per. for a school site, sold 17 a. 23 per., gave 21 a .1 r . to his wlfe, and dividcd the remalnder equally among his 3 sons; how much did each son receive?
97. If 17 seconds elapse between the flash of lightning and the arrival of the report; allowing sound to travel at the rato of 1120 feet per second, how far off is the thunder-cloud?
38. The Loudon Times has a circuation of $\mathbf{1 2 0 0 0}$ per day; if it be soid at 5d. per copy, express in pounds, ehilling*, and pence, and also in dollars and cents, the sum realized by lts sale for o:e entire year (313 days).
39. The greater of two numbers is 710 their difference 297, what is the smaller number?
40. The Jewish shekel weighed 219 grai about 2s. 92d. Canadian currency ; a talent, containing 3000 shekela, anc ... at was the value of 500 talents in dollars and cents?
41. A wiehed to exclange 297 yards of c.. at $f 178.4 \frac{1}{2}$. fer yard with 13 for flou : 11 ? 17 p arrel; how many barrels of dour should" -I "evive?

SECTION III.

GREATEST COMMON MEASURE AND LEAST COMMON MULTIPLE.

GREATEST COMMON MEASURE.

1. A Measure of a number is any number that will exactly divide it ; that is, leaving no remainder.
2. A Common Measure of two or more numbers is any number that will exactly divide each of them.
3. The Greatest Common Measure of two or more numbers is the greatest number that exactly divides each of them.

Thus $2,3,4,6,8,12$, and 24 are all common measures of 24 and 48 , but $2+$ alone is the greatest common measure, because it is the greatest number that divides botin 24 and 48 without a remainder.

Note. - The Greatest Common Measure is usually indicated by the initial letters G. C. M.
4. To find the G. C. M. of two numbers :-

RULE

Divide the greater of the two given numbers by the smaller, then the divisor by the remainder; next the last divisor by the new remainder; and so on until there is no remainder: The last divisor will be the G. C. M. required. Nots.- If the last divisor is unity, the giren numbers have no commoin measure ; i. c., they are prime to one another. .

Example 1.- What is the G. C. M. of 1825 and 2555?
opEration.

$$
i 825) 2555(1
$$

$$
1825
$$

730) $1825(2$ 1460
731) $730(2$ 780

Here we divide the greate: number, 2555 , by the less, 1825 , and thus obtain a remainder, 730, which we now make the divisor, and 1825 , the former divisor, becomes the dividend. We find that 730 goes into 1825 wice, and gives a rcmainder, 365 ; and so on. When

365 is used, it leafes no remainder, and is therefore tho G. C. M.

Example 2.-What is the G. C. M. of 647 and 2750?
operation.
647)2750(4 2588
162)647(3

486
161)162(1 161
I)161(161 161

Here, in following the rale, we find that the first divisor that will go into the then dividend is 1 ; or in other words, the numbere have no common measure.

Exercise 28.
Find the G. C. Kr. of the following numbers:

1. 1024 and 2240 .
2. 1902 and 24409 .
3. 1624 and 14500 .
4. 8393 and 4609.
5. 714 and 1176.
6. 219 and 11476.
7. 1947 C 6 and 259913.
8. 2925 and 29484.
9. 27525 and 1725.
10. 2254 and 71001.
11. 11256 and 195 \%
12. 5161 and 7755
13. 87147 and 175 in
14. 1261 and 663.
15. 918 and 1347.
16. 187 and 265.
17. 1914 and 35758.
18. 21671 and 22412 .
19. 82159 and 58 .
20. 452 and 212.

LEAST COMMON MULTIPIF.

5. One number is said to be a multiple sf another misen it exactly contains, as divisor, that other a certain sumber of times.
6. A Common Multiple of two or raore numbers is any numaber that exactly contains each of then as divisor.
7. The Least Common Multiple of tito or more num bers is the least number that exactly contains each of then as divisor.

Thus, $6,12,18,24,30,30$, dee, are all common mu!tipies or 3 and out the lecust common muitiple of 2 and 3 is 6 .
Note. - The Least Common Multiple of two or more numbers Is usually represented by the initial letters l. c. m.
8. To find the l. e. m. of two or more numbers:-

RULE.

Set down the given numbers in a line, arid strike out any that are exactly contained in any of the others.

Take any one of the uncancelled numbers as divisor, set it to the left of the line, and strike out of each rcmaining number the lizghest factor that is common to it and the assumed divisor.

Write the uncancellcd factors and numbers in a line, and again stritie ont any that are cxactly contained in any of the others. Assume any one of the uncancelled numbers in this sccond line as divisor, and proceed with it as before.

Proced thus until no two numbers left in the now line have any common measure but unity.

Then, to get the l. c m., multiply together all the assumed divisors and all the numbers left in the last line.

Example 1.-What is the l. c. m. of $6,8,10,12,15$, $16,20,24$, and 30 ?

$$
\text { 1. c. } m .=20 \times 4 \times 3=240 \text {. }
$$

Here, after arranging the given numbers, we strike out 6, 8 , and 12 , because they are exactly contained in 24, another of the given numbers. For a similar reason, we strike out 10 and 15 (i. e. because they are exactly contained in 317). Next we assume 20, one of the remaining numbers, as livisor. The highest factor of 16 that is also a factor of the asstmed number 20 is 4 , and we aecordingly divide 16 ho 4 , and for a similar reason we divide 24 by 4 and 30 by inerator \ddot{y}_{j} cancelled factors are now 4,6 , and 3 , of which

3 is exactly contained in 6 , and we therefore striks it ont. This leares 4 and 6 , of which we assume 4 as diviscr, and, as this contains 2 , a factor of 6 , we divide the 6 by 2 . Then, multiplying the 8, remaining, by the assumed divisors 4 and 10 , we get 240 for the 1. c. m.

Example 2.-What is the l. c. m. of $16,24,28,30,32$ $36,40,44,45,48$, and 50 ?

operation.

$$
\begin{array}{r}
40) 16 \ldots 24 \ldots 28 \ldots 30 \ldots 32 \ldots 36 \ldots 40 \ldots 44 \ldots 45 \ldots 48 \ldots 50 \\
6) 7 \ldots 3 \ldots 4 \ldots 9 \ldots \quad . .11 \ldots 9 \ldots 6 \ldots 5 \\
7
\end{array}
$$

Then l. c. m. $=40 \times 6 \times 7 \times 2 \times 11 \times 3 \times 5=5$ 5 4400 .
Here we strike out at once 16 and 24 , since they are contained exactly in 48 . Then we assume 40 as divisor, of which 4 , one of its factors, reduces 28 to 7,36 to 9 , and 44 to 11. Also 8, another factor, reduces 32 to 4 and 48 to 6 . Also 10, another factor, reduces 30 to 3 and 50 to 5. Also 5 , another factor, reduces 45 to 9 . Next we strike out 3 and 9 in the second line, since they are each contained in 9 , another number in that line, \&c.

Exercise 29.
Find the 1. c. m . of -

1. 6,9 , and 30 .
2. 30 and 55.
3. $7,21,35,4$, and 20.
4. $2,9,16,35,56$, and 63 .
5. $2,4,6,8,10,12,16,18$, and 20 .
6. $8,9,11,22,72,32$, and 93.
7. $6,10,14,18,22,28$, and 32 .
8. $5,10,15,20,25,30,35$, and 40 .
9. 1, 2, 3, 4, 5, 6, 7, 8, and 9 .
10. $3,6,9,12,48,21,24$, and 16 .
11. $8,21,63,40,160,240$, and 300 .
12. 16, 41, and 38 .
13. 9 and 16.
14. 112, 200, and 72.
15. $90,36,63,12$ and 7.
16. $3,5,7,9$, and 11.
17. $2,4,6,8,10,12,14,16,18,20,22,24,26,28,30$, and 22 .
18. $25,7,44,60,63,55,9,11,28,70$, and 4.
19. 720, 396,252 , and 510 .
20. $15,12,128,30,16,4,320$, and 96 .

SECTION IV.

vULGar and decimal fractions.

VULGAR FRACTIONS.

1. A Fraction is an expression representing one or more of the equal parts into which any quantity may be divided.

Or ${ }^{\infty}$ third is mritten. Opa fifth is written........ $\frac{1}{3}$ Ove serenth is written... $\frac{1}{7}$ Six serenths is written $\ldots . \frac{6}{7}$ Nineteen tweuty-sevenths is written.............. $\frac{1}{2} \frac{9}{7}$

Four ninety-cighths is writteu................ 99_{8}^{4}
Seven hundred elevenhundredths is written.................... $\frac{700}{1100}$ \&c.
2. If a quantity be divided into $3,5,7,11$, \&c., equal parts, then onc of these equal parts is called one third, one fifth, one seventh, one eleventh, d.c., as the case may be.
3. Erery fraction is expressed by two numbers, called. terms, written one above the other and separated by a line.
4. The number written below the line is called the D_{c} nominator, because it shows the denomination, i. e., tells into how many equal parts the quantity is supposed to be divided.
5. The number above the line is calied the Numerator, because it numerates or tells how many of these parts are to be taken.
6. Every fraction expresses the division of the numerator by the denominator, and the little horizontal line which separates the two terms is derived from and stands for the sign of division.

Thus, $\frac{3}{}$ means cither the $\frac{1}{2}$ part of 2 or 2 times the $\frac{1}{4}$ part of 1 . $\frac{13}{2} \frac{1}{6}$ means either the $\frac{1}{24}$ part of 13 or 18 times thu $\frac{1}{36}$ part of 1, \&c.
7. Since every fraction expresses the division of the numerator by the denominator, it follows that-

The value of the fraction is the quosiant obtained by dividing the numerator by the denominator, and hence,
Multiplying the numerator of a fraction by any number, multiplies the fraction by that number.
Multiplying the denominator of a fraction oy any number, divides the fraction by that number.
Multiplying both numerator and denominator of a fraction by the same number, does not affect the value of the fraction.
Dividing the numerator of a fraction by any number, divides the fraction hy that number.
Dividing the denominator of a fraction by any number, multiplies the fraction by that number.
Dividing both numerator and denominator of a fraction by the same number, does not affect its value.
8. Fractions are divided into two classes, Vulgar and Decimal.
9. A Decimal Fraction is a fraction in which the denominator is 1 , followed by one or more 0 's.
10. All other fractions are Vulgar or Common Fractions.

Nore.-The word "vulgar" is here used in the sense of "common."
11. There are six kinds of Vulgar Fractions-Proper, Improper, Mixed, Simple, Compound, and Complex.
12. A Proper Fraction is one in which the denominator is greater than the numerator.

A Proper Fraction may also be defined to be a fraction whose value is less than 1 .

13. An Improper Fraction is a fraction whose denominator is not greater than its numerator.

An Improper Fraction may also be defined to be a fraction whose value is equal to or greater than 1.

14．A Mixed Number is a number made up of a whole number and a fraction．

15．A．Simple Fraction expresses one or more equal parts of unity．

16．A Compound Fraction expresses one or more equal parts of a fraction，or，in other words，is a fraction of a fraction．
 tions．

17．A Complex Fraction has a fraction or a mixed num－ ber in its numerator or in its denominator，or both．

18．Any whole number may be made a fraction by placiug 1 bencath it for denominator．

Thus $5=\frac{3}{1}, 17=\frac{17}{2}, 11=\frac{12}{2}, 217=\frac{812}{1}$ ，\＆e．

EXERCISE．

2．Read the following fractions：it， $11_{\mathrm{T}}^{2} \frac{1}{2}$ 웅， $217_{1}^{\circ}, 603_{\frac{17}{100}}$, 11379皆是杽禾

4．Rend all the proper froitions found is the above．
5．Read all the improper fractions．
6．Fend all tho mixed numbers．
ร．Frite down on your slate any six proper fractions．
8．Write down on your slate any six lmproper fractione
9. Write down on your slate any six mixed numbers.
10. Write down on your slate any six decimal fraotione.
11. Write down on yonr slate any eix simple fractions.
12. Write down on your slate any six compound fractions.
13. Write down on your slate ayy six complex fractions.
14. Expres 7, 0, 4, 23, 17, 34, 109, and 307 as fractions.

REDUC'TION OF VULGAR FRACTIONS.

19. To reduce an integral number to a fractiou having a given denominator:-

RULE.

Write the integral number as a fraction having 1 for denominator, and multiply both numerator and denominator of the resalting expression by the given denominator.

Example 1.-Reduce 123 to a fraction having 20 for denominator.

> operation.

$$
123=\frac{123}{1}, \text { and } \frac{123 \times 20}{1 \times 20}=\frac{2460}{20} \text { Ass. }
$$

Example 2. -Reduce 17 to a fraction having 29 for denominator.
operation.

$$
17=\frac{17}{1}, \text { and } \frac{17 \times 29}{1 \times 29}=\frac{493}{29} \mathrm{Ans.}
$$

ExErcise 80.

1. Reduce $7,9,: z \mathrm{anc} .40$ to fractions having 11 for denominator.
2. Reduce $2,207,440$, and 0 o fractions having 109 er denominator.
3. Reduce 22, 47, 09, and 100 to s:uctions hartog 93 denomina. tor.
4. Reduce $217,613,927$, and 4 to fractions liaving 13 for del:omitator.
5. Reduce $27,304,617$, and 93 to fractions having 248 for de ominator.
6. Reduce $209,407,75$, and 5 to fractions having $6 I I$ for dewominator.
7. To reduce a mixed number to an improper frac-tion:-

RULE.

Multiply the whole number by the denominator of the fraction, to the product add the given numerator and place the sum over the given denominator.

Example 1.-Reduce $7 \frac{4}{9}$ to an improper fraction.
operation. Here we multiply the whole number, 7 , by $\frac{74}{9}$ the denominator, 9 , and to the product, 63 , 9 add the numerator, 4. This gives 67 for the

- $\frac{\text { numerator, beneath which we write the giren }}{\text { denominator, } 9 \text {. }}$

Example 2.-Rcduce $167 \frac{1}{19}$ to an improper fraction. operation.

$$
\begin{gathered}
167 \times 19=3173 \text { and } 3173+14=3187 ; \\
\text { hence } 167 \frac{1}{19}=3182 . \text { Ans. }
\end{gathered}
$$

Exercise 31.
Reduce the following mixed numbers to improper fractions:

1. $16 \frac{3}{7}$.
2. $9 \frac{2}{11}$.
3. $14 \frac{3}{10}$.
4. $71 \frac{3}{6}$.
5. $161 \frac{21}{4}$.
6. $27 \frac{19}{31}$.
7. $186 \frac{1}{2}$.
8. 200 द्रुण.
9. $713 \frac{4}{6} \frac{1}{7}$.
10. $91 \frac{1}{1}$.
11. $6 \frac{4}{1.3}$.
12. 20977_{1}^{4}.
13. $617 \frac{1}{9} \frac{2}{2} \frac{3}{9}$.
14. $417 \frac{17}{8}$.
15. $6170{ }_{1}^{1806}$. 20. $1919 \frac{19}{191}$.
16. $111 \frac{111}{1111}$.
17. $214 \frac{11}{107}$.
18. $63 \frac{1}{20}$.
19. $2345 \frac{34}{6} \frac{5}{6}$.
20. To reduce an improper fraction to its equiralent mixed number:-

ROLE.

Divide the mumerator by the denominator, and the puoticnt will be the required mixed number.

Example 1.-Reduce $\frac{1 I_{g} 12}{}$ to a mixed number.

$$
\begin{gathered}
\text { OPRRATION. } \\
\stackrel{1714}{9}=1714 \div 9=190 \frac{1}{g} . ~ A n . s .
\end{gathered}
$$

Example 2.--Reduce $\frac{147 \frac{1}{1} 5}{}$ to a mixed number.

$$
\begin{gathered}
\text { OPERATION. } \\
147169^{6}=14716 \div 109=135 \frac{1}{10 g} .
\end{gathered}
$$

Exercise 32.
Reduce the following improper fractions to their equivale mixed numbers :

1. 11.
1. $\frac{270}{7}$.
2. $\frac{127963}{122}$.
3. $\frac{4177896}{5} \frac{8}{3}$.
4. $\frac{1694}{11}$.
5. 11124.
1. $\frac{113}{17}$.
2. $\frac{61427}{23}$.
3. ${ }^{217} 17^{94}$.
4. ${ }^{213} 1 \frac{15}{6} \frac{1}{2}$.
5. $\frac{4547}{4}$.
6. ${ }_{92}^{11317}$.
7. $\frac{2626262}{43}$.
8. 2177^{9}.
9. $\frac{123}{13}$.
10. $\frac{913}{83} \frac{17}{4}$.
11. $7_{19} \frac{4}{4}$.
12. $\frac{145227}{93}$.
13. $\frac{279}{61}$.
14. $\frac{12345}{6431}$.
15. To reduce a fraction to its lowest terms:-

RULE.

Divide both numerator and denominator by their greatest common measure.

Example 1.-Reduce $\frac{1}{2} 512 \%$ to its lowest terms. operation.
By Art.4, Sec. III., the G. C. M. of 1512 and 2370 is 216. Then $1512 \div 216=7$, and $2376 \div 216=11$; hence $\frac{1}{2} 3 \frac{5}{37}$ $=\frac{7}{1}$. Ans.

Example 2.-Reduce $\frac{4}{\frac{4}{2} \frac{81}{3} \frac{1}{7}}$ to its lowest terms. operation.
The G. C. M. of 481 and 26377 is 13.
Then $481 \div 1 \varepsilon=37$, and $26377 \div 13=20 z 9$; heracs

Exercise 33.
Reance the following rractions to their lowest terms:

1. $\frac{15}{274} 90$.
2. 873650.
1. $\frac{33}{33} \frac{1}{3} 7$.
2. $\frac{6417}{76} 59$.
3. $\frac{3902}{118}$.
4. $\overline{4} \frac{27}{3} \frac{3}{6} \frac{7}{3}$.
5. $\frac{3873}{789}$.
6. $\frac{3057}{3988} 9$.
7. $\frac{9917}{6119}$.
8. $\frac{1597}{701}$.
9. $\frac{58469}{111983}$.
10. $\frac{4}{2} \frac{9}{7} \frac{1}{7} 91$.

Note.-A fraction can sometimes be rednced to its lowest terms, and the work may almost always be materially lessened, by dividling both numerator and denominator by any number which will go into each of them without a remainder. In order to facilitate this mode of reduction, it is necessary to remember the following facts:
1st. Any number that ends in 5 is divisible by 5.
2d. Any number that ends in 0 is divisible by 10,5 , or 2
3d. Any number that ends in an even number is divisible by 2.
4th. When the twe right-hand figures are divisible by 4 , the whole is divisible by 4 .
5th. When the three rigbt-band figures are divisible by 8 , the whole number is divisible by 8 .
6 th . When the sum of the digits of a number is divisible by 9 , the sum itself is divisible by 9 or by 3 .
7tb. When the sum of the digits of a number is divisible by 3 , the number itself is divisible by 3.
8th. When the sum of the digits standing in the even places is equal to the sum of the digits standing in the odd places, the number is divisible by 11.
Thus the number 7416 is divisible by 4 , because 16 (the last two digits) is divisible by 4.
—is divisible by 8 , beeause 416 (its last three digits) is divisible by 8 .
-is divisible by 9 , because the sum of its digits $(7+4+1+6=18)$ is divisible by 9 .
-is divisible by 3 : because the sum of its digits $(7+4+1+6=18)$ is divisible by 3 .
So also the number 4567321 is divisible by 11 , since the sum of the digits in the odd places, $1+3+6+4=14=2+7+5$: the surn of the digits in the ceven places.
23. To reduce two or more fractions to equivalent fractious haring a common denominator:-

RULE.

Find the least common multiple of all the denominators. Multiply both terms of each fraotion by the quotient obtained by dividing this least common multiple by the denominator of the fraction.

Example 1.-Reduce $\frac{1}{4}, \frac{3}{7}, \frac{4}{9}, \frac{2}{8}, \frac{3}{2}$, and $\frac{2}{3}$, to equiralent fractions having a common denominator.

operation.

The least common multiple of the denominators, $4,7,9,8$, 2 , and 3 , is 504 .
Then $504 \div 4=126$, the multiplier for both terms of the 1st fraction.
$504 \div 7=72$, the multiplier for both terms of the 2d fraction.
$504 \div 9=56$, the multiplier for both terms of the 3d fraction.
$504 \div 8=63$, the multiplier for both terms of the 4 th fraction.
$504 \div 2=252$, the multiplier for both terms of the 5 th fraction.
$504 \div 3=168$, the multiplier for both terms of the 6 th fraction.

Example 2.-Reduce $\frac{4}{7}, \frac{3}{6}, \frac{4}{9}$, and $\frac{7}{10}$, to equivalent fractions having a common denominator.

operation.

The l. c. m. of $7,5,9$, and 10 is 630 .
Multiply both terms of the 1st fraction by 90 (i. e. $\frac{630}{7}$),

$" 1$	"	$2 d$	"	by	$126\left(\right.$ i. e. $\left.\frac{630}{6}\right)$,
"	"	$3 d$	$" 6$	by	$70\left(\right.$ i. e. $\left.\frac{630}{9}\right)$,
"	"	4 th	"	by	$63\left(\right.$ i. c. $\left.\frac{630}{10}\right)$,

Exercise 34.

Reduce to equiralent fractions having a common denaminator:

1. $\frac{1}{2}, \frac{3}{4}, \frac{4}{5}$, and $\frac{7}{10}$.
2. $\frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \frac{2}{3}$, and $\frac{1}{2}$.
3. $\frac{7}{18}, \frac{6}{7}, \frac{5}{9}, \frac{5}{6}$, and $\frac{3}{14}$.
4. $\frac{7}{24}, \frac{11}{12}, \frac{3}{6}, \frac{2}{3}, \frac{7}{10}$, and $\frac{13}{18}$.
5. $\frac{17}{26}, \frac{9}{15}, \frac{4}{15}, \frac{23}{36}, \frac{5}{5}$, and $\frac{4}{5}$.
6. $\frac{1}{8}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{8}$, and $\frac{1}{10}$.
7. $\frac{2}{3}, \frac{3}{4}, \frac{4}{6}$, and $\frac{5}{6}$.
S. $\frac{7}{8}, \frac{8}{3}, \frac{9}{10}, \frac{11}{1}, \frac{18}{18}$, and $\frac{17}{18}$.
8. $\frac{11}{3}, \frac{14}{17}$, and $\frac{16}{19}$.
9. $\frac{12}{17}, \frac{9}{16}, \frac{15}{16}$, and $\frac{7}{12}$.
10. $\frac{-9}{10}, \frac{1}{1} \frac{1}{2}, \frac{13}{15}$, and $\frac{1}{2} \frac{6}{1}$.
11. $\frac{2}{6}, \frac{4}{7}, \frac{3}{11}, \frac{4}{9}, \frac{2}{3}, 1 \frac{1}{4}$, and $\frac{1}{27}$.
12. To reduce a compound fraction to a simple one :-

RULE.

Multiply all the numerators together for a new numerator, and all the denominators together for a nero denominator.

Note.-Before applying this rule, we may cast out or cancel all the factors that are common to a numerator and a denominator of the compound fraction.

Example 1.-Reduce $\frac{5}{1}$ of $\frac{4}{7}$ of $\frac{3}{6}$ of $\frac{2}{2} \frac{2}{5}$ of $\frac{35}{16}$ to a simple fraction.

STATEMENT.

$$
\begin{gathered}
\frac{6}{11} \text { of } \frac{4}{7} \text { of } \frac{3}{5} \text { of } \frac{22}{27} \text { of } \frac{35}{16}=\frac{6 \times 4 \times 3 \times 22 \times 35}{11 \times 7 \times 5 \times 27 \times 16} \\
\text { CANCELLED. } \\
=\frac{6 \times 4 \times 3 \times 22 \times 33}{11 \times 7 \times 7 \times 77}=\frac{1}{3} \cdot A n s . \\
8
\end{gathered}
$$

Hers F^{2} and 27 contsin a common factor, 3 , which is cast ont, and these numbers thus reduced to 2 and 9 . Next, this 2 reduces 16 to 8 , and the 9 is reduced to 3 by the third numerator, which is thus cancelled. Again, 11 cancels 11 (the first denomi zator) and reduces 22 to 2, and this 2 reduces the 8 , before ublained from the 16 , to 4 . Next, this 4 is cancelled by the 4 in the numerator. Again, 7 cancels the 7 in the dev'minator and reduces the 35 in the numerator to 5 , and thin 5 cancels the 5 in the denominator. All the zumerators are now reduced to unity, as also all the denominators but tha fourth, which is 3 . The resulting fraction is therefore $\frac{1}{i} \frac{1 \times 1 \times 1 \times 1}{\times 1 \times 1 \times 3 \times 1}$; but as 1 is nevercon-
 as $\frac{1}{8}$.

Example 2.-Reduce $\frac{7}{17}$ of $\frac{4}{6}$ of $\frac{3}{5}$ of $\frac{55}{2}$ to a simple fraction.

STATEMENT.

$$
\begin{aligned}
& \frac{7}{11} \text { of } \frac{4}{6} \text { of } \frac{3}{5} \text { of } \frac{55}{20}=\frac{7 \times 4 \times 3 \times 55}{11 \times 6 \times 5 \times 20} \\
& \text { CANCELLED. } \\
& =\frac{7 \times 4 \times 3 \times 5 \%}{1 \times 6 \times \beta \times \frac{\beta}{5}}=\frac{7}{2 \times 5}=\frac{7}{10 .}
\end{aligned}
$$

Nore 2.-If any term of the compound fraction be a mixed number, it must be reduced to its equivalent improper fraction before applying the rule.

Exercise 35.

Reduce to equivalent simple fractions:

2. $\frac{1}{2}$ of $\frac{7}{8}$ of $\frac{4}{5}$ of $\frac{15}{7}$ of $\frac{38}{1} \frac{2}{9}$.
3. $\frac{2}{7}$ of $\frac{1}{4}$ of $\frac{14}{61}$ of $\frac{9}{16}$ of 32 .
4. $2 \frac{3}{7}$ of $\frac{1}{9}$ of $\frac{3}{34}$ of $\frac{9}{11}$ of 22 .
5. $\frac{2}{5}$ of $\frac{4}{11}$ of $27 \frac{2}{2}$ of $\frac{1}{4}$.
6. $\frac{2}{11}$ of $34 \frac{4}{9}$ of $48 \frac{1}{8}$ of $\frac{1}{3}$.
7. $6 \frac{8}{4}$ of $9 \frac{1}{3}$ of $\frac{1}{8}$ of 7 of $3 \frac{1}{4}$.
8. $27 \frac{1}{4}$ of $\frac{1}{9}$ of $\frac{11}{17}$ of $\frac{1}{2} \frac{53}{2}$.
9. $\frac{1}{1}_{2}^{2}$ of $8 \frac{8}{4}$ of $6 \frac{3}{7}$ of $\frac{1}{28}$.
10. $\frac{1}{3}$ of $\frac{2}{3}$ of $\frac{8}{4}$ of $\frac{4}{5}$ of $\frac{5}{6}$ of $\frac{8}{15}$.
11. $2 \frac{1}{4}$ of $3 \frac{1}{2}$ of $4 \frac{1}{3}$ of $5 \frac{1}{4}$ of $6 \frac{1}{5}$.
12. $3 \frac{2}{7}$ of $8 \frac{8}{4}$ of $9 \frac{2}{2}$ of $\frac{11}{13}$ of
25. To reduce ? complex fraction to a simple one :-

RULE.

Reduce both numosator and denominator to simple fractions.

Then multiply the artremes or outside numbers toyether for a nem numerator, and the means or interncdiate numbers together for a new denominator.

Exanjle 1.-Reduce $\frac{4 \frac{1}{2}}{\frac{7}{11}}$ to a simple fraction.

$$
\frac{4 \frac{1}{3}}{\mathrm{~T}^{7} \mathrm{I}}=\frac{\frac{9}{2}}{\mathrm{i}^{2} \mathrm{~T}}=\frac{9 \times 11}{2 \times 7}=\frac{99}{14}=7 \frac{1}{14} \text {. Ans. }
$$

Notr.- Factors that are common to one of the extremes and one of the means, are to be etruck out or cancelled.

Example 2.-Reduce $\frac{7 \frac{4}{11}}{1 \frac{13}{77}}$ to a simple fraction.

$\frac{7_{1 \frac{1}{1}}^{1 \frac{3}{7}}}{\frac{\frac{81}{11}}{90}}=\frac{91 \times 7}{\frac{81}{77}}$| $\frac{77}{11 \times 99}$ |
| ---: |
| 10 |$=\frac{7 \times 9}{10}=\frac{63}{10}=6 \frac{3}{10 .}$ Ans,

Exercise 30.
Reduce to equiralent simple fractions:

26. To reduce il denominate fraction from one denomibation to another:-

RULE.

If the reduction be from a lower to a higher denomination multiply the denominator, but if from a higher to a lower denomination multiply the numerator, as in reduction of whole numbers.

Example 1.-Reduce $\frac{7}{17}$ of an hour to the fraction of a week.
operation.
${ }_{17}^{17}$ h. $=\frac{7}{17 \times 24} \mathrm{~d} .=\frac{7}{17 \times 24 \times 7} \mathrm{wk} .=\frac{1}{17 \times 24}=$

$$
\frac{1}{408} . \quad \text { Ans. }
$$

Or briefly,
辛 $\mathrm{h} .=\frac{7}{17 \times 24 \times 7}=\frac{1}{408}$ of a week. Ans.
Example 2.-Reduce $\frac{1}{7}$ of $\frac{3}{6}$ of $\frac{4}{9}$ of 35 oz . to the frac. tion of a pound Avoir.
operation.

$$
\frac{1}{7} \text { of } \frac{3}{6} \text { of } \frac{4}{4} \text { of } 35 \mathrm{oz}=\frac{4}{3} \text { oz. (by Art. 24.) }
$$

Then $\frac{4}{3} \mathrm{oz} .=\frac{4}{3 \times 16}=\frac{1}{12} \mathrm{lb}$. Ans.
Example 3.-Reduce $\frac{7}{6}$ of an acre to the fraction of 2 yard.
operation.

$$
\begin{aligned}
& \frac{7}{6} \text { of an acre }=\frac{7 \times 4 \times 40 \times 304}{5} \text { of a yard } \\
& =\frac{33880}{5} \text { of a yard }=\frac{6776}{1} . \text { Ans. }
\end{aligned}
$$

Example 4.-Reduce $\frac{2}{5}$ of $\frac{1}{11}$ of $\frac{25}{35}$ of $\frac{49}{6}$ of 25 furlongs to the fraction of $\frac{3}{5}$ of $\frac{3}{8}$ of $\frac{y}{9}$ of 7 feet.

operation.

 $\frac{3}{5}$ of $\frac{3}{8}$ of $\frac{8}{9}$ of 7 feet $=\frac{7}{5}$ of a foot.Then $\frac{4}{3}$ of a fur. $=\frac{4 \times 40 \times 6 \frac{1}{2} \times 3 \times \frac{5}{7}}{3}=1100-$ fraction of ${ }_{8}^{7}$ of a foos. Ans.

Exercise 37.

1. Reduce $\frac{7}{11}$ of a day to the fraction of a week.
2. Reduce $\frac{4}{29}$ of a cwt. to the fraction of a quarter.
3. Reduce $\frac{2}{7}$ of $\frac{1}{2} \frac{1}{6}$ of $\frac{5}{4}$ of a yard to the fraction of an ell flemish.
4. Reduce $\frac{3}{4}$ of $\frac{5}{7}$ of $\frac{1}{19}$ of a mile to the fraction of a perch.
5. Reduce $\frac{4}{5}$ of $\frac{7}{8}$ of $3 \frac{1}{2}$ inches to the fraction of a linear yard.
6. Reduce $\frac{2}{7}$ of $\frac{3}{8}$ of $\frac{6 \frac{2}{2}}{4 \frac{9}{2}}$ of 6 oz . to the fraction of $\frac{1}{2}$ of $\frac{2}{7}$ of量 of a scruple.
7. Reduce $\frac{7}{10}$ of $\frac{4}{11}$ of $\frac{1}{6}$ of $\frac{2 \frac{1}{2}}{\frac{1}{7}}$ of a pint to the fraction of星 of $\frac{2}{5}$ of $\frac{4 \frac{4}{4}}{7 \frac{1}{2}}$ of a bushel.
8. Reduce $\frac{2}{7}$ of $\frac{A}{1}$ of $6 \frac{3}{4}$ shillings to the fraction of one pound.
9. Reduce $\frac{5}{11}$ of $4 \frac{9}{4}$ hours to the fraction of a week.
10. Reduce $\frac{2}{4}$ of a lb . to the fraction of $\frac{1}{7}$ of $\frac{3}{8}$ of $\frac{4 \frac{1}{4}}{67}$ of $\frac{9 \frac{1}{2}}{\frac{3}{11}}$ of a dwt .
11. Reduce $\frac{6}{7}$ of $4 \frac{9}{4}$ of $\frac{9 \frac{1}{4}}{16 \frac{1}{2}}$ of $\frac{33}{37}$ of an acre to the fraction of $\frac{3}{7}$ of a square yard.
i2. Reduce $\frac{4 \frac{1}{2}}{7}$ of $\frac{6}{3 \frac{3}{3}}$ of $\frac{\frac{1}{7}}{\frac{1}{9}}$ of $\frac{7}{9}$ of a farthing to the fraction of a pound.
12. To reduce one denominate number to the fraction of another:-

RULE.

Reduce both quantities to the lowest denomination conained in eithcr.

Then place that quantity which is to be the fraction of the other as numerator, and the remaining quantity as denominator.

Example 1.-Reduce 4 lbs 2 oz , to the fraction of 9 lbs, 7 oz .11 dwt .

operation.

$4 \mathrm{lbs} .2 \mathrm{oz} . \quad=1000 \mathrm{dwt}$.
9 lbs .7 oz. $11 \mathrm{dwt} .=2311 \mathrm{dwt}$.
Therefore 4 lbs .2 oz . is $\frac{1000}{2311}$ of 9 lbs .7 oz .11 dwt .
Example 2.-Reduce $16 \mathrm{~s} .4 \frac{8}{4} \mathrm{~d}$. to the fraction of $£ 91$ 9s. 11d.

> operation.

16s. $4 \frac{8}{4} \mathrm{~d} .=787$ farthings.
£91 9s. 11d. $=87836$ farthings.
Therefore the answer is $\frac{787}{87836}$.
Exercise 38.

1. What fraction is 2 hours 17 minutes of 1 week 17 hours?
2. What fraction is 19 lbs .7 oz .21 grs . of 11 lbs .7 oz .9 dwt. ?
3. What fraction is 6 per. $16 \mathrm{yds}$.2 ft .11 in . of 7 roods 14 perches?
4. What fraction is 3 qrs. 1 na. 1 in . of 3 Eng. e. 1 qr. 2 na.?
5. Reduce 27 weeks 2 days 4 hours 7 min . to the fraction of a year.
6. Reduce 2 qts. 1 pt. to the fraction of 7 bush. 1 pk .
7. Reduce 1 lb .1 oz , to the fraction of 3 cwt. 3 qrs . 17 lbs.
8. Reduce $£ 17618 \mathrm{~s}$. $7 \frac{1}{2} \mathrm{~d}$. to the fraction of $£ 21719 \mathrm{~s}$. 11d.
9. What fraction is 17 farthings of $6 \mathrm{~s} .11 \frac{1}{4} \mathrm{~d}$.?
10. Reduce 27 square yards to the fraction of an acre.
11. What fraction is 7 drs. 1 scr .17 grs of 7 lbs .4 oz .7 drs ?
12. Reduce $\frac{1}{2}$ of $\frac{2}{3}$ of $\frac{8}{4}$ of $£ 78 \mathrm{~s}$. $3 \frac{1}{4} \mathrm{~d}$. to the fraction of $\frac{8}{6}$ of

$$
\frac{3}{7} \text { of } \frac{17 \frac{1}{2}}{6} \text { of } £ 67 \mathrm{~s} .8 \frac{1}{2} \mathrm{~d} \text {. }
$$

13 Reduce $\frac{2}{7}$ of $\frac{3}{8}$ of $\frac{8}{9}$ of $\frac{21}{20}$ of 1 qr .17 lbs. to the fraction of $\frac{1}{2}$ of $\frac{2}{5}$ of $\frac{10}{1} \frac{0}{3}$ of 6 cwt. 1 qr.
14. Reduce $\frac{3}{11}$ of $\frac{4}{9}$ of $\frac{16 \frac{1}{2}}{20}$ of 6 roods 17 per. to the fraction of $\frac{7}{1} \frac{1}{7}$ of $\frac{8}{3}$ of $\frac{33}{56}$ of $\frac{2}{7}$ of 9 acres 11 yds .
15. Reduce $\frac{1}{2}$ of $7 \frac{1}{2}$ of $8 \frac{3}{4}$ of $\frac{1}{5}$ of $\frac{166}{2}$ of 17 cord-feet to the fraction of $\frac{9}{17}$ of $5 \frac{1}{2}$ of $\frac{1}{3}$ of 3 cords 56 cubic ft .
28. To find the value of a denominate fraction in terms of lower denominations:-

RULE.

Consider the numerator as so many units of the given denomination, and divide by the denominator.

Example 1.-What is the value of $\frac{11}{13}$ of a mile? operation.
11 miles $\div 13$ (Art. 22, Sect. II.) $=6$ fur. 30 per. 4 yds. 0 ft. $8 \frac{1}{13}_{\frac{4}{2}}$ in. Ans.

Example 2.-What is the value of $\frac{17}{29}$ of a ewt.?

operation.

17 ewt. $\div 29=2$ qrs. 8 lbs. $9 \mathrm{oz} .14 \frac{26}{9}$ drs. Ans.

Exercise 39.

Find the value of the following fractions:

1. $\frac{\lambda}{7}$ of a week.
2. $\frac{1}{2}$ of $\frac{3}{4}$ of a bushel.

3, $\frac{2}{3}$ of $\frac{4}{7}$ of $\frac{8 \frac{1}{2}}{3 \frac{1}{4}}$ of a hhd.
4. $\frac{1}{11}$ of $8 \frac{1}{4}$ lbs. Tros.
5. $\frac{2}{7}$ of $\frac{3}{11}$ of $\frac{8 \frac{1}{2}}{17}$ of an acre.
6. $\frac{1}{4}$ of $\frac{3}{1}$ of $6 \frac{3}{5}$ of $\frac{1}{1}^{4} 7$ of a 12 . $\frac{3 \frac{2}{2}}{7 \frac{1}{5}}$ of $\frac{36}{3}$ of $\frac{2}{17}$ of $\frac{4}{7}$ of a $£$. French ell.
7. $\frac{2}{4}$ of $\frac{3}{6}$ of a $£$.
8. $7 \frac{1}{2}$ of $3 \frac{5}{8}$ of $\frac{9 \frac{1}{2}}{7 \frac{1}{4}}$ of an aere.
9. $7 \frac{1}{7}$ of $9 \frac{1}{2}$ of $\frac{7}{38}$ of a mile.
10. $\frac{2}{5}$ of $\frac{3}{7}$ of $\frac{4}{9}$ of 35 cwt .
11. $\frac{2}{11}$ of ${ }_{7}^{8}$ of a lb. Apoth.

ADDITION OF FRACTIONS

RULE.

25. Reduce the fractions to a comition denominator, add the numerators together for a new numerator, and beneath their sum write the common denominator.

Reduce the resulting fraction, if it be an improper frastion, to a mixed number.

Note.-If any mixed numbers occur among the addends, add the fractions separately, and to their sum add the sum of the integral portions.

Example 1.-Add together $\frac{1}{2}, \frac{3}{6}, \frac{3}{8}, \frac{7}{10}$, and $\frac{4}{15}$.

operation.

By Art. 23, these fractions, reduced to a common denominator, become

$$
\begin{aligned}
\frac{60}{120}+\frac{72}{120} & +\frac{45}{120}+\frac{84}{120}+\frac{32}{120}=\frac{60+72+45+84+32}{120}= \\
\frac{293}{120} & =2 \frac{563 .}{120 .} \text { Ans. }
\end{aligned}
$$

Example 2.-What is the sum of $6 \frac{3}{7}+199_{1}^{4}+9 \frac{3}{8}+17 \frac{7}{7}$ $+23 \frac{13}{14}$?

$$
\begin{aligned}
& \text { operation. } \\
& 6 \frac{3}{7}+19 \frac{4}{11}+9 \frac{3}{8}+17 \frac{6}{7}+23 \frac{13}{4} \\
& =6+19+9+17+23+\frac{3}{7}+\frac{4}{11}+\frac{3}{8}+\frac{6}{7}+\frac{13}{14} \\
& 6+19+9+17+23=74 . \\
& \frac{3}{7}+\frac{4}{11}+\frac{3}{8}+\frac{6}{7}+\frac{13}{14}=\frac{264}{616}+\frac{22}{616}+\frac{232}{616}+\frac{52}{616}+\frac{572}{67} \\
& =\frac{264+224+201+528+572}{616}=\frac{1819}{616}=2587 .
\end{aligned}
$$

Exercise 40.
Fird the ratue of:-

1. $\frac{1}{2}+\frac{3}{7}+\frac{4}{11}+\frac{5}{6}+\frac{7}{9}$.
2. $\frac{2}{3}+\frac{2}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}+\frac{2}{2}$.
3. $\frac{1}{4}+\frac{3}{6}+\frac{5}{6}+\frac{9}{3}+\frac{7}{10}$.
4. $\frac{2}{6}+1 \frac{5}{4}+2 \frac{1}{7}+9 \frac{1}{2}$.
©. $6 \frac{1}{4}+11 \frac{2}{3}+196 \frac{1}{5}+29 \frac{6}{7}$.
5. $8 \frac{1}{4}+11 \frac{1}{12}+\frac{6}{7}+\frac{4}{6}+16 \frac{5}{9}$.
6. $196 \frac{3}{7}+16 \frac{17}{19}+20_{13}^{4}$.
7. $200 \frac{1}{2}+763 \frac{1}{6}+916 \frac{3}{7}$.
8. $17 \frac{16}{7}+19 \frac{1}{1} 9+20 \frac{1}{2} 9+21 \frac{20}{21}$.
9. $6 \frac{1}{8}+8 \frac{1}{4}+11 \frac{3}{4}+9 \frac{1}{6}+16 \frac{3}{7}$.
10. $\frac{1}{2}$ of $\frac{3}{7}+\frac{1}{6}$ of $\frac{4}{9}+\frac{6}{7}$ of $6 \frac{2}{7}$.
11. $\frac{2}{6}$ of $\frac{1}{2}$ of $\frac{7}{8}+9 \frac{1}{2}+6 \frac{3}{11}+\frac{2}{7}$ of $\frac{1}{8}$ of $\frac{63}{80}$.
12. $7 \frac{3}{4}+9 \frac{1}{2}+16 \frac{3}{7}+20 \frac{1}{3}+\frac{1}{2}$ of $\frac{2}{3}$ of $\frac{6}{7}$ of $\frac{9}{11}$.
13. $6 \frac{3}{7}+\frac{1}{2}$ of $\frac{4}{5}$ of $10+\frac{2}{11}$ of $\frac{6}{11}$ of $242+16 \frac{3}{11}$.
14. $111 \frac{1}{1} \frac{1}{2}+22 \frac{2}{8}+3 \frac{8}{4}+\frac{1}{2}$ of $\frac{2}{3}$ of $\frac{8}{2}$ of $\frac{4}{6}$.
15. $67 \frac{7}{8}+89 \frac{9}{90}+90 \frac{10}{11}+101 \frac{101}{67}$.
16. $\frac{8 \frac{8}{4}}{6 \frac{1}{2}}+\frac{9 \frac{2}{7}}{8 \frac{3}{11}}+\frac{16 \frac{1}{5}}{9 \frac{3}{7}}$.
17. $\frac{1}{2}$ of $\frac{2}{7}$ of $4+6 \frac{1}{2}$ of $9 \frac{3}{7}+18 \frac{1}{4}+\frac{20}{2} 1$.
18. $2 \frac{9}{2}+\frac{16 \frac{1}{4}}{13}+\frac{7 \frac{1}{2}}{8 \frac{3}{7}}+\frac{6}{12}$ of $\frac{7}{11}$ of $\frac{132}{17 \frac{2}{5}}$.
19. $\frac{4 \frac{1}{4}}{\frac{1}{7}}$ of $\frac{6 \frac{1}{2}}{11}+9 \frac{5}{6}+11 \frac{1}{2}+16 \frac{3}{7}+\frac{6 \frac{2}{7}}{4 \frac{1}{8}}$.

SUETRACTION OF FRACTIONS.

RULE.
30. Fieduce both of the fractions to a common denomenator.

Subtiract the numerator of the subtrallend from the mmerator of the minuend, and bencuth tho difference write the rommine denominator.

Note.-In the case of mixed numbers, it frequently happens that the fractional part of the subtrahend is greater than the fractional part of the minuesd. When this occurs, instead of reducing both quaitit:os to improper fractions and then applying the rule, it is much hetter to borrow one from the integral part of the min. uend, and, considering it as a fraction having the common denominator, add it to the fractional part of the minuend.

Example 1.-From $\frac{16}{17}$ take $\frac{9}{13}$.
operation.
$\frac{16}{17}-\frac{9}{13}=\frac{208}{221}-\frac{153}{221}=\frac{208}{\frac{8}{2}-153}=\frac{55}{221}$. Ans.
Example 2.-From $11 \frac{3}{7}$ take $9 \frac{1}{1} \frac{1}{2}$.

OPERATION.

$11 \frac{3}{7}-9 \frac{11}{12}=11 \frac{36}{84}-9 \frac{77}{8}=10+1 \frac{36}{84}-9 \frac{77}{4}=10 \frac{120}{84}$ $97 \frac{77}{4}=1 \frac{43}{84}$. Ans.

Example 3.-From $\frac{2}{7}$ of $\frac{16}{19}$ of $1 \frac{1}{6}$ take $\frac{17}{190}$.

operation.

$\frac{2}{7}$ of $\frac{16}{19}$ of $1 \frac{1}{6}-\frac{17}{190}=\frac{16}{67}-\frac{17}{190}=\frac{160}{570}-\frac{51}{670}=\frac{109}{670 .}$ Ans.

Zaxercise 41.

Find the ralue of .

1. $\frac{7}{1}_{17}^{-4}{ }^{-4}$.
2. $\frac{5}{6}$ of $\frac{4}{3}-\frac{2}{3}$ of $\frac{1}{5}$.
3. $\frac{3}{1}^{3}$ of $6 \frac{8}{4}-\frac{1}{2}$ of $2 \frac{3}{7}$.
4. $169 \frac{2}{7}-23 \frac{17}{8}$.
5. $229 \frac{1}{16}-67 \frac{23}{24}$.
6. $1116 \frac{1}{4}-229 \frac{146}{171}$.
7. $11 \frac{1}{1} \frac{1}{3}-1 \frac{13}{14}$.
8. $196 \frac{1}{2}-\frac{14 \frac{1}{2}}{16 \frac{1}{7}}$ of $\frac{11 \frac{2}{5}}{9 \frac{1}{5}}$.
9. $\frac{2}{7}$ of $\frac{4}{3}$ of $18 \frac{3}{11}$ of $2 \frac{20}{67}-\frac{7}{8}$ of $\frac{1}{4}$ of $\frac{64}{7}$ of $\frac{31}{6}$.
10. $\frac{1}{2}+\frac{2}{3}+\frac{7}{10}-\frac{7}{11}+\frac{4}{7}-\frac{6}{17}-\frac{9}{10}$.
11. $16 \frac{1}{2}+4 \frac{3}{9}+16 \frac{3}{8}+20 \frac{1}{5}-17 \frac{4}{1}$.
12. $4 \frac{1}{8}$ of $\frac{16 \frac{1}{2}}{11 \frac{3}{5}}-\frac{2}{7}$ of $\frac{16 \frac{1}{4}}{17 \frac{8}{4}}$.
13. $\frac{1}{2}$ of $\frac{1}{9}$ of $\frac{8}{7}$ of $16 \frac{2}{7}-11 \frac{1}{4}+7 \frac{6}{7}+11 \frac{1}{16}-\frac{2}{5}$.
14. $96 \frac{3}{8}-\frac{1}{2}$ of $\frac{6}{7}$ of $\frac{4}{9}$ of $63+\frac{3}{11}+18 \frac{1}{2}-17+\frac{6}{9}$.
15. $1 \frac{15}{2}$ of $\frac{8 \frac{3}{4}}{7 \frac{1}{8}}-\frac{9}{11}$ of $\frac{6 \frac{1}{2}}{8 \frac{3}{7}}$.
16. $4 \frac{3}{4}$ of $6 \frac{1}{2}$ of $7 \frac{2}{9}-\frac{2}{3}$ of $8 \frac{6}{7}$ of 11 .

MULTIPLICATION OF FRACTIONS.

RULE.

31. Reduce all mixed numbers to improper fraetions, and complex and compound fractions to simple ones. Cancel the factors that are common to a numerator and a denominator of the resulting fractions.

Multiply all the reduced numerators together for a new numerator, and all the reduced denominators together for a new denominator.

Reduce the result, if necessary, to a mixed number.
Example 1.-Multiply $\frac{3}{5}$ by $\frac{15}{17}$.

$$
\frac{3}{6} \times \frac{15}{17}=\frac{3}{1} \times \frac{3}{17}=\frac{9}{17} \text {. Ans. }
$$

Here we cancel the first denominator and reduce the second numerator to 3.

Example 2.-Multiply together $\frac{7}{1}, \frac{4}{8}, 3 \frac{2}{2}$, and $\frac{55}{9}$. statement. caicelled.

$$
\frac{7}{11} \times \frac{4}{5} \times \frac{7}{2} \times \frac{55}{98}=\frac{7}{1 X} \times \frac{\frac{4}{8}}{\frac{2}{5}} \times \frac{\pi}{2} \times \frac{\frac{5}{9}}{\frac{\beta}{98}} \frac{1}{49}=\frac{1}{1}=1 . \text { Ans. }
$$

Examfle 3.-Multiply together $\frac{4}{9}, 3^{3}, 6 \frac{2}{7}, 9 \frac{3}{5}, 2 \frac{1}{2}$, and 63.
statement.

$$
\begin{gathered}
\frac{4}{9} \times \frac{3}{11} \times \frac{14}{7} \times \frac{18}{6} \times \frac{5}{2} \times \frac{63}{1} . \\
\text { CANCELLED. }
\end{gathered}
$$

$=\frac{2}{9} \times \frac{3}{11} \times \frac{44}{7} \times \frac{48}{5} \times \frac{5}{2} \times \frac{63}{1}=\frac{2 \times 3 \times 4 \times 48}{1}=1162$. Ans.

Example 4.-Multiply together $\frac{1}{1} \frac{1}{9}, 18 \frac{7}{1}, 9 \frac{3}{2}, \frac{1}{2}$ of 景 of 7 and $\frac{3}{5}$ of $\frac{11}{14}$ of 25 .

STATEMENT.

$$
\begin{gathered}
\frac{1}{179} \times \frac{205}{11} \times \frac{48}{5} \times \frac{21}{8} \times \frac{165}{14} . \\
\text { CANCELLER. }
\end{gathered}
$$

$$
\begin{gathered}
=\frac{1}{179} \times \frac{205}{\lambda I} \times \frac{\stackrel{36}{\$ 4}}{\frac{46}{\$}} \times \frac{31}{8} \times \frac{33_{3}^{3}}{14}=\frac{205 \times 3 \times 3 \times 3}{179} \\
=\frac{5595}{17}=30 \frac{165}{7} .
\end{gathered}
$$

Ei P1ecs 42
Find the value of-

1. $\frac{1}{2} \times \frac{3}{7} \times \frac{9}{11} \times \frac{4}{81} \times 9$.
2. $\frac{2}{7} \times \frac{4}{11}$.
3. $\frac{6}{11} \times 2 \frac{1}{4} \times \frac{4}{7} \times 3 \frac{1}{2}$.
4. $6 \frac{2}{7} \times 4 \frac{3}{11} \times 77 \times 4 \frac{1}{4}$.
5. $3 \times 7 \frac{1}{2} \times \frac{11}{15} \times 3 \frac{8}{11}$.
6. $9 \frac{3}{8} \times \frac{4}{11} \times 2 \times \frac{3}{17} \times \frac{24}{25}$.
7. $8 \frac{3}{4} \times 9 \frac{1}{2} \times 10 \frac{7}{3} \times \frac{1}{9 \frac{1}{2}}$.
8. $\frac{6}{7}$ of $\frac{4}{3}$ of $\left(\frac{1}{2}+\frac{7}{8}\right) \times \frac{9}{111}$ of $\frac{7}{18}$.
9. $27 \frac{3}{5} \times 98 \frac{3}{11}$.
10. $16 \frac{1}{2} \times 8 \frac{1}{4} \times \frac{17}{2} \times \frac{19}{10 \frac{1}{2}}$.
11. $\left(11 \frac{8}{4}+6 \frac{1}{8}\right) \times\left(9 \frac{3}{5}-7 \frac{1}{7}\right)$.
12. $\frac{4 \frac{9}{4}}{7 \frac{1}{2}} \times \frac{6 \frac{1}{2}}{\frac{1}{4}} \times \frac{1}{2}$ of $3 \frac{3}{7}$ of $9 \frac{3}{5}$.
13. $6 \frac{2}{7}$ of $8 \frac{8}{4} \times 9 \frac{1}{3}$ of $\frac{16}{8 \frac{8}{6}}$.
14. $\frac{1}{2}$ ôि $\frac{3}{5}$ of $\frac{6}{7} \times \frac{8}{9} \times \frac{10}{11} \times 693$.
15. $\left(4 \frac{8}{4}-2 \frac{1}{4}\right) \times 2 \frac{1}{8}$ of $4 \frac{1}{2}$ of $\left(7 \frac{1}{4}-6 \frac{1}{6}\right)$.
16. $6 \frac{3}{11}$ of $\frac{4 \frac{1}{4}}{7 \frac{8}{8}}$ of $\frac{1}{9 \frac{4}{4}} \times \frac{8 \frac{3}{6}}{9} \times 11 \frac{1}{7}$.
17. Multiply $\frac{2}{7}$ of $\frac{3}{11}$ of $\frac{37 \frac{1}{2}}{9 \frac{1}{6}}$ by $\frac{4 \frac{1}{2}}{7} \times \frac{3}{6} \times 1 \frac{5}{9}$.
18. What is the product of $\frac{2}{6} \times \frac{3}{11} \times \frac{4}{7} \times \frac{9}{13} \times 6 \frac{1}{2} \times \frac{1}{4 \frac{1}{2}} \times \frac{1}{14}$?
19. Find the value of $\left(6 \frac{3}{6}+4 \frac{1}{2}+9 \frac{8}{4}\right) \times\left(6 \frac{2}{3}+3 \frac{1}{7}\right) \times$

$$
\left(3 \frac{1}{5}-2 \frac{1}{9}\right)
$$

20. What is the product of $\left(8 \frac{3}{11}-2 \frac{1}{7}+3 \frac{1}{10}-7 \frac{2}{6}\right) \times$ $\left(6 \frac{3}{11}-2 \frac{7}{9}+2+\frac{1}{2}\right) \times\left(\frac{1}{2}\right.$ of $\left.11 \frac{1}{2}+\frac{6}{7}\right)$?

DIVISION OF FRACTIONS.

 RULE.32. Reduce compound and complex fiactions to simple ones, and whole and mixed numbers to improper fractions.

Invert the terms of the divisor, and proceed as in multiplicatzow.

Example 1.-Divide $\frac{3}{19}$ by $\frac{4}{11}$.
operation.

$$
\frac{3}{19} \div \frac{4}{11}=\frac{3}{39} \times \frac{11}{4}=\frac{33}{76} . \text { Ans. }
$$

Example 2.-Divide $\frac{3}{4}$ of $\frac{7}{11}$ by $\frac{2}{11}$ of $8 \frac{8}{4}$.
operation.
of $\frac{7}{11}+\frac{2}{11}$ of $\frac{35}{4}=\frac{21}{44} \div \frac{35}{22}=\frac{21}{4} \times \frac{22}{36}=\frac{3}{10}$. Ans.
Example 3.-Divide $8 \frac{4}{7}$ by $3 \frac{3}{11}$.
operation.
$8 \frac{1}{7} \div 3 \frac{3}{11}=\frac{60}{7} \div \frac{36}{11}=\frac{60}{7} \times \frac{11}{36}=2 \frac{1}{2} \frac{3}{1}$. Ans.

Example 4.-Divide $\frac{3}{17}$ of $\frac{4}{11}$ of $\frac{8 \frac{8}{3}}{\frac{3}{11}} \times 3 \frac{1}{7}$ by $\frac{4}{17}$ of $\frac{9 \frac{3}{7}}{8 \frac{9}{2}} \times 4 \frac{3}{8}$. statement.

$$
\frac{3}{17} \times \frac{4}{11} \times \frac{385}{12} \times \frac{22}{7} \div \frac{4}{17} \times \frac{264}{245} \times \frac{35}{8} .
$$ tERMS OF DIVISOR LNTERTED.

$=\frac{3}{17} \times \frac{4}{11} \times \frac{385}{12} \times \frac{22}{7} \times \frac{17}{4} \times \frac{245}{264} \times \frac{8}{36}$.
CANCELLED.

Exercise 43.
Find the value of -

1. $\frac{2}{7} \div \frac{4}{11}$.
2. $\frac{2}{7}$ of $\frac{3}{5} \div 4 \frac{8}{4}$.
3. $7 \frac{8}{8} \div \frac{1}{2}$ of 蒌 of $6 \frac{1}{2}$.
4. $\frac{6}{7}$ of $\frac{4}{5} \div \frac{3}{5}$ of $\frac{7}{9}$.
5. $3 \frac{3}{5}$ of $8 \frac{1}{2} \div 6 \frac{2}{5}$ of $5 \frac{3}{7}$.
6. $\frac{4}{5}$ of $3 \frac{7}{8}$ of $9 \frac{1}{2} \div \frac{6 \frac{3}{4}}{9 \frac{2}{7}}$.
7. $\frac{2}{6}$ of $8 \frac{3}{4}$ of $6 \frac{3}{7} \div 4 \frac{8}{4}$ of $2 \frac{1}{7}$. 8. $\left(\frac{1}{2}+\frac{8}{4}+\frac{4}{8}-\frac{6}{7}\right)+\frac{2}{6}$ of $\frac{1}{2}$.
8. $\frac{4 \frac{2}{8}}{8 \frac{1}{7}} \div \frac{8 \frac{1}{5}}{17 \frac{3}{5}}$.
9. $8 \frac{2}{7}$ of $4 \frac{3}{5}$ of $6 \frac{1}{4} \div 3 \frac{4}{7}$ of $\frac{6 \frac{\pi}{2}}{5 \frac{1}{8}}$.
10. $4 \frac{1}{4} \div 6 \frac{1}{2}$ of $\frac{3}{11}$ of $4 \frac{1}{4}$.
11. $9 \frac{1}{4}$ of $\frac{8 \frac{1}{2}}{\frac{7}{8}} \div 6 \frac{3}{5}$ of $\frac{4 \frac{2}{7}}{8 \frac{1}{4}}$.
12. ($\frac{3}{5}$ of $\frac{7}{8}$ of $\left.8 \frac{8}{4}\right) \div\left(\frac{3}{7}\right.$ of $\left.4 \frac{3}{5}-\frac{1}{2} \frac{1}{2}\right)$.
13. $8 \frac{8}{4}$ of $6 \frac{1}{2}$ of $4 \times \frac{9}{8}$ of $\frac{4}{5}$ of $\frac{1}{13} \times \frac{1}{7} \div 6 \frac{8}{4}$ of $\frac{8 \frac{1}{2}}{7 \frac{1}{6}}$.
14. $9 \frac{1}{2}$ of $8 \frac{8}{4}$ of $6 \frac{2}{7} \div \frac{8 \frac{8}{7}}{6 \frac{4}{5}}$ of $\frac{6 \frac{2}{7}}{4 \frac{1}{14}}$.
15. To multiply an integral denominate number by a fraction:-

RULE.

Multiply the denominate number by the numerator of th fraction, and divide the result by the denominator.

ExA LE. - How much is $\frac{3}{11}$ of $\frac{1}{2}$ of $\frac{3}{7}$ of $4 \frac{2}{3}$ of $\frac{4}{}$ days 21 hours ' minutes?

operation.

IT. of $\frac{1}{2}$ of $\frac{3}{7}$ of $4 \frac{2}{3}$ of $4 \mathrm{~d} .21 \mathrm{~h} .7 \mathrm{~m} .=\frac{3}{11}$ of 4 d .21 h .7 m .
$=$! $\frac{\text { d. } 21 \mathrm{~h} .7 \mathrm{~m} . \times 3}{11}=1 \mathrm{~d} .7 \mathrm{~h} .56 \mathrm{~m} .27 \frac{3}{11} \mathrm{sec}$. Ans.
34 To divide an integral denominate number by a frac-tion:-

RULE.

M ?iply the denominate number by the denominator of *he frovition and divide the result by the numerator.

Eixayple.-Divide 7 lbs . 4 oz .7 \% wt. $\mathrm{b} \geqslant \frac{1}{3}$ of $4 \frac{3}{4}$ of $6 \frac{1}{6}$ of $\frac{\lambda}{j \frac{\pi}{2}}$.
operation.

7 lb oz. $7 \mathrm{dwt} \div \frac{1}{3}$ of $4 \frac{3}{4}$ of $6 \frac{1}{6}$ of $\frac{1}{15 \frac{1}{2}}=7 \mathrm{lbs} .4$ oz. 7 $\mathrm{dwt} .+\frac{1}{30}=\frac{7 \mathrm{lbs} .4 \mathrm{oz} .7}{30} \mathrm{dwt} \times 19=.4 \mathrm{lbs} .7 \mathrm{oz} .19 \mathrm{dwt}$. $2 \frac{2}{6} \mathrm{grs}$. $A n s$.

Exercise 44.
Find the value of-

1. $\frac{7}{9}$ of $\frac{8}{5}$ of $£ 116 \mathrm{~s} .8 \frac{1}{2} \mathrm{~d}$.
2. $3 \frac{1}{4}$ of $8 \frac{1}{2}$ of $\frac{3}{13}$ of $\frac{11}{17}$ of 4 bush. 1 pk .1 pt .
3. $\frac{1}{6}$ of $\frac{8}{9}$ of $6 \frac{3}{4}$ of $\frac{53}{7}$ of $\frac{1}{5} \frac{1}{6}$ of 6 lbs .4 oz . Avoir.
4. $\frac{11}{16}$ of $\frac{3}{7}$ of $\frac{8}{33}$ of $6 \frac{1}{4}$ acres.
5. $\frac{1}{2}$ of $\frac{4}{7}$ of 11 cwt .1 qr .11 lbs .
6. $\frac{6}{7}$ of $\frac{4}{5}$ of $\frac{17}{12}$ of 3 acres 1 rood 27 per.
7. $6 \frac{3}{4}$ of $\frac{11}{1}$ of $\frac{3}{28}$ of $£ 611 \mathrm{~s} .4 \frac{3}{4} \mathrm{~d}$.
8. $6 \frac{1}{4}$ of $11 \frac{1}{\frac{1}{2}}$ of $2 \frac{1}{4}$ of $\frac{9}{2} 3$ of 7 miles 4 fur. 17 per.
9. $\frac{1}{2}$ of $\frac{7}{11}$ of 8 lbs .5 oz . Avoir. $+6 \frac{3}{4}$ of $\frac{1}{2} \frac{1}{7}$ of $6 \mathrm{lbs} .1^{2} \mathrm{oz}$.
(0.) $2 \frac{3}{4}$ of $\frac{7}{6}$ of 6 lbs .11 oz .4 dis. 1 scr. 16 grs .
10. $4 \frac{3}{4}$ of $5 \frac{1}{2}$ of $\frac{7}{19}$ of $\frac{6}{11}$ of 4 yds. 3 qrs. 2 na.
11. $7 \frac{1}{4}$ of $\frac{1}{14 \frac{1}{2}}$ of $6 \frac{3}{11}$ of 2 qrs. 17 lbs .4 oz .
12. $\frac{7}{18}$ of $6 \frac{1}{4}$ of $\frac{1}{2} \frac{6}{5}$ of 21 bush. 3 pks.
13. $\frac{6}{11}$ of $3 \frac{1}{4}$ of $\frac{7}{12}$ of $\frac{11}{13}$ of $\frac{6 \frac{1}{4}}{7 \frac{1}{8}}$ of $7 \mathrm{wk}, 4 \mathrm{~d} .5 \mathrm{~h}$.
14. $21 \mathrm{lbs} .11 \mathrm{oz} .7 \mathrm{dwt} . \div \frac{6}{7}$ of $\frac{4}{5}$ of $17 \frac{1}{2}$.
15. 4 acres 6 per. $5 \mathrm{yds} \div 5 \frac{1}{2} \times \frac{3}{7} \times \frac{16}{3}$.
16. $£ 1694 \mathrm{~s}$. $11 \frac{1}{2} \mathrm{~d} . \div 3 \frac{1}{4}$ of $6 \frac{1}{2}$ of $1 \frac{11}{16}$.
17. 11 cwt . 2 qrs. $17 \mathrm{lbs} \times 6 \frac{3}{4}$ of $4 \frac{1}{7}$ of $\frac{1}{127}$.

DECIMALS.

35. A Decimal Fraction is a fraction which has 10,100 . $1000,10000, \&$ c., for its denominator.

Thus $\frac{7}{10}, \frac{12}{100}, \frac{27}{1000}, \frac{8,3}{10000}, \frac{10}{100000}$, \&e., are decimal fractions.
36. In writing decimals it is customary to omit the denominator, and to place a dot, called the decimal point, before the numerator.

Thus $\frac{7}{7}$ is written $\cdot 7 ; \frac{11}{120}$ is written $11 ; \frac{97}{1}^{2000}$ is written 027 ;

37. The orders to the right of the decimal point are named as follows: tenths, hundicdthis, thousandths, tenths of thousandths, hundredths of thousandths, millionths, tenths of millionths, \&c.
38. The periods to the right of the decimal point are named as follows: thousandths, millionths. billionths, trillionths, quadrillionths, \&c.
39. In order to read any decimal, we proceed according to the following

RULE.

Point off into periods of three figures cach, commencing at the decimal point, and thus ascertain the name of
srder of the extreme right-hand figure. Then find by simpie uumeration, from right to left, hou many of that order are indicuted.

Example 1.-Read •0000006174.
Here pointing off the given expression, it beconics $\cdot 000,000,617,4$, from which we learn that the denomination is that of teuths of billionths, and the expression represents yix thousand one hundred and seventy-four tenths of billionths.

Example: 2.-Read 417.00000007146174.

Here pointing off, we get $417 \cdot 000,000,071,461.74$, i. e. the right-hand digit is that of kundredths of trilliouthe, and the decimal part is 7146174 hundredths of trillionths. Hence the whale expression is read-Four hundred and seventeen, and seven millions one hundred and fortysix thousand one hondred and seventy-four hundredths of trilliontles.

Exarcise 45.

Read the following expressions:

1. $\cdot 27 ; \cdot 043 ; \cdot 007 ; \cdot 6914 ; \cdot 008196 ; \cdot 00071423$.
2. $6 \cdot 7 ; 93 \cdot 42 ; 147 \cdot 1394 ; 217 \cdot 0000009$.
3. $71 \cdot 00089 ; 167 \cdot 193$; $91 \cdot 0008674$.
4. $5674378 \cdot 000914786 ;$ 个1300400•000000600407.
5. To write any decimal, we proceed according to the following

RCLE.

Ascertain hozo many places to the right of the decimal point the giver denominution comes.

Then if the given digits do not occupy all of these pluces, insert between them und the decimal point the reqnisite number of ciphers.

Eximple 1.-Write dumianenty-eigit tenths of thoufindths.

Here, since tenths of thousandths occupt the for the place to the right of the decimal point, and siuce the given digits, 78, are only two in number, we must insert the two ciphers between the decimal point and the 7 , and the number is then written

> -0078.

Example 2.-Write down seven hundred and four thousand and ninety-one hundredths of trillionths.

Here, since the periods to the right of the decimal poins are thousandths, millionths, billionths, trillionths, \&c., we find that trillionths occupy the 12 th place, and consequently hundredths of trillionths the 14th place to the right of the decimal point. Now the given number, 704091, only contains six digits, and consequently we must iusert between the decimal point and the 7 the difference between 14 and 6 , i. e. 8 ciphers, when the expression becomes-
-00000000704091.

Exercise 46.

Write down the following numbers:

1. Nine hundredths; seventy-six tenths of thousandths; four hundred and forty-seven milliouths.
2. Seven hundred thousand and sixteen hundredths of billionths.
3. Five millions twenty-nine thousand and eleven tenthe of trillionthe.
4. Eighty-seven thousand four hundred and three tenths of mill. ionthe.
5. Seven hundred and nine thousandthe.
6. Four hundred and ninety-six thousand seven hundred and nineteon, and eleven thousand and four tenths of millionths.
7. Seven millions six hundred and ninety one thousand and six, and fourteen millions seven hundred thousand nine hundred and thirty trillionthe.
8. Express as a decimal 17 tenths +17 thousandthe +17 hundredthe of thousandths.
9. Express decimally 749 units +2 tenths +49 tenths of millionths.
10. Express as a decimal 7297 hundredths +704 millionths.
11. To multiply a decimal by $10,100,1000, \& c$., we remove the decimal point $1,2,3, \& \mathrm{c}$. places to the right; and to divide by $10,100,1000, \& \cdot$. we remove it similarly to the left.

Thus, $\cdot 006 \times 10=\cdot 06 ; \cdot 006 \times 100=6 ; \cdot 006 \times 10000=$ 60, \&c.
$\cdot 867 \div 10=\cdot 0867 ; \cdot 867 \div 100000={ }^{\circ} 00000867$, \&c.
Note.-Affixing ciphers to a decimal, i. e. writing them to the ight of it, does not alter its value, thus, $\cdot 79, \cdot 790$, and $\cdot 79000$ are all squal, each representing $\frac{78}{100}$; but prefixing ciphers to a deoimal, j. e. writiug them between the decimal point and the left-hand figure of the decimal, divides the decimal by 10 for each cipher thus prefixed.

ADDITION AND SUBTRACTION OF DECIMALS.

RULE.

42. Write the numbers to be added or subtracted, so that the decimal points shall be directly under one another, and proceed as in addition and subtraction of whole numbers, being careful to place the decimal point in the answer in the same vertical line with the others.

Example 1.—Add together $78 \cdot 647, \cdot 0078,9 \cdot 816,4 \cdot 278$, $967 \cdot 4278$, and $\cdot 0091$.
operation.
78.647 Here we begin at the right-hand side, as in -0078 simple addition, and procecd as follows: 1 and
$9.815 \quad 8$ make 9 and 8 make 17, set down 7 and carry
$4 \cdot 278 \quad 1 ; 1$ and 9 make 10 and 7 make 17, \&c.
$967 \cdot 4278$
-0091
$1060 \cdot 1557$

Example 2.-From $71 \cdot 0047$ take $9 \cdot 0008167$.
operation.
$71 \cdot 0047$
Here we say 7 from 0 we can't, but 7 $9 \cdot 0008167$ from 10 and 3 remain; 7 (i. e. 6 and 1 62.0038833 carried) from 0 we can't, but 7 from 10 and 3 remain; 2 from 0 we can't, but 2 from 10 and 8 remain; 9 from 7 we can't, but 9 from 17, \&c.

Exercise 47.

Find the value of -

1. $18^{\cdot} 716+967+34 \cdot 71+\cdot 271+698 \cdot 7149+23^{\cdot} \cdot 067$.
2. $278 \cdot 714+61 \cdot 9134+217 \cdot 8167+23 \cdot 7146+678 \cdot 906+12 \cdot 95678$.
3. $216 \cdot 714763+2 \cdot 9+9867+91 \cdot 0986+7 \cdot 81645+\cdot 09568$.
4. $20 \cdot 1111+11 \cdot 22222+34 \cdot 546+17 \cdot 19186+11 \cdot 127+816 \cdot 7142$.
5. $\cdot 9167+9 \cdot 9+8 \cdot 98+7 \cdot 614+\cdot 0986+17+19 \cdot 11+963 \cdot 714$.
6. $9 \cdot 64+9111 \cdot 77+967 \cdot 769+463+7 \cdot 0009+8 \cdot 61+911 \cdot 1257$.
7. $167 \cdot 914-6 \cdot 8147$.
8. $9161 \cdot 0098-7149 \cdot 16716$.
9. $71 \cdot 0916714-27 \cdot 1471$.
10. 1111•116-22.22222.
11. $279 \cdot 00906-117 \cdot 916$.
12. $627 \cdot 4-91 \cdot 7469$.

MULTIPLICATION OF DECLMALS.

RULE.

43. Mrultiply the given decimals as though they were whole numbers, and mark off in the product as many decimal places as there are in the multiplier and multimjo cand together.

Example 1.-Multiply • 743 by ${ }^{\circ} 067$.
oreration.
$\cdot 743$ Here, when we multiply 743 and 67 together, .067 we get as the product 49781, but since the decj$\overline{5201} \mathrm{mal}$ places of the multiplier and multiplicand 4458 number six, we must have six decimal places in 049781 the product, and, in order to make the
Example 2.-Multiply 5.69 by 30.8.

OPERATION.

$\{09 \times 308=170252$, and, since the decimal places of the multiplier together with those of the multiplicand number three, we place the point so as to have three places in the product, and this gives us $175 \cdot 252$ for the answer.

Exercise 48.

Find the value of -

1. 78.417×9.	$7.2 .7 \times 1.4 \times 1.19$.
2. 27.1×3.4.	$8.3 .42 \times \cdot 061 \times 0079$.
3. 21.716×2.06.	$9.41 .1467 \times 6.1 \times 2.7$.
4. 11.007×0.0678.	$10.80 .08 \times 6.6 \times 20.02$.
5. 1167.91×8.100004.	$11.1 .012 \times .00719$.
6. $11.111 \times 9 . t 116$.	$12.2 \times \cdot 7 \times \cdot 06 \times \cdot 041$.

DIVISION OF DECIMALS.

RULE.

44. Divide as in urhole numbers, merely remembering to place the decimal point in the quotient directly after the unit's figure of the dividend has been brought down.

Note. - When th:c dirisor containe decimals, before divlding remove the decimal linint to the right of the divisor, and also remove it as many pluces to the right in the dividend.

Example 1.-Divide 716.193 by 614.

614) $716 \cdot 193\left(1 \cdot 16643\right.$, \&c. $\begin{array}{c}\text { Here we divide as in whoie } \\ \text { numbers, but, when we bave }\end{array}$

1021
614
4079
3684
3953
3684

OPERATION.

1021 614
4079 3684
$\frac{3953}{3684}$
$\frac{2690}{2456}$
$\frac{2340}{1842}$
$\frac{498, ~ \& c .}{}$

Example 2.-Divide $\boldsymbol{7} \cdot 43$ by $\cdot 0079$.
operation.

$$
7 \cdot 43 \div \cdot 0079=74300 \div 79=940 \cdot 5063, \& c
$$

Here, since the divisor contains decimals, we remove the decimal point to the right of it, and also as many places, i. e. four places, to the right in the dividend; this gives us $74300 \div 79$.
45. The following will illustrate the mode of thus preparing numbers for division when the divisor courains decimals:

$$
\begin{aligned}
& 67 \cdot 9 \div \cdot=679 \div \text { by } 9 . \\
& 27 \cdot 09 \div \cdot 0047=270900 \div 47 . \\
& 27 \cdot 14678 \div 2 \cdot 47=274 \cdot 678 \div 247 . \\
& 114 \cdot 00672 \div 6 \cdot 0437=1140067 \cdot 2 \div 60437 \\
& 278 \div 0147=2780000 \div 147 . \\
& 2 \cdot 614789 \div 27 \cdot 1434=26147.89+271434 .
\end{aligned}
$$

Exercise 49.

Find the raiue, each to three places of decimals, of :

1. $78 \cdot 1+1 \cdot 071$.
2. $91 \cdot 142+7 \cdot 8$.
3. $61 \cdot 123+\cdot 0146$.
4. $9 \cdot 1234+\cdot 000716$.
5. $0467+.01471$.
C. $018+014 \cdot 71$.
6. $967 \cdot 10 t+12 \cdot 046$.
7. $91 \cdot 671+000916$.
8. $8 \cdot 8+0641$.
9. $7147 \cdot 12+1127$.
10. $\cdot 817+\cdot 9147$.
11. $213+91 \cdot 614$.

REDUCTINN OF DECIMALS.

46. To reduce a vulgar fraction to a decimal :-

RULE.

Divide the numerator by the denomin.
Example 1.-Reduce $\frac{7}{8}$ to a decimal.
operation.
8)7
. 875 Ans.
Example 2.-Reduce $\frac{14}{3}$, to a decimal.
operation.

$$
14 \div 31=451612903 . \quad \text { Ans }
$$

Exercise 50.
Reduce the following fractions to their equivalent decimale.

1. $\frac{2}{7}$ and $\frac{8}{9}$.
2. $\frac{5}{11}$, $\frac{9}{6}$, and $\frac{7}{10}$.
3. $\frac{12}{3}, \frac{2}{11}$, and $\frac{1}{2} \frac{9}{6}$.
4. $\frac{1}{2} \frac{67}{8}, \frac{11}{9}$, and $\frac{17}{49}$.
5. 暗予 and $\frac{217}{491}$.
6. $\frac{7}{11} T$ and $\frac{29}{187}$.
7. $\frac{6112}{112}$ and 916.
8. $\frac{71}{82}$ and $\frac{1677}{27}$.
9. $\frac{61423}{7149}$ and 167147 .
10. $\frac{213}{17}$ and $\frac{123}{9} 876567899$.
11. Sometirnes in making these reductions the dirision aever rerninates, but a figure or set of figures constantly eceurs. Thus in the first part of Example 1, the figures

285714, and in the last part the figure 4, constantly recur. In this case the decimal is called a repeater or circulator.
48. Decimals which do not terminate, i. e. which consist of the same digit or set of digits constantly repeated. are called Repeating or Circulating Decimals.
49. The digits or set of digits which repeats, is called a repetend, period, or circle.

Nors.-The terms period and circle are used only when the repetend contains two or more digite.
50. A Single Repetend is one in which only a single digit repeats.

Thus, $\cdot 3333$, \&c.; ; 7777 , \&c. ; ; 88888, are single repetends.
51. A Single Repetend is expressed by writing the digit that repeats with a dot over it.

Thus, $\cdot 333$, \&c., is written $\cdot \dot{3} ; \cdot 777, \& e$., is written $\cdot \overline{7}$.
52. A Circulating Decimal or Compound Repetend is one in which more than one digit repeats.

Thus, 347347347 , \&c. ; $\cdot 202020$, \&c. ; - 123412341234, \&c., are oirculating decimals or compound repetends.
53. A Circulating Decimal is expressed by wrying the recurring period once with a dot over its first and lait digits.

Thus, 347347 , \&c., is written $\dot{3} 4 \overline{7} ;-2020$, \&c., $\dot{20} ; \cdot 12341284$, \&c., 1234.
54. A Pure Repetend or Circulating Decimal is one in which the repetend commences immediately after the decimal point.
55. A Mixed Repetend or Circulating Decimal is one which contains one or more ciphers or significant figure. between the repetend and the decimal point.
Thus $\cdot \dot{3}, \cdot \bar{f}, \cdot \dot{1}$ are pure repetends.

$\because \dot{7} \dot{2}, \dot{0} \dot{0} \dot{3}, \dot{8} 137 \dot{6}$ are pure circulating decimale.
$-1378, \cdot 67320 \dot{5}, \cdot 071786$ are mixed circulating decimals
56. To reduce a pure repetend to its equivalent rugar fraction:-

RULE.

Write the period itself for numerator, and for denominator as many 9's as there are digits in the period.

$$
\text { Thus, } \begin{aligned}
& \cdot \dot{7}=\frac{7}{9} ; \cdot \dot{4}=\frac{42}{99}=\frac{14}{33} ; \cdot \dot{7} 1 \dot{6}=\frac{726}{999} . \\
& \cdot 210 \dot{7}=\frac{2107}{9997} ; \cdot 4131=\frac{4131}{999}=\frac{459}{1159} .
\end{aligned}
$$

57. To reduce a mixed repetend to its equivalent vulgar fraction:-

RULE.

Subtract the fivite part of the mixed repetend from the whole, and write the remainder as numerator; then for denominator urite as many 9's as there are digits in the circle, followed by as many 0 's as there are digits in the finite part.

Nore.-The finite part of a mixed repetend is the part hetween the decimal point and the first digit of the circle. The circle or repeater is the infinite part.

Example.-Reduce $\cdot 417, \cdot 1234$, and $\cdot 7161423$ to their equivalent vulgar fractious.

operation.

$$
417-4=413=1 \text { st numerator. }
$$

$$
1234-12=\quad 1222=2 \text { d numerator. }
$$

$7161423-716=7160707=3 \mathrm{~d}$ numerator.
Also 1st decimal contains 2 digits in the circle and 1 in the finite part, therefore the denominator of the lst fraction is 990 .
Similarly the denominator of the $2 d$ fraction is 9900 , and of the 3d fraction 9999000.

Therefore $\cdot 417=\frac{113}{990} ; \quad \cdot 1234=\frac{1222}{9900}=\frac{611}{4960} ; \quad \cdot 7161423$ $=\frac{7160707}{9999807 .}$

Exercise 51.

Express the following pure and mixed repetends as vulgar fractions:

1. $\cdot i ; \cdot \ddot{8}$; and $\cdot \dot{4}$.
2. $\dot{21} ; \cdot \dot{347} ; \cdot \dot{217} \dot{8}$.
3. $\dot{1} 986747 \dot{3} ;-\dot{2} \dot{7}$.
4. $1 \ddot{2} \dot{6} ;-2 \dot{1} \dot{4}$.
5. $-21 \ddot{3} \dot{4},-21 \dot{6} ;-21 \dot{1} \dot{4}$.

ن. $123 \dot{4} \dot{5} \cdot \dot{1678}$.
7. $-671 \dot{4} ;-127 \dot{1} \dot{6}$.
8. $\cdot 91 \ddot{8} \dot{6} ; \cdot 1 \dot{4} \dot{2}$.
9. $12347 \boldsymbol{7} ; 12788$.
10. $\cdot 16 \dot{1} 1 \dot{1} ; \cdot \dot{9} ; \cdot \ddot{8}$
11. $27 \cdot \stackrel{4}{3} ; 17 \cdot 8 \ddot{1} \dot{6}$.
12. $467 \cdot 123 \dot{4} \dot{5}$; $16 \div 1616 \dot{1}$.
58. In order to add, subtract, multiply, or divide pure or mixed repetends:-

RULE.

Reduce them to their equivalent vulgar fractions, and then add, subtract, multiply, or divide these fractions.

Example 1.-From $9 \cdot 76$ take $4 \cdot 918$.
operation.

$$
9 \cdot 7 \dot{6}=9 \frac{69}{90}=9 \frac{23}{30}, \text { and } 4 \cdot 91 \dot{8}=4999=4 \frac{101}{10}
$$

Example 2.-Divide 927 by • 012345 .
operation.
$\cdot 9 \ddot{27}=\frac{92}{99} 9=\frac{122}{170}=\frac{51}{65}$, and $\cdot 0123 \dot{4} \dot{5}=\frac{19222}{990000}=\frac{679}{65000} ;$ Then $\frac{51}{5} \frac{679}{66000}=\frac{51}{66} \times \frac{56009}{679}=5 \frac{1090}{679}=75 \frac{75}{679} . ~ A \mu s$.

Exercise 52.

Find the value of -
r $\dot{9}+\cdot \dot{6}$.
2. $9 \cdot \ddot{1}+\cdot \ddot{2} \dot{\tilde{5}}$
3. $6 \cdot 1 \dot{4}-2 \cdot 214$.

ใ. $7.9 \dot{186}-2.347$.
5. $7 \cdot \dot{5}+1 \cdot 2 \dot{3}+7 \cdot 1 \dot{9} 2$
6. $-\dot{7} \times-\dot{1} 2 \times \cdot \ddot{6}$.
7. $.67 \times 91 \dot{1}$.
8. $6 \cdot 7 \dot{1} \times 6 \cdot 7 \dot{1} \dot{3}$.
9. $\cdot \dot{6} \dot{14}+2 \cdot 7 \ddot{6} \dot{6}$.
10. $1 \cdot 647+3-5 \ddot{2} \dot{1}$
59. To reduce a given denominate number to the decienal of another given number of a higher denomination :-

RULE.

Divide the lowest denomination named by that number which makes one of the next higher denomination.

Annex this quotient to the number of the next higher denomination given, and divide as before.

Proced thus through all the denominations to the one required, and the last resuit will be the one sought.

Example 1.-Reduce 2 pks 1 qt 1 pt. to the decimal of a bushel.
cperation.
2) 1
4) $\overline{1 \cdot 5}$
2) $\overline{0.375}$
4) $2 \cdot 1875$
$\cdot 546875$

Here we first realuce the 1 pt . to the fiecimal of a qt. by dividing by 2 ; this gives us $1 \mathrm{pt} .=\cdot 5$ of a qt., and to this we prefix the given quarts, 1. Then wo divide the $1 \cdot 5$ quarts by 4 to reduce them to the decimal of a gallon, to which we prefix a 0 , as no gallons are given; and so on.
60. Sometimes we must first reduce one quantity to 2 fraction of the other, and then reduce the resulting fraction (c) ise desimal by Art 44

Example 2.-Reduce 4s. $11 \frac{3}{9} \mathrm{~d}$. to the decimal of $£ 2$ ls. Here, by Art. $25, \frac{4 \mathrm{s.} 11 \frac{3}{4} \mathrm{~d} .}{£ 211 \mathrm{~s} .}=\frac{239 \text { farthings }}{2448 \text { farthings }}=\frac{239}{2448}$; Then $239 \div 2448={ }^{-09763}$. Ans.

Exercise 53.

Reduce:

1. 2 days 7 hrs . to the decimal of a week.
2. 7 oz .4 dwt .9 grs , to the decimal of a pound.
3. 16 lbs .7 oz .3 drs , to the decimal of a cwt.
4. 116 days 14 hours to the decimal of a year.
5. 1 rond 17 yards to the decimal of an acre.
6. 3 qre. 1 na .1 in . to the decimal of a French ell.
7. $16 \mathrm{~s} .11 \frac{1}{2} \mathrm{~d}$. to the decimal of a pound.
8. $£ 914 \mathrm{~s} .8 \frac{\mathrm{~J}}{\mathrm{~d}}$. to the decimal of $£ 770 \mathrm{0} .9 \mathrm{~d}$.
9. 2 days 17 min . to the decimal of 7 weeks 4 days.
10. 3 fur. 17 per. to the decimal of 2 miles 4 yds .1 ft .
11. 17 lbs .4 oz . to the decimal of 19 lbs .7 oz .5 dre. 1 scr.
12. 2 roods 27 yds. to the decimal of 29 per. 29 yds.
13. To find the value of a given decimal of a denominate number:-

RULE.

Multiply the given decimal by the number of units of the next lower denomination that make one of the given denomination.

Point off as many lecimal places as there were in the multiplicand, and the integral portion, if any, will be units of that lower denomination. The decimal part may te reduced to a still lower denomination; and so on.

Example.-Find the value of 27625 of a lb . Trof.
operation.
$\cdot 27625=$ decimal of $\approx \mathrm{lb}$.
12
$3 \cdot 31500=$ oz. naci decimat of an oz . 20
$6 \cdot 30000=$ dwt. and decimal of a dwt. 24
$7 \cdot 20000=$ grs. and decimal of a gr.
Then $3 \mathrm{oz} .6 \mathrm{dwt} . \quad / \mathrm{F} 2 \mathrm{grs}$. Ans.
Here we first multiply by 12 , because 12 oz . make 1 lb ., and wa thus get $3 \cdot 31500 \mathrm{oz}$. Next we multiply the deaimal $3: 500$ by 20 to reduce it to dwt., \&c.

Exercise 34.

Finc: ine value of -

1. 146785 of $£ 1$.
2. '71463 of $=$ week.
3. $2 \cdot 147$ of a pound Apoth.
4. 6143 of a mile.
5. 916147 of an acre.
6. $2 \cdot 14617$ of a French ell.
7. $9 \cdot 2645$ of an hour.
8. 4.7177 of a hhi.

$$
\begin{aligned}
& 3 \text { 3.33625 of a rood. } \\
& \text { 1. } 9.914 \text { of } £ 1 \text {. } \\
& \text { 11. } 6.714 \text { of } £ 34 \mathrm{~s} .7 \text {. } \mathrm{f} \text { d. } \\
& \text { 12. } 9 \cdot 1467 \text { of a year. } \\
& \text { 1.. } 12345 \text { of } \$ 2 \% 78 \text {. } \\
& \text { 14. } 65265 \text { of } 27 \mathrm{sq} . y \mathrm{ds} .2 \mathrm{ft} \text {. } \\
& \text { 15. } \mathrm{F} \cdot 46725 \text { of } 7 \mathrm{cwt} \text {. } 2 \mathrm{qrs} .17 \mathrm{lbs} \text {. } \\
& \therefore 6.4715 \text { of } £ 77 \mathrm{~s} .7 \frac{1}{5} \mathrm{~d} \text {. }
\end{aligned}
$$

IXXERCISE 55. MiscelJaneous Problems.

1. Weduce $\mathfrak{£ 2 9 7}$ 4s. \mathfrak{E} - d. to dollars sad conts, and divide the result by 0005 .
2. Find the least common anultipl. $-\hat{i} 9,11,18,15,21,22,42, \pm 6$, and 60.
d. Add together $\$ 78 \cdot 90, \$ 427 \cdot 43$, $\$ 200 \cdot 17, \$ 80 \cdot 43$, and $\$ 17 \cdot 90$, and from the sum subtract $£ 18315$ s. $11 \frac{1}{2} \mathrm{~d}$.
3. Reduce $\frac{1}{2}, \frac{4}{5}, 3^{\frac{3}{7}}, \frac{2}{5}$, and $\frac{7}{⿺ 𠃊}$, to equivalent fractions havug at common denominator.
4. How much is 726 times $£ 24 \mathrm{~s} .10 \frac{2}{4} \mathrm{~d}$?
5. How many times would a carriage wheel having a circumference of 13 ft .7 in . revolve in going from Toronto to Stoney Creek, a distance of 44 milcs?
6. Diride $\$ 7498 \cdot 70$ among A, B, and C , so that A shall have just $\$ 749.83$ more than each of the others.
7. In 1858 the value of the horses imported into the different ports of Canada was as follows: Clifton $\$ 6880$, Coaticook $\$ 9775$, Morrisburgh $\$ 6750$, Prescott $\$ 58877$, Stanstead $\$ 9105$, Toronto $\$ 8750$, Windsor $\$ 9880$, other ports $\$ 58712$; what was the total value of the horses imported into Canada in 1858?
8. In the same year the value of the horned cattle imported into Canada was as follows: Coaticook $\$ 2702$, Dundee $\$ 3537$, Montreal $\$ 3830$, Potton $\$ 2156$, Sanlt Ste. Marie $\$ 3156$, Windsor $\$ 10688$, other ports $\$ 25561$; how much did the value of the horses imported into Canada in the year 1858 exceed that of the horned cattle imported in the same year?
9. What is the difference between $\frac{1}{2}$ of $3 \frac{1}{\frac{1}{2}}$ of $5 \frac{1}{7}$ of $\$ 28 \cdot 28$ and r of $2 \cdot 4$ of $3 \cdot 7$ of $\frac{25}{34}$ of $£ 611 \mathrm{~s}$. $5 \frac{1}{2} \mathrm{~d}$.?
10. Express 704, 1111, 9876, 23471, and 9142371 in Roman numerais.
11. Write down as one number seven hundred billions four thousand and twenty, and six millions two hundred thonsand and nineteen tenthe of trillionths.
12. Find the ralue of $\frac{27 \times 45 \times 64 \times 117 \times 23 \times 115 \times 93 \times 144}{25 \times 729 \times 184 \times 27 \times 12 \times 13}$.
13. Find the value of $2 \frac{2}{4}+\frac{1}{2}$ of $\frac{3}{7}$ of $\frac{7}{11}$ of $37 \frac{1}{2}+\frac{3}{8}-\frac{3}{7}+8 \frac{1}{3}-4 \frac{3}{8}$.
14. Reduce 2 days 4 houre to the decimal of 3 weeks 3 days.
15. What is the Greatest Common Measure of 17810 and 63294 ?
16. Reduce $\cdot \dot{7}, \ddot{93}, \cdot \dot{00045}$, and $-2 \dot{7} 14 \dot{6}$ to their equivalent vulgar fractions.
17. How many square inchē are there in 2 a. 1 r. 17 per. 9 yds. $?$
18. What is the value of 7149625 of a mile?
19. Find the value of 7 of a per. +625 of a $5 \mathrm{~d} .+713$ of $a \mathrm{ft} .+$ 91 of an inch.
20. Which the greatest and which the least of $\frac{4}{2}$, $\frac{9}{87} \frac{5}{31}$?
21. Express $3 \frac{1}{4}$ elle Flem. as a fraction of a yard.
22. A farmer at a fair sold 229 sheep at $\$ 0 \cdot 73$ each, and hought 13 cowe at £11 118. 7d. each ; how much money did he carry home?

〔. In the year 1858 there were imported into Canada 20735 doz. eggs valued at $\$ 2487$; in the same year there were exported from Canada 623525 doz. eqgs valued at $\$ 66860$; how many more egge wero exported than imported during that year, and what in each case was the average value per doz. eggs?
25. What is the 1 . c. m. of $6,10,16,20,24,28,32,36,40$, and 44 ?
26. How many times 123 is 746 times 193 ?
27. The quotient is 794 and the divisor 83 , what is the dividend?
28. Divide 749 lbs .4 oz .7 drs. A roir. equally among 19 persons; what is the share of each?
29. Divide 346 a. 1 r. 17 per. by 2 a. 3 r. 27 per. 9 yds.
30. Reduce 2 bush. 1 pk .1 qt . to the fraction of 11 bush. 3 pks.
31. Add together $\$ 947 \cdot 60, \$ 207 \cdot 90, \$ 274 \cdot 33$ and $£ 21748$. 7 7 d., and dlvide the sum by 299.
32. Find the value of $\frac{63 \times 47 \times 21 \times 121 \times 264 \times 625}{35 \times 51 \times 55 \times 48 \times 517 \times 40}$

SECTION V.

RATIO, SIMPLE PROPORTION, COMPOUND PROPORTION.

RATIO.

1. The Ratic of one number to another is the quotient arising from the division of the former by the latter.

Thus, the ratio of 16 to 4 is $16 \div 4=4$. the ratio of 27 to 8 is $27 \div 8=3 \frac{3}{8}$, \&c.
2. The Ratio of one number to another is commonly axpressed by writing a colon between them.

Thus, the ratio of 16 to 4 is expressed by $16: 4$. the ratio of 27 to 8 is expressed by $27: 8$.
3. The Ratio of one number to another may also be expressed by writing them in the form of a fraction.

Thus, the ratio of 16 to 4 may be expressed by $\frac{16}{4}$. the ratio of 27 to 8 may be expressed by $\frac{27}{8}$.
4. The two numbers that constitute the ratio are called the terms of the ratio; and the first term is called the anteccdent and the other the consequent of the ratio.
5. If the antecedent is equal to the consequent, the ratio is called a ratio of equality.

If the antecedent is greater than the consequent, the :atio is called a ratio of greater inequality.

If the antecedent is less than the consequent, the ratio is called a ratio of less inequality.
6. A Simple Ratio is the ratio of any one number to any other number.
7. A Compound Ratio is a ratio produced by compound ing or multiplying together the corresponding terms of twe or more simple ratios.
8. The value of a ratio is found by dividing the ante. cedent by the consequent.
9. Ratios are compared together by comparing their values together.
10. Ratios are compounded together by multiplying together all the antecedents for a new anteccdent and all the consequents for a new consequent.

Note.-Before multiplying the antecedents together for a new antecedent and the consequents together for a new consequent, we cancel any factor that is common to an autecedent and a consequent.

Example 1.-What is the ratio of 27 to 3 ?
operation.

$$
27 \div 3=9 . \quad \text { Ans }
$$

Example 2.-What is the ratio of 83 to 6?
operation.

$$
83 \div 6=13_{6}^{5} . \quad \text { Ans. }
$$

Example 3.-What is the value of the ratio of 94 to 7% operation.

$$
94 \div 7=12 \cdot 428 . \quad \text { Ans. }
$$

Example 4.-What is the value of the ratio of 17 to 23 ? operation.

$$
17 \div 23=0.739 . \text { Aus. }
$$

Example 5.-Point out which is the greatest and which the least of the following ratios-7:4, 91 $: 5,27: 16$.
oferation.

$$
\begin{aligned}
& 7: 4=7 \div 4=1.75 . \\
& 91: 5=9.5 \div 5=19.9 . \\
& 27: 16=27 \div 16=168.68 .
\end{aligned}
$$

Therefore $9 \frac{12}{2}: 5$ is the greatest and $27: 16$ the least.
Example 6.-Find the ratio compounded of $6: 7,9: 4$, $21: 13,12: 55$, and $5: 27$.

statement.

CANCELLED.

$$
{ }_{7}^{6} \times \frac{0}{4} \times \frac{11}{13} \times \frac{12}{55} \times \frac{5}{27}=\frac{6}{7} \times \frac{9}{4} \times \frac{11}{13} \times \frac{\frac{12}{55}}{\frac{12}{11}} \times \frac{\frac{3}{27}}{3}=
$$

$$
\frac{6}{7 \times 13}=\frac{6}{91}=6: 91 . \text { Ans. }
$$

Exercise 56.

k Fhat is the ratio of $7: 4$? $19: 3$? $26: 2$? $144: 6$? $29: 2$? $16: 3$?
2. What is the ratio of $27: 4 \frac{1}{?}$? $11: 19 ? 26: 73 \quad 25: 7 ? 129: 2$? 17:18?
Figd the vaiun of -
3. $7: 13 ; 9: 14 ; 63: 7 ; 29: 3 ; 19: 27 ; 34: 6$.
4. $21: 7 ; 16: 3 ; 28: 5 ; 111: 7 ; 222: 11 ; 167: 29$.

Compare together the following ratios, and point out which is the least and which the greatest:
5. $9: 17,16: 33$, and $47: 79$.
6. $11: 8,17: 5,38: 11$, and $164: 55$.
7. $49: 5,176: 16 \cdot 4,267 \cdot 4: 25 \cdot 9$, and $8: \cdot 89$. Compound logether the following ratios:
8. $7: 4,11: 23,11 \frac{1}{4}: 9$ and $9: 14$.
9. $6: 11,12: 17,5 \frac{3}{3}: 4 \frac{1}{2}, 27.121$, and $5 \frac{1}{2} 6$.
10. $15: 4,16: 7,9: 20,7027$, and $6: 5$.
11. 5:7,6 5 5, 4.3,2.1, sud 21 .32.

1. \& $2 \in 5,6 \cdot 7,3: 9$, and 16.23 .

SIMPLE PROPORTION.

11. Simple Proportion enables us to find a fourth number which shall have the same ratio to the third of three given numbers that the second of these numbers has to the first: hence proportion consists in an equality of ratios.
12. In every simple proportion three terms are given to find the fourth, and this fourth term must be of the same name or denomination as the third.
13. Proportion is expressed by writing the sign $::$ between the two equal ratios that compose the proportion.

Thus, the proportion existing between $7,21,19$, and 57 is expressed thus-7:21::19:57, and is read 7 is to 21 as 19 is to 57 .
14. The two outer terms of a proportion are called the extremes, and the two intermediate terms the means.

Thus, in the above example 7 and 57 are the extremes, and 21 and 19 the means.
15. In every proportion the product of the extremes is equal to the product of the means.

Thus, in the following examples we have

$$
\begin{array}{r}
9: 54:: 2: 12 \text {, and } 9 \times 12=54 \times 2 . \\
7: 21:: 19: 57 \text {, and } 7 \times 57=21 \times 19 . \\
16: 3:: 12: 2 \frac{1}{4} \text {, and } 16 \times 2 \frac{1}{4}=3 \times 12 .
\end{array}
$$

16. Since 1 st term $\times 4$ th term $=2 d$ term $\times 3 d$ term, it follows that the 4 th term $=\frac{2 d \text { term } \times 3 d \text { term }}{1 \text { st } \text { term }}$.

That is, the 4th term of every proportion is fonnd by multiplying together the $2 d$ and $3 d$ terms and dividing their product by the first term.

Example 1.-What is the fourth proportional to 7, 11, and 23 :

OPERATION.
$7: 11:: 23:$ Ans. Hence 4 th term or Ans. $=\frac{11 \times 23}{7}=36 \frac{3}{7}$.

Example 2.-Find a fourth proportional to 24, 105, and 46 .
operation.
e4: $105:: 40:$ Ans. Hence $A n s .=\frac{105 \times 40}{24}=\frac{103 \times 40}{24}$
$=85 \times 5=175$.
Example 3.-Find a fourth proportional to 30,76 , and 9%.
operation.

10
ฮ
Exercise 57.
Find the fou:th proportional to the following numbers :
2. 7,21 , and 40.
${ }_{3} 91,7$, and 46 .
3. 11,3 , and 17 .
4. 9,47 , and 29 .
5. 6,23 , and 42 .
S. 111,21 , and $18 \frac{1}{3}$.
7. 9,10 , and 11.
S. 13,14 , and 65 .
9. 1728,109 , and 72 .
10. 253,16 , and 11.
11. 9, 891, and 100.
12. 9 days, 21 days, and $\$ 61 \cdot 50$.
13. 11 lbe ., 147 lbs ., and $£ 1648$.
14. 3 cwt ., 20 cwt . and $\$ 66.87$.
15. 9 miles, 17 miles, and 16 days.
16. 21 acres, 47 acres, and 11 wks.
17. 17 bushels 29 busbeis, and £678. 4 d.
18. 211 aeres 1 acre, ard $\$ 7496 \cdot 40$.
19. 62 miles, 3 miles, and $\$ 421 \cdot 40$.
20. 7 months, 23 months, and ${ }^{8} 55670$.
17. In the preceding exercise the first three terms of the proportion are given in their proper order, but very generally in proportion the pupil is required to make the statement himself, and this is done according to the following:-

RULE.

I. Reduce the two numbers which are of different names from the answer to the lowest denomination contained in cither of them.
II. Set the number which is of the same kind as the answer in the third place, and, when the answer is to be greater than this third term, write the greater of the other two numbers in the second place; but when the answer is to be less than the third term, write the smaller of the other two numbers in the second place.
III. Multiply the second and third terms together, and divide their product by the first term.

Proof.-Multiply the answer by the first term, and the product should be the same as that obtained by multiplying together the second and third terms.

Example 1.-If 11 men can morr a field in 23 days, in what time will 5 men mow it?

OPERATION.
5:11:: 23:Ans.
$\frac{11}{5) 253} 5$ we place the 23 days as the 3 d term. Then, since it is evident that 5 men will require more days to mow the field than 11 men , that is, since the answer must be greater than the third term, we place 11, the greater of the two remaining numbers, as the second term.

Example 2.-If 16 bushels of oats cost $\$ 6 \cdot 70$, what will 96 bushels cost?
jperation.
6

16: 90 : : $\$ 670$: Ans. 6
$\$ 40 \cdot 20$ Ars.

Here, since the answer must be money, we put the $\$ 6.70$ in the third place; then, because the answer must evidently be greater than the third term, 96 bushels costing more than 16 bushels, we put 96 , the greater of the two remaining numbers, in the second place. Lastly, before applying the rule we cance! by dividing the first and second terms by 16.

Exanple 3.-If 9 acres of grass will pasture 21 cows dqw many cows will 6 acres pasture?

OPERATION.
3.27

Here we put 21 , the number of $9: 6:: 27:$ Ans. cows, in the third term, since the an$7 \times 2=14$. Ans. swer is to be cows; next, since the answer will be less than the third term, 6 acres pasturing fewer cows than 9 acres, we place 6, the smaller of the two remaining terms, in the sceond place.

Fxample 4.-If 6 lbs. 4 oz .7 drs. Aroir. cost $\$ 169.40$, What will 1 lb .11 oz . Aroir. cost?

operation.

6 lbs. 4 oz. 7 drs. $=1607$ drs.
$1 \mathrm{lb} .11 \mathrm{oz} .=432 \mathrm{drs}$. 1607: 432: : $\$ 169 \cdot 40$: Ans.

432
$\overline{33880}$
50820
$1607)^{\frac{67760}{73180 \cdot 80(\$ 45.538 . ~ A n s . ~}}$
$\frac{642 S}{8900}$
$\frac{8035}{865 \cdot 8}$
803.5
$\overline{62 \cdot 30}$
$48 \cdot 21$
$14 \cdot 090$
$\frac{12 \cdot \$ 56}{1 \cdot 234}$
Example 5.-If $£ 2$ 6s. 8d. pay for 17 days' work, for how many days will $£ 911 \mathrm{~s}$. 4d. pay?

Example 6.-If $3 \frac{2}{7}$ barrels of apples pay for $9 \frac{3}{16}$ busb: els of wheat, how many bushels of wheat can be purchased for $17 \frac{4}{5}$ barrels of apples?
operation.

$$
\begin{array}{r}
3 \frac{2}{2}: 17 \frac{4}{6}:: 9 \frac{3}{1}: A n s . \\
\text { or } \frac{23}{3}: \frac{88^{6}}{6}:: 1_{10}^{102}: A n s .
\end{array}
$$

Hence the Ans. $=\frac{89}{5} \times \frac{102}{11} \div \frac{23}{7}$

$$
\begin{aligned}
& \text { Ans. } \\
& \text { or } \frac{89}{6} \times \frac{102}{102} \times \frac{7}{23}=\frac{63546}{1266}=50 \frac{296}{1265} \text {. Ans. } \\
& \frac{12}{1265}
\end{aligned}
$$

Here, after making the statement, we reduce the terms to their equivalent improper fractions, invert the first term or divisor and connect it to the other two by the sigu of multiplication.

Example 7.-If $4 \frac{2}{\partial}$ days' work cost $21 \frac{3}{6}$ shillings, what will $17 \frac{6}{11}$ days' work cost?

OPERATION.

$$
\begin{aligned}
& 4 \frac{2}{2}: 17 \frac{6}{11}:=21 \frac{3}{6}: \text { Ans. } \\
& \text { or } 2_{5}^{2}: \frac{1993}{11^{2}}:=\frac{108}{6}: \text { Ans. } \\
& 54
\end{aligned}
$$

Exercise 58.

1. If 28 men ean dig 27 acres in a week, how many acres can 42 men dig in the same space of time ?
2. What will 65 lbs, of sugar cost if $\$ 1.30$ pay for 13 lbs .9
3. How many men would perform in 125 days a piece of work which 100 mon can perform in 145 days?
4. If a person can finish a journey in 100 daya, travelliug 10 hours per day, how many days would he take to do it if he travelled only 6 hours per day?
5. If $13 \frac{1}{3}$ yards of eloth cost $\$ 12 \cdot 90$, what will $4 \frac{5}{36}$ yards cost?
6. A bankrupi's effects amounted to $\$ 7149$, which paid his creditore 80 cents in the $\$$; to what sum did his debts amount?
7. What will be the cost of 16714 feet of elear timber at $\$ 18 \cdot 70 \mathrm{pcr}$ thousand?
8. What will be the tax on $\$ 7749 \cdot 70$ at the rate of $1 \frac{8}{3}$ cents on the \$?
9. If of a person's income is $\$ 7191 \cdot 60$, what is his income?
10. What is the cost of 127 acres of land if $S 71$ acres cost $\$ 8671 \cdot \frac{4}{4}$?
11. If 702 yds . of muslin cost $£ 482 \mathrm{~s} .4 \frac{1}{8} \mathrm{l}$., what will 540 yds . cost ?
12. If a ship has water sufficient to last a crew of 35 men for 6 mouths, how long will it laet acerw of 20 men?
13. What is the tax on $£ 174916 \mathrm{~s}$. $8 \frac{4}{4} \mathrm{~d}$. at $3 \% .44$. in thic $£$?
14. If -4 a. 1 r. 17 per, cost $\$ 76380$, what will 7 ก. 1 per. 9 yils. cost?
15. If the railvay fare for 100 miles is $\$ 3 \% 5$, what ought it to be for 63 miles?
16. How mneh must he given for 276 bushels of wheat at the rate of 87.90 for 7 bushela?
17. A bankruptes delots amount to \$i1911-40 and his effects to $\$ 53069 \cdot 80$; how much can he pay 10 the $\$$?
18. What will be the cost of draining 247 a .1 r .27 per. when 17 a . 1 r. 30 per. enst £111 17s. 8 d ?
19. If 16 barrels of flom can be bought for $\xi 9 \cdot \$ 0$, what must bo paid for 27 barrels?
20. There are two numbers in the proportion of 7 to 8 and the larger number is 291 ; what is the smallen?
21. What will be the cost of 71 ewt. 1 nr .17 lhs ., if 821.60 pay for 3 cwt 2 qr. 20 lbs. ? (Alluwing 112 jbs. to the cwt .)

22. A besieged town containing 15000 inhabitants has provisions sulficient to l::st 5 weeks; how loug will the provisious last if 7010 of tle inlabitauts be sent away ?
23. If a stick 7 fect hieh cast a shadow 5 feet in length, what is tho height of a spire that casta a slas!ow 129 feet in lercth?
24. How far can a man travel in 27 daye at the rate of 149 miles in 4 days?
25. If a person ateps over 4 yds. in 5 paces, to how many yards will 729 of hle paces he equal?
26. There are two numbers in the proportion of 6 to 11 and the smaller is 29 , what is the larger?
27. At 29 cents per lb., what will be the cost of 174 lbs of raisins 8
28. How much land at $\$ 4.75$ per acre must be given in exchange for 243 acres at $\$ 3 \cdot 60$ per acre?
29. If $4 \frac{3}{7} \mathrm{lbs}$, of nutmegs cost $£ \frac{19}{21}$, what will $27 \frac{1}{5} \mathrm{lbs}$., cost?
30. If $6 \frac{1}{4}$ acres of land cost $\$ 67 \frac{4}{11}$, for how much land will $\$ 23 \frac{9}{2}$ pay?
31. If $4 \cdot 32 \mathrm{lbs}$. of coffee cost $\$ 1 \cdot 17$, what will $9 \cdot 78 \mathrm{lbs}$. cost?
32. What will $9 \frac{3}{7}$ lbs. of spice cost when $\$ 17 \frac{4}{6}$ pays for 19.87 lbs ?
33. If 11 cows make 29 pounds of butter per week, how mnch may be expected from 27 cows?
34. If 7 men put up 200 perches of fencing in 2 days, how long would they take to put up 900 perches?
35. If $\$ 100$ stock is worth $\$ 95 \frac{7}{11}$, how much can be purchased for $\$ 100$?
36. What will 16 lbs .4 oz .2 drt . cost if 11 oz .11 dwt .11 grs, cost $\$ 17 \cdot 90$?
37. If the rent of 73 a . 14 per. be $£ 174 \mathrm{~s} .9 \mathrm{~d}$., what will be the rent of 33 a. 1 r .23 per.?
38. If $\frac{1}{2}$ of $\frac{3}{5}$ of $\frac{4}{5}$ of $17 \frac{1}{2} \mathrm{lhs}$. cost $\frac{2}{7}$ of $\frac{3}{11}$ of $\$ 3850$, what will $\frac{5}{4}$ of $\frac{x^{2}}{9}$ of $\frac{2^{2}}{7}$ of $8 \frac{1}{2}$ lbs. cost ?
39. Two numbers are to one another as 11 to 29 , and the greater of the two is 107 , what is the smaller?

COMPOUND PROPORTION.

18. Compound Proportion is an equality betreen a compound ratio and a simple ratio.
19. Compound Proportion is also called the Double Rule of Three, because all questions in connound propor. tion, when worked by simple proportion, s "quire two or more statements.
20. In questions in Compound Proportion, five or more terms are giren to find another term; that in, three or more ratios are giren, one of which is imperfect ir wants a term.
21. Questions in Compound Proportion are sc ted by the followim:-

RULE

Write, in the third place, that tern which is of the same kind as the answer.

Of the other quantitics, take each pair of corresponding terris, and, having first reduecel both to the same denomination, arrange them as in simple proportion.

Then multiply together the third term and all the sccond lerms, and divide the result by the product of all the first terms. The quolient will be the answer, in the same denomintation as the third term.

Note.-Before thus multiplying and dividing, be careful to reduce, by cancelling, all the terms as much as possible.

Example 1.-If 10 men in 7 days can earn $\$ 78 \cdot 43$, how much can 17 men earn in 3 days?
operation.
$\left.\begin{array}{r}\text { !0: } \\ 7 \\ 7: 3\end{array} \right\rvert\,:: 878 \cdot 43:$ Ans.
17
$\overline{54901}$
7843
$\overline{1333 \cdot 31}$
3
70) $\overline{3999 \cdot 93}(\$ 57 \cdot 1418$ อัรั0
499
490
$9 \cdot 9$
$\frac{7 \cdot 0}{2 \cdot 93}$
$2 \cdot 80$
-130
70
600
$\frac{560}{40}$

Here we set $\$ 78.43$ in the $3 d$ term, because the answer is to be money. Next we take the other terms in pairs, first for instance, the numbers referring to men, and of these we place the greater in the second place, because, leaving the time ont of consideration, and regarding only the men and the wages, it is evident that the answer must be greater than the third term. Again, for a similar reason, leaving the men out of consideration, we place 3 , the least of the remaining terms, in the second place. Lastly, we multiply together the $\$ 78.43$, the 17 , and the 3 , and divide their product by 70 , which is the product of the two first terms.

Exayple 2.-If 20 men can build 405 Jds . of wall in 2^{*} days, how many men will it require to build 522 Jds. is : days?

OPERATION.
STATEMENT.

$$
\begin{array}{r}
405: 522 \\
8: 57
\end{array}:: 20: \text { Ans. }
$$

CANCELLED.

Then $3 \times 29=87$. Ans.

Here, since the answer is to be men, we place 20 men in the third term. Next, we take the two numbers referring to length of wall, and, leaving the time out of consideration, arrange these as in simple proportion. Afterwards, we take the two numbers referring to time, and, leaving length of wall out of consideration, also arrange these as in simple freportion.

Exercise 59.

1 If 21 men can dig 7 acres in 12 days, how many acres can 17 men dig in 22 days?
2. Iin a family of 11 people spend $\$ 490$ in 7 months, how much will a family of 7 persons spend in 16 months?
3. If 110 reams of paper make 5000 copies of a book of 15 sheets, how much paper will be required for 4000 copies of a book of 11 shects?
4. If 21 men can mow 93 acres in 5 days, how long will 7 men require to mow 16 a. 3 r. 20 per. ?
5. If 50 men can dig an excavation in 7 days, working 11 hours per day, how many days will 24 men require when they work only 8 hours per day?
6. If $\$ 750$ gain $\$ 204$ in 23 monthe, how much will $\$ 467$ gain in 7 monthe?
7. If a wall 79 fect long, 4 feet high, and 2 feet thick be built by 17 men in 11 dase, what length of wall 5 fect high and 3 fec: thick can be buili by i4 men in 33 days?
8. If 3 men can cradle 34 acrea of wheat in 5 days, how many men will it require to eradle 95 a. 32 per. in 6 days?
9. If a ditch 36 fect long, 8 feet deep, and $\&$ feet rride 176 a 4 hy 32 men in 4 days, in what time wili 48 meli dig a difeiz sef foot long, 6 feet decp, and 3 feet wide ?
20. If 34 men can eaw 90 cords of mood in 6 days r, nen the days are 9 hours long, how many cords can 8 mers saw in 36 days when the days are 12 hours long ?
11. If 5 compositors in 16 days, each 11 hoürs long, can compore 25 sheets of 24 pages in cach sneet, 44 lines in a page, and 40 letters in a line, in how many days, each 10 hours long, can 9 compositors compose 30 sheets of 16 pages to a sheet, 50 linee to a page, and 45 letters to a line ?
12. If 243 men in $5 \frac{1}{4}$ days of 11 hours each, dig a trench of 7 degrees of harducss, $232 \frac{1}{4}$ yards long, 33 yards wide, and $2 t$ yards deep, in how miny days, of 9 hours each, will 24 men dig a trench of 4 degrees of hardness, 3575 yards long, $5{ }_{5}^{3}$ yards wide, and $3 \frac{1}{3}$ yards deep?
13. If 60 men can dig a trench 500 feet long, 36 wide, and 40 deep, in 24 days of 8 hours each, how many wen will be required to dig a treach 550 feet long, 68 wide, and 90 deep, in 44 days of 9 hours each?
14. If $9 \mathrm{lbs} .6 \mathrm{oz}$.4 dwt . of silver mako 5 dozen forks, each worth 11s. $\frac{14}{3}$ d., how many forks, each worth 7s. $8 \frac{1}{3}$ d., can be made out of $11 \mathrm{lbs} .11 \mathrm{oz}, 17 \mathrm{grs}$?
15. If 279 .hushels of potatoes feed 4 cows for 60 days, how many buishels will be required to feed 27 cows for 200 days?
16. If $\tau \cdot 3$ acres of land are trenched by 23 men in $27 \cdot 9$ days, working 11 't houra per day, how many acres of land may bo trenclied by 48 men in 16.5 days when they work $9 \cdot 4$ hours per day?
17. If the wages of 11 men for 11 days be $\$ 111 \cdot 11$, what will be the wares of 16 men for 16 days?
1S. If a block of marble S feet long, 4 feet wide, a.jd 2 feet thick, weigh 8550 lbz ., what will be the weight of another block of marble 6 feet long, 6 feet wide, and 4 feet thic! ?
19. If a rectangular vat 8 feet square and $2 \frac{1}{2}$ feet deep hold 10000 lbs. of water, how many pounds of water will a rectangular vat 10 feet long, 8 feet wide, and 2 feet deep, contain?
20. If 14 oz . of wool make $2 \frac{3}{} \mathrm{yds}$. of flamuel $1 \frac{2}{3} 5 \mathrm{ds}$. wide, how many ounces of woul will be required to make $17 \mathrm{~s}_{\mathrm{s}}^{3} \mathrm{yds}$. of flannel $1{ }_{7}^{x}$ yids. wide?
21. If $20+3 \frac{3}{3} \mathrm{dd}$. of cloth $1 \frac{3}{\mathrm{yds}}$. wide make coats for a regiment of poldiers containing $8+7$ men, how much cloth $2 \frac{1}{3}$ yds. wido will bo required to make coats for another regiment which contains 981 men?
22. If 8 men can cradle 97 acres in 4 dayd of is hours each, how many acres whil 14 mell cradle in $3 \frac{1}{5}$ days of 9 hours each?
23 If $\% 50$ eain $\%=4$ in 12 months, what principal will gain $\$ 97$ in 4 months ?
24. If 24 horses cat $5 \pm$ bushels of oats in 9 days, how many bushels of oats wiii last 29 horses 27 days?

SECTION VI.

PRACTICE.

1. Practice is a short method of finding the value of any quantity of merchandise, the value of a unit of any de nomination being given.
2. An Aliquot Part is an exact or even part.

Thus 20 cents is an aliquot or even part of $\$ 1 ; 2 \mathrm{oz}$. is an aliquo* part of 1 lb . 6 months, 4 months, 3 months, 2 months, $1 \frac{1}{2}$ month s_{1} and 1 month, are aliquot parts of 1 year.

TABLE OF ALIQUOT PARTS.

Parts of $\$ 1$.	Parts of a mouth.	Parts of $£ 1$.	$\begin{gathered} \text { Parts of } \\ 18 . \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Parts of a } \\ \text { cwt.* of } 112 \\ \text { lbs. } \end{gathered}\right.$
50 cts . $=$	15 days $=\frac{1}{2}$	10	d.	56
$33 \frac{1}{3}=$	$10=$	6s. 8d. $=$	$4 \mathrm{~d} .=\frac{1}{8}$	$28 \mathrm{lbs}=$
25	$7 \frac{1}{2}=\frac{1}{4}$	5s. $=\frac{1}{4}$	$3 \mathrm{~d} .=\frac{1}{4}$	$16 \mathrm{lbs}=$
$20=\frac{1}{5}$	$5=\frac{1}{6}$	4 s . $=$	$2 \mathrm{~d} .=\frac{1}{6}$	$14 \mathrm{lbs} .=\frac{1}{3}$
$16 \frac{2}{3}=\frac{1}{6}$	$=\frac{1}{10}$	3s. 4 d . $=$	$1 \frac{1}{2} \mathrm{~d} .=\frac{1}{8}$	$8 \mathrm{lbs}=\frac{1}{1+}$
$12 \frac{1}{2}=\frac{1}{8}$	$2=\frac{1}{15}$	2 s . 6 d . $=$	1d. $=\frac{1}{12}$	$7 \mathrm{los}=\frac{1}{16}$
$\begin{array}{ll} 8 \frac{1}{2} & =\frac{1}{12} \\ 6 \frac{1}{4} & =\frac{1}{16} \end{array}$	$1=\frac{1}{30}$ Nots.-The	$2 \mathrm{~s} . \quad=10$ 1s. $8 \mathrm{~d} .=\frac{1}{12}$		Parts of a Pr . of 281 lis .
	of a year are	1s. $3 \mathrm{~d} .=\frac{1}{10}$		
	the same as those of a shilling.--See 4th column.	$1 \mathrm{~s} . \quad=\frac{1}{20}$		$\begin{array}{r} 14 \mathrm{lbs}=\frac{1}{2} \\ 7 \mathrm{lbs}=\frac{1}{3} \\ 3 \frac{1}{2} \mathrm{Ibs}=\frac{1}{3} \\ 1 \frac{3}{2} \mathrm{lbs}=\frac{1}{16} \end{array}$

* Although we allow bat 100 lbs , to the cwt. in Canada, it is often necessary to make ealeulations with the o!d cwt . of 112 lks . This arises from the fact that the latter is still in common use in Great 3ritaill, eeveral of tho states of the American Union, se. The aliquot pasts of the new cwt. of 100 lbs are the same a.e the sliquot parts of

Example 1.-What is the cost of 47 cows at $\$ 33.40$ sach?

oferation.

$$
\$ 33.40 \times 47=\$ 1569 \cdot 80 . \quad A n s
$$

Example 2.-What is the value of 1678 lbs . of tea at $\$ 1 \cdot 50$ per lb.?

Example 3.-Find the price of 2164 articles at $\$ 187 \frac{1}{3}$ each.

OPERATION.

25	d	$1082=$	*	"	*	©	${ }^{5} 5$	
12 $\frac{1}{3}$	$\frac{1}{2}$	541	"	"	"	(1)	$\cdot 25$	
		$270 \cdot 50$	"	"	6	(${ }^{\text {d }}$	-121	
		$4057 \cdot 50$	"	"	"		-873	

Example 4.-Find the value of 978 sheep at $\$ 3.79$ eatch.

OPFRATION.
50 cts. $\left.\right|^{\frac{1}{2}} \mid 5978=$ value of 978 shecp (0) $\$ 1$ each.

* cts. $\frac{1}{4}$	489	"	"	(10)	$\cdot 50$	
	$195 \cdot 60=$	"	"	(1)	-20	
$4 \mathrm{cts} .\left\|\frac{1}{5}\right\|$	$48 \cdot 90=$	"	"	@	-05	
	$39 \cdot 12=$	"	"	(0)	$\cdot 04$	
	$3706 \cdot 62=$	،	4		\%9	

Note.-In all questions similar to the preceding, where the value of one ardicle is given to tind that of a certain number of arpledes of the mame de omination, the shortest and simplest mode of proceeding la to multiply the price of one article by the given cumber of articles. Thus :-

Example ? - -Ans. $=\$ 1.50 \times 1678$.
Example 3.-Ans. $=\$ 1.87 \% \times 2164$.
EraASPLE 4. - Ars. $=\$ 3.79 \times 978$.

Example 5 .-Find the value of 1679 lbs .14 oz .12 dr. Avoir. at $\$ 169 \cdot 40$ per lb.

OPERATION.
8 oz . $\frac{1}{3}$ \$160.40 $\times 1679=\$ 28422 \cdot 60=$ value of 1679 lbs.

4 cz .	84.70	$155 \cdot 164=$	" 14 oz .12 drs
2 oz .	$42 \cdot 35$	$\overline{¢ \% 281578 \cdot 76{ }_{5}}=$	$\overline{16791 b s .1402 .12 ~ d r s, ~}$
2 小ro	$21 \cdot 175$	¢-815*	
51 rc . ${ }^{\frac{1}{2}}$	$5 \cdot 293$ 2.646		
	$156 \cdot 164$		

Example 6.-Allowing 112 lbs . to the cwt., find then value of 229 cwt .3 qrs .17 lbs . of tallow at $\$ 6 \cdot 20$ per cwt .
operation.

Example 7.-What is the value of 29 lbs. 7 dwt. 10 grs. of gold at $£ 3.17 \mathrm{~s} .11 \frac{1}{4} \mathrm{~d}$. per oz.?

OPERATION.
29 lbs. $=348$ ounces.
$\check{5}$ dwt. $\quad\left|\frac{1}{4}\right| £ 317 \varepsilon .11 \frac{1}{6} \mathrm{~d} . \times 348=£ 13562 \mathrm{~s} .3 \mathrm{~d} .=$ value of 29 lbs. $2 \frac{1}{2}$ dwt. 6 grs. 1 gr .

Then $£ 1356 \quad 2 \mathrm{~s} . \quad 3 \mathrm{~d} . \quad=$ value of 29 lbs.

Example 8. What is the price o 7149 tons of hay at $£ 213 \mathrm{~s} .9 \mathrm{~d}$. per ton?

OPERATION.

10s. $\left|\frac{1}{2}\right|$| |
| :---: |
| $£ 7149$ |
| 2 | value of 7149 tons © $£ 1$ per ton.

Example 9.-Find the price of $7149 \frac{3}{8}$ acres of land at $\$ 27 \cdot 43$ per acre.

> OPERATION.
$\$ 27.43 \times 7149=\$ 196097.07=$ value of 1149 acres.
$\$ 27 \cdot 43 \times 3 \div 8=\frac{10 \cdot 28 \frac{5}{8}=}{\$ 196107 \cdot 35 \frac{5}{8}}=$ " " $\frac{\frac{3}{8} \text { of an a. }}{7149 \frac{3}{8} \text { acres. }}$
Exercise 60.
Find the value of -

1. $2: 29$ at $\$ 2 \% 5$.
2. it3 at $\$ 3.81$.
3. 7114 at $\$ 97 \cdot 86 \frac{1}{3}$.
4. 213 at $£ 216 \mathrm{~s} .4 \mathrm{~d}$.
5. 321 at $£ 91 \mathrm{~s} .1$ d .
6. 7147 at $£ 1212 \mathrm{~s}$. $2 \frac{2}{2} \mathrm{~d}$.
7. $217 \frac{8}{子}$ at $\$ 914 \cdot 70$.
8. $61 \mathrm{~S}_{\mathrm{g}}^{*}$ at $\mathrm{\$} 42 \cdot 71$. .
9. $907 \frac{1}{12}$ at $\$ 16 \cdot 93$.
10. 204$\}$ at $£ 278.8 \frac{1}{2} \mathrm{~d}$.
11. $604 \frac{3}{3}$ at $£ 93$ 13s. 7 d .
12. $904^{37 \%}$ at $£ 1643$. $9 \frac{8}{4}$ d
13. 617 lbs .4 oz . Avoir. at $\$ 9143$ per lb .
14. 2171 a. 2 r. 17 per. at $\$ 9 \cdot 70$ per acre.
15. 114 bush. 1 pk .1 gal .1 qt . at $3 \frac{\mathrm{f}}{\mathrm{f}}$ cents per bushel.
16. 209 lbs .7 dwt. 16 grs . at $\$ 1.71$ per oz.
17. 614 yds .2 qrs. 1 na. at $\$ 2.73$ per yd .
18. 16 a. 1 r. 4 per. 7 yds. at $£ 217 \mathrm{~s}$. 6 d. per acre.
19. 29 wks .4 days 11 h . at $\$ 7 \cdot 40$ per week.
20. 167 miles 7 fur. 6 per. at $£ 93 \mathrm{ss}$. ed. per mile.
21. 217 lbs .4 oz .6 drs. 2 scr. at $£ 96 \mathrm{~b}$. 7 d . per oz.
22. 9167 aheep at $£ 13 \mathrm{~s} .6 \mathrm{~d}$. cach.
23. 21791 bushels of wheat at $\$ 140$ per bushel.
24. $1670_{\mathrm{i}}^{\mathrm{i}} \mathrm{sq}$ yds.of painting at, $2 \mathrm{~s}, 3$ 3fd. per sq. yd.
25. 437 a. 9 per. 7 yds . of land at $\$ 21 \cdot 40$ per acre.
26. 97 cub. yds. 4 ft . at $\$ 0.73$ per cub. yd .
27. $614{ }^{3}$ ewt. of iron at $\$ 1: 23$ per cwt.
28. 23 libs. 4 oz. 7 dwt. 11 grs , at 11 d. per dwt.
29. 216 cwt . 2 qrs. 19 lbs . at $\$ 99.71$ per cwt.*
©0. 179 cwt .1 qr. 23 lbs . at $£ 914 \mathrm{~s} .11 \frac{1}{\mathrm{~d}} \mathrm{~d}$. per cwt.*

SECTION VII.

PERCENTAGE, COMMISSION, BROKERAGE

insurance, storks.

PERCENTAGE.

1 1. Percentage or Per Cent. means a certain allowance or rate per 100. Per Cent. is a contraction of the Latin per centum, and means, " by the hundred."

Thus, if a person purchase 100 barrels of flour and some of them become worthless through being damaged, he is said to have lost 1 per cent., 2 per cent., 3 per cent., 7 per cent., 15 per cent., or 29 per cent., de., of his flour, accordiug as his loss is $1,2,3,7,15$, or 29 barrels.
2. When the rate per cent. is given, the rate per unit is found by dividing by 100 , or what amounts to the same thing, removing the decimal point two places to the left in the number that expresses the rate per cent.

Example 1.- What rate per unit is equivalent to 6 per cent. ?

$$
\text { Ans. } 6 \div 100=\cdot 06
$$

Exayple 2.-What rate per unit is equivalent to $8 \frac{8}{6}$ per cent.?

$$
\text { Ans. } 8 \frac{8}{4} \div 100=8 \cdot 75 \div 100=\cdot 0875
$$

Example 3.- - What rate per unit is equivalent to $? 3$ per cent.?

$$
\text { Ans. } 23 \div 100=23
$$

Example 4.-What rate per cent. is equivalent to 243 per unit?

$$
\text { Ans. } \cdot 243 \times 100=24 \frac{3}{10}
$$

Example 5.-What rate per cent. is equivalent te $\cdot 07$ per unit?

$$
\text { Ans. } 075 \times 100=7.5=71
$$

Fxample 6-Hhac rate per unit is equiralent to 12.63 er cent. ?

$$
\text { Ars. } 12 \cdot 63 \div 100=1263
$$

Exercise 61.

What rase per nnit is equivalent to-

1. 0 per cent. $34 \frac{1}{2}$ per cent.?
23.7 per cent. $? 29 \frac{1}{2}$ per cent. $?$
2. $9 \cdot 2$ per cent. ? $8!$ per cent. ?
e. 111 per cent. $\$ 147$ per cent.?

4 of per cent. ? $63{ }^{\text {a }}$'s per cent. ?
6. 8 per cent. ? $\frac{1}{3}$ per cent.?
7. 곱 per cent.? $2 \frac{5}{8}$ per cent.?
8. $\frac{1}{5}$ per cent. ? $9 \frac{8}{6}$ per cent.?
9. $16 \cdot 2$ per cent.? 98 per cent.?
10. $147 \cdot 2$ per cent. $\% \quad 26 \cdot 12$ per cent. $\%$

What rate per cent. is equivalent to-

If 07 per unit? 61 per unit?
12. 147 per unit? 056 per unit?
13. 8725 per unit ? $2 \cdot 2$ per unit?
14. $1 \cdot 11$ per unit ? $1 \cdot 107$ per unit?
15. $1 \cdot 06$ per uuit? 007 per unit?
16. 675 pcr unit? 035 per unit?
17. 014 per unit? 016 per unit?
18. 0095 per unit? $1 \cdot 217$ per unit?
19. 00125 per unit $3 \cdot 135$ per unit ?
20. 0005 per unit? 2275 par unit?
3. To find the percentage on any giren number:-

RULE.

Multiply the given number by the rate per unit expressed lecimally.

Example 1.-What is 16 per cent. of $\$ 674$?
operation.
16 per cent. $=\cdot 16$ per unit.
$\$ 674 \times \cdot 16=8107 \cdot 84$. Ans.
Example 2.-What is 7 per cent. of 8473 acres of urrd?
operation.
$3473 \times \cdot 07=593.11$ acres $=593$ a. 0 r. 17 per. $18 \mathrm{yds}, 1$ ft. $50 \frac{2}{6} \mathrm{in}$.

Example 3.-What is 11 per cent. of 947 bushels of apples?
operation. $947 \times \cdot 11=104 \cdot 17$ bush. Ans.

Example 4.-How much is 23 per cent. of $\$ 6147 \cdot 80^{\text {b }}$
operation.
23 per.cent. $=\cdot 23$ per unit.
$\$ 6147.80 \times \cdot 23=\$ 1413.994$. Ans.

Exercise 62.

1. How much is 27 per cent. of $\$ 6090-80$
2. What is $87 \frac{1}{4}$ per cent. of $\$ 1234$?
3. What is $6 \frac{1}{4}$ per cent. of $\$ 89 \cdot 40$?
4. How much is $17 \frac{1}{3}$ per cent. of $\$ 2998 \cdot 40$?
5. What is $8 \frac{1}{2}$ per cent. of 204 a .2 r. 14 per. $?$
6. How much is 7 per cent. of 29 bush. 2 pks.?
7. What is $\cdot 72$ per cent. of 429 lbs .11 oz .6 dwt ?
8. What is 15 per cent. of 227 weeks 4 days 11 hours?
9. What is 6 per cent. of $£ 9314 \%$. it d. ?
10. What is 29 per cent. of $\$ 2947 \cdot 40$?
11. From 16 per eent. of $\$ 294$ take 29 per eent. of $\$ 39 \cdot 17$.
12. Add together 7 per cent. of $\$ 94 \cdot 80,11$ per cent. of $\$ 1129$, and $17 \frac{1}{5}$ ner cent. of $\$ 1296 \cdot 42$.
13. A person purchases a house for $\$ 7429$ npon the following agrec-ment:-He is to pay 15 per cent. of the purchave money down, 17 per cent. in 6 months, 29 per cent. in 15 monthe, 9 per cent. in 20 months, and the balance at the expiration of two yents; what are his several payments, upon the supposition that he paya no interest?
14. A firmer works 227 acres of land, which he cropsas follows : 20 fer cent. in wheat, 18 per cent. in grass, 17 per cent. in pens, 19 per celt. in oats, ard 8 per cent. in roat crops, the rest he:"c fallow; what number of acres does he sow to each crep and how much is in fallow?
15. A regime t went into the field 1147 strong, and after the batis it w::s found that 23 per cent. had been killed or wounde. and 7 per cent, taken prisoners: what was the number killed or wounded, and what the number taken priscuers?

COMMISSION AND BROKERA'AE.

4. Commission is the percentage charged 'jy agents or ommission merchants for their services in buying or selling soods, collecting accounts, \&c.
5. Brokerage is the percentage charged by moneydealers, called brokers, for negotiating notes, mortgages, bills of exchange, \&c., or for buying or selling stock.
6. To compute commission oz brokerage :-

RULE.

Muitiply the given amount by the rate per unit expressed decimally.

Exasiple 1.-What is the commission on $\$ 749^{\circ} 40$ at 18 jer cent.?
operation.

$$
\begin{aligned}
& 18 \text { per cent. }=\cdot 18 \text { per unit. } \\
& \$ 749 \cdot 40 \times \cdot 18=\$ 134 \cdot 892 . \text { Ans. }
\end{aligned}
$$

Example 2.-What is the commission on $\$ 108.37$ at 228 acor cent.?
operation.
$22 \frac{2}{4}$ per cent. $=2275$ per unit. $\$ 198.37 \times \cdot 2275=\$ 45 \cdot 129175$. A $2,8$.

Example 3.-A broker purchases stock to the amoment ($\$ 9 \operatorname{Sc} 7 \cdot 30$; what is his brokerage at the rate of 2 y p pl gont.?

OPERATION.
$2 \frac{1}{8}$ per cent. $=02125$ per unit. 89867.30 $\times \cdot 02125=$ §209.6S0125. Ans.

Exercise 63.

1. What is the commission on $\$ 79 \cdot 80$ at $4 \frac{1}{3}$ per cent.?

2 What is the commiseion on $\$ 910.50$ at is yer cent. ?
3. What is the brokerage on $\$ 10800$ at $1 \frac{1}{2}$ per cent. $\%$
4. What is the brokerage on $\$ 8877 \cdot 66$ at $3 \frac{1}{2}$ per cent. P

1. What is the brokerage on $\$ 678 \cdot 90$ at 5 per cent. $\$$
2. What is the commission on $\$ 6719 \cdot 50$ at $8 \frac{3}{4}$ per cent. ?
3. Wbat is the commission on $\$ 47.80$ at 25 per cent. ?
4. To what does the brokerage on $\$ 7654 \cdot 32$ amount at $4 \frac{1}{2}$ per cent. ?
5. To what does the commission on $\$ 234.56$ amount at 28 per cent.?
6. What is the commission on $\$ 555.55$ at $18 \frac{3}{3}$ per cent. $\%$
7. An agent sells 617 bushels of wheat at $\$ 1 \cdot 70$ per bushel ; what is his commission at $12 \frac{1}{2}$ per cent.?
8. A commission merchant sells goods to the amount of $\$ 1122.30$; what is his commission at $33 \frac{1}{3}$ per cent.?
9. A broker purchases stock to the amount of $\$ 5765 \cdot 40$; what is, his brokerage at 3 per cent.?
10. An agent purchases silks to the amount of $\$ 7500$; what is his commission at 7 per cent.?
11. An agent collects debts to the amount of $\$ 907.80$; what is his commission at 15 per cent. ?
12. A commission merchant sells 7400 barrels of flour at $\$ 7 \cdot \$ 7 \frac{1}{3}$ per barrel ; to what does his commission amount at 81 per cent.?
13. An agent sells a farm for $\$ 7450$; what is his commission at $2 \frac{2}{2}$ per cent. $\%$
14. A broker negotiates a mortgage for the sum of $\$ 1140$; what is his brokerage at $3 \frac{8}{8}$ per cent.?

INSURANCE.

7. Insurance is a written agreement by which an individual or an incorporated company becomes bound, in consideration of a certain sum paid in advance, to cxempt the owners of certain kinds of property, as houses, lousehold furniture, merchandise, ships, \&c., from luss by fire, slipp. wreck, or other calamity.
8. The Written Instrument, or contract between the paries, is called a Policy of Insurance.
9. The sum paid for the jusurance is called the Preminm, and is usually a certain per ceut. on the sum for which the property is insured.
10. Houses, merchandise, furniture, \&c., are asually insured against risk of tire for the ycar, or other specified time.

Note. - The rate of insurance ondwelling-houses, atores, goods, household furmiture, se., garies from to 2 per cent. per annum ou the sum insured, according to the character and position of the tenement. Vessels are insured for the voyage or the year.
11. The premium to be paid on a policy of insurance is computed by the following

RULE.

Multiply the sum to be insured by the rate ver unit expressed decimally.

Example.-If I insure my house and barn for $\$ 7480$, what premium must I pay at $1 \frac{8}{4}$ per cent. ?

> operation.

18 per cent. $=0175$ per unit, i. c. 18 cents is the charge for insmance on each \$.
Then $\$ 7480 \times \cdot 0175=\$ 180 \cdot 90$. Aus.

Fxercise 64.
Compute the insurance on-

1. $\$ 789 \cdot 46$ at 2% per cent.
2. $\$ 8167 \cdot 50$ at $2 \frac{1}{\mathrm{~s}}$ per cent.
3. $\$ 5900$ at $3 \frac{2}{3}$ per cent.
4. I wish to insure $m y$ honse and furniture to the amount of \$4is0; what premium must I pay at it per cent.?
5. What must I pay for insuring a cargo of wheat worth $\$ 27490$ from Toronto to Liverpool at $2 \frac{3}{5}$ per cent. ?
6. What premium of insurance, at $2 \frac{1}{8}$ per cent., must I pay on' property valued at $\$ 7300$?
7. Wh ' perast I pay for insuring my house and barns to the an. sut of $\$ 17490^{\circ} 50$ at $\frac{z}{z}$ per cent. ?

BUYING AND SELLING STOCKS.

12. Stock is a term used to denote the Capital of moneyed institutions, as Banks, Railroad Companies, Gas Companies, Insurance Companies, Manufactories, \&c.
13. Stock is usually divided into portions of $\$ 100 \mathrm{or}^{\circ}$ £100 each, called shares, and the different individuals owning these are called shareholders or stockholders.
14. The nominal or par value of a share is its original cost or valuation.
15. The market or real value of a share is the sum for which it can be sold.
16. The rise and fall in the value of stock is reckon 1 at a certain per cent. on its nominal or par value.
17. When stocks sell for their original cost or valuation they are said to be at par; when they sell for more that their original valuation, they are said to be at a premium on advance, or above par; when they do not bring their original cost or valuation, they are said to be at a discount, or below par.

> Note.-Par is a Latin word, and mesns equal or a state of equality. Stock is at par when a hundred-doliar share pells for $\$ 100$; it is above par when it brings more than $\$ 100$, and below pur when it will not bring as much as $\$ 100$.

MENTAL EXERCISE.

1. When stock is selling at a premium of 17 per cent., what is 採 alook worth in money?
$\$ 100$ stosk $=\$ 117$ money, thereforo $\$ 1$ stock $=\$ 1.17$ money. $A n s$.
2. Ty nen stock is selling at a discount of 9 per cent., what is the worth of $\$ 1$ stock?
$\$ 100$ stock $=\$ 91$ money, therefore $\$ 1$ stock $=\$ u^{\prime} s 1$ money. Ans.
3. When stock is $\frac{14}{2} \mathrm{pci}$ cent. above par, what is the valne of $\$ 1$ stock?
$\$ 100$ stock $=\$ 10 \pm .50$ money, therefore $\$ 1$ stock $=\$ 1.045$ monev. Ans.
4. When stock is 98 per cent. below par, how much must be jaid for $\$ 1$ stock?
$\$ 100$ stock $=\$ 90 \% 5$ moncy, therefore $\$ 1$ stock $=\$ 0 \cdot 9025$ money. Ans.
5. When stock is 78 per cent. above par, what is $\$ 1$ stock worth?
6. When stock is 19 per cent. below par, what is $\$ 1$ stock worth?
7. When stock is $8 \$$ per cent. above par, what is $\$ 1$ stuck worth?
8. When stock is at par, what is $\$ 1$ stock worth?
9. When stock is at a premium of $34 \frac{1}{3}$ per cent., what is the worth of $\$ 1$ stock ?
10. When stock is at a discount of 2 per cent., what is the worth of $\$ 1$ stock ?
11. To find what sum must be paid for a given amount of stock:-

RULE.

Find the worth of $\$ 1$ stock and multiply it by the amount of stock.
19. To find what amount of stock a given sum will purchase:-

RULE.

Divide the given sum by the worth of $\$ 1$ stock.
Example 1. - What is the worth of $\$ 749 \cdot 80$ stock when it is selling at a premium of $8 \frac{8}{4}$ per cent.?
operation.
$\$ 100$ stock $=\$ 108.75$ money, therefore $\$ 1$ stock is worth $\$ 1.0875$.
Then $\$ 1 \cdot 0875 \times 749.80=\$ 815.4075$. Ans.
Example 2.-What amount of stock at $7 \frac{1}{2}$ per cent. discount can be purchased for $\$ 1200$?

operation.

Here $\$ 100$ stock $=\$ 92.50$ money, and hence $\$ 1$ stnck is wortin $\$ 0-925$.
Then $\$ 1200 \div \$ 0.925=\$ 1297 \cdot 297$. Ans.

Exercise 65.

1. How much stock can be purchaeed for $\$ 793$ when it is selling at a premium of $17 \frac{1}{3}$ per cent.?
2. What is the value of $\$ 9476$ stock at $9 \frac{1}{2}$ per cent. discount ?
3. If I own 9 shares of stock in the Metropolitan Water Works, the par value of each share being $\$ 125$, and sell out when the stock is at a premium of $8 \frac{8}{3}$ per cent., what do I receive for my 9 shares?
4. When Upper Canada Bank stock is selling at a premium of 3 per cent., what must I pay for 17 shares, the par value being \$111-216 per share?
5. When the stock of the Ontario and Huron Railway is 22 per cent. below par, how much should I pay for $\$ 6470$ stock ?
6. When the stock of the Hamitton Gas Works is selling at a premium of $6 \frac{3}{3}$ per cent. I wieh to invest $\$_{\$ 2000}$ in it; what amount of stock do I receive?
7. When stock is 27 per cent. above par, what amount can bo purchased for $\$ 7000$?
8. When stock is 8 per cent. below par, what is the value or $\$ 6140$ stock ?
9. When Grand Trunk Railway stock is selling at 17 per oent, premium, what must I pay for 27 ehares, the par value being $\$ 25$ per share ?
10. When Montreal Bank stock is selling at a premium of 131 per rent., how much should I get for $\$ 11120$?

SECTION VIII.

SIMPLE INTEREST, COMPOUND 1NTEREST, DISCOUNT, FARTNERSIIIP.

1. Interest is the sum allowed for the use of money, and is usually reckoned at a certain rate per cent. pes annum.
2. The sum lent is called the Principal.
3. The sum paid for the use of each hundred dollars iv called the Rate Per Cents.
4. The whole sum received for the use of the principal - called the Interest.
5. The Amount is the sum obtained by adding together the principal and the interest.

Thus, if I ledd \$2no for a year on the agreement that I am to receine interest at the rate of 7 per cent., (per annum unilerstood, at tho ond of the year I receive back the $\$ 200$, and in addition $\$ 14$ for tuterest. Uere,
$\$ 200 \cdot 00$ is the principal.
$7 \cdot 00$ is the rate per cent.
0.07 is the rate per unit.
$14 \cdot 00$ is the interest.
214.00 is the amount $=$ principal + interest.
6. Interest is either Simple or Compound.

SIMPIE INTEREST.

7. Money is lent at Simple Interest when the interest is not added to the principal so as to bear interest.
8. Simple Iuterest is computed according to the following general

RULE.

Multiply the given principal by the rate per unit expressed decimally, and the product by the time The result will be the intereit.

Note.-If the time consists of yerrs, months, and days, we may express it decimally and then nes it as multiplier ; or we may multiply by the years and take aliquot parts for the months and days.

Example 1.-What is the interest on $\$ 759.80$ at 7 per eent. for 1 year?

OPERATTON.

$$
\$ 759 \cdot 89 \times 07=\$ 53 \cdot 186 . \text { A浣. }
$$

Example 2.-What is the interest on $\$ 77 \% 40$ for \geqslant fears at $6 \frac{1}{4}$ per cent. per annum?
operation

$$
\$ 77.40 \times 0625 \times 7=\$ 340.1125 . \text { Ans. }
$$

Example 3.- What is the interest of $\$ 6677$ for 8 years 8 months 20 days at $5 \frac{1}{2}$ per cent. ?
operation.
$\$ 6677=$ principal.
$\cdot 055=$ rate per unit.

$$
\overline{33385}
$$

$$
33385
$$

6 mo .	2367.235 $=$ interest for 1 year.		
	$\underline{2937 \cdot 880}=$		8 years.
2 mo .	1 183.6175 =	"	6 months.
15 days	$61 \cdot 20583=$	"	2 months.
5 days	$\frac{1}{8} 15 \cdot 30145=$	"	15 days.
	1 $5 \cdot 10048=$	"	5 days.
	\$3203•10526 $=$		8 yrs .8 m

Exercise 66.
Find the interest of -

1. $\$ 974$ for 1 year at 11 per cent.
2. $\$ 1678 \cdot 90$ for 7 years at 9 per cent.
3. $\$ 142 \cdot 70$ for 16 years at 8 per cent.
4. $\$ 80.80$ for 22 years at 7 per cent.
5. $\$ 67 \cdot 49$ for 6 years at $2 \frac{1}{3}$ per cent.
6. $\$ 208 \cdot 60$ for 11 years at $3 \frac{3}{8}$ per cent.
7. $\$ 800$ for 6 years 5 months 18 days at 8 per cent.
8. $\$ 7400$ for 9 years 11 monthe 24 days at $6 \frac{1}{2}$ per cent.
9. $\$ 9680 \cdot 80$ for 14 years 4 months at 3 per cent.
10. $\$ 46.76$ for 10 years 8 monthe at $5 \frac{8}{4}$ per cent.
11. $\$ 8900$ for 6 years 7 monthe 28 days at $11 \frac{1}{6}$ per cent.
-2. $\$ 8160$ for 9 yeare 15 days at $7 \frac{1}{2}$ per cent.
12. $\$ 412.90$ for 6 years at $4 \frac{7}{8}$ per cent.
13. $\$ 127 \cdot 40$ for 3 years 3 months 3 dayo at $12 \frac{1}{3}$ per cent.
14. $\$ 80.63$ for 4.78 years at 2.97 per cent.
15. $\$ 106 \cdot 70$ for $11 \cdot 113$ years at 13.47 per cent.
16. Since the legral rate of interest in Canada is 6 per cent. when not otherwise specified by direct agreement,
it is important to have some simple rule by which interest at i per cent. can be computed.
17. To find the interest of $\$ 1$ for any number of months at 6 per cent.:-

RULE.

Divide the number of months by 2 and call the quotient cents.

Example 1. -What is the interest of $\$ 1$ for 8 months at 6 per cent.?

$$
8 \div 2=4 \text { cents. Ans. }
$$

Example 2. What is the interest of $\$ 1$ for 7 years 3 months at 6 per cent.?
7 years 3 months $=87$ months, and $87 \div 2=43 \pm$ cents $=$ §U-435. Ans.
Example 3. -What is the interest of $\$ 1$ for 11 years 7 months at 6 per cent.?
11 years 7 months $=139$ months, and $139 \div 2=69 \frac{3}{2}$ cents $=\$ 0.695$. Ans.
11. To find the interest of $\$ 1$ for any number of days at 6 per cent. :-

RULE.

Divirle the number of days by 6 and call the result mills or tenths of a cent.

Example 1. What is the interest of $\$ 1$ for 18 days at 6 per cent. :

$$
18 \div 6=3 \text { mills }=\$ 0 \cdot 003 . \text { Ans }
$$

Example 2. -What is the interest of $\$ 1$ for 26 days at 6 per cent.?

$$
{ }_{26} \div 6=4 \frac{1}{2} \text { mills }=80 \cdot 0043 . \text { Ans }
$$

Example 3.-What is the interest of \$ for 7 years months 27 days at 6 per cent.?
7 years 4 months $=88$ months, and $88 \div 2=44$ cents \approx $\$ 0 \cdot 44=$ interest for 7 years 4 months.
$27 \div 6=4 \frac{1}{2}$ mills $=\$ 0.0045=$ interest for 27 days.
Then $\$ 0 \cdot 4445=$ interest for 7 years 4 months 27 days.

Exercise 67.

What is the interest of $\$ 1$ at 6 per cent. per annum for:

1. 8 mos. ? 7 mos.? 11 mos. ?
2. 2 years 9 months?
3. 16 years 4 months?
4. 5 years 11 months?
5. 11 years 1 month ?
6. 10 years 10 months?
7. 4 years 5 months?
8. 6 years 3 months 12 days
9. 3 yeare 3 months 3 days
10. 4 years 7 months 10 days?
11. 1 year 9 months 25 days?
12. 2 years 7 monthe 17 days?
13. To find the interest of any sum of money for nim time at 6 per cent. per annum :-

RULE.

Find by the last two rules the interest of $\$ 1$ for tho given time and multiply it by the given principal.

Example 1.-What is the interest of $\$ 67$ for 2 years 3 months 12 days at 6 per cent. ?
operation.
Interest of $\$ 1$ for 2 years 3 months 12 days $=\$ 0 \cdot 137$. Then $\$ 0 \cdot 137 \times 67=\$ 9 \cdot 179$. Ans.

Example 2.-What is the interest of $\$ 714 \cdot 71$ for 3 years 7 months 11 days at 6 per cent.?

> OPERATION.

Interest of $\$ 1$ for 3 years 7 months 11 days $=\$ 0 \cdot 216 \frac{5}{5}$. Then $\$ 714.71 \times 0.216 \frac{5}{6}=\$ 154.97295 \frac{1}{6}$. Aus.

Note.- When the number of days is not exactly divisible by 6, the interest for the days had better be written as mills and a fraction of a mill, and then the interest of 1 for the given time, thus expressed, used for multiplier, as in the last example.

Exercise 68.
sind the interest at 6 per cent. per annum of :

1. 1904 for 7 years 9 months.
2. $2274 \cdot 80$ for 1 yoars 11 mouthe.
3. $\$ 671 \cdot 90$ for 2 years 2 months 12 days.
4. $\$ 213 \cdot 27$ for 3 years 3 months 3 days.
5. $\$ 49773$ for 4 years 4 monthe 4 days.
6. $\$ 619.80$ for 5 years 5 months 5 days.
7. $\$ 27.60$ for 6 years 6 months 6 days.
$8 \$ 77.32$ for 7 yeare 7 months 7 days.
9 \$222.22 for 8 years 8 months 8 days.
8. $\$ 345 \cdot 67$ for 9 years θ months 9 days.
9. $\$ 789 \cdot 23$ for 10 years 10 months 10 days.
10. $\$ 809$ for 11 years 11 monthe 11 days.
11. $\$ 200^{-40}$ for 3 years 24 days.
12. $\$ 98 \cdot 20$ for 1 year 28 days.
13. $\$ 76 \cdot 42$ for 2 years 7 months 15 days.
14. $\$ 9146 \cdot 70$ for 2 years 5 months 20 days.

COMPOUND INTEREST.

13. Money is lent at Compound Interest when the interest, as it falls due from time to time, is added to the principal; the sum thus obtained constituting a new principal for the ensuing year, half-year, quarter, \&c., as the casc may be.
14. To compute the Compound Interest on any sum of money for a given number of payments:-

RULE.

Find the interest on the given poincipal for one period, i. e., ONE YEAR, HALF YEAR, or quARTER, as the case may be, and add it to the principal.

Then fird the interest on this amount for the Nexi perrob acid add it to the principal used for that perion, us before.

Proceed in this manner with cach successuve year or period of the propusia time.

Then the last result will be the amount of the given principul, at the given rate for the jich time. Subtract the given princingal fiom this, and the ronceonder will be the Coinpound Interest required.

Example.-What is the compound interest of $\$ 700$ for 2 years at 4 per cent. inali--yearly?
operation.
Here, since the interest is half-yearly there are four pay. ments.
Interest of $\$ 700$ at 4 per cent. $=\$ 28$.
Then $\$ 700+28=\$ 728=$ principal for 2 d haif year.
Interest of $\$ 728$ at 4 per cent. $=\$ 29 \cdot 12$.
Then $\$ 728+\$ 29 \cdot 12=\$ 757 \cdot 12=$ principal for 3 d half year.
Interest of $\$ 757 \cdot 12$ at 4 per cent. $=\$ 30 \cdot 2848$.
Then $\$ 757 \cdot 12+\$ 30 \cdot 2848=\$ 787 \cdot 4048=$ principal for 4 th half year.
Interest of $\$ 787 \cdot 4048$ at 4 per cent. $=\$ \Omega 1 \cdot 496192$.
Then $\$ 787 \cdot 4048+\$ 31 \cdot 496192=\$ 818 \cdot 90=$ amount at end of 4 th half year.

From $\$ 818 \cdot 90$, the amount,
Take 8700.00 , the principal.
The remainder, $\$ 118.90$, is the compound interest.

- Exercise 69.

What is the compound interest of .

1. $\$ 1000$ for 3 years at 7 per eent. Fer annom?
2. $\$ 500$ for 4 years at 6 per eent. per antum ?
3. $\$ 900$ for 5 years at 6 per cent. per annum?
4. $\$ 600$ for 2 years at 4 per cent. half yearly?
5. $\$ 250$ for 2 yeara at 3 per cent. half yearly ?
6. $\$ 880$ for $1 \frac{1}{3}$ years at 2 per eent. quarterly $?$

What are the amount and compound interest of:
7. $\$ 500$ for 3 years at it per cent. per annurn?
8. $\$ 400$ for 2 years at $4 \frac{1}{2}$ per cent. half yearly?
9. $\$ 714 \cdot 90$ for 2 years at $2 \frac{1}{3}$ ner cent. quarterly ?

1. $\$ 794 \cdot 60$ for $1 \frac{1}{8}$ years at $4 \frac{1}{2}$ per cent. half yearly ?

DISCOUNT.

15. Discount is an allowance made for advancing the parment of a note, a mortgage, or other security, before it becomes due.

Thus, if I hold a note for any sum payable in two months and wish to obtain the money for it at once, I take it to my banker, who, after deducting his charge for advancing the money, pays me the balance.
16. The present value of a sum due at some future time, is what remains after deducting the discount.
17. The true discount on a note or other security is the interest on its present worth at the given rate per cent. and for the given time; but the bank diseount (i. e. the discount as computed by bankers) is the interest on the sum named in the note, \&c., at the given rate and for the given time.
18. To compute the true discount on a note or other security:-

RULE.

Divide the sum for which the note, dic., is drave by the amount of $\$ 1$ for the given time, and at the given rate. The quotient will be the present worth. The discount is found by subtracting the present worth from the given sum.

Example 1. - What is the present worth of a note of $\$ 409$, due 3 months hence, at 7 per cent. discount?

operation.

7 per cent. per anuum $=1 \frac{8}{4}$ per cent. for 3 months.
18 per cent. $=\$ 0.0175=$ interest on $\$ 1$ for 3 months at 7 per cent. per annum.
Hence amount of $\$ 1$ at given rate and far given time $=\$ 1.0175$.
Then $\$ 409 \div 1.0175=\$ 101.965$. Ans.

Example 2.-What is the discount on a note for $\$ 794 \cdot 63$, due 27 days hence, discounting at 8 per cent.?

OPERATION.

Amount of 81 at 8 per cent. per annum for 27 days $=$ $\$ 1 \cdot 005917$.
Then $\$ 794 \cdot 63 \div \$ 1 \cdot 00$ ฮ็ $917=\$ 789 \cdot 9$ з̆s $=$ present worth. And $\$ 794 \cdot 63 \div \$ 789 \cdot 955=\$ 4 \cdot 675=$ discount.

Exercise 70.

What is the discount on:

1. A note of $\$ 740$ drawn for 3 months, discount at 7 per cent. 3
2. A note of $\$ 90$ drawn for 2 months, discount at 9 per cent. $?$
3. A note of $\$ 250$ drawn for 6 months, discount at 6 per cent.?
4. A note of $\$ 714 \cdot 20$ drawn for 11 monthe, discounting at 11 per cent.?
5. A note of $\$ 911 \cdot 40$ drawn for 5 months, discounting at 8 pcr cent.?
6. A note of $\$ 671 \cdot 43$ drawn for 4 months, diecounting al 7 per cent.?
7. A bill of $\frac{\text { sch }}{9} 7.60$ drawn at 2 years, discounting at 4 per cent.?
8. A bill of $\$ 888 \cdot 93$ drawn at 1 year 4 monthe, discounting at 7 per cent.?
9. A bill of $\$ 146 \cdot 90$ drawn at 47 days, discounting at 10 per mut.!
10. A bill of $\$ 710$ drawn at 2 months, diecounting at 7 per cent. ?
11. A bill of $\$ 1100$ drawn at $1 \frac{1}{\frac{2}{2}}$ monthe, discounting at 7 per cerit.?
12. A bill of $\$ 6714 \cdot 83$ drawn at 2 f monthe, discounting at 6 per cent.?

BANK DISCOUNT.

19. As already remarked, the bank discount on any sum is the same as the interest on that sum, and hence to compute bank discount :-

RULE.

Add 3 days to the time which the note has to mun before it beeomes due, and calculate the interest for this time at the given rate per cent.

Notr.- The 3 daye added are the days of grace, or the 3 deys which, hy mercantile usage, are allowed to elapse, after a bill frite ine, hefore it is payable. Bankers always add these 3 days to tha time for which they compute discount.

Example 1.-What is the bank discount on a bill of $\$ 840$, due 69 days hence, discounting at 7 per cent. ?

operation.

Interest of $\$ \$ 40$ at 7 per cent. for 1 year $=\$ 58 \cdot 80$. $69+3=72$ days, and 72 days $=\frac{1}{5}$ of a year (360 days). Hence bank discount $=\frac{1}{6}$ of $\$ 58 \cdot 80=\$ 11 \cdot 76$. Ans.

Example 2.-What is the bank discount on a note of \$471, due 3 months hence, discounting at 7 per cent.?
operation.
hterest of $\$ 471$ for 1 year at 7 per cent. $=\$ 32.97$. lime for which discount is charged $=3$ months 3 days.

8 mos. 3 days	\$32.97	Interest or bank discount for 1 year.			
	$\overline{8.2425}$	"	6		3 months.
	- 2747	"	"		3 days.
	\$8.5172		"		. 3 days

Exercise 71.

Find the bank discount on :

1. A note of $\$ 700$, due 42 days hence, diecounting at 7 per cent.
2. A bill or $\$ 540$, due 57 days hence, discounting at 8 per cent.
B. A bill of $\$ 790$, due 4 months hence, discounting at 5 per cent.
3. A note of $\$ 614 \cdot 30$, due 2 months hence, discounting at 7 per cent.
4. A bill of $\$ 217 \cdot 20$, duc 7 months hence, discounting at 9 per cent.
5. 1 note of $\$ 94 \cdot 80$, due 20 days nence, discounting at 10 per cent.

SIMPLE PARTNERSHIP.

20. Simple Partnership, called also Single Fellorrship ass Partnership Without Time, enables us to distribute the pronts and losses of a firm or company equitably among its partuers when they employ their shares for the same period of time
21. The whole money employed in the business is called the capital or stock.
22. The profit or loss belonging to each member is calculated according to the following

RULE.

As the whole stock is to each man's share of the stock, so is the whole gain or loss to each man's share of the gain or loss.

Example.-A and B enter into partnership as grocers, with a capital of $\$ 14000$, of which A contributes $\$ 8500$ and B the remainder. They gain $\$ 4740$; what portion of this must each receive?

> OPERATION.

Whole stock : A's stock :: Whole profit : A's profit. That is, $\$ 14000: \$ 8500:: \$ 4740:$ A's profit, which is equal

$$
\text { to } \frac{88500 \times 4740}{14000}=\$ 2877.857
$$

Again, whole stock : B's stock :: whole profit: B's profit. Or $\$ 14000: \$ 5500:: \$ 4740:$ B's profit, which is equal to $\frac{\$ 5500 \times 4740}{14000}=\$ 1862142$.
Note.-After A's profit lias been fourd by the rule, B's may be determined by eubtracting A's share from the whole profit.

Exercise 72.

1. A, B, and C enter into bneiness with a capital of 5000 of which A contributes $\$ 2700,1 ; \$ 4200$, and \mathbb{E} the halance, and they gain $\$ 1700$; how must this be div.ded amonk them?
2. B and C tosether own a steamboat worth $\leqslant 8000$, of which B contributed $\$ 17400$ and C the balance After paying ail expenses for rumbing her durnse tle seasen, they find that they are losers to the amonant of $\leqslant 0.4 \%$; what portion of t is loss must each stetain?
3. Three persons rent a pasture for the summer; the first purs in 21 cows, the second 17 cows, and the third 47 cows. The rent is $\$ 307$; what portion of this mnst each pay?
4. Three persons are to share $\$ 7493$ in the following manner, viz. : as often as Δ gets $\$ 4 \mathrm{~B}$ gets $\$ 7$ and \mathbf{C} gets $\$ 9$; what is the share of each?
5. A gentleman bequeathed $\$ 7500$ to his three sons in proportion of $1 \frac{1}{6}, 2 \frac{1}{3}$, and $5 t$; what wa- the ehare of each?
6. Two persons, A and B, enter into business with a capital of \$ 8900 , of which A cuntributes $\$ 4700$ and B the rest. They gain $\$ 3200$; what is the share of each ?
7. Three persons have gained $\$ 9000$, and agree to divide it in the following manuer: as often as A takes ${ }^{*} 3 \mathrm{~B}$ takes 4.20 and C $\$ 749$; what is the ehare of each ?
8. A vessel worth $\$ 14900$ is entirely lost, $\frac{7}{3}$ of it belonging to A, $\frac{3}{3}$ to B , and the balance to C ; what is the loss of each, $\$ 4250$ being received as insurance?
9. Divide $\$ 4942$ into three parts which shall be to one another as $\frac{1}{6}, \frac{3}{5}$, and $\frac{t}{7}$.
10. A merchant failing, owes A $\$ 7490$ and B \$2980, but to meet these demands lie has only $\$ 7490$; how much should each creditor rcceive?

COMPOUND PARTNERSHIP.

23. Compound Partnership, called also Double Fellowship or Partnership With Time, enables us to divide the profits or losses of any business fairly among the several partners when their stocks are invested for unequal terms.
24. Problems in Compound Partnership are solved according to the following

RULE.

Multiply cach man's stock by the time he continues it in trade; then say, as the sum of the products is to each particulat product, so is the whole gaire or loss to cuch man's shate of the gatia or losis.

Example.-Three persons enter into partnership; A puts in $\$ 790$ for 8 months, B $\$ 1145$ for 7 months, and C $\$ 966$ for 10 months. They gain $\$ 880$; what portion of this should each receive?

OPERATION.

$$
\begin{aligned}
\$ 790 \times 8 & =\$ 6320 \\
1145 \times 7 & =8015 \\
966 \times 10 & =9660 \\
\text { Sum } & =\$ 23995
\end{aligned}
$$

\$23995 : $\$ 6320:: \$ 880:$ A's share, which it $\frac{6 ? 20 \times 280}{2 c 995}$
$=\$ 231 \cdot 7816$.
$\$ 23995: \$ 8015:: \$ 880:$ B's share, which is $\frac{8015 \times \$ 30}{23995}$
$=\$ 293 \cdot 9445$.
9660×886
$\$ 23995: \$ 9660:: \$ 880:$ C's share, which is $\frac{23995}{}$ $=\$ 354 \cdot 2738$.

Note. - When two shares have been found, the third may be found by subtracting their sum from the whole profit or loss. So when there are four partners, and three shares have been found by the rule, the fourth may be obtained by subtracting $t^{2} l e$ sum these three from the whole profit or loss, \&c.

Exercise 73

1. Two pereons contract to make a road for $\$ 4600$. A furnishes 46 laborers for 37 days and B 36 lahorers for 52 days; what part of the $\$ 4600$ should each receive?
2. Three persons enter into business as hardware merchants. A puts in $\$ 2000$ for 7 months, B $\% 1800$ for 11 months, and C $\$ 1600$ for 12 monthe ; if they gain $\$ 2400$, what is the share of each 1
: Two men undertake to drain a field for the som of $\$ 2400$. A furnishes 10 men for 34 days and B 15 men for 36 days, and they have to pay $\$ 400$ oilt of the $\$ 2400$ for material ; how much of the remaining $\$ 2000$ should cach receive?
3. Three persons rent a pasture for $\$ 120$. A puts in 27 cows for 4 months, B 20 cows for 5 months, and C 24 cows for 81 months ; what portion of the rent shonld each pay?
4. Four persons begin business with a capital of $\$ 10000$, of which $\$ 2400$ belong to $\mathrm{A}, \$ 3000$ to $\mathrm{B}, \$ 2000$ to C , and the balance to D. A allows his contribution to remain in 11 months, B 4 months, C 9 months, and D 12 months, and they gain $\$ 2500$; how should this be divided ameng them?
5. Λ, B, and (3, in partnershtp, have made 050 ; what aro their reapertivo shares of this, supposing A's capital in the businese to have been $\$ 700$ for 8 months, J 's $\$ 1000$ for 11 monthe, and C"s $\$ 000$ for 1 year and 5 months?
6. A conmenced business with a capital of $\$ 10000$, and at the end of 7 monthe B enters into partnerslitp with him and brings In a capital of $\$ 7000$, at which time A withdrawe $\$ 4000$ of his stock. At the end of the year they have gained \$2000; what portion of this should each recelve?
7. A bnilds a steamer which costs him $\$ 35000 ; 3$ monthe after elic is launched, B buys from him $\$ 11000$ worth of stock in it, and in 8 months moro C purchases $\$ 4000$ worth of stock also from Λ. They run tho bont for 7 months and galn during that time 89700 ; what portion of this belongs to cach 9

SECTION IX.

TROFIT AND LOES, BARTER, EXCHANGE OF CURRENCIES, AND ANALYSIS.

PROFIT AND LOES.

1. Proft and Loss enables us to ascertain how mueh we gain or lose on any mercantile transaction, and also how much we must increase or diminish the price of our goods in order to make a certain gain or loss per cent.

CASE I.

2. To find tive total gain or loss on a certain quantity of goods when the prime cost and selling price are given :-

RCLE

Find the difference between the buying and the selling price of a bushel, lb., yarl, dic.

Multiply the gain or loss per bushel, lb., yard, de., by the number of bushels, lbs., or yards, and the result will bc the whole gain or loss.

Example 1. - What do I gain if I buy 704 barrels of flour as $\$ 4.25$ und sell it again at $\$ 4.93$ per barrel?

OPERATION.

From $\$ 4.93$ the selling price, Take $\$ 4 \cdot 25$ the buying price.

The remainder $\$ 0 \cdot 68$ is the gain per barrel.
Then $\$ 0.68 \times 704=8478.72$, the whole gain.
Example 2.-If I buy 1640 bushels of oats at $37 \frac{1}{2}$ cents fer bushel and sell them at $35 \frac{1}{4}$ cents, what do I lose on the transaction?

OPERATION.

From $37 \frac{1}{2}$ eents, the buying price, Take $35 \frac{1}{4}$ cents, the seling price.

The remainder $2 \frac{1}{4}$ cents $=$ the loss per bushel. Then $2 \frac{1}{4}$ cents $\times 1640=\$ 36 \cdot 90$. Ans.

Exercise 74.

1. If I buy 209 yards of flannel at $6 \frac{1}{2}$ cents per yard, and sell it again at 70 cents, what do I gain on the transaction?
2. If I purchase 8900 bushels of wheat at $\$ 1 \cdot 29$ and sell it again at $\$ 1 \cdot 42$, what do I gain on the transaction?
3. Suppore I sell 780 cedar posts at $12 \frac{1}{2}$ cents each, which I bought at 16 cents each, what do I lose on the tranfaction?
4. Bought 1142 thousand bricks at $\$ 4.92$ per thousand and sold them at $\$ 547$, what is niy entire gain?
5. Bought 17 cwt 2 qre. 11 the of butter at is cents per ${ }^{3} \mathrm{~b}$. and sold it at $\$ 23$ per cwt. ; what is my euti=e उain?
6. Bought 1143 the of maple sugar at 11 centa per l'3. and sola is at $\$ 13.50$ per cwt., what is my entire gaia?
7. If I purchase 63 tons of hay at $\$ 1742$ fer toa ank have to sell it at $\$ 12 \cdot 94$, what is my entire lossi?
S. If I purchare 47 sheep at $\frac{8}{3} \cdot 3 \frac{1}{4}$ eack qul gell inem an $\$ 47$. what is my entire gain?

CASE II.

3. To find at what priec an article must be sold, so as th gain or lose a certain percentage, the cost price being given:-

RULE.

Find the gain or loss per unit, and lence how mueh must be reccived for each dollar of the buying price.

IThen mulliply this by the whole cosi price. The result will be the selling price.

Example 1.-Bought a quantity of wheat at $\$ 1 \cdot 60$ per bushel, and desire to sell so as to gain 14 per cent. ; what must I charge per bushel ?

operation.

I want to gain $\$ 14$ on $\$ 100$, or 14 eents on $\$ 1$.
Hence my selling price must be $\$ 1.14 \times 1 \cdot 60=\$ 1.824$. Ans.
Example 2.-Bought a quantity of lumber for 87437.80 ; for what mist I sell it so as to gain 16 per cent.?
operation.
For every $\$ 100$ I pay I want to get $\$ 116$, therefore for every
$\$ 1$ paid away I require to receive $\$ 1 \cdot 16$. Hence I must sell for $\$ 1 \cdot 16 \times 7437 \cdot 80=\$ 8627.848$. Ans.

Exasple 3.-Bought a quantity of flour for $\$ 7190$ and agree to sell at a loss of 6 per cent. ; what do I get for the whole?

operation.

For erery $\$ 100$ I paid I agree to take $\$ 94$, therefore for $\$ 1$ paid I receire $\$ 0.94$.
Therefore I get for the whole $\$ 0 \cdot 94 \times 7190=\$ 6758 \cdot 60$

Exercise 75.

1. Bought a quantity of tea at $\$ 293$; for what must I हell it in order to gain 10 per cent.
2. Bought a quantity of leather for $\$ 890$; for what must I sell it iu order to gain 17 per cesit.?
3. Bought 630 bushels of wheat at $\$ 123$ per bushel, and agree to sell it at a loss of 8 per cent.; what do I receive for the whole?
4. Bought 950 saw loge at 44 cents each ; for what must I fell the lot in order to gain 33 per cent.?
5. Bought 411 barrels of fiour at $\$ 5 \cdot 22$ per barrel ; for what must I sell the whole in order to gain $12 \frac{1}{3}$ per cent. ?
6. Bought 512 dozen brooms at $\$ 2.80$ per dozen, and agree to sell at a loss of 15 per cent.; what do I receive for the whole?
7. Bought 64980 dozen eggs at 7 cents per dozen, and fell so as to gain 24 per cent.; what do I receive for the whole lot of egge ?
8. Bought 908 tons of eoal at $\$ 5 \cdot 22$ per ton, and agree to eell at a loss of $1 \frac{1}{y}$ per cent.; what do I get for the whole?

CASE III.

4. To find the rate per cent. of profit or loss when the buying price and the selling price are given:-

RULE.

Find the difference between the buying mice and the selling price; this will be the whole gain or loss.

Ihen say, as the buying price is to 100 so is the whole gain or loss to the gain or loss per cent.

Example 1.-If I buy a house for $\$ 2700$ and sell it for $\$ 3050$, what is my gain per cent. ?

operation.

From 83050 , the selling price, Take $\$ 2700$, the buying price.
The difference, $\$ 350$, is the whole.gain.
Then $\$ 2700: \$ 100:: \$ 350:$ the gain on $\$ 100$, i. c., the gain per cent.
Hence gain per cent. $=\frac{100 \times 350}{2700}=12 \frac{6}{2}$. Ans.

Example 2.-Bought a quantity of wood for $\$ 790$ and sold it for $\$ 750$; what was my loss per cent.?

oreration.

$8750-8750=840=$ whole loss.
Then si90: $\$ 100:: 40: \frac{100 \times 40}{790}=5 \frac{5}{79}$ per cent. Ans.

Exercise 76.

1. Fonglit hay at $\$ 24$ per ton and sold it at $\$ 26.25$; what was my gain per cent.?
2. Bunglit 279 barrels of pork at $\$ 17 \cdot 50$ per barrel and sold the wholo for $\$ 5570$; what was my gain per cent.?
3. Fought 212 barrels of apples at $\$ 230$ per barrel and sold the whule for $\$ 600$; what was my gain per cent.?
4. Bought 93 barrels of cider at $\$ 740$ per barrel and sold the whole for $\$ 651$; what was my loss per cont.?
5. Bought 205 horses at an average cost of $\$ 9340$ each and sold the whole for :00987; what was my gain per cent. ?
6. Bought a farm for $\$=100$ and sold it for $\$ 6250$; what was my luss per cent. 1

CASE IV.

5. To fimt the cost price when the selling price and the gatn or lois per cent. are given :-

RULE.

As $\$ 100+$ gain prr cent. (or $\$ 100-$ loss per cent.) is to 100 so is the selling price to the cost price.

Exampre 1.-What sum did I pay for a carriage which I sold for $\$ 317$, gaining 11 per cent.?
oferation.

$$
8100+811=\$ 111
$$

Then $\$ 111: \$ 100:: \$ 317: \frac{100 \times 317}{111}=\$ 255 \cdot 585 . \quad$ Ans.

Example 2.-Sold a quantity of butter for $\$ 2147$. losing thereby 7 per cent. on the transaction; what did it cost me?
operation.

$$
\begin{gathered}
\$ 100-\$ 7=\$ 93 . \\
\text { Then } \$ 93: \$ 100:: \$ 2147: \frac{100 \times 2147}{93}=\$ 2308.602 . \text { Ans. }
\end{gathered}
$$

Exercise 77.

1. What did I pay per bushel for wheat which I sold for $\$ 1 \cdot 70$ at a gain of 18 per cent.?
2. What did I pay for a quantity of shingles which I sold for $\$ 324$, gaining 29 per cent. ?
3. Sold 356 bushels of clover sced for $\$ 1780$, losing thereby 11 pcr cent.; what did it cost me per bushel?
4. What did I pay for butter upon which I lont 14 per cent. solling it at $8 \frac{5}{10}$ cents per lb .?
5. Sold a grist-mill for $\$ 9490$ and gained 43 per cent. on the trans action; what did I pay for it?
6. An agent sells 209 barrels of flour for me at $\$ 6 \cdot 72$ per barrel. Now this was 11 per cent. above the cost price, but I have to pay my agent 20 per cent. for commission; what does the flour stand me per barrel?
7. Sold a horse for $\$ 145$ and gained 9 per cent. on the transaction ; what did the horse cost me?
8. What did I pay for two-inch draining tiles which I sold for $\$ 12$ per 1000, gaining 31 per cent.?

BARTER.

6. Barter enables two parties to make an exchange of goods at prices agreed upon so that neither shall suffer loss.
7. Questions in barter are solved by the following

RULE.

Find the value of the commodity ausose price and gruantity are given.

Divide this by the price of the other commodity and the quotient wall be the quantity; or divide by the quantity and the quoticnt will be the price.

Example 1.-How much tea at $\$ 0.85$ per lb. must a farmer receive for 211 bushels of turnips at 23 cents per. bushel?

OPERATION.

211 bushels of turnips at 23 cents $=\$ 18.53$. Then $\$ 48 \cdot 53 \div 80 \cdot 85=57 \cdot 094 \mathrm{lbs}=57 \mathrm{lbs} .1 \frac{1}{2} \mathrm{oz}$.

Example 2.-A has 307 yards of linen at 63 cents per yard and barters it with B for 20 cwt . of sugar; what docs B get per lb . for his sugar?

OPERATION.
307 yards at 63 cents $=\$ 193 \cdot 41$. 20 cwt . of sugar $=2000 \mathrm{lbs}$. Then $\$ 193.41 \div 2000=80.0967=9.67$ cents. Ans.

Exercise 78.

1. A hat 207 lbe. af allgar at 11 cents per lb., which he barters with B for $34 \ddagger$ lbs. of tea; what does the tea stand 13 per lb.?
2. A farmer delivers 293 dozen eggs at 10 cents per dozen and takes in payment 47 lbs. of raisins at 18 cents per lb., 9 lbs . of loafEu\&ariat 14 cents per lb, 23 3bs. of rice at 6 cents per 1 b ., and the laslance in nails at 5 cents per lb. ; bow many lus. of nails does lue receire?
3. A grocer houl 91 lhe of fige at 27 cents per lb., and bartered them wilh a dry-goods merelant for drugget at 43 eents per yard; how much drugget did he recoive?
4. A farmer has 9 cows which he values at $\$ 33 \cdot 70$ each and barters them for 84 sheep; how much does he give for each sheep?
\& 13 has 9 gards of silk worth 81.73 per yard and harters it with C for 23 yards of broadeloth and 14.20 in money; what does the elotli cost him per yard?
A farmer has 409 lhe, of cheese whiell he bartera with a neighbor for 607 lbs , of pork at $\$ 4.90$ ier ewt. ; huw much duce he receive per lb. for his cliecte?
5. Λ farmer carries to a erist-mill 420 lushols of wheat, worth $\$ 1.35$ per bushel, and reotives in payment $\$ 207.50$ and $11983 \frac{1}{2}$ lbs. of flour ; how much does the miller charge per cwt. for hla flour.
6. B has 423 lbs . of engar which is worth 11 cents per lb, and ho barters it with C for golden syrup worth 23 ceuts per quart ; hew much byrup does be receive ?

EXCHANGE OF CURRENCIES.

8. Table of Currencies in Canada nnd the United States.

In Canada, Nova Scotia, New Bruns-
wick, duc.
$\$ 1=5 \mathrm{~s} . \quad$ or $£ \ddagger$.
In New York, North Carolina, Ohio,
and Michigan...........................
$\$ 1=8 s . \quad$ or $£^{2}$.
In Neiw England, Virginia, Kentucky,
Tennessee, Indiana, Illinois, Mis-
sissippi, Missouri......................
$81=6 \mathrm{~s} . \quad$ or $£ \frac{3}{10}$.
In Pennsylvania, New Jersey, Dela-
ware, and Maryland
$81=7 \mathrm{~s} .6 \mathrm{~d}$. or $£$. .
In Georgia and South Carolina. $\$ 1=4 \mathrm{~s} .8 \mathrm{~d}$. or $£_{30}{ }^{\frac{\gamma}{0}}$.
Note.-These pounde, shillings, and penco aro not coins, but are merely the donominations employed in keoping accounte. Tho remaining States uso the Fedoral money exclusively. .
9. To reduce dollars and cents to old Canadian Currency, or to any State Curreney:-

RULE

Multiply the given sum by that fracion of $£ 1$ which cx presses the value of $\$ 1$; the product will be pounds and decimals of a pound.

Then reduce the decimals to shillings, pence, and forthings.

Example 1.-Reduce ${ }^{2} 2 n$ - 13 to old Canadian Currency. OPERATIO天.
$\$ 1=£ \frac{1}{4} . \quad$ Then $\$ 207.43 \times \frac{1}{1}=£ 51.85$ 每
And $551 \cdot 8575=£ 5117 \mathrm{~s} .15 \mathrm{~d}$. Ans.

Example 2.-Reduce $\$ 294 \cdot 80$ to Kentucky currency. operation.

$$
\begin{aligned}
& \$ 1=£^{3} \frac{3}{10} . \\
& \text { Then } \$ 294 \cdot 80 \times \frac{3}{10}=£ 88 \cdot 44 . \\
& \text { £ 8s. } 9 \frac{9}{5} \mathrm{~d} . \\
& \text { Ans. }
\end{aligned}
$$

10. To reduce old Canadian Curreney or any State Currency to dollars and cents:-

RCLE.

Express the given sum decimally and divide it by the value of $\$ 1$ cxpressed as a fraction of a pound. The quoticnt will be dollars and cents, de.

Example 1.-Fiduce $£ 227$ 86. 4 \& d d old Canadian Currency to dollars and cents.

OPERATION.

£227 8s. 4 条 $1 .=£ 227 \cdot 41979$.
Then $227 \cdot 11979 \div \frac{1}{4}=227 \cdot 41979 \times 4=8009 \cdot 679$. Ars.
Example 2.-Reduce $£ 411$ 6s. Thed. Michigan Currency to dullars and cents.
operation.
£ 411 6s. $7 \frac{1}{2} \mathrm{~d} .=£ 411 \cdot 3312 \mathrm{~s}$.
Then $411 \cdot 33125+\frac{2}{6}=411 \cdot 33125 \times \frac{5}{2}=\$ 1028 \cdot 328$. Ans.
11. To reduce dollars and cents to sterling money:RCLE.
Divide the given sum by the ralue of El sterling ($8 \cdot-\mathrm{S} 67$). The result will be ponnds sterling and decimals of a pmiond.

Thene reduce the decimal to shillings rand penee.
Exampte 1.-Reduce $\$ 1 \cdot 479 \cdot 83$ to sterling money.

> ofkration.

12. To reduce sterling money to dollars and cents :-

RULE.

Express the given sum decimally and multiply it by the iegal value of £1 sterling (\$4•87).

Example 2.-Reduce $£ 294$ s. 7d, sterling to dollare and cents.
operation.
$£ 294 \mathrm{~s} .7 \mathrm{~d} .=£ 29 \cdot 229166$.
Then $£ 29 \cdot 229166 \times 4 \cdot \$ 67=\$ 142 \cdot 25835$. Ans.

Exercise 79.

1. Reduce $\$ 71403$ to old Canadian currency.
2. Reduce $\$ 91+90$ to North Carolina currency.
3. Reduce $\$ 611 \cdots 20$ to New England currency.
4. Reduce $\$ 43.92$ to Ohio currency.
5. Reduce $£ 293178$. 4d. old Canadian currency to dollars and cents.
6. Reduce $£ 29 \pm 118.11 \frac{1}{d}$. New Jersey currency to dollars and cents.
7. Reduce $£ 247$ 2s. $5 \frac{1}{2} d$. South Carolina currency to dollars and cents.
8. Reduce $£ 5911 \mathrm{~s} .10 \frac{10}{2} \mathrm{~d}$. New Brunswick currency to dollars and cent.
9. Reduce $\$ 994 \cdot 70$ to sterling money.
10. Reduce $\$ 89.93$ to sterling money.
11. Reduce $\$ 1020 \cdot 11$ to sterling mon'y.
12. Reduce $\$ 59.74$ to sterling money.
13. Reduce $£ 2914 \mathrm{~s} .111 \mathrm{~d}$. sterling to dollars and cents.
14. Reduce $£ 29416 \mathrm{~s}$. $2 \frac{2}{3} \mathrm{~d}$. sterling to dollars and cents.
15. Reduce $£ 411$ 16s. 7d. sterling to dollars and cents.

1ô. Rednce $£ 8439$ g. od. sterling to dollars and cents.
17. Reduce $£ 29+11$ a. 10d. Delaware currency to dollars and cent
18. Reduce $\$ 2947 \cdot 80$ to sterling money.
19. Reduce $\$ 1291 \cdot 10$ to New York currency.

30, Reduce $\boldsymbol{x t \% 0} 19 \mathrm{~N}, 8 \frac{8}{4}$, eterling to dollare and conts,

ANAIMSIS.

13. Analysis in arithmetic is the process of solving problems independently of set rules, by tracing the relations of the given numbers, and reasoning from the given number to unity and from unity to the required number.

Note.-Many of the preceiling operations aro worked by the analytical method, as, for example, Percentage, Insurance, Commission, \&c., but it has been thought adrisable to illustrate, at this point, the modo of applying the method to a variety of other problems.

Example 1.-If 7 bushels of peaches cost $\leqslant 28$, how much will 12 bushels cost?

operation.

If 7 bushels eort $82 \mathrm{~S}, 1$ bushel will cost $\frac{1}{7}$ of 828 , that is, 84. Now, if 1 bushel cost $\$ 4,12$ bushels will cost 12 times $\$ 4$, that is, 84 . Ans.

Exayple 2.- $\frac{7}{1}$ of 58 are how many times 5?
operation.
1 of 88 is S, and therefore ${ }_{1}^{7} i$ of 88 is $8 \times 7=56$, and 5 is contained in $5611 \frac{1}{6}$ times. Ans.

Exaxple 3.-A person bought a horse and paid si2 cash, and this was $\frac{r_{1}^{7}}{}$ of the price of it: what did it cost?
oferation.
If 872 is $\frac{f}{5}$ of the price, $852 \div 6=\$ 12$, must be $\frac{1}{11}$ of the price, and therefore the price is $\$ 12 \times 11=$ \$1:3.. Ans.
 A. . 4 in thow many days can 21 men do it?

If 28 men require 42 days, 1 man will require 28 times days.
Then, if 1 man requires 23 times 42 days, 21 men will require the $\frac{1}{21}$ part of 28 times 42 days, that is, $\frac{28 \times 42}{21}$ $=56$ days. Ans.

Example 5.-A can do a picce of work in 7 days which B can do in 5 days; in what time can they do it if they work together?

OPERATION.

If A can do the whole work in 7 days, he can do $\frac{1}{7}$ of the work in 1 day; and if B can do the whole work in 5 days, he can do $\frac{1}{5}$ of it in 1 day.
Then, sinec A does $\frac{1}{7}$ and $B \frac{1}{6}$ in one day, they will together do $\frac{1}{7}+\frac{1}{6}$, which is $\frac{12}{3}$ of the work, in 1 day; and to do the whole work, they will require as many times $\frac{12}{3} \frac{2}{5}$ of a day as $\frac{12}{3}$ is contained times in 1.
Then the time required will be $1 \div \frac{12}{3}=1 \times \frac{35}{12}=\frac{35}{12}=$ $2 \frac{1}{2}$ days. Ans.

Example 6.-A, B, and C ean together do a picce of work in 30 days, A alone can do it in 75 days, and B work. ing alone can do it in 80 days; in what time would B working alone do it?

OPERATION.

A, B, and C can together do it in 30 days, therefore in 1 day they can do $\frac{1}{30}$ of the work.
A working alone requires 75 days, therefore in 1 day lec can do $\frac{1}{75}$ of the work; 13 working alone requires 80 days, therefore in 1 day he can do $\frac{1}{80}$ of the workHence A and B working torether will do $\frac{1}{75}+\frac{1}{80}=$ $\frac{31}{1 \frac{1}{20}}$ of the work in 1 diay, but A, B, and \mathbb{C} do ${ }^{\frac{1}{3}}$, in 1 day.
Therefore (C must do the difference between ${ }_{3}$ and ${ }_{1}^{3}$?

Aud, sinee C does $\bar{q}^{3}{ }^{3} 0$ in 1 day, to do the whole work he would require $1 \div 4^{3} 0 \overline{0}=1 \times \frac{100}{3}=102=133 \frac{1}{3}$ days. Aus.

Example 7.-A grocer mixes together 7 lbs of sugar at 0 cents pier lb., 4 lbs. at 12 cents, and 6 lbs. at 10 cents; what should he charge per lb . for the mixtme?

oreration.

Therefore the mixture contains 17 lbs . of sugar and is worth 171 cents; but if 17 lbs . be worth 171 cents, 1 lb . should be worth $\frac{1}{17}$ of 171 , that is, $171 \div 17=10 \frac{1}{17}$ ceuts. Ans.

Fxample 8. -In a certaln school $\frac{1}{3}$ of the scholars are at arithmetic, $\frac{2}{7}$ at writing, $\frac{1}{6}$ at geography, and the rest, which is 38 , at play; how many scholars are there in the school?

operation.

The sum of $\frac{1}{3}, \frac{2}{7}$, and $\frac{1}{8}=\frac{88}{805}$, therefore the number at play must be the whole minus $5^{80} 0^{\frac{6}{5}}$, that is, $\frac{105}{105}$ ${ }_{106}^{865}=\frac{19}{105}$.
But the number at play is 38 , and hence 88 is $\frac{19}{105}$ of the whole sehool.
If 38 is $\frac{10}{108},-\frac{1}{155}$ is $\frac{1}{19}$ of 38 , which is 2.
If 2 is $\frac{1}{105}, \frac{105}{105}$, i. e. the whole school, will be $2 \times 105=$ 210. Ais.

Fxample, 9.-Two persons start at the same time in op posite dircetions to walk from Tornnto to Hamilton, a distance of 38 miles. A travels from Toronto at the rate of 5 miles per hour, and 15 from Hamilton at the rate of 4 miless per hour; when and where will A and B meet?

OPERATION,

It is evident they approach each other at the rate of $5+\mathbf{4}$ $=9$ miles per hour, and hence the time will be $38 \div$ $9=4 \frac{2}{y}$ hours. Next, A travels $4 \frac{2}{9}$ hours at the rate of 5 miles per hour, therefore they will meet $4 \frac{2}{9} \times$ $5=21 \frac{1}{y}$ miles from Toronto, or $4 \frac{2}{9} \times 4=16 \frac{8}{9}$ miles from Hamilton.

Exercise 80.

1. How many times 3 are $\frac{3}{11}$ of 77 ?
2. How many times 5 are $\frac{4}{7}$ of 493
3. How many times 7 are $\frac{9}{10}$ of 150 ?
4. How many times 9 are $\frac{3}{3}$ of 70 ?
5. How many times 12 are $\%$ of 54 ?
6. 72 is $\frac{0}{11}$ of how many times 5 ?
7. 121 is $\frac{1}{1} \frac{1}{2}$ of how many times 10 ?
8. 48 is of how many times 7 ?
9. 78 is $\frac{8}{11}$ of how many times 11 ?
10. $\frac{1}{5}$ of 25 is $\frac{5}{7}$ of what number?
11. $\frac{8}{7}$ of 42 is $\frac{5}{12}$ of what number?
12. $\frac{7}{\frac{1}{6}} 81$ is $\frac{3}{10}$ of what number?
13. 罙 of 99 is $\frac{1}{3}$ of what number?
14. If 8 cows give 44 lbs . of butter per week, how much may be expected from 11 cows?
15. If $\$ 27$ pay for 9 barrels of apples, what will 23 barrels of apples cost?
16. If 13 days' work cost $\$ \cdot .80$, for how many daye' work will $\$ 19 \cdot 50$ pay?
17. Λ can do a pieec of work in 9 days which A and B working together can do in 4 days; in what time could B alone do it 9
18. A can do a piece of work in 10 days which E could do in 7 days, and C in 12 days; if they all three work together at it, in what time can they finish it?
19. A, B, and C can together do a piece of work in 15 days. A alone can do it in 85 days and C alone in 42 days. In what time could B working alone finish it?
20. A person bought a corr and paid $\$ 10.5$ cash, and this was $\frac{2}{7}$ of $\frac{2}{8}$ of $\frac{8 \%}{8}$ of the price; how much did he give for the cow ?
21. A perroz bought a farm and paid $\$ 1000$ carh, and this was 3_{3}^{3} of $\frac{9}{\frac{n}{85}}$ of $\frac{20}{27}$ of the price; what did the farm cost him?
22. A farmer mises 27 bushels of wheat worth $\$ 1 \cdot 40$ per bushel with 11 burhels worth only sil 10 ; what is the mixture worth per bushet?
23. A wine merchant mixes 15 gallons of wine worth 44.50 per gallon with 12 gallone at 83.70 and 10 gallons at $\$ 2 \cdot 90$; what is the mixture worth per gallon?
24. Ilaving counted my eheep I fonnd that $\frac{1}{3}+\frac{3}{9}+\frac{1}{6}$ of them numbered 80 ; how many had I in my loct?
25. A pmet is $\frac{1}{3}$ of its length in the ground, $\frac{3}{3}$ in water, and 9 fect above tlie water; what is the length of the poat?
26. A and B started at the same time to walk in opposite directions around an island 100 miles in circumference, A walk-ing 3 :nd B 3t miles per hour; when and where will they meet?
27. A and B start from the same point, and at the same time, and in the same direction, to walk round a circular island 60 miles in circumference, A travelling at the rate of 5 and B at the rate of $3 \frac{1}{s}$ miles per hour ; how many miles will 1 travel hefore he overtakes B ?
28. What number is it that the $\frac{1}{\frac{1}{3}}$ and $\frac{1}{6}$ and $\frac{1}{6}$ and $\frac{1}{6}$ of which make 104?
29. What number is that $\frac{5}{3}$ of which exeoeds $\frac{9}{1}$ of it by 2 ?
30. A certain number is divided by 4 and from $\frac{\pi}{b}$ of the quntient 5 is enbtracted; the remainder is then divided by 11, 7 is added to the quotient, and the aum multiplied by 3 ; now $\frac{\text { a }}{}$ of ${ }_{5}^{2}$ of ${ }_{3}^{7}$ of this product is $11 \frac{1}{s}$; what was the original nutuber?

SECTION X.

INYOLUTION゙, EXTRACTION OF SQUARE ROOT AND OF CUBE ROOT.

INFOLCTION.

1. A powes of any number is the product obtained by multiplying that namber by itself one or more times.

Thus $25=5 \times 5$ ls a puter of $5 ; 81=3 \times 3 \times 3 \times 3$ ls a power of $3,8 c$.
2. The number which, being multiplied once or oftemer by itself, produces the power, is called the root of that poter.

Thus 5 is the root of 25, since $5 \times 5=25 ; 3$ is the root of 81 , since $3 \times 3 \times 3 \times 3=81$.
3. The powers of a number are called the first, second, third, fourth, fifth, \&e., according as the root is taken onec, twice, thrice, four times, five times, \&c., as factor.

Thus 81 is called the fourth power of 2 , because 3 is taken 4 times as factor, in order to produce 81.
4. The second power of a number is also called its - square, because a square surface, the length of one of whose sides is expressed by a given number, will hare its area expressed by the second power of that number.
5. The third power of a number is also called its cube, because if the length of one side of a cube be expressed by a given number, the solid contents of the cube will be expressed by the third power of that number.

TABLE OF SQUARES AND CEBES.

Roots...	1	2	3	4	5	6	7	8	9
Squares.	1	4	9	16	25	36	49	64	81
Cubes...	1	8	27	64	125	216	343	512	729

6. The index or exponent of a power is a small figure written to the right, indieating how often the root hae to be taken as factor in order to produce the giren power.

$$
\begin{aligned}
& \text { Thus, } 2=2=2=\text { First porver of } 2 \text {. }
\end{aligned}
$$

7. The process of finding a power of a given number by multiplying it into itself is called involution.
8. To involve a number to any required power:RULE.
Take the given number as factor as often as indicated by the index of the required poucr and find the proluct of these factors.

Note. - To involve fractions, tee multiply both numerators and onominaturs as above; to involve mixed mumbers, we rcduce them ¢ improper fractions and then proceed as above.

Example 1.-What is the 5th power of 4 ?
operation.

$$
4^{0}=4 \times 4 \times 4 \times 4 \times 4=1024 . \text { Ans }
$$

Example 2.-What is the 3 d power of $2 \frac{1}{6}$?
operation.

$$
\begin{aligned}
\left(2 \frac{1}{6}\right)^{3} & =\left(\frac{11}{6}\right)^{3}=\frac{11}{6} \times \frac{11}{6} \times \frac{11}{6}=\frac{11 \times 11 \times 11}{5 \times 5 \times 5} \\
& =\frac{1332}{23}=10_{1} \frac{81}{26} . \quad \text { Ans. }
\end{aligned}
$$

Exercise 81.
Find the value of-

1. The square of 17.
2. The cuble of 23 .
3. The square of 279 .
4. Tho cube of 81 .
5. The fourth pourer of 6 .
6. The fifth pozer of 5.
7. The sixth power of 4 .
8. The seventh pozeer of 3 .
9. The eighth power of 2 .
10. The ninth power of 3.
11. The third porer of 7.
12. The fourth pouer of 11.
13. The sirth power of 9.
14. 'The fifth poucer of $\frac{3}{3}$.
15. Tho square of 1225 .
16. The square of 4837
17. The cube of 4$\}$.
18. The cube of 29.
19. The fourth powor of $2 \frac{2}{3}$.
20. The tenth power of 3 .

EXTRACTION OF THE SQUARE ROOT.

9. To extract the square root of a number :-

RULF.

I. Point off the given number into periods of two figures each, beginning at the decimal point.
II. Find the highest square contained in the left-hana periol, and place its root to the right of the mmber, in the place occupied by the guotient in division.
III. Subtract the square of the digit put in the root from the left-hand pcriod, and to the remainder bring down the next period, to the right, for a new dividend.

IF. Double the part of the root already found for σ trial divisor.
V. Find how many times the trial divisor is contained in the dividend, exclusive of the right-hand digit, and placo the figure thus obtained both in the root and also to the right of the trial divisor.
VI. Multiply the divisor thus completed by the digit last put in the root; subtract the product from the dividend, and to the remainder bring down the next period for a neal dividend.
VII. Again, double the part of the root already found for a new trial divisor; procecd as in V. and VI., and continue the process until all the periods are brought down.

Note. - To extract the square root of a fraction, extract the square root of the numerator and of the denominator separately, if they be complete squares; if not, reduce the fraction to it ${ }^{\circ}$ equivalent decimal and extract the square root by the rule. To extract the square root of a mixed number, reduce the fractional part to a decimal attached to the wholo number and then extract the square root.

Example 1.-What is the square root of 576 ?

OPERAT1ON.
$576(24$ Here we place a point between the 7 and 4 periods. Then the highest square in 5 , the 44) 176 176 first period, is 4 , the square root of which, 2 , we place in the root. Next we subtract the 4 from 5 and bring down the next. period, 76 . which gives us 176 for the next dividend. Then we domble the 2 in the root for a trial divisor and ask how often this 4 will go into 17 (the dividend exclusive of the right-hand figure); obrionsly 4 times; next we place this 4 both in the root and in the divisor, multiply the complete dirisor thus formed by the 4 and subtract.

Example 2.-What is the square root of $32266_{17}^{\frac{1}{7}}$?

uperation.$\begin{aligned} & 32266_{17}^{\frac{1}{7}}=3226 \cdot 235294 \\ & 32 \dot{2} 623 \dot{2} 294(56 \cdot 7999,8 \mathrm{c} . \\ & 25 \end{aligned}$	
$\begin{array}{r} 1 0 6 \longdiv { 7 2 6 } \\ 636 \end{array}$	
$\begin{gathered} 1127) \\ \hline 90 \cdot 23 \\ 78 \cdot 89 \end{gathered}$	
$\begin{array}{ll} 113 \cdot 49) & \overline{11 \cdot 3452} \\ 10 \cdot 2141 \end{array}$	
113 589)	$\begin{aligned} & 1 \cdot 131194 \\ & 1 \cdot 022301 \end{aligned}$
113.5989)	$\begin{aligned} & 10589300 \\ & 102239901 \end{aligned}$
	$685399,8 c$.

Here, after reducing $\frac{4}{17}$ to a decimal and annexing it o the whole number, 3226 , we mark off both ways from the decimal point into periods of two figlares each. Then the highest square in 32 , the left-hand period, is 25 , the square root of which is 5 , and we accordingly put 5 iu the root; next we subtract the 25 from the 32 and bring down the next period, 26 , which gives us 726 for a new dividend. Then we take twice $5=10$, for a trial divisor ; find how often 10 will go into 72 , apparently 7 times; but when we try 7 we find that it is too great, and therefore we try 6 , which we put both in the root and in the divisor. Next we multiply the 106 by 6 and subtract the product, 636 , from 726 , and to the remainder bring down the next period, which gives us $90 \cdot 23$ for a new dividend. Next me take trice $56=112$, for a trial divisor, and find that it will go into $90 \cdot 2$ seven times, and we accordingly place 7 both iu she divisor and in the root, multiply, subtract, and bring duwn, de.

Exercise 82.

Find the square root of :

1. 1296.
1. 3969.
1. 15876 .
2. 53361.
1. 142884 .
2. 998001 .
3. 241036.
1. $3956 \cdot 11$.
2. $756 \cdot 25$.
3. $11397 \cdot 4849$.
4. $98123 \cdot 47891$,
5. $6712914 \cdot 23$.
6. 918767.
1. $429 \frac{2}{4}$.
2. $\frac{\circ}{10}, \frac{30}{61}, \frac{121}{108}, \frac{81}{100}$.
3. $\frac{7}{12}, \frac{9}{17}$.
4. 428_{7}^{3}.
5. 629 g.
6. 1127896子.
7. 213798-1237.

EXTRACTION OF CUBE ROOT.

10. To extract the cube root of a number is to find a number which, taken three times as factor, will produce the given number :-

RULE.

I. Point off the number into periods of three figures each, beginuing at the decimal point.
II. Find the highest cube contained in the left-hand period and place its root to the right of the number, in the place occupied by the quotient in division.
III. Subtract the cube of the digit put in the root from the left-hand poriod, and to the remainder bring down the next period to the right for a new dividend.
IV. Nultiply the square of the part of the root already found by 300 for a TRIAL DITISOR.
V. Find how many times the trial divisor is contained in the dividend and put the figure thus obtained in t7: root.
VI. Complete the trial divison by adding to it : 1st. The part of the root preriously found \times tha last dinit put in the rot $\times 30$; and 2d. The square of the last digit put in the root.
VII. Multip!y the divisor thas completed by the digit iast put in the root; subtract the product from the dividend and to the remainder bring down the next periol for a new dividend.
VIII. Again multiply the square of the part of the root already found by 300 for a new trial divisor ; find what Ligit to place next in the root, as in V.; complete the didisor by making the two additions to the trial divisor deseribed in VI.; multiply, subtract, and bring down as, dirceted in VII., and continue the process until all the periods are brought down.

Note,-To extract the cube root of a fraction, reduce it to a decimai and then extract the csibe root, unless both numerator and denominator be complete cubos, in which case extract tho cube root of each. To extract the cube root of a mixed number, reduce the fractional part to a decimsll. annex to the whole number, and then extract the cube root an directed abovo.

Example. What is the cube roct of 429172952007 ?
operation.

		34
Sst trial divisor $=7{ }^{\mathbf{2}} \times 300$	14700	SG179 : $:$ 1st dividend.
$18 t$ increment $=7 \times 5 \times 30$	1050	
	25	
Lst complete divisor	15775	$\begin{aligned} & i 8875=\text { prid. ict of comp. } \\ & d^{2} \cdot v . \text { by } . \end{aligned}$
td trial divisor $=75^{2} \times 300=$	1687500	$7297932=20 \cdot$ \ividend.
${ }_{2 \mathrm{~d}}^{1 \mathrm{~d} \text { increment }}{ }_{6}=75 \times 4 \times 30=$	$\begin{array}{r} 3000 \\ 16 \end{array}$	
2d complete divisor	1696510	$\begin{gathered} \overline{6786064}=\text { pror uct of } \\ \text { comp. div. by } 4 . \end{gathered}$
3 d trial divisor $=754^{2} \times 300=$	554500	$511868007=3 d$ dividend.
1 1st increment ${ }_{\text {c }}$ \# $754 \times 3 \times 30=$	67850	
*	9	
3 d completo divisor $=$	70022669	$511868007=$ product of conip, div, by 3.

Aftor pointing off, we find that the highest cube number contained in the left-hand period is 343 , of which the cube root is 7 . We therefore place 7 in the root and subtract 343 from the first period. This gives un a remainder of 86 , to which we lring down the next period, 272 , and thus obtiais 86172 for a new dividend.

Next we take 7, the part of the root already found, equare it merd multiply the 49 thus obtained by 300 . This gives the first (rial divisor, 14700 , which we find will go into the dividend 86172 (mak. ing dne allowance for the increase of the divizor) 5 times.

Next we complete the divisor by adding to it
1 st, $7 \times 5 \times 30=1050$, and $2 \mathrm{~d}, 5^{2}=25$, which gives us 15775 for a complete divisor. This we multiply by 5 , the digit lat-t put in the root, :ubtract the product 75875 from the 1 st dividend, and to the remainder, 7297 , bring down the next period, $932, \& \mathrm{c}$., \&c.

Exercise 83.

Estract the cube root of :

1. 32768.
1. 655503.
1. 13824.
1. 250047.
1. 970299.
1. 1953125.
1. 15813251 .
2. 48228544.
1. 245314376 .
2. $686 \cdot 128968$.
3. 991026.973.
4. 915498611.
1. $\frac{B}{27}, \frac{125}{1728}, \frac{343}{72} \frac{3}{8}, \frac{64}{125} 5$
2. $\frac{11}{12}, \frac{2}{10}$.
3. $\cdot \dot{9}, \cdot 1, \cdot \dot{1}$.
4. $427986 \cdot 7143$.
5. $816 \frac{2}{5}$.
6. $917167 \frac{4}{1}$.
7. $8111471 \frac{9}{13}$.
8. 27 .

Exercise 84.

Miscellaneous Problems.

1. Divide $\$ 799470$ equally among 29 perenns.
2. The difference of two numbers is 127 and the greater is 24 S , what is the smaller?
3. Reduce $£ 2946 \mathrm{~s}$. 4 d. to dollare and cents and divide the resur by $\cdot 9$.
4. Deduct 29 per cent. from $\$ 429 \cdot 80$ and divide the remainder by $\$ 10 \cdot 20$.
5. Find the value of $2 \frac{\pi}{3}+\frac{4}{1} \frac{9}{1}+\frac{1}{2}$ of $\frac{3}{7}$ of $4 \frac{1}{1}+\frac{2}{5}-5 \frac{7}{8}$.
6. What is the simple interest of $\$ 9+3 \cdot 70$ for $11 \cdot 2$ years at $9 \frac{1}{2}$ per cent. per annum?
7. Reduce $\cdot \dot{7}, \cdot 4 \dot{2}, \cdot 23 \dot{5} \dot{7}$ and $\dot{87} \dot{6}$ to their equivalent vulgar fractions.
8. Bought 729 barrels of flour for $\$ 2916$; for what must I sell it per barrel in order to gain 28 jer cent. ?
9. 8 of $;$ of $\frac{3}{7}$ of 63 in $\frac{?}{6}$ of how many times 8 ?
10. Extract the cube loot of S61:2.1913.
11. In 1858 there was exported from Canada $\$ 376051$ worth of dried and emoked tish, \$279404 worth of pickled tish, \$19592 worth of flesh fish, and $\$$ the total value of the fish and fisld wil exported from Canada in 1558 ?
12. What is the value of $27 \mathrm{lbs}, 4 \mathrm{oz} .6$ dwt. 17 grs . maltiplice by 022 24 ?

13. What is tho value of 714625 of a mile?
14. Divide 90.478 by 000693 .
15. If $\frac{11}{23}$ of a ressel cost $\$ 629 \frac{1}{2}$, what will $\frac{7}{15}$ of the vessel cost $?$
16. Find the price of 914 lbs .7 oz .5 drs. Aroir. at $\$ 11 \cdot 49 \mathrm{per} \mathrm{lb}$.
is. What is the hank discount, and what the true discount on a note for $\$ 1160$ due 6 monthis hence, diseounting at 7 per cent.?
17. A, B, and C ean do a piece of work in 10 days, A working alono ean do it in 28 days, and C working alone can do it in 32 dily ; in what time can 13 working alone do it?
18. What is the square root of $149 \frac{3}{11}$?
19. From the apper end of Lake Superior to the month of the St. Lawrence is about 2000 miles; what time would a ressel require to make this royage with an average speed of $6+$ mlles per hour?
20. What is the difference between $£ 210 \mathrm{Ss} .11 \frac{1}{2} \mathrm{~d}$. and $\frac{\text { ? of }}{} 4 \frac{1}{4}$ of $\frac{8}{4}$ of $\frac{1}{3 \dot{\gamma}}$ of $24 \frac{1}{2}$ times $\{976.53\}$
21. Divide 978 acres 2 r. 1 per. 7 yde. by 8 a. 3 r. 27 per. 2 yds.
22. Texpress $27,393,4 ; 00,75904$ and 9136718 in Roman Numerals.
23. What is the ratio compounded of $10: 4,11: 5,12: 98$, and $33: 17 ?$
24. Find the C. C. M. of 27051 and 15013 .
25. If 4 men or 6 women or 8 boys could do a certain pieec of work in $56 \frac{1}{4}$ hours, in what time could 1 man, 2 women, and 5 boys working together, perform it?
26. 24 men can cut 400 rods of drain $3 \frac{1}{2}$ feet deep in 8 days, working 10 hours per day; how many rods of drain 4 fees deep can 32 men cut in 21 days working 9 hours per day?
27. Reduce $£ 75914 \mathrm{~s}$. 8 did. sterling to dollars and cents, and express $\$ 2984 \cdot 70$ in sterling money.
28. What is the amount and compound interest of $\$ 800$ for 2 yearo at $4 \frac{1}{3}$ per cent. half-yearly?
29. Taking the population of Toronto as 50000 , that of Hamilton as 22000 , that of Kingston as 15000 , and the whole population of Canada West as 1600000 , what percentage of the entire population of Canada West belongs to each of these cities?
30. Find the l. c. m. of $12,18,20,24,60,72,80,88,96$, and 100 .
31. Express as one number, nine hundred and one trillions forty billions seven thousand and eight, and nine million thirty thousand and seventeen hundredths of trillionths.
32. A, B, and C begin businers with a capital of $\$ 7900$, of which \mathbf{A} contributes $\$ 2700, \mathrm{~B} \$ 2300$, and C the balance. How should the profits, which amount to $\$ 2470$, be divided among them?
35 Bought 796 bushels of wheat at $\$ 1 \cdot 20$ per bushel and sold the whole for $\$ 1000$; what was my gain per cent. ?
33. Reduce 9146714 inebes to aeres.
34. Reduce $\$ 2967 \cdot 80$ to New England currency, and reduce $£ 298$. 11td. Maryland currency to dollars and cents.
35. Find the value of 14672 of 17 bushels 1 pk 1 gal .
36. Extract the cube root of $7149 \frac{3}{13}$.
37. A cistern has two pipes by one of which it can be filled in 40 minutes and by the other in 25 minutes; it has also a discharging pipe by which it can be emptied in 30 minutes. Now if the cistern be empty and all three pipes be opened, in what time will it be filled?
38. Divide $71 \cdot 413$ by 91467 and give the quotient true to three decimal places.
39. Multiply the difference between $43 \dot{\mathrm{a}} .2$ r. 7 per. and 10 a 3 , 27 per. 18 jds . by 378.
40. Reduce 278 yds. 3 qr. 1 na. 2 in. into inches.
41. Roduce $\frac{3}{5}$ of $3 \frac{1}{3}$ of $6 \frac{1}{3}$ of $8 \frac{2}{3}$ of $\frac{9 \frac{3}{3}}{1 \frac{1}{6}}$ of $\frac{81}{17 \frac{1}{3}}$ of 9 of $\frac{3}{6}$ of 63 to a simple quantity.
42. What is the cost of 23 a .3 r .30 per. at $\$ 47.80$ per acre?
43. What is the worth of $\$ 2400$ stock in the Great Western Railway when it is selling at a premium of $8 \frac{1}{2}$ per cent. ?
44. How many paces each 2 fect 5 inches in length will a man make in walking from Hamilton to the Falls of Niagara, a distance of 50 miles?
45. Sold my farm for $\$ 7890$, which was 16 per cent. more than it cost me ; what did I give for it?
46. What is the interest of $\$ 804 \cdot 80$ for 7 ycars, 3 monthe, 20 days at 6 per cent. per annum?
47. A can do a certain piece of work in 24 days and B can do it in 30 days; now if A works alone at it for 7 days, in what time will Δ and B working together finish it ?
48. Express 2 lbs. 3 oz .4 d rt. as a fraction of 11 lbs .7 oz .9 dwt . 4 grs.
49. Divide $£ 49316 \mathrm{~s} .4 \mathrm{~d}$ d. by $£ 8 \mathrm{11s}$. 7d.
50. Find the l. c. m. of $5,8,11,14,16,20,22,176,616$, and 42.
51. Ny agent sells for me 419 barrels of flour at $\$ 5 \cdot 34$ per barrel ; to what does his commission amount at $11 \frac{1}{f}$ per cent.?
52. B has 47 bushels of barley worth 73 cents per bushel and barters it with \mathbb{C} for 69 bushels of oats. How much does ho allow per bashel for the oats?
53. What must I pay for insuring my house and furniture to the amount of $\$ 4250$, the premium of insurance being $1 \frac{\text { per }}{}$ cent.?
54. Three persens rent a pasture for $\$ 200$. A puts in 207 sheep for 4 monthe, B 109 sheop for 5 monthe, and C 43 cowa for $4 \frac{1}{4}$ months ; what portion of the rent should each pay, allowing 1 cow to ve equivalent to 5 sheep?
55. If a grocer mixes 23 lbe . of tea at 80 cents with 10 lbe at 75 , 30 lbs at 40 , and 42 lbe , at 60 per $i \mathrm{ib}$. ; what is the worth of 1 lb. of the mixture?
56. Distribute $\$ 1100 \mathrm{among} \Lambda, B, C$, and D , so that Λ may hare as much ass B, C as much as A and B together, and D as much at A, B, and C together.
57. If 25 men can dig a trench 36 feet long, 12 feet wide, and 6 feet deep in 9 days workine 10 hours per day, how many hours a day must 15 men work in order to dig a trench 48 feet lon α. 8 teet wide, ind 5 teet deep; in 12 days?

MENTAL ARITILMETIC.

SUGGESTIONS.

The following exercises will le found to be too difficult, in most instances, for beginners. Belire entering them, the puril is supposed to have been thorongbly arilled in problems of ata casier description, as, for example, those given in the body of the book, at the commenecment of each of the simple rules, under the head of Miental Exercises. Wherever the teacher finds the everoise too much advanced for hie clase, he must break down the dificulty by proposing numerous casier questions, of his own construction, involving the same principle.

The recitation should lee generally conducted with the text-book: closed. The teacher should read out the problem slowly and dis. tinctly, and but once, and the class should be required io solve it mentally and in perfect silence, and without giving any sign or sig, nal when they are ready to answer. After a space of time sufficient for the solution of the problem has elapsed, the teacher gives a signal upon which those who have completed the process raise thr hand. One of thesc is then required to give the result. The teacher ascertains how many agrce with it, and calls unon some one of them in solve and analyse it for the ciass. Then another problem is proceeded with in the same manner. Occasionalls, especially in rericw lessons, the class may be allowed to recite with open books.

The pupil should be required to adhere to the form of analysis given, unless the teacher can devise a better for him. In the same school a uniform phraseology in the solutions should invariably bo adopted.

In order to secure the attention of the entire clase, no intimation ly word or glance should be givell as to the member of the clase to be called upon for an answer or solution; eo that every oine considering himself liable to be sclected for that purpose, sLall concentrate his mind upon the question.

Finally, the instructor of youth should alwars remember that Mental Arithmetic, as a branch of school study is not designed to be merely a means of dazzling and bewilderi"g the aduli puiblic by the rapidity with which the pupils are trainell to eolve certain classes of problems, but rather as a mental trainitg of the very bighest character. Its olject may be said to be threcfold, viz. : In the first place, to emable the puril to solve mentaliy and with facility the majority of the problems that arise in the liusincess of every day life, and which otherwise he could work only by tedious processes on his slate; in the second place, to familiarize him with the procerses employed in written arithmetic, to render that part of the study of numbers clear to his comprehension, and to makg him in a manner independent of mere book-rules; and in the third place and primuriy, to cultivate his powers of anaiysis and his ability to concentrate bis attention on a given suhiect, -in a word, to develop and invigorate the most important of lis intellectual faculties.

Exfrcise I.

1 How many are \& and i? 9 and 12? S and 17? 19 and if 23 and 11 ?
2. How many are 12 at.d 11 ? 11 and 17 ? 13 and 14 ? 17 and $19 ? 18$ and 15?
6. How many are 23 and 71 ? 38 and 47 ? 63 and 29 ? 29 and $\$ 1$? 47 and 85 ?
4. How many are 123 and $47 ? 276$ and $93 ? 480$ and $20 ? 714$ anal $8 ?$
5. How many are 643 and 293 ? 216 and 417 ? 278 and 033 ? 429 and 276 ?
6. How many are 1478 and 976 ? 2913 and 579 ? 287 and 9163 ?
7. How many are 4916 and 7189 ? 9612 and 340 ? ? 9161 and 7863 ?
8. How many are 10 and 18 and 27 ?
9. Uow many are 28 and 143 and i29?
j0. How many are 493 and 7816 ?
11. How many are 916 a and 2347 ?
12. Ifr* many are $7+19+23+47+98+127+246$?

Exercise II.

1. From 15 take 8 and how many remain 7 From $\$ 1$ take 43 and how many remain?
2. From 193 take 45 and how many remain? From 217 take 109 and how many remain?
3. How many are 43-27? 9?-42? 67-43? 128-89?
4. IIow many are $768-400$? $290-150$? 6:1-425? 678-454?
5. How many are $4 \bar{i}-20$? $7 S 9-43$? $675-71$? S01- 46 ?
6. How many are $893-473$? $981-671$? 493-339? iS1-407?
7. How many are 471- 59 ? $06-93$? 471-420 ? 711-1s9?
8. How many are SI46-23 ? 7167-93 ? 9146-217?
9. How many are $83: 1-950$? $624 ?-555$? 916 亿- 8147 ?

10 How many are 91si- 56 -4 ? 9821-296? $817-496$?
17 How many are $784-27-98-423-11$?
-4 EOO many are 0867-21i0-4:8-910-2i0-43 ?

Exercise III.

1. How many are $9+8+17+43-11+14-72+18+9-17+27$
2. How many are $11-3+8-2+63-47+129-117$?
3. How many are $27+43-19-21+87-83+14+29+146-109$;
4. How many are $809+476-347-217+401$?
5. How many are $9167-434-297-27-64-9+8+91+76+129$ i18!
6. How many are $1679-816+278-3+78-93+217+411$?

Exercise IV.

Commit to memory the following :-

Extended multiplication table.

13 times	14 times	15 times	16 times	17 times	18 times	\cdots tlmes
2 are 26	$2-28$	$2-30$	$2-32$	$2-34$	$2-36$	- 38
$3-39$	$3-42$	$3-45$	$3-48$	$3-51$	$3-54$	- 57
- 52	$4-55$	±-60	1 - 64	$\pm=68$	\pm - 72	
$5-65$	$5-70$	$5-75$	$3-80$	$5-85$ $6-102$	5- 90	5 6
$6-78$	6 - 84	$6-90$	5-96	3 - 102 7	$7{ }^{6}$ - 108	7 二 133
7 - 91	7-98	7 - 105	8-112	$8-139$	S = 144	152
$8-104$	$8-112$	8-120		$9-153$	$9-162$	$9-171$
9-117	-126	135	- 144		9-162	9-171

1. How many are 17 times 8? 9 times 14 ? 11 times 19? 14 times 17?
2. How many are 23 times 9 ? 7 times 29? 8 times 416? 9 times 217 ?
3. How many are 16 times 43 ? 22 times 37 ? 44 times 29 ? 19 times 19 ?
4. How many are 83 times 72 ? 96 times 43 ? 34 times 975162 times 419?
5. How many are 47 times 46 ? 35 times 29 ? 483 times 13 il times 498?
6. How many are 717 times 25 ? 101 times 102? 227 times 469^{-}
7. What is the product of 16×91 ? 17×83 ? 4267×8 ? $7134 \times$?
8. What is the product of 9137×8 ? 21674×11 ? 764×25 ?
9. What is the product of 217×17 ? 4679×9 ? 2763×3 ?
10. What is the product of 9157×6 ? $8888 \times$ i $: 8906 \times 5 \pm$?

Exercise V.

1. What is $\frac{1}{6}$ of 9 ? $\frac{1}{7}$ of 19 ? $\frac{2}{12}$ of 43 ? $\frac{1}{20}$ of 67 ? $\frac{1}{8}$ of 472 ? $\frac{1}{6}$ of 863 ?
2. What is $\frac{1}{7}$ of 80 ? $\frac{1}{6}$ of 8107 ? $\frac{1}{2}$ of 8149 ? $\frac{1}{12}$ of 8167 ? $\frac{1}{8}$ of 2233?
3. What is $\frac{2}{5}$ of 890 ? $\frac{2}{7}$ of 234 ? $\frac{2}{8}$ of $8916:$? $\frac{1}{12}$ of 3871 ? $\frac{1}{13}$ of 896 ?
4. What is $\frac{1}{3}$ of 9671 ? $\frac{1}{6}$ of 587 ? $\frac{1}{20}$ of 59675 ? $\frac{2}{57}$ of 83 ? $\frac{1}{18}$ of 426?
5. What is the quotlent of $98+7 ? 463+9$? $7896+8 ? 9163+9$?
6. What is the quotient of $278+4$? $8167+11 ? 671+12 ? 9187+$ 13 ?
7. What is the quotient of $2678+8\} 6149+18 ? 714+20 ? 914$ +24 ?
8. What is the quotient of $7786+45 ? 3769+27 ? 8767+88$?
9. What is the quotient of $7198+63 ? 429+19 ? 6759+14$?
10. What is the quotient of $123459+96 ? 67143+90 ? 217654+77$?

Exercise VI.

1. 8 times 9 and $\frac{7}{6}$ of 9 are how many times 10.?

> ANALYSIS.

Stimes 9 are 72 , and $\frac{3}{6}$ of 9 is 7 times $\frac{1}{6}$ of $9 ; \frac{1}{y}$ of 9 is 1 , therefore $\frac{7}{6}$ of 9 is 7 times 1 , which is 7 .
Therefore S times 9 and $\frac{7}{\%}$ of 9 are 72 and 7 which make 79 . Then 10 is contained $7 \frac{9}{10}$ times in 79.
Therefore 8 times 9 and $\frac{7}{6}$ of 9 are $7 \frac{\circ}{10}$ times 10 .
2. 4 times 5 and $\frac{8}{5}$ of 5 are how many times 6 ? 7? 8 ?
3. 7 times 11 and $\frac{5}{5}$ of 11 are how many times 7 ? 8 ? 10 ?
4. 6 times 8 and $\frac{7}{8}$ of 8 are how many times 3? 5? 9?
5. 11 times 3 and $\{$ of 9 are how many times 10 ? 9 ? 4 ?
6. 10 times 5 and $\frac{3}{5}$ of 25 are how many times 7? 8? 10?
7. 8 times 7 and $\frac{9}{7}$ of 28 are bow many times 9 ? 11 12 ?
8. 12 times 9 and f of 63 are how many times 10 ? 11 ? 13 ?
9. 8 times 6 and $\frac{5}{9}$ of 50 are how many times $\frac{1}{3}$ of 16 ? $\frac{?}{3}$ of 15 ?
10. 7 times 4 and $\frac{8}{}$ of 44 are how many times $\frac{3}{7}$ of 21 ? $\frac{5}{87}$ of 55$\}$

Exercise VII.

1. What is $\frac{3}{7}$ of that number of which 12 is $\frac{0}{11}$?

ANALTSIS.
If 12 is $\frac{0}{11}$ of a certain number, $\frac{1}{15}$ will be the $\frac{1}{6}$ of 12 , whioh is 2 .
If 2 is $\frac{1}{1^{2}}$ of a certain number, 11 times 2, which is 22, will be that number.
Then $\frac{3}{7}$ of 22 is cqual to $\frac{1}{7}$ of $22 \times 3=3 \frac{1}{7} \times 3=9 \frac{3}{7}$.
Thereforc $9 \frac{3}{7}$ is $\frac{3}{7}$ of that number of which 12 is $\frac{0}{12}$.
2. What is $\frac{4}{I_{i}^{2}}$ of that number of which 21 is $\frac{n}{8}$?
3. What is $\frac{3}{3}$ of that number of which 81 is $\frac{3}{5}$?
4. What is $\frac{8}{3}$ of that number of which 36 is $\frac{8}{11}$?
5. What is $\frac{4}{7}$ of that number of which 18 is $\frac{8}{7}$?
6. What is $\frac{5}{4}$ of that number of which 51 is $\frac{17}{19}$?
7. What is $\frac{7}{8}$ of that number of which 77 is $\frac{23}{2} \frac{3}{2}$?
8. What is $4 \frac{3}{6}$ times that number of which 80 is $\frac{8}{11}$?

Exercise VIII.

1. 25 is $\frac{5}{7}$ of how many times 9 ?

ANALYSIS.

If 25 is $\frac{5}{7}$ of a certain number, $\frac{1}{7}$ will be $\frac{2}{5}$ of 25 , which is 5 . If $\frac{2}{7}$ of a number is 5 , the number must be 5×7, which is iL Then $35+9=3 \frac{8}{9}$.
Therefore 25 is $\frac{5}{7}$ of $3 \frac{9}{2}$ times 9 .
2. $S 4$ is $\frac{7}{9}$ of how many times 10 ? 7 ? 9? 11?
3. 63 is iั of how many times 7 ? 8? 5? L今?
4. 21 is $\frac{7}{4}$ of how many times 11 ? 6 ? 5 ?
5. 90 is $\frac{8}{8}$ of how many times 5 ? ?? 13 ?
6. 121 is $\frac{12}{7} \frac{2}{4}$ of how many times 12 ? 10 ?
7. 105 is $\frac{5}{8}$ of how many times 5 ? 11?

Exercise IX.

1. In or 44 is io fow many liinths of 54 ?

ANALYSIS.

II of 44 is 9 times $\frac{3}{1}$ of $44 ; \frac{3}{\frac{1}{1}^{1}}$ of 44 is 4 , thereforo $\frac{9}{15}$ כf 44 je 9 times 4 , which is 36 . Also $\frac{1}{8}$ of 54 is 6.
Then 36 is $\frac{x}{10}$ of how many 6 's.
If 36 is $\frac{7}{70}$ of a certain number, $\frac{1}{70}$ will be $\frac{1}{7}$ of 36 , whieh is $5 \frac{1}{7} ;$ and if $5 \frac{2}{7}$ is $\frac{1}{3}$, of a certain number , that number will he 10 times $5_{7}^{\frac{1}{7}}$ which is $51 \frac{3}{7}$,
Then $51 \frac{3}{7}$ divided by 6 equals S_{7}^{7}.
Therefore $\frac{2}{12}$ of 44 is $\frac{7}{80}$ of $\$ \frac{1}{2}$ times $\frac{3}{8}$ of 54 .
2. © of 54 is $\frac{4}{5}$ of how many times $\frac{3}{8}$ of 16 ?
3. $\frac{7}{8}$ of 45 is ? of how many timce $\frac{2}{7}$ of 91 ?
4. $\frac{8}{81}$ of 77 is $\frac{7}{8}$ of how many times $\frac{8}{1 i}$ of 88 ?
5. ; of 01 is if of how many times है of 30 ?
f. $\frac{5}{4}$ of 104 is $\frac{7}{7}$ of how many times ${ }_{8}^{7}$ of 56 ?
7. y_{6}^{7} of 63 is $\frac{4}{7}$ of how many times ${ }_{20}^{3}$ of 150 ?
8. is of $1: 2$ is $\frac{1}{1} \frac{1}{5}$ of how many times $\frac{a}{7}$ of 21 ?

Exercise X.

1. Wlint will be the cost of 17 shece at $\$ 4 \cdot 20$ each?
2. What will be the cont of 11 horees at 今 79.80 cach?
3. The sum of two numbers is 493 ; the greater is 284 , what is the emaller?
4. The mmitipler is 40 , the pronure 9840 , what is the multiplie:and?
5. What is the differenco between $\$ 278 \cdot 50$ and 127.001
6. What is the ninth part of \&2987 80 ?
7. What ia the product of $783 \times$ i? ?
8. How many are it of 639 ?
9. 8 times 5 and t of 20 are how many times if S ? 3 ?
10. 7 times 11 and มू of 33 are how many times 12 ? 10 ? 8 \&

11 What is $\frac{1}{5}$ of of that number of which $3 t$ is $\frac{17}{8}$?
12. What is $\frac{3}{5}$ of $\frac{3}{7}$ of that number of which 27 is $\frac{\circ}{12}$?
13. 42 is $\frac{7}{5}$ of how many times 5 ? 7? 11?
14. $\frac{8}{11}$ of 55 is $\frac{7}{7}$ of how many times $\frac{5}{5}$ of 18 ?
15. $\frac{2}{5}$ of 4 times $6 \frac{1}{4}$ is $\frac{3}{7}$ of how many times $\frac{8}{5}$ of $\frac{2}{3}$ of 2 times 153
1.6. $\frac{7}{17}$ of 6 times $9 \frac{1}{6}$ is $\frac{8}{6}$ of how many timues $\frac{2}{7}$ of $\frac{1}{3}$ of 5 times $8 \frac{2}{6}$?

Exercise XI.

1. If $\frac{2}{3}$ of a barrel of apples cost $\$ 1 \cdot \delta 0$, what is that per barrel?

> ANALISIS.

If $\frac{2}{8}$ cost $\$ 1 \cdot 80, \frac{1}{3}$ will cost $\frac{1}{8}$ of $\$ 1 \cdot 80$, which is $\$ 0 \cdot 90$.
If $\frac{1}{8}$ cost $\$ 0.90$, the whole barrel will cost $\$$ times $\$ 0.90$ which is $\$ 2 . \% 0$.
Therefore if $\frac{2}{8}$ of a barrel of apples cost $\$ 1 \cdot \delta 0$, the whule barrel will cost $\$ 2 \cdot 70$.
2. If $\frac{3}{11}$ of a lb , of tea cost 44 cents, what will 1 lb . cost ?
3. If $\frac{2}{3}$ of a day's work cost 87 cents, to what will 4 days' work amount?
4. If $\frac{8}{4}$ of 6 lbs . of coffee cost $\frac{6}{7}$ of $\xi 2$, what will $\frac{3}{12}$ of 5 lbs cost $?$
5. How much will $\frac{3}{7}$ of a barrel of flour cost, if $\frac{2}{2}$ cost $\$ 160$?
6. How much will a basket of peaches cost, if $\frac{1}{4} \operatorname{cost} \$ 2.70$?
7. How much will 4 stone of meal come to if $\frac{0}{3}$ of a stoue cost 23 cents?
8. How much will 6 cords of wood amount to if $\frac{3}{12}$ of 2 cords cost $\$ 2 \cdot 20$?

Exercise XII.

Note.-The teacher must thoroughly explain how fractions aro added, subtracted, reduced, multiplied, and divided.

1. What is the quotient of $7 \frac{3}{5}+6 \frac{1}{4}$?
solution.

2. What is the value of $\frac{7}{8}+\frac{4}{3}-\frac{1}{3}$?

SOLUTION.
8. How many aro $\frac{4}{7}$ of $\frac{8}{12}$? $\frac{1}{3}$ of $\frac{1}{4}$ of $\frac{3}{7} ? \frac{7}{6}$ of $\frac{3}{11}$ of $\frac{77}{100}$ of $25 ? \frac{1}{5}$ of $\frac{8}{8}$ of $\frac{10}{27}$ of $\frac{18}{17}$?
4. What is the valuo of $\frac{3}{5}+\frac{2}{7} ? \frac{2}{8}+\frac{3}{12} ? \frac{7}{8}+\frac{5}{10} ? 9 \frac{1}{2}+8 \frac{2}{4} ? 16 \frac{2}{5}+8{ }_{15}^{3} \frac{3}{8}$ $2 \frac{1}{4}+3 \frac{4}{7} ?$
5. What is the value of $\frac{3}{12}-\frac{4}{12} ? 7 \frac{1}{3}-2 \frac{1}{4} ? 6 \frac{3}{4}-2 \frac{7}{16} ? 11 \frac{1}{5}-7 \frac{2}{6} ? 27 \frac{3}{15}$ $-4 \frac{7}{13}$?
6. 6_{4}^{3} are how many fourths ${ }^{\frac{3}{7}}$ are how many sevenths? $5 \frac{7}{12}$ are how many eleventhe
7. $4 \frac{3}{7}$ is $\frac{2}{12}$ of what number: $2 \frac{3}{5}$ is $\frac{7}{12}$ of what number $\frac{53}{7}$ is $\frac{1}{5}$ of what number?
8. 13 is 6 times what number ? 11 is 4 times what number 917 is 12 times what number?
8. 63 is is of what number $\frac{29}{}$ is $\frac{7}{B}$ of what number 16 is $\frac{4}{7}$ of what number?
10. What is the product of $\frac{7}{8} \times \frac{3}{7} \times \frac{4}{3} \times \frac{14}{17} \times \frac{3}{10}$? $6 \frac{3}{5} \times \frac{17}{2} ? 9 \frac{3}{4} \times \frac{1}{1} \frac{1}{3} \frac{3}{3}$
11. What is the quotient of $8 \frac{3}{4}+\frac{1}{8}$ of $\frac{3}{4}$ of $\frac{5}{6}$ of $2187+\frac{5}{6}$ of $\frac{8}{17}$?
12. What is the valuo of $\frac{4}{7} \times \frac{3}{52}+\frac{3}{57 \frac{1}{2}} 86 \frac{3}{7} \times \frac{1}{15}+8 \frac{1}{4}$?

Exercise XIII.

1. If 11 sheep cost $\ddagger 37$, what should 9 sheep cost $?$

ANALTSIS.

Since 11 sheep cost $\$ 37,1$ sheep should cost $\frac{2}{12}$ of $\$ 37$, which is $\$ 3 \frac{1}{2 \frac{1}{2}}$; and if 1 sheep cost $\$ 3_{12}^{2}, 9$ sheep should cost 9 times $\$ 3 \frac{4}{12}$, which is $\$ 30_{12}^{3}$.
Therefore if 11 sheep cost $\$ 37,9$ sheep should cost $\$ 30 \frac{3}{12}$.
2. If 8 cords of wood cost 27 dollars, what will 17 cords cost ?
3. If 3 barrels of flour cost 22 dollars, what will 11 barrele cost 1
4. If 7 daye' work amount to 17 dollars, to what will 3 days' work amount?
5. If 9 acres of land cost 57 doliars, what will 13 acres cost ?
6. If 11 men do a piece of work in 40 days, iu how many days can 7 men do it?
7. It 8 tons of hay be lought for $\$ 105$, what would ho the cost of $9_{\mathrm{I}^{3}}$ tons?
8. At $\$ 7$ for 11 bushels of barley, what would be the cost of 21 bushels?
9. At 6 ibs . of tea for $\$ 5$, how many lbs. can be had for $\$ 23$?
10. If $\$ 8$ pay for 7 days' work, for how many days will \$28 pay?

Exprcise XIV.

1. If 3 horses consume $8 \frac{3}{7}$ bushels of oats in 2 weeks, how many bushels would 5 horses consumc io 3 wecks?

ANALTSTS.
If 3 horses consume δ_{7}^{3} buahcls, one horse will con:6וme $\frac{1}{3}$ of $8 \frac{3}{7}$, which is $2 \frac{1}{2} \frac{7}{\frac{2}{2}}$ buehels. If 1 borsic c meume 2_{212}^{12} busbels in 2 weeke, in one week he will consume $\frac{1}{2}$ of $2_{212}^{1 \frac{7}{2}}$, which is $1 \frac{17}{27}$. If a horse consume $1_{\frac{1}{2} \frac{1}{2}}$ busbels in 1 week, in 3 weeks he will consume 3 timed $1 \frac{1}{4}$, which is $4 \frac{3}{2}$ bushels; and if one horse consums $4_{i \frac{3}{2}}^{3}$ bushele, 5 horses will consume 5 times $4 \frac{3}{i 4}$, which is $21_{1 \frac{2}{1}}^{2}$ bushels. Therefore, \&c.
2. If a certain quantity of provisions would last 16 mell $4 \frac{3}{4}$ days, how long would 4 times the quantity last $\frac{3}{3}$ the number of men?
3. If 5 men ean accomplish a picce of work in $i_{\frac{3}{3}}^{3}$ dayb, in what time can 3 men finish $\frac{4}{7}$ of the work?
4. If 7 men in 4 davs working 10 hour per day can build a certain length of wall, how many hours per day must 11 men work in order to build the same length in 3 daye?
5. If $\$ 60$ pay 7 men for 9 days' work, how many dollars will pay 11 mell for 11 days' work?
6. If 24 men can mow 66 acres of grass in 2 daya, how many acrer can 14 men mow in 7 days?

Exercise XV.

1. What number is that of which $\frac{1}{3}, \frac{t}{6}, \frac{1}{6}$, and $\frac{1}{5}$ added together make 55 ?

ANSLFSIS.

$$
\frac{1}{3}+\frac{1}{3}+\frac{1}{7}+\frac{1}{5}=\frac{30}{00}+\frac{20}{10}+\frac{15}{60}+\frac{12}{00}=\frac{77}{60} .
$$

If $\frac{27}{60}$ of a certain number is $55, \frac{1}{80}$ of the number will be $\frac{1}{97}$ of 55 , which is $\frac{85}{7} \frac{3}{7}$ or $\frac{5}{7}$.

If $\frac{1}{\text { a }}$ be ${ }^{5}$, the number itrelf will be 60 times $\frac{5}{7}$, which is 42.0. Therctore if 55 is the sum of $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$, and $\frac{1}{5}$, the number itself is 42.
2 Having counted my books, I found that $\frac{s}{5}$, $\frac{1}{3}$, and $\frac{1}{2}$ added together :mounted to 590 ; how many hadd l?
3 After paying away $\frac{2}{7}$ of my money and then $\frac{3}{5}$ of the remainder, I had sio remaining : huw much had 1 at first ?
4 If to $\frac{1}{1}$ of B^{5} age you add 14 yeare, the sum will be $1_{2 \frac{1}{2}}$ times his age ; bow old is he?
5. If from $\frac{3}{x!}$ of C^{\prime} sage you subtract if years, the remainder will bo $\frac{31}{6}$ of his age : how old is he?
6 If to $\frac{2}{2}$ of the cost of my house you add $\$ 200$, the sum will be $\frac{1}{2}$ the cost of nyy house ; what was the cust of the bouse?
7. If from my age you subtract $\frac{1}{3}, \frac{1}{3}$, and $\frac{2}{5}$ of my age, the remain-

8. $*$. boy being asked his age, replied that it was 2 years more than $\frac{1}{3}$ of his mother's age, and that 12 years be fore that time his mother was y years more than halr as old as her father, who was then 72 years of age; how old was the boy?

Exercise NVI.

1 d can do a picce of work in 43 days which B can do in $5 \frac{3}{7}$ days; in what time could they do it working together?

aNalysis.

If A can do the whole work in $4 \frac{2}{4}$ days, in 1 day he would do $\frac{3}{3}$ of it ; aud if 13 can !o the whole work in $5 \frac{3}{7}$ days, in 1 day he would do 3_{3}^{7} of it.
Then since A does $\frac{3}{3}$ and B ? $\frac{7}{38}$ of the work in 1 day, working together, they would do $\frac{2}{6}+\frac{3}{35}$, whicla is $\frac{2 \pi}{3} \frac{3}{4} \frac{3}{2}$.
Then, if they do ${ }^{238}$ in 1 day, they will require as many
 and this is equat to 2 ㅇํㅇ daye. A refore, \&e.
2. A can do a piece of work in 7 days which f can do in 6 days, fo what time will they do it working tugwher?
3. 1 can lig a certain garilen in 4 days which B can do in orand C in 8 days; in what time will they tinish it working to-
gether?
4. A can do a piece of work in 30 days which B can do in $25, \mathrm{C}$ in 20, and I) in 15 days ; in what time will they finish it working together ?
c. A and B can cradle a lield of wheat in 10 dirys, which A alone could do in 17 days ; in what time could $\mathfrak{1}$ alone do it?
6. A, B, and C can finish a certain amount of work in 20 days which A could do alone in 40 days and \mathbf{C} in 60 days in what time could B working alone finish it?

Exercise XVII.

1. What is the value of 7896 bushels of oats at $37 \frac{7}{8}$ cents per bushel?

ANALYSIS.
371 cents is of $\$ 1 ; 7896$ bushels at $\$ 1$ would amount to $\$ 7896$. Then, since $3 . \frac{1}{4}$ cents is $\frac{3}{\frac{3}{2}}$ of $\$ 1,7896$ bushels at
 $\$ 7896$, $\frac{1}{8}$ of $\$ 7896$ is $\$ 987$, and 3 times $\$ 987$ is $\$ 2961$. Therefore, \&c.
2. What is the ralue of 798 bushels of wheat at $\$ 1.50$ per busbel?
3. What is the value of 918 lbs . of tea at 75 cents per lb. ?
4. What is the value of 2718 yds . of cotton at 20 cents per yd .?
5. What is the palue of 3612 doz. egge at $16 \frac{2}{3}$ cente per doz. ?
6. What is the value of 5780 yds . of linen at $87 \frac{1}{3}$ cents per yd .3
7. What is the value of 7567 bush, of oats at 50 cents per bush. 1
8. What is the value of ' 19 days' work at $33 \frac{1}{3}$ cents per day?
9. What is the value of 5796 yds . of drugget at $62 \frac{1}{\frac{1}{2}}$ cents per yd .?
10. What is the value of 478 ft . of chesnut lumber at 5 cents per fort?
11. What $\mathrm{i} s$ the value of 7864 lbs . of butter at 127 cents per lb .?
12. What is the value of 1160 busbels of turnips at 40 cents per bushel?

Exercise XVIII.

1. How much is $\delta \frac{1}{3}$ per cent. of $\$ 949$?
aNALYSIS.
$8 \frac{1}{8}$ fer cent. is $\frac{8 \frac{1}{8}}{100}$, which is $\frac{1}{2} \frac{1}{2}$, and $\frac{x}{12}$ of $\$ 949$ is $\$ 79 \frac{1}{\frac{1}{3}}$. Therefore, \&c.
2. How much is 20 per cent. of $\$ 555.50$?
3. How much is 66 per ecnt, of $\$ 540.33$?
4. How much is 10 per cent. of $\$ 89$?
5. How much is $12 t$ per cent. of $\$ 978$?
6. How much is 50 per cent. of $\$ 429.60$?
7. How much is 67 per cent. of $\$ 727.20$ 8
8. How much is 25 per cent, of $\$ 593.40$?

Exercise TIX.

1. What is the premium of insurance on $\$ 764$ at 8 per cent. $?$

ANALYSIS.

8 per cent. is 8 times one per cent. 1 per cent. of 8764 is $\$ 7 \cdot 64$.
Then 8 per cent. of $\$.64$ is $\$ 7 \cdot 64 \times 8$, which is $\$ 61 \cdot 12$.
2. What is the commission on $\$ 480$ at 11 per cent.?
3. What is the brokerage on $\$ 9806$ at 12 per cent.?
4. What is the brokerage on $\$ 5980$ at 2 per cent. ?
5. What is the commission on $\$ 578$ at 18 per cent. ?
6. What is the commission on $\$ 789$ at 30 per cent. ?
7. What is the commission on $\$ 5956$ at 7 per cent.?
8. What is the premium of insurance on $\$ 7890$ at 2 per cent. 8
9. What is the premium of insurance on $\$ 860$ at 4 per cent.?
10. What is the premium of insurance on $\$ 6790$ at 3 per cent. ?

Exercise XX.

l. Ai 4 per cent. for it years what fraction is the interest of the principal 1

ANALYSIS.

If the interest for one year be sion, for 泣 years it will be $7 \frac{1}{4}$

Therefore at 4 per cent. for if years the interest equale $\frac{3}{10}$ of the principal.
2. At 5 per cent. for 5 years what fraction of the principal is the interest?
3. At 8 per cent. for 3 years what fractio: is the interest of the prineipal?
4. At 8 per cent. for 5 years what fraction of the prineipal is the interest?
5. At 7 per cest. for 10 years what fraction is the interest of tho principal?
6. At $9 \frac{1}{2}$ prent. for 4 years what fraction is the interest of the prowe pai?
7. At 6 per cent. fur 4 years 2 months what fraction is the interest of the prampal?
8. At st per cent. for 6 years what fruction is the interest of tho principal

Exercise XXI.

1. What is the interest of $\$ 248 \cdot 60$ for 8 jears 4 months at 6 per cent. ?

ANALYSIS.

8 yrs. $4 \mathrm{~m} .=8 \frac{1}{3}$ years and $8 \frac{1}{8} \times \frac{6}{106}=\frac{50}{100}=\frac{1}{2}$, and hence the interest is equal to $\frac{1}{2}$ of the principal: $\frac{1}{3}$ of $\$ 748.60$ is $\$ 374: 30$.
Therefore $\$ 374 \cdot 30$ is the interest of $\$ 748.60$ for 8 yrs .4 monthe at 6 per cent.
2. What is the interest of $\$ 467 \cdot 84$ for 12 years 6 months at 8 per cent. ?
3. What is the interest of $\$ 916 \cdot 70$ for 5 years at 5 per cent.?
4. What is the interest of $\$ 543.20$ for 3 years at 10 per ceut. ?
5. What is the interest of $\$ 943$ for 4 years at $12 \frac{1}{2}$ per cent. ?
6. What is the interest of $\$ 59$ for 3 yrs. 4 nm , at 3 per cent.?
7. What is the interest of $\$ 5723$ for 7 years at $2 \frac{3}{7}$ per cent. ?
8. What is the interest of sit. 89 for 8 years 4 monthes at 8 per (elet. ?
9. What is the interest of $\$ 890.80$ for 9 in years at 11 per cent. ?
10. What is the interest of $\$ 1027 \cdot \frac{1}{2}$ for 4 year. at $2 \frac{1}{3}$ per ecnt.?

Exercise NXII.

1. What is the interest of $\$ 560$ for 5 years at 7 yer cent. ?

> ANALTSIS.

7 per cent. is $\frac{7}{700}$ per unit and $\frac{7}{103} \times 5=\frac{35}{100}=\frac{7}{20}$; hence the interest is $\frac{7}{20}$ of the principal, that is 7 times $\frac{2}{2}$, $\frac{3}{20}$ of 8500 is $\$ 28$. Therefore the interest is $\$ 28 \times 7, \pi$ hich is $\$ 186$.
2. What is the interest of $\$ 840$ for 8 years at 10 per cent.?
3. What is the interest of $\$ 1100$ for 7 years at 20 per cent.?
4. What is the interest of $\$ 760$ for $9 \frac{1}{2}$ years at 4 per cent. ?
5. What is the interest of $\$ 640$ for 8 years at 8 per cent. ?
6. What is the interest of $\$ 500$ for 7 years at 7 per cent.?
7. What is the interest of $\$ 1000$ for 4 years at $6 \frac{1}{3}$ per cent. ?
8. What is the interest of $\$ 890$ for 6 years at 5 per cent. ?
9. What is the interest of $\$ 720$ for 9 years at 4 per cent. ?
10. What is the interest of $\$ S S 0$ for 2 years at $5 \frac{1}{8}$ per cenc. 1

Exercise XXIII.

2. What is the interest of $\$ 108$ for 1 year 2 m . at 6 per cent. 9
ANALTSIS.*

The interest of 1 for 14 montha at 6 per cent. is 7 cents. Therefore the interest on $\$ 108$ will be 108 times 7 cents or 7 fimes 108 cents or 7 times $\$ 1.08$ cents, which is $\$ 7 \cdot 56$.
2. What is the interest of $\$ 700$ for 17 months at 6 per cent. $?$
3. What is the iuterest of $\$ 890$ for 2 years 4 monthe at 6 per cent.?
4. What is the interest of $\$ 763$ for 3 years 4 months at 6 per cent.?
5. What is the interest of $\$ 420$ for 5 gears 2 months at 6 per cent.?
6. What is the interest of $\$ 510$ for 5 months at 6 per eent. ?
7. What is the interest of $¢ 703$ for 7 months at 3 per cent. ?
8. What is the interest of $\$ \$ 09$ for 11 months at 12 per cent. ?
9. What is the interest of $\$ 070$ for 8 months at 18 per cent. ?
10. What is the interest of $\$ S 93$ for 4 months at 8 per cont.?

Exercise XXIV.

l. What principal will in 6 years at $3 \frac{2}{3}$ per cent. amount to $\$ 720$ 8

> ANALYSIS.

At $2 \frac{1}{2}$ percent. for six years the interest is $\frac{\xi}{}$ of the principal, and the amount, which is equal to the principal added to the interest, is equal to $\frac{5}{5}+\frac{1}{8}=\frac{8}{5}$ of the principal.
If $\frac{0}{3}$ of the principal is $\$ 720, \frac{1}{5}$ of the principal is $\frac{2}{6}$ of $\$ 720$, which is $\$ 120$ a and if $\$ 120$ is $\frac{1}{3}$, the whole principal is $\$ 120 \times 5$, which is $\$ 600$.
Therefore, se.
2. What principal will in 8 years 4 m . at 6 per cent. amount to *200 ?
3. What principal will in $9 \frac{2}{1}$ years at 9 per cent, amount to $\$ 760$?
4. What principal will in 4 years at 5 per cent. amount to $\$ 48 \%$
5. What principal will in 3 years at 7 per cent. amount to \$555.55?

[^1]6. What principal will in 6 years 3 m , at 8 per cent. amonnt to \$573•40?
7. What principal will in 8 years at 5 per cent. amount to $\$ 735$?
8. What principal will in 7 years at $7 \frac{1}{7}$ per cent. amount to $\$ 843 \cdot 20$?
9. What principal will in 12 years 6 m . at 8 per cent. amount to $\$ 643 \cdots 8$?
10. What principal will in 1 year at $33 \frac{1}{3}$ per cent. amount to $\$ 963 \cdot 24$?
11. What principal will in 7 years at 10 per cent. amount to $\$ 561$?
12. What principal will in 5 years at 5 per cent. amount to $\$ 678 \cdot 20$?

Exercise XXV.

1. Bought a cow for $\$ 25$ and sold it for $\$ 29$: what was my gesper cent. $\%$

SOLETION.

Since I bonght for $\$ 25$ and sold for $\$ 29$, my gain was $\$ 29$ - $\$ 25$, which is $\$ 4$.

If I gain $\$ 4$ on $\$ 25$, on $\$ 1$ shall gain $\frac{2}{25}$ of $\$ 4$, which $\frac{1}{}$ ${ }_{2}^{2} 5$ of a dollar ; and if I gain $\$ \frac{4}{2}$ on $\$ 1$, on $\$ 100 \mathrm{~J}$ shall gain 100 times $\$_{2}^{4}$, which is $\$ 16$. Therefore my gain is $\$ 16$ on $\$ 100$, or 16 per cent.
2. Bonght barrels at 12 cents cach and sold at 15 ; what was my gain per cent.?
3. Bought butter at 15 cents per lb. and sold it at 21 cents; what was my gain per cent.?
4. Bought a cart for $\$ 45$ and sold it for $\$ 50$; what was my gair per cent.?
5. Bought wood at $\$ 3 \cdot 50$ and sold it at $\$ 4 \cdot 25$ per cord ; what was my gain per cent.?
6. Bonght oats at 88 cents and sold them at 44 cents per bushel ; what was my gain per cent.?
7. Bought hay at $\$ 18$ and sold it at $\$ 16$ per ton; what was my lose per cent. ?
8. Bonght a horse for $\$ 160$ and sold it for $\$ 145$; what was my loss per cent.?
9. Bonght wheat at $\$ 1 \cdot 20$ and sold it at $\$ 1 \cdot 30$; what was my gai per cent.?
10. Bought lumber at $\$ 9 \cdot 50$ and sold it at $\$ 11 \cdot 25$ per 1000 ft . Whan was my gain per cent.?

ANSWERS TO THE EXERCISES.

Exercise 4.
; 9 ; 18; 33; 44; 99 ; 478; 330; 47 ; 74.
2. 777 ; 206 ; 843 ; 910 ; 1001 ; 1400.
3. $102 ; 511 ; 1539 ; 3030 ; 2858$; 301.
4. $333 ; 10000 ; 90000 ; 6000 ; 5977$; 27027 ; 40444.
5. $1899 ; 2292$; $4505 ; 9604 ; 8888$.
6. COIL; XLVII; XCI; LAXX ; XX; LXXVII; CL; X ; CX1; DCVI.
7. CDXXXVII; CMYIII; DCCCXCIX; DCCLXIII; CDXCYII ; DCCCXXIX; DCCCXXVII ; CMXCIX; DCCCLAXXVIII.
8. MMCCXXXII ; MMMCCXXXII ; MMMCCCXXXIII ; MV̄CCCXXI ; MCOXXXIV; VDOLXXVIII; VMMMDCCLXV.
9. M $\bar{X} C M X C I X ; \overline{X X V} D C L X X I ; ~ D C C O X C M C C C X L V I I ; ~$ CMXMMCCCXLII; XVMDCCXIII.
10. $\overline{C N C M C M X I X ; ~ \overline{X X M} \overline{X C X X X I V ~ ; ~ X X M M M C D L X X V I ; ~}}$ CMXMMCCCXLV; MDCLXXVMMMCMXLII; MMMCDLVMDCCXIII.

Exercise 5.

1. 879.	5. 38904.	9. 5647.
2. 8785.	6. 997688.	10. 95878.
3. 9536.	7. 796.	11. 89745.
4. 6424.	S. 25734.	12.3499.

Exercise 6.

1. 159930.
1. 19168.
1. 2062862.
1. 203883.
1. 176258.
1. 63665.
1. 181220 .
2. 113092.
1. 1171791.
1. 2726390.
1. 670614.
1. 1108958.
1. 1563504.
1. 2S140244.
2. 32257760.
1. 5586759.
1. 98536.
1. 172656.
1. 11347.
1. 26132.
1. 46429.
1. 345482.
1. 746456.
1. 1069S 43784.
2. 864.
1. 320 bushele.
2. \$29431920.
3. 20213174 bushels.
4. 4035 bushels.
30.863 sprs . of shoes.
5. In the year 1877.

Exercise 7.

1. 51144002.
1. 3410530 .
2. 600002 .
3. 1050 .
4. 9333333.
1. 109113.
1. 702512.

Exercise 8.

14. 701353.
1. 406082.
1. 64021479.
1. 3389356.
1. 6342926.
1. 384.
1. 18294.
1. 1260000 .
2. 111
3. \$1072.
4. $\$ 662$.
5. $\$ 3826$.
6. 922.

Exercise 9.

1. 34553616 .
2. 77003136.
1. 19287909.
1. 2587424.
1. 5807538.

C. 9909537 .
11. 51497984052.
12. 629399344.
13. 2375628 ; 1583752 ; 3167504; 9502512.
14. 5730338929 ; 6548958776 ; 7367578623 ; 9004818317.
15. 18537 ; 30895 ; 43253 ; 55611 ; 7414 S .

Exercise 10.
7. 108235616.
8. 9026046 .
9. 8058876.
10. 57054464.
11. 99249624.
12. 101037948.
13. 43529688.

1. 142982742.
1. 275456841.
1. 364538876 .
2. 335719585 .
3. 5512592526.
4. 6154158486 .
5. 98863888.
1. 8884489482 .
2. 16714913450 .
3. 86476405301.
4. 664072.
1. 802909 .
2. 10817.
1. 172723.
1. 7253073.
1. 1719034.
1. 730139.
1. 8084031 .
2. 70850871.
1. 4618839.
1. 950017022 .
2. 581259463.
1. 61374.
1. 611803.
1. 204104053.
1. 400340.

Exercise 11.

1. 165404178 .
2. 72532564 .
3. 572161070 .
4. 7090800912.
5. 52588916400 .
6. 57857715882 .
7. 772S20915328.
8. 2607973180020 .
9. 64311091624800 .
10. 12107036926863.
11. 82660927650268.
12. 89432071615610683
13. 656650012.
1. 749188440.
1. 656178570630.
2. 2064622653999.
3. 131141615220.
4. 11017864680.

Exercise 12.

1. $3573493 \frac{1}{2}$.
2. $2971522 \frac{2}{3}$.
3. 228524$\}$.
4. 260094399_{5}^{*}.
5. 164608405 ?
6. $15592451 \frac{\stackrel{\circ}{7}}{}$.
7. 30602352
8. 10163522.
1. 2223334_{14}^{4}.
2. $283755923_{\mathrm{i}}{ }^{\circ}$.
3. $76213056_{1 \frac{3}{2}}$.
4. $12345679012 \frac{3}{6}$.
5. $4573145 \frac{1}{3}$.
6. $238210_{\frac{2}{3}}^{2}$.
7. 305652?
8. 1400000 .
9. $1350067 \frac{1}{\square}$.
10. 1285947.
1. 125762583^{3}.
2. $9999999{ }^{\circ}{ }^{\circ}$.
3. 1893395780 .
4. 4821 bushels.
5. 22002 .
6. $\$ 95367$.
7. 115200 perches.
8. 501296.
1. 2977593.
1. 1081.
1. $7407407_{\text {年. }}$.
2. 13717421.
1. 83479685_{51}^{8}.

24, 28571425:.
25. $16727475 \frac{1}{1}$.
26. \$126.
27. 677_{2}^{2} bushels.
28. 161.

Exercise 13.

1. $4468 \bar{T}_{\overline{1}}^{7}$.
2. $3737{ }_{27}^{2}$.
3. $113416 \frac{17}{6}$.
4. $112164^{\circ}{ }^{\circ} \mathrm{B}$.
5. $398073{ }^{3}$.
6. $205761 \frac{3 .}{105}$.

7. 81828381_{105}^{890}.
8. $10434202 \frac{23}{\square 3}$.
9. 1462940351 ร. .
10. $8336800_{\frac{1}{1}}{ }^{\circ} 0$.
11. 1111174_{65}^{53}.
12. $580662_{5 \text { 3. }}^{3.9}$.
13. 11911990 bushels.
14. 1640450 s bushele.
15. $6077 \frac{21}{28}$ bushels.
16. $\$ 36 \div \frac{4}{8}$.
17. 60 lbs .
18. $128909 \frac{3}{\square} \frac{2}{6}$.
19. \$1588: ${ }^{\frac{8}{8}}$.

Exercise 14.

2. 7313_{1}^{1105}	5. $310536 \frac{1}{2}^{\frac{1}{3}}$	
3. $7111^{3 \times 10}$?	6. $363006 \frac{1}{12}^{\circ}$.	9. $1134^{\text {a }}$

10. $1002 \frac{5877}{18123}$.
11. $828 \frac{4028}{11057}$.
12. $2867{ }^{-\frac{98}{2} 45}$.
13. $576_{1}^{8684}{ }^{8} 492$.
14. 91874163.
1. 8050.
1. 9258 .
2. $328 \frac{7}{9} \frac{15}{7}$.
3. $3560 \frac{28}{51}$.
4. $205_{\frac{32}{1027}}$.
5. $847_{413 \frac{18}{3} 7}^{2}$.
6. $42-\frac{28}{217}$ days.

Exercise 15

1. $\$ 2879 \cdot 27 \frac{1}{1} \frac{1}{2}$.
2. $\$ 2686 \cdot 53 \frac{1}{3}$.
3. $\$ 668 \cdot 17 \frac{1}{12}$.
4. $\$ 71 \cdot 52 \frac{1}{2}$.
5. $\$ 2623 \cdot 9 \frac{7}{\frac{7}{2}}$.
6. $\$ 3110 \cdot 25$.
7. $\$ 440 \cdot 85 \frac{1}{3}$.
8. $836 \frac{1}{3} \frac{2}{3}$ arree.
9. 67221735.
1. 198328_{438080}^{3060}.
2. $8865 \frac{3035 \frac{1}{794} \frac{1}{1}}{}$.
3. $\$ 23 \frac{1}{2} 9^{\circ}$

Exerctse 16.

1. £179 17s. ; £229 5s. 6d.; £17 8s. 6d.; £104 98. 9d.
 $£ 418$ 11s. $1 \frac{1}{2}$ d.; £194 8s. $10_{5}^{1} \mathrm{~d}$.
2. £117 2e. $2 \frac{2}{5} d . ;$ f\%

3. $£ 17811 \mathrm{~s}, 1_{5}^{4} 7$, to $6 \mathrm{~s} \cdot 1,0 \frac{1}{5} \mathrm{~d}$;

Exercise 17.

1. $\$ 12116 \cdot 12$.
2. $998166 \cdot$ วె3.
3. $\$ 752 \cdot 80 \frac{1}{2}$.
4. $\$ 5732 \cdot 49$.
5. \$1778:37.
6. $\$ 972 \cdot 6 C_{\frac{1}{2}}$.
7. $\$ 5.9 .57$.
8. $\$ 22218 \cdot 08$.
9. $\$ 409696 \cdot 14$.
10. \$S903.07.
11. $\$ 9178 \frac{7}{67}$.
12. $\$ 126 \cdot 13_{1}^{3 G}$.
13. $24_{7^{\frac{7}{3}}{ }^{\frac{8}{2}} \text {. }}$.
14. $6: \frac{1}{127} 765$.
15. \$152 14.
16. $\$ 33 \cdot 95 \frac{9}{27}$.

Exercise 1

1. 6016 cub. ft .
2. 103852 oz .
3. 0.3222 fir.
4. 800453965 in.
5. 291454023 drs .
6. 2472 qts .
7. 13608552 line
8. $19069^{\prime \prime}$.
9. 5738 pts
10. 50 in .
11. 10661357 sec .
12. 299624 mills.

13. $\$ 2269 \cdot 75 \frac{5}{\frac{5}{7}}$
14. $\$ 229.69 \frac{1}{6}$.
15. $\$ 2819.99$ I
16. 2856 qts
17. 20721 scr .
18. 26304 oz .
19. 690934 iu.
20. $595 \mathrm{~S} 34 \frac{1}{\mathrm{t}} \mathrm{sq}$. yd.
21. 853437840 sec .
22. 3878 hrs .
23. 1599734 far.
24. 1112 pts.
25. 5224 g grs.
26. 36136690704 sq.in. 30. 104695 far.

Exercise 19.

L. 1 mile 1 fur. 3 per. 3 yds. 7 in .
2. 4 days 6 hrs. 22 min .
3. 14 lbs .1 oz .5 drs. 7 grs .
4. $41 \mathrm{c} .2 \mathrm{c} . \mathrm{ft} .10 \mathrm{cu} . \mathrm{ft} .642 \mathrm{cu}$. in.
5. 31 שh. 5 bush. 2 pk. 1 1t.
6. 33 (cul), yds. 23 cub. ft.
7. 1133 F. e. 3 qre.
8. 12 wke. 5 laye.
9. 3 to 3 ti ewt. 3 qre. 24 lbs. 1 oz. $\frac{1}{}$ drs.
10. 1 r. 3 per. 22 ydr .4 ft. 101 in.
11. 170 tuus 19 gal. 3 qts.
12. 5 yrs. 15 s days 14 hrs. 34 min. 2 sec.
12. $£ 178642$ 11s. $11 \frac{1}{2}$.
14. 298 E. $\$ 71$ dime 4 cts. 9 mills.
i5. 3 a. 1 r. 18 per. 15 jds .2 ft . 16 in.
16. 136 c. 90 c. ft.
17. $\mathfrak{£} 3832 \mathrm{In} .5 \mathrm{~d}$.
18. 4 libs. 1 oz 19 dwt .
19. 221 bush. 1 pk. 1 gal.
20. 45833 F. e.
21. 8 tons 11 cwt 1 qr .24 lbs .
2.2. 3 miles 1 fur. 36 per. 5 yds. 1 ft .
23. $305^{\circ} 3 s^{\prime} 31^{\prime \prime}$.
24.14 cub. yds. 8 ft. 781 in.
25. 1370 lbs .3 dre. 2 scr. 7 grs.
26. 117 lbs .10 oz .5 dwt. 6 grs.
27. 11 cwt .2 qrs. 16 lbs 13 oz. 10 drs.
23. 9 a. 3 r. 8 per. 6 yds. 1 ft .75 in.
29. 17 lea. 1 mile 2 fur. 7 per. 1 ft. 6 in .
30. 9930 fa. 2 ft .2 in .

Exercise 20.

1. £1290 0 0 - 28.1.
2. 195 miles 6 fur. 16 per. 2 yds. 1 ft .6 If .
$32 S 1 \mathrm{Jbs} .5 \mathrm{oz} .6 \mathrm{drs}$.
3. 212 cwt. 2 qrs. 12 lbs .15 oz .
4. 160 yds .2 ft .1 in.
5. 179 bu .1 pk .1 gal .
6. $104 \mathrm{c} .4 \mathrm{c} . \mathrm{ft}$.
7. 433 a. 2 r.
8. 28 yds .2 qrs. 2 nit. 2 in.
9. 154 lhs. 3 oz. 6 dwt. 18 gre.
$1148 \mathrm{gal} .0 \mathrm{qt} .1 \mathrm{f}^{\mathrm{t}}$.
10. 226 sq . per. 7 jils. 5 ft .36 in .
11. 100 wks. 4 days 3 hrs.
12. $£ 266$ 14s. 91才 d.
13. 169 qre. 2 lbs .2 oz .
14. 178 Eng. ells 4 qre.
15. 51 pks. 0 gal. 3 qts.
16. 440 oz .10 dwt .14 grs.
17. $£ 4785 \mathrm{~s} .1 \frac{1}{4} \mathrm{~d}$.
18. 321 r. 2ς per. 9 yd d. 2 ft .36 in .
19. 223 yre. 27 wks. 3 days.
20. 287 lbs. 0 oz. 5 dro. 2. ser. 8 grs.
23: 291 a. 1 r. 11 per. 20 yds .1 ft . 103 in.
21. 73 lea. 2 miles 7 fur. 27 per. 2 yds .2 ft .10 in .5 lincs.

Exercise 21.

1. 98 days 4 hrs .2 min .
2. 73 miles 0 fur. 16 per.
3.1 qr .15 lbs .11 oz .
3. 4 SI gal. 2 qtè. 1 pt.
4. 378 a. 1 r. 30 per.
5. $£ 1642 \mathrm{~s}$. 1 롤 d .
6. $78 \mathrm{lb}=9 \mathrm{oz} .7 \mathrm{dwt}$.
7. 78 yds. 3 qre. 3 na.
8. 175 hrs .54 min .55 sec .
9. 177 c. 5 c. ft. 15 cub. ft.
10. $27 \mathrm{oz} .6 \mathrm{drs}$.2 scr .
11. $\frac{4}{}$ fur. 39 per. 4 yds. 1 ft .6 in.
12. 74 ewt. 0 qrs. 21 lbs.
13. 62 bisk. 3 pks. 1 gal.
14. 69 years 47 weeks 4 days.
15. 59 r . 3 per. 24 Jde .2 ft .36 in
16. £57 6z. 67 $\frac{1}{2}$ d.
17. 80 oz. 18 dwt. 9 grs.
18. $£ \$ 419 \mathrm{z} .6 \frac{1}{2} \mathrm{~d}$.
19. 52 cub. y ds. 12 ft .1461 in .
20. $\$ 2$ hhde. 0 bar. 24 gal. 2 qt.
21. 73 drs. 1 ecr. 8 grs .
22. 6 Flem. e. 0 qrs. 1 na.
24.47 sq . per. 16 yds .7 ft .36 in.

Exercise 22.

1. 41 days 10 hrs .16 min .32 sec .
2. 73 qre. 14 lbs .12 oz .
3. 134 bush. 1 pk .1 gal. 2 qts.
4. $\mathfrak{f} 2156$ 19s. 9d.
5. 125 gal .0 qt. 1 pt .
6. 838 Ibs .1 oz .10 dwt .
7. 208 miles 0 fur. 10 per.
8. 1148 years 81 days 23 hrs .
9. 50 S cub. ft. 53 in .
10. 1343 c. 1 c. ft. 4 cub. ft.
11. 211 r. 9 per. 1 yd .6 ft .108 in .
12. 233 cwt .3 qrs .1 lb .
13. $£ 1150$ 10a. $2 \frac{1}{4} d$.
14. 783 per. 1 jc .0 ft .1 in .
15. 57 gq . per. 23 yds .6 ft .
16. $1975 \mathrm{yds}$.3 qre. 0 na. 18 in.
17. 169 Hes. 4 oz. 7 dir. 1 ecr.
18. 58 qrs. 8 lbs .12 oz .
19. 557 miles 4 fur. 22 per.
20. 705 wks 1 day 1 hr .58 min .
21. 123 pks .1 gal. 2 qts. 1 pt.
22. 1315 cwt .1 qr .7 lbs.
23. $£ 1529$ 18. 9 空d.
-4. 670 a. 3 r. 24 per. $5 y$ ds. 6 ft . lus in.

Exercise 23.

1. $£ 119910$ s. 4 d .
2. 1356 lise 6 oz .6 dwt .
3. 339 diys 17 houre 57 min .
4. 1321 Flem. clls 0 qre. 3 na.
5. 3557 miles 1 fur. 32 per.
6. 5515 gal .0 qt . 1 pt.
7. 3639 hours 26 min .24 sec.
8. 1 S 20 a. 1 r .36 per.
9. 11116 oz .4 drs. 2 scr. 19 grs .
10. $£ 45971 \mathrm{~s} .4 \frac{1}{3}$ u.
11. 16582 sq . per. 225 d в. 4 ft .72 in .
12. 9298 cwt .0 qr .8 lbs.
13. 815 years 44 days 4 hours.
14. 1423 cub. y de. 9 ft .1440 is .
15. 6 SO6 bush. 2 pk . 1 qt.

16. $449+2$ per. 2 yds. 1 ft .
17. 102629 hours 5 min .
18. 3105 a. 2 r. 6 per. 18 yds. 1 or T2 in.
19. £516290 128. 6 d .

Exprcise 24.

1. 3073 bush. 3 pks. 1 gal. 2 qts.
2. $£ 1451910$ s. 9 d.
3. 2413 days 22 hours 31 min .
4. 3972 yards 1 ft .5 in .
5. 1253 Jbs .4 oz .19 dwt .
6. 6919 ล. 2 r. 30 per. 25 yds .7 ft. 72 in .
7. 19317 รds. 2 qre. 1 na.
8. 155274 oz. 1 scr. 12 grs .
9. $£ 79392$ 16s. 101 d.
10. 4918 cwt .1 qr .22 lbs .
11. 4885 milcs 7 fur. 5 per. 1 yd. 2 ft.
12. 3889 Eng. clls 2 na. 1 in.
13. 6307 cwt .16 lbs .5 oz .10 drs.
14. 20146 a. 1 r. 6 per. 16 yd.s. 0 ft .45 in .
15. 6575 years 146 days 11 hours 59 min .6 sec.
16. 307 c. 3 c. ft. 2 cub. ft.
17. 23583 bush. 2 pks. 3 qts.
18. 65706 lbs .2 drs .2 ser. 5 grs .
19. $£ 136344$ 16s. 3 d.
20. 8610 lbe. 8 oz. 8 dwt. 13 grs.

Exercise 25.

1. $£ 24411 \mathrm{~s}$. 7d.
2. 11 cwt . 2 qrs. $10 \mathrm{lbs}, 10 \mathrm{oz}$. 210 drs .
3. 24 days $16 \mathrm{hr} .4 \mathrm{~min} .8 \frac{\mathrm{sec}}{}$.

4, 76 bush. 3 pks .1 qt . $0 \frac{1}{6} \mathrm{pt}$.
5. 696 miles 5 fur. 8 pcr. 2 ft. 9 in.
6. 96 sๆ. per. 22 yds. 7 ft .24 in .
7. 22 lbs .3 oz .7 drs. 1 scr.
8. 5 gals. $3 \mathrm{c}_{\mathrm{t}} \mathrm{ts}$. $0 \frac{1}{4} \mathrm{pt}$.
$9 £ 1147$ 1ค. $10{ }_{3}^{5}$ 5. d .
10. 79 cwt 2 qrs. 14 lbs .1 oz. 08 \% drs.
11. $£ 83 \mathrm{~s}$. $7_{21}^{20} \mathrm{~d}$.
12. 4 fur. 10 per. 4 yds. 1 foot 0_{35}^{30} in.

15. 5 aq. per. 4 yards 3 fect $35_{4^{5} 3 y^{5} \mathrm{in} \text {. }}$
36. $1 \mathrm{lb} .5 \mathrm{oz} .0 \frac{55}{\frac{5}{2}} \mathrm{dre}$.
17. 8 yrs. 38 dajg 21 hrs .2 min. 5 sec.
18. $10 \mathrm{oz} .1 \mathrm{dr} .1 \mathrm{scr} .8 \frac{80}{7} \mathrm{grs}$.
19. 14 r. 14 per. 1 yard 5 feet $3_{1 \frac{1}{1} \frac{0}{2}}^{2} \mathrm{in}$.
20. 3 wks. 4 days 21 hrs .18 min . $4 \frac{818}{18} \mathrm{sec}$.
21. $£ 82618 \mathrm{~s} .5 \mathrm{~d}$. $\frac{105}{112}$ far.
22. $5 \mathrm{c} .3 \mathrm{c} . \mathrm{ft}$. $2_{5}^{255} \mathrm{cul}$, ft.
23. $48^{\circ} 47^{\prime} 3_{148}^{517} /$.
24. 5 French ells 2 qre. 3 na. 2 पुन्ब in .
25. 13 miles 5 fur. 18 per. 2 yds . $2 \mathrm{ft} .6_{6}^{4} \frac{3}{7} \mathrm{in}$.
26. £11 178. $5 \frac{1}{4} \mathrm{~d}$. $\frac{11}{1} \frac{1}{7}$ far.
27. 9 lbs .5 oz . 16 dwt. $11_{60 \mathrm{i}}^{10}{ }^{9} \mathrm{grs}$,
28. 17 bnsh. 1 gal. $1 \frac{100}{117} \mathrm{pt}$.
29. 4 days 12 hours 7 minutes $23_{\text {atila }}^{300} \mathrm{BCC}$.
30. 11 cwt .2 qus. 2 lbs .12 oz $11_{3}^{2 \frac{3}{7}} \mathbf{~ d r s}$.

Exercise 26.

1. $763 \frac{15594}{83682}$.
2. $77 \frac{455589}{6} 96$.
3. $1200_{9}^{\frac{8}{2}+\frac{6}{7} \frac{8}{5}}$.
4. 153 -5679.
5. $207 \frac{226107}{357820}$.
6. $103_{64,53}^{-585}$.
7. $92 \frac{13+0}{1547}$.
8. $142 \frac{17275 \%}{4} \frac{8}{5}$.
9. $33 \frac{3}{3} 7 \frac{20}{8} 97$.
10. $145 \frac{23}{210}$.
11. $39 \frac{38}{9} \frac{87}{27}$.
12. $46 \frac{168}{88}$.
13. $1917_{2}^{9} \frac{98}{24} 400$.
14. $154 \frac{222585}{88} \frac{8}{6} \frac{4}{6}$.
15. $24 \frac{34}{5999}$.
16. $18 \frac{15}{2} \frac{50}{89}$.
17. $23 \frac{3}{59}$.
18. $4 \frac{1675}{1856}$.
19. $1057_{19}^{92}{ }^{9} \frac{9}{6}$.
20. 87_{12939}^{9162}.

Exercise 27.

1. 4025 ft .
| 2.176 lbs .9 oz .6 dwt .6 grs.
2. DCCXIV ; MCXI; MMDCCIV : XOMDCLXXI; DCCCXMMMCDLXXI; XXXMCMXVMMCLXIX.
3. $£ 1668.1_{24}^{2}$ d.
| 5.160 lbs .1 oz. 17 dwt .12 grs.
4. One trillion two billions forty-seven thousand and six; nine hundred quadrillions eleven trillions one hundred and ten billions cleven millions one hundred and ten thousand and eleven; sixteen billions seven hundred and fourteen millions nine hundred and sixty-seven thousand nine hundred and four; seventy-ol:e billions three huadred millions four hundred thousand and two hundred.
5. 2 miles 2 fur. 26 per. 3 yds . 2 feet.
6. 7889 tons 2 cwt. 24 lbs; \$15778224.
7. 3 wks. 4 days $13 \mathrm{hrs}, 10 \mathrm{~min}$. $19 \frac{18}{1888} \mathrm{sec}$.
8. $\$ 792.05$.
9. 12 lbs .2 oz .5 dwt .
10. $\$ 14 \cdot 11$.
11. $10001 ; 50500 ; 3333 ; 2650090$; $89044 ; 450001709$; 1094000 ; $100+900702$.
12. $1625 \frac{123}{16}$.
13. 6545238.
1. 7 a. 1 r. 31 per. 18 yards 6 ft . 36 in.
2. One $£ 85 \mathrm{~s}$. and each of the others $£ 43 \mathrm{~s}$.
3. Ist \$124, $2 \mathrm{~d} \$ 155$, and 3 d and 4th each $\$ 232.50$.
4. A $\$ 10 \cdot 19 \frac{7}{12}$.
5. $5059 \mathrm{yds}$.3 qrs. 1 na.
6. 3 tons 11 cwt. 3 qra. 21 lbs . $6 \mathrm{oz} .6 \frac{\mathrm{drs}}{}$.
7. $66+6{ }_{3}$ fathoms.
8. 35203.
1. 4600 .
2. 9673.
1. $\$+12 \cdot 50$ and $\$ 266.50$.
2. 9566172.
1. 11913 bush.

s0. 772.
2. ET 12n. 10.
3. 4675 gais ,
4. 217 yards 3 feut.
5. A $\$ 374.80$ and B and C each \$187.40.
6. 1st receiven 2 ise cub. ft., 2 d 845 cub. fi., and 3d 1153 cub. ft.
7. 69 a. 13 per. 10 yds. 10 S in.
8. 3 miles. 4 fur. 33 per. 5 yds , 6 in.
9. $£ 78250$ or $\$ 313000$.
10. 413.
1. 114 lbs .15 dwt ; $\$ 837500$

Exercise 28.
164.
2. 317.
S. 116.
4. 11.
6. 42 .
\%. They have none.

- 29.

8. 117.
1. 75.
1. 1127.
1. 201.
1. They have none.
2. 23.
1. 13.
1. 3.
1. 17.
1. 58.
1. They have none.
2. 97.
1. 4

Exercise 29.
t. 90.
2. 330 .
3. 420 .
4. 5040 .

ธ. 730 .
b. 3168.
7. 110880.
8. 4200.
9. 2920.
10. 1008.
11. 50400 .
12. 12464.
13. 144.
14. 25200.
15. 1260.
16. 3465.
17. 1441440
18. 69300.
19. 166320
20. $192 a$

Exercise 30.

1. $77,99, \frac{297}{17}, \frac{440}{11}$.

2. $2 \frac{8}{1} \frac{21}{3}, \frac{7969}{13}, \frac{12061}{13}, \frac{52}{13}$.

‥ $\frac{127692}{611}, \frac{248627}{611}, \frac{182029}{611}, \frac{1255}{611}$.

Exercise 31.
${ }^{1.4 .4}$
2. $\frac{1,01}{11}$.
3. 143.
4. $\frac{358}{5}$.
5. $\frac{6462}{40}$
6. $\frac{856}{31}$.
7. $\frac{5036}{27}$.
8. $\frac{4 n 001}{200}$.
9. $\frac{440331}{617}$.
10. $\frac{1558}{17}$.
11. $\frac{82}{13}$.
12. $\frac{23691}{11}$.
13. $\frac{573316}{929}$.
14. $\frac{7523}{18}$.

Exercise 32.

1. $17 \frac{3}{4}$.
2. 154 .
3. 1282.
1. $61075 \frac{37}{4} \frac{7}{2}$.
2. $37 \frac{11}{19}$.
3. $28 \frac{4}{7}$.
4. $17 \frac{193}{643}$.
5. $130 \frac{129}{16} \frac{9}{32}$.
6. $25 \frac{4}{87}$.
7. $157 \frac{26}{95}$.
8. $1048 \frac{107}{122}$.
9. $6 \frac{11}{17}$.
10. $94 \frac{35}{4}$.
11. $9 \frac{6}{13}$.

Exercise 33.

1. $\frac{7}{17}$.
2. $\frac{794}{1091}$,
3. $\frac{3307}{33} \frac{1}{31}$.
4. $\frac{31}{3}$.

Exercise 34

1. $\frac{11}{20}, \frac{15}{20}, \frac{16}{26}$, and $\frac{1}{24}$.
2. $\frac{2522}{630}, \frac{279}{680}, \frac{280}{630}, \frac{420}{630}$, and $\frac{315}{630}$.
3. $\frac{19}{126}, \frac{108}{1286}, \frac{70}{126}, \frac{105}{126}$, and $\frac{37}{126}$.
4. $\frac{105}{360}, \frac{330}{360}, \frac{216}{360}, \frac{240}{360}, \frac{255}{360}$, and $\frac{260}{3664}$
5. $\frac{153}{180}, \frac{162}{180}, \frac{48}{180}, \frac{115}{186}, \frac{100}{180}$, and $\frac{144}{120}$.
6. $\frac{40}{120}, \frac{30}{120}, \frac{24}{120}, \frac{20}{120}, \frac{15}{120}$, and $\frac{12}{1200}$

9．$\frac{3553}{4} 15 \frac{3}{9}, \frac{315}{4} 15 \frac{5}{9}$, and $\frac{3556}{4} 199$.

11．$\frac{37}{428}, \frac{785}{7} \frac{5}{5}, \frac{364}{420}$ ，and $\frac{3}{42} \frac{20}{20}$ ．

Exercise 35.
1．$\frac{7}{65}$ ．
2．$\frac{4}{19}$ ．
3．$\frac{18}{6} 1$.
1．$\frac{3}{3}$ ．
5． 1.
6．$\frac{97}{99}$ ．
7． $19 \frac{1}{2}$ ．
8． $1 \frac{29}{80}$ ．
9．$\frac{9}{22}$ ．
10．$\frac{4}{33}$ ．
11． $1110 \frac{123}{60}$ ．
12． $6 \frac{2}{7}$ ．

Exercise 36.

1． $3 \frac{1}{3}$ ．
2．$\frac{7}{99}$ ．
3．告者．
4．$\frac{1}{2} \frac{1}{3}$

5． $2 \frac{3}{4}$ ．
6．$\frac{77}{680}$ ．
7．$\frac{306}{325}$
8．$\frac{62}{133^{2}}$

Exercise 37.
1．At of a meek．
2．䧉㝵 of a qr．
B．$\frac{4}{15}$ of Flem．eil．
4． $126 \frac{6}{19}$ per．

5．$\frac{4}{28} 90$ of a yd ．
6．$\frac{37}{17} 7^{2}$ ．
7．$\frac{1225}{20064}$ ．
8．$\frac{27}{770}$ of $\mathrm{a} £$ ．

9．$\frac{13}{135} \cdot$
10． $1 \frac{112}{136}$ ．
11．$\frac{87}{143}$ ．
12．$\frac{512}{8775}$ ．

Exercise 38.

1．${ }^{131} 1200$.

8．T15825599．
4． 81.

6．$\frac{75}{6} \overline{6}$ ．
7．$\frac{11^{7}}{62}$ ．
8．$\frac{8.4927}{1114638}$ ．
9．$\frac{17}{335}$

9．$\frac{995}{735 \sqrt{2}}$ of a week．
10．$\frac{33600}{323^{3}}$ ．
11． $2 \frac{2990}{2}$ ．
12．$\frac{{ }^{3}}{2800}$ of a $£$ ．

Exercise 39.

1． 1 day．
2． 1 pk． 1 gal．
3． 1 bar． 10 gale． 2 qts．$\frac{3388}{465} \mathrm{pt}$ ．
4． 9 oz ．
5． 6 per． 7 yds． $0 \mathrm{ft} .92 \frac{4}{7} \mathrm{in}$ ．
6． 2 na． $1_{170}^{87} \mathrm{in}$ ．
7． 6 s．

8． 35 a． 2 r． 20 per．
9． 13 miles 2 fur．
10． 2 cwt． 2 qre． $1 f 1$ lbs． 10 na $10 \frac{2}{3}$ dre．
11． 2 oz .3 drz .2 scr． $16 \frac{98}{7} \frac{9}{7} \mathrm{~g}^{\mathrm{man}}$
12． 1 8． $0 \frac{36}{77} \mathrm{~d}$ ．

Exercise 40.

1． 2526 ．
2． $1 \frac{3083}{3466}$ ．
3． $3 \frac{1}{20}$ ．
4． $13 \frac{111}{40}$ ．
5． $243 \frac{409}{4 \frac{9}{2}}$ ．
6． $38 \frac{239}{630}$ ．
7． $233 \frac{1005}{1463}$ ．

8． 1880.9 .9.
9． $80 \frac{107297}{135660}$ ．
10． $51 \frac{86}{105}$ ．
11． $5 \frac{3047}{4410}$ ．
12． $16 \frac{21}{440}$ ．
13． $54 \frac{127}{308}$ ．
14． $50 \frac{5}{7} \frac{4}{7}$ ．

15． $138_{\frac{8}{15}}$ ．
16． $350 \frac{2955}{475}$
17． $4 \frac{77014}{910910 .}$
18． $81 \frac{5}{84}$ ．
19． $5 \frac{53}{590}$ ．
20． $56 \frac{53}{61} \frac{3}{6}$ ．

Exercise 41.

1．$\frac{75}{187}$ ．
2．$\frac{44}{45}$ ．
3．$\frac{193}{3} 0 \frac{3}{8}$ ．
4． $145 \frac{43}{126}$ ．
5． $161 \frac{5}{48}$ ．

6． $886 \frac{27}{6} \frac{1}{4}$ ．
7． $9 \frac{167}{182}$ ．
8． $195 \frac{182}{4} \frac{8}{2} \frac{1}{0}$ ．
9． $5 \frac{2}{3}$ ．
10．$\frac{21551}{39270}$ ．
11． $40 \frac{59}{1320}$ ．

12． $5 \frac{52015}{67652}$
13． $8 \frac{1}{2} \frac{93}{940}$ ．
14． $85 \frac{511}{1622}$
15．$\frac{54908}{110979}$ ．
16． $158 \frac{17}{504}$ ．

Exercise 42.

1．$\frac{6}{77}$ ．
2． $7^{8} 7$ ．
3． $2 \frac{5}{11}$ ．
4． 8789 ．

9． $2712 \frac{18}{56}$ ．
10． $190 \frac{10}{56}$ ．
11． $43 \frac{12}{29}$ ．

1S. 950$\}$.
14. 144.
15. $29 \frac{3}{32}$.
16. $4 \frac{1335284}{84} 45$.
17. $\frac{162}{84}$.
18. $\frac{16}{65}$.
19. $211 \frac{1157}{65}$.
20. $72 \frac{104949}{6} \frac{4}{37}$ 年。

Exercise 43.

1. 14.
1. $\frac{24}{665}$.
2. $3 \frac{1}{39}$.
3. 1_{4}^{23}.
4. $\frac{1071}{121}$.
5. $40 \frac{97}{189}$.
6. $2 \frac{4}{19}$.
7. 5_{27}^{27}.
8. $1 \frac{18613}{8011}$.
9. $52 \frac{284}{408}$.
10. $\frac{72}{39}$.
11. $26 \frac{5}{\frac{5}{4}}$.
12. $4 \frac{569}{1144}$.
13. $\frac{128}{75}{ }^{5}$.
14. $277 \frac{3}{4} \frac{9}{81}$.

Exercise 44.

1. $£ 2 \approx 8.3{ }^{8}{ }^{9} \mathrm{a}$.
2. 17 blohl. 2 pks. 3 qts. $0 \frac{1}{6} \mathrm{pt}$.
3. $5 \mathrm{lbs}, 14 \mathrm{oz}$. $4 \frac{1}{9}$ dre.
4. 1 r .3 p per. $12 \mathrm{yds} .8 \mathrm{ft} .97 \frac{5}{7} \mathrm{in}$.
5. 3 cwt. $24 \mathrm{lbs}, 9 \mathrm{oz}$. $2 \frac{9}{7} \mathrm{drs}$.
6. 2 a. 23 per. 25 yde. $83 \frac{1}{5} \frac{1}{6}$ in.

8477 miles 7 fur. 30 per. 4 yds. 10늡흥 in.
7. $19 \mathrm{lbs} .7 \mathrm{oz} 1_{1}{ }^{\circ} \mathrm{dre}$.
8. $26 \mathrm{lbs} .9 \mathrm{oz} .6 \mathrm{drs} .6 \frac{3}{\mathrm{~g}} \mathrm{grs}$.
9. 25 yds. 2 qrs. 1 na. $\perp_{\frac{1}{8}}$ in.
10. 2 cwt . 10 lbs .14 oz . $11 \frac{7}{11} \mathrm{drs}$.
11. 33 bush. 3 pks. 2 qts. $1 \frac{1}{3}$ pts.
12. 5 wks. 5 days 20 hours 9 min . $12 \frac{19}{28} \mathrm{sec}$.
13. 1 lb .9 oz .18 dwt .22 grains.
14. 3 a. 2 r. 5 per. 11 yds. 8 ft . 63 in.
15. $£ 1268.2 \frac{8}{35} \mathrm{~d}$.
16. 2 cwt .2 qra. $6 \mathrm{lbs}, 15 \mathrm{oz}$ $6_{58 \%}^{509} \mathrm{drs}$.

Exercise 45.

1. Twenty-seven hundredths; forty-three thousandths ; seven thousandths; eix thousand nine hundred and fourteen tenths of thousandths ; eight thousand one hundred and ninety-six millionths; eeventy-one thousand four hundred and twenty-three hundredths of millionths.
2. Six and seven tentbs; nincty-three, and forty-two hundredths; ow hundred and forty-seven, and one thousaud three hunded and ninety-four tenths of thousandthe ; two huindred ansi seventeen; and nine tenths of miliontai
3. Seventy-one and eghty-aine nundredths of thousandths ; ons hundred and sixty-seven, :nd one hundred and ninety-thres thousandths: ninety-one, and eight thousand six hundred and seventy-four tenths of millionths.
4. Fire millions six handred and seventy-four thousand three hundred and seventy-eight, and mine hundred and fourteen thousand serell hundred and eighty-six billionths; seventy-one millions three hundred thousand four hundred, and sis hundred thousand four nundred and seven trillionths.

Eiercise 46.

1. $\cdot 09 ; \cdot 0076 ; \cdot 000447$.
2. 00000700016.
3. 0000005029011 .
4. 87403.
1. 709 .
C. $496719 \cdot 0011004$.
2. $7691006 \cdot 000014700930$.
3. $1 \cdot 71717$.
4. $749 \cdot 2000049$.
5. 72.970704

Exercise 47

1. 1742.4180 .
2. $1274 \cdot 05148$.
3. $10185 \cdot 628493$.
4. $916 \cdot 91238$.
| 5. 1027.3333.
5. $11478 \cdot 9156$.
6. $161 \cdot 0993$.
S. 2011 - 84264.
7. 43.9445714. 10. $8 s \cdot s 5938$.
8. $161 \cdot 09306$.
9. $535 \cdot 6531$.

Exercise 48.

1. $705 \% 753$.
2. $92 \cdot 11$.
3. $44 \cdot 73496$.
4. 7462746.
1. $9400 \cdot 07567164$.
2. $107 \cdot 9055876$.
3. $4 \cdot 498$?
4. $0016+5098$.
5. $677 \cdot 686149$.
6. $10581 \cdot 13056$
7. 727628.
1. 3444.

Exercise 49.

1. 72.922 .
2. $11 \cdot 681$.
3. $4186 \cdot 506$.
4. $12742 \cdot 178$
5. 3.174.
6. $1 \cdot 003$.
7. $80 \cdot 284$.
8. $100077 \cdot 5100$
9. $137 \cdot 28$.
10. 6.341.

1i. 843.
12. 2.324 ,

Exercise 50.

© 2s5714; - 4
2. 5 5; ; $18 ; \cdot$ •.
3. $\cdot 9230 \ddot{6}$; $\cdot \mathbf{1} \dot{8} ; \cdot 95$.
4. 69583 ; -57894736542105263i ; -346938775510+

- - S27160493;
$419551931826883+$

6. © 063 ; - $155080213903743 \grave{3}$.
7. $544809228039+$;
$31 \cdot 5862068965+$.

8. $8600372419908+$;

17:0280154849+
10. 12:5294117647058823; -12499999886093 +

Exercise 51.

1. $\frac{1}{9} ; \frac{26}{3} ; \frac{4}{9}$.
2. $\frac{7}{3} ; \frac{347}{999} ; \frac{22}{101}$.
3. $\frac{22007497}{1111111} ; \frac{3}{11}$.
4. $\frac{25}{198} ; \frac{206}{495}$.
5. $21133 ; \frac{13}{60} ; \frac{2093}{9 y 0} 0$
6. $\frac{629}{6500} ; \frac{1657}{\underline{6} 999 .}$
7. $\frac{6 \pi}{9} \frac{43}{0} 00 ; \frac{3176}{2+976}$.
8. $19819, \frac{47}{380}$.
9. $\frac{11213}{96000} ; \frac{21}{1650}$.
10. $\frac{2773}{16600} ; 1 ; 1$ 厚.
11. $27 \frac{43}{99} ; 17+\frac{104}{9} \frac{5}{5}$.
12. $467 \frac{411}{37300} ; 16 \frac{3299}{199860}$

Exercise 52.

1. 159.
1. $9 \frac{119}{49} 9^{9}-$
2. $3 \frac{19}{4} \frac{937}{60}$.
3. $\left.5 \frac{2092}{865}\right)^{2}$.
4. $159 \frac{97}{995}$.
5. $\frac{1875}{89+4)^{6}}$.
6. $\frac{H 1041}{782}$.
7. $45 \frac{1171}{222 \pi 6}$
8. $\frac{5140}{87639}$.
9. $\frac{54351}{11620}$

Exercise 53.

1. -22738095.
2. 6015625.
1. 10449218.

\& 31918772
5. 25351239.
6. 56018 .
7. $84791{ }^{\ell}$ j.
8. 12637.
9. $\cdot 0379585$.
10. 2137993.
11. - 8826025.
12. 2.7001379.

Exercise 54.

1. 2 s. 11d. 9136 far.
2. 5 days 3 min. $28 \cdot 224$ sec.
3. 2 lbs .1 oz .6 drs .6 .72 grs.
4. 4 fur. 36 per. 3 yds. 6.048 in .
5. 3 r. 26 per. 17 yds. 5 ft . $124 \cdot 31808 \mathrm{in}$.
C. 2 F. e. 3 na. 1-14318 in.
6. θ hours 15 min . $52 \frac{1}{5} \mathrm{sec}$.
7. 4 bhds. 1 bar. 13 gals. 2 qts. $1 \cdot 7208 \mathrm{pts}$.
8. 3 r .13 per. 13 5ds. $5 \mathrm{ft} .73 \xi \xi_{\text {, }}$.
9. $£ 918 \mathrm{~s} .3 \mathrm{z}$ む. 44 far.
10. £21 13E. $10 \frac{1}{3} \mathrm{~d}$. 828 far.
11. 9 years 53 days 13 hrs 58 min. 19.92 sec.
12. $\$ 0.343191$.
13. 17 sq. yds, $6 \mathrm{ft} .129-492 \mathrm{in}$.
14. 2 tons $17 \mathrm{cwt} .1 \mathrm{qr} .2 \cdot 3807 \mathrm{f}$ lbs.
15. $£ 47$ 15s. $4 \frac{1}{4}$ d. 049 far.

Exercise 55.

1. $\$ 2377883 \cdot 3333+$
2. 13860.
1. $\$ 78 \cdot 6425$.

2. £16284s. $1 \frac{1}{3} \mathrm{~d}$.
3. \$168729.
4. $17103_{\frac{51}{163}}$.
5. A $\$ 2999 \cdot 4 \frac{2}{5}$ and B and C each $\$ 2249 \cdot 62 \frac{1}{3}$.
6. $\$ 117099$.
7. $\$ 113 \cdot 64 \%$.
8. DCCIV ; MCXI; M $\bar{X} D C C C L X X V I ; \overline{X X M M M C D L X X I ; ~}$ MXCXLMMCCCLXXI.
9. $700000004020 \cdot 0000006200019$.
10. 22816.
1. $12 \frac{\mathrm{\sigma}}{7 \mathrm{~g}}$.
2. $\cdot 0902777+$
3. 274.

18. 14791572 in.
19. 5 fur. 28 per. $4 y$ ds. 1 ft . 024 in .
20. 4 yd . $2 \mathrm{ft} .2 \cdot 566 \mathrm{in}$.
21. Greatest $\frac{1}{\text { is }}$ and least $\frac{9}{17}$.
22. $2 \frac{7}{16} \mathrm{yds}$.
23. \$252.057.
24. 602790 doz.; $\$ 119$ and $\$ 107$.
25. 110880.
26. $1170 \frac{98}{125}$.
27. 65902.
28. $39 \mathrm{lbs} .6 \mathrm{oz} .15 \frac{10}{20}$ drs.
29. 118•5904002
30. $\frac{75}{376}$.
31. $\$ 7688157$.
32. $8 \frac{1}{83}$.

Exercise 56.

1. $1 \frac{14}{4}, 13,24,14 \frac{1}{4}, 5 \frac{1}{8}$.
2. $6.4 \frac{4}{6}, 3 \frac{5}{7}, 4,64 \frac{1}{4}, 2 \frac{1}{1}$.
3. $3 \cdot 5, \cdot 642,8,9 \dot{6}, \cdot 703,5 \cdot{ }^{\circ}$.
4. $13,5 \cdot \dot{3}, 5 \cdot 6,15 \cdot 857,20 \cdot 183$ 5.758.
5. Greatest $47: 79$, least 16.33 .
6. Greatest $11: 3$, least $164: 55$.
7. Greatest $176 \cdot 16 \cdot 4$, least 8.89 .
s. $11: 16$.
8. $27 \cdot 187$.
9. $12: 1$.
10. $12: 5$.
11. $2048: 7245$.

Exercise 57.

1. 120.
1. 3_{13}^{7}.
2. $4 \frac{7}{11}$.
3. 151:.
4. 161 .
5. $3 \frac{1}{2}$.
6. 12 .

8. 70.	15. $30{ }_{0}^{3}$ days.
9. $4 \frac{13}{2}$.	16. $24 \frac{1}{2 \frac{3}{3}}$ weeks.
10. $\frac{1}{19} 9$.	
11. 9900.	18. \$35-527.
12. \$143.50.	19. \$20-3903.
13. £217 28. $7 \frac{1}{2}$ d.	20. \$186-30.
14. \$445*80.	

Exercise 58.

1. 40 a .2 r .
2. $\$ 6.50$.
3. 116 men .
4. 166_{3}^{3} daya,
5. $\$ 4 \cdot 0514$.
6. $\$ 9936 \div 25$.
7. $\$ 312.5518$.
8. $\$ 125 \cdot 11975$.
9. $\$ 16787 \cdot 40$.
10. $\$ 1264 \cdot 3717$.
11. $£ 3708.3{ }_{7}^{\circ} \mathrm{d}$ d.
12. $10 \frac{1}{2}$ months.
13. £291 133. $9 \frac{1}{2}$ ㅈd.
14. $\$ 219.77$
15. $\$ 2 \cdot 3625$.
16. $\$ 311 \cdot 48_{\mathrm{j}}$.
17. \$0.7379.
18. $£ 158418.10313 .2$.
19. $\$ 165.0375$.
20. $254 \frac{5}{6}$.
21. $\$ 413 \cdot 2421$.
22. $\$ 4 \cdot 4789$.
23. 9_{8}^{3} weeks.
24. $108 \mathrm{ft} .7 \frac{1}{\mathrm{i}} \mathrm{in}$.
25. 1005 miles 6 fur.
26. $583 \frac{1}{5} \mathrm{yds}$.
27. 53 링.
28. $\$ 50 \cdot 46$.
29. 184 凡. 0 r. $26_{\frac{1}{1} \frac{2}{6}}$ p.
30. $£^{5} 513 \mathrm{~s} .7 \frac{3}{31} \mathrm{~d}$.
31. 2a. Or. $81 \frac{81817}{6 \frac{17}{5}}$ per.
32. ?2.648.
33. $\$ 5 \cdot 270$.
34. $71_{1^{2} \frac{2}{2}} 168$.
35. 9 days.
36. $104 \cdot 5627$.
37. $\$ 811 \cdot 652$.

38. \$1.8214. 40. $40 \frac{1}{2} \frac{7}{2}$.

Exercise 59.

1. $9^{\frac{13}{14}}$ acres.
2. $\$ 712.72$ sis.
3. 64_{15}^{n} reams.
4. 2170 dajs.
5. $200^{8}{ }^{\circ}$ days.
6. $\$ 38.65_{11}^{1} 9 \%$.
7. 252 ft .
8. 7 men.
9. 36 days.
4.). 160_{1}^{7} cord c .
10. 12 daye.
11. 132 days.
12. 136 men.
13. $110 \frac{1551801}{160016^{-}}$
14. 6277 t bushels.
15. $7 \frac{17 x+\frac{1}{4} \frac{1}{2} \text { acres }}{}$
16. $\$ 235 \cdot 07 \frac{89}{121}$.
17. $1923 \frac{1}{2}$ lbs.
18. 10000 lbs
19. $931 \frac{13}{15} \mathrm{oz}$.
20. $1622 \frac{1840948}{2075} 5 \mathrm{yda}$
21. $1824 \frac{113}{3080}$ acres.
22. $\$ 5456 \cdot 25$.
23. 1953 $\frac{3}{2}$ bushele.

Exercise 60.

1. $\$ 629.75$.
2. $\$ 2830 \cdot 83$.
3. $\$ 696211 \cdot 61$.
4. £599 198.
5. $£ 290614 \mathrm{~s} .51{ }_{1} \mathrm{~d}$
6. $£ 901341 \mathrm{~s} .10_{1}^{1} \mathrm{~d}$.
7. $\$ 199175 \cdot 92$ 子
8. $\$ 26418 \cdot 40_{\overline{1} \bar{B}^{1}}$.
9. $\$ 15371 \cdot 02 \frac{12}{12}$.
10. $£ 48716 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$.
11. $£ 56622$ 7ย, $3 \frac{4}{7}$ d.
12. $£ 1469315 \mathrm{~s}, 9 \frac{39}{1 \varphi 0}$ д. $22 . £ 107714 \mathrm{~s} .6 \mathrm{~d}$.
13. $\$ 56435 \cdot 16$.
14. $\$ 21064^{\circ} 58 \frac{1}{10}$.
15. $\$ 42.90 \frac{15}{8 t}$.
16. $\$ 4259: 30_{\frac{11}{2}}^{6}$.
17. $\$ 1677^{\circ} 75^{\frac{1}{16}}$
18. £ $£ 615 \mathrm{~s}$. $10 \frac{1818}{24} \mathrm{~d}$.
19. $\$ 219 \cdot 31_{12}^{13}$.
20. $£ 15408 \mathrm{e} .6{ }_{8}^{3} \mathrm{~d}$ d.
21. £24338 4s. $9 \mathbf{5}_{\frac{0}{0}} \mathrm{~d}_{0}$
22. $\$ 30507 \cdot 40$.
23. $£ 191$ 14s. 7d.
24. $\$ 9353.03 \frac{455}{665}$.
25. $\$ 70 \cdot 91 \frac{2}{2} \frac{2}{2}$.
26. $\$ 755 \cdot 41 \frac{8}{10}$.

27. $\$ 20954 \cdot 12 \frac{13}{1 \times 12}$.
28. $£ 1749$ 68. $3 \frac{1}{2} \frac{18}{2} \frac{2}{9} \mathrm{~d}$,

Exercise 61.

1. $09 ; \cdot 045$.
2. $037 ;-2925$.
3. $062 ; \cdot 082$
4. $1 \cdot 11 ; 1 \cdot 47$.
5. $0975 ; \cdot 6316$.
6. $08 ; \cdot 005$.
7. $00375 ; \cdot 02625$.
8. -002 ; 09375.
9. $\cdot 162$; ${ }^{0} 098$.
10. $1 \cdot 472 ;-2612$.
11. 7 ; 61.
12. 147 ;
13. $87 \frac{1}{2} ; 220$.
14. 111 ; $110 \cdot 7$.
15. $106 ; 7$.
16. $67 \frac{1}{8} ; 32$.
17. $1 \frac{7}{6} ; 1_{6}^{\frac{3}{3}}$.
18. $\cdot 95 ; 121$ '7.
19. $\frac{1}{8} ; 13$.
20. $\frac{1}{20} ; 278$.

Exercise 62.

1. $81644 \cdot 516$.
2. $81079 \% 5$.
3. $\$ 55 \pi \overline{5}$.
4. $\$ 524 \cdot 72$.
5. 17 a .1 r .22 per. 11 yds. 7 ft. $25{ }_{95}^{14}$ its
6. 1 cal. 2 qts. $\mathrm{J}_{1 \times \text {, }}$ pts.
7. 3 ths 1 nz .2 ctwt $223.58{ }^{\circ} \mathrm{gra}$

H mitr 9. i5 12, $\mathrm{r}_{\mathrm{KO}}^{70} \mathrm{~d}$.	$\text { 13. } \begin{aligned} 1111+35 ; \$ 1262 \cdot 93 ; \\ 2154+1 ; \\ \$ 2228 \cdot 70 . \end{aligned}$
11. 63.6807.	a. grass ; 3s.50 a.
12. 2357.6905.	реаs; 43.13 a .

$\begin{aligned} & \text { onts ; } 18 \cdot 16 \text { it } \\ & \text { root clops; } 40-86 \\ & \text { a. fallow. } \end{aligned}$
26383_{20}^{80} killed ng wounded; 800_{1}^{20} taken prisorera

oats ; $18 \cdot 16$ it root crops; $40 \% 8$ a. fallow.
15. 263 $3_{160}^{8 x}$ killed n wounded; $\mathrm{SO}_{\mathrm{T}}^{20}{ }^{20}$ taken prisoners

Exercise 63.

1. $\$ 3$ รัi.
2. $\$ 71 \cdot 002$.
3. \$162.
4. z 2 $28 \cdot 5=595$.
Б. $\$ 33 \cdot 974$.
5. $\$ 58 \%$ - 50 웅.

7. \$11.95.	13. $\$ 325.70 \downarrow$.
8. $\$ 3414444$.	14. 5546.
9. $\$ 05 \cdot 6768$.	15. \$136.17.
10. $\$ 104 \cdot 165625$.	16. $\$ 1807 \cdot 68$
11. $\$ 131 \cdot 11 \%$.	17. $\$ 186 \cdot 25$.
12. $\$ 374 \cdot 10$.	18. $\$ 38.477$.

Exercise 64.

1. $\$ 21.71015$
2. $\$ 179.68 \frac{1}{8}$.
3. $\$ 284 \cdot 80$.
4. $\$ 32 \cdot 77 \%$.

二 $4676: 3326$.
2. $\$ 8575 \cdot 78$.
3. \$1219-2187E.
4. $\$ 1956 \cdot 84552$.
$\left\{\begin{array}{l}5 . \$ 7 \cdot 55_{5}^{2} . \\ \text { 6. } \$ 140 \cdot 59 \frac{1}{2} . \\ 7 . \$ 65 \cdot 7 \cdot \frac{1}{2} . \\ 8 . ~ \$ 714 \cdot 7 .\end{array}\right.$
9. $\$ 186 \cdot 78$.
10. $\$ 153 \cdot 09 \cdot 4375$.
9. $\$ 683 \cdot 4375$.
10. $\$ 9797.3568$,

Exercise 66.

1. $\$ 107 \cdot 14$.
2. $\$ 1057707$.
s. $\$ 182 \cdot 656$.
3. $\$ 124 \cdot 432$.
б. $\$ 10 \cdot 1235$.
4. $\$ 77.4427$.
f. $\$ 113.80\}$.
5. $\$ 4617 \cdot 291 \frac{1}{3}$.
6. $\$ 4162.744$.
7. \$292-4123.
8. $\$ 6669 \cdot 4375$.
9. \$5533.50.
10. $\$ 120 \cdot 7732 \pi 3$.
11. $\$ 51$ - $88895 \frac{5}{5}$.
12. $\$ 11 \cdot 4467185$.
13. $\$ 159 \cdot 7214816$.

Exercise 67.

1. $\$ \cdot 04 ; \$ 03 \mathrm{~b}$; $\$ 055$.
2. $80 \cdot 165$.
3. $\$ 0 \cdot 98$.
4. $\$ 0 \cdot 355$.
5. $\$ 0.665$.
6. $\$ 0.65$
7. $\$ 0 \cdot 265$.
8. $\$ 0.377$.

Exercise 68.

1. $\$ 885 \cdot 36$.
2. $\$ 81.068$.
3. $\$ 88$ 6908.
4. \$41.69428 $\frac{1}{2}$.
5. $\$ 12 \cdot 962954$.
6. $\$ 201 \cdot 9515$.
7. $\$ 10 \% 7916$.
8. $\$ 21 \cdot 58580 \frac{\xi}{3}$.
9. $\$ 115 \cdot 85069 \frac{1}{8}$.
10. $\$ 202$.73545 $\frac{1}{2}$.
11. $\$ 514: 31488 \frac{1}{3}$.
12. $\$ 579 \cdot 91816$.

Exercise 69.

1. $\$ 225 \cdot 043$.
2. $\$ 209 \cdot 9815$.
3. $\$ 304 \cdot 403$.
4. $\$ 101 \cdot 9151$.
5. $\$ 36 \cdot 8807$.
6. $\$ 111 \cdot 0229$.
7. Am't $=\$ 621 \cdot 1484$.

Inter. $=\$ 121 \cdot 1484$.
8. $A m^{\prime} t=\$ 4 ; 7 \cdot 0074$. Inter. $=\$ 77.007 \mathrm{f}$.
9. $\$ 0 \cdot 1955$.
10. $\$ 0.2766$.
11. $\$ 0 \cdot 10916$.
12. $\$ 0 \cdot 15783$.
13. $38 \cdot 1616$.
14. $\$ 6 \cdot 35026$.
15. $\$ 12 \cdot 03615$.
16. $\$ 1356 \% 605$,

Exercise 70.

1. 12.7279.
2. $\$ 1 \cdot 3301$.
3. $\$ 7.2816$.
4. $\$ 05 \cdot 4188$.
5. $\$ 29 \cdot 40$.
6. $\$ 15 \cdot 3095$.
7. $\% 70 \cdot 1926$.
8. $875 \cdot 8843$.

Exercise 71.

1. $\$ 0.125$.
2. $11 \cdot 20$.
3. $\$ 13 \cdot 49 \frac{7}{12}$.
4. $\$ 90 \cdot 8587$,
5. $\$ 8.1879$.
6. $\$ 9 \cdot 5416$.
7. $\$ 77 \cdot 4363$

Exercise 72.
－A sain $=\$ 655.71 \frac{3}{9}$ ．
广ु＂ 1020 ．
以゙®＂$=24.28 \frac{1}{9}$ ．
2． $\mathrm{B}^{\mathrm{s}} \mathrm{lose}=\$ 542$－32．
C^{\prime}＂${ }^{\prime}=\mathrm{s} 61 \cdot 88$ ．
1．First $=\$ 75.54 \frac{12}{12}$ ．
Second $=6140$ ．
Third $=169 \cdot 755_{\mathrm{T}}^{5} \cdot$ ．
－A＇s share $=\$ 1498 \cdot 60$ ．
B＇s＂$=2622 \cdot 55$.
C＇s＂$=3371 \cdot 85$ ．
b．$\$ 1381 \cdot 57 \frac{17}{16} ; \$ 1973.6 \mathrm{~S}_{\mathrm{r}} \frac{2}{6}$ ： $\$ 4144 \cdot 73 \frac{13}{13}$ ．

6．Λ^{\prime}＇s share $=\$ 1689 \cdot 88_{8}^{88}$ ．

$$
\text { B's }^{\prime} n=1510 \cdot 11_{8}^{2} \ell \text {. }
$$

8．A＇s loss $=\$ 0325$. B＇s＂$=2130$ ． C＇s＂$=3195$ ．

9．$\$ 1011 \cdot 52$ 需；$\$ 1618 \cdot 43$ ำ and \＄2312．041171．

10．Λ should have $\$ 5358 \cdot 17 \frac{802}{100^{2}}$ and $\mathrm{B} \$ 2131 \cdot 82 \frac{438}{80} \frac{8}{5}$ ．

Fxercise 73.

1．A＇s share $2 \$ 2031 \cdot 02 \frac{212}{18}$ В＇s＂ $22068 \cdot 97_{1}^{1 \frac{185}{18}}$
2．Δ＇s share $=\$ 338 \cdot 96 \frac{1}{5}$ ．

C＇s＂$=80543 \xi^{2 \frac{2}{3}}$ ．
8．A^{\prime} s share $=\$ 722 \cdot \boldsymbol{2} \frac{1}{12}$ ． B＇s＂$=1227 \cdot 27$ \％${ }^{\circ}$ ．
4．A＇s share $=\$ 44 \cdot 38 \frac{28}{7}$ ．
B＇s＂$=41.099^{\prime \prime}$ ．
Cs_{8}＂$=34.52$ 궁．
6．A＇s share $=\$ 53 \cdot 42_{7}^{3}$ ？-

B＇s share $=\$ 342 \cdot 46 \frac{4}{7} \frac{\text { x }}{3}$ ．
C＇s＂$=513 \cdot 699^{\frac{8}{7}}{ }^{3}$ ．
D^{\prime}＇＂$=\$ 90 \cdot 41_{\text {т }}{ }^{\frac{7}{s}}$ ．
6．A＇s share $=\$ 198 \cdot 50 \frac{5 \mathrm{~s}}{8}$ ．

$$
\begin{aligned}
& B^{\prime} \mathrm{s} "=389 \cdot 92 \frac{38}{7} . \\
& \mathrm{C}^{\prime} \mathrm{s} "=361 \cdot 56 \frac{3}{\mathrm{a}} .
\end{aligned}
$$

1．A＇s share $=\$ 2222 \cdot 22$ ．
$B \cdot s$＂$=77777 \frac{7}{9}$ ．
d．A^{\prime} share $=\$ 7205 \cdot 71 \frac{3}{7}$ ．

Fxercise 74.
1．$\$ 15 \cdot 67\}$ ．
2．$\$ 11 \cdot 57$ ．
3．$: 27: 30$ ．
4．$\$ 225 \cdot 10$ ．
5．$\$ 88.05$.
6．$\$ 28.57$

Exercise 75.

1. $\$ 322 \cdot 30$.
2. $\$ 1041: 20$.
3. $\frac{1}{5} 12 \cdot 908$.
4. $\$ 555 \cdot 94$.
5. $\$ 2413.5975$.
6. $\$ 1218 \cdot 56$.

Exercise 76.

1. $0 \frac{2}{5}$ per cent.
-. $12 \frac{3828}{2 \times 1635}$ per cent.
2. $23_{\frac{0}{2} \frac{3}{25}}$ per cent. 4. $5_{\text {ITist }}^{\text {KOS }}$ per cent.

Exercise 77.
1.
2. \$251-1627.
3. $\$ 5.6179$.
4. $10_{4}^{15} \mathrm{cts}$. per lb.
5. $\$ 6636 \cdot 3 \dot{6}$.
6. $7 \cdot 39805$.
7. $\$ 5640 \cdot 264$.
8. $\$ 4668.6686$.

Exercise 78.

1. 66 cents.
2. 364 lbs .
3. $57{ }_{6}$ yards.
4. $\$ 3 \cdot 611_{1}^{1}$.

5. $\$ 0.072295$.

Exercise 79.

1. $£ 17 \mathrm{~S} 14 \mathrm{~s} .7 \mathrm{~T}_{\mathrm{s}} \mathrm{d}$.
2. $£ 365$ 193. $2 \frac{2}{5}$ d.
3. $£ 1$ S3 7s. $2 \frac{5}{5} \mathrm{~d}$.
4. $£ 1711 \mathrm{~s} . \mathrm{f}_{2 \mathrm{~S}}^{\mathrm{A}} \mathrm{d}$.
5. $\$ 1175 \cdot 46\}$.
6. \$T $\$ 5 \cdot 59 \%$.
7. $\$ 1059.09375$.
8. $\$ 358 \cdot 3 \%$.
9. £204 78. 6łd.
10. $£ 1845 \mathrm{~s} .9 \mathrm{~d}$.
11. £209 11e. 1] $\frac{1}{d} \mathrm{~d}$.
12. $£ 18 \mathrm{Ss} .9 \mathrm{q}$.
13. \$144:\%90.1.
14. $\$ 3 \cdot 00$.
15. $202 \cdot 304$ quarts.

Exercise 80.

1. 7 times.
2. $5 \frac{1}{6}$
3. $16 \frac{5}{4}$ "
4. 35 "

5. 13 times.
6. $5 \frac{5}{8}$.
7. $79 \frac{1}{5}$.
8. 210.

15.	20. \$105.	$40_{2} \frac{3}{3} \mathrm{~m}$., or $53 \frac{11}{13}$
12. $80 \mathrm{O}_{2} \mathrm{lbs}$.	21. $\$ 7500$.	miles from whe
15. ${ }^{\text {120 }}$,	22. $31 \cdot 311^{\text {a }}$. .	they started.
16. 33.	23. 3.922_{37}^{39}.	27. 200 miles.
17. $7 \frac{1}{5}$ days.	24. 84.	28. 109 ?
18. $3^{\text {fop }}$ days.	20. $25 \frac{5}{7}$ feet.	29. 88.
19. 70 days.	26. In 15_{13}^{5} ¢ hours and	30. 640

Exercise 81.

3. 289.
1. 12167.
1. 77841 .
2. 531441 .
3. 1296.
1. 3125.
1. 4096.
1. 2187.
1. 256.
1. 19683.
1. $3+3$.
2. 14641.
1. 531441.
1. ${ }_{31} \frac{3}{2} \frac{2}{2}$.
2. 1500625.
1. 23396569.
1. $76 \frac{48}{42}$.
2. 24389.
1. $50 \frac{19}{31}$ - \cdot
2. 59043.

Exercise 82.

1. 36.
1. 63.
1. 126.
1. 231.

5, 378.
6. 199.
7. 494.
8. 629.
9. 27.5.
10. $106 \cdot 759$.
11. $313 \cdot 246$.
12. 2590.929.
13. 958.523.
14. 20.t304.
15. $\frac{3}{4}, \frac{5}{2}, \frac{1}{2} 3, \frac{\circ}{20}$.
16. $\cdot 7977, \cdot 7270$.
17. 20.698.
18. $25 \% 95$.
19. 1062.024.
20. 462:383.

Exercise 83.

1. 32.

غ. 87 .
3. 24.
4. 63.
5. 99.
6. 125 .
7. 251.
8. 364.
9. 626
10. $8 \cdot 82$.
11. $99 \cdot 7$.
12. 971.
13. $3_{3}^{7}, 1_{2}^{5} 11^{7}, \frac{1}{5}$.
14. '971, '965.
15. $1, \cdot 464, \cdot 4807$.
16. 7.36.
17. $9 \cdot 346$.
18. $97 \cdot 158$.
19. 200.92.
20. 30275.

Exercise 84.

1. $\$ 275 \cdot 677_{2}^{27}$.
2. 122.
1. $\$ 1177.27 \%$.
2. 29.91 .
3. $3_{7}{ }^{3}{ }^{3}$.
4. $\$ 1004 \cdot 0968$.

5. $\% 5 \cdot 12$.
6. $\frac{8}{2}$ times 8 .

10. $44 \cdot 169$.

11. $\% 714883$.
12. 17223 lbs .11 oz 2 dwt. $21 \frac{1}{4}$ gre.
13. $\frac{1}{3}, \frac{1}{7}, \frac{2}{5} \frac{2}{2} \frac{2989}{2576}$.
14. 5 fur. 28 per. 3 yds. $2 \mathrm{ft} .2 \frac{12}{2 \pi}{ }^{\text {in }} \mathrm{n}$.
15. 335974749.

17. $\$ 10507 \cdot 11_{2}^{3} \frac{52}{2}$.
18. $\$ 39 \cdot 1411_{3}^{2}$; \$37.19807.
19. $30 \frac{1}{3} \frac{0}{7}$ day .
20. 12-2177.
21. 1 mk .5 days is bours 41 mir. 32 ${ }^{\frac{4}{2} 3}$ Bec.
22. $\frac{87910.35 \frac{1}{2} \text {. }}{}$
23. 109:708.
24. XXVII; CCCXCIII M MVCC; KXXVMMMCMXV;

MXCXXXVMDCCNVIII.

25. $2178: 85$
26. They have none.
27. $46 \frac{1}{2}{ }^{\circ}$ hours.
28. $1102 \frac{3}{3}$ rods.
29. $38+3.64226$; £613 58. 0 - $\frac{1}{2}$ d.
30. $\mathrm{A}^{\prime} t=3.354 \cdot 01488$. Int. $=$ 各 $154 \cdot 01458$.
31. $901040000007008 \cdot 00000008030017$.

34 A's share, $=\$ 54175 \%$.

C's do $=\$ 900 \cdot 70 \frac{70}{78}$.
35. $4 \frac{1}{5} \frac{3}{7}$ per cent.
36. 1 a. 1 r. 33 per. 9 yds. 3 ft .86 in.
37. $£ 8906$ g. $9 \frac{1}{9} \mathrm{~d}$; ; \% $\% 78$. 52%.
88. 2 bu. 2 pks. 1 qt. 1 pt.
39. $19 \cdot 26$.
40. $31 \frac{1}{3}$ minutes.
41. 78.075.
42. 8928 a. 3 r. 15 per. 2 yds .2 ft .36 in .
43. $10039 \frac{1}{2}$ inches.
44. $6 \frac{10}{10} \frac{12}{21273}$ 200.
45. $\$ 1144^{\prime 2} 21$.
46. $\$ 2604$.
47. $109241 \frac{1}{2} \frac{1}{2}$ paces.
48. $6801 \cdot 72 \frac{1}{2}{ }^{2}$.
49. $392 \cdot 220_{3}^{2}$.
50. 9 days.
51. $\frac{3209}{\text { 탕․ }}$
52. 57 ตํํำำ.
31. $3 \frac{1}{8}, 1 \frac{1}{8}$, and $\frac{16}{16}$ per cent.
32. 79200.
53. 18480.
54. $\$ 2517143$.
55. $495 \frac{5}{8}$ cents.
56. $\begin{gathered}53 \cdot 125 .\end{gathered}$
57. A's share,

$$
=\$ 70.75 \frac{1838}{}
$$

58. $61_{1}^{31 / 2}$ centa.
59. A and B have each ?1373, C bas $\$ 275$, and $D \$ 550$
60. $9 \begin{aligned} & 9,7 \\ & \text { day } \\ & \text { day }\end{aligned}$

Ittillerme -Juaffeilere
Sevaffild
Goclezerer 'ront
yental scherl

LOVELI'S SERIFS OF SCHOOL BOOKS.

HAV'IN: long felt the necessity existing lor a SERIES OF I.ULCA [ISA i L WOOLKS, prepared and expressly adapted for oar C'01.0N1AL SCHOOLS, the Publisher was induced to ailumpt the apuy of this want. His efforta thus far have been crowned is sh सu? zeas; his blooks luaving been most generally w onmpd in tho Schools, and most favourably noticed by the L'rean, of Irritidh North Amerlea.

He takeagreat pleasure in calling attentlon to the following, trom libs List of 3^{2} SCH()OL I 300 KS , already issued. Cts.
 Co ured Maps, 11 Boautiful Fingravinge, and a I'able 6. Clockn of the World. sy J. Georar Liodains, LL.B., F.IT.(; \$. New Edition

EISY LENCONN IN GENEIRAL GEOCHA: IPIIF with Mrps and Illustrations; bcing Introduc. tory to Lovell's General Guography. By the same.
 the nifur IBrlinit F.eA. Provinces, with Illn trations, liy thu sume.
rle Nefional Speuker and isceiter. By the same. Nathunal Arlintuetic, in Theory and Praotioe, adapted to D- al C'urrency. By J. il. Sanuster, M.A., MI, D.
16cy to Nathonal frichmetic. By the samo....... 90
Litcmenfnry Aritlersetle, in Decimal'urrency. By She nmen

25

 J. Иiventhry Treasime oit alcibra. By the sane.
 the rauna
 Hydr talic, de., de By thersame.
 of (l)m al I'hy icn; or, the lhyoice of Leat, Ligit, antl Fete ir liy. liy the sarae.
 irg. liy tho namo.

 fif dimple nitu bisuble Rintrgi liy libomas

[^0]: * The pupil should he continued at this exercise unt l he c:un count by $2^{\prime} s, 3^{\prime} 8,4^{\prime}, 5^{\prime}$, , se., with as much facility as he can by 1's. For example, heginning at any number, say 17. he should he able to connt rapidly be tros; thuz, $17,19, \boxed{2}, 23,25$, sc.; or by threns; thins, $17,20,23,25,29, \ldots 2$, ese.; or by snerns; thins, 17,24, $31,38,45$, des. In fact, ho camiot add with care and comfort until he has been well drilled in some such exercise.

[^1]: * Sco Rule, page 151.

