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PREFACE 

ALTHOUGH in the writing of this book the needs of the 
| students in the various departments of Engineering and of 

Architecture in Cornell University have received the first 
consideration, care has also been taken to make the work 

suitable for the general student and at the same time useful 
as an introduction to a more advanced course for those 
students who may wish to specialize later in mathematics. 
Among the features of the book are: 
Sd An extended introduction (Chaps. IT, III. TV), in 

w it is hoped that the fundamental problems of the sub- 
ject are clearly set forth and sufficiently illustrated. The 
chief difficulty which the beginner in Analytic Geometry 
usually has to overcome is the relation between an equation 
and its locus; having really mastered this, he easily and 
rapidly acquires a knowledge of the a e to which this 

ion leads, and especial care has therefore been given to 
this matter. Analytic Geometry is broader than Conic See- 
tions, and it is the firm conviction of the authors that it is 
far more important to the student that he should acquire a 
familiarity with the spirit of the method of the subject than 
that he should be required to memorize the various properties 
of any ee, curve. 

(2) The making use of some intrinsic properties of curves 
see Arts. 106, 112, 118), which experience with many 

has shown to give the student an unusually strong 
grasp on the equation of the second degree from which the 
zy-term is absent. 

* (8) Introduction of the demonstrations of general theorems 
by numerical examples. This not only es clear to the 
student what is to be done, but shows also the method to 
be vg gba it generalizes after the student is acquainted 
with the particular. 

(4) Easy but rigorous proofs of all the theorems within 
the scope of the book .g-, in Art. 67 it is proved, and 

* 
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very simply, too, that the vanishing of the discriminant is 
not only a necessary, but also the sufficient condition that the 
quadratic equation represents a pair of straight lines. 

It may also be mentioned here that, in the early part of 
the book, two or more figures are given in connection with 
a proof and so lettered that the same demonstration applies 
to each. It is hoped that this will help to convince the 
student of the generality of the demonstration. A copious 
index which enables one almost instantly to turn to anything 
contained in the book has also been added. 

The engineering students at Cornell University study 
Analytic Geometry during the first term of their freshman 

, and experience has shown that it is best to devote a 
5 lessons at the beginning of the term to a rapid review 
of those parts of the Algebra and Trigonometry that are 
essential to the reading of the Analytic Geometry. The first 
twenty-three pages are devoted to this matter, and may, of 
course, be omitted by those classes that take up the subject 
immediately after reading the Algebra and Trigonometry. 

The book contains little more than can be e a 
properly prepared student of average ability in from twelve 
to fourteen weeks; if less than that time can be devoted to 
the work, the individual eacher will know best what parts 
may be most wisely omitted by his pupils. A list of lessons 
for a short course of eleven weeks is, 3 suggested on 
the next two pages. 
A few specific acknowledgments of indebtedness are made 

in foot-notes in the appropriate places in the book. Of the 
large number of examples which are inserted, many are origi- 
nal, while many others have come to be so common in text- 
books that no specific acknowledgment for them can be 
made. We take great pleasure in expressing here our 
thanks to the other authors of this series of books for their 
many helpful suggestions and criticisms; to our colleagues, 
Dr. J. I. Hutchinson and Dr. G. A. Miller, who have so 
greatly assisted us in reading the proof, and the latter of 
whom also read the manuscript before it went to press; 
to Mr. Peter Field, Fellow in Mathematics, and Mr E 
A. Miller for solving the entire list of examples; and to 
Mr. V. T. Wilson, Instructor in Drawing in Sibley College, 
for the care with which he has made the figures. 



LIST OF LESSONS SUGGESTED FOR A 
SHORT COURSE 

[From the various sets of exercises the teacher is expected to make selec- 
tions for each lesson. The fifth day of each week should be devoted to 

reviewing the preceding four lessons. } 
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ANALYTIC GEOMETRY 

— - 

PART I 
— — 

CHAPTER I 

INTRODUCTION 

ALGEBRAIC AND TRIGONOMETRIC CONCEPTIONS 

1. Number. A number is most simply interpreted as 
expressing the measurement of one quantity by another 
quantity of the same kind first chosen as a unit of measure ; 
it is positive, or +, if the measuring unit is taken in the 
same sense as the thing measured; and negative, or —, if 

this measuring unit is taken in the opposite sense. 
EZ. g., the unit dollar may be regarded as a dollar of assets, 

or as a dollar of liabilities; if it is regarded as a dollar of 
assets, then assets measured by it produce positive numbers, 
While liabilities measured by it produce negative numbers. 
The above definition is consistent with the one usually 

given; viz. that numbers are positive or negative according. 
as they are greater or less than zero. 
Ik the operations of addition, subtraction, multiplication, 
division, raising to integer powers, extracting roots, or any 
combination of these operations, are performed upon given 
numbers, the result in every case is a number; it is imaginary 

TAN. AN. Grom. —1 



|. eT 
3 = 3 

2 ANALYTIC GEOMETRY (Cu. J. 

if it involves in any way whatever an indicated even root of 

a negative number; otherwise it is real. 

Every imaginary number may be reduced to the form 

a + 6<V—1, where a and b are real, and 6 #0. 

2. Constants and variables. If AB and AC are two given 
straight lines making an angle @ at 
the point A, and if any two points 
X and Y, on these lines, respectively, 

i 4 

I * B are joined by a straight line, then 

Area of triangle AXY = }-AX- AY-sin a, 

i. e., A=}-z-y-sing, 

where z is the length of AX, y is the length of AY, and A is 
the area of the triangle. 

If now the points X and Y are moved along the lines AB 
and AC in any way whatever, then A, , and y will each pass 
through a series of different values, — they are variable num- 
bers or variables; while q and sin à will remain unchanged,— 

they are constant numbers or constants. 

It is to be remarked that 4 has the same value wherever it 
occurs, — it is an absolute constant; while a, though constant 

for this series of triangles, may have a different constant 
value for another series of triangles, — it is an arbitrary 
constant. 

Because z and y may separately take any values what- 
ever they are independent variables; while A, whose value 
depends upon the values of z and , is a dependent variable. 

The illustrations just given may serve to give a clearer 
conception of the following more formal definitions. 

An absolute constant is a number which has the same value 

wherever it occurs; such are the numbers 2, 7, 3, 61. , e 
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(where w = 3.14159265..., approximately M, the ratio of the 
circumference of a circle to its diameter; and 

e= 2.71828182... = 1 +2 itt at — 

approximately , the base of the Naperian system of loga- 
rithms). 
An arbitrary constant is a number which retains the same 

value throughout the investigation of a given problem, but 
may have a different fixed value in another problem. 
An independent variable is a number that may take any 

value whatever within limits prescribed by the conditions of 
the problem under consideration. 
A dependent variable is a number that depends for its 

value upon the values assumed by one or more independent 
variables.“ a 
A number that is greater than any assignable number, 

however great, is an infinite number; one that varies and 
becomes and remains smaller (numerically, not merely alge- 
braically Jess) than any assigned number, however small, is 
an infinitesimal number. All other numbers are finite. 

3. Functions. A number so related to one or more other 
numbers that it depends upon these for its value, and takes 
in general a definite value, or a finite number of definite 
values, when each of these other numbers takes a definite 

value, is a function of these other numbers. E.., the cir- 
cumference and the area of a circle are functions of its radius; 

the distance traveled by a railway train is a function of its 
time and rate; if y = 32° + 5a — 8, then y is a function of z. 

All these kinds of numbers will be met and better illustrated in succeed- 
ing chapters of this book. F., see Art. 55, Note. 
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4. Identity, equation, and root. If two functions involy- 
ing the same variables are equal to each other for all values 
of those variables they are identically equal. Such an 
equality is expressed by writing the sign = between the 
two functions, and the expression so formed is an identity. 
If, on the other hand, the two functions are equal to each 
other only for particular values of the variables, the equality 
is expressed by writing the sign = between the two func- 
tions, and the expression so formed is an equation. The 
particular values for which the two functions are equal, d. e., 
those values of the variables which satisfy the equation, are 
the roots of the equation. 

E. g., (2+yPfsr+2ry4+y, (Ya - ) + =z 

1 — 1—1 

are identities; while 372 10 +2 = 222 — 4x — 6, or, what is the same 

thing, 2 62+ 8=0, is an equation. The roots of this equation are 
the numbers 2 and 4. 

Special attention is called to the fact that an equation 
always imposes a condition. 

E. g., 4 — 6x +8=0 if, and only if, z=2orz=4. So also the equa- 
tion az + by + c = 0 imposes the condition that z shall be equal to 

2 ae * 

a 

5. Functions classified. A functional relation is usually 
expressed by means of an equation involving the related 
numbers. If the form of this equation is such that one of 
the variables is expressed directly in terms of the others, then 
that variable is called an explicit function of the others; if 

it is not so expressed, it is an implicit function. 

E.., the equations y = V5 — 2 2? + y2=5, and z= V5 — y? express 
the same relation between z and y; in the first y is an explicit function 
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of z, in the second each is an implicit function of the other, while in 
the third z is an explicit function of . 

The word “function” is, for brevity, usually represented 
by a single letter, such as f, F. G, V. ; thus y = & (x) means 
that y is a function of the independent variable z, and is read 
„„ equals the ¢-function of 2”; so also z= (u, v, z) 
means that z is a function of the independent variables u. v, 
and , and it is read, “z equals the F-function of u, v, and æ.“ 
A function is algebraic if it involves, so far as the inde- 

pendent variables are concerned, only a finite number of the 

operations of addition, subtraction, multiplication, division, 

raising to integer powers, and extracting roots. All other 

functions are transcendental. 

22?-11y 
Bq. 22-62-17, zy + ¥ — Tz, and 27 7 are algebraio 

functions; while 2’, &, sin æ, tan , and log t are transcendental funo- 
tious. 

6. Notation. In general, absolute constants are repre- 
sented by the Arabic numerals, while arbitrary constants and 
variables are represented by letters. A few absolute con- 
stants are, however, by general consent, represented by let- 
ters; examples of such constants are 7 and e (Art. 2). 

Variables are usually represented by the last letters of the 
alphabet, such as u, v, o, z, , 2; while the first letters, 

a, h, e are reserved to represent constants. 
Particular fixed values from among those that a variable 

may assume are sometimes in question; ¢.g., the values, 

* = 2 and z = —1, for which the function z*— z 2 vanishes; 
such values may conveniently be denoted by affixing a sub- 

script to the letter representing the variable. Thus æ 79, 2 
Will be used to denote particular values of the variable z. 

Similarly, variables which enter a problem in analogous 
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ways are usually denoted by a single letter having accents 
attached to it; thus 2’, , ... denote variables that are 

similarly involved in a given problem. 
Again, each of the two equations, y=32*—42+10 and 

y=$(2), asserts that y is a function of 2; but while the 
former tells precisely how y depends upon æ, the latter 

merely asserts that there is such a dependence, without 
giving any information concerning the form of that depend- 
ence. If several different forms of functions present them- 
selves in the same problem, they are represented by different 
letters, each letter representing a particular form for that 

problem, though it may be chosen to represent an entirely 
different form in another problem. 

E.q., if the form of ¢, in a given problem, is defined by the equation 

— 2445 
$(z)= 21471 ? 

then, in the same problem, 

d= FFE, ee, and $)=5. 

7. Continuous and discontinuous functions. In general a 
function takes different values when different values are 
assigned to its independent variable. If y= (r), then, 
for =a and z=4, the function becomes y, = a) and 
Yq = 0), and y, is in general different from y,. The fune- 
tion ) is said to be a continuous function of z between 

z=a and z= b, if, while z is made to pass successively 
through all real values from a to 6, y remains real and finite 

and passes correspondingly through all values from y, to yp. 

This definition may be more precisely stated, thus: If z, and z, are 
any real values of z which lie between the values a and b, and if the cor- 
responding values of y, viz. ¢(z,) and ¢(z,), are real and finite; and if 
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a positive number q can be found, such that by taking, numerically, 

21 < 

it will follow that, numerically, 

(2) — 2) <6 
where e is any assigned positive number, however small; then r) isa 
continuous function of z for values from a to b. 
Or, in words: y is a continuous function of z for all values of x in the 

interval from a to b, if, by taking any two values of z in the interval 
sufficiently near together, the difference between the corresponding values 
of y can be made less than any assigned number, however small. 

A discontinuous function is one that does not fulfil the 
conditions for continuity. It is, however, usually discon- 
tinuous for only a limited number of particular values of its 
independent variable, while between these values it is con- 
tinuous. . 

As familiar examples of continuous functions may be 
mentioned: the length of a solar shadow; the area of a 
cross-section of a growing tree, or of a growing peach; the 
height of the mercury in a barometer ; the temperature of a 
room at varying distances from the source of heat; and 

interest as a function of time. 
So, also, y= 32 ＋ 42 71 is a continuous function of 2 

for all finite values of z. 
For, y remains real and finite so long as z remains real and 

finite, and, if 21 and z, be any two finite values of z which 
differ from each other by », fl. e., if 2, = 2, + M then 

1 — 9, = 3 T 4 1 1— (328 ＋ 21 4 1), 
3) (i T1 G28 ＋ 421 11). 

* (01 473%). 
Now to show that y = 3 ＋ 42 71 is continuous for 

* = y it only remains to show that, by taking y sufficiently 
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small, i.e., by taking 27 sufficiently near z,, y, can be made 
to differ from y, by less than any assigned number (e), how- 

ever small. But this is evident; for » may be taken as near 
zero as desired, hence the factor 62, + 4+ 3 as near 62, +4 
as desired, and the product therefore as near zero as is neces- 
sary to be less than e. 

On the other hand, if, at regular intervals of time, 2 
are dropped into a basket, the combined weight of the basket 
and apples will increase discontinuously; . e., their total 
weight is a discontinuous function of the time. 

EXERCISES 

1. If Ar + By+C=0, prove that y is a continuous function of æ; | 
and x, of . 

2. If 224+ y*—4=0, prove that y is a continuous function of z, when 
2>z> —-2. 

3. If 315 1, prove that z is a continuous function of y, when 

b>y>—b. 

4. if 7 5 — 1=0, is z a continuous function of y? 

5. If st —9 =0, is s a continuous function of t? 

6. If u’—3v=0, is u a continuous function of v? Is v a continu- 
ous function of u? 

7. Show that all functions of the form 

gx" + Az") a . + Og {E+ Ay 
where d a, d d, are constants, are continuous for all finite values 
of z. 

1 

8. If — = 5*-1, show that ; is discontinuous for z = l. 

1 

9. Find the value of z for which y, = e “*—1, is discontinuous. 
e + 1 

(Ou: i ae 

r 
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10. Interest on money loaned is calculated by the formula 

I= P-.R.-T. 

Is the interest (/) a continuous or a discontinuous function of P? 
of R? of T? 

8 The present work will be concerned for the most part 
with algebraic functions involving only the first and second 
powers of the variable, i. e., with algebraic equations of the 
first and second degree. A review is therefore given of the 
solution and theory of the quadratic equation, presenting in 
brief the most important results which will be needed in the 
Analytic Geometry. The student should become thoroughly 
familiar with this theory, as well as with the review of the 
trigonometry which follows it. 

9. The quadratic equation. Its solution. The most general 

equation of the second degree, in one unknown number, may 
be written in the form 

dre, 5 > 4 (1) 

where a, 6, and ¢ are known numbers. This equation may 
be solved by the method of “completing the square,” which 

2g b 5 * 5 * e 

#+i2+(5)=G)-$ --- 0 
: b 5 e 1 

* 1 V 5 A 
b 1 

whence 77 — 4 ae. “ ° . (4) 

If z, and z, are used to denote the roots of eq. (1), they 
may be written 

—b+VB — Fae —}b—V#B —4ac 
= * 

2 
„and z= 41 . @) 
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The nature of the roots (5) depends upon the number 
under the radical sign, i. e., upon 62 — 4 de, giving three 
cases to be considered, viz.: 

if 5 — 44e, then the roots are both real and unequal, 
if h —4ac=0, then the roots are both real and equal, (6) 
if  —4ac< 0, then the roots are both imaginary. 

Thus the character of the roots of a given quadratic equa- 
tion may be determined without actually solving the equation, 
by merely calculating the value of the expression 52 — 4 ae. 
This important expression is called the discriminant of the 
quadratic equation; when equated to zero it states the con- 
dition that must hold among the coefficients if the equation 
has equal roots. 

EXERCISES 

1. Show which of the following equalities are identities : 

(1) ?-42+4=0; (4) (p+ 9)* =p? + + 3pq( p+); 
(2) )-) =-; (5) 224+527+6=(¢+3)(@+4 2). 

(8) aa 08 + BS 

2. Determine, without solving the equation, the nature of the roots of 

$27+824+1=0. 

SoLution. Since 6? — 4 ac = 64 — 12 = 52, i. e., is positive, therefore 

the roots are real and unequal; again, since a, ö, and e are all positive, 
therefore both roots are negative (cf. eq. (4), Art. 9). 

3. Without solving the equation, determine the character of the 
roots of 8 32 T 10. 

4. Given the equation 22 — 3z — m(z + 222 + 4) = 527 + 3. 

Find the roots. For what values of m are these roots equal? 

5. Determine, without solving, the character of the roots of the 
equations : 

(1) 5 -- 22 ＋ 5 0 (2) 2247=0; (8) 3@-t=19. 
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6. Determine the values of m for which the following equations shall 
have equal roots: 

(1) - 2261730776220 80 
(2) 22m 3 mz - 9 10; 
(3) 427+ (L+m)zr+1—0; (4) * (e 

} 7. If in the equation 2 ar (ar + nc) +(n* —2)c* , x is real, show 
that u is not greater, in absolute value, than 2. 

= 

rr 
9. For what values of ¢ will the following equations have equal roots? 

(1) 3274424c=0; (2) (reli; (3) 42°+9(2 240)? = 36, 

10. Solve the equations in examples 2, 3, and 5. 

11. Solve the equations: 

(1) #-%52#=-144; (2) 

=a, show that a is not 

gs=9 1 o38 
moe Pesan any Pe per dab 

10. Zero and infinite roots. In the following pages it will 
sometimes be necessary to know the conditions among the 

coefficients of a quadratic equation that will make one or 
both of its roots zero, or the conditions that will make one 
or both of the roots infinitely large. In equations (5) of 
Art. 9, 21 and 2% i.e. the roots of az*+ b =, were 

found and it is at once seen that 

anh t VER Te 
2a 

bie -A 22 
N P 
and that 
A 22 ; 

2a D dae pe 
Equations (1) and (2) show that: 

(1) If a and 6 remain unchanged while e grows smaller, 
18 
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then z, grows smaller and 2 grows larger; and if ¢=0,* 

then 21 = 0, while 224. 

(2) If a remains unchanged while = 0 and 6=0, f 
71 0 and Ty = 0. 

(3) If 6 ande remain unchanged while a= 0, then 2,= -$ 
and 2x, becomes infinitely large. 

(4) Ife remains unchanged while a=0 and 5 = 0, then 
both z, and z, become infinitely large. 

(5) If a and e remain unchanged while 5 = 0, then 

= .¢ —_'G 

„VIE and Vat 
The student should translate (1), (2), (3), (4), and (5) 

into more general terms by reading “the absolute term 
approaches zero as a limit“ instead of “e=0,” ete. 

II. Properties of the quadratic equation. By adding the 

two roots of 
a + br+e=0 . | Ve 

and also multiplying them together, the relations 

1 2 5 and 4 == ere 

are obtained; or, if equation (1) is written with the coeffi- 

cient of the term of the second degree reduced to unity, as 

+ 2 g % eee 

these relations become 

11 T2 = -p and 212. ) 

Or, expressed in words: the coefficient of the term of the 

second degree being unity, the coefficient of the term of 

* The sign = is read approaches as a limit.“ It was introduced by the * 

late Professor Oliver of Cornell University. 
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the first degree is the negative of the sum of the roots, 
while the term free from z is the product of the roots. 

If, therefore, the roots of a quadratic equation are not 
themselves needed, but Only their sum or product is de- 

sired, these may be obtained directly from the given equa- 
tion by inspection. 

Eg., the half sum of the roots of the equation 

mz? + 2(6m - 2Dr+P = 0 

7 + 24 _ _ 2(bm— 21) _ 21—bm, 
2 2 n m* 

Moreover, if z, and z, are the roots of the equation 

2+ pr+q=9%, 

then 2 21 and z—z, are the factors of its first member. 
For, by equation (4) above, this equation may be written 

+ pr+q=22—(2,+2,)2+2,2,=9, 

and 2 —(x, + 20 T + 27%, = (2 — 210 (C , 

hence a + px + ( E- 20 C- 2q): 

Conversely: if a quadratic function can be separated into 
two factors of the first degree, then the roots can be imme- 

diately written by inspection. 
For, if 22 + pr + q =(# — 2,)(2 — 2,), then the first mem- 

ber will vanish if, and only if, z — z, = 0 or 4 = 0; Le. 
t+ pr+q=0 if =z, or r= 2 hence 21 and 4 are the 
roots of the equation 2 + pr + q = (ef. Art. 4). 

12. The quadratic equation involving two unknowns. One 

equation involving two unknown numbers cannot be solved 
_ uniquely for the values of those numbers which satisfy the 
equation; but if there is assigned to either of those num- 
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bers a definite value, then at least one definite and corre- 
sponding value can be found for the other, so that, this pair 
of values being substituted for the unknown numbers, the 
equation will be satisfied. In this Way an infinite number of 
pairs of values, that will satisfy the equation, may be found. 

If, however, the equation is homogeneous in the two un- 
knowns, i.e., of the form 

az? + bry + ey" = 0, 

then the ratio &: may be regarded as a single number, and 
the equation has properties precisely like those discussed 
in Arts. 9, 10, and 11. 

To solve a system consisting of two or more independent 
simultaneous equations, involving as many unknown ele- 
ments, it is necessary to combine the equations so as to 

eliminate all but one of the unknown elements, then to solve 
the resulting equation for that one, and, by means of the 

roots thus obtained, find the entire system of roots. 

EXERCISES 

1. Given the equation z? + 3 z—4+m(3 2*—4)—2mz?=0, find the 
sum of the roots; the product of the roots; also the factors of the first 
member. 

2. Factor the following expressions: 

(1) 27-5744; (3) ma- g rte; (5) 8 w! 94 wo —64; 
(2) z74+22-8; (4) ax*+bry+cy?; (6) 11-27-18 % 

3. Without first solving the equation 

—32—m(x+2 22+ 4) 5227 3 

find the sum, and the product, of its roots. For what value of m are its 

roots equal? For what value of m does one root become intinitely 
large? If all the terms are transposed to one member, what are the 
factors of that member? 

4. Without first solving, determine the nature of the roots of the 
equation (m — 2) (log z)*— (2m + 3) logz—4m=0. [Regard log æ as 
the unknown element.] 
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For what values of m are the roots equal? Real? One infinitely 
great? One zero? Find the factors of the first member of the equa- 
tion. 

S. Find five pairs of numbers that satisfy the equation: 

(1) e4+38y—7=0; (3) = 162; 
(2) i; (4) Zr. 

6. Without solving, determine the nature of the roots of the equation: 
Oz? + lozy + dy? = 0, Bu? — ue + 190? = 0. 

7. Solve the following pairs of simultaneous equations: 

(1) 32—5y+2=0, and 22+7y—4=0; 

(2) Sy +224+3=0, and7y + 42+2=0; 

(3) y—32+e¢=0, and f = 92; 

(4) 2+ y= 5, and * = 62; 

(5) bz? + aty® = a, and y = ar + 3; 
x? 12 (0) 6. and 10 1. 

8. Determine those values of 6 for which each of the following pairs 
of equations will be satisfied by two equal values of y: 

Q) H+ U L (2) y=me+d, y= 433; 
(3) 3 + 22, Oz? + y*? = 12}. 

9. Determine, for the pairs of equations in Ex. 8, those values of ö 
which will give equal values of z. 

TRIGONOMETRIC CONCEPTIONS AND FORMULAS 

13. Directed lines. Angles. A line is said to be directed 
when a distinction is made between the segment from any 

point A of the line to another point B, and the opposite seg- 
ment from Bto A. One of these directions is chosen as 

; positive, or +, and the opposite direction is then negative 

or —. 

The angle formed by two intersecting directed straight 
lines is that relation between the positions of the two lines 

_ which is expressed by the amount of rotation about their 
point of intersection necessary to bring the positive end 
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of the initial side into coincidence with the positive end 
of the terminal side. The point in which the lines in- 
tersect is called the vertex of the angle. The angle is 
positive, or +, if the rotation from the initial to the ter- 
minal side is in counter-clockwise direction; the angle is 
negative, or —, if the rotation is clockwise. 

The angle formed by two directed straight lines in space, 
which do not meet, is equal to the angle between two inter- 
secting lines, which are respectively parallel to the give 
lines. , 

For the measurement of angles there are two absolute 
units: 

(1) The angular magnitude about a point in a plane, i. e, 
a complete revolution. One fourth of a complete revolution 
is called a right angle, y of a right angle is a degree (1°), 
gy of a degree is a minute (1), and qy of a minute is a 

second (10); 

(=) the angle whose subtending circular are is equal in 

length to the radius of that are; this angle is called a 

radian }1{; it is independent of the length of the radius. 

circumference _semi-cireumference _ 
Since = =, it follows that 

diameter radius 
the angle formed by a half rotation, i. e., 180°, is 7 radians; 

r) 
i. e., 180° =r = (=) approximately ; 

also 1” =x a = 57° 17“ 44.8“ approximately. 

A right angle is 90° or (3) ; 

When there is no danger of being misunderstood, the index 

(r) is omitted, and = radians is written simply as Fs and 
* not 5 
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14 Trigonometrie ratios. If from any point P in the ter- 
minal side of an angle @, at a distance r from the vertex, a 

perpendicular Mis drawn to the initial side meeting it in 

P 

Vv — 

Naa 
M. and if MP be represented by y and VM by z, then, by 

general agreement, y is + if MP makes a positive right 
angle with the initial line, and — if this right angle is 
negative; similarly, z is + if VM extends in the positive 

direction of the initial line, and — if it-extends in the 

opposite direction. 
The three numbers v, z, and y form with each other six 

_ ratios; these ratios, moreover, depend for their value solely 
upon the size of the angle @, and not at all upon the value of 
r. These six ratios are known as the trigonometric ratios or 
functions of the angle @, and are named as follows : 

sine 0 =", tangent 6 =%, secant 0 =, 

cosine 6 =~, cotangent @ ==,  cosecant@ =~. 
1 * * 

The abbreviated symbols for these functions are sin 6, 
cos 8, tan @, cot C., sec d, and csc . respectively. The func- 
tions are not all independent, but are connected by the fol- 
_ lowing relations: 

C) sind - csc 0 = 1, (5) cot 6 = cos @: sin 6. 
(2) cos 6. sec 6 = 1, (6) sin® 6 + cos? 6 = 1, 
(8) tan 0. cot @ =1, (7) tan? 6 +1 = sec? 6, 

(A) tan 0 = sin : cos 8, (8) cot?@ + 1 = csc? 8, 
TAN. AN, GEOM,—2 
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By means of these eight relations all the trigonometric 
functions of any angle may be expressed in terms of any 
given function. E. ., suppose the sine of an angle is given, 
and the tangent of this angle, in terms of the sine, is wanted: 

sin 0 

and by (6), cos = VI — sin? 0, 

hence nd = ne 
V1 —sin?@ 

If the numerical value of sin@ is given, this last formula 
gives the corresponding numerical value of tan@; e., if 

in 0 = 3, th sin %, then eas FY 3 

vi-@ 4 
15. Functions of related angles. Based upon the defini- 

tions of the trigonometric functions the following relations 
are readily established. 

If @ is any plane angle, then“ 

(1) sin (- @)=— sin 0, cos (— 6) = + cos 8, 
tan (- #)= — tan , esc (— 0)=— ese 8, 

sec (- 0)= + sec 8, cot ( ) = cot ; 

(2) sin (49) = sin 0, cos (7 + 0)=— cos g, 
tan (v + 0)= + tan 0, ese (r+ 0)= esc d, 

sec (7 g == sec, cot (r 40) = A cot 0; 

(3) ein (g + 0)= + c0s9, cos(F + 0) = + sin 6, 

tan(Z + 0)— + cot 8, e 4 0)—+ s008, 

™+9)\— (= \= seo(5 @) F ese 8, cot (2 + 0 + tan 6 

The student should thoroughly familiarize himself with these formulas, — 
and those of Art. 16, as well as with the derivation of each. 

a 
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x 16 Other important formulas. If 0, and 6, are any two 
"plane angles, then 

7 ein (0, + 0,) = sin 0, cos 0, + cos 0, sin 6, 
cos (0, + 0,) = cos 8, cos 0, sin 8, sin 9% 

tan 6,2 fende, 
If @ is any plane angle, then 

sin 20 = 2 sin @ cos 0, 

cos 2 6 = cos? @ — sin? @ = 1 — 2 sin? = 2 co 0 —1, 

2tand — 

1—tan?@ 

sin g IIc 

tan 20 

6 fl — cos cos @ _ 1 —cos 6 _ sin 9 

aoe be Db sin 0 ~ 1 +0086 

I a, ö, and e are the sides of a triangle lying respectively 
opposite the angles A, B. and C and if A is the area of this 

triangle, then 

4 - 2 be cos A, and A=}besinA. 

j EXERCISES 

1. Express in radians the angles: 

_ 15°; 60°; 135°; — 252°; fert. angle; 10°10/10"; 88°2'; (3 )“. 

2. Express in degrees, minutes, and seconds, the angles: 

G C ( 0 termi fn 
38. Find the values of the other trigonometric functions, given : 

(1) tan@=3; (2) % =—V2; (3) cos G = -L; (4) sint=3; 

) coty = 4; and (6) ese 2. v3 
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Solution of (1). If tan @ = 3, then substituting this value in (3) of 
Art. 14, gives cot @ = 4; substituting these values in (7) and (8) of the 
same article gives the values of sec 6 and of csc 6; and substituting those 
values in (1) and (2) gives sin @ and cos h. i, 

Another method: Construct a right triangle ABC with the sides 
AB =1 and BC =3, then 2 BAC is an angle whose tangent is 3. IT 

AB =1and BC = 3, then AC = V10, aud the other fune- 
tions of the angle BAC are at once seen to be: 

sec 9 = V10, and cot 0 = }. 

Either of these methods may be employed to solve the 
other parts of this example; the second method is usually — 
to be preferred. 

4. By means of a right triangle, with appropriate acute 
angles, find the numerical values of the trigonometric 
ratios of the following angles: 

30°; 45°; 60°; 90°; 135°; and — 45° 

5. Express the following functions in terms of functions of positive 
angles less than 90° : 

tan 3500°; — csc 290°; sin (— 369°); — cos ; and cot (— 12180). 

6. Solve the following equations: 

(1) sin = cos 210°; (2) cos 0 = sin 263 (3) F 

and (4) (sec? — 1)(esc? x + 1) =. 

7. In the following identities transform the first member into the 
second : ; 

(1) tan h — cot 0 2 ants (2) sec z + cscz_1+cotz, | ] 

tan 6+ cot csc sec r - csc I cot x 

(3) ese tr (sec x — 1)— cot 2 (1 — cos) S tan z — sin æ; 

(4) x sin a cos a) + r?(cos*a - sing a) ; 

(5) (cosa cos b + sin asin b)? + (sin a cos h cos a sin b) =I; and 

(6) (r cos d)? + (r sin ꝙ cos 6)? + (sin ꝙ sin 02 N. 
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17. Orthogonal projection. The orthogonal projection * of 
a point upon a line is the foot of the perpendicular from 

the point to the line. In the figure, M is the projection 
of P upon AB. The projection of a segment PQ of a 

9 

a “ H 
* —— WM — 

Une upon another line AB, is that part of the second line 
extending from the projection of the initial point of the seg- 
ment to the projection of the terminal point of the segment. 
Thus MN is the projection of PQ upon AB, and VM is the 

Projection of QP upon AB. 
Ihe length of the projection can easily be expressed in 
terms of the length of the segment and the angle which it 
makes with the line upon which the segment is projected; for 

MN _PH_ 
PQ PQ 

.. MN = PQ- cosa; 

i.e., the projection of a segment of a line upon another line 

ii equal to the product of its length by the cosine of the angle 
wiel it makes with that other line. 
A line made up of parts PQ, QR, RS, --- (Fig. 5a, 56), which 
are straight lines having different directions, is a broken line; 
and the projection of a broken line upon any line is the 

algebraic sum of the projections of its parts upon the same 

COS , 

1 * Hereafter, unless otherwise stated, projection will be understood to 

mean orthogonal projection. 
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line. Thus the projection of POST upon AB is the pro- 
jection of PQ + the projection of G ++, upon AB; i. e., 

proj. PQRST upon AB = MN + NK+KL+LH= MH; 

but Mis the projection of the straight line P which joins 
the first initial to last terminal point of the broken line. In 

the same way it may be shown that the projection of any 
broken line upon a straight line equals the projection, upon 
the same straight line, of the straight line which joins the 
extremities of the broken line. It follows, therefore, that 
the projection of the perimeter of any closed polygon upon 

any given line is zero. 

If 6,, 6, 6% 6% and , be the angles that PQ, QR, RS, 
ST, and PT respectively make with the line AB, then the 

projection of the broken line upon AB may also be expressed 
thus: 

proj. PQRST upon A MNT NK+ KL+LH= MH 

= PQcos 6, + QR cos 0, + RS cos 0, + ST cos 6. 

= PT cos 6,. 

The projections of two parallel segments of equal length 
upon any given line in space are equal. It therefore fol- 

lows that: 

(1) The projection of a segment of a line upon any straight 
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line in space equals the product of its length by the cosine 

of the angle between the two lines. 
(2) The projection of any broken line in space upon any 

straight line equals the projection, upon the same line, of 
the straight line which joins the extremities of the broken 

line. 

, EXERCISES 

1. Two lines of lengths 3 and 7 respectively meet at an angle 7; find 
the projection of each upon the other. 

2. The center of an equilateral triangle, of side 5, is joined by a 
straight line to a vertex; find the projection of this joining line upon 
each side of the triangle. 

3. A rectangle has its sides respectively 4 and 6; find their projec- 
tions upon a diagonal. 

41. Find the length of the projection of each edge of a cube upon 
a chosen diagonal. 

5. A given line AB makes an angle of 30° with the line MN, and 
BC is perpendicular to AB and of length 15; find the projection of 
BC upon MN. 

: Solve this problem if the given angle be a instead of 30°. 

6. Two lines in space, of length a and b respectively, make an angle 
o with each other; find the projection of 4 upon a line that is perpen- 
dicular to a. 

7. Project the perimeter of a square upon one of its diagonals. 



CHAPTER II 

GEOMETRIC CONCEPTIONS. THE POINT 

I. COORDINATE SYSTEMS 

18. Coordinates of a point. Position, like magnitude, is 
relative, and can be given for a geometric figure only by 
reference to some fixed geometric figures (planes, lines, or 

points) which are regarded as known, just as magnitude 
can be given only by reference to some standard magni- 

tudes which are taken as units of measurement. The posi- 
tion of the city of New York, for example, when given by its 

latitude and longitude, is referred to the equator and the 
meridian of Greenwich,—the position of these two lines 

being known, that of New York is also known. So also 
the position of Baltimore may be given by its distance and 
direction from Washington; while a particular point in a 

room may be located by its distances from the floor and 
two adjacent walls. 

If, as in the last illustration, a point is to be fixed in space, 
then three magnitudes must be known, referring to three fixed 
positions. If, on the other hand, the point is on a known 

surface, as New York or Baltimore on the surface of the 

earth, then only two magnitudes need be known, referring to 
two fixed positions on that surface; while if the point is on 

a known line, only one magnitude, referring to one fixed 

position on that line, is needed to fix its position. 

These various magnitudes which serve to fix the position 
24 



Cu. uu. 18-20.) GEOMETRIC CONCEPTIONS 25 

ol a point, — in space, on a surface, or on a line. — are called 
the cobrdinates of the point. 

19. Analytic Geometry. Coirdinates may be represented 
by algebraic numbers; the relations of the various points, 
and the properties of the various geometric figures which are 
formed by those points, can be studied through the corre- 
sponding relations of these algebraic numbers, or codrdinates, 

_ expressed in the form of algebraic equations. This fact is 
the basis of analytic, or algebraic, geometry, the main object 

of which is the study of geometric properties by algebraic 
methods. | 

Analytic geometry may be conveniently divided into two 
parts: Plane Analytic Geometry, which treats only of figures 
in a given plane surface ; and Solid Analytic Geometry, which 
treats of space figures, and includes Plane Analytic Geometry 
as a special case. The plane analytic geometry, being the 

simpler, will be studied first, in Part I of this book, and 
Part II will be devoted to the study of the solid analytic 
geometry. In this first part of the subject it will therefore 
be understood that the work is restricted to a given plane 
surface. 

Two systems of coördinates will be used, the Cartesian 
and the Polar. They are explained in the next few articles. 

20. Positive and negative coordinates. If a point lies in a 
given directed straight line, its position with reference to a 
fixed point of that line is com- 5 

_ pletely determined by one coör- X.. 1 | aon 
dinate. E.., let X OX be a n 

given directed straight line, 
and let distances from O toward X be regarded as positive. 

then distances from O toward X’ are negative. A point P 
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in this line and 8 units from O toward X may be designated 
by 3. where the sign + gives the direction of the point, 
and the number 3 its distance, from 0. Under these cir- 

cumstances the point P’ lying 8 units on the other side of 
O would be designated by ~3. 

In the same way there corresponds to every real number, 
positive or negative, a definite point of this directed straight 
line; the numbers are called the coordinates of the points; 

and O, from which the distances are measured, is called the 

origin of coördinates. 

21. Cartesian coordinates of points in a plane. Suppose 

two directed straight lines X OX and Y'OY are given, 

fixed in the plane and intersecting in the point 0. These 
two given lines are called the coordinate axes, X OX being 

the z-axis, and FO being the y-axis; their point of inter- 
section O is the origin of coérdinates. Any other two lines, 

parallel respectively to these fixed 
lines, and at known distances from 

them, will intersect in one and but 

one point P, whose position is thus 
definitely fixed. If these lines 
through P meet the axes in Mand 
L respectively, then the directed 

distances LP and MP, measured 

parallel respectively to the axes, are the Cartesian coérdinates 
of the point P. The distance LP, or its equal OM, is the 
abscissa of P. and is usually represented by z, while MP, or 
its equal OL, is the ordinate of P, and is usually represented 
by y. The point P is designated by the symbol (2, y),—often 

written P = (. y), — the abscissa always being written first, 

then a comma, then the ordinate, and both letters being 

Fid. 7. 
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inclosed in a parenthesis. Thus the point (4, 5) is the 
point for which OM=4 and MP =5; while the point 

(~3, 2) has C M= à and MP = 2. 

22. Rectangular coordinates. ‘The simplest and most com- 
mon form of Cartesian coérdinate axes is that in which the 

angle XOY is a positive right ty 
angle; the abscissa (2) of a 
point is, in this case, its perpen- IL 1 
dicular distance from the y-axis, a 
and its ordinate (y) is its perpen- 5 7 

_ dicular distance from the z-axis. 
This way of locating the points I IV. 
of a plane is known as the rec- 
tangular system of coordinates. Fo. 7.2 
The axes divide the entire plane into four parts called quad- 
rants, which are usually designated as first (I), second (II). 
third (III), and fourth (IV), in the order of rotation from 
the positive end of the z-axis toward the positive end of the 
y-axis, as indicated in the accompanying figure. 

These quadrants are distinguished by the signs of the 
codrdinates of the points lying within them, thus: 

in quadrant I the abscissa (4) is +, the ordinate () is +; 

in quadrant II the abscissa (2) is —, the ordinate ( is +; 
in quadrant III the abscissa (2) is —, the ordinate (/ is —; 
in quadrant IV the abscissa (2) is +, the ordinate (y) is —. 

Four points having numerically the same codrdinates, but 
lying one in each quadrant, are symmetrical in pairs with 
regard to the origin, even though the axes are not at right 
angles; if, however, the axes are rectangular, then these 
points are symmetrical in pairs, not merely with regard to 
the origin as before, but also with regard to the axes, and 
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they are severally equidistant from the origin. Because of 
this greater symmetry rectangular coördinates have many 

advantages over an oblique system. 
In the following pages rectangular codrdinates will always 

be understood unless the contrary is expressly stated. 

EXERCISES 

1. Plot accurately the points: 41,7), (~4, 5), (0, 3), and (3, 0). 

2. Plot accurately, as vertices of a triangle, the points: (1,3), (2,7), 
and (4. 4). Find by measurement the lengths of the sides, and the 
codrdinates of the middle point of each side. 

3. Construct the two lines passing through the points (2, 7) and 
(-2,7), and (2,7) and (2, 7), respectively. What is their point of 
intersection? Find the codrdinates of the middle point of each line. 

4. If the ordinate of a point is 0, where is the point? if its abscissa 
is 0? if its abscissa is equal to its ordinate? if its abscissa and ordinate 
are numerically equal but of opposite signs? 

5. Express each of the conditions of Ex. 4 by means of an equation. 

6. The base of an equilateral triangle, whose side is 5 inches, coincides 
with the z-axis; its middle point is at the origin; what are the coördinates 
of the vertices? If the axes are chosen so as to coincide with two sides of 
this triangle, respectively, what are the codrdinates of the vertices? 

7. A square whose side is 5 inches has its diagonals lying upon the 
codrdinate axes; find the codrdinates of its vertices. If a diagonal and 
an adjacent side are chosen as axes, what are the codrdinates of the 
vertices? of the middle points of the sides? of the center? 

8. Find, by similar triangles, the coördinates of the point which 
bisects the line joining the points (2, 7) and (4, 4). 

9. Show that the distance from the origin to the point (a, %) is 
Vai i. How far from the origin is the point (a, 5)? (Ca, ) 
Ca, 6)? (ef. Art. 22.) 

10. Prove, by similar triangles, that the points: (2, 3), (1, 3), and 
(3, 9) lie on the same straight line. 

11. Solve exercises 1 to 4 and 10 if the codrdinate axes make an angle 
of 60°. Also if this angle be 45°. 

* These minus signs are written high merely to indicate that they are 
signs of quality and not of operation. 
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23. Polar coordinates. If a fixed point 0 is given in a 
fixed directed straight line OR, then the position of any 

point P of the plane will be fully determined by its distance 

a 
Fro. 82 ia. 8.2 

OP =p from the fixed point, and by the angle @ which the 
line OP makes with the fixed line. 
Ihe fixed line OR is called the initial line or polar axis, the 
0 fixed point O the pole of the system, and the polar coordinates 

of the point P are the radius vector p and the directional or 
_ vectorial angle 0. The usual rule of signs applies to the 
vectorial angle @, and the radius vector is positive if meas- 
ured from O along the terminal side of the angle 6. The 

point P is designated by the symbol (p, @). 
From what has just been said it is clear that one pair of 

polar codrdinates (de., one value of p and one of @) serve to 
determine one, and but one, point of the plane. On the 

other hand, if @ is restricted to values lying between 0 and 
2, then any given point may be designated by four different 

pairs of codrdinates. .P 
* 

/ 
7 

A 
/ 

fA R 
0 N — 
J — Fra. 9.2 

Fro. 9.4 

F.., the polar codrdinates (3, 60°) determine the position 
4 of the point P, for which OP = 3, and makes an angle of 60° 

— 

ce 
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with the initial line OR, but the same point may be given 
equally well by the pairs of codrdinates: (3, 240°), 
(3, ~800°), and (3, ~120°); and so in general. 

yP 

+3 3 
3 

00 — 0 rs R 

2 7 
7 8 120 

— Fi. 9 Fre, 9.2 

EXERCISES 

1. Plot accurately the following points: (2, 20°), (2, 5). ( * 7). 

ie, — ). (2, 14, (1, 180), (7, 45%), (7, 185°), ( ( 2) 
(0 2), (0, =), (6, 0°), and (-6, 0°). 5 

( 
ff Construct the triangle whose vertices are: (2, 6). (3, 7). 

oz); find by measurement the lengths of the sides and the coördi- 

nates 25 their middle points. 

3. The base of an equilateral triangle, whose side is 5 inches, is taken 
as the polar axis, with the vertex as pole; find the coördinates of the 

other two vertices. 

4. Write three other pairs of coördinates for each of the points 

2, 7) (, 75°); (5, 0°); (0, 60°). 
5. Where is the point whose radius vector is 7? whose radius vector 

is ~7? whose vectorial angle is 25°? whose vectorial angle is 0”)? whose 
vectorial angle is ~180°? 

6. Express each of the conditions of Ex. 5 by means of an equation. 

7. What is the direction of the line through the points (3, 7 and 
or 

( „) 
24. Notation. In the following pages, to secure uniformity 

and in accordance with Art. 6, a variable point will be desig- 
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“nated by P, and its coördinates by (z, ) or (p, @). If 

several variable points are under consideration at the same 
time, they will be designated by P, Y, Y, P,, and 

their codrdinates by (, y), (L, , @ yD, , %), en, 
or by (, 6), (, ), (% %, (%, %). .. Fixed points 
will be designated by P,, P, and their codrdinates by 

Gp Yds Gar e or by (Py %), (r 95), . 

II. ELEMENTARY APPLICATIONS 

_ 25. The methods of representing a point in a plane that 
have been adopted in the previous articles lead at once to 
several easy applications, such as finding the distance be- 
‘tween two points, the area of a triangle, ete. The form of 
the results will depend upon the particular system of coördi- 
nates chosen, but the method is the same in each case. 
Here, as in the more difficult problems that arise later, to 
gain the full advantage of the analytic method the student 
should freely use geometric constructions to guide his alge- 

: braic work, but he should, at the same time, see clearly that 
the method is essentially algebraic. 

26. Distance between two points. 
() Polar codrdinates. Let OR be the initial line,* O the 
pole, and let P, = (p,, 1) and P,= (or 4.) be the two given 
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fixed points. It is required to find the distance PP, d 
in terms of the given constants p,, pn 9, and 67. In the 
triangle OP,P, (cf. Art. 16) 

P,P? = OP? + OP —2- OP,- OP.. cos P OP, 

1.6. da = pn + p,? — 2 pip, cos (8, — 61), 

hence d = Vp," + pg* 20 008 (% — 1 1 

(2) Cartesian codrdinates; axes not rectangular. Let 
OX and OY be the codrdinate axes, meeting at an angle 

XOY o,“ and let PI (ri. ae and P. = (A. ½) be the two 
given points; it is required to find the distance P,P,=d 
in terms of 21, % J Yo and m. 

Construction: Extend the abscissa LI PI of the point P, 
to meet the ordinate M,P, of the point Py i in Q; then in 
the triangle P, QP, (cf. Art 16) 

PIP. = FS. —2-P,Q- QP, - cos P,QP,, Fig. 11%, 

PIP. = PIC + PG —2-P,Q- P. O. cos PIP, Fig. 11°, 

PIP. = OP? + PLP 2. QP,- P. cos PIP, Fig. 11°; 
which gives, for each figure, 

d= V (ay — ©e)* + (yy — Yo)? + 2 (i — Xe) (Ys — Y2)C08 0. f 

% * The demonstration applies to each figure. 
t By examining other possible constructions the student should assure 

himself of the generality of this formula, 
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() Rectangular coérdinates. If w= 7, i. e. if the cobrdi- - 
( * 

nate axes are rectangular, then cos o= 0, and the formula 
q oad the distance between the two given points becomes 

dav (a, ~-2)*+(¥i-ys)®. - - + [2] 
Since either of the two points may be named P,, this formula 
may be expressed in words thus: Jn rectangular codrdinates, 

the square of the distance between two given points is the square 
A the difference between their abscissas plus the square of the 
7 difference between their ordinates. 

2. Slope of a line. By the slope of a line is meant the 

tangent of the angle which the line makes with the positive 
end of the z-axis.* 
From this definition it at once follows that the slope m of 
the line j joining the two points P, = (2, y,) and P, (2, y:), 

tis axes being soctangular, ism = 27%; that is, 

m= a. r 

EXERCISES 

1. Find the distances between the points (1,3), (2,7), and (4. 4), 
taken in pairs. 

2, Find the distances for the points of Ex. 1, if the axes are oblique 

with w = 60°. 

8. Prove that the points (2. 1). (1,0), (4,3), and (1,2) are the 
rtices of a parallelogram. 

_ &. Find the distance between the points (a + b, ¢ a) and 
(era, b c; also between (a,b) and (~a, 6). 

8. Find the distances between the points (2, 30°), (3, $=), and 
(1.57) Se) taken in pairs. 

a © The slope of a roof or of a hill has the same meaning. Thus if the 
_ Slope of a hill (to the horizontal) is Ju, it rises 3 feet vertical in 100 feet 

TAN. AX. OnOM.—3 
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6. Prove that the points (0, 0˙), 05 7). and 5 5 form an equi- 

lateral triangle. 

7. One end of a line whose length is 13 is at the point (~4, 8), the 
ordinate of the other end is 3; what is its abscissa? 

8. Express by an equation the fact that the point P=(z, y) is at the 
distance 3 from the point (2, 3); from the point (0,0). 

9. Express by an equation the fact that the point PS (r, ) is 
equidistant from the points (~2, 3) and (7, 5). 

10. Find the slopes of the lines which join the following pairs of 
points: (3,8) and (1, 4); (2, 3) and (7, 9); (1, ~4) and (3, 5) ; (4, 2) 
and (2, 1). 

28. One great advantage of the analytic method of solv- 
ing problems lies in the fact that the analytic results which 
are obtained from the simplest arrangement of the geometric 
figure with reference to the codrdinate axes are, from the 
very nature of the method, equally true for all other arrange- 

ments. Thus formulas [1], [2], and [3] can be most readily ~ 
obtained if the points are all taken in quadrant I, i. e., with 

their codrdinates all positive; but because of the convention 
adopted concerning the signs as essential parts of the coérdi- 
nates, these formulas remain true for all possible positions of 
P,and P,. By drawing the figures and making the proofs 
when P, and P, are taken in various other positions, the 
student should assure himself of the generality of formulas 

[1]. [2], and [3] of articles 26 and 27. 

29. The area of a triangle. 

1. Rectangular codrdinates. Given a triangle with the 

vertices Pi (x, Ai), P2= (, ), and P, & (ay y;); to find 
its area in terms of 2, 4. . V % and y; Draw the ordi- 

nates MPI, M. P, and M,P;,—in the second figure extend 

M,P, and M,P, to meet a line through P, parallel to the 

z-axis. If A na the area of the triangle in the first 
figure, then: 



A= Pi. , + P. M. M. P. P\MM,P, 

but P (Ai. A., % > MM= 3+ ys) . 
and P, M. M. P. (M., M. .) · M. M. ICN ½) (225). 

and P. MM. P. (MI M..). MIM. COT C-). 

oe ATG G- 
O (a—X)} 

= HTC — 2 ＋ % 27) 
＋ O - 41 

This may also be written in the form 

A = TI Ys) i — Vi) 2 %“ 44] 
So also if A, represents the area of the triangle in the 
second figure, then 

A= P,MA,P, — PHP, P, H., 

Hi HP) - M. Hi · H.P. — H. P. P. H.. 

O- ( - - ( (i- 

G. %) ( :) l, [22% and y, being negative] 

HI % -i - Yo) l. as above [4a]. 

In the determinant notation this may be t This is derived by 
2210 another method in Ex. 42, 

15. Ya, 1 p. 122. 
Ze Yo, 1 

ritten: area of the triangle = } 
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If, instead of rectangular coördinate axes, oblique axes 
making an angle XO T= had been used, it would have 
been necessary merely to multiply the second members in 
the results just found by sin o in order to express the areas 
of the triangles. 

2. Polar codrdinates. 
3 

7 Let the vertices of the 

a triangle be Yi (on 6), 
3 P,=(px 6), and P, 

R (on 95); to find its area 

0 — Bs J A in terms of pj, px ps; 5 

* 0% and 63. 

Manifestly, A = OP,P,+ OP,P,— OP,P,, 
but OP. P. =I psp, sin(@,—6,), OP. PII py, sin (G- 6), 

and OP. PI] pp, sin (0,—6;). 
„ A= } Sp.p; sin ( 42) + psp; Sin( 0, — 8; ) — pop; sin( 6, — 2), 

which may also be written 

A= {pip2 sin (6.— E) + pops sin (A; — 2) 

+pspi sin (01 — 6) J. « [5] 

The symmetry“ in formulas [4], [4a], and [5] should be 
carefully noted; it may be remarked also, that in the appli- 
cation of these formulas to numerical examples, the resulting 
areas will be positive or negative according to the relative 
order in which the vertices are named. 

* This kind of symmetry is known as cyclic (or circular) symmetry. If 
— 

the numbers 1, 2, and 3 be arranged mus ( Y, then the subscripts in the 

first term (in [4a] say) begin with 1 and follow the arrow heads around the 

circle (i.e. their order is 1, 2, 3), those of the second term begin with 2 and 
follow the arrow heads (their order is 2, 3, 1), and those of the third term 
begin with 3 and follow the arrow heads. 
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; ) EXERCISES 

1. Find the areas of the following triangles: (1) vertices at the 
points (3, 5), (4, 2), and (I, 3); (2) vertices at the points (7, 3), (4, 6), 
and (3,~2); (3) vertices at the points (11, 9), (8, 2), and (~5, 3). 
Solve without using the formula, and then verify by substituting in 

the formula. 

| 2. Prove that the area of the triangle whose vertices are at the points 
e hence that these points all lie on 

the same straight line. 
3. Do the points (2, 3), (I, 3), and (3, 9) lie on one N line? 

(cf. Ex. 10, p. 28.) 
: 4. Do the points (7, 30°), (0, 0°), and (11, 210°) Ke da. one e 
line? Solve this by showing that the area of the triangle is zero, and 

ten verify by plotting the figure. 

8. Find the area of the triangle ( 0) (2x, =", and ( = =). 

6. Derive formula [4] when P, is in quadrant II, P, in quadrant III, 
and P, in quadrant IV. 

7. Find the area of the first two triangles in Ex. 1 if the axes make 
an angle of 60° with each other. 

230. To find the coordinates of the point which divides in 
a given ratio the straight line from one given point to 

another. Let P,=(2,, y,) and P,=(2, y,) be the two 
given points, . ( y,) the required point, and let the 

2 Nia. 14. 

_ ratio of the parts into which P, divides P,P, be m,: my; 

. e., let 21 ,: P, = m,: my. Draw the ordinates MP, 
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MI, M, and through P, and P, draw lines parallel to 
OX, meeting , and M,P, in R and Q respectively. 
To find OM, = 2, and M,P, = y, in terms of æ 2, l Yo» 

mi, and mg. 
The triangles P, RP, and P,QP, are similar; 

PR RP, P,P, 
therefore 7.0 a= 0 iP, = PP, F.. 

P,P; 1 
But P,P, — m 

and P,R=2,—2, PO = 2 

N. = % — = Ya — Ys: 

[In Fig. 14 (5), 2, yy, Yq, and yg are negative.] 

Tg — 2% J Jen therefore : l= =; 
bh 72 — 2 % s Me 

whence 
_ 4 H2 + Mya _ M1Y2 + 7227/1 
9 and 9 = — 33 

The above reasoning applies equally well whatever the 
value of (the angle made by the coördinate axes), hence 
formulas [6] hold whether the axes be rectangular or oblique. 

Formulas [6] were obtained on the implied hypothesis 
that P, lies between Pi and P,; i. e., that P, is an internal 
point of division. If P, is taken in the line P,P, produced, 

and not between P, and P,, it still forms, with P, and P,, 
two segments P,P, and P,P,, and P, may be so taken that, 
numerically, the ratio of P,P,: P,P, may have any real 
value whatever; but the sign of this ratio is negative when 
P, is not between Pi and P,, for, in that case, the segments 
P,P, and P,P, have opposite directions. Hence, to find 
the coérdinates of that point which divides a line externally 
into segments whose numerical ratio is mi: m, it is only 
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; “necessary to prefix the minus sign to either one of the two 
numbers m, or m, in formulas [6]. These formulas then 

become 
. „ 

Cor. If P, be the middle point of P,P,, then m, = m, 
and formulas [6] become 

wy = M18, ye = MTs; 8 * 3 [8] 

 i.e., the abscissa of the middle point of the line joining two 
given points is half the sum of the abscissas of those points, 

and the ordinate is half the sum of their ordinates. 

The remarks in Art. 28 are well illustrated by formulas 
7 [4] to [8]. 

EXERCISES 

1. By means of an appropriate figure, derive formulas [7] independ- 
ently of [d]. 
2. The point P,=(2, 3) is one third of the distance from the point 

P,=(-1, 4) to the point P,=(z,, y,); to find the codrdinates of P. 
Here P, and P, are given, with z,=—1, y, = 4, 2, = 2, ½ = 3, also 
m,=1, and m, = 2; therefore, from (6), 

＋ 201) * + 2(4) -A and 3 = ©), 

"which give 2 8 and y, = 1; therefore the required point P, is (8, 1) 

3. Find the points of trisection of the line joining (1, 2) to (3, 4). 

4 Find the point which divides the line from (I, 3) to (-2, 4) 
_ externally into segments whose numerical ratio is 3: 4. 
Here z,=1, = g. z,=—2, y,=4, m, = 3, and m,=4, but the 
point of division being an external one, the two segments are oppo- 

L itely directed; therefore one of the numbers 3 or 4, say 4, must have 
_ the minus sign prefixed to it. Substituting these values in [6], 

: | z= X= 2— 4) = 10, and y, = 4) = 9, 

de required point is, therefore, P,= (10, 0). 
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The same result would have been obtained had m. = 3, instead of 
m = 4, been given the minus sign; or, again, formulas [7] could have 
been employed to solve this problem. 

5. Solve Ex. 4 directly from a figure, without using either [G] or[7]. 

6. Find the points which divide the line from (1, 5) to (2, 7) inter 
nally and externally into segments which are in the ratio 2:3. 4 

7. Aline AB is produced to C, so that BC = 4 AB; if the points A 
and B have the codrdinates (5, 6) and (7, 2), respectively, what are the 
cotrdinates of C? 

8. Prove, by means of Art. 30, that the median lines of a triangle 
meet in a point, which is for each median the point of trisection nearest 
the side of the triangle. 

31. Fundamental problems of analytic geometry. The 
elementary applications already considered have indicated 
how algebra may be applied to the solution of geometric 
problems. Points in a plane have been identified with pairs 
of numbers, — the codrdinates of those points, — and it has 

been seen that definite relations between such points corre- 
spond to definite relations between their codrdinates. 

It will be found also that the relation between points. 

which consists in their lying on a definite curve, corre- 
sponds to the relation between their codrdinates, which 
consists in their satisfying a definite equation. From this 
fact arise the two fundamental problems of analytic geom- 
etry : ; 

I. Given an equation, to find the corresponding geometric 
curve, or locus. 

II. Given a geometric curve, to find the corresponding 
equation. 

When this relation between a curve and its equation has 
been studied, then a third problem arises : 

III. To find the properties of the curve from those of its 
equation. 
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The first two problems will be treated in the two succeed - 
ing chapters, While the remaining chapters of Part I will 

be concerned chiefly with the third problem. In this appli- 
cation of analytic methods, however, only algebraic equa- 
tions of the first and second degrees will for the most part 
be considered. In Chapter XIII is given a brief study of 
other important equations and curves. 

EXAMPLES ON CHAPTER II 

1. Find the area of the quadrilateral whose vertices are the points 
(I, 0), (3, §), (1, 16), and (4, 2). Draw the figure. 

2. Find the lengths of the sides and the altitude of the isosceles 
triangle (I, 5), (5, 1), (9, 9). Find the area by two different methods, 
so that the results will each be a check on the other. 

3. Find the cotrdinates of the point that divides the line from (2, 3) 
_ to (51, ~6) in the ratio 3:4; in the ratio 2:3; in the ratio 3: 2. 

Draw each figure. 

| 4. One extremity of a straight line is at the point (—3, 4), and the 
line is divided by the point (I, 6) in the ratio 2:3; find the other ex- 
tremity of the line. 

. 5. The line from (—6, 2) to (3, 1) is divided in the ratio 4:5; find 
the distance of the point of division from the point (4, 6). 

| 6. Find the area and also the perimeter of the triangle whose vertices 
are the points (3, 60°), (5, 120°), and (8, 30°). 

4 7. Show analytically that the figure formed by joining the middle 
points of the sides of any quadrilateral is a parallelogram. 

1 8. Show that the points (1, 3), (2, V6), and (2, VU) are equidis- 
tant from the origin. 

9. Show that the points (1, 1), (1. -), and (+ V3, Vi) form an 
equilateral triangle. Find the slopes of its sides. 

10. Prove analytically that the diagonals of a rectangle are equal. 

11. Show that the points (O, 1), (2, 1), (0, 3), and (2, 1) are the 
vertices of a square. 
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12. Express by an equation that the point (A, &) is equidistant from . 
(1, 1) and (1, 2); from (1, 2) and (1, 2). Then show that the point 
(J, 0) is equidistant from (—1, 1), (1, 2), and (1, 2). 

13. Prove analytically that the middle point of the hypotenuse of 
a right triangle is equidistant from the three vertices. 

14. Three vertices of a parallelogram are (1, 2), (5, 3), and (7, 6); 
what is the fourth vertex? 

15. The center of gravity of a triangle is at the point in which the 
medians intersect. Find the center of gravity of the triangle whose 
vertices are (2, 3), (4, 5) and (3, 6). (cf. Ex. 8, p. 40.) 

16. The line from (z,, y,) to (2 J½) is divided into five equal parts; 
find the points of division. 

17. Prove analytically that the two straight lines which join the 
middle points of the opposite sides of a quadrilateral mutually bisect 
each other. 

18. Prove that (1, 5) i is on the line joining the points 0, 2) and (2, 8), 
and is equidistant from them. 

19. If the angle between the axes is 30°, find the perimeter of the 
triangle whose vertices are (2, 2), (7, 1), and (1, 5). Plot the figure. 

20. Show analytically that the line joining the middle points of two 
sides of a triangle is half the length of the third side. 

21. A point is 7 units distant from the origin and is equidistant from 
the points (2, 1) and (2, 1); find its codrdinates. 

22. Prove that the points (a, b + c), (b,c + a), and (e, a + 5) lie on 
the same straight line. (cf. Ex. 2, p. 37.) 



CHAPTER III 

THE LOCUS OF AN EQUATION 

332. The locus of an equation. A pair of numbers z, y is 
represented geometrically by a point in a plane. If these 
two numbers (2, ) are variables, but connected by an equa- 
tion, then this equation can, in general, be satisfied by an 

infinite number of pairs of values of z and y, and each pair 

may be represented by a point. These points will not, 
however, be scattered indiscriminately over the plane, but 
will all lie in a definite curve, whose form depends only 

upon the nature of the equation under consideration; and 
this curve will contain no points except those whose co- 

_ ordinates are pairs of values which when substituted for 
„ and , satisfy the given equation. This curve is called 

the locus or graph of the equation; and the first funda- 
mental problem of analytic geometry is to find, for a given 
equation, its graph or locus. 

33. Illustrative examples: Cartesian codrdinates. 
(1) Given the equation z +5 = 0, to find its locus. This equation is 

satisfied by the pairs of values 2 — 5, y,=2; z,=-5, y,=3; 

* — 5, % = — 2; etc., that is, by every pair of values for which z = — 5. 
Such points as 

PiS C ¥,) = (5, 2), 

_ P. (ty 92) = (-5, 8), 
| P,= G 50 & C8, h, te, 

all lie on the line MVV. parallel to the axis, and at the distance 5 on 

the negative side of it,—this line extending indefinitely in both direc- 
| 48 
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tions. Moreover, each point of MN has for its abscissa 5, hence 
the cotrdinates of each of its points satisfy the equation z +5 =0. 

In the chosen system of coérdi- 
N 1 N nates, the line MN is called the 

2 p locus of this equation. 
> Similarly, the equation z—5 

N T =") is satisfied by any pair of 
lo x values of which z is 5, such as 

9 ——— 5, 2), (5, 3), (5, 4), ete.; all the 
T corresponding points lie on a 

rR T B straight line M’N’, parallel to 
2571 the y-axis, at the distance 5 from 

1 it, and on its positive side; te., 

M Fi. 15. M' is the locus of the equa 
tion 4 - 5 0. 

(2) Given the equations y+3=0, to find their loci. By the same 
reasoning as in (1) it may be shown that the locus of the equation 
y + 3 = 0 is the straight line AB, parallel to the z-axis, situated at the 

distance 3 from it, and on its negative side. Also that the locus of the 
equation y — 3=0 is CD, a line parallel to the z-axis, at the distance 
3 from it, and on its positive side. 

More generally, it is evident that in Cartesian codrdinates (rectangular 
or oblique), an equation of the first degree, and containing but one variable, 
represents a straight line parallel to one of the cordinate axes. 

(3) Given the equation 3x —2y+12=0, to find its locus. In this 
equation both the variables appear. By assigning any definite value to 
either one of the variables, and solving the equation for the other, a pair 
of values that will satisfy the equation is ob- 
tained. Thus the following pairs of values 
are found: 

11 * 0, N16 15 — 1, ½ 41 
42 1, ½ 71 16 2, % 3 

4, 2, ½ 9 171 3, ½ 14 
z,= 3, % = 10} 15 — 4. „ 2 0 

ee 2240 ay ee 5 

Plotting the corresponding points 

Pi, Py, Ps, P., where PI (i, 9) =(0, 6), 

F. (ty) 01, 74), ete. „ v. 10 
they are all found to lie on the straight line EF, which is the locus of 
the equation 34 25 12 0. 

1 

x 

a 
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—— — ee aartans thee 
of the first degree in two variables always represents a straight line. 
e the equation = 42, t0 find its locus This equation is 

i by each of the following pairs of values, found as in (3) above: 

2 ios 0, y, = 0 

. 1 7 2 

* . . 2 
. 2, y, 2 ½ = 2.8, approximately 
* 2. WN eee 
* . ¥=t4 

B=t+o, 24 

and for any negative value of æ the corre- 
impending value of y 1s imaginary. 

The corresponding points are: 
dd, 0), Fr dl. 2), Pye (1, ~2), ete Pia. 17. E 

All these points are found to lie on the curve as plotted in Fig. 17. 
This curve is called a parabola, and will be studied in a later chapter. 
The parabola is one of the curves obtained by the intersection of a 

_@ircular cone and a plane. (cf. Appendix, Note D.) It will be shown 
Ti Gkep. XII tet in Cartesian ‘cobrdinstes, the loons of any alge 

braic equation in two variables and 
of the second degree is a “conic sec- 
tion.” 

(5) Given the equation, y = 25 log z, 
to find its locus. A table of logarithins 
shows that this equation is satisfied by 
the following pairs of values: 

%,=0,y,=-2 25, = 6, ½ =194 

z,=1, ½ = 0 2 7, „ 21.1 

2 2, y, = 7.5 z 10, % 28 

4 * 8, % = 11.9 2% 15, % = 2.4 

z,=4, ½ 15 Zy = 20, yy, = 32.5 

z= 5, % 17.5 ete. ete. 

rue corresponding points are: 

PiS G, , P, (l, O). P. . 7.5), 

etc.; and the locus of the above equa- 
. tion is approximately given by the 
r 18. 
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(6) Given the equation y = tan 2, to find its locus. By means of a table 
of “natural” tangents it is seen that this equation is satisfied by the 
following pairs of values of z and y: 

Deonnes Rapians 

z= 0 = 0.00 5 1 =0 * 

z, =10 = 0.17 ½ = 0.18 
z, = 20 = 0.35 Ys = 0.36 

z, =30 = 0.52 % = 0.58 
z, = 40 = 0.70 75 = 0.84 
46 = 50 = 0.87 ¥ = 1.19 

z, = 60 = 1.05 y, = 1.78 
xz, = 76 = 1.22 Ys = 2.75 
15 = 80 = 1.40 Yo = 5.67 

110 = 90 = 1.57 ¥y =” 

zy, =— 10 =— 0.17 Yy = — 0.18 

12 = — 20 =— 0.35 Vy = — 0.36 
Z,3 = — 30 = — 0.52 Yi3 = — 0.58 

etc. ete. etc. 

The corresponding points are: 

P,=(0, 0), P,=(0.17, 0.18), P, S (0.35, 0.36), ete., 

and the locus is approximately as shown in Fig. 19. 

Y 

41 0 + +2 Be +27 0 

Fid. 19, 

34. Loci by polar cobrdinates. Analogous results are obtained for a 
system of polar codrdinates, as will be best seen from an Wi 
Given the equation p = 4 cos 6, to find its locus. 
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ul. equation is satisfied by the following pairs of values, found as in 

The corresponding points are: 

Pie (4, 0°); Pye (3846+, 30°); P, (2, 60°); Py=(2.8+, 45); 
pital cae OS (0, + 90°); P,=(3.464+, — 30°); P. (2. — 60°); 

Al these points are found to lie on the circumference of a circle 
9 whose radius is 2, the pole being on the circumference, and the polar axis 

q EXERCISES 

Plot the loci of the following equations: 

1220. 7. 2 ＋ 1. 13. 4 ＋ * 9. 

2 = 0. 8. r+y=4. 14. 1 5 0. 
8. br=0 9. r—y=0. 15. s= 167. 

4. . 10 * 4. 16. 5+¥=1. 
8. 257150. 11. 222+ y'=4 17. p=3. 
6. 2 715 0. 12. 82. 18. pcos ( — 40°) 8. 

19. y= — .. 

35. The locus of an equation. By the process illustrated 
above, of constructing a curve from its equation, the first 
conception of a locus is obtained, viz.: 

— (1) The locus of an equation containing two variables is 
the line, or set of lines, which contains all the points whose 

_ codrdinates satisfy the given equation, and which contains 

no other points. It is the place where all the points, and 
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only those points, are found whose coördinates satisfy the 
given equation. f 
A second conception of the locus of an equation comes 

directly from this one, for the line or set of lines may be 
regarded as the path traced by a point which moves along 
it. The path of the moving point is determined by the 
condition that its codrdinates for every position through 
which it passes must satisfy the given equation. Thus the : 
line EF (the locus of eq. (3), Art. 33) may be regarded 
as the path traced by the point P, which moves so that 
its codrdinates (2, /) always satisfy the equation 

82—2y+12=0. 

Thus arises a second conception of a locus, viz.: 

(2) The locus of an equation is the path traced by a point 
which moves so that its codrdinates always satisfy the given 
equation. 

In either conception of a locus, the essential condition 
that a point shall lie on the locus of a given equation is, 
that the codrdinates of the point when substituted respectively 
for the variables of the equation, shall satisfy the equation: 
and in order that a curve may be the locus of an equa- 
tion, it is necessary that there be no other points than those 
of this curve whose codrdinates satisfy the equation. 

36. Classification of loci. The form of a locus depends 
upon the nature of its equation; the curve may therefore 
be classified according to its equation, an algebraic curve 
being one whose equation is algebraic, and a transcendental 
curve one whose equation is transcendental. In particular, 

the degree of an algebraic curve is defined to be the same 
as the degree of its equation. The following pages are 
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; 3 chiefly with algebraic curves of the first and 
second degrees. 

87. Construction of loci. Discussion of equations. The 
process of constructing a locus by plotting separate points, 
and then connecting them by a smooth curve, is only ap- 
a ‘proximate, and is long and tedious. It may often be short- 

ened by a consideration of the peculiarities of the given 
equation, such as symmetry, the limiting values of the vari- 

ables for which both are real, etc. Such considerations will 
often show the general form and limitations of the curve; 
and, taken together, they constitute a discussion of the equa- 

The points where a locus crosses the codrdinate axes are 
almost always useful; in drawing the curve, they are given 
by their distances from the origin along the respective axes. 
These distances are called the intercepts of the curve. 
The following examples may serve to illustrate these 
- conceptions. 

(1) Discussion of the equation 3z — 2 y + 12 = 0 [see (3) Art. 33]. 

Intercepts: if z = 0, then y = 6; hence the y-intercept is 6 
(see Fig. 16); if y = 0, then z = — 4; hence the x intercept is 4. 

The equation may be written: z= jy — 4, which shows that as y 
increases continuously from 0 to ©, z increases continuously from — 4 
_ to @ ; therefore the locus passes from the point P, through the point P,, 
aud then recedes indefinitely from both axes in the first quadrant. Writ- 
ten as above, the equation also shows that as y decreases from 0 to — x, 
_ # also decreases from — 4 to — ©; therefore the locus passes from P, into 
the third quadrant, receding again indefinitely from both axes. Since 
tor every value of , z takes but one value (ie, each value of y corre- 
sponds to but one point on the curve), therefore the locus consists of a 
single branch. The proof that the locus of any first-degree equation, in 
two variables, is a straight line is given in Chap. V. 
1 (2) Discussion of the equation = A. [See (4) Art. 33.] 

Intercepts (see Fig. 17): if z = 0, then y = 0, and if y = 0, then z = 0; 

TAN. AN. GRoM. —4 
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hence the locus cuts each axis in one point only, and that point is the 
origin. The equation may be written in the form y = + VI, which 
shows that if z be negative y is imaginary; hence there is no point of 
this locus on the negative side of the y-axis. 

Again: for each positive value of z there are two real values of y, 
numerically equal, but opposite in sign; hence this locus passes through 
the origin, lies wholly in the first and fourth quadrauts, and is symmetri- 
cal with regard to the z-axis. : 

The equation shows also that z may have any positive value, however 
great, and that y increases when z increases; these facts show that the 
locus recedes indefinitely from both axes, — that it is an open curve of 
one branch. It is called a parabola and has the form shown in Fig. 17. 

(3) Discussion of the equation z* + y? = a’. 
Intercepts: if z=0, then y = +a, and 

i if y=0, then 2 = 4a; hence for each 
axis there are two intercepts, each of length 
a, and on opposite sides of the origin; 
i. e., four positions of the tracing point are: 
A=(a, 0), 4“ Ca, 0), B=(0, a), and 

a B'=(0, a). 
This equation may also be written 

y= + Va? — x, 

B which shows that every value of z gives 
.d. al. two corresponding values of y which are 

; numerically equal, but of opposite sign; 
the locus is, therefore, symmetrical with regard to the z-axis. It also 

shows that, corresponding to any value of z numerically greater than a, 
y is imaginary; the tracing point, therefore, does not move further from 
the y-axis than + a, ie., further than the points A and A’. Moreover, 

as z increases from 0 to a, y remains real and changes gradually from 
+a to 0, or from —a to 0; te., the tracing point moves continuously - 
from B to A, or from H to A. 

Again, if z decreases from 0 to — a, y remains real and changes con- 
tinuously from + a to 0, or from — a to 0; te, the tracing point moves 
continuously from B to A“ or from B’ to A’. 

Similarly, the equation may be written z = + Va? — y*, which shows 

that the curve is also symmetrical with regard to the y-axis, and that 
the tracing point does not move farther than + a from the z-axis. 

From these facts it follows that this locus is a closed curve of only one 
branch. It is a circle of radius a, with its center at the origin; this curve 

will be studied in detail in Chap. VII. 

S a 
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(A) Discussion of the equation y* = (x 2) ( — 3)(z — 4). 
Intercepts: if z = 0, then y is imaginary; if y = 0, then z = 2, 3, or 
_ 4; hence the locus crosses the maxes at the three points: Am (2, 0), 
Ba (3, 0), and C (l. 0), and * 
it does not cut the y-axis at all. 
Moreover, since y is imaginary if y 
ais negative, the locus lies wholly 

on the positive side of the y-axis. 
This locus is symmetrical with 

regard to the axis; it has no 
Point nearer to the yaxis than 
Az between A and B it consists A B 
ol aclosed branch; and it has no 

wal points between B and C, but 
is again real beyond C. The 

entire locus consists, then, of a 
closed oval, and of an open branch 

which recedes indefinitely from 
both axes (see Fig. 22). Fra, 22. L 

| (5) Discussion of the equation y = tan z. This equation has already 
_ been examined in (6) Art. 33, but in practice it may be much more simply 
_ plotted by the following method: 

Describe a circle with unit radius; draw the diameter AOC, and the 

lines OB,, OB, OB. , meeting the tangent 47 
in the points Tu T, T. -; then the tangent of 

A the angle AOB, is MAH: OM, = AT,: OA (Art. 
14), and, since OA = 1, its value is graphically rep- 
resented by AT. So also 

tan AOB, = M,B,: OM, AT,: OA= AT,:1, 

and may be graphically represented by 4 T. In 
7. the same way, AT; AT, AT, . are the tangents 

. of the angles AOB, AOB, AOB, . Again, 
2 1. Since angles at the center of a circle are propor- 

„ tional to the ares intercepted by their sides, 47’, 
AT,, „ may be said to be the tangents of the 
ares AB,, A B. --; ie, AT, = tan AB, AT, = tan 
4B. . Therefore the codrdinates of the points 
P,=(AB,, 47), P,=(AB, AT,), + satisfy the 
given equation, and if a sufficient number of points, 
whose cotrdinates are thus determined, be plotted, 
they will all lie on a curve like that in Fig. 19. 
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From what has just been said it is clear that y = 0 if = O, hence the 
curve goes through the origin; when z increases continuously from 0 to 

7 y increases continuously from 0 to , but when z increases through 7 

y passes suddenly from + to — , and the curve is discontinuous for 1 

that value of z. So also when z increases continuously from 5 t 2 

y increases continuously from — © through 0 to + , and is again dis- 4 

continuous for z — The locus consists of an infinite number of 

such infinite, but continuous branches, separated by the points of discon- 

tinuity for which z = + 25 z=+ 22. 1 4 22, 
2 “a 2 

The other trigonometric functions, y = sin z, y = sec &, etc., can all be 
plotted by a method analogous to that above. 

EXERCISES 

Construct and discuss the loci of the following equations: 

1 2 E. 1 3. y = sec z. 7. „ sin u. 

4 9 4. 72 — y*= a’. 8. 4+ y?=0. 

1 
x yf 5. z2?—y?=0. * a 

2.24% 1 9, L—-= 56° ef. E 8 
her 6. 472 — y*=0. y-2 0 * 

38. The locus of an equation remains unchanged: (a) by 

any transposition of the terms of the equation; and (8) by 
multiplying both members of the equation by any finite con- 

stant. 

(a) If in any equation the terms are transposed from one 
member to the other in any way whatever, the locus of the 
equation is not changed thereby; for the coördinates of all 
the points which satisfied the equation in its original form, 
and only those coördinates, satisfy it after the transpositions 
are made. [See Art. 35 (1).] 

(8) If both members of an equation are multiplied by any 
finite constant &, its locus is not changed thereby. For if 
the terms of the equation, after the multiplication has been 
performed, are all transposed to the first member, that mem- 
ber may be written as the product of the constant & and a 
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0 variables. This product will vanish if, 
and only if, its second factor vanishes; but this factor will 

_ yanish if, and only if, the variables which it contains are the 
 coirdinates of points on the locus of the original equation. 
Hence the codrdinates of all points on the locus of the ori- 
_ ginal equation, and only those coirdinates, satisfy the equation 
After it has been multiplied by &; hence the locus remains 
“unchanged if its equation is multiplied by a finite constant. 

_ 39. Points of intersection of two loci. Since the points of 
_ intersection of two loci are points on each locus, therefore 
the codrdinates of these points must satisfy each of the two 
equations ; moreover, the codrdipates of no other points can 
satisfy both equations. Hence, to find the codrdinates of the 

points of intersection of two curves, it is only necessary to 
regard their equations as simultaneous and solve for the 

N coördinates. 

., Find the coérdinates of the points of intersection, Pi and P,, of 
the loci of x 2 = 0, and y =z. The point of intersection P,=(z,, y,) 

v on both curves, 
„ 2, —2y, = 9, and y,* =z," ¥ 7 

Solving these two equations, 

, or 4, and y, = 0, or 2; 

te. Pie (4, 2) and P,= (0, 0) are 17 2 * 
two points, the codrdinates of which 

_ satisfy each of the two given equa- | 
_ tions; therefore they are the points 
_ of intersection of the loci of these 
equations. Fro. Al. 

5 EXERCISES 
_ Find the points of intersection of the following pairs of curves: 

„ 2 647128 

r+y-2=0. 14 — gas 

„Hand y are regarded as the codrdinates of the point E intersection, 

the subscripts may be omitted here. 
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y=32r4+2, r+y=2a, 
= 3 8 Lee aly? abe 

27 - 5, 9. z?+y*= 16, 
4. desir Lace 

5 e ee 10. 2 

LI. y re 
Pp =F COBY, 

6. . 11. bate 

3 T= p = b 008 (45° — 0), 

Apr, 12. 5 T pd 
ae 33 b co 6) =1. 

13. Trace carefully the above looi; by measurement, find the codrdi- 
nates of the points in which each pair intersect; and compare these 
results with those already obtained by computation. 

40. Product of two or more equations. Given two or more 

equations with their second members zero ;* the product of their 
first members, equated to zero, has for its locus the combined 

loci of the given equations. 
This follows at once from the fundamental relation be 

tween an equation and its locus (see Art. 35 (1)), for the 
new equation is satisfied by the coördinates of those points 
which make one of its factors zero, but it is satisfied by 
the codrdinates of no other points; i. e., this new equation 
is satisfied by the coördinates of points that lie on one or 
another of the loci of the given equations. 9 

The following example illustrates this principle in the 
case of two given equations. 

Let the given equations be: 

z+y=0 . . . (I) and æ -= O. QQ 

* If equations whose second members are not zero are multiplied together, 

member by member, the resulting equation is not satisfied by any points 
of the loci of the given equations except those in which they intersect each 

other; the new equation therefore represents a locus through the points of 

intersection of the loci of the given equations. 
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Equation (1) represents the 
straight line CD, and equation 
(2) the line AB,—bisecting re- 
_ spectively the angles between the 
axes. It is to be shown that the 
equation 

-=. 0) 
Cor, what is the same, 2 — y*= 0), 
formed from equations (I) and (2), F. . 
has for its locus both these lines. 
_ Proof. If PI SC y;) is any point on CD, then its co- 
ordinates satisfy equation (1), hence 21 + y, = 0, and there- 
fore (21 + y;)(z; — y;)= O; which shows that Pi is a point 
of the locus of equation (3). But since Pi was any point 
of CD, therefore the codrdinates of every point on CD satisfy 
“equation (3); f.., all points of CD belong to the locus of 

equation (3). 
In the same way it is shown that AB belongs to the 
locus of equation (3). 
Moreover, if P. (% %) be any point not on AB nor 
on CD, then z, + ½ #0, and 2 — y, 0, hence 

(2% + ¥3)@ — ½ #93 
ike, P, does not belong to the locus of equation (3). 

Hence the locus of equation (3) contains the loci of equa- 
tions (1) and (2), but contains no other points. 
The above theorem may be stated briefly thus: if u, v, w, 
eto, be any functions of two variables, then the equation 
_uew---- =0 has for its locus the combined loci of the 
‘equations u=0, v= 0, w= 0, ete. 

_ Nore. When possible, factoring the first member of an equation, 
whose second member is zero, simplifies the work of finding the locus of 
3 
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EXERCISES 

What loci are represented by the following equations? 

1 0 2 7 = 3. 3 2 70 

4. 5 zy? -—2 z*y=0. §. z?-—227+1=0. 6. (z?+ y?—4)(y?—42%)=0, 

41. Locus represented by the sum of two equations. Sup- 
pose the equations 

27-2 0 . (), and . . Gy 

are given. Their loci are respectively AB and DPI 
(Art. 39), and it is required to find the locus of their sum; 

i. e., of 2y—z7+y*?*—2z=0, 

5 Pp B or, what is the same thing, of 

72 ＋ 27 222 0 oust ie (3) q 

The locus of this last qua- 
2 4 8 tion passes through all the 

points in which AB and 
Seam > DP,P,C intersect each other. 

8 For let PI (i y;) be one of 
these points, then since 51 

lies on AB, its coördinates satisfy equation (1); i. e., 

2y,-%,=90;  . . . (4) 

and since Pi lies on DP,P,C, its codrdinates satisfy equa 
tions (2); i. e., 

vi 210; „„ 

therefore, by adding equations (4) and (5), 

91 ＋ 2 ½ — 21 „0 ˖ r. &6-—EE’]Aõ 

This last equation proves (Art. 35 (1)) that PI = ( yy) — 
is on the locus of equation (3); i. e., the locus of equation 
(3) passes through PI =(2,, y,). | 

Similar reasoning would show that the locus of equation 
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() passes through every other point in which the loci of 
equations (1) and (2) intersect each other. 
In precisely the same way it may be proved generally that 

the locus of the sum of two equations passes through all the 
points in which the loci of the two given equations intersect 
each other. 

If either of the given equations (1) or (2) had been multi- 
i by any constant factor before adding, the above reason- 

ing would still have led to the same conclusion; in fact, 
s theorem may be briefly, and more generally, stated thus: 

iy u and v are any functions of the two variables z and y, and 
kis any constant, then the locus of 

u+kv=0 

through every point of intersection of the loci of 

u O and v=0. 

For, let the locus of the equation u=0 be the curve 

ABC, the locus of v=0 be the curve DEF, and let 
P, = (2, n] be any one of 

the points in which these B 
curves intersect each other. 
Then the equation Es B 

0 Ae x. 
is satisfied by the coördi- aw 
nates of the point .= 

A Fro. 37 05. D> because if these 

linates be substituted for z and y in the functions u and 
Nr must make both these functions separately equal to 
20 Therefore the locus of u+kv=0 passes through 
every point in which the loci of u = 0 and v = 0 intersect 
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EXERCISES 

1. Verify Art. 41 by first finding the coördinates of the points of 
intersection of the loci of equations (1) and (2), and then substituting 
these coordinates in equation (3). 

2. Find the equation of a curve that passes through all the points in 
which the following pairs of curves intersect: 

22 + * = 2, sin z, 
Gee (8) 2 

3. Find the equation of a curve through all the points common to the 
following pairs of curves: 

@ {24%} (B) ee, 

Nore. It is to be observed that the method given in Art. 39, for find- 
ing the point of intersection of two curves, is an application of the 
theorem of Art. 41. For the process of solving two simultaneous equa- 
tions, at least one of which involves two variables, consists in combining 
them in such a way as to obtain two simple equations, each involving 
only one variable. Now each of these simple equations represents an 
elementary locus, — one or more straight lines parallel to the axes, if the 
coérdinates are Cartesian; circles about the pole, or straight lines through 
the pole, if the ooördinates are polar, — and these elementary loci deter- 
mine, i.e., pass through, the points of intersection of the original loci. 
To determine the points of intersection, then, of two loci, the original 
loci are replaced by simpler ones passing through the same common 
points. E. g., the points of intersection of the loci of Art. 39, 

2y—-2=0 .. . (1), and Pes . «2 GD 

are given by the equations 

(* 2) - (25 -) = and [(2 )) — ] — 40% — 4) 0, 

that is, by 57 - 25 0, and 22 — 4 0, 

which may be written 

N 2) 20 ... (8), 1 ( 1 4) 0. (4) 

But the locus of equation (3) is a pair of straight lines parallel to the 
z-axis, and the locus of equation (4) is a pair of straight lines parallel 
to the y-axis; and these loci have the same points of intersection as the 
loci (1) and (2). . 
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EXAMPLES ON CHAPTER II! 

q 11 Are the points (3, 9), (4, 6), and (5,5) on the locus of 3 2+2 y=25? 

2. Is the point ( 3) om the locus of 4 24+ 9 y* = 2a*? 

3. The ordinate of a certain point on the locus of = + y* = 25 is 4; 
what is its abscissa? What is the ordinate if the abscissa is a*? 

_ Find by the method of Art. 30 where the following loci cut the axes 
of r and y. 

4 y= 9-3). 8. 10 ＋ , = 14, 

8. G4. 

ud by the method of Art. 30 where the following loci cut the polar 
axis (or initial line). 

cv. „ = in 8. „ 4 cos 2 6. 

. The two loci F 1 a4 intersect in four points; find 
the lengths of the sides and of the diagonals of the quadrilateral formed 

a 10. A triangle is formed by the points of intersection of the loci of 
2 +y=a, 2- 2y=4a, and y—z+7a=0. Find its area. 

. Find the distance between the points of intersection of the curves 
27 0, and 2 y*=9. 

132. Does the locus of y* = 4 z intersect the locus of 2 +3y+2=0? 
18. Does the locus of 2 4 y + 4=0 cut the locus of z* + y*=1? 

14. For what values of m will the curves z*+ y°=9 and = d 
not interseot? (ef. Art. 9.) Trace these curves. 

3 15. For what value of } will the curves * = 42 and y =z +6 inter- 
sect in two distinct points? in two coincident points? in two imaginary 
points (i.¢., not intersect)? 

186. Find those two values of e for which the points of intersection of 
. and 2 + y* = 25 are coincident. 

4. Find the equation of a curye which passes through all the points 
of intersection of * + * = 25 and * = Ar. Test the correctness of the 
"result by finding the codrdinates of the points of intersection and sub- 



atte a * . 
＋ a * . 2 

. 

(2), and (3) of Art. 37. 

Discuss and construct the loci of the equations: 
19. (z2*-—y"*)(y—tanz)=0. 22. „ . 

20. * „ 0. 

21. * 0. 

28. Show that . eig pls of curves e coh of 
two coincident points; de., are tangent to each other. | 

— 10 - 65 — 31 0, 

(2) a — 10 Ak . 

oe 
8 1152-857110. 

29. Weine,, 

25 3 =1 and 5 1. 



CHAPTER IV 

THE EQUATION OF A LOCUS 

_ 42 The equation of a locus. The second fundamental 
problem of analytic geometry is the reverse of the first 
(ef. Art. 31), and is usually more difficult. It is to find, 
for a given geometric figure, or locus, the corresponding 
equation, i. c., the equation which shall be satisfied by the 

oördinates of every point of the given locus, and which 
shall not be satisfied by the codrdinates of any other * 
The geometric figure may be given in two ways, viz. 
() As a figure with certain known properties; —. 

(2) As the path of a point which moves under known 

In the latter case the path is usually unknown, and the 
complete problem is, first to find the equation of the path, 
and then from this equation to find the properties of the 
eurve. This last is the third problem mentioned in Art. 31. 
The two ways by which a locus may be “given” corre- 
spond to the two conceptions of a locus mentioned in Art. 
_ 85, and they lead to somewhat different methods of obtaining 
the equation. The first method may be exemplified clearly, 
and most simply, by first considering the familiar cases of 
the straight line and the circle. 

_ 48. Equation of straight line through two given points.* 
Let P, = (3, 2), and P. = (12, 5) be two given points; and 

Ses also Art. 51. 

61 
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let = (g. %) be any other point on the line through P, 
and Py. 

ce the ordinates MI, MP, and M,P,, and throagil ; 

P, draw PIN parallel to the z-axis, meeting MP in R and 

M,P, in Ry 
* 

— 

0 
E14 
PE 

M 

The triangles P, RP and P N are similar, hence 

RP PR. M HE oO O 
R,P, PIR, M,P,—M,P, OM, — OM, 

Substituting for MP, OM, M,P,, OM,, ete., their values, 
this equation becomes 

which reduces to 8y—a2—3=0. ‘ 5 2097 

This is the required equation of the straight line through 
P, and P,, because it fulfills both the requirements of the 
definition [ef. Art. 35 (1)]; @.e., it is satisfied by the coérdi- — 
nates of any (i. e., of every) point of this line, because , y are 

the codrdinates of any such point; and it is not satisfied by 

the codrdinates of any point which is not on this line, because 
the corresponding constructions for such a point would not 
give similar triangles, and hence the proportions which led 
to this equation would not be true. ‘ 

That equation (1) is not satisfied by the codrdinates of 



‘seen as follows: 

let Py (n- 5) 
bo any point not on the 
Une through P, and P,, 
the ordinate , will — 
meet P,P, in some point 
F. G., for which 
l but ½ ys Since P, is on the line P,P, its 
ooördinates satisfy equation (1), therefore 

3% — 2. - 32 0, 

. 3% — 2 32 0; [since 2, = 2 and y, . ys] 

the céordinates of P, do not satisfy the equation 

8y—2r=3. 

_ 44 Equation of straight line passing through given point 
and in given direction. Let P, = (5, 4) be the given point, 
let the given line through i make an angle of 30° with the 
-g-axis, and let P = (2, ) be any other point on this line. 

Draw the ordinates M,P, and MP, and through Pi draw 
P,R parallel to the z-axis to meet MP in At. Then 

RP MP—MP 
tan RPP = DE" ON — OM, 

* This proof shows clearly that if the cotrdinates of any point on the 
‘Straight line through Pi and P, are substituted for æ and y in equation (1) 
the first member will be equal to zero ; if the codrdinates of any point below 

"this line are so substituted the first member will be negative; and if the cor 
dinates of any point above this line are so substituted the first member will be 
“positive. This line may then be regarded as the boundary which separates 
“that part of the plane for which 3y — x — $3 is negative from the part for 
which this function is positive. Because of this fact that side of this line on 
which P, lies may be called the negative side, and the other the positive side. 

dt see also Art. 53. 
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Substituting for MV MP, OM, OM, and angle RP,P 
their values, and remembering that tan 30° = a Ag 
this equation becomes v3 

13 me i. e., & V- 5 ＋ 4 =.“ 
4 — 

Pratl 

* 

The equation just found is satisfied by the coördinates of 
any point on the given line, but is not satisfied by the coör- 
dinates of any point that is not on this line (cf. Art. 43); 

hence it.is the equation of the line (cf. Art. 35). 

45. Equation of a circle; polar coördinates. f In deriving 
this equation, let polar coördinates be employed, merely for 

variety, and let the pole be taken 
on the circumference, with a di- 

ameter OA extended for the ini- 

tial line. Let P (p, 0) be any 

point on the circle, and let r be 
the radius of the circle. 

Fic. 31. Connect P and A by a straight 

6 

— — — ——— —— 

* The positive side of this line is that side on which the origin lies (cf. 
foot-note, Art. 43). 

t See also Art. 98. 

Except in elementary geometry, the word ‘‘circle’’ is employed by most 
writers on mathematics to mean ‘ circumference of a circle.’’ It will be so 
used in this book. 



line; then, in triangle AOP, angle OPA is a right angle, 
dhe OP =p, and OP: OA = cos 6; i. e., 

4 p:2r= cos 0; 

hence p=2rcos0. . . . (1) 

_ Equation (1) is satisfied by the polar codrdinates of every 
point on the circle; but is not satisfied by the codrdinates 
of a point O not on the circle, since angle 400 is not a 
‘right angle. Therefore Eq. (1) is the equation of this circle 
(ef. Art. 35). 

) EXERCISES 

1. Find the equation of the straight line through the two points (1,7) 
and (6,11); through the points (-2, 5) and (3, 8). Which is the posi- 
tive side of each line? 

2. Find the equation of the straight line through the two points (2, 3) 
and (-2, 3). Through what other point does this line pass? Does 
tho equation show this fact? 

3. Find the equation of the straight line through the point (5, 7), 
and making an angle of 45° with the z-axis; making the angle —45° with 
the Taxis. 

4. Find the equation of the line through the point (6, ~2), and 
making the angle 150° with the z-axis. 

8. Construct the circle whose equation is p = 10 cos @. 

8. With rectangular cotrdinates, find the equation of the circle of 
radius 5, which passes through the origin, and has its center on the 
axis. Is its positive side outside or inside? 

46. Equation of locus traced by a moving point. In the 

problems given above, the geometric figure in each case was 
completely known; and, in obtaining its equation, use was 
made of the known properties of similar triangles, triangles 
inscribed in a semicircle, and trigonometric functions. In 
only a few cases, however, is the curve so completely 
known; in a large class of important problems, the curve 

TAN. AN. Grom. — 5 
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is known merely as the path traced by a point which moves 
under given conditions or laws. Such a curve, for instance, 
is the path of a cannon ball, or other projectile, moving 

under the influence of a known initial force and the force of 
gravity. Another such curve is that in which iron filings 
arrange themselves when acted upon by known magnetic 

forces. The orbits of the planets and other astronomical 
bodies, acting under the influence of certain centers of force, 

are important examples of this class of “given loci.” 
In such problems as these, the method used in Arts. 48 to 45, 

cannot, in general, be applied. A method that can often be 

employed, after the construction of an appropriate figure, is: 
(1) From the figure, express the known law, under which 

the point moves, by means of an equation involving geo- 
metric magnitudes; this equation may be called the “ geo- 
metric equation.” 

(2) Replace each geometric magnitude by its equivalent 
algebraic value, expressed in terms of the codrdinates of 

the moving point and given constants; then simplify this 
algebraic equation, and the result is the desired equation of 
the locus. 

47. Equation of a circle: second method. To illustrate 

this second method of finding the equation of a locus, con- 
sider the circle as the path traced by a 
point which moves so that it is always 
at a given constant distance from a fixed 

0 point. From this definition, find its 

8 equation. 
0 Ne ; 

— Let C=(3, 2) be the given fixed 
point, and let P =(za, y) be a point that 

moves so as to be always at the distance 2} from C. Then 

CP=§, . . . [geometric equation] 

＋ 
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but =CP= Viz —3) + — 2)? (Art. 26, [2]). 

we Va— 5 +y— 2 =f; [algebraic equation] 

Pike. (x —3)*+(y — 2)? = M; 

hence 48 ＋7 1 — 242 — 167 27 = 0, 

which is the required equation. 
The locus of this equation can now be plotted by the 

methods of Art. 37, and its form and limitations can be 
discussed as is there done for other equations. 

EXERCISES 

1. Find the equation of the path traced by a point which moves so 
that it is always at the distance 4 from the point (5, 0). Trace the * ’ 

2. Find the equation of the path traced by a point which moves so 
that it is always equidistant from the points (2, 3) and (7, 5) (cf. 
Ex. 9, p. 34). 

8. A line is 3 units long; one end is at the point (-2, 3). Find 
the locus of the other end (cf. Ex. 8, p. 34). 

. A point moves so as to be always equidistant from the y-axis and 
from the point (4,0). Find the equation of its path, and then trace and 
discuss the locus from its equation. 

8. A point moves so that the sum of its distances from the two points 
~ ©, V5), (0,~ V5) is always equal to 6. Find the equation of the locus 
traded by this moving point. : 
8. A point moves so that the difference of its distances from the two 
points (0, V5), (0, - V5) is always equal to 2. Find the equation of the 
locus traced by this moving point. 

40 The conic sections. Of the innumerable loci which 
may be given by means of the law governing the motion of 
the generating or tracing point, there is one class of par- 
‘ticular importance; and it is to the study of this important 

class that the following pages will be chiefly devoted. These 
curves are traced by a point which moves so that its distance 
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from a fixed point always bears a constant ratio to its distance 
from a fixed straight line. These curves are called thé Conic 
Sections, or more briefly Conics, because they can be obtained 
as the curves of intersection of planes and right circular 
cones ;* in fact, it was in this way that they first became 

known. The last three examples just given belong to this 
class, although it is only in No. 4 that this fact is directly 
stated. These loci are the parabola, the ellipse, and the 
hyperbola; it will be shown later that they include as spe- 
cial cases the straight line and the circle. They are of 
primary importance in astronomy, where it is found that the 

orbit of a heavenly body is a curve of this kind. 
The general equation, which includes all of these curves, 

will now be derived, and the locus briefly discussed; in a 
subsequent chapter will be given a detailed study of the 
properties of these curves in their several special forms. 

(a) The equation of the locus. Let F be the fixed point. 
— the focus of the curve; D the fixed 

Y line,—the directrix of the curve; and e 

D the given rafio,—the eccentricity of 
i7------------ iu curve. 

Vs The codrdinate axes may of course 
2 — be chosen as is most convenient. Let 
ru. * D'D be the y-axis, and the perpendicu- 

lar to it through F. i. e., the line OF X, 
be the z-axis. Let P = (2, y) be any position of the generat- 

ing point, and let OF, the fixed distance of the focus from 
the directrix, be denoted by &; then the coördinates of the 

focus are (k,0). Connect F and P, and through P draw 
LP perpendicular to the directrix. 

Then FP: LP =e, [geometric equation] 

* See Note D, Appendix. t See Note C, Appendix. 
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FPV -H (Art. 26), 

LPS, [algebraic equivalents) 

V(iz— ky + ¥ = er; 

(—@)2+Y7-—2ke+P=0, . .. (I) 

which is the equation of the given locus. 
This equation is of the second degree; in a later chapter 
it will be shown that every equation of the second degree 
between two variables represents a conic section. On this 
account it is often spoken of as the “second degree curve.” 

(6) Discussion of equation (1). 
If z=0, then y= +k V—1, which shows that this curve 

does not intersect the y-axis as here chosen; i. e., a conic 

does not intersect its directrix. 

If y = 0, then (1 — %% — 2 + FP =0, 

5 ws: tax ene 
1—e 

„ or & 
e 1+ 

a conic meets the line drawn through the focus and per- 
ndicular to the directrix (the z-axis as here chosen) in 

two points whose distancés from the directrix are 1 

5 = respectively ; these points are called the vertices of the 
c 

and 

. (1) shows that for every value of z, the two 
‘corresponding values of y are numerically equal but of 
‘opposite signs, hence the conic is symmetrical with regard 
to the z-axis as here chosen. For this reason the line 
drawn through the focus of a conic and perpendicular to 
the directrix is called the principal axis of the conic. 

The form of the locus of equation (1) depends upon the 
value of the eccentricity, e; if e=1, the conic is called a 
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parabola; if e<1, an ellipse; and if e>1, an hyperbola. 

Each of these cases will now be separately considered. 
(1) The parabola, e=1. If e=1, then FP: LP=1, 

i. e. FP = LP for every position of 
the tracing point,* hence the curve 
passes through A,—the point mid- 
way between O and F., — but does not 
again cross the principal axis (cf. 
also equations (2), above). 

Moreover, when e = 1, equation (1) 

becomes 

y?—2kre+k?=0, 

t.€., = 2 9 +. 

which is the equation of the parabola, the coördinate axes 
being the principal axis of the curve and the directrix. 
Equation (3) shows that there is no point of this parabola 

for which 1 5) and also that / changes from 0 to 4 

when z increases from 5 to ; hence the parabola recedes 

indefinitely from both axes in the first and fourth quadrants. — 
Its form is given in Fig. 34. f 

(2) The ellipse, e<1. Equation (1) may be written in 
the form . 

— — — ts) .» « 4) 

* This property enables one to construct any number of points lying onthe 
parabola, thus: with F as center, and any radius not less than 4 OF, describe 

a circle, then draw a line parallel to OY and at a distance from it equal to 
the chosen radius; the points in which this line cuts the circle are points on 

the parabola. Other points can be located in the same way. See also Note 
B, Appendix. 

t Equation (4) enables one to construct any number of points on the 

2 = 
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which shows, ¢ being less than 1, that y is imaginary for all 

values of z except those which satisfy the condition 
’ k * 

Te 2 2 

3 the ellipse lies wholly on the positive side of its direc- 
trix, and between two lines which are parallel to the directrix 

Fra. 35. 

distant from it 1 and 1 respectively. Equa- 

» (4) shows that as z increases from i ae ee Er 
l+e l—e 

— 

and MA! of the line Y 

he semicircle of which „ 8 Ps 
AA’ is the diameter. A W — 

If now the point P on n 
MQ be so constructed 
that MP = VIA. MQ, then Pa point on the ellipse whose equation is 
(4) above. 
r on the eures enn ‘he: constructed, 780s 

| shows also that the ordinates of an ellipse are less than, but in a con- 
a Tikis tol the eorveeponding Ordiudtes of the clvele of which the diameter 
gaat Hine Joining the vertices of the ellipes. See also Note B, Appendix. 
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increases from 0 to (which value it reaches when 4 

7 2 3 and then decreases again to 0. The form of the j 

curve is therefore as shown in Fig. 35, where OF =k, © 

0A=*. 00=-+, == and cB=—& 
l+e 1— 1— e 

(3) The hyperbola, e 1. Equation (1) may also be 4 

written in the form . 

reverie @ 
which, when e>1, shows that / is imaginary for all values 

and z= of z between z= i 7 and that y is real for 
+e | 

all other values of x. Equation (5) also shows that, as & 

\ 33 
7. 

increases from to o, y changes from 0 to +o, and 

that, as z decreases from to - , y changes from 0 to 
l1—e | 

+a. The form of the curve is therefore as shown in 
k k k 

Fi 2 „„ —uꝛ—̃ ig. 37, where OA iso OA 7. | 

Although these three curves differ so widely in form, they 

are really very closely related as will be further shown in 

Chap. XII, and in Note D of the Appendix. 
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49. The use of curves in applied mathematics. In Chap- 
ter III it was shown that whenever the relation between two 
variables, whose values depend upon each other, can be defi- 

nitely stated, i. e., when the variables can be connected by 
an equation, then the geometric or graphic representation of 
this relation is given by means of a curve. Such a curve 

en gives at a glance, information which would otherwise 
require considerable computation to secure; and in many 

: it brings out facts of peculiar interest and importance 

which might otherwise escape notice. 
The use of graphic methods in the study of physics and 
engineering, as well as in statistics and many other branches 
‘of investigation, is already extensive and is rapidly increas- 
ing. Under the name “graphic methods” there arc in- 
cluded, however, not only such examples as those already 
riven, where the equation connecting the variables is known, 
b et also those where no such equation can be found; in 

2 latter cases the curves constitute almost the only prac- 
way of studying the relations involved. 

As a simple example of this kind, suppose the temperature 
of a patient to be accurately observed at intervals of one hour ; 
if the numbers representing the hours, i. e., 1, 2, 3, .. are 
taken as abscissas, and the corresponding numerical values of 

the temperatures be taken as ordinates, then a smooth curve 
drawn through the points so determined will express graphi- 
cally the variation of the temperature of this patient with 
the time. This curve will also show to the physician what 
was the greatest and least temperature during the inter- 

of the observations, as well as the time when each of 
a 

For most of the suggestions in this article, and in the examples that 
follow it, the authors are indebted to Mr. J. S. Shearer of the Department 

ee 



74 ANALYTIC GEOMETRY (Cu. IV. 

these was attained. In this problem the curve gives no 
new information, but it presents in a much more concise 
and forcible form the information given by the tabulated | 

numbers. 

Again, if the distances passed over by a train in successive 
minutes during the run between two stations are taken as 
ordinates, and the corresponding number of minutes since 
starting, as abscissas, a smooth curve drawn through the 
points so determined will show at a glance, to an experi- 
enced eye, where and when additional steam was turned into 
the cylinders, brakes applied, heavy grades encountered, ete., 

ete. 

In all such cases the coördinates of the points are taken to 

represent the numerical values of related quantities, such as 

time, length, weight, velocity, current, temperature, etc., and 
the curve through the points so determined usually gives, to 

an experienced person, all the information concerning the 

relations involved that is of practical importance. It is 
in the study of such curves that much of the value of train- 
ing in analytic geometry becomes apparent to the physicist 
and the engineer. The student should early learn to trans- 
late physical laws into graphic forms, and he should give 
careful attention to the interpretation of all changes of form, 
intercepts, intersections, etc., of such curves. 

EXERCISES 

1. In simple interest if p=principal, ‘=time, r=rate, and a=amount, 
then a=p (1+rt). If now particular numerical values are given to 
p and , and if the values of the variable a be taken as ordinates, and 
the corresponding values of t as abscissas, then the locus of this equa- 
tion may be drawn. Draw this locus. What line in the figure repre- 
sents the principal? What feature of the curve depends upon the rate 
per cent? Interpret the intercepts on the axes. | 
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2. Give to p and r in exercise 1 different values and, with the same 
axes, draw the corresponding locus. How do these loci differ? What 
does their point of intersection mean? 

SES OYA, thee Blane anes an before draw the curve for which interest end 
time are the cotrdinates; how is it related to the curves of exercises 

1 and 2? 

4. Draw and discuss the curve showing the relation between amount, 
principal, rate, and time in the case of compound interest. 

(a) When interest is compounded annually. 
() When interest is compounded quarterly. 

(y) When interest is compounded instantaneously. 

_ §. A wage earner has already been working 10 days at $1.50 per day, 
and continues to do so 20 days longer, after which he is idle during 5 days; 
he then works 14 days more at the same wages, after which his employer 
raises his wages to $2.50 per day for the next 20 days: using the amounts 

earned as ordinates, and the time (in days) as abscissas, draw carefully 
the broken line which states the above facts. 

What modification of the drawing would be necessary to show that 
wage earner forfeited 50 cents per day during his idleness? 

8. The following table shows the production of steel in Great Britain 
and the United States from 1878 to 1891.* 

— 
—_— 

Us. G. B. U.S. G. B. 

78. | 7.3 (100,000 10.6 (100,000 1885 . . | 17.1 | 19.7 
long tons) long tons) 

Pe et 10.9 1886 . . | 25.6 23.4 
ee 13.7 1887 . 33.4 31.5 
. . | 189 18.6 1888 . . | 29.0 | 34.0 
1 21.9 1889 . . | 33.8 | 36.7 
. | 167 20.9 1890 . . | 428 | 368 
ae, 1 a8 18.5 1891 . . | 39.0 | 32.5 

4 Using time (in years) as abscissas, and quantity of steel produced 
(100,000 tons per unit) as ordinates, the separate points represented by 

Taken by permission from Lambert's Analytic Geometry. 
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the table have been plotted (Fig. 38) and then joined 5 straight — 
dotted for Great Britain and full for the United States.“ . 

Interpret fully the figure. 

— / 

N 

i 

1 

D 

, 
— 

1878 7 8 81 2 85 
Fid. 38. 

7. Exhibit graphically the information contained in the following ö 
table on the expense of moving freight per “ton-mile” on N. Y. C. & 
H. R. R. R. from 1866 to 1893. 

f 1 

1866 2.169 1873 1.03 1880 54 1887 556 
1867 1.95 1874 98 1881 56 1888 59 
1868 1.80 1875 90 1882 (60 1889 (57 
1869 1.40 1876 71 1883 (68 1890 34 
1870 1.15 1877 70 1884 62 1801 57 
1871 1.01 1878 60 1885 54 1892 54 
1892 1.18 1879 55 18868 53 18938 (54 

8. The following table gives the population of the countries named 
between 1810 and 1896: t+ 

In the figure the linear unit on the z-axis is 5 times as long as the linear 
unit on the y-axis. It will, however, be noticed that the essential feature of 
a system of codrdinates, the “ one-to-one correspondence“ of the symbol 

(z, y) and the points of a plane, is not disturbed by using different scales for 
ordinates and abscissas. 

t The authors are indebted to Professor W. F. Willcox of Cornell Univer- 
sity for these data, which are compiled from the Statesman’s Year Book for 
1897, and from Statistik des Deutschen Reichs, Bd. 44, 1892. 
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Burris lat ns LANDS = —— In THE 

Year Population Year Population 

1801 15,806,000 1816 24,831,000 

1811 17,908,000 1837 $1,540,000 

1821 20,804,000 1347 $4,753,000 

1831 24,029,000 1856 36,130,000 
1811 26,709,000 1865 39,399,000 

1851 27,369,000 1872 41,028,000 

1861 28,927,000 1876 42,775,000 

1871 $1,485,000 1885 46,856,000 

1881 34,885,000 1805 52,280,000 

1891 37,733,000 

FPRayxce IRELAND Usrrep States 

; Year Populatien Year Population Year Population 

1821 | 30,462,000 | 1811 | 5,938,000 | 1810 | 7,240,000 
1841 | 34,230,000 | 1821 | 6,802,000 | 1820 | 9,634,000 

1861 | 387,386,000 | 1831 | 7,767,000 | 1830 | 12,866,000 
* 1866 | 38,067,000 | 1841 | 8,175,000 | 1840 | 17,069,000 
1% | 36,103,000 | 1851 | 6,552,000 | 1850 | 23,192,000 
1876 | 36,906,000 | 1861 | 5,799,000 | 1860 | 31,443,000 
1881 | 37,672,000 | 1871 | 5,412,000 | 1870 | 38,558,000 
1880 | 38,219,000 | 1881 | 5,175,000 | 1880 | 50,156,000 
1801 | 38,343,000 | 1891 | 4,705,000 | 1890 | 62,622,000 

_ Employing the number of years as abscissas, and the population 
(500,000 per unit, — numbers at left of figure represent millions) as ordi- 
nates, the separate points represented by the above table have been 
plotted (Fig. 39) and then joined by straight lines. The figure gives all 
the information contained in the tabulated results, besides showing at a 
8 the relative population of the different countries at any given 

The student may account historically for the abrupt fall in the 
line representing the population of France; and for the gradual down- 
ward tendency in the line representing the population of Ireland. 
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. EXAMPLES ON CHAPTER IV 

1. Find the equations of the sides of the triangle whose vertices are 
he points (2, 3), (4, ~5), (3, ~6) (ef. Art. 43). Test the resulting 

} ions by substitution of the given codrdinates. 

72 Find the equations of the sides of the square whose vertices are 
(0, =1), (2, 1), (0, 3), (-2, 1). Compare the equations of the parallel 

les; of perpendicular sides. 

3. Find the codrdinates of the center of the square in Ex. 2. Then 
I the radius of the circumscribed circle, and (Art. 47) the equation of 

tha 2 Test the result by finding the cobrdinates of the points of 
on of one of the sides with circle (Art. 39). 

4. Find the equation of the path traced by a point which is always 
« idistant from the points 

(a) (2,0) and (0,-2); (8) (3,2) and (6, 6); 
. (y) (aT a-) and (a- „ a+ ). 

a 5. A point moves so that its ordinate always exceeds § of its abscissa 
y 6. Find the equation of its locus, and trace the curve. 

B«. A point moves so that the square of its ordinate is always 4 times 
abscissa. Find the equation of its locus and trace the curve. 

a J. Find the equation of the locus of a point which moves so that the 
of its distances from the points (I, 3) and (4,2) is always 5. Trace 

i discuss the curve. 

< 8 ene eee, Se loom of the point in example 7, if the 
ait » of its distances from the fixed points is always 2. 

8. Express by a single equation the fact that a point moves so that 
Eero me were fe always numerically 3 times its distance 

the y-axis. 

10. A point moves so that the square of its distance from the point 
(a, 0) is 4 times its ordinate. Find the equation of its locus, and trace 

a A point moves so that its distance from the z-axis is 4 of its di- 
tance from the origin. Find the equation of its locus, and trace the 
* a 

_ 12. A point moves so that the difference of the squares of its dis- 
tances from the points (1, 3) and (4,2) is 5. Find the equation of its 

as and trace the curve. 

4 

* 
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* Solve example 12 if the word “sum” is substituted for “<¢ ler- 
ence.” 5 

14. Let A=(a, 0), BS (, 0), and A’=(~a, 0) be three fixed points; 

find the equation of — locus of the point P =(z, ) which moves so 
that PB? PA = 2 PA”. 

15. A point moves so that } of its abscissa exceeds } of its ordinate 
by 1. Find the equation of its locus and trace the curve. | 

16. Find the equation of the locus of a point that is always equ 
distant from the points (3, 4) and (5,3); from the points (3, 4) and 
(2.0). By means of these two equations find the codrdinates of the 
point that is equidistant from the three given points. 

17. Let A=(-1, 3), B=(-3, 3), CS (1, 2), DS (2,2) be four 
fixed points, and let P=(z, ) be a point that moves subject to the con- 
dition that the triangles PAB and PCD are always equal in area; fund 
the equation of the locus of P. 

18. If the area of a triangle is 25 and two of its vertices are (5, * 
and (3, 4), find the equation of the locus of the third vertex. 

19. A point moves so that its distance from the pole is numenioaligil 
equal to the tangent of the angle which the straight line joining it to the 
origin makes with the initial line. Find the polar equation of its locus 
and plot the figure. 



CHAPTER V 

THE STRAIGHT LINE. EQUATION OF FIRST DEGREE 
Ax + By+C=0 

3580. In Chapter III it was shown that to every equation 
between two variables there corresponds a definite geometric 
locus, and in Chapter IV it was shown that if the geometric 
locus be given, its equation may be found. It still remains 

to exhibit in greater detail some of the more elementary loci 
and their equations, and to apply analytic methods to the 

study of the properties of these curves. Since the straight 
line is a simple locus, and one whose properties are already 
well understood by the student, its equation will be ex- 
amined first. 
In studying the straight line, as well as the circle and 

second degree curves, to be taken up in later chapters, 
it will be found best first to obtain the simplest equation 
. represents the locus, and to study the properties of 
the curve from that simple or standard equation. Then it 
remains to find methods for reducing to this standard form 
any other equation that represents the same locus. 

381. Equation of straight line through two given points. A 
numerical example of the equation of the line through two 

fixed points has already been given in Art. 43; in the pres- 
ent article the equation of a straight line through any two 
given points will be derived; the method, however, will be 

precisely the same as that already employed in the numerical 
mple. 

TAN. AN, Grom. —6 81 
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Let the two given fixed points be PiS (2, yi) and P= | 

(To yz), and let P =(2, ) be any other point on the line 
through Pi and P., Draw the ordinates MI, M, und 

** 

WMP; also through Pi draw P,R, parallel to the z-axis, and 
meeting MP in R and M. P. in R, Then the triangles 

PEP and PIN, P, are similar; 

. MP-—-M,P, ON - OM. 

RP. PIR. IP. F U. = II 
Substituting in this last equation the coördinates of P,, 

P and P, it becomes 
NA. 3 

n ae | 
and since P = (g, y) is any point on the line through Yi and 
P, therefore equation [9] is satisfied by the codrdinates of 
every point on this line. That equation [9] is not satisfied 
by the codrdinates of any point except such as are on the 

line P,P, may be proved as was done in Art. 43. | 
Equation [9] then fulfills both requirements of the defi- 

nition in (1) of Art. 35, and is therefore the equation of 
the straight line through the two points (2, y,) and (22, Y2). — 
This equation will be frequently needed and will be referred 
to as a standard form; it should be committed to memory.“ 

Throughout this book the more important formulas are printed in bold- 

faced type; they should be committed to memory by the learner. 
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82 Equation of straight line in terms of the intercepts 
which it makes on the coordinate axes. If the two given 

points in Art. 51 are those in which the line cuts the axes 

of codrdinates, i. 6, A (a, 0) and B=(0, 6) (Fig. 41), then 
ation [9] becomes 

y-0_z-a. 
5— 0 O-a 

is, , | 

* here a and b are the intercepts which the line cuts from 
t 1 axes. 

This is another standard form of the equation of the 
str ght line; it is known as the symmetrical or the inter- 

cept form. 

_ Equation [10] may also be derived independently of equa- 
tion [9] thus: let the line MN (Fig. 42), whose equation 

is to be found, cut the axes at the points A=(a, 0) and 
7 (0. 5), and let P=(2z,y) be any other point on this 
ii ne. Connect O and P; then 

qj area OPB + area OAP = area OAB; 

th is, 1 ＋ 12 Tab, 

oe by ; ab, this equation becomes 271 r= 1, as 

: EXERCISES 

1. Show that equation [10] is not satisfied by the codrdinates of any 
Point except those lying on MN. 
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2. Write down the equations of the lines through the e 
pairs of points: 7 

(a) (3, 4) and (5, 2); (y) (6, 1) and (2, 5); 

% G, d and (5,-2); 0 (18, 0 ana (, = 2), 
3. Write the equations of the lines which make the following inter- 

cepts on the z and y-axes respectively. 

(a) 4 and 7; (8) 3 and 5; (): 3 4 and 85 (8) se and 3a. i 

4. What do equations [9] and ie become if one of the given 
points is the origin? F 

5. By drawing, in Fig. 42, a perpendicular PM from P to the z-axis, — 
derive equation [10] from the similar triangles MAP and OAB. 

6. Is equation [10] true if P is on MN but not between A and B? 

7. Are equations [9] and [10] true if the coördinate axes are not 
at right angles to each other? 4 

8. Is the point (3, 44) on the line through the points (2, 3) and 
(5,7)? On which side of this line is it? Which is the negative side 
of this line? , 

9. What intercepts does the line through the points (1, -6) and 
(3, 5) make on the axes ? 

10. The vertices of a triangle are: (4, 5), (2, 3), and (3, 6). Find 
the equations of the sides; also of the three medians; then find the 
codrdinates of the point of intersection of two of these medians, and 
show that these codrdinates satisfy the equation of the other median. 
What proposition of plane geometry is thus proved? 

11. Find the tangent of the angle (the “slope,” cf. Art. 27) which 
the line in exercise 9 makes with the z-axis. 

12. Draw the line whose equation is tat 1, and then find the 

equations of the two lines which pass through the origin and trisect that 
portion of this line which lies in the first quadrant. 

53. Equation of straight line through a given point and 

in a given direction (cf. Art. 44). Let P,=(2,, y,) be 
the given point, and let the direction of the line be given 
by the angle XAP=86 which the line makes with the 
x-axis; also let P=(z, y) be any point on the given line 
and denote the slope, i. e., tan 0, by m. Draw the ordinates 
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1 P, and MP, and through 

1 and meeting the 
» MP in R. 

P Then, in rangle NR. 
f ne angle 21 =0; 

. ieee 8 n 
[Since RP=y—y, and PIR 21]: 

is, 1 = f= α “ II] 

which is the desired equation. 

i Cor. If the given point be B=(0, 6), f. c., the point in 
rhich the line meets the y-axis, then equation [11] becomes 

= . . [12] 

_ Equation [12] is usually spoken of as the slope form of 
the equation of the straight line. 

* 

EXERCISES 

1. What do the constants m and h in equation [12] mean? Draw 
the line for which m = 4 and b = 3; also that for which m= — 1 and 
a + 

2. What is the effect on the line [12] of a change in ö while m 
gains the same? What if m be changed and b left unchanged ? 

* 38 Describe the effect on the line [II] of changing m while z, and y, 
ren » the same; also the effect resulting from a change in z, while m 
dy, romain the same. 

a4 Write the equation of a line re 3,7), and mak- 

g with the zaxis an angle of 30°; of ~30°; of (25) * of (=) * 

8. Write the equations of the following lines: 
~ (a) slope 3, y-intercept 8; (8) slope J., y-intercept 3 

4 (y) slope 2, yintercept J. 
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6. A line has the slope 6; what is its y-intercept if it passes through — 
the point (7, 1)? j 

7. What must be the slope of a line whose y-intercept 5 3, in order 
that it may pass through the point (5, 5)? a 

8. Is the point (1, 3) on the line passing through the ails (2, 14), 
and making an angle tan~'4) with the z-axis? 

9. How do the lines y = 32 1, = 32 7 7, and 25 62 7 1520 
differ from each other? What have they in common? Draw these lines. 

10. What is common to the lines 5 = 37 — 1, 27 52 2, and 
71 — 37 = 37 

11. What is the slope of line [9]? of line [10]? 

12. Derive equation [12] independently of equation [11]. 

54. Equation of straight line in terms of the perpendicular 

from the origin upon it, and the angle which that perpendicular 

makes with the a-axis. Let HK be the line whose equation 

fe 

a 

i X 
* ? muh ONE 

is sought, and let the perpendicular (ON =p) from O upon 
this line, and the angle (a) which this perpendicular makes 
with the z-axis, be given. Also let P (, y) be any point 
on HK; then by projection upon OW (Art. 17), 

OM cosa 4+- MP sina = ON, 

i. e., wesa+ysna=p, . I 118 

which is the required equation. 

Equation [13] is known as the normal form of the equa- 
tion of the straight line. i 

In the following pages p will always be regarded as posi- 
tive, and a as positive and less than 360°. 
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68 ae second method. 
¢ student should bear in mind that to get the equation of 

a curve, he has merely to obtain an equation that is satisfied 
by the coirdinates of every point on the curve, and not 
! 1 by the codrdinates of any other point; and that it 
is wholly immaterial what particular geometric property he 
may employ in the accomplishment of this purpose. This 
fact is already illustrated in Art. 52, where equation [10] 
was obtained in two ways, while Ex. 5, p. 84, gives still a 
‘third method by which the same equation may be found. 
So also it is possible to derive equation [13] by other 
* than that employed in Art. 54.“ 
ow in Fig. 41 draw a perpendicular from 0 to the line 
AB, let its length be denoted by p. and let à be the angle 

‘which it makes with the z-axis, then 
2 acosa=p, and bsina =p, 

2 2 2 
ee 2 coq a Om ane 
- Substituting these values of a and 4 in equation [10], it 
comes - 

| 2 
a cose sine 

which is the form already derived in Art. 54. 
_ Nore. In Art. 2, constants, variables, eto., were illustrated by means 
of a triangle. Now that the student has learned that the equation 

542 =1, for example, represents a straight line, i.c., that this equation 

‘is satisfied by all those pairs of values of æ and y which are the codrdi- 
＋ of points on this line, a somewhat better illustration can be given. 
Both x and y are variables, but are not independent; each is an implicit 
function of the other. For any particular line @ and bh are constants, but 
they may represent other constants in the equation of another line, i., 
they are arbitrary constants, and are often called parameters of the line. 

+ - =1, i. e., rcosa+ysine=p, 

* See also Ex. 6 below. 



88 ANALYTIC GEOMETRY (Cu. V. 

EXERCISES 1 

1. The perpendicular from the origin upon a certain line is 5; this 

perpendicular makes an angle of = with the z-axis; what is the equation 
of the line? a ö 

2. If in equation [13] p is increased while a remains the same, What 
is the effect upon the line? If a be changed while p remains the same, 
what is the effect ? 1 

3. A certain line is 3 units distant from the origin, and makes an angle 
of 120° with the z-axis; what is its equation? 

4. Given a = 30°, what must be the length of p in order that the line 
HK (see Fig. 44a) shall pass through the point (7, 2)? 4 

5. A line passes through the point (3, 4), and a perpendicular upon 
it from the origin makes an angle of 225° with the z-axis. What is the 
equation of this line? : 

6. In Fig. 44a draw through M a line parallel to HK, meeting ON in 
R; then draw through P a perpendicular to MR, meeting it in Q; by 
means of the figure so constructed derive equation [13] anew. 

56. Summary. The results of Arts. 51-55 may be briefly | 
summarized thus: J 

The position of a straight line is determined by: (1) two 
points through which it passes; (2) one point and the direc- — 
tion in which the line passes through this point. Under (1) 
there is the special case in which the two given points are 
one on the z-axis and the other on the y-axis. Under (2) 

there are two special cases: (a) when the given point is on 
an axis (the y-axis say), and (8) when the point is given by 

its distance and direction from the origin, while the line 
whose equation is sought is perpendicular to the line which 
connects the given point to the origin. <a 

Corresponding to these two general and three special cases, 
there have been derived five standard forms of the equation 

of the straight line, viz.: equations [9], [10], [11], [12], — 
and [13]. 4 

It may be remarked that equations [9] and [10] are inde- 
pendent of the angle between the codrdinate axes, while [11], — 



THE STRAIGHT LINE 80 

[12], and [13] (m, a, and p retaining their present meanings) 
are true only when the axes are rectangular. It may also be 
yointed out that, from the nature of its derivation, equa- 
on [9] is inapplicable when the line is parallel to either 
xi ; equation [10] is inapplicable when the line passes 
through the origin; and equations [11] and [12] are not 

slicable when the line is parallel to the y-axis. 

57. Every equation of the first degree between two variables 

for its locus a straight line. It will probably not have 
escaped the reader's notice that the five “standard” equa- 

as (equations [9] to [18]) of the straight line, which have 
been derived in Arts. 51 to 54, are each of the first degree. 
Tt will now be shown that every equation of the first degree 
between two variables has a straight line for its locus. The 

ost general equation of this kind may be written in the 

Ar + By+C=0, ° 1 ° (1) 

» A, B, and C are constants, and neither A nor B is 
* 

Let PI =(2, 10, P. (n yo), and P, (Y y,) be any 
points on the locus of equation (1). Draw the ordi- 
MP M,P,, and M,; ad draw HP, and KP, 

I el to the z-axis. 
Then, by Art. 35 (1), 

Az, + By, +C=0...(2) 
2, + By, +C=0...(8) 
+By,+C=0...(4) 

a It either A or B. say A, is zero, then the equation may be written in the 

form: y=-% which is the equation of a straight line parallel to the z-axis, 
an at the distance — 5 from it (cf. Art. 38, () 
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By subtracting eq. (3) from eq. (2), and also eq. (4) from ; 
eq. (3), the two equations | 

A(x, — %) + BO, — Ya) =, 
and A (x — 43) + B(y, — % = 9, 

are obtained. These give 

vi St and 92 224 (5) 

41 2 42 — Xe 

hence, %1— Yo _ Yo Va. a : : (6) 

%—% 272 % 

But ½ — ¥ = HP, 11 — x, = —M,M,= — HP, 

hence, from eq. (6), n 

Also, by construction, 

E PHP,; 

hence, triangle HP,P, is similar to triangle KP,P,, 

and C PIP 

„ EPP, HY ZHP KK +ZKPP, 
= P. P, K +2 PIP. f KP,P,=2 rt. 4; 

i. e., P. lies on the straight line joining Pi and P;. But, 
since P, is any point on the locus of Az + By =, hence 
all points of this locus lie on the same straight line PI, 
which, therefore, constitutes the locus of Ax + By+C=0. — 

Since this demonstration does not depend upon the angle 
, therefore it applies whether the axes are oblique or ree- 
tangular; hence the theorem: every equation of the first 
degree between two variables, when interpreted in Cartesian 
codrdinates, represents a straight line.“ 

his conclusion may also be drawn thus: clear equation (6) of frac- — 
tions, transpose all the terms to the first member, and multiply by }sinw; — 
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Because of this fact, such an equation is often spoken of 
as a linear equation. 
For. In the equation Az + By +C = 0, there are apparently three 

8; in reality, there are but two independent constants, viz. the 
rut ic of the coofficients (ef. Art. 38). This corresponds to the fact that 
a straight line is determined geometrically by two conditions. 

88. Reduction of the general equation Ax + By +C = 0 to 
a standard forms. Determination of a, b. m, p, and a in 

erms of 4, B, and C.* 

(1) Reduction to the standard form < +7 = 1 (symmetric 
ler intercept form). 0 

1 That the equation 
Ar ＋TBY TOO e 

represents some straight line has just been shown (Art. 57); 
again, since multiplication by a constant, and transposition, 
do not change the locus (Art. 38), therefore 

sa+-galt - e 

represents the same line. But equation (2) is in the re- 
quired form (Art. 52), and its intercepts are: 

. 0 0 4284 and 3 

form). 

_ the resulting equation asserts [see Art. 29, (1)] that the area of the triangle 
ere Pi, Fy and Fy ., these three points lie on a 

traight line; but they are any three points on the locus of Ar + By+C = 0, 

lahat locus ia’ straight line. 
_ © These reductions constitute a second proof of the theorem of Art. 57. 

t If C =0, the line represented by (1) goes through the origin, and the 
Symmetric form of the equation is inapplicable (Art. 66); but, in that case, 

above reduction also fails, since it is not permissible to divide the mem- 
ms of an equation by zero, 
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The equation Ar + By = has the same locus as has 
the equation 

br re ge 1 y ( 5 +( 5 F 6 

(see Art. 88); but this is the equation (Art. 53) of a line 

drawn through the point (0, = and making with the 

z-axis the angle 0 tan—1(—2); hence equation (3) is ind 

the required form, and | 
0 1 4 and 6=——. 

(3) Reduction to the standard form xcosa+ysina= 7 
(normal form). f 

If equation (1) and 

xecosa+ysina=p . . : (4) 4 

represent the same line, then they differ merely by some 
constant multiplier, say & (ef. Art. 38). Then 4 

kAx+kBy+kC=xcosa+ysina—p=0; 

. A = cos d, kB = sin a, and kC=—p; 

. . 2.42 ＋ 2B? = cos 2 ＋ sin 2 = 1; 

1 
whence = ; 

V A? + B 

hence cos a = sin a B ’ 
VA2+ B VA? + B 

and p=— 2 , 

V A? + B 

If B=, the line represented by equation (1) is parallel to the y-axis, — 
and the slope form of the equation is inapplicable (Art. 56); but, in that * 

the above reduction also fails. 
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v 1 the algebraic sign of VA? + B is to be chosen 80 
sR —0 ; 
. f V - _ Vat positive, since p is to be always posi 

tive (Art. 54); dle, the sign of VA? + B* is to be opposite to 

* of the number represented by C. 
Hence, to reduce equation (1) to the normal form, i.¢., to 
form of equation (4), it is only necessary to divide equa- 

» the constant term to the second member. This 

(4) Another method for reduction to the normal form. 
I If the equation Az + By + C=0 and zcosa+ysina=p 
represent the same line, then they must have the same 
ae and the same slope, te., 

0 2 5. 8 5 (5) 7 5 
sina 

3 A cosa and 5 2 . ; : (6) 
sina 

Squaring eq. (6), and adding 1 to each member, gives 

A? + B _ costa +sinta 
B sin? a 

0 ; 
sin* a 

ton @ by VA? + B with the sign properly chosen, and 
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as before. These, then, are the values of p, sin a, and cosa, ) 

which are to be substituted in 2 cosa +y sina =p. 

a 4 B wanes 0 

VA?+ NR VAt+ B VAP + BP 

is an equation representing the same locus as Ax+ By + C=0, 
and having the normal form. 

Hence 

59. To trace the locus of an equation of the first degree. In 

Art. 57 it was proved that the locus of an equation of the 
first degree in two variables is a 
straight line; but a straight line 
is fully determined by any two 
points on it; hence, to trace the 

locus of a first degree equation it 
is only necessary to determine two 
of its points, and then to draw the 

indefinite straight line through them. The two points most 
easily determined, and plotted, are those in which the locus 
cuts the axes; they are therefore the most advantageous 
points to employ. If the line is parallel to an axis, then 

only one point is needed. 
E. g., to trace the locus of the equation 

22—3y+12=0: 

the ordinate of the point in which this line crosses the z-axis 
is 0; let its abscissa be z,, then (2,, 0) must satisfy the equa- 

tion 22 —3y+12=0; 

hence 22,—3-0+12=0, 

whence 2, = — 6, 

YM 

i. e., the line crosses the z-axis at the point (6, 0). In like 
manner it is shown that it crosses the y-axis at the point 
(0,4). Therefore LM is the locus of 24 - 35 ＋ 12 = 0. 



Ax+By+C=0. This equation, written in the intercept 
form [Art. 58 (1)] becomes 

Satoh ee 

7 If in equation (1), A is made smaller and smaller in com- 

parison with C, then the x-intercept (-5) becomes larger 

and larger; if A= 0 in comparison with C, the z-intercept 
grows infinitely large, the line (1) becomes parallel to the 

-@axis, and its equation becomes 

which agrees with the foot-note of Art. 57. 
_ Similarly, if B=0 in comparison with C, the line (1) be- 
comes parallel to the y-axis, and its equation becomes 

2 — — 

If both A and B approach zero simultaneously in compari- 
son with G, then both the intercepts become indefinitely 
large, and the line (1) recedes farther and farther from the 

In accordance with what has just been said, a line that is 
wholly at infinity might have its equation written in the 

form e 
or, as it is sometimes written, C=0; . . (3) 

but equations (2) and (3) are merely abbreviations for the 

statement: As both A and B approach zero in comparison 
with C, the line moves farther and farther from the origin.” 
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EXERCISES 

1. Reduce the following equations to the intercept (symmetric) 
form, and draw the lines — they represent : | 

(a) 3x—2y+4+12= (B) 32 - 2571 52733 
— 275 ＋ 1 

(y) 2y=15-y+5z (8) S479 9 

2. Reduce to the slope form, and then trace the loci: 4 
(a) 72 - 5577 6(y—3z)=- 10r+4; (8) 32 71 2576 03 
(y) 327523. f 
Which is the positive side of the line (8)? (ef. foot-note, Art. 43.) 

3. Reduce to the normal form, and then trace the loci: 

(a) 3x4+4y=15; (B) 34 - 4% / 15 0 

(y) 2-375 2 5762 (8) fr 5. 

4. Show that the lines 34 5 = and 62 2 = 81 are parallel. 

5. What is the slope of the line between the two points (3, 1) and J 
(2,2)? What is its distance from the origin? Which is its negative 
side? , 

6. A line passes through the point (5, 6) and has its intercepts on P 
the axes equal and both positive. Find its equation and its distance 
from the origin. 

7. A straight line passes through the point (1, 2) and is such that 
the portion of it between the axes is bisected by that point. What is the 
slope of the line? 

8. What are the intercepts which the line through the points (1, 3) 
and (6, 7) makes on the axes? - Through the points (a, 2a) and (b, 2b)? — 

9. What system of lines obtained by varying the parameter b is rep- 1 
resented by the equation y = 6z + b? a 

10. What system of lines obtained by varying the parameter m is 
represented by the equation y = mz + 6? 

j 

11. What family (system) of lines obtained by varying the parameter j 
a is represented by the equation zcosa +ysina = 5? To what curve is 
each line of the family tangent? 

12. Find cos a and sin a for the lines 

(a) , (8) =+7=1, 

( ==> (8) 7z-5y+1=0. 
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as. aaah EAE Dads &. what atiadrems to exceed by 
each of the lines; 

— (a) Se¢2—2y; (B) SeeBy+l5=0; (y) 2z-Viy—10=0. 

1. What must be the slope of the line 4z ~ ky = 17 in order that it 
pass through the point (1,3)? Has 4 a finite value for which this 

will pass through the origin? 

* Determine the values of A, B. C in order that the line 
1 Az+ By+C=0 

shall pass through the points (3,0) and (0, - 12). [Art. 57, Note.] 

16 Derive equation [9] by supposing (zu y,) and (x, y,) to be two 
points on the line y = mz +4; and thence finding values for m and b. 

. Find the slopes of the lines 2) 32 7 and 3y 211 =0; 
and thence show that these lines are perpendicular to each other. 

38. Find cos a for each of the lines 7z + y—9 = 0 and 2-75 +2 =0, 
and then show that the two lives are perpendicular to each other. 

(19. Show by means of: (1) the slopes; (2) the angles; that the lines 

4 2 - 37, 2 3 ＋5 0, 105 15 = 

‘are all parallel. 

i 20. Reduce the equation Ar + By +C =0 to the normal form, 
0 to the form zcosa+ysina=p. Suggestion: the two equations, as 
‘representing the same line, make the same intercepts on the axes. 

1 To find the angle made by one straight line with another. 
„et the equations of the lines be 

y=mr+h,... (1) 

yume +b, . . (2) 

: m tan 0 m,= tan 0, 

1 @,, , are the angles which 
ieee lines make, respec- 
2 ey. with the z-axis. It is 

equired to find the angle G. 
deusured from line (2) to line (1). 

TAN. Ax. tou. — 7 
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Since 5 = 91 = 925 

<i tan 0, — tan 0, 
tan ꝙ T ten f tan 6. (Art. 16) 

165 en F 

If the angle were measured from line (1) to line (2) it 
would be the negative, or else the supplement, of @; in 
either case its tangent would be the negative of that given i 
by formula [14]. 

If the equations of the lines had been given in the form: 

A\x + By + 0; = 0, 0 0 ° (3) 

and Ag+ Byt+G=0, . . » ‘@e 

then m = — . m2 = — 2. and formula [14] becomes 
5. B, 

2 + A, 

EE _ A,B,— A,B, tan d= 3 u I. aA i 151 

15. 

EXERCISES 

Find the tangent of the angle from the first line to the second in each 
of the following cases, and draw the figures: 

1. 32-—4y-7=0, 241 — 5 32 0; 

2. 51 1 125710, 1 — 25 16 20; 

3. 21 359, 67 42 ＋ 2 

4 no . 
os 1, a b 15 

8. r cos a sin a p, 2711. 

62. Condition that two lines are parallel or perpendicular. 

From formula [14] can be seen at once the relations that 
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must hold between m, and m, if the lines (1) and (2) 
7 61) are parallel or perpendicular. If these lines are 

then G = 0, and therefore tan ¢ = 0; 

7 1+ mm, 
4 

* 1.65 my eee 

ien is the condition that lines (1) and (2) are parallel.“ 
This condition is also evident from a mere inspection of 
equations (1) and (2). 
Ik the lines (1) and (2) (Art. 61) are perpendicular, then 
= 90° and tang =m, 

4 Imm, = 2» hence 1 + mm, = 0, 

1 ’ M3 = A. 

"which is the condition that (1) and (2) are perpendicular. 

So also from [15] the lines 

Ay + By + 2 and Aw + B= 0 

re parallel if (and only if) A,B,—A,B,=9, 

“ite, it A,: B. = A,: B.; 

and they are perpendicular if (and only if) A,A,+ B,B,=0, 

es if A,: B= Br: Ay 
Tue condition just found enables one to write down readily 
dhe equations of lines that are parallel or perpendicular to 
given lines, and which also pass through given points. 

_ © It must not be forgotten that this conclusion is drawn only for lines 
‘that are not perpendicular to the z-axis; because if the lines are perpen- 

to the z-axis then equations (1) and (2) are inapplicable (cf. Art. 56). 
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E. g., let it be required to write the equation of a line that is 
parallel to the line 

is 3 is parallel to the given line, 

t.€., y=82+6,  . . . (2) 

is, for all values of 5, parallel to line (1). 

If it be required that the line (2) shall also pass through 
a given point, (1, 5) for example, it is only necessary to 
determine rightly the value of 6. This is done by remem- 
bering that if the line (2) passes through the point (1, 5), 
then these coördinates must satisfy equation (2), 

i. e., 5=3-1+ 5, whence 6 =2. 

Therefore the line y = 32+ 2 is not only parallel to the 
line y = 32+, but also passes through the point (1, 5). 

Similarly = - gb, whatever the value of 6, is per- 
pendicular to y= 32+ 7. 

Again, the line 32 + 5y +k =0, whatever the value of &, 

is parallel to the line 324+5y—15=0; and the line 
52—3y+k=0 is perpendicular to 32+5y—15=0. 

Here again the arbitrary constant k may be so determined 
that this line shall pass through any given point. So also 
the lines Ar ＋ BIM T C,=0 and A ＋ By + C,=0 are 
parallel, while A ＋ By + Gi = O and BU — Ay + C, =90 
are perpendicular to each other. 

This condition for parallelism and for perpendicularity 
of two lines may also be stated thus: two lines are parallel 
if their equations differ (or may be made to differ) only in 
their constant terms ; two lines are perpendicular if the coeffi- 
cients of x and y in the one are equal (or can be made equal), 

respectively, to the coefficients of —y and æ in the other. 

„= 3477. e 0 0 (1) 4 

The slope of this line is 3, hence any other line whose slope 

1 
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7 EXERCISES 
1. Write down the equations of the set of lines parallel to the lines: 

(a) y=G2-2; (8) 32-Ty=3; 

( cos 30 ＋ ein 30 8; (8) 211. 

2A. Explain why it is that the constant term in the answers to Ex. 1 
is left undetermined or arbitrary. 

38. Find the tangent of the angle between the lines (a) and (g) in 
Ex. 1; also for the lines (8) and (8), and (a) and (8) of Ex. I. 

4. Write the equations of lines peFpendicular to those given in Ex. I. 

5. By the method of Art. 62 find the equation of the line that passes 
through the point (9, 1), and is parallel to the line y = 6z — 2. 

6. Solve Ex. 4 by means of equation [11], Art. 53. 

7. Find the equation of the line that is parallel to the line Az + By 
+C=0 and that passes through the point (z,, ); make two solu- 
tions, one by the method of Ex. 6, and the other by Ex. 5. 

Find the equation of the straight line 
8. through the point (2, 5) and parallel to the line y = 2 z + 7. 

9. through the point (1, 1) and perpendicular to y=22+ 7; 
polve by two methods. 

10. through the point (0, 0) and parallel to the line 

II. perpendicular to the line 2y + 71 0, and passing through 
the point midway between the two points in which this line meets the 

12. Find the foot of the perpendicular from the origin to the line 

_ 63. Line which makes a given angle with a given line. 

The formula é 
tan 91 — tan 8 

a$— Teale (Art. 61) 

ates the relation existing between the tangents of the 

angles @,, 0% and & (see Fig. 47), hence if any two of these 
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angles are known, this equation determines the value of the 
third. Thus this formula may be employed to determine 
the slope of a line that shall make a given angle with a 
given line. 

E. g., given the line 8y — 52+ 7 =, to find the equation 
of a line that shall make an angle of 60° with this line. 
Here ¢ = 60°, i. e., tan V3, and if 6, be the angle which 

the given line makes with the z-axis, and 0, that made by 
the line whose equation is sought, then tan 61 = §. Substi- 
tuting these values in the above formula, it becomes } 

et tan 6, — § 

1+ § tan @, 

whence 

_5+3v3 5+38V3 
tan 62 5% d 3-85 r+k 

is the equation of a line fulfilling the required conditions,. _ 
* may be so determined that this line shall also pass 
through any given point. 

It is to be remarked that through any given point there 
may be drawn two lines, each of which shall make, with a 
given line, an angle of any desired magnitude. | 

505 duis 

Z. g., through Pi = (2, y,) the lines (1) and (2) may be 
so drawn that each shall make an angle ¢ with the given 
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line LM. Let line (1) make an angle @,, line (2) an angle 
Oy and LM an angle 0% with the g. axis ; then 

; tan 97 tan 6 tan 6, — tan 0, 

eo . 1 + tau 0, tan 0, 

In these equations & and @, are known, hence tan bi and 

tan 0% can be found. Having found tan@, and tan @, the 
equations of lines (1) and (2) may at once be written down, 
either by means of equation [ 11 ij, or oy the method employed 
in Art. 62. 

and tan = 

EXERCISES 

1. Find the equations of the two lines which pass through the point 
(6, 8), and each of which makes an angle of 45° with the line 2z—3y=6. 

2. Show that the equations of the two straight lines passing through 
„e point (3, 2) and inclined at 60° to the line z V3 + y = 1 are 

. y+2=0 and y—zV34+24+3V3=0. 

Find the equation of the straight line 

0 making an angle of +7 with the line 3 —4y=7; construct the 

f Why is there an undetermined constant in the resulting equation? 
41. making an angle of — 60° with the line 5z + 12y + 1 = 0; con- 

struct the figure. 
8. making an angle of + 30° with the line z—2y+1=0, and 

passing through the point (1,3); making an angle of — 30°, and passing 
through the same point. 

_ 6. making an angle of + 135° with the line z + y = 2, and passing 
through the origin. 

7. making the angle n- (- 2) with the line = +4 =1, and passing 

agh the point (5, 3). 
| "& Find the equation of a line through, the point (4, 5) forming with 
the lines 22 —y + 3=0 and 3y+62z=7 a right-angled triangle. Find 
the vertices of the triangle (two solutions). 
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9. Show that the triangle whose vertices are the points (2,1), (3, -2), 

(. 1) is a right triangle. | 

10. Prove analytically that the perpendiculars erected at the middle 
points of the sides of the triangle, the equations of whose sides are 

z+y+1=0, 3824+5y+11=0, and z+2y+4=0, 

meet in a point which is equidistant from the vertices. 

11. Find the equations of the lines through the vertices and perpen- 
dicular to the opposite sides of the triangle in exercise 10. Prove that 
these lines also meet in a common point. 

12. A line passes through the point (2, 3) and is parallel to the 
line through the two points (4, 7) and (1, 9); find its equation. 

13. Find the equation of the line which passes through the point of 
intersection of the two lines 10 + 5y+11=0, and 2+ 25 7 14 0, 
and which is perpendicular to the line zx + 7y+1=0. ; 

This problem may be solved by first finding the point of intersection 
(, —4#) of the two given lines, and then, by formula [11] (see also 
Art. 62), writing the equation of the required line, viz. : 

y+ = 7 (2-9), 
which reduces to 7z—y=31. 

The problem may also be solved somewhat more briefly, and much 7 
more elegantly, by employing the theorem of Art. 41. By this theorem 
the equation of the required line is of the form . 

10z+5y+11+k(2@+2y+14)=0, 

i. e., (10+ k4)2+(5+2kh)y¥4+114+ 14k=0. 

It only remains to determine the constant &, so that this line shall 
be perpendicular to z+7y+1=0. By Art. 62 its slope must be 

10 +k b 
5+2k 

Substituting this value of & above, the required equation becomes 
7z—y = 31, as before. 0 

14. By the second method of exercise 13 find the equation of the line 
which passes through the point of intersection of the two lines 22 + y= 5 
and x = 35 8, and which is: (1) parallel to the line 4% = A1 
(2) perpendicular to this line; (3) inclined at an angle of 60° to this 
line; (4) passes through the point (1, 3). 

15. Solve exercise 10 by the method of exercise 14. 

277% hence — =7, whence k=— 3. 
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16. Do the lines 22+3y=13, 5 5 7, and 2 1% 10 0 
meet in a common point? What are the angles they make with each 
¢ 7 

11. Find the angles of the triangle of exercise 10. 
108. When are the lines 
{ r+ (a+b)y+e=0 and a(z + ay) +b(z—by)+d=0 
parallel? when perpendicular? 
109. Find the value of p for each of the two parallel lines 
q TT and y= 32-5; 

‘and hence find the distance between these lines [cf. Art. 58 (3) and (4)). 

20. What is the distance between the two parallel lines 

5z—3y+6=0 and 6 10 77 
21. Find the cosine of the angle between the lines 

j y—42+8=0 and y—67+9=0. 

22. What relation exists between the two lines 

y=32+7 and y=— 32-3? 

23. Find the angle between the two straight lines 3z =4y +7 and 
by = 122+ 6; and also the equations of the two straight lines which 

pass through the point (4, 5) and make equal angles with the two given 

24. Find the angle between the two lines 
8zr+y+12=0 and r+2y—1=0. 

Find also the codrdinates of their point of intersection, and the equations 
of the lines drawn perpendicular to them from the point (3, 2). 

> 

_ 64. The distance of a given point from a given line. This 
problem is easily solved for any particular case thus: find 
the equation of the line which passes through the given 
point and which is parallel to the given line (Art. 62), then 
find the distance (p) from the origin to each of these two 
lines [Art. 58, (3) and (4)], and finally subtract one of these 
distances from the other; the result is the distance between 

the given line and the given point. 
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E. g., find the distance of the point P,=(2, §) from the 

une 9 „ ro. 
Let line (1) be the locus 

of equation (1), and P, be 
the given point. Through 

1 P, draw the line (2) par- 
N allel to line (1), also draw 
N 89 > QP, perpendicular to line 

oy ae (1), OR,(=p,) Perpen- 
dicular to line (1), and 

OR,( =p.) perpendicular to line (2). Then d = OP = 1 
The equation of a line parallel to line (1) is of the form 

32+4y+k=0; this will represent line (2) itself if & be 
so determined that the line shall pass through the point 

PiS (2, §), i. e., if 3. 244. * = 0 i. e., if x 12. 

The equation of line (2) is then 

32 4% - n so. +o 
Therefore [by Art. 58, (3) or (4)] 

-v 

p= 12 22.4 pe 7 uy 

+VEqR 5 ' +VB4R 5 

hence the requ.red distance is d="QP, = —.—.— 1. 

Similarly, in general, to find the distance of any given 

point Pi =(2,, y,) from any given line 

Ar+By+C=0 . . . (10 

let line (1) be the locus of equation (1) and let Pi be the 
given point. The equation of a line parallel to (1) is of 

the form Ar+ By+K=0; this will be the line (2) if 
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Az, + By, + K=0, e, if K (Ari By,). The equa- 
t on of line (2) is then 

8 Az + By —(Az,+ By,)=% . . . (2) 

Ax, + By, rie —-C 

VAl+ RB III 

wherein the sign of the radical is to be chosen opposite to 
hat of the number represented by C,; 

= Ax, + By, +C ¢ 8 

O° Vals BE lieh 
Ik the equation of the given line is so written that its 
second member is zero, this formula may be translated into 
words thus: To get the distance of a given point from a given 

line, write the first member of the equation alone, substitute 
the variables therein the codrdinates of the given point, 

divide the result by the square root of the sum of the 
of the coefficients of x and y in the equation, — the 

sign of this square root being chosen opposite to that of 
the number represented by C. 

II, in formula [16], d is positive, then p,>p,, and P. 
and the origin are on opposite sides of the given line; if 
is negative, p,<p,, and Pi and the origin are on the 

side of the given line. 

Therefore 5. = 

f EXERCISES 

I. Find the distance of the point (2, 7) from the line 3r—6 y+1=0. 
i $-2-—6(-7)+1 49 

: formula 1 „ d= — — — — r 
This result, besides giving the numerical value of the distance, shows 

also that the point (2, 7) and the origin are on the same side of the 
Une 82—6y+1=0. 
1 
. Find the distance of the point (4, 5) from the line 4y + 5z = 20. 

_ 3. Find the distance of the point (2, 7) from the line 3y 2 = 17. 
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4. Find the distance of the point (a, b) from the line 2775 1. 

5. Find the distance of the intersection of the two lines, / 4 = 32 
and 5z=y — 2, from the line 25 - 7 9. On which side of the latter 
line is the point? 3 

6. Find the distance of the point of intersection of the lines 

241 55 11 and 4z=3y+15 from the line 52 Lg. On q 

which side of the latter line is the point? Plot the figure. 7 

7. How far is the point (6, 1) from 3y=72+8? On which side? 

8. By the method of Art. 64, find the distance of the origin from 

the line 5 2 7; also from the line Az + By+C=0. Check the 
results by Art. 58 (3). j 

9. Find the distance of the point (-4, 5) from the line joining the 
two points (3, 1) and (4, 2). On which side is it? 

10. Find the distance of the point (2 y,) from the line y = mz + h. 

11. Find the altitudes of the triangle formed by the lines whose equa- 
tions are r+ y+1=0, 34 755 7 11 0, and z+2y+4=0. Check 
the result by finding the area of the triangle in two ways. 

12. Show analytically that the locus of a point which moves so that 
the sum of its distances from two given straight lines is constant is itself 
a straight line. 

13. Express by an equation that the point PI = (Tu, y,) is equally 
distant from the two lines 2x—y=11 and 41 = 35 75. (Give two 
answers.) Should P. move in such a way as to be always equidistant 
from these two lines, what would be the equation of its locus? | 

14. Find, by the method of exercise 13, the equations of the bisectors — 

of the angle formed by the lines 32 +4y=12 and 41 73 = 24. 

65. Bisectors of the angles between two given lines. The 
bisector of an angle is the locus of a point which moves 
so that it is always equally distant (numerically) from the 
sides of the angle. From this property its equation may 
easily be found. | | 

E. g., find the equations of the bisectors of the angles 
between the lines 

34 14) - 12œ — ... (1) 

and 122 574 6 O. (2) 



a fe 

1 THE STRAIGHT LINE 109 

Let i (ay , be any point 
on the bisector (3). 
Then Ci - N [since 0 
and P, are on opposite sides of 
line (1) and on the same side of 
(2); or vice versa). 

ä 
But QP; = / 8 

slid . 

Fig. 0. 21 171 — 

* BPO tS is, 55 +8. 

—viF+o -1 
Om + SR 12z,—5y,+6. 

5 13 

i. e., 2141 77 ½1 1 13 O0. (5) 

Hence 212 — 771143200 . (6) 

is the equation of the bisector (3), for equation (5) asserts 

that if (z,, y,) be the codrdinates of any point on this bisec- 
tor they satisfy equation (6). 
_ Similarly, let P,=(h, &) be any point on line (4), the 
other bisector, then C = N, P, [since O and P, are on 
opposite sides of the lines (1) and (2), or else both on the 
same side of each of these lines]; 

) Bhi4k—-1__ 12h-5k+6 
5 mT 

99044 27k+17m0.. . . (7) 

Hence 92+27y+17T=0... (8) 

is the equation of the bisector (4), for the same reason as 
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Geometrically it is well known that two such bisectors, 
(3) and (4), are perpendicular to each other: their equa- 
tions also prove that fact. 

The equations of the bisectors of the angles between any — 
two lines, as Ayr + By + C,=0 and Agr + Bay = , 
are found in precisely the same way as that employed in the 
numerical example just considered. 

EXERCISES ; 
1. Find the equations of the bisectors of the angles between the two 

lines & —y +6= 0 and 22=4 = 5y —7. 1 

2. Show that the line 11z+3y+1=0 bisects one of the angles 
8 the two lines 122 5% 7 7 = 0, and 34 1 4% — 2 O. Which 
angle is it? Find the equation of the bisector of the other angle. 

3. Show analytically that the bisectors of the interior angles of the 
triangle whose vertices are the points (1, 2), (5, 3), and (4, 7) meet in a4 
eommon point. 

4. Show analytically, for the triangle of Ex. 3, that the bisectors of 
one interior and the two opposite exterior angles meet in a common 
point. 

5. Find the angle from the line 3z + y + 12 = 0 to the line az + by — 
+1=0, and also the angle from the line az + by + 1=0 to the line 
1 125 - 120. 

By imposing upon a and 5 the two conditions: (1) that the angles 
just found are equal, and (2) that the line az + by + 1 = 0 passes through 
the intersection of the other two lines, determine a and b so that this line 
shall be a bisector of one of the angles made by the other two given 
lines. : 

66. The equation of two lines. By the reasoning given in 
Art. 40, it is shown that if two straight lines are represented 
by the equations 

and Ag TDG . . +, see 4 

then both these lines are represented by the equation 

(Ayr + By + C) (Agr + By = . « « CB) 
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10 , two straight lines are here represented by ah equation 

Conversely, if an equation of the second degree, whose 
‘second member is zero, can have its first member separated 
into two first degree factors, with real coéfficients, as in 
equation (3), then its locus consists of two straight lines 

Thus the equation 

2227 - —38y? + 92r4+4y+7=9 

may be written in the form 

(22—8y¥+7D@+y¥+1=9, 

which shows that it is satisfied when 22 —3y+7=0, and 
also when z+ y+1=0. Its locus is therefore composed 

of the two lines whose equations are: 

22—3y¥y+7=0,andz+y+1=0. 

P 67. Condition that the general quadratic expression may be 
fa The most general equation of the second degree 

den two variables may be written in the form 

4 +2 Hry + By +2Gr+2Fy+C=0.... () 
is required to find the relation that must exist among the 

coéfficients of this equation in order that its first member 
may be separated into two rational factors, each of the first 
degree, i.¢., it is required to find the condition that the equa- 
tion may be written thus: 

(ar + by ei) (ar + by e . 2) 
_ Evidently if equation (1) can be written in the form of 
equation (2), then the values of z obtained from equation 
(1) are rational, and are either 

En. 
a, ay 
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Solving equation (1) for z in terms of y, by completing 
the square of the z-terms, it becomes ; 

A*? + 2 A( Hy + G +( Hy 6) 

= AB - 2AFy —AC+ (Hy + GN. 

i. e., Ax + Hy + @ 

= V(H?— AB)y* + 2( HG — AF )y + G— AY, 

and finally, 

— 4 45 4c DN re J 

But since z is, by hypothesis, expressible rationally in 

terms of y, therefore the expression under the radical sign 
is a perfect square, and therefore 

(HG — AF)* - (H- AB)(@ — AC)=0, 

i. e., ABC +2FGH — AF. BG?-CH*=0. ... [17] 

If this condition among the coéfficients is fulfilled, then 
equation (1) has for its locus two straight lines. 

The expression ABC+2FGH — AF?— BG?— CH? is 
called the discriminant of the quadratic, and is usually 
represented by the symbol A. 

Nore. The analytic work just given fails if A=0. In that case 
equation (1) may be solved for y instead of solving it for z, aud the same 
condition, viz. A=0, results. If, however, both A and B are zero, then the 

above method fails altogether. In that case equation (1) reduces to 

2Hry+2Gr+2Fy+C=0...... ( 
If the first member of equation (3) can be factored, then evidently the 

equation must take the form 

(ax +b)(cy+d)=0.... . 2's woe (4) 

which shows that equation (3) is satisfied for all finite values of y provided © 

1 2 — 55 a constant. Let — 5 be represented by &, then equation (4) 

becomes 2 Hky + 2Gk +2 Fy+C=0, 

i. e. 2(Hk + F)y +2Gk+C=0, 
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‘and is satisfied for all finite values of y; 
vt Hk+F=0, and 2Gk+C=0; 

eliminating &, 2FG —CH =0. 

r 
1, hence, in all cases, A 0 is the necessary condition that the 

bove quadratic may be factored. 
That A = 0 is also the sufficient condition is readily seen by retracing 

the steps from equation [17] when at least one of the coéfficients A, B 
ffers from zero. But it is also sufficient when A = B = 0; for, in that 

ase, A = 0 becomes 2 F CH =0, which may be written . = €, 
Under the same civeumstances equation (1) 8 (3), which 

may be written 
g 8 98 2 f oe e's 00 

| Substituting © 4, for 30% in equation (4), it becomes 

G F GF 
tT tH th H 0 oe 6, 0:2. % (5) 

F G 
(C) 

n establishes the sufficiency of the condition for this case also. 
4 [17]* examine the equation of 

66: 
4 222 - —3y°+ 92+ 4y¥4+7= 9. 

»A n illustration of another practical method of factoring a quadratic 
x} on, when factoring is possible, i. e., if equation [17] holds, find the 

22° -T by + 72+ li y—4. 

7 locus cuts the z-axis at the points (J., 0), (4, 0) and the y-axis at 

„, (o, $); hence the two lines are either 

4 =e 3 1 1 i 
the factors are either 

22+3y—1 and z—5by +4, or 824+5y—4 and z— 12541. 

Inspection shows that they are (22+ 3y—1) and (z — 5y + 4). 

TAN, AN, GOM. —8 

qtielend Sitio) o ++¥=1 and = +¥= 
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Here 423 B=-3,C=7, H=, G= 3, and F=2; 

a: «40 10> 8.4 Sea Lene hence 2 2 —12—9 8427 aos 

therefore the first member can be factored. ; 
The factors may be found as follows: transposing, dividing 171 2, and 

completing the square of the z-terms, the equation may be written in 

the form 4 (E) -% 2% 50 

a . {foo} 
therefore the given equation, divided by 2, may be written in the form, 

te- 
„ e -de-o fe- - best- 
i. e. (TY ir =9; 
hence the locus of the original equation consists of the straight lines 

r+y+1=0 and 24-3517 O, 

which agrees with the result of Art. 66. 

EXERCISES 

Prove that the following equations represent pairs of straight lines; 
find in each case the cquations of the two lines, the codrdinates of their 
point of intersection. and the angle between them. q 

1. 6y? — zy 22 ＋ 30y + 36=0. 

12 — 22 3% f 21 2571120. 

x? — 2ryseca+ y*= 0. 

4 ＋ 67y + 9y? +4274 12y-5=0. 

For what value of & will the equation 
72 — 3 ＋ y2+10r-10y+k= * 

represent two straight lines? . 

SuGGestion: Place the discriminant (A) equal to zero, and thus find 
k = 20. . 

Find the values of E for which the following equations represent pairs 
of straight lines. Find also the equation of each line, the point of inter- 
section of each pair of lines, and the angle between them. 

6. 622 + 2K + 12% + 2224+ 31 + 20=0. 

7. 12 2 + 36 zy + ky? +624+6y+3=0. 

8 9 99 
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2 42° 12 + Oy! — kr + Oy +1 =0. 
. The equations of the opposite sides of a parallelogram are 
a 2—72+6=0 and y — My +4 = 0. 

Find the equations of the diagonals. 
10. Find the conditions that the straight lines represented by the equa- 
tion 4 + 2 Bry + Cy* = may be real; imaginary; coincident; perpen- 
dicular to each other. 

u. Show that 0 2 + 5y — 6% = 0 is the equation of the bisectors of 
"the angles made by the lines 2 24 + 12 zy + 7y*=0. Does the first set 
of lines fulfil the test of exercise 10 for perpendicularity? 

68. Equations of straight lines: coordinate axes oblique. 

Since in the derivation of equations [9] and [10] (Arts. 51 
and 52) only properties of similar triangles were employed, 
therefore these two equations are true whether the coördi- 
nate axes are rectangular or oblique. 

The other three standard forms however, viz. y = mr + 5, 
¥—y¥, = m(e@—7z,), and zcosa +ysina =p, the derivation of 
which depends upon right triangles, are no longer true if 

the axes are inclined to each other at an angle @ 2 Equa- 

tions which correspond to these, but which are referred to 
oblique axes, will now be derived. 

(1) Equation of straight line through a given point and in 
a given direction. Let LL, be the straight line through the 
fixed point P,=(2,, y,) a 
seeking an angle @ with the 
waxis, let P =(z, ) be any 

other point on LZ,, and let 
@ be the angle between the 

= C. | 
Draw P,R parallel to the 

is sac draw the ordinates MP, and MP. Then 

@=ZXAL=ZRP\L and 2 IPR =. 

7 M 
Fie. Sl. 
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RV sin 0 25 
Hence PIN iin (e [law of sines! 

Substituting in this equation the codrdinates of P, and P, 
it becomes 

* — 74 =" sin 6 

2 — 1 sin (0 — 0) 

ies „u- din 4e 8 (Gg.. [8] 
which is the required equation. 

When @ 2 this equation reduces to equation [11], f. e., 

to / = m (= i), where m = tan 6; but it must be 

observed that if #5 then the coefficient of z in equation 

[18] does not represent the slope of the line. If, however, 
the slope of the line [18], i. e., the tan @ for this line, is 

desired, it is easily found thus: let — sin 0 =k, from 
sin (w—@) 

Which is obtained tan 9 
1+ cos ow 

If, in the derivation of equation [18], the given point is 
that in which the line LL, meets the y-axis, i. e., if PI =(0, 5), 

then equation [18] reduces to q 

hae 
in ( — 9) * 

which corresponds to equation [12], but the coefficient of x 

is not the slope of the line. | 

(2) Equation of a straight line in terms of the perpendic- — 

ular upon it from the origin, and the angles which this perpen- 
dicular makes with the azes. 3 
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plat Lh i» the sight line whe e i aught 
the perpendicular from the 

origit upon it (ON =p) make 

de angles a and g respectively 
vith the axes,* and let Pa 

1 (Gay) be any point on LJ). N 
Draw the ordinate MP; then, = 4% 

by Art. 17, 

OM cos a -+ MP cos 8B = ON, 

.., co a ＋ c =. . [20] 

hich is the required equation. 

If o is the angle between the axes, then 8 = w — a, and 

equation [20] may be written z cos a + y cos ( a) =p. 

1 @ = chen this equation reduces to z cos a sin a= , 

which agrees with equation [13]. 

EXERCISES 

1. The axes being inclined at the angle 60°, find the inclination f 
line y = 22+ 5 to the axis. 

4 The axes being inclined at the angle 7, find the angles at which 

the lines 3 y +72 -—1=0 and z+ y+2=0 cross the raxis. 

3. Find the angle between the lines in exercise 2. 

4. The center of an equilateral triangle of side 6 is joined by straight — 
lines to the vertices. If two of these lines are taken as codrdinate axes, 

the codrdinates of the vertices, and the equations of the sides. 

8. Prove that for every value of , the lines x T= e andzr—y=d 
are perpendicular to each other. 

* 
9 

_ © The angles « and f are the direction angles of the line ON, and their 
oC are the direction cosines of that line. 
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69. Equations of straight lines: polar codrdinates. 1 

(1) Line through two given points. Let OR be the initial 
line, O the pole, 1 

= (on 01), and . 

(px 42), the two given 
points, and let P= 
(o, 0) be any other 

— point on the line 
through P, and ,. 

Then (if A stands for ‘area of triangle’) 

A OP,P, =A OPP + A OPP, 

i. e., I pip2sin (67 1 =} pp, sin (9 - 1 + 4 pop sin (6,—8), 

hence pp; sin (- 1) + pipe sin (01 — 62) J 
+ pop sin (6 600 = 0. . I21 

This equation may also be written in the form 

sin (01 — 62) 4 sin (0, — 6) 4 sin (0 — 01) 

P Pi P2 

(2) Equation of the line in terms of the perpendicular upon 
it from the pole, and the angle which this perpendicular mates 

with the initial line. Let OR be the initial line, O the pole, 

and LK the line whose equation is 

sought. Also, let V= (p, a) be the 

foot of the perpendicular from 0 

upon LK, and let P=(p, @) be any 
other point on LK. Draw OW and 
OP ; then 

=(),° 

955 =cos VOP, | 

i. e., pcos (% a) . [ | 

which is the required equation. 

* Observe the symmetry here; cf. foot-note, Art. 29. 



So se lf 

THE STRAIGHT LINE 119 

| EXERCISES 

1. Construct the lines: 

(a) pcos ( — 30°) = 10; (e) pcos 0 — 7) =9; 

(6) pain @=2; (4) p cs ( — r) = 6. 

2. Find the polar equations of straight lines at a distance 3 from the 
pole, and: (1) parallel to the initial line; (2) perpendicalar to the initial 

Une. 

3. A straight line passes through the points (5, 405) and (2, 90°); 
find its polar equation. 

41. Find the polar equation of a line passing through a given point 
(eon 9,) and cutting the initial line at a given angle @ =tan™ &. 

5. Find the polar codrdinates of the point of intersection of the lines 

g = 
EXAMPLES ON CHAPTER V 

| 1. The points (-1, 2) and (3, 2) are the extremities of the base of 

an equilateral triangle. Find the equations of the sides, and the codrdi- 
nates ol the third vertex. Two solutions. 

2. Three of the vertices of a parallelogram are at the points (1, 1), 
G, 4), and (5, 2) Find the fourth vertex. (Three solutions.) Find 
also the area of the parallelogram. 

3. Find the equations of the two lines drawn through the point (0, 3), 
such that the perpendiculars let fall from the point (6, 6) upon them are 
each of length 3. 

4. Perpendiculars are let fall from the point (5, 0) upon the sides of 
the triangle whose vertices are at the points (4, 3), (4. 3), and (0, 5). 
Show that the feet of these three perpendiculars lie on a straight line. 

Find the equation of the straight line 

5. through the origin and the point of intersection of the lines 
* = aud 77177 20 = 0. Prove that it is a bisector of the angle 
formed by the two given lines. 

6. through the intersection of the lines 3 - 45 T1 0 and 
62+ y=1, and cutting off equal intercepts from the axes. 

7. th the point (1, 2), and intersecting the line x + y = 4 ata 
distance } V6 from this point, 
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8. A line drawn through the point (4, 5) makes an ‘isosceles triangle 
with the lines 34 47 7 and 57 122 ½6; find its equation. q 

9. Prove analytically that the diagonals of a square are of equal 
length, bisect each other, and are at right angles. 

10. Prove analytically that the line joining the middle points of twa 4 

sides of a triangle is parallel to the third side and equal to half its length. 

11. Find the locus of the vertex of a triangle whose base is 2a and 
the difference of the squares of whose sides is 4c*. Trace the locus. 

12. Find the equations of the lines from the vertex (4, 3) of the tri- 
angle of Ex. 4, trisecting the opposite side. What are the ratios of the 
areas of the resulting triangles ? 

13. A point moves so that the sum of its distances from the lines a 
y—8x+11=0 and 7z-—2y+1=0 is 6. Find the equation of its 
locus. Draw the figure. 1 

14. Find the equation of the path of the moving point of Ex. 13, it 1 
the distances from the fixed lines are in the ratio 3:4. 

15. Solve examples 13 and 14, taking the given lines as axes. 

16. The point (2, 9) is the vertex of an isosceles right triangle whose 4 
hypotenuse is the line 32 - 75 = 2. Find the other vertices of the 
triangle. 

17. The axes of coördinates being inclined at the angle 60°, find the 4 
equation of a line parallel to the line z+y=3a, and at a distance — 
av3 . 1 
Z from it. 

18. Find the point of intersection of the lines 

e 7 and pos (% 5 =a, 

2 

For what value of 6, in each line, is p= π At what angles do these lines 
cut their polar axes? Find the angle between the lines. Plot these lines. 

19. Find the equation of a straight line through the intersection of 

y =7x—4 and 2z + y=5, and forming with the z-axis the angle g; 

20. Find the equation of the locus of a point which moves so as to be 
always equidistant from the points (2, 1) and (~3, 2). , 
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. Find the equation of the locus of a point which moves so as to be 
, equidistant from the points (0,0) and (3,2). Show that the 
"poi nts (0, 0), (3, 2), and (1, I) are the vertices of an isosceles triangle. 

22. Find the center and radius of the circle cireumscribed about the 
triangle whose vertices are the points (2, 1), (3, 2), (~4, 1). 

23. Find analytically the equation of the locus of the vertex of a 
triangle having its base and area constant. 

24. Prove analytically that the locus of a point equidistant from two 
given points (zu y,) and (x, y,) is the perpendicular bisector of the line 
joining the given points. 

25. The base of a triangle is of length 5, and is given in position; 
_ the difference of the squares of the other two sides is 7; find the equa 
tion of the locus of its vertex. 

26. What lines are represented by the equations: 

(a) sy=zy*; (8) AA B = Or (y) zy=0? 

_ 27. What must be the value of e in order that the lines 3z + y — 2 = 0, 
2 - 3, and ö +2y + ¢=O0shall pass through a common point? 

28. By finding the area of the triangle formed by the three points 
G, 0), (0, 3% and (a, 2), prove that these three points are in a straight 

ine. Prove this also by showing that the third point is on n 
ing the other two. 

29. Find, by the method of Art. 39, the point of intersection of the 

» lines 22 —3y¥+7=0 and 4x=6y+2; and interpret the result 
t means of Arts. 41 and 60. 

30. Prove by Art. 10 (cf. also Arts. 41 and 60), that the equations of 
wo parallel lines differ only in the constant term. 

21. Find the equations of two lines each drawn through the point 
(4, 3), and forming with the axes a triangle whose area is 8. 

282. Find the equation of a line through the point (2, 5), such that 
the portion between the axes is divided by the given point in the ratio 
7:5. 

i 93. Find the equation of the perpendicular erected at the middle 
point of the line joining (5, 2) to the intersection of the two lines 

| x+2y=11 and 922 = 50. 

ows ae. 
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34 A point moves so that the square of its distance from the origin 
equals twice the square of its distance from the z-axis; find the equation 
of its locus. . 

35. Given the four lines 

1 — 2 1 2 0, 21 2 28 0, 31 - 3 0 and zr+y+6=0; 

these lines intersect each other in six points; find the equations of the 
three new lines (diagonals), each of which is determined by a pair of the 
above six points of intersection. 

36. Find the points of intersection of the loci: 

(a) pcos( 6 -7) =a and peos(-7) =a; 

_3a (B) pcos( 7) = a and p= asin 6. 

If two sides of a triangle are taken as axes, the vertices are (O, 0), 
(zy 0), (0, ya). Prove analytically that: 

37. the medians of a triangle meet in a point; 

38. the perpendicular from each vertex to the er sides meet : 
in a point; 

39. the line joining the middle points of two sides of a triangle is 4 
parallel to the third side. 

40. Show that the equation 56 22 + 441 ry — 5642-79 x — 477 + 9=0 d 
represents the bisectors of the angles between 8 . lines W 
sented by 15 72 162 — 48% — 2 T1 16/12 

41. Two lines are represented by the equation 

Ax? +2 HY + By? = 0. 

Find the angle between them. 

42. Using the product of a side by half the altitude derive the formula 
[4] for the area of the triangle whose vertices are at the points (z,, , 
2 17), and (2% y,;). Wherein is this demonstration more general than 
that given in Art. 29? 4 



CHAPTER VI 

TRANSFORMATION OF COORDINATES 

70. That the coördinates of a point which remains fixed 
in a plane are changed by changing the axes to which this 
fixed point is referred, is an immediate 
consequence of the definition of coördi- „ 9 
nates. 5 

It is also evident that the different 8. 
kinds of coördinates of any given point — 55 x 
(Cartesian and polar, for example) are a 

connected by definite relations if the ele- 
ments of reference (the axes) are related in position. E. g., 

point Q, when referred to the polar axis OX and the pole 
0, has the coördinates (5, 30°), but when it is referred to 
5 the rectangular axes OX and 
a 1 oO the codrdinates of this same 
\ ke point are (1 V3, J); and gen- 

9 erally, if (o, 6) be the co- 

Pf ordinates of a point when 
‘ referred to OX and O, then 

(p cos , psin @) are its codrdi- 
nates when it is referred to the 

gular axes OX and OY. 
Again: while a curve remains fixed in a plane, its equa- 

may often be greatly simplified by a judicious change of 
123 
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the axes to which it is referred. E. g., the line LL, when 
referred to the axes OX and OY, has the equation 

tan O- ＋ b, 

but when referred to the axes OX and O'Y', the former 
of which is parallel to the given line, its equation is y =e. 

For these, and other reasons, in the study of curves and 
surfaces by the methods of analytic geometry, it will often 
be found advantageous to transform the equations from one 
set of axes to another. 7 

It will be found that the coördinates of a point with 
reference to any given axes, are always connected by simple 
formulas with the coördinates of the same point when it is 
referred to any other axes. These relations or formulas 
for the various changes of axes are derived in the next few 

articles. 

I. CARTESIAN COORDINATES ONLY 

71. Change of origin, new axes parallel respectively to the 

original axes. Let OX and OY be the original axes, OX 
and O the new axes, and let the codrdinates of the new 

origin when referred to the * 
5 i * original axes be * and &, f. e., 

/ 285 O' (A, I), where h= OA and 

7 oir 
/ x 

4 7 M 

k= AO’. Also let , any point 

of the plane, have the coördi- 
nates x and / when it is referred 

22 to the axes OX and OY, and 2! 
and ' when it is referred to the axes OX and “. 

Draw MM parallel to the y-axis; then 

OM = 0A+AM= 0A+ O'M', 

* 2 , 

and similarly, y=y'+k, [23] 
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which are the equations (or formulas) of transformation 
from any given axes to new axes which are respectively 
parallel to the original ones, the new origin being the point 
O' =(h,k). These formulas, moreover, are independent 

of the angle between the axes. 
As a simple illustration of the usefulness of such a change 
of axes, suppose the equation 

22 ＋ N- 2 = . . (1) 
given, in which z and y are codrdinates referred to the axes 

OX and OY. 
No let P = (2, y) be any point on the locus LL of this 
equation, and let (T, ) be the coördinates of the same 
point Y when it is referred to the axes OX and 0 F; 
then ! 

1 = TI and y=y' +k. 

Substituting these values in the given equation for the 
* and y there involved, an equation in and y’ is obtained 

which is satisfied by the codrdinates of every point on L,L, 
i.e., it is the equation of the same locus. The substitution 

- 2h’ Y- 2kGy' DE- A. 

which reduces to 
J 22 + y= a? 

a much simpler equation than (1), but representing the 
same locus, merely referred to other axes. 

EXERCISES 

1. What is the equation for the locus of 3z — 2 = 6, if the origin 
ia ehanged to the point (4, 3), — directions of axes unchanged ? 

_ 2. What does the equation 1 + y*—42—6y= 18 become if the 
be changed to the point (2, 3), — directious of axes unchanged? 
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3. What does the equation 9 — 222 — 2y + 62 —3 =0 become when 
the origin is removed to (J, 1), — directions of axes unchanged? { 

4. Find the equation for the straight line y = 3z + 1 when the origin 
is removed to the point (I, 4), — directions of axes unchanged. 

5. Construct appropriate figures for exercises 1 and 4. 

72. Transformation from one system of rectangular axes — 

to another system, also rectangular, and having the same 

origin: change of direction of axes. 

Let OX and OY be a given pair of rectangular axes, and 
let OX' and OY’ be a second pair, with Z XOX! = d, the 

y iw angle through which the first pair : 
of axes must be turned to come 
into coincidence with the second. 
Also let P, any point in the 

x plane, have the codrdinates z 

and y when it is referred to the 
first pair of axes, and 2’ and y’ 

when referred to the second pair. The problem now is to 
express z and y in terms of 2’, /, and @. Draw the or- 
dinates MP, MP, and QM’, and draw M'R parallel to the 

z-axis; then 

OM = 02+ QM=O0M' cos 6 — . P sin b. 
: 2 2 
i. e., ty ac = ac! cos 0 2 . . 24 

and similarly, y = x! sin @ + / cos 6, 

which are the required formulas of transformation from one 
pair of rectangular axes to another, having the same origin 
but making an angle 6 with the first pair. | 

Note 1. These formulas are more easily obtained, — in fact, they can 

be read directly from the figure, — if one recalls Art. 17, and considers 
that the projection of OP equals the projection of OM’ + the projection 
of MP, upon OX and OF in turn. 

Note 2. The reader will observe that a combination of the trans- 
formation of Art. 71 with that of Art. 72 will transform from one pair 
of rectangular axes to any other pair of rectangular axes. 
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__ Turn the axes through an angle of 45°, and find the new equations 
for the following loci: 
I. t+y=16; 2. 2—y' = 16; 3. y=x—1; 

4 17- 16 xy + 17 y* = 225. 
as om the axes are turned through the angle tan~'2, what does the 

n dry —32* u become? 

73. Transformation from rectangular to oblique axes, origin 

unc od. Let OX and OF be a given pair of rectangular 
axes, let OX’ and OY’ be 
the new axes making an an- y * 
gle o with each other, and / 7 
let the angles XOX’ and pte x 
XOY' be denoted by 0 *. 
and ¢, respectively. Also 1 — 

P, any point in the Fro. 50. 
plane, have the coördinates 

and / when referred to the first pair of axes, and 2’ and y/ 
when referred to the second pair. 

Draw the ordinates MP, V P, and QM’, also draw M 
arallel to the z-axis. 

Then OM= 0Q+ QM = OM cos 0 + M'P sin (90 — ); 

i. ., 1 2 cos @ + y' cos &. 25 

and similarly, „= sin@+ y’ haat ed 

hich are the required formulas of transformation from 
angular to oblique axes having the same origin. 

ft @ = 90°, and consequently ¢ = 90° + @, then formulas 
U 5] reduce to [24], and Art. 73, therefore, includes Art. 72 
us a special case. 
By first solving for 2’ and y’, formulas [25] may also be 

ployed to transform from oblique to rectangular axes. 

See Nore 1, Art. 72. 
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EXERCISES 

1. Given the equation 9 x? — 16 y? = 144 referred to rectangular axes; — 
what does this equation become if transformed to new axes such that the 
new z-axis makes the angle tan-! (— J), and the new y-axis the angle 
tan~? (), with the oid z-axis, — origin unchanged? 

2. If the old and new z-axes coincide, and the new axes are rectan- 

gular while the old axes are inclined at an angle of 60°, what are the 
equations of transformation from the old axes to the new? From the 
new axes to the old? Origin unchanged in each case. 

3. If the first two of the three sides of a triangle whose equations are 
2y+z2+1=0,3y—x2—1=0, and 22 13) 1, are chosen as new axes, — 
find the new equations of the sides, ; 

74. Transformation from one set of oblique axes to another, 

origin unchanged. Let OX 
and OY be a given pair of 
axes, OX and OY’ the new 

axes, and let the angles X OY, 
X'OY', XOX', and XOY' 
be denoted by , c, H, and & 

respectively. Also let P, any 
point in the plane, have the 

coérdinates z and / when referred to the first pair of axes, 
and 2’ and when referred to the second pair. | 

Draw M' parallel to OY’, MP and QM’ parallel to 
OY, and M' parallel to OX. 

Then, from the triangle OSM, 

0Q 4 in (@ =) and QM’ = sind 
sin w Sin @ 

and from the triangle RMP, 

RH = An = and RYAN. 
8 sin sin@ 

But OM=0Q— RM, and MP=QM'+ RP; 
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Ay ra Pn e—F) , ysintw— 9), a 

iene 
and e ying, ie 

* ; 

h are the required formulas of transformation from one 
of oblique axes to another having the same origin. 

Nor. If it is desired to change the origin, and also the direction of 
the axes, the necessary formulas may be obtained by combining Art. 71 
with Art. 72, Art. 73, or Art. 74, depending upon the given and required 

EXERCISES 

1. Show, by specializing some of the angles w, , 6, and & in Art. 74, 
that formulas [26] include both [25] and [24] as special cases. 

. The equation of a certain locus, when referred to a pair of axes 

that are inclined to each other at an angle of 60°, is 7 z*—2zy+4y*=5; 
what will this equation become if the axes are each turned through an 

angle of 30°? What if the z-axis is turned through the angle — 30° 
while the y-axis is turned through + 30°? 

75. The degree of an equation in Cartesian codrdinates is 

not changed by transformation to other axes. Every formula 
of transformation obtained ([23] to [26]) has replaced z and 

y, respectively, by expressions of the first degree in the new 
doördinates 2’, y’. Therefore any one of these transforma- 
tions replaces the terms containing z and y by expressions 

af the same degree, and so cannot raise the degree of the 
en equation. Neither can any one of these transforma- 

ns lower the degree of the given equation; for if it did, 

_ © These formulas can also be read directly from Fig. 60 by first project- 

ag OM and then the broken line OM' PM upon a line perpendicular to OY; 
and afterwards projecting AP and also the broken line MOM’ P upon a per- 
pendicular to OX. The results being equated in each case, and divided by 

un e give (26). 
TAN. AN. Grom. — 0 
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then a transformation back to the original axes (which must 

give again the original equation) would raise the degree, 
which has just been shown to be impossible; hence all these 
transformations leave the degree of an equation unchanged. — 

II. POLAR COORDINATES 

76. Transformations between polar and rectangular sys- s 
tems. (1) Trangformation from a rectangular to a polar 

system, and vice versa, the origin and 
7: z-axis coinciding respectively with the 

gg pole and the initial line. Let OX 
7 „* and OY be a given set of rectangular 

0 * M axes, and let OX and O be the initial 
| line and pole for the system of polar 

coördinates. Also let P, any point in the plane, have the f 

coérdinates 2 and / when referred to the rectangular axes, 

and p and @ in the polar system (Fig. 61), then 4 

OM = OP cos XO; 

. 8 = 6; a 7 Torus | jo 
similarly, y = psin®. 4a 

These are the required formulas of transformation when, but 
only when, the rectangular and polar axes are related as 
above described. 9 

Conversely, from formulas [27], or directly from Fig. 61, 

r % nd oe p HA, cos 0 =F ed sin = a0 

which are the required formulas of transformation from 
polar to rectangular axes, under the above conditions. | 
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N (2) Same as (1) except that the initial line OR makes an 
angle « with the x-axis. It is at 

once evident that the formulas of 
»sformation for this case are: 

em po(O+e)) . 20) 
and y=psin(@ + «). 
The converse formulas for this 

case are : 

„ = 
@ = cos — — 4 12;( Y — 4. [80] 

18 Transformation from any Cartesian system to any polar 
system. Transform first to rectangular axes whose origin is 
1 pole; this is accomplished by Arts. 71 and 73. 

n by formula [27] or [29] transform from the rectangular 
esian to the polar coérdinates. 

EXERCISES 

_ Change the following to the corresponding polar equations; draw a 
showing the two related systems of axes in each case. Take the pole 
e e a exncotsea 1 tad. 

1. A+ yaar 3. 22+ y?=9(2?— Y. 
2. * 2% 0. 4. „ tand. 

5 5. x—V3y+2=0, taking pole at origin, polar axis making the 
angle 60° with the z-axis. 
6 * 42 % — 54 =0, taking the pole at the point (2, ~3), 
and the polar axis parallel to the z-axis. 

* the following to corresponding rectangular equations. Take 
: le origin at the pole and the z-axis coincident with the polar axis 
7. p= 9. sin 20 = 10. 
8 p*cos 20 = a 10. „* = a*sin 20. 

_ Svacestioy. In Ex. 10 multiply by p? and substitute 2 sin 6 cos @ for 
n 20; the equation then becomes p* = 2 u p?sin h cos 6. 
u s 12. 6= 3 tan-'2. 13. pt cos . 
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EXAMPLES ON CHAPTER VI 0 

1. Find the equation of the locus of 22 -7z+4y=0 referred to 
parallel axes through the point (2, J). 

2. Transform the equation z*—4zy 4% 6 12 0 to new | 
rectangular axes making an angle tan-1 with the given axes. { 

3. Transform y* — zy —52+5y=0 to parallel axes through the 
point (5, 5). Draw an appropriate figure. ; 

4. Transform the equation of example 3 to axes bisecting the angles 
between the old axes. Trace the locus. d 

5. To what point must the origin be moved (the new axes being 
parallel to the old) in order that the new equation of the locus 

222 52 —38y?—-224+18y—12=0 

shall have no terms of first degree ? 

So.uTion. Let the new origin be (A, 4); then z= 2 +h, y=y'+h, 
and the new equation is 1 

Q(x’ Y D +h) (y +k) —3 (y+ U- 2 +h) +: 18(y +E) —12=0, © 
ie, 2 ˙ 57 —3y'2+ (4 54 - 2) —(5h4+6k-138)7 

＋ 2 —5hk - 31 — 23 7 13 12 0; 3 

but it is required that the coefficients of z’ and / shall be 0; te., h and 
k are to be determined so that 

41 — 54 — 2=0, 

and 5 ＋ 64 — 132 0; 

hence h= and / =. 

Therefore the new origin must be at the point (M, 5), and the new 
equation is 

2 5 — 3% — 8 8 0. 

6. The new axes being parallel to the old, determine the new origin 
so that the new equation of the locus 

2 — 3 ＋ * ＋ 10 10% J 2128 0 

shall have no terms of first degree. 

7. Transform the equations z+ ¥—3=0 and 24 — 35 ＋4 0 to 
parallel axes having the point of intersection of these lines as origin. 

8. Transform the equation 1 + 5 = 1 to new rectangular axes through 4 

the point (2, 3), and making the angle tan ~?(—4) with the old axes. 

9. Through what angle must the axes be turned that the new equa- 
tion of the line 6z+4y—21=0 shall have no y-term? Show this 
geometrically, from a figure. 
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10. Through what angle must the axes be turned in order that the 
‘new equation of the line 624+ 4y = 24 shall have no term? Show 
analytically (ef. also examples 8 and 9). 
 Sonvtion. Let @ be the required angle; then the equations of trans 

wrmation are 

z= cg - ein d and y = sin 0 + y cos 6; 

I the new equation is 

(6 cos 6 + 4 sin 6) - (6 sin 6 — 400s 6) = 24; 

t it is required that the coefficient of z be 0, 

6 cos 6 + 4sin 6 = 0, te., tan 0 =— §; 

0 @ = tan-(—4), 
the equation becomes 

(6 sin @ — 400s 6) + 24 = 0, 

ch reduces to Say +H =0, 

to vid y¥ +12=0. 

I. Through what angle must the axes be turned to remove the 
term from the equation of the locus Az + By+C =0? to remove 
the y-term? 

142. Show that to remove the æyterm from the equation of the locus, 
224 —5zy —3y°=8 (ef. Ex. 5), the axes must be turned through the 
angle @ = 67° 30’, de., so that tan 20 1. What is the new equation? 

13. Through what angle must a pair of rectangular axes be turned 
that the new x-axis may pass through the point (—2, —5)? 

14. What point must be the new origin, the direction of axes being 
changed, in order that the new equation of the line Az + By +C = 

‘shall have no constant term? 

4 15 r axes, must a trans- 
u of axes be made in order that the new equation of the locus, 

2 res shall have no terms of first degree? Construct the 
x. 
— 

18. Find the new origin, the direction of axes remaining unchanged, 
#0 that the equation of the locus, 4 + zy — 3z—y +2 0, shall have 
no constant term. Construct the figure. 

I. Transform the equation 422+ 2V3zy + 2y* = 1 to new rectan- 
gular axes making an angle of 30° with the given axes, — origin unchanged. 
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18. Transform * = 82 to new rectangular axes having the point j 
(18, 12) as origin, and making an angle cot 13 with the old. 

19. Transform to rectangular codrdinates, the pole and initial line 
being coincident with the origin and z-axis, respectively: 

(a) p?=a*cos26, (8) p*cos26=a, (y) p=ksin2é. 

Transform to polar codrdinates, the z-axis and initial line being coin- . 
cident: 

20. (22 + % = (22 — %), the pole being at the point (O, 0); 

21. 4 + y? =7az, pole being at the point (O, 0); 

22. z* + y? = 16 , the pole being at the point (8, 0). 

23. Transform the equation y* + 4.ay cot 30° — 4az = to an oblique — 
system of codrdinates, with the same origin and z-axis, but the new j 

y-axis at an angle of 30° with the old z-axis. 1 

2 a 
24. Transform the equation 16 9 5 1, 1, to new axes, making the 

positive angles tan 1 and tan 1 ), respectively, with the old z-axis, — 
the origin being unchanged. 

25. Transform the equation 

3 + 10V3 - 7y? = (18 — 30V3) x + (42 + 30) + (42 + 90V3) 
to the new origin (3, —3), with new axes making an angle of 30° with 
the old. 

26. Transform the equation 3 z? + 8 zy — 3y* = 0 to the two straight 
lines which it represents, as new axes. 

27. Transform . E 1 to the straight lines abet le 0, as new 
25 9 25 9 . axes. 

28. Transform to polar codrdinates the equation y? (2a — x) = 28. 

29. Transform to rectangular codrdinates the equation 

p a (eos 26 + sin 26). 

30. Prove the formula for the distance in polar cobrdinates [1] by 
transformation of the corresponding formula [2] in rectangular codrdi- — 
nates. 

31. Transform the equation z cos a+ y sina =p to polar coérdinates.. 



CHAPTER VII 

THE CIRCLE 

Special Equation of the Second Degree 

Az* + Ay*? +2Gae+2Fy+C=0 

77. It must be kept clearly in mind that one of the chief 
‘aims of an elementary course in Analytic Geometry is to 
teach a new method for the study of geometric properties of 
curves and surfaces. Power and facility in the use of such 
‘a new method are best acquired by applying it first to those 
loci whose properties are already best understood. Accord- 
ingly, the straight line having already been studied in 
Chapter V, the circle will next be examined. 

It will appear later that the circle is only a special case of 
the conic sections already referred to in Art. 48, and might, 

therefore, be advantageously studied after the general prop- 
erties of those curves had been examined; the present order 
is adopted, however, because the student is already familiar 
with the chief properties of the circle. 
In solving the exercises of this chapter the student should 

use the analytic methods, even when purely geometric methods 
1 ht suffice,—he is learning to use a new instrument of 

investigation, and is not merely studying the properties of 
the circle. 

78. The circle: its definition, and equation. The circle may 
be defined as the path traced by a point which moves in such 
n way as to be always at a constant distance from a given 
fixed point. This fixed point is the center, and the constant 
distance i is the radius, of the circle. 

136 
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To derive the equation from this definition, let C= (A, 1) 
be the center, r the radius, and P = (r, /) any point on the 

curve. Also draw the ordinates 
M,C and MP, and the line CR 
parallel to the z-axis ; then 

Per; [geometric equation! 

but (Art. 26), | 

CP = V(«#—h)*+(y—k)4, 

hence VO H= r; 

i. e., (- - e = e. 311 
which is the equation of the circle whose radius is 7, and 
whose center has the coördinates A and k. f 

With given fixed axes, equation [31] may, by rightly 
choosing h, k, and r, represent any circle whatever; it is, 

therefore, called the general equation of the circle. Of its 
special forms one is, because of its very frequent applica- 
tion, particularly important; this form is the one for which 
the center coincides with the origin: in that caseh=k=0, 
and equation [31] becomes 

t+ N! ae 
* Equation [31] may be written in the form 

(2—h}?+y—k?-r=0; q 
the first member then becomes positive if the coérdinates of any point outside 
of the circle are substituted for æ and , it becomes negative for a point inside 
of the circle, and zero for a point on the circle, Hence the circle may be 
regarded as the boundary which separates that part of the plane for which 

the function (x — h)? +(y — k)? - is positive from the part for which this 
function is negative. The inside of the circle may therefore be called its nega- 
tive side, while the outside is its positive side (cf. foot-note, Art. 43). 

It one is unrestricted in his choice of axes, then an equation of the form 
of [32] may represent any circle whatever, —the axes need merely be chosen 

perpendicular to each other and through its center; — equation [31] is more 
general in that, the rectangular axes being determined by other considera- 
tions, it may still represent any circle whatever. 

Fis. 63. 
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_ First construct the circle, then find its equation, being given: 
1. the center (5, ~3), the radius 4; 
2. the center (0, 2), the radius ; 
2. the center (3, ), the radius 3; 
4. the center (0, 0), the radius 5; 
8. the center (4, 0), the radius 1. 

_ 6. How are circles related for which A and E are the same, while r is 
different for each? for which A and r are the same, while E differs for 

7. What form does the equation of the circle assume when the center 
is on tho Taxis and the origin on the circumference? when the circle 
touches each axis and has its center in quadrant II? 
1 

79. In rectangular coordinates every equation of the form 
w*+y?+2Gxr+2Fy+C=0 represents a circle. The equa- 

of the circles already obtained (equations [31] and 
[82], as well as the answers té examples 1 to 5 and 7) are all 
of the form 

ual 2 +y8+2Gr4+2Fy+C=0;... (1) 
it will now be shown that, for all values of G, F, and C. 
for which the locus of equation (1) is real, this equation 
represents a circle. 

To prove this it is only necessary to complete the square 

in the z-terms and in the y-terms, by adding G + H to each 
member of equation (1), and then transpose C to the second 

member. Equation (1) may then be written in the form 

OFF GF 

(N f == . @ 

which is (cf. equation [31]) the equation of a circle whose 
ater is the point ( G. — F), and whose radius is 
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Nore 1. This circle is real only if G? + f Cg; for, if 

G+F?-C<0, 

its square root is imaginary, and no real values of z and y can then satisfy — 
equation (2); while if G? + F*? — C = 0, then equation (2) reduces to 

(z +G)*+(y¥+ F)*=0,. © 2. 2 se 2 (3) — 

which may be called the equation of a “point circle,” since the coördi- 
nates of but one real point, viz. (- G, -F), will satisfy equation (3). 
If, however, G? + F2 —C>0, then equation (1) represents a real circle — 
for all values of G, F, and C, subject to this single limitation. | 

Nore 2. Every equation of the form Az* + Ay* +2Gzr +2 Fy+C=0 
represents a circle, for, by Art. 38, this equation has the same locus as 

has 2+ 1 2 277 4 - 0, and this last equation is of the 
form of equation (1). ) 

Hence, interpreted in rectangular codrdinates, every equation 
of the second degree from which the term in xy is absent, and — 

in which the coefficient of 2 equals that of y*, represents a 
circle. 

80. Equation of a circle through three given points. B37 

means of equation [31], or of the equation q 

22 + f+ 2G2+2Fy+0=0,. .. A)” 
which has been shown in Art. 79 to be its equivalent, 
the problem of finding the equation of a circle which shall 
pass through any three given points not lying on a straight 
line can be solved; 7.e., the constants A, k, and r, or G, V, 

and C, may be so determined that the circle shall pass 
through the three given points. s 

To illustrate: let the given points be (1, 1), (2, 1), and 

(3, 2), and let 22 + y2+2@z+2Fy+C=0 be the equa- 
tion of the circle that passes through these points; to find 
the values of the constants G, F, and C. Since the point 

(1, 1) is on this circle, therefore (cf. Art. 35), , 

14+14+244+27+C0=0; 
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similarly, 471740 27700, 
ane O 6G. 

These equations give: G=—§, F=—}, and C=4, 
Substituting these values, the equation of the required 
circle becomes 

A+ y—52—y+4=0; 
its center is at the point (J. 4), while its radius is }V10. 

Nore. The fact that the most general equation of the circle contains 
parameters (A, , and r, or G, F, and C, above) corresponds to the 

that a circle is uniquely determined by three of its points. 

EXERCISES 

D Find the radii, and the cotrdinates of the centers, of the following 
: ; also, draw the circles. 

. 42 8% 11 0. 4. 26 9) =7y. 
2. 31 ＋ * = 5-71. 5. ax* + ay* = br + cy. 

3. 28+ yy? = 3(z + 3). 6. (x+y)? +(z—-— y)? 8a. 

7. What loci are represented by the equations 

(z—h)* + (y—k)* =0, 
| 2 ＋ * — 22 1 6757 38 = 07 

Find the equation of the circle through the points: 
8. (1, 2), (3, ~4), and (5, 0); 

P 9. (0, 0), (a, 5), and (5, a); 

0. (-6, 1), (0, 1), and (1, 0); 
II. (10, 2), (3, 3), and having the radius 5. 

12 Find the equation of the circle which has the line joining the 
oints (3, 4) and (I, 2) for a diameter. 

18. Find the equation of the circle which touches each axis, and 
pa through the point (2, 3). 

14. A circle has its center on the line 3z + 4y = 7, and touches the 
two lines z + y = and z — y = 3; find its equation, radius, and center; 
also draw the circle. 
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SECANTS, TANGENTS, AND NORMALS 

81. Definitions of secants, tangents, and normals. A straight 

line will, in general, intersect any given curve in two or more 
distinct points; it is then called a 
secant line to the curve. Let P, 
and P, be two successive points of 
intersection of a secant line PII 
with a given curve LP,P,... K; 
if this secant line be rotated about 
the point PI so that P. approaches 

Fig. 64. P, along the curve, the limiting 
position PIT which the secant approaches, as P. approaches 
coincidence with P,, is called a tangent to the curve at that 
point. This conception of the tangent leads to a method, of 
extensive application, for deriving its equation,—the so- 

called “secant method.” * | 
Since the points of intersection of a line and a curve are 

found (Art. 39) by considering their equations as simulta- 
neous, and solving for z and y, it follows that, if the line is 

tangent to the curve, the abscissas of two points of intersec- 
tion, as well as their ordinates, are equal. Therefore, if the 

line is a tangent, the equation obtained by eliminating æ or 

y between the equation of the line and that of the curve 
must have a pair of equal roots. 

If the given curve is of the second degree, then the equa- 
tion resulting from this elimination is of the second degree, 

and the test for equal roots is well known (Art. 9); but if 
the given equation is of a degree higher thah the second, 

other methods must in general be used. 
A straight line drawn perpendicular to a tangent and 

J |e 

* For illustration, see Art. 84. 
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u the point of tangency is called a normal line to the 
is tant poli. Thus, in Fig. 64, P,P,, P,P, are se- 

ants, Pl is a tangent, and P,N a normal to the curve at PI. 

. Illustrative examples. 
() To find the equation of that tangent to the circle 2+ y= 5 
hich makes an angle of 45° with the zaxis. Since this line makes an 

of 45° with the z-axis its equation is y = z+ b, where b is to be 
rmined so that this line shall touch the circle. 

Seen, from the Sguen, there are two valaen of + (OB, snd OB,) fr 
which this line will be tangent to the 

2 

circle. According to Art. 81, these ry 
v ues of bh are those which make the two N 
pints of intersection of the line and the 

circle become coincident. eae 
j Considering the equations z* + y* = 5 5 4 
rt simultaneous, and elimi- “7 — 

nating y, the resulting equation in z is 

2+ (2+b)*=5, ie, 22°+2br+h-—5=0. sks 

T roots of this equation will become 
equal, i.c., the abscissas of the points of J 

dot ion will become equal (Art. 9), Fio. 65. 
if 2 ( — 5) + 0, ie, if b +4 VI. 

The equations of the two required tangent lines are, therefore, 

q y=2z+ V0, and y=xz-Vvi0. 

_ (2) To find the equations of those tangents to the circle z* + y* = 6 y 
hat are parallel to the line z + 2y + 11 =0. 
nene 
where & is an arbitrary constant (Art. 62), and this line will become 
i nt to the circle, if the value of the constant K be so chosen that the 

two points in which the line meets the circle shall become coincident. 
Considering the equations z* + y* =6y and x + 2y + k= 0 simulta- 
jeous, and eliminating z, the resulting equation in y is 

(—k—2y)?+ y= Oy, ic, 5y? + AE -6)y¥+ RP =O. 

The two values of y will become equal if (Art. 9) 

a (4k - 6)? 20 K 0, ie, if M+ 12-920. 

4 if k= —643V5, 
i the two required tangent lines are: 

z+2y—64+3V5=0, and 2 125 6-35 20. 
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EXERCISES ; a 
Find the equations of the tangents: 

1. to the circle 2? + y? = 4, parallel to the line x + 2y +3 =0; 

2. to the circle 3(z* + = 4 y, perpendicular to the line z + y = 7; 

3. to the circle 22+ y°+102—6y—2=0, parallel to the ling 
92 22 — 7; 

4. to the circle 2 + y? , and forming with the axes a triangle 1 
whose area is 14. 

5. Show that the line y = z + eis, for all values of e, tangent to 7 
circle x? + y* = e; and find, in terms of c, the point of contact. 

6. Prove that the circle 22 . % . 21 2% 71 2 0 touches both 
coérdinate axes; and find the points of contact. A 

7. For what values of e will the line 3x -—-4y4+e=0 5 the 
circle 22 + ½ 842 ＋ 12 442 02 

8. For what value of r will the circle z*+ ½ u touch the line 

9. Prove that the line ar =D (-b) touches the circle z(x — a) 
+ y(y — 6) =0; and find the point of contact. ’ 

10. Three tangents are drawn to the circle 22 + y= 9; one of tem 
is parallel to the z-axis, and together they form an equilateral triangle. 
Find their equations, and the area of the triangle. 

83. Equation of tangent to the circle #?+y?=r2 in terms 
of its slope. The equation of the tangent to a given circle, 
in terms of its slope, is found in precisely the same way as 
that followed in solving (1) of Art. 82. Let m be the 
given slope of the tangent, then the equation of the tangen : 
is of the form i 

y=mz +b, : . . (1) 

wherein 4 is a constant which must be so determined that 
line (1) shall intersect the circle 

a+ fers . 2.) Ge 

in two coincident points. 
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ing y between equations (1) and (2) gives 

2+ (mz + b= er 

(1 + m*) m +P -=, 

! d the two values of z obtained from this equation will 
come equal (Art. 9) if 

(mb)? — (1. + m2)(68— v4) = 0, 
bstrvl + mi. 

tituting this value of 4 in equation (1), it becomes 

y=mrirvitmie . . . [88] 

ich is then, for all values of m, tangent to the circle (2). 
; equation [33] enables one to write down immediately 
he equation of a tangent, of given slope, to a circle whose 
ter is at the origin. 
Eg, to find the equation of the tangent whose slope m = 1 = tan 45°, 
» the circle z* + y* = 5, it is only necessary to substitute 1 for m and 
tor r in equation [33]. This gives as the required equation 
= 2ziv10 [ef. (1) Art. 82). 

Nore 1. If the center of the given circle is not at the origin, ie,, 
equation is of the form z* + y* + 2 Gz + 2 Fy + C =0, instead of 

eh then the same reasoning as that employed above would lead to 

res GT =. VAN. . [84] 
ye equation of the required tangent. 
7 rh equation might have been obtained also by first transforming 
eas bee 0 to parallel axes through the 

it (-G, F); this would have given x? + y? = G?+ F- C= 
equation of the same circle, but now referred to axes through its 

nter. Referred to these new axes y/ = mz’ + rV1 + m? (see eq. [33)) 
D transforming this last 

1 back to the original axes, i c., substituting for z’, y’, and r their 
vin a+ C, y+ F, and VG¥+ FTC it becomes 

-er. vi+ mi 

| 2 

7 

I 
4 . a 

z= 

mn 1 ͤ ³˙ of 0b tha pingliat equation of (ha tangual 
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as before, which is, for all values of m, tangent to the circle whose 

center is at the point (G, F) and whose radius is VG? + F?— G. 
Note 2. Because of its frequent occurrence, it is useful to memorize 

equation [33]. On the other hand, it is not recommended that equation 
[34] be memorized, but it should be carefully worked out by the student. 
Instead of employing either of these formulas, however, the student 
may always attack the problems directly, as was done in Art. 82. 4 

EXERCISES 

Find the equations of the lines which are tangent: 

1. to the circle 22 + y? = 16, and whose slope is 3; 

2. to the circle & + y* =4, and which are parallel to the line z + 23 4 
+3 =0 (cf. Ex. 1, Art. 82); 

3. to the circle z? + ½ = 9, and which make an angle of 60° with nal 
z-axis; with the y-axis; ; 

4. to the circle z* + y* = 25, and which are perpendicular to the line 

joining the points (3, 7) and (7, 5); 

5. to the circle z* + y*? = 2 2+ 2 — 1, and whose slope is 1. 

?. 

84. Equation of tangent to the circle in terms of the coõrdi- 
nates of the point of contact: the secant method. ö 

(a) Center of the circle at the origin. Let Pi (rr. 1) be 

the point of tangency, on the given circle N 

2 1 

Through Pi draw a secant line LM, and let P. (an yz) 
be its other point of intersection with the circle. If the 

7 point P. moves along the circle 
\ until it comes into coincidence 

with Pi, the limiting position of 
the secant LM is the tangent 
P,T. (Art. 81.) . 

The equation of the line LM is 

— = | — * y-n ae 20. 

If now P approaches P, until 



THE CIRCLE 145 

2 and y,=y,, equation (2) takes the indeterminate form 

y-n= . (3) 

This indeterminateness arises because account has not yet 
u taken of the path (or direction) by which , shall 

n FP, and it disappears immediately if the condition 
t 55! is to approach Yi along the cirele (I) is introduced. 

| . the fixed point P, is on the circle (1), therefore 
a * 

0 „„ 

nd since Pe while approaching Pu always remains on circle 

(1), therefore 
| a 4 + yi = r’; . . . (5) 

hence, subtracting equation (4) from equation (5), 

1 2? — 22+ % % 0, 

tis, G- Wat yd =—@—a) ata) 

| hf) — HES. 
7 7 — 1 wry 

8 u tituting this result in equation (2) gives 

— =a mtx _ * . „ . yn Pare ( i, (6) 

n is the equation of the secant line LM of the given 

„ (1). 

C 
er where the points (z,, y:) and (zs, ys) may be, equation (2) represents 
rn 

ie line through these points only when they are on the circle 2 + y* = r*. 

oth words, equation (2) in the equation of the line passing through any 

Bernese, hte eqesson (6) the ennation of Che ln pemg 
any two points on the circumference of the circle. 

TAN. Ax. Grom.— 10 
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Now let P, move along the circle until it ‘coincides with 
P,, d. e., until 2,=2, and y,=y,, then equation (6) becomes 

—_ _ aty 
8 71 8 , 

i. e., Y-”n=— 1 0 

which, by clearing of sits ae and transposing, may be 
written in the form : 

BC+ hie 
. e. motmy=", . e 

which is the required equation of the tangent to the circle 
* ＋ 5 =r’, x, and y, being the coördinates of the point of f 
tangency. 

(8) Center of circle not at origin. If the castle of the 
given circle be ‘ 

a+ y+ 2G2+2Fy+0=0,. . . Cy 
then, Pi and P, being on this circle, f 

re ＋ n 26 ＋ 2 T = . . . ) ; 

and 25 + yg? + 202 ＋ 2 % C0. (00 

Subtracting equation (8) from equation (9), 

ay — 2° + 260 210 +92 N 2 = e , 

which may be written in the form 

(Ya — %% + 41 2 T) = A 2 i 24); 

W 27 ＋ 21 + 26 

2 21 Ju T J T 27 
Substituting this result in equation (2) gives 

whence, 

„ = tH t2EF, eee eee) 
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3 
* 

1 of the secant through the two points (2. y,) 
d Cn y,) on the circle (7). If, now, the point (2 y,) 
aves along the curve until it comes into coincidence with 
„i this secant line becomes a tangent, and its equation is 

evo. os ee. CX) 

Clearing equation (11) of fractions, and transposing, it 
nay be written thus: 

*r N + Ge+ Py=xi+y; en . q. 02) 
mat, by equation (8), the second member of equation (12) 

quals 

Putting this value for the second member in equation (12), 
and transposing, that equation becomes 

aot ny +G(w+ay)+Fiy+yy+C=0,.. . [36] 

h is the required equation of the tangent to the circle 
z, and y, being the codrdinates of the point of contact.“ 

Nore. Equation [36] may be easily remembered if it be observed 
that it differs from the equation of the circle [equation (7)] only in 
having xtr, yy, 2 +z, and y + y, in place of 2 y*, 2z, and 2y, respec- 
tively. It will be found later that any equation of the second degree 
(from which the zy-term is absent) bears this same relation to the equa- 
tion of a tangent to its locus, 21 and y, being the codrdinates of the point 
Hf contact. Compare, also, equation [35] with equation (1). 
n must also be carefully kept in mind that equations [35] and [36] 
rer at tangents only if (z,, y,) is @ point on the circle. It will be seen 

that these equations represent other lines if (x,, y,) is not on the cirele. 

88. Equation of a normal to a given circle. By definition 
0 81) the normal at a given point, P,=(z,, y,), on any 

q ga nations (11) and (12) are, of cours, bt iferent forms ofthe equa 
1 of the same tangent as that represented by equation (36). . 
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curve is the line through P,, and perpendicular to the 

tangent at PI. Hence, to get the equation of the normal 

at any given point, it is only necessary to write the equation 

of the tangent at this point (Art. 84), and then the equa- 
tion of a line perpendicular to this tangent (Arts. 53, 62) 
and passing through the given point. Thus the equation 
of the normal to the circle ] 

+ ½ 4 202 4 27% C= 0. A) 

at the point PI =(2, y;), is 1 

rey 4 - 0 Oe 
The coördinates — G and —/' of the center of the given 

circle (1) satisfy equation (2); hence, every normal to a circle 
passes through the center of the circle. E 

If the center of the circle be at the origin, then G = 0, 

F=0, and C == A, and the equation (2) of the normal 
becomes 

„ M E ee 
which reduces to z,y — 2% = 0, — an equation which could 
have been derived for the circle 22 + . =r? in precisely the 1 
same way that equation (2) was derived from equation (1). 

EXERCISES 

1. Derive, by the secant method, the equation of the tangent to the 
circle z* + y* = 2rz, the point of contact being P,=(x,, y,). 

2. Write the equation of the tangent to the circle: 

(a) 22 + y* = 25, the point of contact being (3, 4); 
(B) 22+ y - 3 ＋ 10% = 15, the point of contact being (4,11); 
(y) (2 — 2)? +(y — 3)? = 10, the point of contact being (5, 4); 
(8) 32° ＋ 37% —2y - 4 = 0, the point of contact being (0, 0). 
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_&. Find the equation of the normal to each of the circles of Ex. 2, 
through the given point. 

4. A tangent is perpendicular to the radius drawn to its point of 
0 By means of this fact, derive the equation of the tangent to 

ul e circle (x—a)*+(y—6)*=r* at the point (Z ) (ef. equation [36)). 

5. From the fact that a normal to a circle passes through its center, 
find the equation of the normal to the circle & + * —62+4+ 8y +21 =0 
at the point (1, 4). 

8. Find the equations of the two tangents, drawn through the ex- 
point (11, 3) to the circle x* + y* = 40. 

_ Svacrstion. Use the equation of the tangent in terms of its slope. 

7. What is the equation of the circle whose center is at the point 
„ 3), and which touches the line 32 + 2y — 10 07 

4 8. Under what condition will the line =+%=1 touch the circle 
P+y=r? 

9. Find the equation of a circle inscribed in the triangle whose sides 

“are the lines x = 0, y = 0, and 2 21. 

10 Solve Ex. 6 by assuming z, and y, as the codrdinates of the point 
of contact, and then finding their numerical values from the two equa- 
tions which they satisfy. 

es Lengths of tangents and normals. Subtangents and 

8 The tangent and normal lines of any curve 
extend indefinitely in both 
directions ; it is, however, 
convenient to consider as the 

ler of the tangent the 
> igth 7, measured from 

he point of intersection (7) 9 = Ss 
4 f the tangent with the 2 Toe. 
‘axis to the point of tangency > 
. consider as the length of the normal 
N P,N, measured from Pi to the point of intersec- 

2 (NV) of the normal with the z-axis. 

2 
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The subtangent is the length TM. where M is the foot of 
the ordinate of the point of tangency P,; and the subnormal 
is the corresponding length MN. As thus taken, the sub- 
tangent and the subnormal are of the same sign; ordinarily, 
however, one is concerned merely with their absolute values, 
irrespective of the algebraic sign. The subtangent is the 
projection of the tangent length on the z-axis, and the sub- 
normal is the like projection of the normal length. | 

87. Tangent and normal lengths, subtangent and subnor- 

mal, for the circle. The definitions given in the preceding 
article furnish a direct method for finding the tangent and 
normal lengths, as well as the subtangent and subnormal, 
for a circle. Eg., to find these values for the circle 

a+ y* = 25, and correspond- 

ing to the point of contact 

PN. 283, 4), proceed thus: 
The equation of the tan- 

ol r x gent PIT is (Art. 84) | 
M as 

a W ‘ 
hence the x-intercept of this 
tangent, i. e., OT. N 

therefore the subtangent TM. which equals OM— OT, is 
3 — 48, i. e., — 53. The tangent length 

TP, = MT” + MP? VI 63. 

To find the normal length, and the subnormal, first write 
the equation of the normal at the point (3, 4); it is (Art. 

85) 44 - 3% 0. Hence its z-intercept is zero, and the 
subnormal, MO in this case, is — 3; we normal length P,O 
is 5. 
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N Similarly, corresponding to the point (y y,) on the circle 

* ＋ n, the subtangent = . the tangent length 
1 

= 20 the subnormal = —z,, and the normal length = r. 

The derivation of these values is left as an exercise for the 

student, as is also the derivation of the corresponding 

expressions for the circle 2 + y* + 2 Gz + 2 Fy + C= 0, the 
point of contact being (2 y;). 

EXERCISES 

Find the lengths of the tangent, subtangent, normal, and subnormal, 

1. for the point (4, -11) on the circle z* + y* — 32 4+ 10y = 15; 

2. for the point (I, 3) on the circle z* + y* —10z =0; 

3. for the point whose abscissa is V7 on the circle z* + y* = 25. 
4. The subtangent for a certain point on a circle, whose center is at 

"the origin, is 5}, and its subnormal is 3. Find the equation of the circle, 
and the point of tangency. 

88. To find the length of a tangent from a given external 

point to a given circle. Let P. (r y,) be the given 
external point, and let 

| 2+y°+2Gr+2Fy+C=0 

be the given circle. The center of this circle (Art. 79) is 
CG. F), and its radius is 
Vey FO. Join Pi to the 
center K. draw the tangent 
P,Q, and also the radius KO. 

Then P,@ = KP? — K@’; 

but 0 

: 0 + GP+(y,+ FY, Me 
and K@ = @+ H-; (Art. 79) 
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* IG = + 60 ＋ N ＋ F) (G24 Fi 00 

= Tn ＋ 2 Cr +2 Fy, . 
i. e., the square of the length of the tangent from a given 
external point to the circle 2 ＋ , t 2 Ga+2Fy+ C=0* | 
is obtained by writing the first member only of this equation, 
and substituting in it the codrdinates of the given point. 

89. From any point outside of a circle two tangents to the 1 

circle can be drawn. (a) Let the equation of the circle be 

2 e 
then (Art. 83) the line ; 

mr TVI. : ; (2 

is, for all values of m, tangent to this circle. Let PiS (rh? 
be any given point outside the circle (1); then the tangent 
(2) will pass through Pi if, and only if, m be given a value 
such that the equation } 

Yyy=ma,+rVi+n . - Oe 
shall be satisfied. 

Transposing, squaring, and rearranging equation (3), it 
is clear that it will be satisfied if, and only if, m is given a 
value such that the equation 

( -A) + 2a,y,m+ - = 

is satisfied; t. e., equation (3) is satisfied if, and only if, 

— 1 K VHT 9 
er 33 4 

Equation (4) gives two, and only two, real values for m 1 
when (2, / is outside of the circle, for then 22 + y,? is 

* If the circle is given by the equation 42 + Ay? +2 Gz +2 Fy + C=0, 

it must first be divided by A before applying this theorem. 

t The expression 2 + y;* + 2 Gx, + 2 Fy; + C is called the power of the — 
point PI (Ai, yi) with regard to the circle &2 ＋ 42+ 2G2+2Fy+ C=0, 4 
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positive (Art. 78, foot-note); these values of m, being sub- 
* ad in turn in equation (2), give the two tangents 

igh P, to the circle (1). 

11 Py i is on the circle (I), then 2,7 Tf = =0; hence the 
two values of m from equation (4) coincide, and the two 

gents also coincide, i. e., there is in this case but one 
tangent. If P, is within the circle, then the two values 
a m from equation (4) are both imaginary and no tangent 

igh Yi can be drawn to the circle (1).* 

3 If either value of m from equation (4) is substituted in 
. n (2), and then equations (2) and (1) are considered 
a eee and solved for z and , the codrdinates of 

he corresponding point of contact are obtained. 

Nore. The properties of the equations of the line and circle have thus 
established a geometric property of the circle [cf. Art. 31, (III)]. 

‘ 08) If the equation of the given circle had been 

4 2 +y2+2Gr+2Fy+C=0, . . . (5) 
it could, by Art. 71, have been transformed to new axes 
through its center (G. F) and parallel respectively to 
the given axes; its equation would thus have become 

224 * =r, . . . (6) 

re z’ and y’ refer to the new axes. 
This transformation, however, leaves the circle and all its 
ntrinsic properties unchanged ; but (a) applies to circle (6), 

nce it is proved that circle (5), which is circle (6) merely 
ferred to other axes, has the same properties. 

„These conclusions may also be stated thus: if Ni is outside of the 
circle, equation (4) gives two real and distinct values for m ; corresponding 
© these there are two real and distinct tangents; if Pi is on the circle, the 
wo values of m are real but coincident, and there are two real but coincident 

angents; if P, is inside of the circle, the two values of m are imaginary, 
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90. Chord of contact. If two tangents are drawn from any 
external point to a circle, the line joining the two corre- 
sponding points of tangency is called the chord of contact for 
the point from which the tangents are drawn. 1 

The equation of this chord of contact may be found “ 
first finding the points of tan- 
gency and then writing the 
equation of the straight line 
through those two points. I 
may, however, be found more 

briefly, and much more ele- 
gantly, as follows: 4 

Let Pi (an Ji) be the 
given external point f * 
which the two tangents are 

drawn; and let 7. (2, J½) and 75 C yg) be the poir is 
of tangency on the circle a 

22 ＋ % ＋ 2 & ＋ 2 Ty C= Oo 09 ) 
it is required to find the equation of the line passing througl 
T, and 173. The equation of the tangent at J. is (Art. 84) 

27 + Yoy + G(x +2) + Fly +y,)+C=0,... Q) 
and the equation of the tangent at 7, is 4 

2 + ygy + G(x + 2)+Flyt ½ =. . . B) 
But each of these tangents passes through the point Fa 

hence its codrdinates, 21 and y,, satisfy equations (2) and (8); 

therefore F 

Tyg t+ 0e + F(x +4) + Py, + y,)+C=0,... 0 
and 2 ＋ yyygt+ Ga, +2,)+F(yt+y,)+C=0.... 50) 

Equations (4) and (5), however, assert respectively th t 

(Zy Ya) and (, y,) are points on the locus of the equation 

21 T yyy + Gat+2)+FQ+y+C=0.... @ 

* 

Fid. 70. 

p % 1 
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But equation (6) is of the first degree in the two varia- 
bles z and /, hence (Art. 57) its locus is a straight line, and, 

K de it passes through both Ii (u u) and 75 (n 10. 
it is the equation of the chord of contact ; 

i. arty GC CTT o [87] 

s the equation of the chord of contact corresponding to the 

0 point PI (2 y;). 
lt is to be noticed that if P, is on the circle, then the two 

is drawn through it coincide with each other and with 
F chord of contact; the equation of the chord of con- 

act [37] then becomes the equation of the tangent at Pi, as 

i should (cf. equation [36]). 
Ik, then, (z,, y;) is a point on the circle (1), equation [37] 
is on equation of the tangent to the circle at that point; if, 
* other hand, (2, y,) is outside of this circle, then 

1 [37] is not the equation of a tangent, but of the 
Lot contact corresponding to that external point. 

EXERCISES 

1 0 10) to the circles: 
() z*+y?—32=0; (8) 222+ 2y?=5y +6. 
. (a) Write the equation of the chord of contact corresponding to 
i } point (5, 6) for the circle 2? + y?—62—dy=1. 
1 of the points in which this chord cuts the 

2 Write the equations of the tangents to the circle at these points 
rection ; show that these lines pass through the given point (5, 6). 

By the method of exercise 2, find the equations of the tangents 
N to the circle (3 x — 2)? + (3y + 50% 4, from the origin; from the 
int (1, 2). 
4. Find the locus of a point from which the tangents drawn to the 

2% %- 10 1% 8 0 and 720 
feof equal length. Show that this locus is a straight line perpendicular 
the line joining the centers of the given circles. 
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8. For what point is the line 82 ＋ 4 =7 the chord of contact witl 
regard to the circle z* + y* = 14? 

6. Find the chord of contact for the circle z* + y? = 25, correspond g 
to the point (3, 7); to the point (3, 2). 1 

7. By means of the equation y = = 2 prove that two tan- 
gents can be drawn through the external point (Zy y,) to the circle 
whose equation is z? + . 

8. Solve (8) and (y), of exercise 2, by means of the equation 

y — 6 = m(x — 5). 

91. Poles and Polars. If through any given po at 

Pi (ri i, outside, inside, or on the circle, a secant is 
drawn, meeting the circle in two 

“i points, as Q.and N, and if tan- 

gents are drawn at O and &, they 
— 

will intersect in some point as 

PS, ). 

The locus of P’, as the secant 
revolves about Pi, is called the 

2 polar of Pi with regard to the 
5 8 circle; and Pi is the pole of that 

rn. locus. It will be proved in the 
next article that the locus of Y 

is a straight line whose equation is of the same form as that 
of the tangent (Art. 84), and as that of the chord of contac’ 

(Art. 90) already found. “a 

92. Equation of the polar. Let Pi (ri, y;) be the given 
point, the equation of whose polar, with regard to the ci cle 

a+ ½ . 2 C ＋ 2 T TOO. . A) 

is sought. Also let 10 h be any position of the secant 
through Pi, and let the tangents at O and A intersect in 

P' =(2', /); then the equation of PIO (Art. 90) is 

D TN GC TATTOO TY) TCO. 2 
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Since P, is on this line, therefore 
aye! + yy +E, +27)+ Fy ty)+C=0.... (3) 
- Equation (3) asserts that the codrdinates, z’ and , of 
” satisfy the equation 

fr T + G(r t+2)+Pytyp)+C=90; ... [88] 

3 this variable point always lies on the locus of equa- 
» [38]; in other words, [38] is the equation of the polar 

: P, with regard to the circle (1). 

Moreover, since equation [38] is of the first degree in the 
yariables æ and , therefore (Art. 57) its locus is a straight 

ine; that is, the polar of any given point, with regard to any 
given circle, is a straight line. 
That equations [36] and [87] have the same form as equa- 
ion [38] is due to the fact that the tangent and the chord 
| contact are only special cases of the polar. 

93. Fundamental theorem. An important theorem con- 
y poles and polars is: Jf the polar of the point P,, 

11 ecard’ te — circle, 
sasses through the point P,, 
hen the polar of P, passes 
hrough P,. Let the equa- 
ion of the given circle be 

2 ＋ y+ 2 0 ＋ 2 T 

i — C= 0, eee i (1) 

id let the two given points 

71 * C Ys 

ad P. (n 1) 
en (Art. 92) the equation of the polar of P, is 

art yy t+ O@tr)t+ Fyty)t+C=0....@ 

\ 2 
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If this line passes through P,, then 

1% + Y ＋ G Y = . . . ) 

But the equation of the polar of P, (Art. 92) is 4 

17 + Yoy + F(a +2,)+ Fy +yz)+O=0,... A) 
and equation (3) proves that the locus of equation (4) 
through Pi, which establishes the theorem. 

EXERCISES 
1. Find the polar of the point (6, 8) with reference to the circle | 

42 + y?= 14. | 
2. Find the polar of the point (1, 2) with regard to the cirele 

4 ＋ 7 4 - 65 = 10. 5 

3. Find the pole of the line 44746 7, and of the line az+by—1=( 
with regard to the circle 22 + y* = 35. 

4. Find the equations of the two tangents to the circle 22 + . 65 
from the point (4, 7); from the point (11, 3). 1 

5. Show that if the polar of (A, /) with respect to the circle z?+ y= 
touch the circle 4 ( + y*) = c’, then the pole G. k) will lie on the circle 
22 : y= 4c%. . 

Show that the pole of the line joining (5, 7) and (11, 1) is the 
pie of intersection of the polars of those two points with reference te 
the circle 22 + y? = 100. 

7. Find the pole of the line 2z—3y=0 with respect to the circle 
42 ＋ ½ 9. 

8. Show what specialization of a polar converts it into a chord ¢ 
contact, and what further specialization converts it into a Gb 

94. Geometrical construction for the polar of a given point, 

and for the pole of a given line, with regard to a given circle. 
Since the relation between a polar and its pole (see def. 

Art. 91) is independent of the codrdinate axes, therefore 
the given circle may, without loss of generality, be me 
to have its center at the origin. 

If PI (A y;) is any given point, and 

24 gf mw ge” ipa alice 0 

3 
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4 ven cil, who centr tt the point o then hs 
2 of OP, (Art. 51) is 

Yet—zy=0 .- «© 00 

1 
ester 

Le F 
cle, and let it meet OP, in K. The equation of LL, 

92) is 
f. 

| art+yy=r. ° ° (3) 

Equations (2) and (3) show (Art. 62) that LL. and OP, 
perpendicular to each other; i. e., the line joining the 
ven point Pi to the center of the circle is perpendicular to 
@ polar of Pi with regard to the cirele. 

The distance (OA) from the origin to the line LL, 
Art. 64) is 

2 

Vr T AN 
d the length of OP, (Art. 26) is 

VI Tn . . en a 

(4) 

O. OP, = VT. 
— 

Ven ＋ An 
ace, to construct, with regard to a given circle, the 

r of any given point P,, join that point to the center of 
o circle, then on OP, (produced if necessary) find a point 
such that the rectangle OP, - OX is equal to the square 
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on the radius of the circle, and through K draw a 

perpendicular to OP,; this line is the required polar. 
Similarly the pole may be constructed, if the polar an 

the circle are given. 

95. Circles through the intersections of two given c: 

Given two circles whose equations are 

* ＋ * ＋ 2 ＋ 2Fy+C,=9, ) 

and 2 ＋ 7 ＋ 2 Cr ＋ 27% T = O. (2) 

These circles intersect, in general, in two finite point 

PI =(% V and P. =(% yz), and (Art. 41) the equation 

P+y+2 Gr+2 hy + G . 
tkh(e+y+2 Gr+2 I C,)=0, 

where * is any constant, represents a curve which passes 

through these same points Pi and P.. | 

The locus of equation (3) is, moreover, a circle (Art. 79) 

hence, a series of different values being assigned to the part 
eter &, equation (3) represents what is called a “ family’ 
of circles; each one of these circles passing through the t 
points Pi and P, in which the given circles (1) and (2) 
intersect each other. 

96. Common chord of two circles. If in equation (3) : 
Art. 95, the parameter & be given the particular valu 
— 1, the equation reduces to 

2(G,— G,)r+2(Fh,— Fry G- G ==. 0 

which is of the first degree, and therefore represents 
straight line; but this locus belongs to the family repre: 
sented by equation (3) of Art. 95, hence it passes through the 
two points Pi and P, in which the circles (1) and (2) inter- 

sect. This line (4) is, therefore, the common chord“ 0 

these circles. * a 
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Io obtain the equation of the common chord of two given circles it is, 
n, only necessary to eliminate the terms in z* and y* between their 

E.., to find the common chord of the circles 

222429 + Bee Sy— 9 20, „ 
i- 23 0, „„ 

1 „udn, equation (a) by 3 and subtract the result from equation (8); 

gives 
z—yt2=0, * 

as the equation of the common chord of the given circles. 
This result may be verified by finding the points of intersection 

(Art. 39) of the circles (a) and (8), and then writing the equation of 
the straight line through those two points. 
Since the common chord of two circles intersects each of these circles 

in the points in which they intersect each other, therefore the points 
1 of two circles may be found by finding the points in 

h their common chord intersects either of them. E.., to find the 
ie in which the circles (a) and (g) intersect each other, it is only 

to find the points in which (y) cuts either (a) or (g). 

97. Radical axis; radical center. The line whose equation 
is obtained by eliminating the 2* and y* terms between the 
quations of two given circles, as in Art. 96, whether the 
circles intersect in real points or not, is called the radical axis 
of the two circles. If the two given circles intersect each 
ther in real points, then this line is also called their com- 
non chord; that is, the common chord of two circles is a 
pecial case of the radical axis of two circles. 

„ Equation (3) of Art. 95, which for every value of & represents a circle 
ing through the two points in which the given circles (1) and (2) inter- 

ect, may be written in the form 

442 bt ts 49 ht thy y G+ tGoa 
: 1+ + 
The codrdinates of the center of this circle are (Art. 79) 

~ GtkG, and Pit th. 

17 * 174 

‘then & be made to approach —1, both of these codrdinates approach 
ifinity, but the circle always passes through the two fixed points in which 
he given circles intersect; hence the common chord of two given circles 

y be regarded as an infinitely large circle whose center is at infinity. 

TAN. AN. don. — 11 

Sy ee 

4 . 

1 ye 
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Three circles, taken two and two, have three radical axe: 

It is easily shown that these three radical axes pass through 
a common point; this point is called the radical center of th 
three circles. | 

EXERCISES 

1. Find the equation of the common chord of the circles 

12 ＋ % — 37 - 55 - 8 0, 22 4 1 ＋ 8 = 0. 

2. Find the points of intersection of the circles in exercise 1, and 
length of their common chord. 

3. Find the radical axis, and also the length of the common chord, 
for the circles 22 + y? + ax + by+ec=0, 22+ y°+ br +ay+c=0. 

4. Find the radical center of the three circles 

42 ＋ %½ 41 T7 0, 

2 (22+ y*)+3824+5y7+9=0, 
12 + 7 +y= 0. 

5. Show that tangents from the radical center, in exercise 4, to the 
three circles, respectively, are equal in length. a 

6. Prove analytically that the tangents to two circles from any point 
on their radical axis are equal. 

7. Find the polar of the radical center of the circles in exercise 1 
with respect to each circle. a 

8. Prove analytically that the three radical axes of three circles, 
circles being taken in pairs, meet in a common point. 

1 

98. The equation of a circle: polar coordinates. Let 0 7 

be the initial line, O the pole, C (oi, 0,) the center of th e 
circle, r its radius, and P=(p, 0) 
any point on the circle. Draw 00, 
OP, and ); then, by trigonometry, | 

r? = p* + p,2— 2 pp, cos (0 — 61), ie, 
p? — 2 p,p cos (0 — 61 . 

+p —r=0,... [89] 

which is the equation of the given 
circle. “a 

a 
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ö D sending upon the relative positions of the polar axis, 
| e pole, and the center of the circle, equation [39] has 
ev special forms : 

(a) If the center is on the polar axis, then 61 = 0, and 
equation [39] becomes 

p? —2p.p cos 0 + = r=; 

(8) If the pole is on the circle, then pi =r, and equa- 
on [39] becomes 

p— 2rcos (0 — 0,)= 0 

4 00 If the pole is on the circle and the 22 axis a diame- 
er, then p, = r and @, = 0, and equation [39] becomes 

p—2rcos?=0; 

1 

me) If the center is at the pole, then p, = 0 and equation 
39] becomes p=r. 

99. Equation of a circle referred to oblique axes. Let the 

axes OX and OF be inclined at an angle o; let C=(A, k) 

„ the center of the circle, r 
its radius, and P=(z, ) any 
oint on the circle. Draw the 

MO and MP, connect 
17. and draw CHL paral- 
. then 

HH 
or. HP cose; 
ence r= (x —h)* +(y—k)? + 2(2—A)(y — H cosa, 
@., (2—h)*+-(y—k)?+.2(2—A)(y—kcosa—r2=0;.. . [40] 
vl ich is the equation of the given circle. 

V 

2 
11 

1 Ir 
Fro, 78. 
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It is to be observed that this equation [40] is not of t 
form 

22 ＋ 5 2G ＋ 27 ＋ =, 

which was discussed in Art. 79; it differs from that equa- 
tion in that it contains an zy-term. If, however, the axe 
are rectangular, as in Art. 79, then cos =, and equation 
[40] reduces to the standard form of Art. 79, viz.: q 

22 + y24+2 C ＋ 27% + C=0, 
which is a special case of equation [40]. 

100. The angle formed by two intersecting curves. By ne 

angle between two intersecting curves is meant the angle 
formed by the two tangents, one to each curve, drawn 
through the point of intersection. 

Hence to find the angle at which two curves intersect, it 
is only necessary to find the point of intersection, then to 
find the equations of the tangents at this point, one to each 

curve, and finally to find the angle formed by these tangents. 

EXERCISES 

1. Find the polar equation of the circle whose center is at the point 

(7, 7 and whose radius is 10; determine also the points of its ir er- 

section with the initial line. 8 

2. Find the polar equation of a circle whose center is at the point 

( 15, 5 2) and whose radius is 10. Find also the equations of the taugen N 

to the circle from the pole. 

3. A circle of radius 3 is tangent to the two radii vectores which 
make the angles 60° and 120° with the initial line: find its polar qua- 

tion, and the distance of the center from the origin. 

4. Find the equation of a circle of radius 5, with center at the point 
(2, 3), if w is 60°. 

5. Find the equation of a circle of radius 2, with center at the origi 
if w is 120°. > 

7 
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4 Determine the equation of the circle circumscribing an equilateral 
triangle, — the coordinate axes being two sides of the triangle. 

V A circle is inscribed in a square. What is its equation, if a side 
anc ey cca e 

vely? What are the codrdinates of the points of tangency? 

. Find the angle at which the circle * + y* = 9 intersects the circle 
(@—4)?+y—2y=15. At what angle does the second of these circles 
' the line z + 2y = 4? 

EXAMPLES ON CHAPTER Vii 

1. Find the equation of the circle circumscribing the triangle whose 
bes are at the points (7, 2), (I. ~4), aud (3, 3). What is its center? 

its radius? 

2. Determine the center of the circle 

(2 +a)? + (y+ baat +B. 

nene 
vary under the one restriction that a* + * is to remain constant? 

_ 3. What must be the relations among the coefficients in order that 

al * 2+y¥+267+2Fy+ C o, 
a0 + y°+2G2+2 Fy , o, 
5 bo concentric? that they shall have equal areas? 

4. Under what limitations upon the coefficients is the circle 
Ax + Ay + Dr+ Ey + F=0 

nt to each of the axes? 

|B. Find the equation of the circle which has its center on the vais, 
ind which passes through the origin and also through the point (2, 3). 
6. Find the points of intersection of the two circles 
ir -2y—31=0 and 412712571120. 

7. Circles are drawn having their centers at the vertices of the 
le (7, 2), (1. ~4) and (3, 3), respectively, and each passing through 

he centr of fourth circle which cireumseribes this triangle find their 

8 Circles having the sides of the triangle (7, 2), (- 1, , (3, 3) as 
are drawn; find their equations, their radical axes, and their 
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9. Find the equation of the circle passing through the origin a 
the point (z,, y,), and having its center on the y-axis. 

10. The point (3, 5) bisects a chord of the circle 22 + y? = 277; 4 J 
the equation of that chord. 

11. A circle touches the line 42 ＋ %y +5=0 at the point (-3, 8) 
and passes through the point (5, 9); find its equation. q 

12. A circle, whose center coincides with the origin, touches the line 
7z—1ly +2 =; find its equation. 4 

13. At the points in which the circle 22 +- ½ — az — by = 0 cuts the 
axes, tangents are drawn; find the equatious of these tangents. 

14. A circle, whose radius is V74, touches the line 5y=7z—1 ab 
the point (8, 11); find the equation of this circle, 

15. A circle is inscribed in the triangle (3, 2), (, 3), (3, 3); f 
its equation; find also the equations of the polars of the three vertices 
with regard to this circle. 7 

16. Through a fixed point (2 y,) a secant line is drawn to the cirele 
z?4+y*%=r*; find the locus of the middle point of the chord which the 
circle cuts from this secant line, as the secant revolves about the g 

fixed point (25 10 ‘ 

17. Prove analytically that an angle inscribed in a semicircle is 
right angle. a 

18. Prove analytically that a radius drawn perpendicular to a chord 
of a circle bisects that chord. 1 

19. Show that the distances of two points from the center of a circle 
are proportional to the distances of each from the polar of the other. 

20. Two straight lines touch the circle 2? + - 5 35 ＋ 60. 
one at the point (1, 1) and the other at the point (2, 3); find the pol 

of the chord of contact of these tangents. 

21. Find he condition among the coefficients that must be sati 
if the circles 

42 ＋ ½ ＋ 2 C ＋ 2 Fy = and ee eee 
shall touch each other at the origin. 

22. Determine F and C so that the circle 

+y°+202+2Fy+C=0 
shall cut eaeh of the circles 

27 ＋ 44 — 2 14 = 0 and 2?+4+9°+42742y=1 

at right angles (cf. Art. 100). 
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23. Given the two circles 
ei and 24 y+ 4242y—-4=0; 

find the equations of their common tangents. 

24. Find the radical axis of the circles in example 23; show that it 
‘is perpendicular to the line joining the centers of the given circles, and 
find the ratio of the lengths of the segments into which the radical axis 
‘divides the line joining the centers. How is this ratio related to the 
radii of the circles? Is this relation true for any pair of circles what- 

? 

25. Given the three circles: 

: xt+y— 162+ 00 =0, 38 + 37 — 3624 81 =0, 
4 ＋ * 10 — 127 ＋T 840 

cc 
mal length, also find that length. How is this point related in position 

to the radical center of the given circles? Prove that this relation is the 
ame for any three. circles. 

286. e 
tangent, drawn from it to a fixed circle, is in a constant ratio to the dis- 
tance of the moving point from a given fixed point. 

* 27. Let P be a fixed point on a given circle, T a point moving along 
* and Q the point of intersection of the tangent at T with the 

upon it from Y; find the locus of Q. 

* Use polar cobrdinates, P being the pole, and the diam- 
eter through P the initial line. 

28. Find the length of the common chord of the two circles 
(z—a)*+(y—b)*=r? and (-D (-a. 

om this find the condition that these circles shall touch each other. 

29. If the axes are inclined at 60°, prove that the equation 
4 2+ry+y—dz2-S5y—2=0 

s a circle; find its radius and center. 

30. What is the obliquity of the axes if the equation 
| x24 Vizy+y—4z—-6y+5=0 

: acircle? What is its radius? 

_ 31. For what point on the circle z* + y*=9 are the subtangent and 
the subnormal of equal length? the tangent and normal? the tangent 
and subtangent ? 
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32. An equilateral triangle is inscribed in the circle 2 + y? =4 with 
its base parallel to the z-axis; through its vertices tangents to the circle 
are drawn, thus forming a circumscribed triangle; find the equations, 
and the lengths, of the sides of each triangle. 

33. The poles of the sides of each triangle in example 32 are he 
vertices of a triangle; find the equations of its sides, and draw the figure. 

34. A chord of the circle 22 + ¥*-—227—4y+425=0 is of leng h 
4 V5, and is parallel to the line 22 + y + 7 o; find the equation of t 
chord, and of the normals at its extremities. 

35. Find the equation of a circle through the intersection of 
circles 22 y?-4=0, 22+ y*—2z—4y+5=0, and tangent to the 
z+y-—3=0. 

’ 

36. The length of a tangent, from a moving point, to the ci 
z*+y?=6 is always twice the length of the tangent from the same poin 
to the circle z?+ y7+3(x%+y)=0. Find the ee of the ome 
the moving point. 

37. Find the locus of the vertex of a triangle having given the b 
= 2a, and the sum of the squares of its sides = 2 b*. 

38. Find the locus of the middle points of chords drawn throng 
fixed point on the circle z? + y? = 42. 

39. Through the external point PI (Th y,), a line is drawn meeti ing 
the circle 42 + y? = a? in Q and R; find the locus of middle point of Pia 
as this line revolves about Pi. 

40. A point moves so that its distance from the point (1, 3) is to its | 
distance from the point (4, 1) in the ratio 2:3. Find the an 
of its locus. 

41. Do the circles 

472 ＋ 4% 4 1257120 and 2274+27?+y=0 

intersect? Show in two ways. 

1 * 

42. Find the equation of a circle of radius V85 which passes through 
the points (2, 1) and (3, 4). 

43. What are the equations of the tangent and the normal to the 
circle 22 + y?= 13, — these lines passing through the point (2, 3)? 
through the point (0, 6)? 4 

44. Find the equations of the tangents through (2, 3) to the circle _ 
9 (2? + y*9)4+62-124¥+4=0. | 
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45. At what angle do the circles 274+ y°+62—-2y+5=0 and 
* +4z+2y-5=0 intersect each other? 

46. A diameter of the circle 424+ 4y*+82—12y+1=<0 passes 
ugh the point (1, 1). Find its equation, and the equation of 

@ chords which it bisects, 

7. Find the locus of a point such that tangents from it to two con- 
> circles are inversely proportional to the radii of the circles. 

8. Find the locus of a point which moves so that its distances from 
yo fixed points are in constant ratio k. Discuss the locus and draw 
o figure. 
49. A point moves so that the square of its distance from the base 
[an isosceles triangle is equal to the product of its distances from the 
er two sides. Show that the locus is a circle. 

* Prove that the two circles 
B+ + 2Gr4+2F y+ C,=0 and 2+ ¥°+2G74+2Fy+ C,=0 

; A that they are tangent to each 

GA G,)* + (F, — F,)' = VGF+ FF - C, + VG + E=. 
d find the condition among the constants that these circles intersect 
thogonally, ie,, at right angles to each other. 

* 1 * 1 1 



CHAPTER VIII 

THE CONIC SECTIONS 

101. In Art. 48, which should now be carefully re-read, 
a conic section was defined; its general equation was de- 
rived; its three species, viz., the parabola, ellipse, and hyper- 
bola, were mentioned; and a brief discussion of the nature 

and forms of the curve was given. In the present chap- 
ter, each of these three species will be examined somewhat 
more closely than was done in Chapter IV, and some general 
theorems concerning its tangents, normals, diameters, chords, } 
of contact, and polars will be proved. f 

The general equation (Art. 48) of the conic section 
might here be assumed, and the special forms for the parab- 
ola, the ellipse, and the hyperbola be derived from it; but, 
partly as an exercise, and partly for the sake of freedom 
to choose the axes in the most advantageous ways, the equa- 
tions will here be re-derived, as they are needed, from the 

definitions of the curves. 

I. THE PARABOLA 

Special Equation of Second Degree 

A +2Ga+2Fy+C=0, or By? +2Gxr+2 Fy+C=0 

102. The parabola defined. A parabola is the locus of 
a point which moves so that its distance from a fixed point, 

called the focus, is equal to its distance from a fixed line, 

170 
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0 the directrix. It is the conic section with eccentricity 

* The equation of a parabola, with any given focus and 
directrix, can be obtained directly from this definition. 

Examrie. To find the equation of the parabola whose directrix 
ts the line sx —2y 1 0, and whose focus is the point (2, 3). 
_ Tat PSG be any point on the parabola(see Fig. 79) ; 

2 be distance of P from the directrix (Art. 64), 

‘and ZN U h is the distance of P from the focus (Art. 26); 

r V(2—2)*+(y , by definition; 

that is, AA 182060; 

which is the required equation. 

The equation obtained in this way is not, however, in the 
most suitable form from which to study the properties of the 
‘curve, but can be simplified by a proper choice of axes. 
Tn Art. 48 it was shown that the parabola is symmetrical 
with respect to the straight line through the focus and per- 
pendicular to the directrix, and that it cuts this line in only 
me point. If this line of symmetry is taken as the z-axis, 
the equation will have no y-term of first degree [of. Art. 48, 
eq. (3)]; while if the point of intersection of the curve with 

nis axis be taken as origin, the equation will have no con- 
stant term, since the point (0, 0) must satisfy the equation. 
With this choice of axes, the equation of the parabola will 
1 luce to a simple form, which is usually called the first 
a dard equation of the parabola. 

103. First standard form of the equation of the parabola. 
et D' be the directrix of the parabola, and F its focus; 
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also let the line ZX, perpendicular 
to the directrix, be the z-axis; denote 

the fixed distance ZF by 2p, and let 
O, its middle point, be the origin of 

coördinates; then the line OY, per- 
pendicular to OX, is the y-axis. Let 
PSG, y) be any point on the curve, 
and draw LQP perpendicular to OY, 
also draw the ordinate MP, and the 

line FP. The line FP is called the focal radius of P. 

Then ZO= OF =p, | 

and the equation of the directrixis x+p=0, . « . (1) 

while the focus is the point (p, 0). ; > é (2). 
Again, from the definition of the parabola, ‘ 

FP= LP; [geometric equation] 

but YP VN r . and LP=Z0+ OM=p+z; 
hence V(a—p)*+y¥=(@+p), 

whence 7 A p, ; : [41] 

which is the desired equation. 

This first standard form [41] is the simplest equation of 
the parabola, and the one which will be most used in the 

subsequent study of the curve. It will be seen later 

(Chapter XII) that any equation which represents a parab- 
ola can be reduced to this form. 

104. To trace the parabola / = 4h From equation 

[41] it follows : q 

(1) That the parabola passes through the point 0, half 
way from the directrix to the focus. This point is called 
the vertex of the curve. 

(2) That the parabola is symmetrical with regard to the 
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axis; i.¢., with regard to the line through the focus per- 
endicular to the directrix; this line is called the axis“ of 

the curve. 
) That e has always the same sign as the constant p, 

e, that the entire curve and its focus lie on the same side 
of a line parallel to the directrix, and midway between the 
direct and the focus. 

() That æ may vary in magnitude from 0 to , and when 
ie increases, so also does y (numerically); hence the parabola 
is an open curve, receding indefinitely from its directrix and 
its axis. 
The parabola is then an open curve of one branch which 

lies on the same side of the directrix as does the focus; 
nen constructed it has the form shown in Fig. 76. 

105. Latus rectum. The chord through the focus of a 
sonic, parallel to the directrix, is called its latus rectum. In 
the figure this chord is R'R. 

Now R'R=2FR=2SR=2ZF =4p. 
Hence the length of the latus rectum of the parabola is 4p; 

that is, it is equal to the coefficient of x in the first standard 

106. Geometric property of the parabola. Second standard 
equation. Equation [41] may be interpreted as stating 
. property of the parabola. — a property which 

to every point of the parabola, whatever coördinate 
* chosen. For (see Fig. 76) the equation y* = 4 pz 

the geometric relation 

MP* =4 OF -OM= RR OM, 
„expressed in words, 

5 err should be carefully distinguished from an axis of 
; though they often are coincident lines in the figures to be 
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If from any point on the parabola, a perpendicular is drawn 
to the axis of the curve, the square on this perpendicular is 
equivalent to the rectangle formed by the latus rectum and the 
line from the vertex to the foot of the perpendicular. ‘ 

This geometric property enables one to write down immedi 
ately the equation of the parabola, whenever the axis of 

the curve is parallel to one of the coérdinate axes. } 
E. g., if the vertex of the parabola is the point A= (I, Y). 

and its axis is parallel to the z-axis, as in the figure, let 

F be the focus and P=(a, ) 

y ae be any point on the parabola; 

R draw MP perpendicular to the 
al4z 3 axis AK. Then 

| MP’ AF. AM, | 
9 Mis x te, ( A . [42] 

5 Chie which is the equivalent algebraic 
equation. This may be taken as 

a second standard form of the equation, representing the 
parabola with vertex at the point (A, &), with axis parallel 
to the z-axis, and, if p is positive, lying wliolly on the posi- 
tive side of the line z=h, ; 

Equation [42] evidently may be reduced to equation [41] 

by a transformation of codrdinates to parallel axes through 
the vertex (A, I), as the new origin. 

Again, suppose the position of the parabola to be that 
represented in Fig. 78. The vertex is A=(h, Y), and the 
axis of the parabola is parallel to the y-axis. Let P=(a, y) 
be any point on the curve, and draw MP perpendicular to 
the axis of the curve. 

Then DP =4AF.AM [ geometric proper 

=4p-AM, [here p is negative] 
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whence, substituting the codrdinates of A and P, 
. (a —h)*=4 ply — k), o » „ (48) 

hich is another form for the second standard equation of 
: 13 

1 

a 
; : 

avs * 

Fr 

Fie. 78, 

_ EXERCISES 
Construct the following parabolas, and find their equations: 
1. having the focus at the point (1, 3), and for dicectrix the line 

Bz —5y=2 (ef. Art. 102); 

2. having the focus at the origin, and for directrix the line 
| 22—y+3=0; 

3. with the vertex at the origin, and the focus at the point (3, 0); 

_ 4. with the vertex at the origin, and the focus at the point (0, 3); 

8. with the vertex at the point (~2, 5), and the focus at the point 

(2,1); 
_ 6. with the vertex at the point (2, 4), and the focus at the 

wint (1, ~4); 

7. having the focus at the point (2p,0), and for directrix the line 
p= 0. 

0. What is the latus rectum of each of the parabolas of exercises 3 to 6. 
9. Describe the effect produced on the form of a parabola by increas- 
ig or decreasing the length of its latus rectum. 

107. Every equation of the form Ax? + 2Gx +2 Fy +C=0, 

x By?+2Gxr+2Fy+C=0, represents a parabola whose 

ixis is parallel to one of the coordinate axes. 
Equations [41], [42], and [43] are of the form 

+2 Gr+2 Fy +C=0, or A® +2 Gr +2 Fy +C=0; 
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that is, each has one and only one term containing the 

square of a variable, and no term containing the produet 
of the two variables. Conversely, it may be shown that 
an equation of either of these forms represents a parabola’ 
whose axis is parallel to one of the codrdinate axes. | 

A numerical example will first be discussed, by the 
method which has already been employed in connection 
with the equation of the circle (Art. 79), and which is 
applicable also in the case of the other conics. It is the 
method of reducing the given equation to a standard form, 
and is analogous to “completing the square” in the solu- 
tion of quadratic equations. | 

Exampte. Given the equation 
25 y? — 30 y 50 + 89 =0, ‘ 

to show that it represents a parabola; and to find its vertex, focus, and 
directrix. 

Divide both members of the equation by 25, and complete the square 
of the y-terms; the equation may then be written . 

TR = 22H 4 

that is, == 2 - §), 
whence (y 924 J- 9. ; 

Now this equation is in the second standard form (ef. equation [42]), 
and therefore every point on its locus has the geometrie property given 
in Art. 106; and the locus is a parabola. The vertex is at the point 

C. 2); its axis is parallel to the z-axis, extending in the positive diree- 
tion; and, since p = }, its focus is at the point (#}, ), and the directrix — 
is the line z = }}. 

Consider now the general equation, and apply the same 
method, taking for example the second form, viz. : 

Az? +2Ge+2Fy+ C=0. | 

Dividing both numbers of the equation by A, completing the 
square of the z-terms, and transposing, the equation becomes 
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Nn 
5 P 92 4 

„ D- (- 
Comparing this equation with the standard equation [43], 

it is seen that its locus is a parabola, whose axis is parallel 
to the y-axis, extending in the negative direction if A and F 

have like signs, and in the positive direction if A and f 755 
. G G— 
unlike signs. Its vertex is at the point ( 72 17 

‘and, since p = — 27 its focus is at the point 

ie? 2AF : 

G24 F AC 
2AF 

Nor. The transformation just given fails if A =0 or if F=0, for 
e If, how- 
ever, A=0, the given equation becomes 2 Gz + 2 Fy + C=0; and, this 
being of the first degree, represents a straight line. If, on the other 
hand, F=0, the given equation reduces to Az* + 2 Gz + C =0, and repre- 
sents two straight lines each parallel to the y-axis; they are real and 
distinct, real and coincident, or imaginary, depending upon the value of 
G*—AC. These lines may be regarded as limiting forms of the parab- 

a (see Chapter XII). 

( G G@—F?-A 

EXERCISES 

Determine the vertex, focus, latus rectum, equation of the directrix 
and of the axis for each of the following parabolas; also sketch each 
of the figures: 

1. P-524+4y—10=0; 3. 5y—1=3y* +42; 

2. 32 1224+ 4y-8=0; 4. „72% 122110. 

108. Reduction of the equation of a parabola to a standard form. In 
rt. 102 it was shown that the equation of a parabola having any 

TAN. AN. Grom.—12 
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given directrix and focus is in general not as simple as the standard equa- 
tion. It will now be shown that if the coördinate axes be transformed 

so as to be parallel to the axis and 
* n directrix of the curve, the equation will 

> be reduced to a standard form. For ex 
ample, the equation of the parabola with 
focus at (2, 3), and having for directrix — 
the line —2 y—1=0, was found to be 

477 ＋ 4 +7? — 182+ 26y+64=0. — 

The axis of the curve is a line through © 
(2, 3) and perpendicular to 

1 — 2 - 10; | 

Fic. 10. its equation is 2z + y = 1, and it cuts 

the z-axis at the angle 0 = tan-!(-2), 
The point Z is the intersection of the directrix and axis, and may be 
found from the two linear equations representing these lines; the vertex 1 

A is the point bisecting ZF. If, then, the axes are rotated through 
the angle 6 = tan-!(-2), the equation will be reduced to the second 
standard form, [42]; and if the origin be also removed to the vertex 

A, the equation will be further reduced to the first nee’ form, [41J. 

The point Z is (J, J), A is (18, g); hence, p= AF = and trans- 

forming the axes through the angle 0 = tan-1(—2), to the new ore 

(44, 5), the equation of the parabola reduces to y* 1. 
5 

The problem of reducing any equation representing a parabola to its 
standard form is taken up more fully in Chap. XII. 

EXERCISES 

Find, and reduce to the first standard form, the equation of each of 
the following parabolas; also make a sketch of each figure: 

1. with focus at the point (1, 3), and having for directrix the line 

82 — 55 2 

2. with focus at the point (8, J), and having for directrix the line 

21 775-820; 0 

3. with focus at the point (a, h), and having for directrix the line 

1 
cs 
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il, THE ELLIPSE 

Special Equation of the Second Degree 

Ax* + By? +2Ga+2Fy+ C=O 

109. The ellipse defined. An ellipse is the locus of a 
point which moves so that the ratio of its distance from 

s fixed point, called the focus, to its distance from a fixed 
Une, called the directrix, is constant and less than unity. 
The constant ratio is called the eccentricity of the ellipse. 
This curve is the conic section with eccentricity ¢< 1. 

(ef. Art. 48.) 
The equation of an ellipse with any given focus, directrix, 
and eccentricity may be readily obtained from this definition. 

_ Examrte. An ellipse of eccentricity 1 has its focus at (2, I), and 
has the line x + 2y = 5 for directrix. Let PS (, ) (Fig. 85) be any 
point on the curve, F the focus, and PQ the perpendicular from P to 

. directrix. 
Then FP =4 QP; 

‘but FN JI). a itis (Arts. 26, 64), 

(z — 2)? + (y+ 1)? = a (e+ 2y — 5)*; 

that is, 41 2? — 16 xy + 29 y* — 140 x + 170y + 125 =0; 

which is the equation of the given ellipse. 

As in the case of the parabola, so also here, a particular 

choice of the coördinate axes gives a simpler form for the 
equation of the ellipse; an equation which is more suitable 
for the study of the curve, and to which every equation 
representing an ellipse can be reduced. As has been seen in 
Art. 48, the curve is symmetrical with respect to the line 
through the focus and perpendicular to the directrix; and 
outs that line in two points, one on either side of the focus. 
The equation of the ellipse will be in a simpler form if this 
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line of symmetry is chosen as the z-axis, with the origin half 
way between its two points of intersection with the curve. 
The resulting equation is the first standard form of the equa- 
tion of the ellipse. 

110. The first standard equation of the ellipse. Let V be the 

focus, D the directrix, and & the perpendicular to DD 

through V, cutting 

the curve in the two 
points A’ and 4 
(Art. 48)“. Denote | 

by 2a the length 
of AA’, and let 0 

so that 

AO= OA' =a. 

Let ZX be the x-axis, O the origin, and OY, perpen- 
dicular to OX, the y-axis. Then, by the definition of the 
ellipse, 

AF=eZA, and FA'=eZA’'; 

AF + FA'=e(ZA+ZA') =e(ZA+ZA+ AA), 

i. e., AA! =e(2ZA + AA’), 
whence 2a=2e(ZA+AO0)=2eZ0; 

therefore ZO=%, 
e 

and the equation of the directrix is x + 3 oh ~ Ga 

Again, FPA! — AF =e(ZA'— ZA); 3 
i. e., FO + OA - AO = F0)=eAA', 

whence 2FO=2ae; 

* This equation may also be easily derived independently of Art. 48,—_ 

ef. Arts. 103, 116. 1 
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herefc 0 ae, 

5 „„ 0 

es. for any point P on the curve, draw the ordinate MP 
nd the perpendicular LP to the directrix ; then 

FP=eLP, [geometric equation). . . (38) 

but FP=Viz+ae)'+ 9, Lege 

2 a (ae + 2) +y=e(r+4), oes . Can 

hat is, d—e)2?+y=a(1—e),.. . (5) 

1 25 
t is, ä E „% 6 (6) 

rom equation (6), the intercepts of the curve on the y-axis 

are + aV1—e*. Both intercepts are real, since e I; hence 
the ellipse cuts the y-axis in two real points, B and B’, on 
ypposite sides of the origin O and equidistant from it. If 
OB is denoted by +4, so that 

* = (1-0, 0 0 (7 

quat ion (6) takes the form 

355211409 

Th is the simplest equation of the ellipse, and will be 
jost used in the subsequent study of the properties of that 

e. As will be seen in Chapter XII, every equation 
oresenting an ellipse can be reduced to this form. 

rn The ellipse, 
includes the circle as a special case. In other words: a circle is an 
whose eccentricity is zero. 
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111. To trace the ellipse 2 = 1. From equation [44] 

it follows that : 5 

(1) The ellipse is symmetrical with regard to the æ-axis; 
i.e., with regard to the line through the focus and perpen- 
dicular to the directrix; this line is therefore called the 
principal axis of the curve; 

(2) The ellipse is symmetrical with regard to the y-axis 
also ; i. e., with regard to a line parallel to the directrix and 
passing through the mid-point of the segment AA’ (Fig. 81) 

which the curve cuts from its principal axis ; | 
(3) For every value of 2 from —a to +a, the two cor- 

responding values of y are real, equal numerically, but 
opposite in sign; and for every value of y from — 5 to b, 

the two values of æ are real and equal numerically, but 
opposite in sign; and that neither & nor / can have real 
values beyond these limits. | 

The ellipse is, therefore, a closed curve, of one branch 

which lies wholly on the same side of the directrix as the 
focus; and the curve has the form represented in Fig. 80, 
- which agrees with the foot-note on p. 71. | 

D. 

The segment AA’ (Fig. 81) of the principal axis inter- 
cepted by the curve is called its major or transverse axis; 
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1 segment A is its minor or conjugate axis. 
the symmetry of the curve with respect to these axes 

it follows that it is also symmetrical with respect to their 
intersection O, the center of the ellipse. It follows also that 
th ellipse has a second focus at ramen 0) (Fig. 81) and 

a second directrix D’,D,—the line 2 =(0—on the posi- 

side of the minor axis, and RE to the original 
focus and directrix, respectively.* 

| The latus rectum of the ellipse, i. e., the focal chord parallel 
» the directrix (Art. 105), is evidently twice the ordinate 

of the point whose abscissa is ae. 

But if 21 = ae, N = VIA; or, since B AVI , 

2 Hence the latus rectum is 2 

112 Intrinsic property of the ellipse. Second standard 
equation. Equation [44] states a geometric property which 
belongs to every point of the ellipse, whatever the codrdi- 
nate axes chosen, and to no other point: viz., if P be any 

point of the ellipse (Fig. 80), then 

is, in words : 
— 

„o show this analytically, let OF’ = ae, and 02' =“, and let P=(z, y) 

2 Equation (4), of Art. 110, gives the 
re) between z and y; expanding equation (4), and subtracting 4 de 
.. it becomes 

% + a + = at ~ Dae + oat, 
may be written f 

ere. 

‘ FP* = ¢ PL’; 
rhich shows that P is on an ellipse whose focus is F and whose directrix 

D 
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If from any point on the ellipse a perpendicular be drawn 

to the transverse axis; then the square of the distance from t 
center of the ellipse to the foot of this perpendicular, divided l 

the square of the semi-transverse axis, plus the square of 
perpendicular divided by the square of the semi-conjugate axis, 
equals unity. 

This geometric or physical property belongs to no poin 
not on the curve, and therefore completely determines the 
ellipse. It enables one to write immediately the equation of 
any ellipse whose axes are parallel to the codrdinate axes. 

For example : if, as in Fig. 82, the major axis of an ellipse 

is parallel to the z-axis, and the center is at the poi at 

Y 

MF 

0 Be a 

M Fig. 82. 

C=(h,k), let P = (g,) be any point on the curve, ad 

a, h be the semi-axes, then 1 

OM’ , MP” 
Of OF 

= . (y ~ hk)? _ 0 
a ae. =1, . . . [45] 

which is the equation of the given ellipse. 
Or again, if, as in Fig. 83, the major axis is parallel t 

the y-axis ; then, as before 

OM" , MP’ _ 1, 

21 

that is 
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1. (46) A 

hi 0 8 of the given 
Hp 

iquation [45] may be considered 
second standard form of the equa- 

1 of the ellipse ; by a change of 
08 linates to a set of parallel axes 
wongh the center CS (I, k), as 

new origin, it can be reduced 
o the first standard form. : 
By Art. 110 the distance from 9 
he center of an ellipse to its focus K 
sae; but since &* = (1 07 ty 

110, eq. (7)], therefore de = Va- ; hence, in 
82 and 83, 

FO = CF =ae = V-. 

Again, the equation of an ellipse, in either standard form, 
ives the semi-axes as well us the center of the curve, there- 
ore the positions of the foci are readily determined from 

standard form of the equation. 

: EXERCISES 

Construct the following ellipses, and find their equations: 

I. given the focus at the point (—1, 1), the equation of the directrix 
. ae en (ef. Art. 100); 

2 given the focus at the origin, the equation of the directrix z = —9, 
nd the eccentricity 4; 

he student should observe that b is the semi-minor-azis and not nec- 
sarily the denominator of y* in the standard forms of the equation of the 
lipse —[44), [45], or [46] ; he should also observe that the foci are always 

m the major axis. 
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3. given the focus at the point (0, 1), the equation of the directrix | 
y — 25 = 0, and the eccentricity 3; 

4. given the center at the origin, and the semi-axes V2, V5. Find 
also the latus rectum. ; 

Find the equation of an ellipse referred to its center, whose axes are 
the codrdinate axes, and 

5. which passes through the two points (2, 2) and (3, 1). 

whose foci are the points (3, 0), (3, 0), and eccentricity }. 

whose foci are the points (O, 6), (0, 6), and eccentricity g. 

whose latus rectum is 5, and eccentricity 4. 

oo ao whose latus rectum is 8, and the major axis 10. 

10. whose major axis is 18, and which passes through the point 6, 4. 

Draw the following ellipses, locate their foci, and find their equations: 

11. given the center at the point (3, 2), the semi-axes 4 and 3, and 
the major axis parallel to the z-axis (cf. Art. 112); , 

12. given the center at the point (—8, 1), the semi-axes 2 and 5, and 
the major axis parallel to the y-axis; ö 

13. given the center at the point (0, 7), the origin at a vertex, and 

(2, 3) a point on the curve; 
| 

14. given the circumscribing rectangle, whose sides are the lines 

r+1=0, 22 3 = 0, y+6=0, 3y+4=0; the axes of the curve 
being parallel to the coördinate axes. 

15. If h becomes more and more nearly equal to a, what curve does 
the ellipse approach as a limit? 

113. Every equation of the form Aa*+ By? + 2Ga +2 Fy 

4+ C=0, in which A and E have the same sign, represents 

an ellipse whose axes are parallel to the coordinate axes. 

Equations [44], [45], and [46], obtained for the ellipse, are 
all, when expanded, of the form 

422 ＋ By?+2Gr+2Fy+C=0,... ) 
where A and B have the same sign, and neither of them is zero. 

Conversely, an equation of this form represents an ellipse 



J THE CONIC SECTIONS 187 

hose axes are parallel to the coördinate axes. As in 
rt. 107, a numerical case will first be examined, and then 
he general equation taken up in a similar manner. 

_ Examrte. Given the equation 42* + 9y* 10 + 18y — 11 = 0, to 
how that it represents an ellipse, and to find its elements, Completing 

Y 
D - 5. 

— x 

ae C i — 4 

5 W e 9 

B 
Fro. 84, 

he square for the terms in z, and also for those in y, and transposing, 
a ion | 

42° — 162+ 16 + 9y* + 18y+9=11 + 16+9, 

is, 46 —2)?+9(y + 1)? = 36 
G@~-2)*  @+1*_, 

eee e ere eee 
given in Art. 112, and is an ellipse. Its center us 

i point (2, —1); its major axis is parallel to the z-axis, of length 6; 
minor axis is of length 4; the foci are the points 

P= G-), F= (2 + V5, “1); 

au- equations of the directrices are, respectively, 

2.9. n 

. v5 

Following the method illustrated above, of completing 
© squares, the general equation (1) may be written 

eres 5 0 
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that is, 

a Dh. BG! A= ABC D 
which becomes, if the second member be represented by K, ‘ 

. E-. iI. 0 

4 B 

Comparing this equation with [45] or [46], it is seen 
express the geometrie relation of Art. 112, and therefore 
represents an ellipse. Its axes are parallel to the codrdinate 

axes, its center is at the point (-. 50 and the lengths 

The foci and directrices may be found as above. | 

of the semi-axes are 

Nore. If A = B, then equation (1) represents a circle (Art. 79). f 
ABC > BG? + AF*, equation (1) having been written with A and B 
positive, then no real values of z and y can satisfy equation (2), which 
is only another form of equation (1), and it is said to represent an 

imaginary ellipse. If ABC = BG? AF, then z= — a and / - 

are the only real values that satisfy equation (2); in that case, this equ 
tion is said to represent a point ellipse; or, from another point of view, 

two imaginary lines which intersect in the real point (- -§, 5) f 

of the above may be regarded as a limiting form of the ellipse. 

EXERCISES 

Determine, for each of the following ellipses, the center, semi 

foci, vertices, and latus rectum; then sketch each curve. 
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L 329409 —62—27y+2=0. 

2. 1 + yf —8e+2y +1 = 0. 

3. 1 4 Dy +424 0y + 1D = 0. 

14 By completing the squares of the zterms and of the y-terms, and a 
suitable transformation of cotrdinates, reduce the equations of exercises 
1, 2, and 3 to the standard form [44). 

114. Reduction of the equation of an ellipse to a standard form. 
It is now evident that, if the directrix and focus of an ellipse are 

] , a8 in the example of Art. 109, the transformation of codrdinates 

+ 
* 

hich is necessary to reduce the equation to a standard form can easily 
determined. To illustrate: the ellipse of ecceutricity 4, with focus at 

(2. 1), and having for directrix the line ID, whose equation is 
#+2y =5, has for its equation (Art. 100) 

41 2? — 16 zy + 20 y* — 140 x + 170 y + 125 =0. 

Its axis FZ, perpendicular to DD, has the equation 22 — y = 5, and 
ats the z-axis at the angle tan-12. If then the codrdinate axes are rotated 
rough the angle tan-12, the equation will be reduced to the second 
ndard form. Again, Z may be found as the intersection of the 

x and axis; it is the point (3,1). Then A and A, the vertices 

> | 7 r 

— 

dey 
1 

‘ 
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of the ellipse, divide FZ internally and externally in the ratio ; hence 
(Art. 30) these codrdinates are (, 3), (0,75). Also C, the center 
of the ellipse, is the point (J,. %). If the origin be next transformed 
to the point C, the equation will 1 reduced to the first standard form. 

Since the axis AA is of length 2. 7 2 and the eccentricity is z the semi- 

axes are = and 2; hence the reduced equation, with C as origin and 

CA as x-axis, will be 

ae 

K 7 
The problem of reducing to standard form the equation of an ellipse, 

when the directrix is not known, will be postponed to Chapter XII. . 

EXERCISES 

Find, and reduce to the first standard form, the equation of the ellipse: — 

1. with focus at the point (1, 3), with the line z+ y=7 for diree- 
trix, and eccentricity 3; 

2. with focus 2 the point (a, Y), the line 271 .* 1 for directrix, 

and eccentricity — (chere n). 

III. THE HYPERBOLA 

Special Equation of the Second Degree 

Aa* — By? + 2Ga+2Fy+C=0 

115. The hyperbola defined. An hyperbola is the locus of 
a point which moves so that the ratio of its distance from a 

fixed point, called the focus, to its distance from a fixed line, 
called the directrix, is constant and greater than unity. The 
constant ratio is the eccentricity of the hyperbola. This 
curve is the conic section with eccentricity e>1 (ef. 
Art. 48). 
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Since the hyperbola differs from the ellipse only in the 
sign of 1 —¢*, which is + in the ellipse and — in the hyper- 
bola, the standard equation of the hyperbola can be derived 
by the method of Art. 110; and it will be found that with 
. ice of axes and notation as there given, the results given 
n eqs. (1), (2), and (8) of that article apply equally to the 
hyperbola. If now, since 1 — ¢ is negative, the substitution 
f N 1) is made, equation (6) (p. 181) will become 

72 2 BI l 

which is the simplest equation of the hyperbola. For variety, 

this equation will be obtained by a different method. 

116. The first standard form of the equation of the hyper- 

bola. Let F be the focus, 
D the directrix, and e the 
decentricity of the curve. 

Take D as the y-axis, with 
the perpendicular OFX upon 

it, through the focus, as the 

‘is. Let 2p denote the 

n distance OF, and let 

Ps(%, y) 
be any point of the locus, with coördinates LP and MP. 

Then FP=eLP; [geometric equation] 

FP =V(r2—2py+y and LP=z; 

(z—2pP+ Y= ex 
is, (e —1)22?-—y+4pr—d4p=0,. . . CI) 

vhich is the equation of the hyperbola referred to its 
irectrix and principal axis as codrdinate axes (cf. Art. 48). 
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The curve cuts the z-axis in two points, A= (a, 9), 
and A'= (2, 0),—the vertices of the hyperbola, — Whose 
abscissas are determined by the equation 

(e — 1) + 4 pr —4p?=0. 

The abscissa of C, the middle point of the segment AA‘, 6 

is, therefore, 5 

IL 2 00 2 Axi (Art. 11); | 

hence the center is on the opposite side of the directrix from 
the focus. | 

Now transform equation (1) to a parallel set of axes 
through C; the equations for transformation are (Art. 71) 

& 2 
2 
i and / = 

substituting these values, and removing accents, eq. (1) 
becomes 

90 2 10 AGE -A L1)— 452 0, 

which reduces to ( 1) ytm ae = 

15 . 00 that is, T 

(e — 1)2 e — 1 | 

If these denominators are represented by a? and 52 respec- 

tively, i. e., if . 
4 pre? _ 4 pe 4 

2 107 and 6 A 

then 52 A de — 1) 5 g (4) 

and equation (2) may be written in the simple form 
x? 8 3 

2 251 . [47] 
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the standard equation of the hyperbola. Every equation 
representing an hyperbola can be reduced to this form, as is 
ne » in Chapter XII. 
The distance from the center to the focus of the hyperbola 

E- 1s casily found thus: 
* 

‘ CF =C0+ OF 

2 2 
4 Er. 
but, from equation (3). 4 

: r 

therefore the focus F is the point (ae, ). (4) 

_ Similarly for the directrix : 

| 2 a 

aime oa ne 
the directrix is the line z—"= 0. „ 

above defined, 5 is real, and its value is known when a 
and „ are known. In Fig. 86, 

CB =b, CB = -b, and 5 VI. 

ui. To trace the hyperbola 281 Equation [47] 
shows that : 
(I) The hyperbola is symmetrical with regard to the 

paxis; that is, with respect to the line through the focus 
and perpendicular to the directrix. This line is therefore 
ealled the principal axis of the hyperbola ; 
(2) The hyperbola is symmetrical with regard to the 
y-axis also; d. e., with regard to the line parallel to the di- 

ectrix and passing through the mid-point of the segment 
it by the curve from its principal axis; 

TAN. AN. Grom, — 18 
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(3) For every value of 2 from —a to a, y is imaginary ; 
while for every other value of z, y is real and has two 
values, equal numerically but opposite in sign. But for 
every value of y, z has two real values, equal numerically — 
and opposite in sign. When z increases numerically from a 
to o, then / increases also numerically from 0 to . 

These facts show that no part of the hyperbola lies 
between the two lines perpendicular to its principal axis and 
drawn through the vertices of the curve; but that it has 
two open infinite branches, lying outside of these two lines. 
The form of the hyperbola is as represented in Fig. 86. 

The segment A'A of the principal axis, intercepted by the 
curve, is called its transverse axis. The segment BE of the 

second line of symmetry (the 
y-axis), where B'O = OB = 5, 

is called the conjugate axis; 

and although not cut by the 
hyperbola, it bears impor- 

tant relations to the curve. 
From the symmetry of the 
hyperbola, with respect to 
these axes, it follows that it 

is also symmetrical with re- 
spect to their intersection 0, 

the center of the curve. It follows also that there is a se- 
ond focus at the point (— ae, 0), and a second directrix in 

the line z + 5 O on the negative side of the conjugate axis, 

and symmetrical to the original focus and directrix. (See 
Art. 111, foot-note.) 

The latus rectum of the hyperbola is readily found to be 

2 (ef. Arts. 105, 111). 
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us Intrinsic property of the hyperbola. Second standard 
Equation [47] states a geometric property which 

yngs to every point of an hyperbola, whatever the codrdi- 
» axes chosen, and to no other point; and which therefore 
ly defines the hyperbola. With the figure and 

tion of Art. 117, equation [47] states (Fig. 87) 

OM MP 
OL OB 

& property entirely analogous to that of Art. 112 for the 
ellipse. It enables one to write at once the equation of an 

1. 

hyperbola with given center and semi-axes, and axes parallel 
b the coérdinate axes, 
For example, if the transverse axis is parallel to the 

as in Fig. 88, and the center at the point C= (A, 5). 
1 if P = (2, y) is any point on the curve, then 

4 1 [48} 
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which is the equation of the hyperbola, with @ and 6 as semi- 
axes. 

Again, if the transverse axis is parallel to the y-axis, as in 
Fig. 89, with the center at the point (A, &), the equation of 
the hyperbola will be found to be | 

K ( = 1 
a 5 3 

. a —h)* — k)* i.e., bi 

Norx 1. That the expressions obtained on p. 193 for the distances 
from the center to the focus and the directrix, of hyperbola [47], are 
equally true for hyperbolas [48] and [49] follows from the fact that 
those expressions involve only a, ö, and e; moreover, equation (4) of 
Art. 116 determines e in terms of a and b; hence, for all these hyper- 

bolas, & eee the distances from the center to the foci are given * 4 

ae = + Va? + B, 

and those to the directrices by 
a? 

+ Va? + 8 J 
Note 2. It should be noticed that in equations [47], [48], [49], the | 

negative term involves that one of the coördinates which is parallel to 
the conjugate axis. 

a 

2 

EXERCISES 

1. Find the equation of the hyperbola having its focus at the point 
(1. -1), for its directrix the line 3z — y 7, and eccentricity J. Plot 
the curve (cf. Art. 102, and Art. 109, Ex.). 

Find the equation of the hyperbola whose center is at the origin and 
2. whose semi-axes equal, respectively, 5 and 3 (cf. Art. 116, [47]); 

3. with transverse axis 8, — the point (20, 5) being on the curve; 

4. the distance between the foci 5, and eccentricity V2; 

5. with the distance between the foci equal to twice the transverse 
axis. 

Find the equation of an hyperbola 

6. with center at the point (3, 2), semi-axes 4 and 3, and the trans- 
verse axis parallel to the z-axis. Plot the curve (cf. Art. 118); 
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7. with center at the point (~3, 4), sembaxes 6 and 2, and the 
axis parallel to the y-axis. Plot the curve. 

8. Find the foci and latus rectum for the hyperbolas of exercises 
6 and 7. 

9. cube peeps ee aoe wr reduce the equations 

b exercises 6 and 7 to the standard form = 21 
10. Find the foci of the hyperbolas 

— xz 22 
(a) 3 F., (8) -=, (y) -= 

ot the curves (8) and (7). 

_ 219. Every equation of the form rn + By* +2Gx+2 Fy 

0 , in which 4 and B have unlike signs, represents an 

lyperbola whose axes are parallel to the coordinate axes. 

When cleared of fractions and expanded, the three equations 
ound for the hyperbola are of the form 

Af + By +2Gr+2Fy+C=0,... ) 

A and B have opposite signs, and neither of them is zero. 
Conversely, it will now be shown that every equation of this 
orm represents an hyperbola, whose axes are parallel to the 
cojrdinate axes. A numerical case will be examined first, 
and then the general equation. 

_ Examrte. To show that the equation 9 z* — 4y* — 18z + My — 63=0 
re nts an hyperbola, and to find its elements. Transposing the con- 
Rant term, and completing the squares of the zterms and y-terms, the 

on may be written 

9(z — 1)? — 4(y — 3)*= 36, 
Go. wy 

A its locus has the geometrie 
roperty given in Art. 118, and therefore represents an hyperbola. Its 

en is at the point (1, 3), its transverse axis is parallel to the Taxis, 
af length 4, and its conjugate axis is of length 6. The eccentricity is 
VIS, the foci are at the points (1 — VII. 3) and (1 + V13, 3); and 

directrices are the lines whose equations are 
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4 
r 214 — 

vi3 

Following the method illustrated in the numerical example, 
the general equation (1) may be written in the form 

(+7) Gta) | poet gat. 
A B 

wherein (cf. Art. 113, p. 188), 

BH +AF?— ABC 
AB 

Since A and B have opposite signs, the two terms in the 
first member of this equation are of opposite signs; the 
equation is therefore in the form of [48] or [49], and repre- 
sents an hyperbola. Its axes are parallel to the codrdinate 

axes, its center is the point (- 4. -5) and its semi-axes 

ö K* K | 
are 4/ + ri and 4/ + 2 

Note. Since A and B have opposite signs, equation (2), which is 
only another form of equation (1), always represents a real locus; it is an 
hyperbola proper except when ABC = BG? + AH, and it then represen 
a pair of intersecting straight lines (cf. Art. 67). 

It is clear that the method shown for the ellipse in Art. 114 
can be applied equally well to the hyperbola, to reduce any 
equation of this curve to the standard form, when the diree- 

trix is known. The problem of reducing to the standard 
form the general equation of an hyperbola, when the directrix 
and focus are not known, is considered in full in Chapter XII. 

* That sign (+ or —) which makes the fraction positive is to be used. 
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‘ EXERCISES 

- Determine for each of the following hyperbolas the center, semi-axes, 
foci, vertices, and latus rectum : 

1. 162° - + O42 — Wy + 10 = 0; 

2. 1 — Sy? + Sy 10 ＋1 20 

28. 22 + Oy + By? 47. 

4. Reduce the equations of exercises 1, 2, 3, to the standard form 

-b 1. Sketch each curve. 

120 Summary. In the preceding articles it has been 
own that the special equation of the second degree, 

Az? + By? +2 Gr +2Fy + C=0, 
always represents a conic section, whose axes are parallel to 
he codrdinate axes. There are three cases, corresponding 

to the three species of conic. 
Bo) The parabola: either A or Bis zero. In exceptional 

this curve degenerates into a pair of real or imaginary 
el straight lines, and these may coincide. [Art. 107] 

_ (2) The ellipse: neither A nor B is zero, and they have 
like signs. In exceptional cases this curve degenerates into 
a circle, a point, or an imaginary locus. [Art. 115, Nore] 

(3) The hyperbola: neither A nor B is zero, and they 

have unlike signs. In exceptional cases this curve degener- 
ates into a pair of real intersecting lines. [Art. 119] 
Tune ellipse and hyperbola have centers, and therefore are 

salled central conics, while the parabola is said to be non- 
entral; although it is at times more convenient to consider 

that the latter curve has a center at infinity, on the princi- 

yal axis (cf. Appendix, Note E). 
The equation for each conic has two standard forms, which 

» a characteristic geometric property of the curve, and to 
u all other equations representing that species can be 
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reduced. These standard forms are the simplest for study- 
ing the curves ; but the student must discriminate carefully 
between general results and those which hold only when the 
equation is in the standard form. 

IV. TANGENTS, NORMALS, POLARS, DIAMETERS, ETC. 

121. Since the equation | 

A + By +2Gr+2Fy+C=0. . . Ay 

always represents a conic whose axes are parallel to the 
coördinate axes, and since by giving suitable values to the 
constants A, B, G, J, and C, equation (1) may represent any 

such conic, therefore, if the equations of tangents, normals, 
polars, etc., to the locus of equation (1) can be found, inde- 
pendent of the values that A, B, etc., may have, these equa- 

tions will represent the tangents, etc., when any special 
values whatever are given to the constants involved. 

In the next few articles such equations will be derived. 

122. Tangent to the conic 

A + By? + 2Ga+2Fy+Cc=0 i 

in terms of the codrdinates of the point of contact: the secant 
method. The definition of a tangent has already been given 
(Art. 81), and the method to be employed here in finding 
its equation is the one which was used in Art. 84, That 
article should now be carefully re-read. 

Let the given conic, i. e., the locus of the equation, 

Ax’ + B +2Gr+2Fy+C=0,... CG) 

be represented by the curve BHK; and let Pi (, % be 

the point of tangency. | 
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Through i (y y,) draw a 
secant line LM, and let , (25 y:) ly 
be its other point of intersection 
W th the locus of equation (1). If 

the point Y, moves along the curve 

1 itil it comes into coincidence with 

Pu the limiting position of the se- 
cant LM is the tangent P,7. 
The equation of the line LM is 

y-"n= 5 „„ 

It now P, approaches 8 it a= 7, and y, = n equa- 
n (2) assumes the indeterminate form 

i-n8e-aP e 
indeterminateness arises because account has not yet 

been taken of the path (or direction) by which P, shall 
upproach P, and it disappears immediately if the condition 

that P, and , are points on the conic (1) is introduced. 
Since Pi and , are on the conic (1), 

therefore Az,’ + By, +2 Ga,+2Fy,+C=0,... (4) 

anc Az} + By? + 2 Gr, +2 Fy,+C=0,... (5) 

_ Subtracting equation (4) from equation (5), transposing, 
bring. and rearranging [cf. Art. 84, equations (8), (9), 

1 (10)], the result may be written 

stent: pangs A(z, + %)+ 2G Fe a) ig og 
1 — 2 Boy, + % + 2F 

It this value of eon is substituted in equation (2), the 
ult is 
e (2-2), al (7 

3 By, + ＋ 2F 

n „ ee . N D Pa ey . * 1 

BB mills 8 a os 

— 

* 

* = 
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which is the equation of the secant line LM of the given 
conic (1). 4 

If now this secant line be revolved about P, until Y. 

comes into coincidence with Pi, i. e., until 2,=2, and ½ == 
this equation becomes 

. Az, + G He a 4 
* n= By, + F (x 2); 8 CH 

which is, therefore, the equation of the tangent line P,7’ at 

the point PI. This equation (8) can be put in a much 
simpler and more easily remembered form, thus: 

Clearing equation (8) of fractions, and simplifying, it may : 
be written 1 

Arir + By + Ga + Fy =Ax? + By? + Ga,+Fy; . . . OQ) 

but, from equation (4), | 

Az; + By? + Ga, + Fy, = — Ga, — Fy, —C, 

hence substituting this value in the second member of equag 
tion (9) that equation becomes 

Anr+ Byy+ G y = G, - ] - H (10) 

and, by transposing and combining, this may be written, , 

Axx + By + Gata) + Fyt+yy)+C=08 . , , [50] 

This is, then, the equation of the tangent to the conic 7 

A + By? + 2Gr+2Fy+ C= 0, 

whatever the values of the coefficients A, B, G, F, and 0 

may be; the point (2, y,) being the point of contact. 

If A=0, B=1, G= —2 p, F=0 and C=0, then the equa- 
tion of this conic becomes / = 4 pz, and the equation of the 

tangent becomes, y,y=2p(a+); similarly for any other 
special form of the equation of the conic. ) 

* Compare note, Art. 84, (G). 
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123. Normal to the conic 4 + By* + 2Ga+2 Fy , 
at a given point. ‘The normal to a curve has been de- 
ined (Art. 81) as a straight line perpendicular to a tan- 
gent, and passing through the point of contact. Therefore, 
to obtain the equation of a normal to a conic, at a given 
point on the conic, it is only necessary to write the equation 
0 the tangent to the conic at that point (by Art. 122), and 
then find the equation of a perpendicular to the tangent 
which passes through the point of contact (cf. Arts. 53, 

_Examp.e. To find the equation of the normal to the 
el pse 

2 „ 

1871 8 1 
at the point (3. 2). . 
The equation of the tangent 
at the point (3, 2) is 

32 422 1; 
"sre 

22+3y=12. 

perpendicular line through (3, 2) is 

82—2y = 5, 

th is, therefore, the required normal. 
"Similarly, to find the normal to the conic whose equation 

Az? + By +2G24+2Fy+C=0, ) 

it the point P, = (Tn y,) on the curve. The equation of the 

agent at P, is (Art. 122) 

+ Byy + G (a2 +2)+ FPy+y)+C=0... QQ) 

1 » 

WW = 
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and its slope is, therefore, (Art. 58 (2)) 

_ Ax, + @ 

wt 

Hence the required equation of the corresponding norm al 
at P, is (Arts. 53, 62) 4 

By, +F 4 
„= Ah. 3 

EXERCISES 

1. Is the line 32 + 2y =17 tangent to the ellipse 16 2? + 254? = = 400? 

2. Find the equation of a tangent to the conic z? + 5y? — 3z 4 10% 
— 4 0, parallel to the line y = 32 +7 (ef. Art. 82). 

Write the equations of the tangent and normal to each of the follow- 
ing conics, through a point (z,, y,) on the curve (ef. Art. 122 [50 ). 

3 3 at poh 

3 

xz? = 4p(y—5); sketch the figure. 

322 5% + 242 =0; sketch the figure. 

. 24+5y?-—32+4+10y —4=0; sketch the figure. 

8. Derive, by the secant method (cf. Art. 122), the tangent to 
parabola / = 4 pz; the point of contact being ( y,). 

9. Derive, by the secant method, the tangent to the ellipse 22 + 4y 
8 ＋ 20% =0; the point of contact being (z,, y,). ‘ 

Write the equations of the tangents and normals to each of the fol- 
lowing conics, at the given point; also sketch each figure: J 

10. 927+ 5% + 362 + 20% + 11 =0, at the point (2, 1); 

11. 972+ 4% 6 4% 0, at the point (0, 0) ; 

12. „ —6y— 8 = 31, at the point (3, I); 

9 9 

Since the equation of the normal [51] is so readily deduced, in e ory 
particular case, from that of the tangent, and since the latter is so easily 

remembered, it is not recommended that equation [51] be memorized. 4 
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un T+ = 1, at the point (1, V3); 
4 14. 32% + 4y* = 16, at the point (2, ~1). 

| PP 
K point which is not on the conic. 

asks be Giiceed hd Gallen C 
“a normal, that passes through a a given point which is not on the conic, 
eee ae ee seek Oe 

cable to any conic whatever. 
Let it be required to find the equation of that tangent to the parabola 

* — 67-82 — — 31 = 0, * . . (1) 

sh passes through the point (1, 1). This point not being on the 
2 bola, the method of Art. 122 does not apply; but, assuming for the 
rn let (uy) bo So pole 

of contact. The equation of this tangent is (Art. 122) 

| ny - G —4(2 +4) 31 CO. . 0 

Since this tangent passes through the point (I. I) therefore equa- 
tion (2) is satisfied by the cotrdinates I and ~1, 

M- 30-1 T —4(-4+4) —31=0,... @ 

shich reduces to 11 M ＋ 30. e 

_ Equation (4) furnishes one relation between the two unknown con- 
1 and y,; another equation between these two unknowns is fur- 

by the fact that (T y,) is a point on the parabola (1); this 
n is 

y;? — 6y, — 827, 3120. . . . (5) 

Solving between equations (4) and (5) gives 
11 24 2 1 and . =—1¥ 2Vv3; 

de, there are two points on the given parabola the tangents at which 
h the point (4, 1); their cobrdinates are (— 2+ 2 V2, 
) and ( 2 — E 
a equation (2) gives the equation of a 
tra ht line that is tangent to the parabola (I), and that passes 

point (C. ~1). 
80, too, if it is desired to find the equation of a normal through a 

not on the curve, it is only necessary to assume temporarily the codr- 
of the point on the curve through which this normal passes, and 
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then find these cotrdinates by solving two equations, corresponding to 
equations (4) and (5) above. f 

The problem of finding the above tangent could also have been solved 
by writing the equation of a line through the point (4, 1) (Art. 53) 
and having the undetermined slope m, and then so determining m that 
the two points in which this line meets the parabola should be coineident. 

125. Through a given external point two tangents to a conic 

can be drawn. This theorem can be proved in precisely the 
same way as the corresponding theorem in the case of 
the circle (Art. 89) was proved. It may also be proved by 
the method already applied to the parabola in the preceding 
article. Let the latter method be adopted. Suppose the 

equation of the conic to be 

A + By? +2 Ga+2Fy+C=0;... Cl) 

let the locus of this equation be represented by the curve 

LP,P.L', and let Q=(A, *) be the given external point. 

If PI (A n) is a point 
on LP, L, then the equa- 

tion of the tangent at PI is 

Ar C Byy+ G(a@+mn) 

+F(y+y)+C=0, ) 
and this tangent will pass 
through the point O if 

Aha, + Bky, + GC Ai) 

TCE C=0. ) 
But Pi being on the locus of equation (1), its cobrdinaaa 

7, and yi also satisfy equation (1); 

i. e., Ax? + By ＋ 2 Ci ＋ 2 I ＋ C = O. . A) 

If now equations (3) and (4) are solved for z, and y, two 
values of each are found; these values are both imaginary 
if O is within the conic, they are real but coincident if @ is 

ed 

ee 
0 
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on the conic, and they are real and distinct if Q is outside of 
the conic. This proves not only the above proposition but 
also the fact that no real tangent can be drawn to a conic 
through an internal point, and that only one tangent can be 

drawn to a conic through a given point on the curve. 

126. Equation of a chord of contact. If the two tangents 
are drawn from an external point to a conic section, the 
straight line through the corre- 
sponding points of tangency is , 
ealled the chord of contact cor- 
2 ponding to the point from 

u the tangents are drawn 
Gt. rer 90). 
Let Pi = (2, y,) be the ex- 
terr point from which the _ 0} 

two tangents are drawn; 7,= Tia. 88. 
(i) and 7, (2% yz), the 

points of tangency of these tangents to the conic whose 
ec uation is 

ABN +2Gr+2Fy+C=0; ee 

it is required to find the equation of the line through 7, 
and 7. 

The equation of the tangent at 7, (cf. Art. 122) is 

Ar + Bygy + G(x +24) + Fly +y_)+C =0,.. . (2) 
and the equation of the tangent at J. is 

Ar + Bygy + G(x + 24) + Ply ο + C= 0... . (8) 
Since each of these tangents, by hypothesis, passes through 
P,, therefore the codrdinates z, and y, satisfy both equation 
2 and equation (3); i. c., 

Ae + Boy, + OC, + 2%)+ P(y, + y+ C=9,...(C4) 

1 Aru + Byy, + G(x, + 2) + F(y, + ys)+ C= 0 (5) 

ai ‘ “ee 1 5 * 7 * 9 af : ; - al * i, j ‘tl we hed 

Sa) ee P ee FT i... <4 I —— 

„ 
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Equations (4) and (5), respectively, assert that the points 

Jas v Yg) and 173 (% ys) ‘ 

are each on the locus of the equation 

Ari + R GD , = O . . [52] 

But equation [52] is of the first degree in the two vari- 
ables z and , hence (Art. 57) its locus is a straight line; 
i. e., [52] is the equation of the straight line through II and 
T which was to be found. 

Nore 1. The equation [52] ot the chord of contact corresponding to 
a given external point (T y,), and the equation [50] of the tangent 
whose point of contact is (æ y,) are identical in form. This might have 
been expected because the tangent is only a special case of the chord of 
contact, since the chord of contact, for a given point, approaches more 

and more nearly to coincidence with a tangent when the point is taken 
more and more nearly on the curve. 

Nore 2. The present article furnishes another method of treatment 
for the question of Art. 124. To get the equations of the two tangents 
that can be drawn through a given external point to a given conic, it is 
only necessary to write the equation of the chord of contact correspond- 
ing to this point; then find the points in which this chord of contact 
intersects the conic. These are the points of contact of the required 
tangents, whose equation may then be written down. | 

EXERCISES 

1. By first finding the chord of contact (Art. 126) of the tangents 
drawn from the point (, %) to the conic 3 

422+ 42+ 247-—2y+17=0, 

find the points of contact, and then write the equations of the tangents 
to the conic at these points; verify that these two tangents intersect in 
the point (4, ½). 

2. Solve Ex. 1 by the method of Art. 124. 

3. Solve Ex. 1 by the method of Art. 83, using equation [11], p. 85. 

4. Find the equation of a normal through the point (7, 5) to the 
conic 

— 422 ＋ y24+ 244 2 7 17 =4. 
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j 

a. 

Is it 
2 «a 

possible to draw more than one normal through (7, 5) to the given 
7 

5. By the methods of Exs. 1, 2, and 3, find the equations of the 
nts through the origin to the conic 

3-2 = Ox + By + 6. 

6. By the methods of Exs. 1, 2, and 3, find the equations of the 
ents through the point (I, 1) to the conic 

92? + 5y? + Wr + Wy + 11 =O. 

7. Sketch the conics whose equations are given in Ex. 1, ö. and 6. 

8. Find the equations of the tangents to the conic, z* + 4y* =4, 
from the point (3, 2). 

| 9. Find the normals to the conic z* + 4 y* = 4, through the point 
¢ 0). 

10. Solve Exs. 8 and 9, by assuming the slope m of the required 
line (Art. 53), and then determining m so that the two points in which 

the line meets the given curve shall be coincident. 

127. Poles and polars. If through any given point 
i (Y , outside, inside, or on a given conic, a secant 

is drawn, meeting the conic in two points O and R. and 
if tangents at O and e are drawn, they will intersect in 
some point, as Y (T, ). The locus of Y as the secant 
revolves about P, is the polar of the point P, (cf. Art. 91) 
with regard to the given conic; and Pi is the pole of that 
locus 

To find the equation of the 

of a given point d 

PI C ¥)> 
with regard to a given conic 
whose equation is 

— — At + By +2 Gr+2 Fy 
Oak. « C) 

let QP,R be any position of 
She secant through P., and Fis. ui. 

TAN. AN. OO. — 14 
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let the tangents at O and & intersect in P’ = 1 7 . Then 

the equation of iN (Art. 126) is 4 

Ar + By'y + G+ 2')+ Fly t+y')+C=0....(2)_ 

Since this line passes through P,, therefore the coérdinates— 
x, and y, satisfy equation (2), 4 

i. e. AT B G GT TCI OO. ) 

and equation (3) asserts that the variable point P’ (, ) 
lies on the locus of the equatiou 4 

Ar T G(e4+2,)+Fy+y)+C=0....C) i 

Equation (4) is of the first degree in the variables x and y, 
hence (Art. 57), its locus is a straight line; the polar of P,, 
with regard to the conic (1), f. e., the locus of P, is then 
the straight line whose equation is d 

A + Byyy + G (+a) + Fy + yy)+O= 0... [53] 

Note. That the equation of a tangent [50] and of a chord of con- 
tact [52] have the same form as equation [53] is due to the fact that a 
tangent, and a chord of contact, are but special cases of a polar. 

128. Fundamental theorem. An important theorem con- 

cerning poles and polars is: Jf the polar of the point Pi, with 
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regard to a given conic, passes through the point Pi then the 
polar of P, with regard to the same conic passes through P,. 

Let the equation of the given conic be 

At + Bf +2G2+2Fy+C=x0, I) 

and let the two given points be 

Yi = @yp u and Py = (zy %. 

‘Then the equation of the polar of P, with regard to the 
‘conic (1) is (Art. 127) 

Ar TBT G(2+2,)+F (yt+y)+C=0; ... (2) 

if this line passes through P,, then 

Ari + Bygy, + G ( TCC =. . . (3) 

But the polar of P, with regard to the conic (1) is 

A B G(2+2)+F(yt+y,)+C=0,... A) 
‘and equation (3) shows that the locus of equation (4) passes 

pugh the point Yi; which proves the proposition. 

129. Diameter of a conic section. The locus of the middle 
points of any system of parallel chords of a given conic is 
salled a diameter of that conic, and the chords which that 
diameter bisects are called the chords of that diameter. 
_ For a given conic, it is required to find the equation of 
the diameter bisecting a system of chords whose slope is m. 

the equation of the given conic (HI. Fig. 96) be 

Ae + By +2 Gr+2Fy+C=0,. . . 1) 

the equation of any one of the parallel chords of slope 
„ LM for example, be 

d yumetb, 2... 2 e + (CB) 

ind let the two points in which it meets the given conic be 

P (2y y,) and P, = (zy % 
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Then (Art. 122, eq. (6)), 

_ Aa + %) +2 (30 
BO, 75 Yo) + 2 F . * . 

If O (A, k) be the mid- 

dle point of the chord | 
71, then 4 

h= and k = ttt, q 

substituting these values of 

21 +2, and y,+y_ in equa- 
tion (3), then clearing of 
fractions and transposing, 
that equation becomes 

Ah+mBk+G@G+mF=0. . . ( 
But equation (4) asserts that the codrdinates (IA, /) of 

the middle point of any one of this system of parallel chords 
satisfy the equation q 

Ar+mBy+G+mF=0, . . . [54] 

which is therefore the equation of the diameter whose chords 
have the slope m. 

EXERCISES 

78 Find the polar of the point (2, 1) with regard to the hyperbola 
—2(y?+z2)—4=0. Show that this polar passes through (12, 3), 

ol then verify Art. 128, for this particular case, by showing that the 
polar of (12, 3), with regard to the given hyperbola, passes through (2, 1). 

2. Write the equation of the chord of contact of the tangents drawn 
through (2, 1) to the hyperbola z? 2% — 2 40, then find the 
points in which it meets the curve, get the equations of the tangents at 
these points, and verify that they pass through the given point (2, 1). 

3. By specializing the coefficients in equation [54], prove that the 

diameter of a circle is perpendicular to the chords of that diameter. | 
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Solution. If equation (1) of Art. 123 represents @ circle, then 
A= B, and then equation [51] becomes 

1 
4 r 
e be slope ot the diameter is —1; but the slope of the given system 

ol chords is m, hence the diameter is perpendicular to its chords. 

41. By means of eq. [54], ., by specializing its coefficients, prove 
‘that the diameter of a circle passes through the center of the circle. 

_ §, By means of equation [54] prove that any diameter of the ellipse 
82° + y — 62+ 2y = 0 passes through the center of the ellipse. Does 
this property belong to all ellipses? To all conics? 

8. Find the equation of that diameter of the hyperbola 

* 4 167 6215 = 0, 

whose chords are parallel to the line 3 2 ＋ 10. Does this diameter 
pass through the center of the curve? 

7. Find the angle between the diameter and its chords in exercise 6. 

_ 8. Show that every diameter cf the parabola 3y* — 1627+ 12y=4 
ts parallel to its axis. Is this a property belonging to all parabolas? 

9. Derive, by the method cf Art. 129, the equation of that diameter 
of the hyperbola z*—4y*+ 16% T 6 15 = 0, which bisects chords 

‘parallel to the line 3z — 4y = 12. 

130. Equation of a conic that passes through the intersec- 
tions of two given conics. Let the given conics be 

8, = Ay? + By 2 G,7+2Fy+C,=0,... A) 

‘ S,= Ay? + By? +2 Gr+2 Py+C,=0; . (2) 

then, if & be any constant whatever, 

’ STI O 20 

presents a conic whose axes are parallel to the codrdinate 
(Art. 120), and which passes through the points in 

which the conics S. = 0 and S,=0 intersect each other 
(Art. 41); te., S. T KS, = O represents a family of conics, 
tach member of which passes through the intersections of 
o and S,=0. The parameter æ may be so chosen that 

N 
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the conic (3) shall, in addition to passing through the four 
points in which Si = 0 and S = 0 intersect, satisfy one other 
condition; e.g., that it shall pass through a given fifth point. 

Moreover, if S,=0 and S. = are both circles, then 
Si + &S, = 0 is also a circle (cf. Arts. 95 and 96). 

V. POLAR EQUATION OF THE CONIC SECTIONS 

131. Polar equation of the conic. Based upon the “ focus 
and directrix” definition already given in Art. 48, the polar 
equation of a conic section is easily derived. 

Let D (Fig. 97) be the given line (the directrix) and O 
the given point (the focus); draw ZO through O and per- 

pendicular to , and let O be chosen 
as the pole and OH as the initial line. 
Also let P= (p, 8) be any point on the 
locus, and let e be the eccentricity. 
Draw MP and OK parallel, and LY 
and HK perpendicular, to , and let 
OK =1; then 

OP =e-LP, [definition of the curve} g 

= e(Z O+ OM); 

* 5e + pcos), 

| This equation, when solved for p, may be written in the 

form 
3 * . 4 
1c [555 

which is the polar equation of a conic section referred to 

its focus and principal axis; e being the eccentricity and 7 
the semi-latus-rectum. If e=1, equation [55] represents a 
parabola; if e<1, an ellipse ; and ife>1,an hyperbola, 
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Vorn. Equation [55] shows that if «<1, U., if the equation repre 
sents an ellipse, there is no value of @ for which p becomes infinite, 
Therefore there is no direction in which a line may be drawn to meet an 
ellipse at infinity. If ¢ = 1, ie. if the equation represents a parabola, 
there is one value of G, viz., 0 = 0, for which p becomes infinite. There 
fore there is one direction in which a line may be drawn to meet a parab- 
ola at infinity. If ¢>1, ic. if the equation represents an hyperbola, 
there are two values of 6, v., @ = 4 cos (Iz), for which p becomes 
infinite. Therefore there are two directions in which a line may be drawn 
to meet an hyperbola at infinity. 
The threo species of conic sections may therefore be distinguished 
from each other by the number of directions in which lines may be drawn 
‘through the focus to meet the curve at infinity. Or, since parallel lines 
most at infinity, any point of the plane may be used instead of the focus, 

4 132, From the polar equation of a conic to trace the curve. Suppose 
Nl, te, suppose equation [55] represents an hyperbola. When @ = 0, 

=; = hence p is negative; as 6 increases, cos 9 decreases, and ¢ cos 

becomes numerically more and more nearly equal to 1; therefore p re- 
mains negative and be- 

„ and becomes 
to | when @ = 90°; as @ increases through 90° to 180°, p remains 

but continues to decrease, reaching its smallest value, viz. 

p= Ie when @ = 180°; as @ increases from 180° to 270°, p remains 

sand increases from I tz to 1; as @ increases from 270° to 

460° — a, p increases from | to +0; as @ increases through 360° — a, p 
becomes — ; and finally, as @ increases’ from 360°—a to 360°, p m 

mains negative, but decreases numerically, reaching the value whee 
ain when @ Lecomes 360°. i-e 

— 

4 

1 

. a 

re. A Ae ; — oe 

ra an r 

3 

— 1 

8 * 

er , oye 188 i 

— 
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These deductions from equation [55] show that the hyperbola has 
the form represented in Fig. 98, and that, as @ increases from 0 to a, the 
lower half A’ W of the infinite branch at the left is traced; as 6 increases 
from a to 360° a, the right hand branch VAU is traced; and as @ in- 
creases from 360° —a to 360°, the upper half SA! of the left hand branch 
is traced. 

If 6 increases beyond 360°, the tracing point moves along the same 
curve; this is also true if changes from 0° to — 360°. 

Norr. To show the identity of the curve as traced in the pes 1 
article and in Art. 117, it need only be recalled that ; 

. and that tae 

These values substituted above show that 

as . 50 tan 0 0). that OA = -—(a+Va?+b%), ete. 

EXERCISES 

1. From equation [55], trace the parabola. 

2. From equation [55], trace the ellipse. 

3. By means of equation [55], prove that the length of a chord 
through the focus of a parabola, and making an angle of 30° with the 
axis of the curve, is four times the length of the latus-rectum. f 

4. By transforming from rectangular to polar coördinates, derive the 
polar equations of the conic sections from their rectangular equations. 

EXAMPLES ON CHAPTER VIII 

1. Find the equations of those tangents to the conic 9 22-16 144, 
which pass through the point (0, 1). 

2. What is the polar of the point (7,2) with reference to the conic 

16y2+92z%=144? Find the equation of the line which is tangent 1 | 
the conic and parallel to this polar. 

3. Find the polars of the foci of the ellipse 5 168. with 

regard to this ellipse. Also for the parabola y? = 4 pz. 

4. What is the equation of the polar of the center of the conic 
Az’ + By? +2 Gr +2 Fy + C=0, with reference to the conic? | 

5. What is the pole of the directrix of the hyperbola 22 — 4 y’ = 16, 
with reference to that curve ? 
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8. The line y= - ae) passes through the focus of the central 

7 341. On what line does its pole lie? Find the line join- 
ing its pole to the focus. What relation exists between this line and 

e given focal chord? 

7. What is the polar of the vertex of the conic 
An BY +2Gzr+2 Fy + C=, 

h reference to the curve ? 

8. What is the equation of each common chord of the two conics 

1 10 14, 102 0 = 144? 
a nne Use Art. 130, equation 3; find & so that S. + ES, can be 

9. REL GS OES from any point of the 
to the polar of that point, passes through the focus 

(a) for y*=4pzx. (8) for 24 ff l. 

Veing the simplest standard equations of the conics, find for each 

10. the polar of the focus; 

II. the pole of the directrix; 

_ 12. the pole of each axis; and, for the ellipse and hyperbola, the 
polar of the center. 

u. Find a conic through the intersections of the ellipse 44 16 
i the parabola y* = 42 + 4, and also passing through the point 2, 2. 

Wt kind of a conic is it? 

14. Show that the curves = . F 1 and - 1 have the same 
foci, and that they cut each other at right angles. 

18. Find the vertices of an equilateral triangle circumscribed about 
the ellipse 9 z* + 10% = 144, one side being parallel to the major axis 
the curve. 
16. Find the normal to the conic 3 + y*—2z—y = yy, making the 
ngle tan -() with the axis. 

. 17. Show that the locus of the pole, with respect to the parabola y* = 4 az, 
La tangent to the hyperbola 25 — * a is the ellipse 4 z* + * = 4.a*. 

18. Show that = * 1, where & is an arbitrary con- 
a? — pt 2 — 1 we. 

represents an ellipse having the same foci as >, z 1 when 

a 

: “ 1 

r r 
“ — 

{ 

a as ee _— 
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Eb; but represents a confocal hyperbola when b given 
a . 

Determine the nature of the following conics; and also their foci, : 
directrices, centers, semi-axes, and latera recta: q 

19. „ (2+ 3) (4 +4); 

20. 2 4% TT TYT1 = 

21. 2 2 42 711577; 

22. 3 ＋ y-—62+8y+1=0; 

23. 3 2 ＋ 5 3 ＋ 52; 

24. 9 (22 =3y(14+2z2-—3y). | 

25. Show that the polar equation of the parabola, with its vertex at the 
. 4 a 

pole, is p= e ö ‘ 

26. Show that if the left hand focus be taken as pole, the polar oquaticll 4 

Ae. 1 of the ellipse is p= 11888 : 

27. Derive the polar equation of an hyperbola, with its pole at the 
focus, eccentricity 2, and the distance of the focus from the directrix 
equal to 6. 
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CHAPTER IX 

THE PARABOLA = 4 px 

133. Review. In the preceding chapter (Arts. 102 to 108), 
the nature of the parabola has been examined, and its equa- 
tion derived in two standard forms. These equations are : 
y’= 4 pz, if the axis of the curve coincides with the z-axis, 

and the tangent at the vertex with the y-axis; and 
( -n Ap -I), if the axis of the curve is parallel 

to the z-axis, and the vertex is at the point (A, 4). In the 
present chapter, some of the intrinsic properties of the parab- 
ola are to be studied, i. e., properties which belong to the 
curve and are entirely independent of the position of the 
‘codrdinate axes. For this purpose, it will, in general, be 
easier to use the simplest form of the equation of the curve, 

Viz., y* = 4 pz. 
In every parabola, the value of the eccentricity is 1. 
Tf the equation of the parabola is A pz, then the focus 

s the point (p, 0), the directrix is the line z=—p, and 

the axis of the curve is the line y=0. The equation 

yy = 2p(@+%) 
epresents the polar of the point PI (Ty y,) with respect 
» the parabola, for all positions of Pi- If PI be outside 
he curve, this polar is the chord of contact corresponding 
© tangents from P,; if Pi be upon the curve, this polar 
8 the tangent at that point. These facts, shown in the 

, 219 
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previous chapter, will be assumed in the following dis 

cussion. 

134. Construction of the parabola. The two conceptions 
of a locus given in Article 35 lead to two methods for con- 
structing a curve, viz., by plotting points to be connected 
by a smooth curve, and by the motion of a point constrained 

by some mechanical device to satisfy the law which defines 

the curve. ‘These two methods may be used in constructing 
a parabola. 4 

() By separate points. Given the focus Fand the ve 

O, draw the axis OFX, the directrix DD cutting this axis 

in Z, and also a series of lines 
st Uh bs x Bon; perpendicular to the axis at 

BA MI. M., Mi, eto., respectively. 
7 | With F as center and ZM, 
fet as radius, describe ares cut- 

a os a ace a ting the line at M in two 
: | | points Pi and Oi; similarly, 
N Se with Jas center and ZM, as 
Os radius, cut the line at M in 
2 Ps and Q,; and so on. The 

D Fie. 99. | points thus found evidently 
satisfy the definition of the parabola (Art. 102). In this 
way, as many points of the curve as are desired may be 
found. If these be then connected by a smooth curve, it 
will be approximately the required parabola (cf. Note E 
Appendix). 

(8) By a continuously moving point. Let D be the 
directrix and F the focus. Place a right triangle with 

its longer side KH in coincidence with the axis of th 
curve, and its shorter side KJ in coincidence with the diree- 

trix. Let one end of a string of length KH be fastened at 
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H, and the other end at F. If 
now a pencil point be pressed 
against the string, keeping it | a 
taut while the triangle is 
moved along the directrix, as 25 
indicated in the figure, then, 2 x 
in every position of , 

FP = KP, ) 

therefore the pencil will trace 
‘an arc of a parabola. 1 8 

135. The equation of the tangent to the parabola y* = 4px 
in terms of its slope. ‘The equation of a line having the 
given slope m is 

mr * ° ° . (1) 

it is desired to find that value of & for which this line will 
become tangent to the parabola whose equation is 

. * Apr. ‘ . (2) 

Considering equations (1) and (2) as simultaneous, and 
eliminating y, the resulting equation, which is 

ee, kn. a 
for its roots the abscissas of the two points in which the 

dei of equations (1) and (2) intersect. These roots will 

become equal (cf. Art. 9), and therefore the points of inter- 

section will become coincident, if 

(mk — 2p? 1 , 

ite., if 12K. „ Soe Saas (S" 

Therefore „2 I56) 

is, for all values of m, the equation of a tangent to the 
, pols Apr. 

1 2 aa a, 
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The abscissa of the point of contact of the loci of equa: 
tions (2) and [56] may be found from equation (3), by sub- 

stituting in it the value of * given in equation (J); it is e 

The ordinate may then be found from 0 uation (1); it i is 

=P. The point of contact is then (2, 2 wt 

136. The equation of the normal to the parabola / =4 pa 

in terms of its slope. Since, by definition, the normal to a 
curve is perpendicular to the tangent at the point of con- 

tact, the equation of a normal to the parabola a 

= Ahr (9 
is, if m' be the slope of the tangent [Arts. 62, 135}, 

If m be the slope of the normal, then 

m 2 — n,. 

and equation (2) may be written 7 

= mr 2m pm. 57“ 

This is the equation of a normal in terms of its own 
slope m. 4 

137. Subtangent and 

subnormal. Constructit 
of tangent and normal. 

Let Pj=(@y, yy) be 
any given point on the 

x parabola whose equs 1 
tion is 

* Apr. 10 

Draw the ordinat 

MP,, the tangent TP,, 
sa and the normal 7 

HAG 
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Then by the definitions of Art. 86, the subtangent is TM, the 

subnormal is MN, the tangent length T and the normal 
) PN. The tangent at P, has for its equation (Art. 

K Be), yJ=2p@t+e), - - - @& 

hence its 2-intercept is A? = A. But AM = 25. 
therefore TM = 27,. 

Tunis proves that the eubtangent of the parabola y* = 4 px 

is bisected at the verter; and that its length is equal to twice 

the abscissa of the point of contact. 

| p The normal at P, has for its equation (Art. 123) 

= 125 095 + 0 
hence its z-intercept is AV=2,+2p. But AM = 25 

therefore MN = 2 p. 

That is, in words, the subnormal of the parabola y* = 4 pr 
constant; it is equal to half the latus rectum. 
These properties of the subtangent and “subnormal give 
‘two simple methods of constructing the tangent and normal 
to any parabola at a given point, if the axis of the parabola 

is given. 
First method: from the given point, let fall a perpendicu- 

lar PM to the axis of the parabola, meeting it in M. The 
: of the curve being at A, construct the point Ton the 

axis produced, so that TA = AM. The straight line 771 is 
the required tangent at P,, and a line through Pi at right 
angles to this tangent is the required normal. 
Second method. from the foot of the perpendicular MP, 

astruct the point M. so that MW equals twice the distance 
a vertex to the focus (2p=2AF); then P,N is the 

ed normal, and a line through Pi at right angles to 

ai is the required tangent. 
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EXERCISES 

1. Construct a parabola with focus 2 from the directrix. 

2. Construct a parabola with latus rectum equal to 6. 

3. Find the equations of the two tangents to the parabola ** = 4 pi 
which form with the tangent at the vertex a circumscribed eq ora 
triangle. Find also the ratio of the area of this triangle to the area a 
the triangle whose vertices are the points of tangency. 

4. Find the equation of a tangent to the parabola y? = 4 pz, perp 
dicular to the line 4y — z + 3 = 0, and find its point of contact. 

5. Find the equations of the two tangents to the parabola y* = bs | 
from the point (1, 1), using formula [56]. 

1 

6. Write the equations of the tangents to the parabola y? = 10, at 
the extremities of the latus rectum. On what line do these tangents 
intersect ? (cf. Art. 138 (5), p. 228.) 

7. Write the equations of the tangent and normal to the parabe 
y’ = 9 x, at the point (4, 6). 

8. Write the equation of the normal to the parabola / = 6 , dra n 

through the point (J, 3). 

9. Write the equation of the tangent to the parabola / = 4 pz, for 
the point for which the normal length equals twice the tangent; for « 
point for which the normal length is 9 to the difference between the 
subtangent aud subnormal. 7 

10. Two equal parabolas have the same vertex, and their axes are at 
right angles; find the equation of their common tangent, and show that 
the points of contact are each at the extremity of a latus rectum. 

11. Find the locus of the middle point of the normal length of 
parabola y? = 4pz. 4 

12. The subtangent of a parabola for the point (5, 4) is 10; find the 
equation of the curve, and length of the subnormal. a 

13. Find the subtangent, and the normal length, for the point whe 
abscissa = —6, and which is on the parabola / = —6z. 

14. Find the equation of the tangent parallel to the polar of (-1, 2) 
with respect to the parabola / = 12; also find the point of conte 7 
the length of the tangent, and the subtangent. 

15. Find the equation of a parabola which is tangent to 2y— 3221. 4 
whose vertex is at the origin, aud whose axis is parallel to the z-axis. 
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16. Show that the sum of the subtangent and subnormal for any 
point on the parabola y*=4 pz, equals one half the length of focal chord 

| to the corresponding tangent. 

17. Show that as the abscissa in the parabola y* = 4 pr increases 
from 0 to , the absolute value of the slope of the tangent changes from 
« to 0; hence the curve is concave toward its axis. 

_ 138. Some properties of the parabola which involve tangents 
and normals. Let # be the focus, A the vertex, AX the 
— 

axi and D the directrix of the parabola whose equation is 

1 5 * = 4 pz. . . . (1) 

: Through any point P,=(z,, ) on the curve draw the 
agent 7'P,, cutting the y-axis in N, the directrix in S, and 
s z-axis in 7; also draw the normal P,N; the focal chord 
BP the tangent at P,; the lines LP, Q and L,P,, per- 
pendicular to the directrix; and the lines SF and L,F. 

n the following properties of the parabola are readily 

TAN. AN. don. —16 

a 8 
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(1) The focus is equidistant from the points P,, N and N 
For FP, = L,P,=ZA+ AM, =2, +p, 4 

TF = TA+AF=2,+p, Art. 187 
and FN=AM,+(M,N—AF)=2,+p; Art. 187 
hence FP, = TF= FN. 

The point F is the midpoint of the hypotenuse of the 
right triangle T1 and is therefore equidistant from the 
vertices 7, Pi, and V. Thus a third method is suggested for 
constructing the tangent and normal at Ph viz.: by means of 
a circle, with the focus Jas center, and the focal radius FP, 

as radius, which cuts the axis in and N. 1 
(2) The tangent and normal bisect internally and externally, 

respectively, the angle between the focal radius to the point of 
contact and the perpendicular from that point to the directrix. — 

For £L,P,T=2 PTF, since L,P, I TP; 

and £TP,F=2ZP,TF, since T= VP; 

C LFE 

Also, Z£FP,N=Z NP,Q, since PIN PIT. 

(3) Through any point in the plane two tangents can be 

drawn to the parabola (cf. Arts. 89, 125). | 

The line y = mx +E „„ 

is tangent to the parabola / = 4 pz for all values of m. If 

P'= (,, ) be any given point of the plane, then the tan- 
gent (1) will pass through P” if, and only if, m satisfy the 
equation te 

= m +2 y' mar or 

os LK Vy" —4 pe". 2 i. e., if m 2 ö (2) 

Therefore two, and only two, values of m satisfy the given 
conditions; and therefore through any point of the plane two 

ar 
5 
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ts can be drawn to the parabola, If, however, P is 
. curve, then 5 — 4 pz’ = 0, the two values of m are 

cal, i.¢., the two tangents coincide. If is inside the 

parabola, then 5“ — 4 pz’ <0, and the two values of m are 
imaginary, i.e., there are no real tangent lines. Therefore 
itis only when is outside the parabola that two real and 
different tangent lines may be drawn from it to the parabola. 

(4) Through any point in the plane three normals can be 
drawn to the parabola. 

The line y=mz—2pm—pm® . (1) 
normal to the parabola * = 4 pr for all — of m 

(Art. 136). If P’ = (2’, y’) be any point of the plane, then 
the normal (1) will pass through Y if, and only if, m has a 
value that will satisfy the equation 

. y =zm—2pm—pm. . . (2) 

Since equation (2) is a cubic in m, there are three values of 
m which satisfy the given conditions, and therefore, in gen- 

three normals may be drawn to a parabola from a given 
point. Special cases may, however, arise in which two of 
5 » roots of equation (2) are equal, when there would be 

aly two different normal lines; or all the roots may be 
ie or two imaginary and one real, in both of which 
a s there would be only one normal line. Through every 
point at least one normal line can be drawn to the parabola. 

(5) The tangents at the extremities of a focal chord intersect 
on the directrix, and at right angles (cf. (6), below). 
: For, if S=(2’, ) is the point of intersection of the 
ngents at the extremities of the focal chord, then the chord 

is the polar of S, and its equation is 

" wg=iget+e). ee 

For only one point, viz.; FSO, 0), are all the roots of equation (2) equal. 
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But since this line passes through the focus F=(p, 0), 
42 O=2p(p+2'); 4 
1. e., — — p. 4 4 N (2) 

Hence the point P’ is on the locus z= — p, i. e., on 1e 

directrix. . 

Again, the tangent line j 

y= me +P . . . (3) 

passes through the point P’=(—p, ) 

j =_— 2 if 7 mp + | 

i.e., if nt Lm —1 =O. 1 6 

But the roots of equation (4) are the slopes m! and m of 
the two tangents at PI and P,; and by Art. 11, 

mm' = i. 4 

Hence, the tangents at Pi and P, intersect at right angles. 

(6) The line joining any point in the directrix to the foc 15 
of a parabola is perpendicular to the chord of contact 
responding to that point. 

For A LIP. =A SFP, 

since L,P,=FP,, SP, is common, 2L,P,S=2SP,F; 

hence, Z SFP, =Z LPI = 90°. 

The property of (5) may now be shown geometrically. 
Draw the tangent at P,, and suppose it to meet the directrix 
in &; then, by what has just been proved, 2 S'’ FP, is a 
right angle; then VJ must coincide with Y; and the tan- 
gents at P, and P, meet on the directrix. dj 
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2 — Z PSP, is a right angle, for SP, bisects 
Il. and SP, bisects 2 LSP. 

(1) A perpendicular let fall from the focus upon a tangent 
1 meets that tangent upon the tangent at the vertex. 

For the equation of the tangent at P, is 

4 yy=2pr+2pm - ) 

5 nd the equation of the perpendicular through the focus 
F. 0) is 
. 27% u ]] — 2) 
Kegurding equations (1) and (2) as simultaneous, and 
solving to find the point of intersection A, its abscisse is 
determined by the equation 

Ap + yz + pApa — ) =9; 

« r. since vi = Ape 

„ 

P d N is therefore on the tangent at A. 
_ Note. The preceding properties of the parabola have for variety 

1 given in some cases a geometric, in others an analytic, proof. The 
nt is advised to use both methods of proof for each proposition. 

r properties of the parabola are given below as exercises for the 
nt, and should be derived by analytic methods. 

EXERCISES 

1. Write the equations of the normals drawn through the point (3, 3) 
lo the parabola y= 6. 

_ 2. The focal distance of any point of the parabola * 4 pr is p + z. 

8. The circle on a focal chord as diameter touches the directrix. 

_ 4. The angle between two tangents to a parabola is one half the 
gle between the focal radii of the points of tangency. 

2 ; 

: 

‘ N 4 N 

2 al 

ee a 

= 4 

“ . 
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5. The polars of all points on the latus rectum meet the axis of t 0 

parabola in the same point; find its codrdinates, for tho p : 
* = 4 pr. 

6. The product of the segments of any focal chord of the pa 
y® Apr equals p times the length of the chord. 

7. Two tangents are drawn from an external point P,=(z,, 0 
a parabola, and a third is drawn parallel to their chord of contact. 
intersection of the third with each of the other two is half way betwee 
P, and the corresponding point of contact. 

8. The area of a triangle formed by three tangents to a parabola is 
one half the area of the triangle formed by the three points of tangency. 

9. The tangent at any point of the parabola will meet the direct, : 
and latus rectum produced, in two points equidistant from the focus. 

10. The normal at one extremity of the latus rectum of a parabola is 
parallel to the tangent at the other extremity. 

11. The tangents at the ends of the latus rectum are twice as f 
from the focus as they are from the vertex. : 

12. The circle on any focal radius as diameter touches the tangent 
drawn at the vertex of the parabola. 

13. The line joining the focus to the pole of a chord bisects the 
subtended at the focus by the chord. 

14. Prove, geometrically, that a perpendicular let fall from the foou 
upon a tangent line of a parabola meets that tangent upon the tangen 
drawn at the vertex (cf. (7) of Art. 138, p. 229). 

139. Diameters. A diameter has been defined as the 
locus of the middle points of a system of parallel chords. 

Its equation may be found as follows (ef. Art. 129): 
Let m be the common slope of a system of parallel chords 

of the parabola whose equation is 

72 —— 4 , . * . 

then the equation of one of these chords is 

y = MZ + k, . „ . 
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and the equation of any other chord of the system will differ 
from this only in the value 
of the constant term k. 

‘he chord (2) meets the 

bola (1) in two points 

71 n A | * 
J. C % 

the coördinates of the 

point . J 
e Fig. 100 

„ and y= th e 

_ Considering (1) and (2) as cos equations, and 
liminating z, it follows that the ordinates of Pi and P, are 
roots of the equation 

4 my? = 4 p(y —k), 

ben of y—tBy+*PFoo, 2...) 

ey Art. 11, 

= 7 22 n- te- 
ence whatever the value of &, the codrdinates of the middle 

point of the chord satisfy the equation 

3 22. . . . 4 = 7 (5) 

This is, therefore, the equation of the diameter correspond- 
ig to the system of chords whose slope is m.* 

— —— —— — 

en e green, et a ee. f 

mation [54]. Art. 129, by giving appropriate values to the coefficients 4, B. 
my G and C C there used. 
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140. Some properties of the parabola e diamete: 

The equation of the diameter of the parabola (Art. 139), 

shows at once that every diameter of the parabola is paralled 
to the axis of the curve. (See also Ex. 8, p. 213.) if 

Conversely, since any value whatever may be assigned 
to m, each value determining a system of parallel chords, 
equation (1) may represent any line parallel to the a-axis, 
and therefore every line parallel to the axis of a parabola bisects 

some set of parallel chords, and is a diameter of the curve. 
Again, each of the chords cuts the parabola in general in 

two distinct points, and the nearer these chords are to the 
extremity of the diameter the nearer are these two points 
to each other and to their mid-point. In the limiting posi- 
tion, when the chord passes through the extremity of the 
diameter, the two intersection points and their mid-poin 7 
become coincident, and the chord is a tangent. Therefore 
the tangent at. the end of a diameter is parallel to the bisected 
chords. ; 

It follows from the preceding properties, or directly from 
equation (1), that the axis of the parabola is the only diameter 
perpendicular to the tangent at its extremity. | 

The student will readily perceive how the above properties 
give a method for constructing a diameter to a set of chords, 
and in particular how to construct the axis of a given parab- 
ola. Thus the problem of Art. 137, to construct a tangent 
and normal to a given parabola at a given point, can now t 

solved even when the axis is not given. 
If any point on a diameter is taken as a pole, its po 3 

will be one of the system of bisected chords, of slope . 
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} For the pole „=. 2 hence the equation of its polar 

( 127) is 

2 y = 25% , 

Which is the equation of a chord of slope m. In other words, 
th tangents at the extremities of a chord of the parabola inter- 
ct upon the corresponding diameter. 

‘141. The equation of a parabola referred to any diameter and the 

angent at its extremity as axes. In the simplest form of the equation 

i * Apr, . . . (1) 

e cobrdinate axes are the principal diameter and the tangent at its 
mity. These are the only pair of such lines that are perpendicular 

00 sh other (Art. 140). It is now desired to find the equation of the 
parabola, when referred to any diameter of the curve and the tangent at 
ts extremity as axes. 
3 reren 

nt GF at O be the new 
axis, meeting the old z-axis at 

mn angle 6. 
1 Un. (2) 

en (Art. 135) the codrdinates 

£0 are”, and =P, and the 
quation “at ee 

tation from the old axes to a 
alle set through the point 0’ 
ww. 

2 7 11 0 : . (3) 

jing these values in equation (1) gives 

* E = dpe. ‘ : : (4) 
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To turn the y-axis to the final position, making an angle 6 with 
z-axis, the equations for transformation are (Art. 78, [25]), 

* r A cos , ¥ = sin 6, 
or, by equation (2), Fare 

’ *. n 8 
2 2 — . . Big 

TA ie se V1 +m? ©) 

Substituting these values in equation (4), it becomes 

. n ts 
1 a = 4 pz’ ’ 

or, dropping now the accents, 
= 1 + m? 

* 4 (AY). ° 0 0 

which is the required equation of the parabola. 
This equation may, however, be written more simply. Obse 

(Art. 103) that p () is the focal distance of the new origin O., 
representing that distance by , equation (6) becomes ‘ 

* = ‘ ; [58] 
* 

This equation is of the same form as equation (1), but is referred 0 

oblique axes. In general, therefore, the equation 

y* = kz , 

represents a parabola, and 4 is the distance of its focus from the o * 

Equation [58] states the following property for every point P of t. 
parabola : 

a 

MP =4FO.0'M'; 

a property entirely analogous to that of Art. 106. 

EXERCISES 

1. Find the diameter of y*= 7, which bisects the chords p 
to the line 2 — 51 2 0. 

2. A diameter of the parabola „ = 8 passes through the poir 
(2, 3); what is the equation of its corresponding chords? 

3. Find the equation of the diameter of the parabola ½ = 4 +4 
which bisects the chords 2y — 3z =k. 

4. Find the equation of the tangent to the parabola (y— Gs 
which is perpendicular to the diameter y — 4 = 0. 
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a 5. Show that the pole of any chord is on the diameter which corre 
sponds to the chord. 

6. What is the equation of the parabola * = r, when referred 
to its diameter y —5 = 0 and the corresponding tangent as coordinate 
axes? 
7. What is the equation of the parabola (< + 3)* = 12(y — 1), 
when referred to a diameter through the point (3, 4) and the corre 

Or tangent as coordinate axes? 

8. Find the pole of the diameter y = E with reference to the parab- 
ola y* = 4 pr. 
9. The polar of any point on a diameter is parallel to the correspond- 
jog tangent of that diameter. 

EXAMPLES ON CHAPTER IX 

Find the equation of a parabola with axis parallel to the z-axis: 

1. passing through the points (0, 0), (3, 2), (3, 2); 
2. passing through the points (. I), (~3, 4), (-1, 2); 

3. through the point (4, 5), with the vertex at the point (3, 7). 

4. A parabola whose axis is parallel to the y-axis, passes through the 
. (1, 2), C. 10), and (3, 5); find its equation. 

5. Find the vertex and axis of the parabola of Ex. 4. 

Find the equation of a parabola 
S. if the axis and directrix are taken as codrdinate axes. 
J. with the focus at the origin, and the y-axis parallel to the directrix. 
a tangent to the line 4 y = 3x - 12, the equation being in the sim- 

standard form. 

| - if the axis of the parabola coincides with the z-axis, and a focal 
as of length 10 coincides with the line 4 z —3y = 8. 

10⁰ Two equal parabolas have the same vertex, and their axes are per- 
pendict ; find their common chord and common tangent (cf. Ex. 10, 
. 224). 

U. At what angle do the parabolas of Ex. 10 intersect. 
_ 12. Two tangents to a parabola are perpendicular to each other; find 
he product of the corresponding sub-tangents. 

Find the locus of the middle point 

18. of all the ordinates of a parabola. 

14. of all chords passing through the vertex. 
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15. From any point on the latus rectum of a parabola, perpendiculars 
are drawn to the tangents at its extremities; show that the line joining 
the feet of these perpendiculars is a tangent to the parabola. 

16. If tangents are drawn to the parabola / = 4az from any po at 
on the line z + 4a = 0, their chord of contact will subtend a right angle 
at the vertex. 

Two tangents of slope m and , respectively, are drawn to a p 
ola; find the locus of their intersection: 

17. if mm K; 

m 

18. 1 14K 
m 

20. Find the locus of the center of a circle which passes through a 
given point, and touches a given liue. 

21. The latus rectum of the parabola is a third proportional to 
abscissa and the corresponding ordinate. 

22. Find the locus of the point of intersection of tangents drawn at 
points whose ordinates are in a constant ratio. j 

23. What is the equation of the chord of the parabola / = 32 w a 
middle point is at (2, 1)? 4 

24. A double ordinate of the parabola y*=4pr is 8p; prove tha 
the lines from the vertex to its two ends are perpendicular to each other. 

25. Find the locus of the center of a circle which is tangent to ag 
circle and also to a given straight line. 

26. Find the intersections of a normal to the parabola with the e 
and the length of the intercepted portion. 

27. Prove that the locus of the middle point of the normal intercepte 
between the parabola and its axis is a parabola whose vertex is the focus, 
and whose latus rectum is one fourth that of the original parabola. N 

28. Prove that two confocal parabolas, with their axes in opposit 
directions, intersect at right angles. : 

29. Find the equation of the parabola when referred to 
at the extremities of the latus rectum as coördinate axes. 

30. The product of the tangent and normal lengths for a certain poin | 
of the parabola / = 4 pr is twice the square of the corresponding o 
nate; find the point and the slope of the tangent line. 



CHAPTER X 

THE ELLIPSE, 5 51 

142 Review. In Chapter VIII the nature of the ellipse 

has been briefly discussed, and its equation found in the two 
standard forms: 

, 22 
a 

when the axes of the curve are coincident with the coördi- 

nate axes; and 

ro +i5=1, 

e 

zen the axes of the curve are parallel to the codrdinate 
4 and the center is the point (A, 4). In the present 
chapter it is desired to study some of the intrinsic properties 
of the ellipse, i. e., properties which belong to the curve but 
are independent of the codrdinate axes ; and these can for the 
‘most part be obtained most easily from the simpler equation, 

2 
a 

The ellipse 31 has its eccentricity given by the 

relation #=a%(1—e), de., anf, its foci are the 
two points ( de, 0), and its directrices the lines z= * 

(Art. 110). If the axes are equal, so that 5 = d. the curve 
takes the special form of the circle, with eccentricity e = 0, 

237 

33 +55 1 
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the two foci coincident at the center, and the directri bes 

infinitely distant. 

The equation = +70 =1 represents the polar of the 

point (2, y,) with respect to the ellipse; if the point 
outside the curve, this polar line is its chord of contact; 
if upon the curve, the polar is the tangent at that pola 
(Arts. 122, 126, 127). | 

These facts will be assumed in the following work. 

| 143. The equation of the tangent to the ellipse +1 

in terms of its slope. The equation of a line Ms the 

given slope m is y=me+k; . : qd) 

it is desired to find that value of * for which this line will 
become tangent to the ellipse whose equation is 

aS 
Considering equations (1) and (2) as simultaneous, and 

eliminating , the resulting equation } 

( + a*m?)a? 2 am + ak? 4 = . (8) 

determines the abscissas of the two points of intersection of 
the curves (1) and (2). When the curves are tangent, these 
abscissas are equal; therefore 

a (52 + a*m?) (ak? — 42%) = 0, 

i. e., * = a*m? + 52. 

and k= Vn + I. q 

Hence = me e . . . [59] 

is the equation of a tangent to the ellipse 31 1, for all 

values of m. 
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Equation [59] shows that there are two tangents to an 
ellipse parallel to any given line; and also (Art. 125), that 

are two tangents to an ellipse from any external point. 

144. The sum of the focal distances of any point on an 
ellipse is constant; it is equal to the major axis. 

"The ellipse 4 +4 = 1 has its foci at the points 

FP, (- de, 9) and F, (ae, 9); 
with 8 = a?—a’e’. (Cf. Art. 110.) 
lat Bude. wy) be any point on the curve, so that 

y= — — 5 

NP. = (2, + ae)? + y= a + 2 de + 27+ y? 

= ae dern + 2° +P — me 

= ae’ + 2aex, ee 

5 
P,P, = a4 + ex. 

— «tS 1 

a 1 8 r 1 A * 

1 a 

== = 

2...) ae 
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Again, Ff = (x,—ae)* + i de. 2 den HA 
Sd — 2 aex, of eri, 

O65 F,P, = a — ex. 

Hence, by addition, 

FP, + FP, = 2a; 

1. e., the sum of the focal distances of any point on an ellipse — 

is constant ; it is equal to the major axis. | 
This property gives an easy method of finding the foci of 

an ellipse when the axes A’A and g are given. | 

For FB ＋ FHB = 24 

but 70 — OF,, 

FLB = F,B= a., 

Hence, to find the foci, describe arcs with B as center and 

a= OA as radius, cutting A’A in the points Y and V.; 

these points are the required foci. 

145. Construction of the ellipse. The property of Art. 
144 is sometimes given as the definition of the ellipse ; viz. 
the ellipse is the locus of a point the sum of whose distances 

from two fixed points is constant. This definition leads at 
once to the equation of the curve (ef. Ex. 5, p. 67); and 

also gives a ready method for its construction. | 

(a) Construction by separate points. Let 4/4 be the 
ziven sum of the focal distances, i. e., the major axis of the 

ellipse ; and Vi and V. be the given fixed points, the foci. 

With either focus as center, and with any radius A R AA 
describe an arc; then with the other focus as center, and 

radius RA, describe an are cutting the first arc in two 

points. ‘These are points of the ellipse. In the same way 
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as many points as desired may be constructed; a 0 
curve connecting these points is approximately an ellipse. 

Ae N * 

a 42__4 2. 2 

* 5 
Fra. 100. 

0) Construction by a continuously moving point. Fix two 
“upright pins at the foci, and over them place a loop of string, 
equal in length to the major axis plus the distance between 
the foci. Press a pencil point against the cord so as to 
keep it taut. As the pencil moves around the foci, it will 
trace an ellipse. 

| EXERCISES 

1. Construct an ellipse with semi-axes 8™ and 0. 

2. Construct an ellipse with semi-axes 5% and 12™. 

3. Construct an ellipse with the distance between the foci 24, and 
the minor axis of length 10. 

4. Write the equation of the polar of the left-hand focus of the 

5 *. What line is this? 

8. By employing equation [59], find the tangent to the ellipse 
16 z* + 25 % = 400, and passing through the point (3, 4). 

1 6. By the method of Ex. 17, p. 225, show that an ellipse is concave 
i its center. 

7. Through what point of the ellipse + 8 1 must a tangent and 

be drawn, to form with the »axis an isosceles triangle? 

8. Write the equations of the tangent and normal at the positive end 
of the latus rectum of the ellipse z*+4y*= 4. Where do these lines cut 

the z-axis? 
TAN. AN, oromu, — 16 
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9. Tangents to the ellipse 47 ＋ 3y?=5 are inclined at 60° to the 
z-axis; find the points of contact. 

10. Find the equation of an ellipse (center at the origin) of eccen- 4 
tricity g, such that the subtangent for the point (3, 44) is (— ). 

11. Find the chord of contact for tangents from the point (3, 2) to q 
the ellipse 22 ＋ 4% = 4. Find also the equation of the line from (3, 2 
to the middle point of this chord. 

12. Find the tangents to the ellipse 7 22 + 8 ½ = 56 which make the 
angle tan-13 with the line z+ y+1=0. 

13. Find the product of the two segments into which a focal chord 12 
divided by the focus of an ellipse, — using Art. 131. 

14. Find the equation of a tangent, and also of a normal, to the ellipse 
22 ＋ 4% 16, each parallel to the line 34 - 4y = 5. 

15. Find the pole of the line 3 z — 4y =5 with reference to the ellipse 
x? 4+ 4% = 16; also the intercepts on the axes made by a line through the 
pole and perpendicular to the polar. 

16. Find the points on the ellipse 57 + a*y? = d, such that the tan- 
gent makes equal (numerical) angles with the axes; such that the 
subtangent equals the subnormal. | 

146. Auxiliary circles. Eccentric angle. The circum- 

scribed and inscribed circles for the ellipse (Fig. 107) are 
called auxiliary circles, and bear an important part in the 
theory of the ellipse. Let the equation of the ellipse be 

aa — => 1. . . . 

a* 05 5² 0 

The circle described on its major axis as diameter is called 
the major auxiliary circle; its equation is 

a? 4 7572 —— a? 3 * * „ (2) 

and the circle on the minor axis as diameter is the minor 

auxiliary circle; its equation is 

22 +y* — 52. . . — | (3) 
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11 4400 is any angle G at the center of the ellipse, with 
the initial side on the major axis, and the terminal side cut- 
ting the auxiliary circles in I and O. respectively ; and if 

| Fi. 107, 

P is the intersection of the abscissa LR with the ordinate 
MQ, then P is a point on the ellipse. 
For the codrdinates of P are 

| OM = 0Q cos & and MP M= OR sin 4, 

ie. r= a4 cos &. y=bsng . . . [60] 

No these values satisfy the equation of the ellipse ; for, 
‘substituting them in equation (1), gives 

POS E — cost ing = 1; 

nce P is a point of the ellipse. 

The points P. C. and R are called corresponding points. 
The angle ¢ is the eccentric angle of the point P;“ and the 

_ ® The eccentric angle of any given point Y on an ellipse is readily con- 
trusted thus: produce the ordinate ee ere anny Ooo 
Q; the angle 40% is the eccentric angle of the point F. 

19. 

-” m - Oo 
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two equations [60] are equations of the ellipse in terms of 
the eccentric angle, for together they express the condition 
that the point P is on the ellipse (1).* 

Since, in the figure, A OM N and OM are similar, it 

follows that 
MP: MQ= OR: O0 bi a, 

and OM: OM= OR: OQ bia; 

that is, the ordinate of any point on the ellipse is to the ordi- 
nate of the corresponding point on the major auxiliary circle in 
the ratio (b: a) of the semi-axes. Similarly for the abscissas 
of the corresponding points A and P. 

147. The subtangent and subnormal. Construction of tan- 

gent and normal. 

ef 
Let 2 15 7² — 1 . © * (1) 

be a given ellipse, 

then a + 555 — 1, * . * (2) 

is the tangent to it at a point PI ( y,). Let this tangent 
cut the z-axis at the point T. Draw the ordinate i. 

Then the subtangent is, by definition, TM; and its numer- 

ical value is 
MT =OT— OM; 

but, from equation (2), 0 =, and OM=2,; 
1 

hence MT= « — 
1 

1. e., 2. wae 4 
1 

* The equations [60] are. of great service in studying the ellipse by the 

methods of the differential calculus. 
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Hence the value of the subtangent, corresponding to any 
point of the ellipse whose equation is (1), depends only upon 
the major axis, and the abscissa of the point; therefore, if a 
V axis, tangents drawn to 
them at the points having a common abscissa will cut the major 
azis (extended) in a common point. 

nm 
— 

— 

— Fra. 108. 

This fact suggests a method for constructing a tangent 
and normal to an ellipse, at a given point: draw the major 
auxiliary circle; at O on this circle, and in MP, extended, 
N 1 to the circle. This will cut the axis in 7; 

d PT will be the required tangent to the ellipse at Pi. 
» normal P may then be drawn perpendicular to P,7. 

The equation of the normal through P, is (cf. eq. [51]) 

M- 0s 

ore the z-intercept of the normal at that point is 

43 — 5 
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But the subnormal corresponding to i is 

MN = ON— OM, 

and OM= 2, ; 

therefore MN= oS En — 21 

= 21 (e- 1) 1. 

Note. From the value of ON it follows that the normal to an ellipse 
does not, in general, pass through the center, but passes between the 
center and the foot of the ordinate; the extremities of the axes of the 

curve being exceptional points. If, however, a = b, then e = 0, the curve 
is a circle, and every normal passes through the center (cf. Art. 85). } 

148. The tangent and normal bisect externally and inter- 

nally, respectively, the angles between the focal radii of the 

point of contact. q 

Let the equation of the given ellipse be 27 K- 1; also 

let Fi and Ja be the foci, and PI (AN 1) any given point 
on the curve. Draw the tangent 7, the normal PM and 

also the lines FP, and FP, V. 
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| Then HY =F,0+ON=ae+ez, [Art. 147] 
. = e(a + er), 

NF, = OF,— ON =ae—¢, 
= e(a — eri; 

P,P, =a + ery LArt. 144] 

a FP, =a — ex. 

1 Hence EN: NF, = FP: Pa; 

i, by a theorem of plane geometry, this proportion proves 
| the normal P bisects the angle Fi between the 
fe tal radii. Again, since the tangent is 3 to 

» normal, the tangent 51 T will bisect the external angle 

BPW 
This proposition leads to a second method of constructing 

tangent and normal to an ellipse at a given point 
(ct. Art. 147). First determine the foci, Fi and . (Art. 
144), then draw the focal radii to the given point and 
bi ect the angle thus formed,— internally for the normal, 
externally for the tangent. 

149. The intersection of the tangents at the extremity of a focal chord. 
IHS (, y’) be the intersection of two tangents to the ellipse 

Sefer 
the equation of their chord of contact is (Art. 126) 

; TF + K. 9 

_ If this chord passes through the focus F,= (ae, 0), its equation must 
be satisfied by the codrdinates of F. therefore 

<< =1, . = 5 
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and the point of intersection is on the line, z= 7 i.e., on the directrix 

corresponding to the focus J, Similarly, if the chord passes through 
the focus F,=(— ae, 0), the point P’ is on the directrix z= 7. | 

Hence, the tangents at the extremities of a focal chord intersect upon the 
corresponding directrix. . 

Again, the line joining the intersection Y. =(5 7 to the focus has 

the slope 
3 223 ey’ ae“ 

42 1 a (1h 8’ 
de 

2 

while the slope of the focal chord (1) is 

3 
> ee ; 

hence wae 
m 

and therefore the line joining the focus to the intersection of the tangents at 
the ends of a focal chord is perpendicular to that chord. 

150. The locus of the foot of the perpendicular from a focus upon a 
tangent to an ellipse. Let the equation of a tangent to the area 
(Art. 143), whose equation is 

521. ° 0 ql) 

be written in the form = m + Nẽů r. : „ : (2) 

Then the equation of a perpendicular to (2), through the focus (ae, 0), i 

Goh, i. e., ⁊ I mν , .. 03) 

If PS (, ) is the point of intersection of (2) and (3), it is re- 
quired to find the locus of P; ie,, to find an equation which will be 
satisfied by the codrdinates 2’, /, whatever the value of m; this must 
be an equation involving z’ and 1 but free from m. Since Y is on 
both lines (2) and (3), 

therefore m = Va'm? + B, 4 8 i (4) 

and * + my = ae. . . . iG . 
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_ The elimination of m ix accomplished most easily by aquaring each 
1 r of equations (4) and (5), and adding: 

3 3 erer 

ie (1 + m*) (2? +y*) = a? (m* + 1), 

whence x? +y¥* d 

D Hence, the point 7 is on the circle 
7 ＋ =a; 

is, the locus of the foot of a perpendicular from either focus upon a lan- 
t to the ellipse is the major auxiliary circle. 

1. The locus of the intersection of two perpendicular tangents to the 

Let the equation of any tangent to the ellipse al be written 

in the form (Art. 143) 
y — mz = Van? + B, Sin ake . (1) 

then the equation of a perpendicular tangent is 

„ V 

my + x = Va? n. * (2) 

"Letting 7 (. 5) be the point of intersection aa 
(1) and (2), it is required to find the locus of Y as m varies in value; 
that is, to find an equation between x’ and y which does not involve m. 

_ Proceeding as in Art. 150; since P’ is on both lines (1) and (2), 

M = Vain? + B, 

anc my + 2 = V + Pi 

r and’addls this gives 

q 1 ( + 1) y/? +(m? + 1) 2? =(m* + 1) a? ] ) 

x24 4 . 
gege- the point of nen of perpendicular and io 

F ss 3} 
is called the director circle for the ellipse. The locus of the inter 
of two perpendicular tangents to an ellipse is, then, its director circle. 
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EXERCISES N 
1. Prove that the two tangents drawn to an ellipse from any external 

point subtend equal angles at the focus. 

2. Each of the two tangents drawn to the ellipse from a point on the 
directrix subtends a right angle at the focus. 

3. A focal chord is perpendicular to the line joining its pole to the 
focus. Show that this is also true for a parabola. 

4. The rectangle formed by the perpendiculars from the foci upon any 
tangent is constant; it is equal to the square of the semi-minor-axis. 

5. The circle on any focal distance as diameter touches the major 
auxiliary circle. 

6. The perpendicular from the focus upon any tangent, and the line 
joining the center to the point of contact, meet upon the directrix. 

7. The perpendicular from either focus, upon the tangent at any point j 

ot the major auxiliary circle, equals the distance of the corresponding 
point of the ellipse from that focus. 

8. The latus rectum is a third proportional to the major and minor 
axes. 

The area of the ellipse is rab. 

Suecestion. Employ the fact, proved in Art. 146, that the ordinal 
of an ellipse is to the corresponding ordinate of the major auxiliary 
circle as b:a, and thus compare the area of the ellipse with that of its 
major auxiliary circle. V 

152. Diameters. As already shown in Articles 129 and 
139, the definition of a diameter as the locus of the middle 
points of a system of parallel chords leads directly to its 
equation. 

Let m be the slope of the given system of parallel chords 
of the ellipse whose equation is 7 

242 ) 
42 + 72 — 1 — „ . ( 

and let mere — 
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be the equation of one of these chords, which meets the curve 
in the two points P,= (x, y,) and Pym(z, y,). Let 
(, ), be the middle point of this chord, so that 

74 y ath a (3) 

The coördinates of Pi and P, are found by solving (1) 
and (2) as simultaneous equations, therefore the abscissas 
, and z, are the roots of the equation 

. (am . b?) ＋ 2 % + ac? — 4% = .. . (4) 

nd the ordinates y, and y, are roots of the equation 

( + ) — 2 Brey + Ba — 4400 0. (5) 
Hence, by Art. 11, the codrdinates of P’ are 
4 alen be 

| Rr on 
Now, by varying the value of e, equation (6) gives the 
drdinates of the middle point for each of the chords of the 
fiven set. It is required to find the locus of for all 

ues of e, i. e., to find an equation satisfied by 2’ and . 
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and not dependent upon the value of e. If 2 be divided by 
, the e is eliminated from the equations (6), giving ! 

a’ 2 8 

7 =_— 2m. . . . (7 

Therefore the coördinates of the middle point of every 
chord of slope m satisfy the equation 

52 
or, 1 ‘ : - [62] 

which is therefore the equation of the diameter bisecting 
the chords of slope m. | 

The form of equation [62] shows that every diameter 17 
the ellipse passes through the center. . 

153. Conjugate diameters. Since every diameter passes 
through the center of the ellipse, and since, by varying the 

slope m of the given set of parallel chords, the corresponding 
diameter may be made to have any required slope, therefore 
it follows that every chord which passes through the center q i 
an ellipse is a diameter, corresponding to some set of part | 
chords. In particular, that one of the set of chords given 
by equation (2), Art. 152, which passes through the center, 
— i. e., the chord whose equation is 

y = mz, ‘ . > [63] 

is a diameter. This diameter bisects the chords parallel to 

the line [62]; for if m be the slope of the line [62], 

then m = 33 
a’m 

hence, mm! = Le 8 8 [64] 
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1 this equation expresses the condition that line [62], 
n has the slope m', shall bisect the chords of slope m 

Kar 152). But conversely, it expresses also the condition 
that the line [63] which has the slope m shall bisect the 
chords of slope m'. Hence each of the lines [62] and [63] 
bisects the chords parallel to the other. Hence, if one 
diameter bisects the chords parallel to a second, then also the 

diameter bisects the chords parallel to the first. Such 
diameters are called conjugate to each other. 

Each line of the set of parallel chords in general cuts the 
. in two distinct points, and the further the chord is 
from the center, the nearer these two points are to each 

. and to their mid-point. In the limiting position, the 
chord becomes a tangent, with the two intersection points 

and their mid-point coincident at the point of tangency. 
‘Therefore, the tangent at the end of a diameter is parallel to 
the conjugate diameter. This property, with that of Art. 152, 
suggests a method for constructing conjugate diameters: 
first draw a tangent at an extremity of a given diameter 

(Art. 147), then a line drawn parallel to this tangent through 
the center of the ellipse is the required conjugate diameter. 

See Fig. 111.) 

154. Given an extremity of a diameter, to find the extremity of its 

4 Let PiS (u] be an extremity of a given diameter (Fig. 111), then 
(i, -y,) will be the other extremity. Let P, (A, ) and 

F SCA) 1) be the extremities of the conjugate diameter. Let the 
0e n of the ellipse be 

x? 
=+8=1; * . . (0 

1 the equation of the given diameter P,P, is 

* 
y=3," . . . @) 
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and that of the conjugate diameter Y. Pi, through the center and parallel 
to the tangent at P, is J 

“+ 0. . . . (3) 

7. 
Fro, 111. 

The codrdinates of Pi and Pi, in terms of æh y,, a, and b, are given by 
equations (1) and (3), considered as simultaneous; hence, eliminating 
y between these equations, and remembering that the point P, is on the 
ellipse (1) and that therefore 52 + a*y? d, the abscissas of the 
points Y and P, are given by the equation 

42 = mn, 

i.e., 11 au and z,! = Fur 

Substituting these values in equation (3), gives for the corresponding 
ordinates, . 

‘ss 25 and ‘= = 2 * Ya at 

Therefore the required extremities of the conjugate diameter are 

, b 

155. Properties of conjugate diameters of the ellipse. 
(a) It has been seen (Art. 153) that two diameters ars 
conjugate when their slopes satisfy the relation 3 

mm! = 45 . — — ( ) 
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It follows, since the product of their slopes is negative, 
‘that with the exception of the case where one diameter is 

the minor axis itself, conjugate diameters do not both lie in 
the same quadrant formed by the axes of the curve. 
_ (8) From the definition (Art. 153) it is evident that the 
minor and major axes of the ellipse are a pair of conjugate 

diameters, and they are at right angles to each other. Per- 

pendicular lines, however, in general, fulfill the condition 

c ae 

hence, in general, equation (2) is not consistent with equa- 
tion (1) for other values of m and m than 0 and . — the 
slopes for the axes of the curves. But for = u, i. e., for 
the circle, it is clear that every pair of conjugate diameters 

satisfy equation (2), and are therefore perpendicular to each 
other. Hence, the major and minor ares of the ellipse are 
the only pair of conjugate diameters that are perpendicular to 
each other. 

(y) If, in Fig. 111, the lengths of the conjugate semi-axes 
be a! = CP,, Y = Pi, then, since 

Ii ., Pi =(-f¥r 2270 

lebe,, def ni. 
3 OH 4 

the sfore 4 1 5 f. 5 

= a? + ; - . - (3) 

14. sum of the squares of two conjugate semi-diameters is 

constant ; it is equal to the sum of the squares of the two semi- 

— ee 
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(8) Referring again to Fig. 111, where CM is perpen- 
dicular to the tangent at P,, the conjugate diameters P,P, — 
and Y, intersect at an angle / such that 

CN 
ee sin =cosZ P ON = —- * 1 i 

But, by Art. 64, since the equation of the tangent at 

Pi is B + ayy = al, 

2 4²⁵² = ab _%, 

Wir ag, — faty? Be 8” 1 1 * 55 + 15 

but OP, =a’, 

hence sin yy = a 2 ; (4) 

and the angle between two conjugate diameters is sin., 7757 

(e) Tangents at the extremities of a pair of conjugate 
diameters form a parallelogram circumscribed about the 
ellipse ; its sides are parallel to, and equal in length to, 

the conjugate diameters. Since the area of a parallelogram 
is equal to the product of its adjacent sides and the sine of 
the included angle, therefore the area of this circumscribed 
parallelogram is 4 a'd! sin Y, which, by (J), equals 4 ad. 

That is, the area of the parallelogram constructed upon any 

two conjugate diameters is constant; it is equal to the area of — 
the rectangle upon the axes. 
( A simple relation exists between the eccentric angles 

of the extremities of two conjugate diameters. 
Let the eccentric angle of P;= (2, y,) be i (Fig. 112), 

and of P,= (2, y2) be Gz; then the slopes of the conjugate 
diameters may be written (cf. Art. 146), 
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7 , . 155 (6)] 

3 B sin ci sin db. _ 
_ a’ cos 1 000 2 

7 sin d sin 2 2 

* cos G1 C dy = 

that is, sin i sin ¢, + cos dz cos G = O, 
_ whence cos (G — 1) = 0. 

Therefore 2 — Fi = 90°, 

and the eccentric angles of the extremities of two conjugate 
diameters differ by a right angle. 

1356. Equi-conjugate diameters. If two conjugate diameters be equal 
le prt CP, (see Fig. 112), then the properties given 
in the preceding article lead to other simple ones. 

Let ¢, be the eccentric angle of P,, then ¢, +90° is the eccentric angle 
22 hence the codrdinates of Pi and P, are (a cos ¢,, b sin ¢,) and 
. 
a 4 , 

TAN. AN. don. — 17 
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therefore n cos", + bs sina GI = dz ins G + 62008" dy, 
te, tan? ¢, 1. 

Hence cb = 45° or 135° 

for the extremities of equi-conjugate diameters, and the extremities are 

b 
P . a 15) i ( 42) 

The equations of these diameters are 

b 1235 and 1 

Evidently these lines are the diagonals of the rectangle formed on the 
axes of the curve. 

By Art. 155, (y), the length of each equi-conjugate semi-diameter is 

— ja? + 2 
is 2 

EXERCISES 

1 Find the diameter of the ellipse 7 * 1 which bisects the 

chords parallel to the line 32 + 5y+7=0. 

2. Find the diameter conjugate to that of exercise 1. 

3. Show that the lines 2z -y=0, c+ 3y=0 are conjugate diame- 
ters of the ellipse 2z? + 3y? = 4. 

4. For the ellipse bara + a%y? = a°?, write the equations of diameters _ 
conjugate to the line 

(a) ar =, (8) br = ay. , 
5. Prove that the angle between two conjugate diameters is a 

maximum when they are equal. 

6. Show that the pair of diameters drawn parallel to the chords join- 
ing the extremities of the axes are equal and conjugate. 

7. What are the equations of the pair of equi-conjugate diameters” 
of the ellipse 16% + 9 2 = 144? { 

8. Two conjugate diameters of the ellipse 16 = 1 have the 

slopes } and — J, respectively; find their lengths. 

9. Given the ellipse z*+5y2= 5, find the eccentric angle for the 
point whose abscissa is 1. Also find the diameter conjugate to the one 
passing through this point. 
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10. Given n the conjugate diameters 
—— emi sags 97 

11. n 

12. The lengths of the chord joining the extremities of any two con- 

jugate diameters of the ellipse 32 • 21 is Vat+ Nl 

Find its greatest value. What is the corresponding value of ¢? 

138. The area of a triangle inscribed in an ellipse, if G s . be the 
eccentric angles of the vertices, is 

hab [sin (p, % + sin (&. — $,) + sin (p, — 01. 
14. Given the point (~3, 1) on the ellipse z* + 37 = 12; find the 

corresponding point on the major auxiliary circle, and also find the 
eccentric angle of the given point. 

15. Find the polar of the focus of an ellipse with reference to each 
auxiliary circle. 

16. Find the pole of the directrix of the ellipse with reference to each 
auxiliary circle. 

17. Prove analytically that tangents at the ends of any chord intersect 
on the diameter which bisects that chord. 

187. Supplemental chords. The chords drawn from any point of 
an ellipse to the extremities of a diameter are called supplemental chor4s. 

Such chords are always parallel to a pair of conjugate diameters, since 
‘heir slopes satisfy the relation 

For if P. (u y,) and P., (z —y,) be the extremities of a 
diameter, and P’ (T, 7) be any other point of the ellipse, and m and 
cho slopes of the chords P’P, and P’P,, respectively, 

then Nn „. ¥ +h, 
Ww = ste — zy 1 ata 

therefore mm = 
= 

N 2 yt 
ate? 

r E 1 

erg 
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hence, by subtraction, 

* aed 

2_y2 32 

that is, - 
hence mm’ = — © 

a 

Therefore, supplemental chords are parallel to a pair of conjugate 
diameters. 

For the special case when a=), the product of the slopes becomes 
mm' = 1, and therefore the supplemental chords are perpendicular; in 
other words, the angle inscribed in a semicircle is a right angle. 

158. Equation of the ellipse referred to a pair of conjugate diameters. 

In the simplest form for the equation of the ellipse, viz., 

Ste., 

the codrdinate axes are the axes of the curve. These axes are conjugate 
diameters, and they are the only pair which are at right angles to each 
other (cf. Art. 155, 8). It is desired now to find the equation of the 
curve referred to any pair of conjugate diameters, as P,P, and P, Pi, in 
Fig. 111. With the notation of Art. 154, let @ and & be the angles the 
new z-axis, CP,, and the new y-axis, CP, make with the old z-axis, re- 

spectively; they satisfy the relation [64], 
2 

tan 6 tan 60 = mar’ . . . (2) 

The lengths of the conjugate semi-diameters are a = CP, and 
¥=CP,. 

Then, by Art. 73, the equations for transformation to the new axes are 

1 = cos 9 / cos, y = sin / sin % . (3) 

and after transformation equation (1) becomes 

cos , sin?@ cos h cos sin sin 6 
E 7 5 0 120 ae ev 

cos?@ sin: NU 
+( ~_ oR r 3 
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a ein g ein con cn 
„ 

and equation (4) reduces to 

(ebe. ert)... 0 
ee e eee ee ee 

) respect to the new axes. Moreover, since +a’ and 4 % are the 
3 on the new axes, equation (5) may be further simplified: 

cos*@ . sin? @ 
( * a nie 
con® & re 6 
( at v= =i 

cos? , sin? _ 2 cost An- 
a’ 2 at a 6 

1 equation (5) may be written 
2 R- des 

_This i the required equation of the else referred to any pair o 
i diameters. It is evident that propositions which were derived 

for the standard form (1) without reference to the fact that the axes 
re rectangular, hold equally for equation [65] ; ¢.g., the equation of a 

jont at the point (z,, vu) of the curve is 1 g = 1. 

_ Equation [65] states a geometric property of the ellipse entirely 
alogous to that of Art. 112. It is left to the student to express this 

roperty in words. 
I the ellipse is referred to equi-conjugate diameters, so that a’ = A, 
equation will be 

* + y® d. : g [66) 

This is the same form as the simplest equation of the circle, but here 
t o axes are oblique, and the equation represents, not a circle, but an 

aL Ellipse referred to conjugate diameters; second method. 

“If the ellipse 25 
R 2 *. 1 . . . (1) 

formed to a pair of conjugate diameters, its equation after trans- 
n (Art. 73) must be of the form 

Ax +2Hry+By=1 . . 0 
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But, since each chord parallel to either axis is bisected by the other, 
therefore, if (Z y,) is a point on the curve, then ( + y,) must also 
be on the curve; 

ie., if Az? +2 Hxy, + By? =1, 

then Ax? — 2 Hzy, + B =1, 

and, consequently, H=0. 

Again, (a,, 0) and (0, ) are points on the curve; 

hence Aa? = 1, B =1; 

i. e., A= 15 i 

therefore, equation (2) becomes 
12 2 

an 5 
This method illustrates how analytic reasoning may often be used 

to shorten or perhaps obviate the algebraic reductions involved in a 
proof. With the similar methods of Arts. 39 and 40, it will suggest 
to the reader the power and interest of what are called the modern 
methods in analytic geometry. 

2 1. * 

EXAMPLES ON CHAPTER X 

1. Find the foci, directrices, eccentricity of the ellipse 4 z? + 3y?=5. 

2. Find the area of the ellipse 422+ 3 5 = 5 (ef. Art. 151, Ex. 9). 

3. Show that the polar of a point on a diameter is parallel to 
conjugate diameter. 

4. Find the equations of the normals at the ends of the latus rectum, 

and prove that each passes through the end of a minor axis if e + e 1. 

5. Show that the four lines from the foci to two points Pi and P, 
on an ellipse all touch a circle whose center is the pole of P,P, 

6. Tangents are drawn from the point (3, 2) to the ellipse 

x? ＋ 4y% = 4, 

Find the equation of the line joining (3, 2) to the middle point of 
chord of contact. 

7. Find the locus of the center of a circle which passes through the 
point (0, 3) and touches internally the circle z? + y? = 25. | 

8. Find the length of the major axis of an ellipse whose minor 
is 10, and whose area is equal to that of a circle whose radius is 8. 



THE ELLIPSE 263 

9. The minor axis of an ellipse is 6, and the sum of the focal radii 
for a certain point on the curve is 16; find its major axis, distance 
between foci, and area. 

10. A line of fixed length moves so that its ends remain in the 
‘codrdinate axes; find the locus generated by any point of the line. 

II. Find the locus of the middle points of chords of an ellipse drawn 
rough the positive end of the minor axis. 

12. With a given focus and directrix a series of ellipses are drawn ; 
show that the locus of the extremities of their minor axes is a parabola, 

13. Show that the line z cos a + y sina = touches the ellipse 

he 
> tab” be 

! p* = a? cos*a + ha ins a. 

14. Find the locus of the foot of the perpendicular drawn from the 
of the ellipse = + f = 1 to a variable tangent. 

15. Prove, analytically, that if the normals to an ellipse pass through 
center, the ellipse is a circle. 

16. Find the locus of the vertex of a triangle of base 2a, and such 

that the product of the tangents of the angles at its base is . 

17. The ratio of the subnormals for corresponding points on the 

ipse and major auxiliary circle is 12 

18. Find the equation of the ellipse 9 z* + 25 y* = 225 when referred 
to its equi-conjugate diameters. 

19. Normals at corresponding points on the ellipse, and on the major 

wuxiliary circle, meet on the circle z* + y* = (a + 6)*. 

20. Two tangents to an ellipse are perpendicular to each other; find 
the locus of the middle point of their chord of contact. 

X. If Pi is a point on the director circle, the product of the distances 
bf the center and the pole, respectively, from its polar with respect to 
he ellipse is constant. 

The tangents drawn from the point P to an ellipse make angles 6, 
ind @, with the major axis; find the locus of P 

22. when 0, + 6, = 2a, a constant. 
_ 23. when tan 6, + tan 6, e, a constant. 
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Wiad the oous of the tatébeestion P of ten Sutauais 

24. if the sum of the’ ecoantile angles of thelr’ points of eon/teiit a 
constant, equal to 2a. 

25. if the difference of the eccentric angles be 120°. . 

26. Find the locus of the middle points of chords of an ellipse whi 0 
pass through a given point (, H. 

27. Find the tangents common to the ellipse 2-105 its m 
circle 22 + y? = ab. 

4 
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CHAPTER XI 

The Hyperbola, 25-1 

160. Review. The definition of the hyperbola given in 
Chapter VIII led at once to two standard forms for its equa- 

on, viz. (cf. Arts. 116, 118): 

ee Att 

| 2 62 1, 

when the axes of the curve are coincident with the codrdi- 

2 axes; and 
E= N- GE. 

a? 

when the axes of the curve are parallel to the coördinate 
axes, and its center is the point (A, A). 

A brief discussion of the first standard form 281 
showed that the curve has its eccentricity given by the rela- 

ion b= 4 ( 1), i. e., by — its foci are the 

wo points (+ de, 0), and its directrices the lines z=+* 

g 116). These results are entirely analogous to the 
sorresponding ones for the ellipse, if it be remembered that 
—¢ is positive for the ellipse, while ¢ —1 is positive for 
he hyperbola. 
The similarity of the equations of the hyperbola and the 
Mipse leads to various correspondences in the analytic prop- 
ties of the curves. For example, the equation 

22 1 
e 6 
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represents the polar of the point (2, 1 with respect to the 
hyperbola ; it represents the chord of contact if the point is 
outside the hyperbola, and the tangent if the point is upon 
the curve (Arts. 126, 122). Again, by the method shown 
in Art. 143, merely replacing J? by — 62, it is evident that 

= mr a J ° ; 671 | 

is the equation of a tangent to the hyperbola in terms of its 
slope m. The student will be able in like manner to prove 
other properties of the hyperbola, analogous to those already 
shown for the ellipse, using the same methods of derivation. | 

It was shown, however, in the discussion of Chapter VIII, 

as also in Art. 48, that the nature of the hyperbola appar- 
ently differs widely from that of the ellipse, consisting, as 
it does, of two open infinite branches instead of one closed 
oval. It is desired in the present chapter to show some of 
the most important properties of the hyperbola which corre- 

spond to similar properties in the ellipse ; and also to prove 
some special properties which are peculiar to the hyperbola. 
a the most part, these will be derived for the hyperbola 

1 — t= 1; and the facts summarized above will be assumec 7 

161. The difference between the focal distances of any point 

on an hyperbola is constant; it is equal to the transverse axis. 

The hyperbola = -# = 1 has its foci at the points 
a 

F, (- ae, 0), Ja (ae, 0), with = ate? — 42. | 
Let Pi (AH y,) be any given point on the curve, so that 

1 0 
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Then FP} = (2, + a0)? +2 = 28 + 2 acer, n 
= ote + Qaer, en — 6 

= a*e* + 2aex, + ez? + a* — a®e® 

r + 2 deri + a’, 

e., r SOS 
Similarly. „F 0 

These expressions for the focal distances of a point on the 
hyperbola are of the same form as those for the ellipse 
a 144); here, however, e 1. 
4 Subtracting equation (2) from equation (1) gives 

P,P, — FP, =2a; 

nce, the difference between the focal distances of any point 
man hyperbola is constant ; it is equal to the transverse aris. 

If the foci are not given, they may be constructed as 
follows, provided the semi-axes of the curve are known: plot 

the points A (a, 0) and B=(0, 3); then with the center 
of the hyperbola as center, and the distance AB as radius, 
describe a circle; it will cut the transverse axis in the 

required foci Yi and F,, for 

B=VGi+P=VeGie4 = + ae. 

162. Construction of the hyperbola. The property of the 
receding article might be taken as a new definition of the 
yperbola, viz.: the hyperbola is the locus of a point the dif- 

ce of whose distances from two fixed points is constant. 
This definition leads at once to the equation of the curve 

(et. Ex. 6, p. 67), and also to a method for its construc- 

3 
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(a) Construction by separate points. Let AA be the given 
difference of the focal distances, — i. e., the transverse axis 
of the hyperbola,—and J and #, the given fixed points, 

the foci. With either 
— . focus, say H, as a center, 

wo eae ‘anda radius 4, AA, 
iy 1 describe an are; then 

Pio. II. with the other focus a 
\ ip 

a center, and a radi 

AR describe an are cutting the first arcs in the two points 
Pi. These are points of the hyperbola... Similarly, as many 

points as desired may be obtained and then connected by a 
smooth curve, — approximately an hyperbola. 

(8) Construction by a continuously moving point; the foci 
being given. Pivot a straight edge LM at one focus V so 
that #,M is greater than the trans- 
verse axis 2a; at WM and the other 

focus V fasten the ends of a string 
of length L, such that 7, M=1+2a; 
then a pencil P held against the T |. wt 
string and straight edge (see Fig. 
114), so as to keep the string always taut, will, while 
straight edge revolves about Vi, trace one branch of the 
hyperbola. By fastening the string at the first focus anc 
the straight edge at the second, the other branch of the ¢ 
can be traced. 

163. The tangent and normal bisect internally and exter 

nally the angles between the focal radii of the point of contact 

Let N and s be the foci of the hyperbola 25 
Ae the tangent, and PV the normal at ‘the ‘yin 

(ri 



. 8 oa > a 
3 aA — 

‘ * Lae N ia N * 8 
af * ‘= J 

a * Ae * 1 1 oh 

i = ae, 3 

. oy 7 

| . a YY = 1, and the length of 

e 1 

o =. 
x 

* 

. 

Now, in the triangle F- 

HT =F,0+ OT = a +f 

a 
= 3 +a), 

TF, = OF, — 07 = ae—= 

=> (en — 4); 

FP, = ex, + 4, [Art. 161] 

PF. = ex, — a. 

HT: TF, = FP, : P,. 

nd, by elementary geometry, the tangent bisects internally 
0 angle between the focal radii. Then, since the normal is 
pendicular to the tangent, the normal P. bisects the 

nal angle Fi . These facts suggest a method, anal- 

a 

7 

—— 



270 ANALYTIC GEOMETRY (Cu. xl. 

ogous to that of Art. 148, for constructing the tangent and 
normal to an hyperbola at a given point. | 

164. Conjugate hyperbolas. A curve bearing very close : 
relations to the hyperbola ) 

a- 

is that represented by the equation 

y a 
1 41. 

ae $e 

Fie. 116. 

in which a and 5 have the same values as in equation (1). 
This curve is evidently an hyperbola, and has for its trans- 
verse and conjugate axes, respectively, the conjugate and 
transverse axes of the original, or primary hyperbola. Two 
such hyperbolas are called conjugate hyperbolas ; they are 
sometimes spoken of as the z- and y-hyperbolas, respectively. 
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it follows at once that the hyperbola (2), conjugate to 
the hyperbola (1), has for its eccentricity 

* „ NE+B 

fe foci the points (0, + be’), and for directrices the lines 

4 b 

q 3 
Two conjugate hyperbolas have a common center, and 
their foci are all at the common distance Va? + # from this 
center; i. e., the foci all lie on a circle about the center, 
having for radius the semi-diagonal OS of the rectangle 
upon their common axes, and whose sides are tangent to the 
curves at their vertices. Moreover, when the curves are 
constructed it will be found that they do not intersect, but 
are separated by the extended diagonals OS and OK of this 
circumscribed rectangle, which they approach from opposite 
si These diagonals are examples of a class of lines of 

5 great interest in analytic theory; they are called asymptotes 
(ef. Art. 165, also Art. 37, (5)). 

r EXERCISES 

1. Construct an hyperbola, given the distance between its foci as 

‘Bom. and ¢ = 2. 

2. Construct an hyperbola, given the distance from directrix to focus 
as2em. How many such hyperbolas are possible? 

1 3. Write the equation of an hyperbola conjugate to the hyperbola 
92* — 10% = 144, and find its axes, foci, and latus rectum. Sketch the 

4 Write the equations of the tangent and normal to the hyperbola 
16 z* — 9 y* = 112 at the point (4, 4), and find the subtangent and sub- 

8. Write the equations of the polars of the point (3, 4) with respect 
to the hyperbola 0 4 — 16 y* = 144 and its conjugate, respectively. 
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6. For what points of an hyperbola are the subtangent and su 7 
normal equal? aa 

7. Given the hyperbola 9% — 4 2 = 36, find the focal radii of the 
point whose ordinate is (4), and abscissa positive. 1 

8. A tangent which is parallel to the line 52 — 4y 7 = 0, is drawn 
to the hyperbola z? — y*= 9; what is the subnormal for the point of con- 
tact? 

q 

9. What tangent to the hyperbola 10 5 1 has its let t 

10. Find, by equation [67], the a N to the hyperbe 4 
4x? 2% = 6 which are drawn through the point (3, 5). 4 

11. Find the polars of the vertices of an hyperbola with respect to it 7 
conjugate hyperbola. 

12. Prove that if the crack of a rifle and the thud of the ball on th 
target are heard at the same instant, the locus of the hearer is a 
hyperbola. 

13. An ellipse and hyperbola have the same axes. Show that 
polar of any point on either curve is a tangent to the other. 

14. Find the equation of an hyperbola whose vertex bisects the di 
tance from the focus to the center. 

15. If e and e“ are the eccentricities of an hyperbola and its conjugate, 
then 

e? + e = e. 

16. If e and „ are the eccentricities of two conjugate hyperbo 
then 

ae = be’. 

17. Find the eccentricity and latus rectum of the hyperbola 

72 =4 (x? + 42). q 

18. Find the tangents to the hyperbola 322 — 16 % = 144, which, 
with the tangent at the vertex, form a circumscribed equilateral triangle. 
Find the area of the triangle. 

19. Find the lengths of the tangent, normal, subtangent, and s. 
normal for the point (3, 2) of the hyperbola z? — 2y? = 1. 

165. Asymptotes. If a tangent to an infinite branch of a 
curve approaches more and more closely to a fixed straight 

line as a limiting position, when the point of contact moves 

further and further away on the curve and becomes infinitely 
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ist then the fixed line is called an asymptote of the 
rve.* More briefly, though less accurately, this defini- 
m may be stated as follows: 
r to a curve is a 

nt whose point of contact 
at infinity, but which is not 

itself entirely at infinity. It is 
evident that to have an asymp- 
te % a curve must have an infi- 
nite branch; and this branch 
may be considered as having 

wo coincident, and infinitely 
distant, points of intersection with its asymptote. This 
property will aid in obtaining the equation of the asymptote. 

aq “eee 
The hyperbola 7 75 15 . . . (1) 

in two points whose abscissas are given by the equation 

4 (an) + 2 d + a*l* + 4 = 0. . (8) 

it line (2) is an asymptote, the two roots of equation (3) 
nust both become infinite; therefore, by Art. 10, 

an? 5 0 and 2a%em=0,. . . (4) 
6 2 0 und r 

a 
ituting these values in equation (2), gives 

* d „l and „ 2 g, „ 

v — carve an tp 
symptote becomes infinitely small. McMahon & Snyder, Differential Cal- 

as, Chap. XIV. 

TAN. AX. Grom. —18 

y eut by the Ins yemzt+e, . . . (2) 

* 
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and these equacions represent the pie of the hyper- 
bola; they are the lines OS and OF in Fig. 117. Therefore, 
the hyperbola has two asymptotes ; they pass through its center, 
and are the diagonals of the rectangle described upon its axes. — 

Since the equation of the hyperbola conjugate to (1) is 

e-¥--4 2. . . @ a 

and thus differs from equation (1) only in the sign of the 
second member, which affects only the constant term in 
equation (3), therefore the equations (4) determine the 
value of m and e for the asymptotes of the conjugate hyper- 
bola also. It follows that conjugate hyperbolas have the same 
asymptotes. 

A second derivation of the equation of the asymptotes of an hyper- 
bola (1) is as follows: 

The equation of the tangent to (I) at the point (z,, y,) is 

I 4 

* I.... 0 

which may be written in the form 

Since (2, y,) is on the curve (1), : 

412 y,? 5 y 2 7² 1 
2 A2 2 2 therefore = 1, ie, 2 Va ar “ 3 9) ; 

Substituting this value of 5 in equation (8), it becomes 

= ty fF E , a? * 
N 1 > . . . (1 7 

which is only another form of the 8 of the tangent represented 
by equations (7) or (8). If now the point of contact (zu y,) moves 
further and further away, so that z, +, then the limiting position of 

the line (10) is represented by 5 = a*y (a 2) = + aby. 

Hence the equations of the asymptotes are: y = + 4 (ef. Art. 156). 
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The equations of the asymptotes may be combined, by 
Art. 40, into the one equation which represents both lines, 

. 22 2 el los! 

p 
as; ptot It has been seen that the standard forms for 
the equations of the primary hyperbola, its asymptotes, and 
its conjugate hyperbola are, respectively, 

2. 1. . : : (1) 

A- -6. eee 

N - 21. : . (3) 

It will be noticed at once that these three equations differ 
only in their constant terms; and that the equation of the 

(2) by the negative of the constant by which the equation 
of the conjugate hyperbola (3) differs from equation (2). 
Moreover, this relation between the equations of the three 
loci must hold when not in their standard forms, i. e., what- 
wer the codrdinate axes. For, any transformation of codr- 

will affect only the first member of equations (1), 
), and (3), and will affect these in precisely the same way. 

r the transformation, therefore, the equations of the loci 
U 1 differ only by a constant (not, however, usually by 1); 

| — value of the constant in the equation of the 
ym s will be midway between the values of the con- 

nts ‘in the equations of the two hyperbolas, 
* a 

g rim hyperbola (1) differs from that of the asymptotes 
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EXAMPLE 1. An hyperbola having the lines 

(I) 2 ＋2/ 73 = 0 and (2) 824+4y7+5=0 

for asymptotes, will have an equation of the form 1 

( ＋2/ ＋3)(3 T T= . . (3) 

while the equation of its conjugate hyperbola will be 3 

( ＋ 2% 7 3)(3 1 T4 ＋5) -O. (4) 

If a second condition is imposed upon the hyperbola, 
e.g-, that it shall pass through the point (1, 1), then the 
value of * may be easily found thus: since the curve passes 
through the point (1, 1), therefore by equation (3), . 

(1—2+3)(8—44+5)+k=0; .. k=—8, 

and the equation of the hyperbola is 

(#+2y4+3)82+4y+5)—8=0, | 

that is, 322 ＋ 10 ＋ 8% ＋ 142 ＋ 22% 7 = 0; . (©) 

and the equation of the conjugate hyperbola is 

827 + 10% + 8% + 14 ＋ 22% 4+ 23 0. 

EXAMPLE 2. The equation of the asymptotes of the 
hyperbola 

32 — 14% — 5% T7 ＋ 13-8 = 00 . CM) 

differs from equation (1) by a constant only, hence it is of 
the form 1 

342 — 142 — 5% ＋ 7 ＋ 13) T* O. (2) 

Now equation (2) represents a pair of straight lines, there- 
fore its first member can be factored, and, by Art. 67, Og 

— 15 * 124 — 597 ＋ 245 — 49 = 0; 

i. e., 64k =— 884, whence =- 6. 

Therefore the equation of the asymptotes is 

322 142 5 ＋ /e 13% - 6 0, 

1. e., (34 ＋ - 20 , 53) =; 
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4 the equation of the conjugate hyperbola is 
3 lay —5y? + 12+ 13y—4=0. 

167. Equilateral or rectangular hyperbola. If the axes of 
N * are equal, so that a = b, its equation has the 

10 2 „% : . (1) 

1 its eccentricity = V2. Its conjugate hyperbola has 
e equation * = . (2) 

with the same eccentricity and the same shape; while its 
asymptotes have the equations 

a z=ty, . . . (3) 

and are therefore the bisectors of the angles formed by the 
axes of the curves; hence the asymptotes of these hyper- 

are perpendicular to each other. The hyperbola whose 
are equal is therefore called an equilateral, or a rec- 

ta r hyperbola, according as it is thought of as having 
« yual axes or asymptotes at right angles. 

| EXERCISES 

1 Find the asymptotes of the hyperbola 9x4 — 16y* = 25, and the 
angle between them. 

2. Where are the poles of the asymptotes of the hyperbola 
. 9 2 10% = 25 

vith reference to the curve? 
8. If the vertex lies two thirds of the distance from the center to 
the focus, find the equations of the hyperbola, and of its asymptotes. 

34 If a line y= mri meets the hyperbola 7 — 521 in one 

site and one infinitely distant point, the line is parallel to an asymptote. 

8. Show that, in an equilateral hyperbola, the distance of a point 
the center is a mean proportional between its focal distances. 

7. 6 Find the equation of the hyperbola passing through the point 
0, 7), and having for asymptotes the lines 

2 - 7, and 3z+3y = 5 (ef. Art. 166). 

r 
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7. Write the equation of the hyperbola conjugate to that of Ex. G6. 

8. Find the equations of the asymptotes of the hyperbola 

222° -—azy—-2r2=y?+y+ 6; 

also find the equation of the conjugate hyperbola. 

9. Find the equation of the asymptotes of the hyperbola 

322 + Bizy + 1lly—2+2ly=90. 

10. Find the equation of the hyperbola conjugate to 

— 16% + 307 + 160 y = 508. 

11. Prove that a perpendicular from the focus to an asymptote of an 
hyperbola is equal to the semi-conjugate axis. . 

12. The asymptotes meet the directrices of the z-hyperbola on 4 
r auxiliary circle, and of the conjugate hyperbola on the y-auxiliary circle.” 

13. The circle described about a focus, with a radius equal to half the 
conjugate axis, will pass through the intersections of the asymptotes 
and a directrix. a 

14. The line from the center C to the focus F of an hyperbola is the 
diameter of a circle that cuts an asymptote at P; show that the chords 
CP and FP are equal, respectively, to the semi-transverse and semi- 
conjugate axes. , 

168. The hyperbola referred to its asymptotes. If the 

asymptotes of an hyperbola are chosen as the codrdina 2 
axes, their equations will be z=0 and * 0, respectively; 
or, combined in one equation, 

ry 0. ; ' 8 (1 

By the reasoning of Art. 166, it follows that the equation 

of the hyperbola, — which differs from that of its asymptotes 
by a constant, — is i 

ry =k, . : ; (2) 

wherein the value of the constant k is to be determined by 

an additional assigned condition concerning the curve; e. 9. 

that it shall pass through a given point. 
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ne value of this constant, in terms of a and 4, can in 
general be found most easily by making the proper trans- 
fe ‘ion of coördinates upon the equation of the hyperbola 

© ta 5 5 1. ‘ or (8) 

¥: 

The new z-axis makes the angle 6, the new y-axis the 
ingle 6’, with the old z-axis, such that 

a tat Of rn? 

4 . 5 

Hence sin = sin & = 

n cos = + cos & = = ; 
| Vai 

hi " sfore the formulas [25] for transformation, 

2=2'cos0+y' cos, == sind r sin , 

2 — 2 ’ = — * — — * 4 * i 755 ern > @ 

1 Pr . a 

Men © 



280 ANALYTIC GEOMETRY ou. xl. 

Applying this transformation, equation (3) becomes 

2 42a/y'+y' 2? — 2 +y" 
a* + 4 + 2 =a 

that is, dropping the accents, 
a? +. 52 4 
2 [69° 

which is the desired equation of the hyperbola when referred 
to its asymptotes as codrdinate axes. 

The equation of the conjugate hyperbola is then 
2 4 

Remembering the relation 4? = ae — 1), it will be s 

that the value of the constant term in equation (2) may E. 
written 

so that ¢ is half the distance of the focus from the center of 

the curve. Again, the codrdinates of the foci, z = tae, y=0, 

become after the transformation (4), 

and the equations of the directrices, z = + 7 become 

4 ＋ = ad. . . . 

169. The tangent to the hyperbola =. The equation 
of the tangent to the hyperbola | ; 

ry c, : . 8 (1 : 

at any given point (2, ), may be easily derived by 1e 
secant method (cf. Arts. 84, 122). Let PI = (, m) nd 

P. (2 Y½) be two points on the curve; then 

ai = . . (2) and 2% .. (9) 
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7 equation of the line through P, and J, is 

| ne-. 

u must have a value determined by equations 
2 21 

2) and (3), hence 

22 
. 

4 „ 2, Im Ai 1 
The equation of the secant line P,P, is therefore 

ge-. dy ae 

now the point P, becomes coincident with P,, equation 
: (4) becomes 

2 
¥-"=-—@-%), a 13 N 

which may be reduced by equation (2) to 

- ry 
7 — 1 = . . . 0 

= 41 ee | * (70) 

+ yr t+ zy = 24. 

which is the required equation of the tangent at the point 
= y,) of the curve. 

5 D. Geometric properties of the hyperbola. Equation [69] 
the following intrinsic property for the hyperbola, 

* 1) being any point on the curve (Fig. 119). 

I LP, = OF"; 

wis For every point of the hyperbola, four times the product 
ts distances from the asymptotes, measured parallel to the 

: yn D respectively, is equal to the square of the distance 
mm the center to the focus; and is therefore constant. 

Te 

3 
K 

1 

‘ * 8 = 

_ 8 1 2 . Vo se 9 8 8 3 8 y J ; 1 a cz a ; - Ma ae eee Ce ee ee, Ce ee ee eee es 
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Aguin, 20 being the angle between the 5 equi ; 
tion [69] may be written f 

ay sin 20 “ = B Va = sin 20. (ed) 

' 

Fie. 119, 

Now zysin2@ is the area of the parallelogram OMP,L, 
constructed upon the codrdinates of the point P, of the 
hyperbola; and since the codrdinates of the vertex A are 

2 272 é the second member of equation (1) is the 

area of the rhombus ORAS, constructed upon the coérdinates” 

of the vertex. Therefore, the area of the parallelogram 

formed by the asymptotes and lines parallel to them drawn 
From any point of an hyperbola, is constant; it is equal to 
the rhombus similarly drawn from the vertex of the curve. 

The equation of the tangent to the hyperbola 

at the point P, is Sr ; ? (3) * 

The z-intercept of this tangent is O7 = 2 41; hence if 0 r 
be the y-intercept, and M the foot of the ordinate of Py 

then from the similar triangles MPI and OTT", . 

TP,: TT = MT: OT = 1241 2 1:2. 
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lace, te sagment — an hyperbola between 
he asymptotes is bisected by the point of contact. 
Tho tangent (3) has the intercepts onthe -axinand y-axis, 

stivel * 

. 072 22 OT' = 2y,. 

| OT. OT! m4ay,. .« -« « (4) 

t since (z,, y,) is a point of the hyperbola 

42y, = a + B, 

: OT. OT'=a+8, . N ef ie 

1 by the intercepts which any tangent 
the hyperbola makes upon the asymptotes is constant ; it is 

% to the sum of the squarcs upon the semi-aze:. 

er. equation (5) moy be written 

or. on 29 g Ein 20 . . . (6) 
2 2 

2 b a 2 ub 
sin 2 0 sin @ cos @ Vay = ai 

OT. OT' ice (6) boomes 3 sin 20 4b 333 (7) 

that is, the triangle formed by any t:ngent to an hyperbola 
and its asymptotes is constant; it is equal to the rectangle 

8 EXERC'SES 
3s Find the equation of the hyperbola 9 z* — 16 y* = 25 when referred 
© its asymptotes as axes. 

. Find the semi-axes, eccentricity, and the vertices, of the hyperbola 
== 4, the angle between the axes (asymptotes) being 90°. 

3. Find the semi-axes, eccentricity, vertices, and the foci, of the hyper- 
fy = —12, the angle between the axes being 60°. 

4. Prove that the segments of any line which are intercepted between 
m hyperbola and its asymptotes are equal. 
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5. Express the angle between the asymptotes of an hyperbola in terms . 
of e; ie, in terms of the eccentricity of the hyperbola. 

6. The segment of a tangent to an hyperbola intercepted by the 
conjugate hyperbola is bisected at the point of contact. 7 

7. Show that the pole of any tangent to the rectangular hyperbola | 
zy = c*, with respect to the circle z* + y* = a’, lies on a concentric and 

similarly placed rectangular hyperbola. 

8. Prove that the asymptotes of the hyperbola zy = hz + ky 
z=k, and y=h. 

9. Derive the equation of the tangent to the curve zy = = he + ky 7 
the point P =(z,, y,) on the curve. 

171. Diameters. A diameter has already been defined 
(Art. 129) as the locus of the middle points of a system of 
parallel chords, and in Art. 152 the equation was derived 
for a diameter of an ellipse: By the same method, if a sys- 
tem of parallel chords of the hyperbola 

ales 
3 

have the common slope m, the equation of the corresponding 
diameter will be found to be I 

y= „C00 

This equation shows that every diameter of the hyperbola 
passes through the center. 1 

Conversely, it is true, as in the case of the ellipse, nal 
every chord of the hyperbola through the center is a diame- 
ter. That chord of the original set which passes throug] 
the center is the diameter conjugate to [71]; and its equa 
tion is 

y= me. * . . [72 
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Letting a, be the slope of a diameter, and m that of its 
conjugate, the essential condition that two diameters should 
bo ee to each other is that (cf. Art. 153) 

„ 11 

172 Properties of conjugate diameters of the hyperbola. 
F (a) It is clear that the condition 

,_ 8 
e 1731 

Is also for the ot 

ee + 1, 

which is conjugate to the given hyperbola; for, replacing a? 
by —a* and — 5 by 2 leaves equation [73] unchanged. 

Hence, diameters which are conjugate to each other for a given 
hyperbola are conjugates also for the conjugate of that hyper- 

2 00 The axes of the hyperbola are clearly diameters of 
» curve. They are perpendicular to each other, and 
refore satisfy the relation 

mm = —1., 

n this condition with that of equation [73], it 
follows that the transverse and conjugate axes of the hyper- 

bola are the only pair of perpendicular conjugate diameters 

( ‘I (8) p- 255). 

It a= b, the condition [73] reduces to 

3 mm = 1; 

herefore (Art. 16), in the rectangular hyperbola the sum 
A the angles which a pair of conjugate diameters make 

th the transverse axis is 90° (cf. Art. 156). 
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| 
() Since in equation [73] the product mm’ is positive, 

it follows that the angles which conjugate diameters make 
with the transverse axis are both acute, or both obtuse. 

Moreover, 

if 1 N then mi >" 

and the diameters lie on opposite sides of an asymptote. 
Two conjugate diameters lie in the same quadrant formed by 
the axes of the hyperbola, on opposite sides of the asymptote 
(ef. Art. 155 (a)). 

(8) An asymptote passes through the center of an hyper- 
bola, hence may be regarded as a diameter. Its slope is 

b b m=t-, . Wat; 
a a 

hence, an asymptote regarded as a diameter is its own conju-— 
gate; it may be called a self-conjugate diameter. 

This is a limiting case of (/ above. 

(e) It follows from this last fact that if a diameter inter- 
sects a given hyperbola, then the conjugate diameter does 
not intersect it, but cuts the conjugate hyperbola. It is 
customary and useful to define as the extremities of the 
conjugate diameter its points of intersection with the conju- 
gate hyperbola. With this limitation, it follows from (a) 
of this article, that, as in the ellipse, each of two conjugate 

diameters bisects the chords parallel to the other. 
(C) As a limiting case of this last proposition, also, it is 

evident that the tangent at the end of a diameter is parallel 

to the conjugate diameter. ' 

By reasoning entirely analogous to that given in Art. 155, 

for the ellipse, properties similar to those there given may 
be derived for the hyperbola. They are included in the 
following exercises, to be worked out by the student. | 
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- EXERCISES 

1. Find the equation of the diameter of the hyperbola 

92? — 16 y* = 25 

n bisects the chords yodz+h. 

1 also the conjugate diameter. 

2. Find, for the hyperbola of Ex. 1, a diameter through the point 
(I. 1), and its conjugate. 

2 Find the diameter of the hyperbola 16 — 
je to the diameter z — 3y = 0. 

4. Find the equation of a chord of the hyperbola 12 — 9 * = 108, 
which is bisected at the point (4, 2). 

5. Lines from any point of an equilateral hyperbola to the extremi- 
of a diameter make equal angles with the asymptotes. 

6. Show that, in an equilateral hyperbola, conjugate diameters make 
angles with the asymptotes. 

7. The difference of the squares of two conjugate semi-diameters is 
nt; it is equal to the difference of the squares of the semi-axes. 

2 The angle between two conjugate diameters is ein 1,3% 

9. The polar of one end of a diameter of an hyperbola, with reference 
» the conjugate hyperbola, is the tangent at the other end of the 

10. Tangents at the ends of a pair of conjugate diameters intersect 

on an asymptote. 

22 25 1 which is con- 

_ 173. Supplemental chords. As previously defined, chords of a curve 
ar supplemental when drawn from any point of the curve to the ex- 
tremities of a diameter. If, in the analytic work of Art. 157, # is 

replaced by , then, if m and , are the slopes of two supplemental 
is of the hyperbola, they must satisfy the relation 

» 
12. ‘ ° ° (1) 

But this is (see Eq. [73]) the condition that exists between the 
Slopes of two conjugate diameters. Therefore, supplemental chords are 

: to a pair of conjugate diameters. 
For the equilateral hyperbola, le, when a = }, this relation has the 

value mm = 1, ‘ - ° (2) 
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and, therefore, the sum of the acute angles which a pair of supplementary 
chords of the equilateral hyperbola make with its transverse axis is 90° 
(cf. Art. 172 (8)). 

174. Equations representing an hyperbola, but involving only one 
variable. 

(a) Eccentric angle. In the theory of the hyperbola, the auxiliary 
circles described upon the axes of the curve as diameters are not as 
useful as the corresponding circles for the ellipse, since the ordinate for 
a point on the hyperbola does not cut the z-auxiliary circle, and, there- 
fore, there is no simple construction for the eccentric angle. It is, how- 
ever, sometimes desirable to express by means of a single variable the 
condition that a point shall be on an hyperbola; and for this purpose 
the equations 

z=asecd, y tan gg . «» [ts 

similar to equations [60], may be used; for these evidently satisfy the 
equation of the hyperbola 

* an) 
since sec? h- tan? = 1. 

The angle & may be defined as the eccentric angle for the hyperbola, 
and the corresponding point of the curve may be constructed as follows: 

hg 

BTS 
Po 

Draw the auxiliary circles,and any 2 40 = . At the points R and Q, 
where the terminal side of ꝙ cuts the circles, draw tangents cutting the 
transverse axis in the points M’ and M, respectively. Erect at M an 
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ordlu MP equal to RM"; itx extremity P is a point of the hyperbola. 
or, in the right triangle OMQ, 

OM cong = OQ, ie, OM = asec >; 

1, in the right triangle OM'R, 

MR=ORtand, ie, M'R=btand 

tut for the point Y, 
* OM y= MP =M'R; 
hence z= asec, y = btan . 

and P is a point on the hyperbola.* 
Tho eccentric angle for any given point, P, of an hyperbola is easily 
‘obtained. Draw the ordinate MP, and from its foot, M, draw a tangeut 
MQ to the zauxiliary circle; then the angle MOQ is the eccentric angle 
corresponding to P. 

“y= ¢ is satiated by the codindinates 2 = y= 7, whatever the values 
of t. The use of this single independent variable ¢ is sometimes convenient 
in dealing with points on the hyperbola.* 

EXAMPLES ON CHAPTER XI 

I. Write the equation of an hyperbola whose transverse axis is 8, 
and the conjugate axis one half the distance between the foci. 

2. Find the equation of that diameter of the hyperbola 16 z*—9 y*=144 
which passes through the point (5, 4); also find the cotrdinates of the 

nities of the conjugate diameter. 

8. Assume the equation of the hyperbola, and show that the difference 
of the focal distances is constant. 

_ 4. Find the locus of the vertex of a triangle of given base 2c, if the 
difference of the two other sides is a constant, and equal to 2a. 

_ §. Find the locus of the vertex of a triangle of given base, if the 
d ce of the tangents of the base angles is constant. 

8. Find an expression for the angle between any pair of conjugate 
d of an hyperbola. 

7. Show that two concentric rectangular hyperbolas, whose axes 
meet at an angle of 45°, cut each other orthogonally. 

The forms of this article are useful in the differential calculus 

TAN. AN. Grom. —19 

(8) The equation of the hyperbola referred to its asymptotes, viz. . 
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8. The portions of any chord of an hyperbola intercepted between | 
the curve and its conjugate are equal. 4 

Suecestion. Draw a tangent parallel to the line in question. 

9. The codrdinates of a point are a tan (6 +a) and b tau (6 + B); 
prove that the locus of the point, as 6 varies, is an hyperbola. | 

10. Prove that the asymptotes of the hyperbola zy =3z + 5y are 
x=5 and y= 3. 

11. If the codrdinate axes are inclined at an angle , find the equa- 
tion of an hyperbola whose asymptotes are the lines z = 2 and y =— 3, 
respectively, and which passes through the point (2, 1). 

12. Find the coördinates of the points of contact of the common 
tangents to the hyperbolas, 

12 — %½ = 34, and zy = 2 a3. 

13. If a right-angled triangle be inscribed in a rectangular hyperbola, 
prove that the tangent at the right angle is perpendicular to the 
hypothenuse. 

14. Show that the line y = mz + 2kV— m always touches the hyper- 

bola zy = La; and that its point of contact is ( bk Kn m). 
V m 

15. Find the point of the rectangular hyperbola zy = 12 for which 
the subtangent is 4. Find the subnormal for the same point. 

16. Find the polar of the point (5, 3) on the hyperbola 2 — 2% 7, 
with respect to the conjugate hyperbola. Show that this line is tangent 
to the given hyperbola, at the other end of the diameter from (5, 3). 

17. If an ellipse and hyperbola have the same foci, they intersect at 
right angles. 

18. Find tangents to the hyperbola 2? — 16 2 = 1 which are perpen- 
dicular to its asymptotes. 

19. Find normals to the hyperbola @ 17 a 5 =1 which are 

parallel to its asymptotes. Find the polar of their point of intersection. 

20. Show that, in an equilateral hyperbola, conjugate diameters are 
equally inclined to the asymptotes. | 

21. Show that two conjugate diameters of a rectangular hyperbola 
are equal. 
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22. Show that, in an equilateral hyperbola, two diameters at right 
angles to each other are equal. Show also that this follows from Ex. 21. 

23. A variable circle is always tangent to each of two fixed circles; 
prove that the locus of its center is either an hyperbola or an ellipse. 

24. Find the common tangents to the hyperbola 2 Ä1 and its 
midcircle 2* + y* = ab. 
28. In the hyperbola 25 z* — 16 y = 400, find the conjugate diameters 

that cut each other at an angle of 45°. 

2 The latus rectum of an hyperbola is a third proportional to the * 

27. The polars of any point (A, H with respect to conjugate hyperbolas 

28. The sum of the eccentric angles of the extremities of two conju- 
ate diameters of an hyperbola is equal to 90°; i.e. p + = 90°. 
29. Find the equation of a line through the focus of an hyperbola 
and the focus of its conjugate, and find the pole of that line. 
* 
0 Find the asymptotes of the hyperbola 2) 3 — 2 0. What 
is the equation of the conjugate hyperbola? 

. Show that the y-axis is an asymptote of the hyperbola 
Qry+ 3227+ Arg. 

a Of the conjugate 

é “32. EL 
they will touch the same or opposite branches of the curve according as 
the given point lies between or outside of the asymptotes. 

: a * N 
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CHAPTER XII 

GENERAL EQUATION OF THE SECOND DEGREE 

Aa* +2 Hey + By? +2Ga+2Fy+C=0 

175. General equation of the second degree in two variables. 

Thus far only special equations of the second degree have 
been studied ; they have all been of the form 

42 + By +2Gr+2Fy+C=0,... CG) 

i.e., they have been free from the term containing the 
product of the variables. In Arts. 107, 113, and 119 it is 

shown that equation (1) represents a conic section having 

its axes parallel to the codrdinate axes. It still remains to 
be shown, however, that the most general equation of the 

second degree, viz. 

Ax? + 2 Hy + By? +2G24+2Fy+C=0,. . . (2) 

also represents a conié section. To prove this it is only 

necessary to show that, by a suitable change of the coördi- 
nate axes, equation (2) may be reduced to the form of 
equation (1). 

If equation (2) be referred to new axes, OX and 0 F, 
say, making an angle @ with the corresponding given axes; — 

and if the new coördinates of any point on the curve be 2’ 
and y', the old coördinates of the same point being æ and /; 
then (Art. 72) | 

1 = cos 9 - / sin d, and y = sinO+y'cos@.. . (8) je 
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Substituting these values (3) in equation (2), it becomes 
4% 00s 0 —y/ sin 0)* +2 H cos 0 in sin 6 ＋ / cos 6) 

+ C sin 6 + y' cos 0)* + 2 G(2’ cos 0 =- sin ) 

+2 F(2' in or eo . (09) 

h, being expanded and re-arranged, becomes: 

A cos? @ +2 Hsin G cos 0 + B sin® g) 
+2'y'(—2 A sin d cos @—2 Hsia*6 +2 H cos? é +2 B sin @ cos 6) 

+ yA sin? 0 — 2 Hsin 6 cos 0 + B cos? @) 
“+2/(2 G cos 0 +2 Pein 6) 
-= 20 un 2 oO ) OO. 00) 
_ This transformed equation (5) will be free from the term 

g the product 2% if @ be so chosen that 

: ene. 2 Hcos* @ + 2 Bsin o cos 0, 

.., II 2 H(cos*@ —sin?@)=(A— B)2sin G cos 0, 

1. ., if 2H. cos 20 = (A- H) sin 20, 

a | Be? pe Snally, if tan 26 7 ey PO (6) 

Moreover, it is always possible to choose a positive acute 
angle @ so as to satisfy this last equation whatever may be 
the numbers represented by A, B, and H. 
Having chosen @ so as to satisfy equation (6), and having 

substituted the values of sin@ and cos@ in equation (5), 
hat equation reduces to 

' A'r? + By? +2@2+2Fy+C=0,. . Wd 

q (wherein A’, B'. ... represent the new coefficients) 

nd therefore represents a conic section with its axes parallel 
the new codrdinate axes. But equation (7) represents 
1 

a 

— 2 
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the same locus as equation (2); hence it is proved that, in 
rectangular codrdinates, every equation of the form 

Ar +2 Hey + By? + 2 Ga+2 Fy+C=0 

represents a conic section whose axes are inclined at an angle 0 
to the given codrdinate axes, where 0 is determined by the 
equation 
q tan 20 fit 

It is to be noted that the constant term O has remained 
unchanged by the transformation given above. 

The next article will illustrate the application of this 
method to numerical equations. It is to be observed that 
this method is entirely general, and enables one to fully 
determine the conic represented by any given numerical 
equation of the second degree. 

Nore. In the proof just given that every equation of the second 
degree represents a conic section, it is assumed that the given axes are at 
right angles. This restriction may, however, be removed; for if they are 
not at right angles, a transformation may be made to rectangular axes 
having the same origin (ef. Arts. 74, 75), and the equation will have its 
form and degree left unchanged; after which the proof already given 
applies. 

176. Illustrative examples. ExAurLE 1. Given the equation 

— 42 ＋ 42 7 4 V 2 ½— 1120 () 

to determine the nature and position of its locus. 
Turn the axes through an angle 0, i.e., substitute for z and , respec- 

tively, z’ cos = sin 6 and 2’ sin@ + cos 6; equation (1) then becomes 

4 ( —cos*@ + 4sin h cos 0 — sin* 6) 

+ 2 ＋ 2 sin 6 cos 6 + 4 cos — 4 sin?@ — 2 sin 6 cos 8) 

— 7 (sin? 6 + 4 sin 6 cos 6 + cos? @) 

— 2 (4 V2 cos 6 - 2V2 sin 6) 

+y(+4v2sin8 +2V2cos8)—11=0. . . 2) 
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Thus coefficient of / in equation (2) reduces to 4(sin*@ — cos*@); it 
ne 

If @ = 45°, then sin @ = cos = end this value of sin @ and cos @ 

being substituted in equation (2), it becomes 
2 * — 37 - 22 +0y —11=0, r 

Which represents the same locus as is represented by equation (1); the 
‘difference in the form of the two equations being due to the fact that the 

nes to which equation (3) is referred make an angle of 45° with the axes 
to which equation (1) is referred. 

Equation (3) may be written in the form 

(x —1)?-3(y ee, 
) 2-1)? (y¥—-1 * 3 44 

Which represents an hyperbola (cf. Art. 118). Its center is at the point 
(I, 1); the transverse axis is parallel to the z-axis; the semi-axes are of 
length 3 and V3, respec- 

_ tively; the eccentricity is 
e= 15; the foci are at 

points F=(1+2v3, 1) 
‘and (1 2g. 1), re- 

n 
00 r sae ne cone See = 

> acute angle determined by tan 2% In the present problem 
* A- 

aaa SS adm had achat 

a 
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Exampte 2. Given the equation 

14 ＋ 4 T 182 + 26y+64=0, . . (5) 

to determine the nature and position of its locus. Turn the axes through 
an angle 6, i.e., substitute for z and , respectively, & cos - / sin d and 
zx sin 6 + / cos @; equation (5) then becomes 

& (4 cos? @ + sin? @ + 4 sin @ cos ) 

+ z'y'(— 8 cos 6 sin 6 + 2 cos 6 sin 9 — 4 sin*@ + 4 0080) 

+ 9/2(4 sin*6 + cos*@ — 4 sin 6 cos 8) 

+ * ( 18 cos 6 + 26 sin ) 

+ (Is sin 8 + 26 cos 6) + 64 = 0, 3 

in which @ is to be so determined that the coefficient of * shall be zero. 
On placing this coefficient equal to zero, it is at once seen that tan 26=4, 
from which it follows (cf. exercise 3, Art. 16, second method) that 

sin 26 = fand cos26 = 3; 

remembering that cos 20 e 2 cos20 - 12 1-2 sin 

it is easily deduced that sin 0 3 and cos @ 2 
v5 v5 

Substituting these values in equation (6), it becomes 

52 2 + 1 + 64=0, 

1 \2 
— | . . 

> ( =) aly 7147 150 
which is the equation of a parabola whose vertex is at the point 

3 
5 145 

whose focus is at the point (25 =, whose axis is parallel to the 

negative end of the „axis, and whose latus rectum is = All these 

results refer to the new axes; the locus of the above equation is given in 
Fig. 79, p. 178 (Art. 108). 

EXERCISES 

1. For the hyperbola in Fig. 121 find the coérdinates of the center 
and of the foci, and also the equations of its axes and directrices, all 
referred to the axes OX and OY. 
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_ By first removing the zy-term, determine the nature and position of 
the loci represented by the following equations. Also plot the curves. 

a 2. x? 2V5 ry +3 y*— i + 16V5 = 0. 
3. 28-AV6 ry + 2y2 10% 0. 

4. 35 12 + By? 10% + 23 0. 
5. 1 — 2 r 690. 

I. Test for the species of a conic. It is often desirable 
to know the species of a conic represented by a given equa- 
tion even when it may not be necessary to determine fully 
the position of the curve. Remembering that every equa- 
tion of the second degree represents a conic (Art. 175), and 
also that the three species of conics may be distinguished 
from each other by the number of directions in which lines 
‘meeting the curve at infinity may be drawn through any 
given point (Art. 131, Note), it is easy to find a test that 
wi ö e one to distinguish at a glance the kind of conic 

presented by a given equation. 

4 1 the given equation bo 

A +2 Hry + By +2 Ge+2Py+C=0. . CA) 

If this equation be transformed to polar coérdinates, the 

origin being the pole and the z-axis the initial line, so that 
ene une, it becomes 

. A cos? @ + 2 Hsin @ cos 0 + B sin* @) 

4 ＋ 290 cos Fein) T =... . (2) 

ons value of p, determined by this equation, will be infinite 
f if its direction be such that 

¥ A cos? 6 + 2 Hsin d cos Bsin?@=0; [Art. 10] 

i.e., if B tan: +2 Htand@+A=0; 

B « 
- 

3 

tid an) + » * 1 1 3 J ‘ . r 

„ Pe ee ee 
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Equation (3) shows that tan @ will have 
two imaginary values, if H- AB<0; 

two real and coincident values, if H - AB=0; 

two real and distinct values, if H?—AB>0. 

Therefore, there is no direction, one direction, or there 

are two directions, respectively, in which a line meeting 

the curve in an infinitely distant point may be drawn 
through the origin, according as 

H?— A is <0, O, or >0; 

and hence, 

if H- AB <0, equation (1) represents an ellipse, 

if H- AB=0, equation (1) represents a parabola, 

if H- AB>0, equation (1) represents an hyperbola. 

178. Center of a conic section. As already defined (Arts. 
111, 117, 120), the center of a curve is a point such that all 

chords of the curve passing through it are bisected by it. 
It has also been shown that such a point exists for the 
ellipse and hyperbola, d. e., that these are central conics. 

If the equation of the conic is given in the form | 

Ax? + 2 Hry + By? +2 Gra+2Fy+C=0, . CG) 

the necessary and sufficient condition that the origin is at 
the center, is G =0 and F=0. 

For if the origin be at the center, and (2% y,) be any 
given point on the locus of equation (1), then (-2,, -y,) 

must also be on this locus (because these two points are on 
a straight line through the origin and equidistant from it); 
hence the coördinates of each of these points satisfy equa- 
tion (1), 

i. e., A2 +2 Hi + By2 +2 Gz,+2Fy,+0=0, . (2) 
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A(—2,)* +2 H(—2)(— A 
+ BC— yp)? +2 G(—2,)+2 F(—y) + C= 9; (8) 

nd equation (3) may be written thus: 

Ax? + 2 Hxy, + By? — 2 Ga, —-2 Fy, + C=O. . (A) 

1 equation (4) from equation (2) gives 

4 Gz, +4 Fy, =0; 

., Gz, + Fy, = 0. che » @) 

But equation (5) is to be satisfied by the cobrdinates z, 
and vi of every point on the locus of equation (1), and the 

y and sufficient conditions for this are 

G O and F=0 0. 

179. Transformation of the equation of a conic to parallel 

through its center. Let the equation of the given 
nic be 

Az + 2 Hry + By +2 Gr+2Fy+C=0, . (1) 

and let the coördinates of its center be a and g. Then to 

transform equation (1) to parallel axes through the point 
(a, 8) it is only necessary to substitute in that equation 
a and / +8 for x and . This substitution gives 

Ara HT + 8) + By’ + BY 
) +2 G(z’ +a)+2 Fy +8)+ C=0; 

be, Az’? +2 H/ + By’? +22'(Aa+ HB + @) 
, r 

＋ 2 Ca ＋ 2787 C*=0. . ‘ (2) 

Since a and gare the codrdinates of the center ae 178), 

; Aa+H8+G@=0 and Ha+BS8+F=0; . (3) 

en is to be noted here that the new absolute term, fe. the term free from 
f and y’ in equation (2), may be obtained by substituting « and g for x and 

‘in the first member of equation (I). 

_ a 
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solving these equations gives 

BEN axe GH. 
“i ABs ee ee ee 

which are the coördinates of the center of the locus e 
equation (1). 

The constant term in equation (2) is, 

Aa + 2 Hag + BB? +2 Ga+2F8 + C, 

=a(Aa+ HB G B(Ha+ BB+ F)+ Ga+ FB + C, 

= Ga+ FB + C, [by virtue of equations (3). . (4) 

, 

BG —F AF— G : | 

A 5 
+, [by equation 1 

_ABC+2FGH- AER . ee @ 
H= AB - ~ 4 

wherein 

A=ABC+2FGH— AF? — BG? — CH? (cf. Art. 67). 

Equations (4) show that the center of the locus of equa- 
tion (1) is a definite point, at a finite distance from the 
origin, if H- AB, but that the coördinates of this 

center become infinite if H?-AB=0. Hence (ef. Art. 
177), while the ellipse and hyperbola each have a definite 
finite center, the parabola may be regarded as having a 
center at infinity. 

By making use of equations (3) and (5), equation (2) 

may be written 

; A 
A + 2 Hz'y' + By" — saa F 0 

hence, if the general equation of an ellipse or hyperbola be 

transformed to parallel axes through the center of the conic, 
the coefficients of the quadratic terms remain unchan 
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ase of the first degree terms vanish, and the new absolute 

a becomes A 

H® —~AB 

Vors. Two special cases should be noted 
1) Equation (6) shows that if A = 0, the locus of equation (1) con 

- gists of two straight lines through the new origin (ef. Art. 67). 
2) The point (a, 8) is the intersection of the two straight lines 

Az + Hy +G=Oand He + By+F =0. (cf. eq. (3) above.) 

1 = H E. then these lines are coincident (Art. 38, (g)), and the 

0 . oe B become indeterminate. In this case, it may 
Sie shown that A = 0; that the locus of equation (1) consists of two 
"lines parallel to, on opposite sides of, and equidistant from, the lin. 
_ Az + Hy + G =0; hence any point of the latter line may be considered 
as a center, since chords drawn through such a point are bisected by it, 
ie. the curve has a line of centers. Again, since H* 48 = 0, this 
locus may be considered a special form of a parabola. 

180. The invariants 4+ B and H?—AB. In Art. 175 it 
Was shown that a transformation of codrdinates by rotating 
the axes through an angle @ changes the coefficients of the 
equation 

4 Ax! + 2 Hry + By 2 Gr+2Fy+C=0, . () 

h the exception of the constant term. It is true, how- 
ever, that certain functions of these coefficients are not 

changed by this transformation, .., the sum A+ B of the 
coefficients of the z* and / terms is the same after trans- 

ion as before. If the transformed equation be written 

ATA Hcy + BP +2 @r+2P y+ C=9, . (2) 

wherein, as in Art. 175, 

A! = A cos? 0+ 2 Hsin d cos Bsin?@, . (3) 

BD! = Asin? @—2 Hsin d cos. (A) 

21 =2Hcos20—(A—B)sin2@, (5) 

e 
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then the addition of equations (3) and (4) 

gives A'+ B'= A+B (since sin*@+cos*@=1). . f 

Again, 4 - 32H sin 207 (A- ) cos 20. . (0) 
hence 7 

(A! — B!)? +4 HH" = §(A— By? + 4 HY (sin? 2 0 + cos 2 6), 
(A- BH H,, . eR 

i. e., A2-2A B+ B2 44H? = A2 - 245 ＋T B+4 HH 

But by (6), 
A? +2 A'B' + B2=A24+2AB+ BB; 

hence, by subtraction, 

H®*-4AB=H*-AB, . . . (& 

and the function H?— AB is also unchanged by the trans- 
formation of coördinates, through the angle 0. Moreover, 
if a transformation of coördinates to a new origin be per- 
formed as in Art. 179, A, B, and # are not changed, 

nor, therefore, the functions A+ B and H- AB. Such 

functions of the coefficients, which do not vary when the 
transformations of Arts. 175 and 179 are performed, are 

called invariants of the equation for those transformations. 
If, as in Art. 175, @ be chosen so that l 

2H . 
tan 20 TF oe. ot an ) 

then H’ = 0, and equation (9) becomes | 

456 H- A8. Ce 

2H 

VAEB +i? 
4— 5 a 

V(A—B)'+4 H”’ 
2H ~ 
NL Cm 

Since sin 20 is positive (Art. 175), therefore the sign of 

A' — is the same as the sign of AH. | 

Again, from eq. (10), sin 20 = 

and cos 26 = 

hence, equation (8), 4 - 5 
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results are useful in reducing an equation of a conic 

olle g article. 

N To reduce to its simplest standard form the general equation 
| a conic, a. Central conic. The result of Art. 180 enables one to 

educe to its sixplest form a given equation of the second degree, in 
H- ADO, much more easily than by the method of Art. 175. 
—— 

Ax* + 2 Hry + By? +2G2+2Fy + C=90, (1) 

fe Set tranalormed to the center of the carve as origin, the we 
an becomes (Art. 179) 

Axt+2Hzy+Bf+C=0 . . . @ 
If equation 2) bo now 

to axes 

OX" and OY", making 
© angle @ with O; 
1 OY’, respectively, 

h that 

— 1 
7 

* 

vill become (Art. 175) 

e 
wherein the new coeſſi- 
Rents are easily deter- 

i by the relations 
Y= Ga+ FB+C 

3 * 

H?—AB 
15 (Art. 179), 

q d AFA Fra. 122, 
(Art. 180). 

Suppose the given equation to be 

8 * ＋ 2 3 10% T 2-0, . . . & 

428, H=1, B=3, G=0, P= - 8, and C= 20 

then H AB = — 8, and the locus is an ellipse. 

it simp standard form, as will be illustrated in the’ 

er? 
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The codrdinates of the center are a= —1, B=3. 

Therefore, C= G BTC -A; A'+B'=6, —A'R=-8; 

and, since A’ is larger than B’, H being positive (Art. 180), 1 

hence A'=4, BY =2; : 
while tan 20=.0, and therefore 0=45°. The transformed equation is 
therefore 

422+ 2 4 0, 4 

i. e., 25 + * = 1, . . . (5) d 
1 129 

when referred to the axes OX“, OF; and the locus is approximately as 
given in Fig. 122. 4 

b. Non-central conic. If H- AB = 0, the relations of equations (6) 
and (11), Art. 180, may still be used to simplify the reduction of equa- 
tion (1) to the standard form for the equation of a parabola, if, as in 
Art. 176, the zy-term be removed first. In this case, however, a better . 

method of reduction is as follows: 
Since the first three terms of equation (1) form a perfect square, that 

equation may be written ; 

(VAx+ VBy)?+2Gz+2Fy+C=0.. . on 
y 

wherein the sign of the VB is the same as that of H. 
Equation (2) may now be transformed to new axes OX’ and or, 

which are so chosen that the equation of OX’ referred to the given 
shall be 

VAr+VBy=0; 

hence, if @ be the angle between OX and OX’, then 

VA * = A VR 

tan 6 = — ——, whence sin 0 = and cos 6 = 
VB VA+B VA+B 

Equation (7) shows that 6 is negative (if the positive value of VA ry 7 
be used), and acute or obtuse according as VB is positive or negative. 

The formulas for transforming to the new axes are (cf. Art. 72) 

z= —. VB = ey and y= — z+ vB y. . (8) VA+B VVA VA+B VA+B. 7 
Substituting these values for z and y in equation (6), it becomes 4 

GVB— FVA GVA+FVB 
4159711 2—— 2 +- 2 40 20. 
3 D rr 00 
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a 7 BY dividing equation 0h by (4 + 5), completing the square of the 
y-terms, and F ſorm 

GVA + FVB)? {y+ 1 (4D 
De gp GVB-FVAS,, , ((LE . 0) 

(4 +B)! 2(4 + B)I(GVB — FVA) 
_ Comparing equation (10) with equation [42) (Art. 106), it is seen that 

he length of the latus rectum, as well as the cotrdinates of the vertex 
and focus (with reference to the axes OX’ and OY"), and other impor- 
tant facts, may be read directly from the equation. 
The advantage of equation (10), over that resulting from the reduction 
ee 220: 376, is thet, in connection with equation (7), it gives all the 

for the immediate location of the curve, and gives those 
‘facts in terms of the coefficients of the original equation. 

__ Exampue. Let it be required to determine the position and parameter 
3 by the equation 
5 9 24 zy + 10% 18 — 101 % +19 =0. 
_ The given equation may be writ- y 
ten as 
G 1% 18 — 10157 19 0. 

II the line 38 z—4 y=0 be chosen 
axis, then tan 6 = 4, whence 
sin @ =—4, and cos d - g. The 

formulas of transformation then 
ar 

1 L and y= — 3244 Y 

n r 
tion (1), it becomes Fe i tae 1 

25% + 70% 78 10; xX \ 
is equation may be written — 

i-). * 
h shows that the latus rectum is 3, and the cotirdinates of the vertex 
oa sesbeciively, i. — } and 
13 It also shows that the axis of the curve is parallel to the 
r 

Recalling the remark about the angle @ determined by equations (7) 
fac it is seen that the geometric representation of the above equation 
i shown in Fig. 123. 
a TAN. AN. Grom, — 20 

a 

> 

8 ate * * an =m — 3 a as a 

EA 

* - A sunt ah 8 
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182. Summary. It has been shown in the preceding 
articles that every equation of the second degree in two 
variables represents a conic section, whether the axes are 

oblique or rectangular; and that its species and position 
depend upon the values of the coefficients of the equation. 

The various criteria of the nature of the conic represented 
by such an equation, in rectangular codrdinates, appear in 
the following table : 

The General Equation of the Second Degree 

Ax? +2 Hy + By? +2Gr+2Fy+0=0 
A= ABC +2FGH — AF? — BG?— OH? 

I. H?—AB<0. The ellipse. 

(1) if A=B, and H=0, a circle. 

(2) if Ais +, imaginary. 

(3) if Ais —, real. l 

(4) if A is 0, a pair of imaginary straight lines, 
or, a point. 1 

II. H*—AB=0. The parabola. 

(1) if Mis +, axis is the new y-axis. 

(2) if H is —, axis is the new z-axis. 4 

(3) if A is 0, pair of parallel straight lines, which 
are real and different, real and coincident, — 
or imaginary, according as 62 40 , 
=, or < 0. 

III. H*?—AB>0. The hyperbola. 

(1) if A= — B, a rectangular hyperbola. 

(2) if Ais +, principal axis is the new y-axis. 

(3) if Ais —, principal axis is the new z-axis. 

(4) if A is 0,a pair of real intersecting straight 

lines. | 
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_ Nore. The above results have not all been shown, but are easily 
| I from thie work already given. Thus the locus of equation (3), 
Se Gis ames © wages Oe 2, ban ty octane (Oc 
‘179, C is — it A is +; hence the test I (2), given above. And so for 
‘the other tests, which the student should verify. The angle 6 which 
the new axes make with the old, respectively, is chosen as in Art. 175, 
20 being taken always positive and not greater than 180°. 

_ 183. The equation of a conic through given points. The 
general equation of a conic may be written 

Ax +2 Hry + BY + 2Gr4+2Fy+C=0, . (1) 

and contains five parameters, the five ratios between the 
coefficients A, H. B. G, F. C. Since five equations, or con- 
ditions, will determine those parameters, in general five 
points will determine a conic. That is, in general, a conic 
may be made to pass through five, and only five, given 

If, however, the conic is to be a parabola, one equation is 
given; viz. H* - AB = , hence only four additional con- 
ditions are needed. In general, a parabola may be made to 

pass through four points, only. 
A circle has two conditions given, viz. A= B. H=0; 

therefore, in general, a circle may be made to pass through 

three points, only. 
_A pair of straight lines has one condition given, A = 0; 

sfore, in general, a pair of straight lines may be made 

0 pass through four points, only. 
The method to be followed in obtaining the equation of 
agave conic has been used in Art. 80, and may be 

in ad for finding the equation of the parabola through 

four given points, 

7. (Tu Py =(%y Yo), P, e Ys), and Py ( %)- 

he equation must be of the form (1), 
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therefore, Az,?+2 Hry,+ By2+2 G2 Fy,+C=0, 

Ar? +2 H By 2 G2 Fy, + C=0, 
A2 Hry,+ By +2 Ga,+2 Fy,+ =, 

A2 Hr By 2+2 GT 2 T C=0; 

also, H?—AB=0. 

The required ratios between the coefficients of equation f 

(1) may be found from these equations. 1 

EXAMPLES ON CHAPTER XII 

Without transforming the equations to other axes, find the center 
or the vertex, the axes, and the nature of the following conics: 

. 24+ 527+ 72+ 82-—-2074+15=0; 

(4 902 ＋T 21 —5 21; 

322 72% — 2145 12 0 

3 — 82 —3y°+274+17y-—10=0; 

4 4 + y? + Ar- 20% = 0; 

5 22 ＋ 5% 0; 

372 ＋ 3% ＋ 114 - 55 T7 0; 

12 +22y—y°+8r+4y7-—8=0; 

y—azy—62°+y-3827=0; 

y? — zy —-52+5y=0. SORIA aASwD HE 
Trace the following conics : 

11. 322 ＋ 227+ 3%½ 16% T 23 203 

12. 422 ＋ 9% ＋ 82 ＋ 36y7+4=0; 

13. 372 — 3% ＋ 8 — 10% T 62 ＋5 203 

14. (x—y)(x-y —6) + 9=0. 

15. What conic is determined by the points (O, 3), (1, 0), (2, 1), 
(1. 3), and (3, 3)? 

16. Find the equation of the parabola through the points (3, 2), 

(1, 5), C6, 8), and (2, 3). 
17. Find the equation of the conic through the points (9, 2), (6, 3), 

(3, 2), (1, 2), (2, 1). 



CHAPTER XIII 

HIGHER PLANE CURVES 

184. Definitions. A curve, in Cartesian codrdinates, whose 

equation is reducible to a finite number of terms, each involv- 
ing only positive integer powers of the codrdinates, is called 
an algebraic curve; all other curves are called transcendental 

Algebraic curves the degree of whose equations exceeds 
», and all transcendental curves, are (if they lie wholly in 

a plane) called higher plane curves. On account of their 
great historical interest, and because of their frequent use 
in the Calculus, a few of these curves will be examined in 

the present chapter. 

I, ALGEBRAIC CURVES 

_ 185. The cissoid of Diocles.* ‘The cissoid may be defined 
as follows: let OFAK be a fixed circle of radius a, OA a 

_ © This curve was invented, by a Greek mathematician named Diocles, for 
t rr 
roportionals between two given straight lines. The solution of this problem 
rrie with k the solution of the even more famous Delian problem of con- 

ting a cube whose volume shall be equal to two times the volume of a 
cube. For, let a be the edge of the given cube; construct the two 

m proportionals z and y between a and 2a; then a2 22227113220, 
thence z* = 2. a, te., xis the edge of the required cube. If a = 1, then 

Bax ¥/S, hence the insertion of two mean proportionals entables one to con- 
truct a line equal to the cube root of 2. The cissoid may also be employed 
. rn number (see Klein, 

pmetrie, S. 36, or the English translation by Professors Beman 
nd Smith). 
„ Diocles lived ; it is very probable, 

r, that it was in the last half of the second century B.C. 

— cet on Q ae 

5 8980 — 
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diameter, A Tua tangent; draw any line as OQS through O, 
meeting the circle in and the tangent in &, and on this 
line lay off the distance OP = QS: the locus of the point 
P, as the line OS revolves about O, is the cissoid.* a 

From this definition, the equation of the cissoid, referred 
to the rectangular axes OX and OY, is readily derived. 

Let the codrdinates of P ber 
T and , and let C be the center 

of the circle so that 

00. A= CK=a. 

Since triangles OMP and 
. ON®@ are similar, f 

E MP: OM::NQ: OM. (I) 
and since OP = QS, therefore 

NA = OM =; moreover, ö 

NG = ON. NA = (24 — . 

Substituting these values in 
equation (1) gives 

F 

5:4: : 2a - h: (2a - ) .. (2 

22 
whence y= Ppa . : (3) 

which is the required rectangular equation of the cissoid. 
The definition of the cissoid, as well as the equation just 

derived, shows that the curve is symmetric with regard to 

*Diocles named his curve ‘cissoid’’ (from a Greek word meaning 
„ivy,“ because of its resemblance to a vine climbing upwards. The name 

‘‘cissoid’’ is sometimes, though rarely, applied to other curves which ¢ 
generated as stated in the definition given above, except that some other 
basic curve is employed instead of acircle. For other, but equivalent, defini- 
tions of the cissoid see Note 3, below. 4 
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the z-axis; that it lies wholly between the y-axis and the 
line z = 2a; that it passes through the extremities F and & 
of the diameter perpendicular to OA; and that it has two 
infinite branches to each of which the line z= 2a is an 

asymptote. . 
Nore 1. The polar equation of the cissoid referred to the initial line 
1 Let the polar oobedinates of P be 

pand 0; 
p= OP = QS = OS — O. 0 0 9 (4) 

OS = 2a sec 0, and OQ = 2a cos6, 

p = 2asec 6 — 2acos@ = 2.a(sec cos, 

p = 2a tan G sin G, ~ 0 ‘ (5) 

which is the polar equation sought. 

Porn 2. To “duplicate the cube” by means of the cissoid,* extend 
CK to H, making HK = CK =a, draw the line HA cutting the cissoid 
in J, and draw the ordinate EJ. Since CH = 2 CA, therefore EJ = 2 EA, 
but from equation (3), 

SE to si stn ge fanz given cube, and let it be required to 
construct a line n such that the cube on u shall be equal to the double of 
* Construct n so that 

OE: EI: : . 

OF* en,, 

4 since EJ* 2. E therefore n* = 2m’. 

_ Nore 3 The cissoid may also be defined in either of the following 
: (1) as the locus of the point (P) in which the chord OQS inter- 

that ordinate (ML) of the circle which is equal to NQ; and (2) as 
1 let fall from the vertex of a 
arabola upon a tangent. The derivation of the equation of the curve 
ased upon these definitions is left as an exercise for the student. 

ro Insert two mean proportionale between two given lines by means of 
he clesold. See Cantor, Geschichte der Mathematik, Bd. I., S. 339. 

. EJ*=20E"... , . (6) . 

* 

r 
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For Newton's method of drawing the cissoid by continuous motion, 
see Salmon's Higher Plane Curves, p. 183, or Lardner’s Algebraio 
Geometry, p. 196. 1 

186. The conchoid of Nicomedes.* The conchoid may be 
defined as follows: Let H be a given circle of radius 
a whose center S moves along a fixed straight line OX; let 

LK be a straight line drawn through a fixed point A and 
the center & of this moving circle, and let P and P’ be the 

intersections of this line and the circle; then the locus 

traced by (and by P’) as & moves along OX is a conchoid. 

Fic. 125 } 

This definition may also be stated thus: If A is a fixed 
point, OX a fixed line, and & the point in which OX is 

intersected by a line LK revolving about A, then the locus 
of a point P on LK, so taken that SP is always equal to a 
given constant a, is a conchoid. 1 

The fixed point A is called the pole, the constant parameter 
a the modulus, and the fixed line OX the directrix of the 

conchoid. a 

© The conchoid was invented by a Greek mathematician named Nicomedes, 
probably in the second century n.. Like the cissoid, it was invented for the 
purpose of solving the famous problem of the“ duplication of the cube“; it 
is, however, easily applied to the solution of the related, and no less famous, 
problem of the trisection of a given angle (see Note 3, below). 
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4 1 the rectangular equation of the conchoid draw 
OY perpendicular, and AH parallel, to OX, and let OA =e; 

et 13 y) be any position of the generating point, and 
raw the ordinate HMP; then, from the similar triangles 
1¹ and SMP, 

AH: HP:: SM: MP. 

1 2% Te:: V; 

[since N= V v ], 
-. 

nch is the equation sought. 

The definition of the conchoid, as well as the equation just 
derived, shows that the curve is symmetric with regard to 

y-axis; that it lies wholly between the two lines y=a 
and y=—a; and that it has four infinite branches to each 

of which the z-axis is an asymptote.* 

Vorn 1. The polar equation of the conchoid. Let A be the pole, AY 
initial line, and P=(p, 6) (or P) any position of the generating 

point; then 
p=AP= AS+SP=0OA.- sec 6 + SP, 

p= ec sec@ + a, 

th is the desired equation. 

Nore 2. The conchoid may also be readily constructed by continuous 
u as follows: By means of a slot in a ruler, fitting over a pin at A, 

6 motion of the line LA is properly controlled; if now a guide pin at 
la tracing point at J, be attached to this ruler, then the point J 

Sik ons tha ccuchold when the guide point S is moved along the 
1 OX. 
_ Nore 3. By means of a conchoid, any given angle may be trisected.{ 

et ABC be any angle, on one side (BA) take any distance, as BH, and 

* It is evident that, if AO < OB, 1 e., if ¢ a, the curve has an oval below 
fas shown in Fig. 125; if ¢ =a, this oval closes up toa point; and if ¢>a, 
oth parts of the curve lie wholly above 4. 
For the insertion of two mean proportionals between two given lines by 
ans of the conchoid, see Cantor, Geschichte der Mathematik, Bd. I. 
= 

i 

r e 

2 
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draw OHX perpendicular to the other side of the angle (BC); then lay 
off OK = 2. BH, and construct the conchoid KEF with B as pole and 
2 BH = OK as modulus, and OX as directrix. Draw HZ parallel to BG 

and connect B with L, then the angle LBC =}4ABC; for, join D, th 

ar H eee 
middle point of ML, to H, then ML = OK =2BH =2HD, and the 
three angles marked @ are all equal, as are also the two marked g; more- 
over, 8 = 2a, being the exterior angle of the triangle HD, which proves 
that angle LBC = 4 ABC. 

187. The witch of Agnesi.* The witch may be defined 
follows: Let OKAQ be a given fixed 
circle of radius a, OA a diameter, and 0 7 

any point on the circle ; if now the ordi 7 
77 nate MQ be produced to P, so that 

eT MQ:MP::MA:04,.. (0 
1 

I. 
1 

then the locus of P, as O moves around 
the circle, is the witch. To derive the 
rectangular equation of the witch, 
P = (a, )) be any point on the curve 5 
then, since j 

L 

Pio, irt MQ = V0M-MA = VD = . 

* The witch was invented by Donna Maria Gaetana Agnesi (1718-1799), 
an Italian lady who was appointed professor of mathematics at the Universi 
of Bologna, in 1750. 
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31 1 tituting in equation (1) gives 

Vz(2a—2):y::(2a—2):24,.. ) 

Ade 5 nn a 

which is the equation sought. 

an definition of the witch, as well as the equation just 
rived, shows that the curve is symmetrical with regard to 
» z-axis; that it lies wholly between the y-axis and the 

line z = 24; and that it has two infinite branches to each of 
a 7 hich the line z = 2a is an asymptote. 

108. The lemniscate of Bernouilli.* The lemniscate may 
be defined as follows: let LZARNA'K be a rectangular 
hy derbola, O its center, OX and OY its axes, and Ia tan- 
ent to the curve at any point 7. Also let OG be a perpen- 

from the center upon this tangent, and let P be the 
at of their intersection; then the locus of P as F moves 
zy the hyperbola is called the lemniscate. 

“To derive the rectangular equation of this curve, let 
OA = a, and let the codrdinates of 7 be xz, and y,; then the 
Nuntion of the tangent 7'F is 

r % = . 1 

hence the equation of OG, the perpendicular upon this tan- 
at (Art. 62), is 

J rytyz=0 . . . (2) 
3 

de lemniscate was invented by Jacques Bernouilli (1654-1705), a noted 
wiss mathematician and professor in the University of Basle. It is, how- 

only a special case of the Cassinian ovals ; viz., of the locus of the ver- 
rx of a triangle whose base is given in length and position, and the product 
f whose other two sides is a constant. See Salmon's Higher Plane Curves, 

; 44, Gregory's Examples, or Cramer's Introduction to the Analysis of 

4 ‘abs 7 

„ 
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Regarding equations (1) and (2) as simultaneous, the 2 
and y involved are the coördinates of the point P; more- 

over, since the point T ( is on the hyperbola, therefore 

11 — % = a’. ) 

Eliminating z, and y, between equations (1), (2), and (3) 

gives F 
TY . - - & 

which is, therefore, the equation sought. 

y Ps 

8 T, 

iG 8 / 

A a ND g 1. A 
5 x 

a 2 / De 
tsi * 

/ 8 

/ ve 2 be 5 
R x ih R 

/ FIG. 128 8 ; 

The definition of the lemniscate, as well as the equatio 
just derived, shows that the curve is symmetrical wit 
regard to both codrdinate axes; that it lies wholly betwee 
the two lines whose equations are z = — a and z= + a; th 

it passes through the origin and the two points (— a, 0) 4 
(+a, 0); and that y is never larger than æ; hence t 
lemniscate is a limited closed curve as represented in Fig. 12 

Nor 1. The polar equation of the lemniscate is easily derived 0 
equation (4) if the z-axis be chosen as initial line and the origin as pol 
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et » # pc and y = in , and equation (4) at once reduces to 

„ = a*(con*@ —sin*@)= atcos20, . . « (5) 

hich is therefore the required polar equation of the lemniseate. 
_ Equation (5) shows that: when 0=0,p = 4a; when 0< 45", p has 

» equal but opposite values, each of which is smaller than a; when 
. 

; when 45° , 130% p is imaginary; when 135° C 10% p has 
» equal but opposite values, each of which is smaller than a; and when 

= 180°,p=ia. The curve, therefore, consists of two ovals meeting in 
9, each lying in the same angle between the asymptotes of the hyperbola 
does the corresponding branch of that curve, and these asymptotes are 

it to the lemniscate at the point C. 

"Nore 2. If the two points F, and F be s0 located that 

PC = OF =< v2, and if S (, ) be any point on the lemniscate. 

FS = VFM + MS = MIV 

FS VAN Y 

NS. 78 * V3 + 57 . NN 9 7 

- [ry eg. (l. 

ey s FS =©. 

Hence the lemniscate may be defined as the locus of a point which 
noves so that the product of its distances from two fixed points is con- 
mt, and equal to the square of half the distance between the fixed 

(ef. foot-note, p. 315). 
"This. debe, of the curve easily leads to the equation already 
erived; it also enables one to readily construct the curve thus: with 
i Renter, and any convenient radius FS, describe an are; then, with 

Nes center, and a third proportional to FS and OF as radius, describe 
other are cutting the first in &; this intersection S is a point on the 
us, and as many points as desired may be constructed in the same 

* 

* 

4 
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1892. The limacon of Pascal. The limagon may be defined 
as generated from a circle by adding a constant length to 

each of the radii vectores 
drawn from a point on its 
circumference as origin, — 
proper account being taken 
of negative radii vectores. 
Z. g., let OLA,N be a given 

X circle of radius a, O any 
point on it, AA = any 
constant; then if any 

radius vector as OP, be 
drawn from CO, and P,P 
=A,A=k be added to 

it, then P is a point on the limagon; and as P, is made to 

describe a circle, P will trace the limacon. 

The polar equation of the curve is at once written down 
from this definition; for, if the diameter OCX be taken as 

initial line, then the polar equation of the circle is 

„ 2a cos 6, . . oe) 

whence the polar equation of the limacon is 

6 = 2a cos G Tk. CG 

If k be taken equal to a, the radius of the given circle, 
this equation may be written in the more common form 

96 2 4(1 ＋ 2 co )). © 

Frio, 129 

* This curve was invented and named by Blaise Pascal (1623-1662), a 

celebrated French geometrician and philosopher. It is, however, a special 
case of the so-called Cartesian ovals. 

t Th limagon may also be defined as the locus of the intersection of the 
two lines OP and CP which are so related during their revolution about 0 
and C, respectively, that the angle XO is always equal to § times the 
XOP. This definition easily leads to the polar equation already derived. 
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The definition of the limagon, as well as the equation just 
derived, shows that the curve is symmetrical with regard to 
the initial line, and that it has the form shown in Fig. 129. 

_ Nore. The rectangular equation of the limagon for which K = a is 
easily derived from equation (3). Choosing the initial line and a perpen- 

dicular to it through O as rectangular axes, so that z = pcos 6, and 
1 = psin , equation (3) becomes 

7 * =ma+2a- — . . . . 4 

ae VI 1 
Rationalizing equation (4) gives 

a (22+ y?—2azr)P@=aXzt+y), . . « 

which is the usual form for the rectangular equation of the limagon. 

189). The cardioid. The cardioid may be defined as a 
special case of the limagon ; viz., it is a limagon in which 

‘the constant k, which is added to each of the radii vectores, 
is taken equal to the diameter of the fundamental circle. 
If in the equation of the limagon [Art. 189a, equation (2)] 
th constant & be taken equal to 2a, that equation becomes 

p=2a(l+cosf), . »« + GQ) 

which is the polar equation of the cardioid. 

The more usual form in which the equation of the cardioid 

* Ade 
but this amounts merely to turning the figure through 180° 

in its own plane. 
Nore 1. The rectangular equation of the f 

ardioid is obtained as in Art. 189 a. 2 g 

Tt (ar) =40%(2*+ %). (3) Neal 

The curve represented by equations (2) 4 aia A 

8 
and (3) has the form shown in Fig. 10. x 
"Phe cardioid is usually defined as the . _/ 
eus traced by a point on a given circle ; 
AKA,L, which rolls on an equal but fixed 
Circle OMA,H. This definition also leads to ey ; 
equations (2) and (4) already derived. * 

— . ae | =a eee a Se Se se = | = 1 * 

La we 
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190. The Neilian, or semi-cubical, parabola.* This curve 7 
may be defined as follows: let H7ZASKL be a given parab- 

ola whose equation is 

7 7 „ 4%... . Ga 

A let TM be any double ordinate of 
5 . the curve, 771 a tangent at the point 
5 ° X TS Gn D and AQa perpendicular 

** from the vertex upon this tangent; 
ot if QA intersects Id in P, then the 

locus of P as 7 moves along the 
~~ parabola is called a semi-cubical or 

Neilian parabola. 

Its rectangular equation is derived as follows: the equa- 
tion of 7'7; is 

Wy =2p@+e), ee 
hence the equation of AQ is 

y=— die 
The equation of 7'S is | 

4 . . . . ( 40 

If now equations (3) and (4) be regarded as simultaneous, 
then z and y are the coérdinates of the point P in which the 
two lines intersect, and if z, and y, be eliminated by means 
of the equation 

yy = 4 pry : : : (4) 
an equation connecting 2 and y is obtained. 

Fie.131 

This curve is historically interesting, because it is the first one which 
was rectified, i.e., it is the first one the length of an are of which was 

expressed in rectilinear units. This celebrated rectification was performed, 
without the aid of the modern Calculus methods, by William Neil, a pupil of 
Wallis (see Cantor, Geschichte der Mathematik, Bd. II., S. 827), in 1657; the 

curve is therefore called the Neilian parabola. It is also called the semi- — 

cubical parabola because its equation may be written in the form y = ari. 
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| Substituting for z, and y,, in equation (5), their values in 
terms of x and y a8 found from equations (3) and (4), gives 

Ae 

20 eee 

h is the equation sought. 

‘This equation shows that the curve passes through the 
origin and is symmetrical with regard to the z-axis; that 
it lies wholly on the same side of the y-axis as does the 

sn parabola; and that it has two infinite branches. 

II. TRANSCENDENTAL CURVES.* 

101 The cycloid.j The cycloid (OPKA) is the path 
N i by a point P on the circumference of a circle (M) 

»A few very common transcendental curves have already been examined 
in Chapter III; among these are the curve of sines, the curve of tangents, 

i the logarithmic curve. 

t Because of the elegance of its properties, and because of its numerous 
ications in mechanics, the cycloid is the most important of the transcen- 

ental curves. It has the added historical interest of being the second curve 
that was rectified (cf. Art. 190, foot-note). Its rectification was first aceom- 

i by Sir Christopher Wren (1632-1723) and published by him in 1673. 

TAN. AN. Grom, —21 
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which rolls, without sliding, upon a fixed right line (OX). 
The point P is called the generating point; the circle HN, 
the generating circle; the points O and A, (he vertices; the 

line EAM, perpendicular to OA at its middle point, the axis; 
and the line OA, the base of the cycloid. 

To derive the rectangular equation of the cycloid let a be 
the radius of the generating circle, and OX the fixed straight 
line on which it rolls; also let P be the generating point, 

and let PWNS be any position of the generating circle. 
Draw the radius CP, the ordinate MP, the line PZ parallel 
to OX, and the radius OH to the point of contact of the 
generating circle and the line OX. Let OX and OY (the 
perpendicular to it through 0) be chosen as axes, and let 

@ be the angle PCH. 

Then, if P=(, y). 

z= OM= OH- MH 

= OH— PL 

= a0 —asin@, [since OH = arc PH = a). 

i. e., z= 400 — sin 6). . 5 : (1) 

Similarly, y=a(1 —cos@). . 0 5 (2) 

Solving equation (2) for @ gives 

cos 0 = 2 — 4 
a 

? 

i. e., 6 = cos 9 vers (2) ; 
a a 

and substituting this value of @ in equation (1) gives 

1 2 u ver -N . « s Ce 

which is the rectangular equation sought. 
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Nore 1. It is usually simpler to regard equations (1) and (2) together 
| ating the cycloid; @ is then the independent variable, while x 
al dy are both functions of it. 

Nore 2. The cycloid belongs to the kind of curves called roulettes. 
these curves are generated by a point which is invariably connected 
with a curve which rolls, without sliding, upon a given fixed curve. 
r ie erate, en De opty 

is designated by the general name of trochoid. If the gen- 
un Daene 

rol on the outside of a fixed circle, then the curve described is called an 

epicycloid; but if it rolls on the inside of the fixed circle, the generated 
curve is called a hypocycloid. The cycloid may be regarded either as 
‘an epicycloid or a hypocycloid, for which the fixed circle has its center 
at infinity and an infinite radius. 

192. The hypocycloid. Let the hypocycloid APRST . 
be traced by the point P on the circumference of the circle 
1 . whose radius is 6, and which rolls on the inside of the 

* 

8 

fixec circle AQE, whose radius isa. Also let P = (2, y) 

% any position of the generating point. Draw the line 
00'Q, the ordinates HO’ and MP, the radius OP. and the 
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line KP parallel to OA, where A is the point with which P 
coincided when in its initial position. Let OAX and OY, 

the perpendicular to it through O, be chosen as coördinate 
axes; also let the angles 400, PO and O be desig- 
nated, respectively, by @, 0’ and ¢. 

Then OM= 0H+ HM= 0H + KP 

= OO cos6 + PO cos 

= OO cos 0? + PO' cos (0 — 8), 

[since ꝙ = 6’ — 6] 

i. e., 21 (a - b) cos ＋ b cos (0 — 600. (1) 

But since arc 40 = are PQ, therefore a0 = 0, whence 

= 5° and equation (1) becomes 

2 =(a —b) 0088 E beo. 2 

Similarly, y =(a— 6) sind — bein @— Ns. „ 

Equations (2) and (3) are together the equations of the 
hypocycloid. A single equation representing the same 

curve may be found, as in the case of the cycloid (Art. 191), 

by eliminating 0 between equations (2) and (3). 

Nore. If the radii of the circles be commensurable, i. e., if h equals a 
fractional part of a, then the hypocycloid will be a closed curve; but if 

, these radii are incommensurable, then the curve will not again pass 
through the initial point A. 

In particular, if a:b = 4:1, then the circumference of the fixed circle 

is 4 times that of the rolling circle, and the hypocycloid becomes a closed 
curve of four arches, as shown in Fig. 134. In this case, equations (2) 
and (3) become, respectively, 
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and y = 0 ein —jasin36.) 
But, by trigonometry, Q 

and 3sin g — sin 36 = ein“! 6, tes 

bones equations (4) become id 4 
* = acos* 6, a | 00 

and y = asin® 6; 

hence 1a - 2 00 

which is the common form of the 
equation of the four-cusped hypocy- 15 
cloid. Fro. 136. 

SPIRALS 

193. A spiral is a transcendental curve traced by a point 
which, while it revolves about a fixed point called the center, 
also continually recedes from this center, according to some 
definite law. 
The portion of the spiral generated during one revolution 
of the tracing point is called a spire; and the circle whose 
‘radius is the radius vector of the generating point at the 
end of the first revolution is called the measuring circle of 

ne spiral. Thus, in Fig. 135, ABCDE is the measuring 
circle, OQSUWA is the first spire, and AFHLN is the sec- 
ond spire. 

_ 494 The spiral of Archimedes. This curve is traced by 

& point which moves about a fixed point in a plane in such a 
1. - 

I this equation be rationalized, it becomes 
* a = (a? — x? — y*)*. 

_ Although the hypocyctoid is, in general, a transcendental curve, it becomes 
braic for particular values of the ratio of the radii of the circles. 

— supp to have been dicovered by Cons, 
though its principal properties were investigated by the geometer whose 

it bears, 



326 ANALYTIC GEOMETRY (Cu. XIII. 

way that any two radii 
vectores are in the same 

ratio as are the angles they 
make with the initial line.* 

From this definition it 

follows that the equation 
of the curve is 

9 210% G) 

where * is a constant. 
This equation shows that 

the locus passes through the origin, and that the radius 
vector becomes larger and larger without limit as the num- 

ber of revolutions increases without limit. Moreover, if 

(oi 9,) be any point on the curve, and if (o 0,+ 27) be 
the corresponding point on the next spire, then 

P, = Kb and p, = k(O, + 27), 
whence Po = Py + 2 r; 

but 2% = OA, hence the distance between the successive 
points in which any radius vector meets the curve is constant; 
it is always equal to the radius of the measuring circle. This 
follows also directly from the definition. 

The locus of equation (1), for positive values of @ is rep- 

resented in Fig. 135; for negative values of @ the locus is 
symmetrical with the part already drawn, the axis of sym- 
metry being the line LF. 

195. The reciprocal or hyperbolic spiral. This curve is 

traced by a point which moves about a fixed point in a 
plane in such a way that any two radii vectores are in the 

Fic. 135. 

* This curve may also be defined thus: It is the path traced by a point 
which moves away from the center with uniform linear velocity, while its 

radius vector revolves about the center with uniform angular velocity. 
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ae ratio as the reciprocals of the angles which they form 
h the initial line. 

, ea 1s follows thes the equation of the 

Jö; a 
re & is a constant. 

This equation shows that the curve begins at infinity 
when ou 0 and winds round and round the center, always 

| baching it, but never quite reaching it; i. e., p= 0 only 

after an infinite number of spires have been described. 
_ Equation (1) also shows that the constant & is the cir- 

‘cumference of the measuring circle. For the radius of the 
measuring circle (Art. 193) is the radius vector of the gener- 
ating point of the curve at the end of the first revolution, 
i. A when @ = 27; but, from equation (1), this radius vector 

ay 3° and the circumference of the circle of which this is 

t e is l. 
An. if P = , ) be any point on the locus of equa- 

tion (1), then 1 

4 = circumference of measuring circle ; 

bu p@ equals the length of the circu- 
arc described with radius p and 

subtending an angle 6, therefore the 
* h of any circular arc as MP, 
described about O, with radius p, and 

extending from the initial line to 
the curve, is equal to the circum- 
; » of the measuring circle. 
The locus of equation (1), for positive values of 0, is 
epresented in Fig. 136. 

Fro. 138. 

a ee 

. 

7 — =" 2 * 
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196. The parabolic spiral. This curve is traced by a 

point which moves around a fixed point in a plane in such 
a way that the squares of any two radii vectores are in the 
same ratio as are the angles which they form with the 
initial line. | 

From this definition it follows that the equation of the 

curve is 
ge. BO ea oe eo (0 

where * is a constant. 

This equation shows that the curve begins at the center 
when @=0, winds round and round 
this point, always receding from it, 
the radius vector becoming infinite 

when @ becomes infinite, i. e., when 

A it has described an infinite number 

of spires. 

The locus of equation (1), for 

positive values of pg, is represented 
m in Fig. 137.“ 

197. The lituus f or trumpet. This curve is traced by a 
point which moves around a fixed point in a plane in such 
a way that the squares of any two radii vectores are in the 

same ratio as the reciprocals of the angles which they form 
with the initial line. 

From this definition it follows that the equation of the 

curve is p= 4 . . . (9 

where & is a constant. | 

This equation shows that the curve begins at infinity, 
when @ = 0, and winds round and round the center, always 
— 

* See also Rice and Johnson's Differential Calculus, p. 307. 

t This curve was invented and named by Cotes, who died in 1716, 
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. it, but never quite reaching it, i. 6, p = 0 only 
after an infinite number of spires have been described. 

The locus of equation (1) is shown in Fig. 138; the heavy 

N 1 » being the part of the locus obtained from the positive 
values of p, while the dotted part belongs to the negative 
values of p. 

? Nore. The four spirals just discussed, and whose forms are given in 
Fig NN . 

i by the equation p= kh; . . . (2) 

1 n = 1, this is the spiral of Archimedes; if n = — 1, it is the hyperbolic 
spiral; if n = 4, it is the parabolic spiral; while if n =— j, it is the 
4 

398. The logarithmic spiral.* This curve is traced by a 
point which moves around a fixed point in a plane in such 

» This curve might have been defined by saying that the radius vector 
1 in a geometric ratio while the vectorial angle increases in an arith- 

etic ratio. An important property of this curve is (see McMahon and 
Snyder's Differential Calculus, Art. 120) that it cuts all the radii vectores 
‘ the same angle, and the tangent of this angle is the modulus of the system 

logarithms which the particular spiral represents, 

ae Pon 
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a way that the logarithms of any two radii vectores are in 
the same ratio as are the angles which these lines form with 
the initial line. 

From this definition it follows that the equation of the 
curve is ; 

log p = Ao, ‘ ° . (15 

where * is a constant. 
If & be unity, and logarithms to the base a be employed, 

this equation may be written in the form 

„% 4, 
This equation shows that if @=— , p=0; that p in- 

a creases from 0 to 1, While 

@ increases from —o to 

0; and that p continues 
to increase from 1 to , 

while @ increases from 0 

2 to +0; the curve has, 

therefore, an infinite number of spires. | 

If the constant a equals 2, then p takes the values . 4, J 
1, 2, 4, 8, .., when @ is assigned the values (in radians), — 

„ — 2, —1, 0,1, 2, 8, ...; Fig. 139 represents the locus of 

equation (2), a being equal to 2, for values of 6 from — 2 

to +3. In this figure Z FOR=2Z HOA AAL AOB=Z BOC 

=Z COD = 57°.3, and OF =, OF =}, OA=1, OB=2, 

00=4,and OD=8. 

Fic. 139 F 



PART II 

SOLID ANALYTIC GEOMETRY 

— — 

CHAPTER I 

COORDINATE SYSTEMS. THE POINT 

199. Solid Analytic Geometry treats by analytic methods 
problems which concern figures in space, and therefore in- 
volves three dimensions. It is evident that new systems of 
codrdinates must be chosen, involving three variables; and 

that the analytic work will therefore be somewhat longer 
than in the plane geometry. On the other hand, since a 
plane may be considered as a special case of a solid where 
‘one dimension has the particular value zero, it is to be 
expected that the analytic work with three codrdinate vari- 
ables should be entircly consistent with that for two vari- 
ables; merely a simple extension of the latter. The student 

‘should not fail to notice this close analogy in all cases. 
In the present chapter will be considered some simple and 
useful systems of codrdinates for determining the position of 

u point in space, some elementary problems concerning points, 
and the transformations of codrdinates from one system to 
another. Later chapters will treat briefly of surfaces, par- 
ticularly of planes and of surfaces of the second order, and 
of the straight line. 

; 331 
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200. Rectangular coordinates. Let three planes be given 
fixed in space and eager to each other, — the coérdi- 

nate planes XOY, YOZ, and 

ZOX. They will intersect 
L 2 by pairs in three lines, XX. 

* 7 4 T, and Z'Z, also perpen- 
| dicular to each other, called 

3 the coördinate axes. And 
9 K these three lines will meet 

os in a common point O, called 
N . the origin. Any three other 

Y Fi. 140 planes, LP, MP, and NP, 

parallel respectively to these 
coérdinate planes, will intersect in three lines, N, L/P, 

M'P, which will be parallel respectively to the axes; and 
these three lines will meet in, and completely determine, 
a point P in space. The directed distances VD, L/P, and 
M thus determined, i. e., the perpendicular distances of 

the point P from the coördinate planes, are the rectangular 
coordinates of the point P. They are represented respec- 
tively by z, , and 2. It is clear that 

z=NP=L =NM' = 0M; 
LPM LN = ON; 
a TP =MI/ = OL. 

It is generally convenient, however, to consider 

a= OM, y= MM’, andz= MP. 

The point may be denoted by the symbol P (x, y, 2). 
The axes may be directed at pleasure; it is usual to take 

the positive directions as shown in the figure. Then the 
eight portions, or octants, into which space is divided by the 
codrdinate planes, will be distinguished completely by the 
signs of the coördinates of points within them. 
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It the chosen coirdinate planes were oblique to each 
other, a set of oblique codrdinates for any point in space 

be found im an entirely analogous way. 

~ Unless otherwise stated, rectangular codrdinates will be 
1 in the subsequent work,. 

201. Polar coordinates. A second method of fixing the 
position of a point in space is by means of its distance and 
lirection from a given fixed point. Let „ 
O be a fixed point in space, called the 
pole; and let p be the distance from 
Ot dep point P. To give the 
« n of p, let OR and OS be two 
chosen directed perpendicular lines 
through O, determining the plane os 
ROS; then the direction of p will be * 1 
given by the angle from the plane ROS to the plane POM, 
nd the angle ¢ from the line OS to p. The point P is 

completely determined by the values of its radius vector p 
and its vectorial angles @ and ¢, and may be denoted as 
e ¢). The elements p, 6, & are called the polar 
a inates of the point P. 
¥ It is to be noted that for convenience the positive values 
of @ and ¢ are those for rotation in clockwise direction from 
ROS and OS, respectively. And although a given set of 
codrdinates fixes a single point, yet any point may have sixteen 
Sets of cobrdinates in a polar system, if, as usual, the values 
of the angles are less than 360°. 

20 Relation between the rectangular and polar systems. 
the axes OR and OS of a polar system coincide with 

the axes OX and OZ, respectively, of a rectangular sys- 
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2 tem, the pole and origin therefore 
being coincident, then simple rela- 
tions exist between the two sets of — DP P 

i coérdinates for any point. For, since 

4 Oe 45 * 2 O = 90° and Z OM'P= 90°, 
. therefore OM = OM cos 0 

N = OP sin ꝙ cos 0. 

MM' = OM' sin 9 = OP sing sin 0, 

and M'P = OP cos ꝙ; 

that is, 2 g eos sind, | 

rnin . ° [1] 

z= pcos. 

Again, OP’ = OM" + MP? = OM’ + MM" + MP. 

1. e., p = + y* + 22, 

mn tune =" eee 
2 

<= rent ws y* + 22. 

The above relations give formulas for transformatic 1 

from the one coérdinate system to the other. 

203. Direction angles: direction cosines. A third useful 
method of fixing a point in space 1 

is a combination of the two 

methods already considered. 

The axes of reference are chosen 7 

as in rectangular coördinates, 

and any point P of space is fixed r 

by its distance from the origin, 7 
called the radius vector, and the Fic. 148 

angles d, B, , which this radius 

* 
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or makes with the codrdinate axes, respectively. These 
are called the direction angles of the line OP, and 

eir cosines, its direction cosines. Ihe point may be con- 

isely denoted as the point P (o. «, 8, ). 
Simple equations connect these codrdinates with those of 

o rectangular system; for, projecting OP upon the axes 
OY, and OZ, respectively, 

. h, y=pesp, s=pesy, . . . [3] 
i also, p? = 2* + y* + 2%, as in equations [2]. 

Moreover, the direction cosines are not independent, but 
connected by an equation; for, by combining the above 

| hm pPeosta + p* cost 8 + p* cosy, 
costa +cotBieoty=1. . . . [4] 

Son a relation was to have been expected, since only 
three magnitudes are necessary to determine the position of 

a point, and therefore the four numbers p. «, 8, 7 could not 
ye independent. 

Any three numbers, a, 6, c, are proportional to the direc- 
jon cosines of some line; because if these numbers are con- 

red as the coördinates of a point, then the direction 
of the radius vector of that point are, by eq. [3], 

a ae b — 0 

e Vand ee e 
direction cosines are proportional to a, 6, e; and are 

ad by dividing a, 4, e, respectively, by the same constant, 

Ve+P+e, 

Direction cosines are useful in giving the direction of any 
ine in space. The direction of any line is the same as 
ha of a parallel line through the origin, therefore the diroe- 

ion of a line may be given by the direction angles of some 
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point whose radius vector is parallel to the line. Sometimes, 
us an equivalent conception, it is convenient to consider the 

direction angles as those formed by the line with three lines 
which pass through some point of the given line, and are 
parallel, respectively, to the codrdinate axes. 

204. Distance and direction from one point to another ; 

tangular coérdinates. A few elementary problems concerning 
points can now be easily solved; 

2 for example, the problem of find- 

ing the distance between two 
points. Let OX, OY, OZ be 

AA a set of rectangular axes, and 

fo . — 5 x Pi= Gp Yp %) and Py=(%q, Yq 2%) 
1 i be two given points. Then the 

1 . planes through P, and P,, paral- 
1 lel, respectively, to the codrdi- 

nate planes, form a rectangular 

parallelopiped, of which the required distance P,P, is a 
diagonal. From the figure, 

since iP = 90° and Z MH NM. = 90°, 

therefore P,P, PIC + OP, = MM," + OP? 

= MR + RM," + QP? 
= (1, 2107 +(¥_ — 94)” ＋ - 21 7 

That is, if d be the required distance, 

2 

— 

FIG. 144. 

d = V (wy — 2%)" (% 1) T 2, . [6] 

Moreover, since the direction of the line P,P, is given by 
the angles u, B, y, which it makes, respectively, with the line 7 
P,X', PIV, and P,Z', drawn through Pi parallel to the 
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xes, therefore the projection of d( = 1) upon these lines 
n turn gives 

3 * P, cos a= PX", P,P, cos B= PF. P,P, cony= PI, 

e d oo d co = i  dcosy=z,—z,; 
7 

117 ind, finally, * 
4 

1 

These equations give the required direction angles of 

ve 

208. The point which divides in a given ratio the straight 

ine from one point to another. Let 
7 ＋ 

Py (24) ¥p and PC Yq) 7 7 

be two given points, and let A 

1 V 23) be a third point N. 

which divides the line P,P, in the 0 ona 

vi 1 ratio 21, so that 22 weed. uid — 

1 * P,P, My y 8 1. 

Let P,P, dy and PsP, = da; 
hen by Art. 204, if u, 8, y be the direction angles of P,P, 

| 51 | 
It will be noticed, as in the similar problem in Part I, 

wt. 80, that if J, divides the line externally, the ratio ™ 
ust be negative ; and the above formulas still apply. 

TAN. AN. Grom, —22 
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If P, bisects the line P,P,, formulas [8] take the simpler 
forms | 

206. Angle between two radii vectores. Angle between two 

lines. Let PI = (py d Ay, ) and Ps = (Pa, % By Yq) be 
two given points, and @ the angle included by the radii vee- 

tores pi and . Then the pro- 

4 „ jections upon OP, of the line 
me OP, and of the broken line 
A OM. P. are equal (Art. 17); 

hence, 

. 1 proj. OP, = proj. OMV, 

Fic.146 = |/ i. e., pn cos = M. cos a, 

f + M M cos B, + My! Pr 00s 9. 

But OM, = pn cos ag, 

M,Mz = py eos gn, and My! Ps py 008 93 
hence, 

Py COS O= py, COS a COS di +p, cos B cos BI COS ½ COS 715 

iy cos d = Cos ai cos ag + cos By COS By + COS yy COS Yo» [10] 

and this relation determines the required angle @. 
It follows, since any two straight lines in space have their 

directions given by the direction angles of radii vectores 
which are parallel to them, respectively, that formula [10] 

applies as well to the angle 0 between any two straight lines 
in space, whose direction angles are given. 
Two special cases arise, that of parallel and that of perpen- 

dicular lines. If the two given lines are parallel, evidently 

a. = Gy, 61 = By, 71 = Yai [11 
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an 1 formula [10] reduces to eq. [4]. If the lines are per- 
pendicular, cos 0 = 0, and eq. [10] reduces to 

cos af COS a2 + Cos By COs By + Cony, c % .. . [12] 
5 

. Transformation of coordinates; rectangular systems. 
relations found in Art. 202 to exist between rectangu- 

1 Pena polar codrdinates of a point may be used as formulas 
0 f transformation from one system to the other if the origin, 
the pole, and the reference axes are coincident. Two other 

imple transformations may be useful, (1) from one set of 
Tectangular axes to a parallel set, that is, a change of 
origin only; and (2) from one set of rectangular axes to 

, other set through the same origin, i. e., a change of diree- 
of axes. Then any transformation between rectangular 

and polar systems can be per- 
fo med by a combination of 

these three elementary trans- 

QC) Change of origin only. 
Let the new origin be the point 
O (I, k. ); then, construct- 
i the codrdinates of any 

point P with reference to 
each set of codrdinate planes, it is evident, by analogy with 

Art. 71, that 

w=a't+h, y=y'tk, z= +f... [13] 

02 Change of direction of axes. Let a second set of ree- 
tangular axes, OX, OY', OA“, have the direction angles a, 

By. J % Bay Yq and a By, yg, respectively, with the old 
OX, OY, OZ. 

. N 

ai, Nun 1 

, a ) a 7 a r 
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2 Then if the codrdinates 
yy of any point P in the two 

7 systems are 

: ; 2 = OM, 
2 9 e 

9 7 x ¢= M'P, 

72 and a = 00 

M y' . 
* Fio. 148 2 = QP, 

then projections of OP and the broken line 00 upon OX, 
OY, OZ, in turn, will be equal; hence, 

* = x! COS a, + Y! COS ay + 2! COS ag, 

y = x' cos f1 + / cos f +2! cosBg,) q [14] 

z= x' COS y, + cs Yq + 2 COS Yg- 

These formulas are for transformation from the first sys- 
tem to the second. But, also, by projecting OP and 
OMM'P upon OX’, OF, OZ’, respectively, 

2 = x2 cos a, + y COSB, + 2 COS 4, | 

y' = £CO8t, eo + ZCOSy,} - + + [15] 

2 = £ COS, + y COS Bz + 2 cos . | 

and these formulas are for the reverse transformation, front 
the second system to the first. 

Norte. It is to be remembered that in the transformations of [14] asi 
[15], twelve conditions exist, by eq. [4] and eq. [12], three of each 3 
the follow ing types, 5 

costa, + cod. + cosa, = 2, 
cos?a, + cos? B+ cos? y, = 1, 
COS a, COS a, + cos Bi cos By + oos i COSY, = 0, 
cos a, cos 8, + cosa, cos B, + cosa, cos B, = 0. 

These equations are not independent, however, but reduce to six 

independent equations. . 
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1 is clear, by reasoning similar to that of Art. 75, Part I, 
that none of the transformations [13], [14], and [15], neither 
‘ger sly nor in combination, can alter the degree of an 

equation to which they may be applied. 
. 

EXAMPLES ON CHAPTER 1 

1. Prove that the triangle formed by joining the points (1, 2, 3), 
@, 3, 1), and (3, 1, 2). in pairs, is equilateral. 
2. The direction cosines of a straight line are proportional to 1, 2, 3; 

i their values. 

3. Find the angle between two straight lines whose direction cosines 
“are proportional to 2, 2, 2, and 5, 4, 7, respectively. 

4. The rectangular coùrdinates of a point are (V3, 1, 2V3); find 
polar codrdinates. 
5. The polar cotrdinates of a point are ( 7.7) find its rectan- 

ar coUrdinates. 

8. Express the distance between two points in terms of their polar 

F. Find the coördinates of the points dividing the line from 
-2, 8, 1) to (3, 2, 4) externally and internally in the ratio 2:5. 

8. What is the length of a line whose projections on the codrdinate 
axes are 4, 1, 3, respectively? 
5 9. Find the radius vector, and its direction cosines, for each of the 

‘Points (, 1, 5), (1, 1. , (a, 0, h. 
10 Find the center of gravity * of the triangle of Ex. 1. 

II. Find the direction angles of a straight line which makes equal 
ar with the three coiirdinate axes. 

2 . makes the angle 30° with the axis, and 75° 
the saxis. At what angle does it meet the y-axis? 

13. Prove analytically that the straight lines joining the mid-points 
of the opposite edges of a tetrahedron pass through a common point, 
~ are bisected by it. 
14. Prove analytically that the straight lines joining the mid-points 

| the opposite sides of any quadrilateral pass through a common point, 
2 are bisected by it. 

* Seo Ex. 15, p. 42 

4 
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CHAPTER II 

THE LOCUS OF AN EQUATION. SURFACES 

208. Attention has been called to the close analogy 
between the corresponding analytical results for the geom- 
etry of the plane and of space. It is evident that in 
geometry of one dimension, restricted to a line, the point is 
the elementary conception. Position is given by one vari- 
able, referring to a fixed point in that line; and any alge- 
braic equation in that variable represents one or more points. 
In geometry of two dimensions, however, it has been shown 
that the line may be taken as the fundamental element. 
Position is given by two variables, referring to two fixed 
lines“ in the plane; and any algebraic equation in the two 
variables represents a curve, i. e., a line whose generating 
point moves so as to satisfy some condition or law. Corre- 
spondingly, in geometry of three dimensions the surface is the 
elementary conception. Position is given by three variables, 
referring to three fixed surfaces, since any point is the inter- 
section of three surfaces; T and it can be shown that any 

algebraic equation in three variables represents some surface. 

With polar coördinates, these lines are a circle about the pole with 
radius = p, and a straight line through the pole making the angle @ with the 
initial line (Art. 23). 

With polar codrdinates, these surfaces are a sphere, about the origin as 
center, determined by the radius vector p, a right cone about the z-axis, with 
vertex at the origin, determined by the angle o, and a plane through the 
z-axis determined by the angle @ (Art. 201). 

342 
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The study of the special equations of first and second 

degree will be taken up in the two succeeding chapters. 
H vit is desired to show that an algebraic equation in three 
varia represents a surface, and to consider briefly two 

» classes of surfaces: (1) cylinders, i. ., surfaces which 
| 13 by a straight line moving parallel to a fixed 

straight line, and always intersecting a fixed curve; and (2) 
of revolution, i.¢., surfaces generated by revolving 

ae plane curve about a fixed straight line lying in its plane. 

209. Equations in one variable. Planes parallel to coordi- 

nate planes. From the definition of rectangular codrdinates, 
it follows that the equations 

z= 0, y= 0, z= 0, 

ent the codrdinate planes, respectively, and that any 
algebraic equation in one variable and of the first degree 

represents a plane parallel to one of them. Similarly, an 

mation in one variable and of degree n will represent u 
uch parallel planes, either real or imaginary. For, the first 

nember of any such equation, as 

Pot + Pye) + pat? + + + Pt + Pe = 9, . . A) 

an be factored into u linear factors, real or imaginary, 

: po- 210 ( — 20-0 ( — 2.) 0 02) 

and by the reasoning of Part I, Art. 40, eq. (2) will repre- 
sent the loci of the n equations 

3 z—z2z,=0, 4 — 2. 0. . „ 2 — 2. = 0. 

each of which is a plane, parallel to the yz-plane, and real if 

the corresponding root is real. In the same way, an equa- 

« 

* a ee ee 

eee ee 

~~ = 

—— 
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tion in y or z only will represent planes parallel to the zz- or 

z -plane. a 
Any algebraic equation in one variable represents one ¢ 

more planes parallel to a codrdinate plane. 4 

It follows at once by Art. 39, that two simultaneous 
equations of the first degree in one variable represent the 
intersection of two planes parallel to coördinate planes; 
therefore, represent a straight line parallel to the coördi- 
nate axis of the third variable; e.g., / b, 2 e, considered f 
as simultaneous equations, represent a straight line peal 
to the z-axis. ‘ 

210. Equations in two variables. Cylinders perpendicular ; 
to coérdinate planes. Consider the equation 4 

24+3y= 6, . 3 A (9 

with two variables only. In the zy-plane it represents a 

straight line AB. If, now, from any point P of AB a 

as a 
N 
1 Fig. 149. 

straight line be drawn parallel to the z-axis, the æ and) 
coérdinates of every point O on this line will be the same as 
for P, and therefore satisfy equation (1). Moreover, if the 

line PQ moved along AB, and always parallel to the z-axis, 
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still the codrdinates of every point in it satisfy equation (1). 
As the line PQ is thus moved, it traces a plane surface per- 
_ pendicular to the zy-plane ; and, as evidently the codrdinates 
_ of a point not on this surface do not satisfy equation (1), 
_ this plane is the locus of equation (I). 
Again: the equation 

* ¥ + 22 — rt . . „ (2) 

represents in the - plane à circle. It is therefore satisfied 
by the coördinates of any point Q, in a line parallel to the 
_ z-axis, through any point P of this circle; and also by 
the codrdinates of C as this line PQ is moved, parallel to 

sep’ st 
ie 2 Pe Q : ; 
2 — — 
/ } 4 

5 17 7 

255 Fis. 180. 

the z-axis and along the circle. The circular cylinder thus 
_ traced by the line PQ, perpendicular to the yz-plane, is 
the locus of the given equation. 
_ Similarly, it may be shown that the locus of the equation 

2 2 32 * 8 33 

is a cylindrical surface traced by a straight line parallel to 
the y-axis, and moving along the hyperbola whose equation 
in the zz-plane is equation (3). And, in general, it is clear 
it analogy that any algebraic equation in two variables repre- 

gents a cylindrical surface whose elements are parallel to the 

— ae 1 38 
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axis of the third variable, and having its form and posi- 

tion determined by the plane curve represented by the same 
equation. 

As a direct consequence, it is clear that if a cylinder has 

its axis parallel to a coördinate axis, a section made by a 

plane, perpendicular to that axis, is a curve parallel to and 
equal to the directing curve on the coördinate plane, and is 
represented in the cutting plane by the same equation. 
Thus, the section of the elliptical cylinder whose equation is 
327+ % = 5, cut by the plane z= 7, is an ellipse equal and 
parallel to the ellipse whose equation is 32? + y? = 5. 

211. Equations in three variables. Surfaces. A solid 

figure has the distinctive property that it can be cut by a | 
straight line in an infinite number of points, while a sur- 
face or line can, in general, be cut in only a finite number. 
A line has the distinctive property that it can be, in gen- 
eral, cut by a plane in only one point, while a surface may 
be cut in a curve. To show that the locus of an algebraic 

equation in three variables is, in general, a surface, it is suf- 
ficient to show that, in general, a plane will cut it in a curve, 

while a straight line will cut it in a finite number of points. ; 

Let the given equation be 

Fr, y. 2) = 9, 4 ‘ ° (10 

and let 3 e 8 ° . (2) 

be a plane parallel to the zy-plane. The points of inter- 
section of these two loci will be on the locus of the equation 

Sagem 03 ; . (3) 

and, by Art. 210, they lie, therefore, upon a plane curve, cut 
from the cylinder whose equation is (3), by the plane whose 
equation is (2). Hence the locus of equation (1) is not a Jine. 
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Again, let y=b, sme. . : (4) 

be the equations of a straight line (Art. 209), parallel to the 
axis. The points of intersection of locus (1) and the line 

(4) will be also on the locus of the equation 

N, 0-0; 4 8 (5) 

_ which, since the equation is in one variable, of finite degree, 
will represent a finite number of planes parallel to the - 

plane, and therefore having a finite number of points of 
intersection with the line (4). Hence the locus of equation 
(1) is not a solid. 

Therefore, the locus of any algebraic equation in three vari- 
ables is a surface. 

212. Curves. Traces of surfaces. Two surfaces intersect 
in a curve in space, and since every algebraic equation in 
solid analytic geometry represents a surface, a curve may be 
represented analytically by the two equations, regarded as 
simultaneous, of surfaces which pass through it. Thus it 
has been seen that the equations y = b. z = ¢ separately rep- 
_ resent planes, but considered as simultaneous represent the 
straight line which is the intersection of those planes. But 
by the reasoning of Art. 41, the given equations of a curve 
may be replaced by simpler ones which represent other sur- 

faces passing through the same curve. In dealing with 
curves it is often useful to obtain, from the equations given, 
equations of cylinders through the same curve; ie, it is 
generally useful to represent a curve by two equations each 

in two variables only. 

Exampte: The curve of intersection of the two surfaces, 

(1) Ar 25 = 0 and (2) =- 162 0, 
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is also the intersection of the surfaces : 

x? + y? + 2% — 25 (2 + y? — 16)=0, ie, 2 =+ 8, @)- 

| with the surface (2). The curve is therefore composed of two circles of 
radius 4, parallel to the zy-plane at distances +8 and — 3 from it. ＋ 

Conversely, the curves of intersection of a surface with 
the codrdinate planes may be used to help determine the 
nature of a surface. These curves are called the traces of 
the surface. 

Thus, the surface 22 + %½ + 22 = 25 has the traces 

on the yz-plane, where z= 0, % ＋ 2 253 

on the zz-plane, where y= 0, 2? + 22 = 25; 

on the zy-plane, where z= 0, 2? + y?= 25. 

Each of these traces is a circle of radius 5, about the 

origin as center; the surface is a sphere of radius 5 with 
center at the origin. 4 

Since three surfaces in general have only one or more 
separate points in common, the locus of three equations, con- 
sidered as simultaneous, is one or more distinct points. a 

213. Surfaces of revolution. Analogous to the cylinders 

are the surfaces traced by revolving any plane curve about 
a straight line in the plane as axis. From the method of 
formation, it follows that each plane section perpendicular 
to the axis is a ecirele, — the path traced by a point of the 

generating curve as it revolves; and the radius of the cire e 
is the distance of the point from the axis in the plane before 

revolution begins. These facts lead readily to the equation 
of any surface of revolution, as a few examples will show. 

(a) The cone formed by revolving about the z-axis the line 

24 ＋ 332 15. : . (10 
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Any point P of the line (1) traces during the revolution 
a circle of radius LP, parallel to the zy-plane. The equa- 

But in the zz-plane, before revoiution is begun, LP is the 
abscissa z of P: hence, by equation (1), 

LBZ 33. 
2 * 

so that the equation of the path of P is 

a + yt . (2) 

But P is any point of line (1); hence equation (2) is sat- 
isfied by every point of the line, and represents the surface 
generated by the line, which is the required conical surface. 
(ö) The sphere formed by revolving about the z-axis the 

22 +. 2? = 25. 0 e 0 (3) 

' in this case, any point P of the curve traces during the revo- 
lution a circle ot radius WP, parallel to the zy-plane. The 
equation of this path is therefore 

2+y= NF. 
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But in the rz-plane, by 
equation (3) J 

PZ r = V5 A. 

AN N Hence, substituting above, 
. \ 

| \ 22 + y* = 25 — 23, 
EE a. 

i. e., 2+y?+22=25; (4) | 

which is the equation of the 
required spherical surface. 

(e) The surface formed 
by revolving about the x-axis 
the curve 

2 ( ＋ - 1) ( 2) (2 - 8) [ef. Art. 37, ()J. (5) 

Any point P of the generating curve traces a circle paral 
to the yz-plane, with 
a radius MP equal to 
the z-abscissa in equa- 
tion (5). Hence the 

equation of its path is 

yt+2= MP’, 9 

i. e., ½ ＋ 22 ( = 1) 

= 2) - 8). . (6) * 

which is the equation 
of the required surface. 

(d) Of the various 

surfaces of revolution 

those of particular interest are generated by revolving 
about their axes the various conic sections, giving the 

cones, spheres, paraboloids, ellipsoids, and hyperboloids of 
revolution. 

~ 
ee ee 

— 

As aN 



} SURFACES 351 

Tube student may verify the equations of the following 
? * : rite 

The sphere: with center at the origin, and radius r. 

. ai+yt+eter®s 2 7 

wich center at (a, ö, c), by Art. 207, eq. (T) becomes 

( — a)? +(y—b)?+(2—cfter. . . . (8) 

The cone: the surface generated by the right line z= mz +e, 

Pin EEE Oy 1 ee 

The oblate spheroid: the surface generated by the ellipse 

—=+ — — 1, rotated about the minor axis, 3 

2 ＋ E22 3-1. ci 

The prolate spheroid: the surface generated by the ellipse 

+ == 1, rotated about the major axis, 

q ay, 2 
57 7 1. . . * (11) 

The hyperboloid of one nappe: the surface generated by 

the hyperbola 285 1, rotated about the conjugate axis, 
2 22 
3 - . . . . (12) 

The hyperboloid of two nappes: the surface generated by 

the hyperbola 7 85 1, rotated about the transverse axis, 

2 2 = -¥-S-1. np PE 

i *See Chap. IV, where diagrams are given for the corresponding cases 
of the general quadric, with elliptical instead of circular sections. 
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The paraboloid of revolution: the surface generated by the 
parabola 22 = 4 pz, rotated about its axis, 

22 + y* = 4 pz. ° : - dy i 

EXAMPLES ON CHAPTER II 

What is the locus of each of the following equations? 

1. 21 — 6 ＋9 0. 4. ax? + bry + = 0. 

2. 211420. 5. 4% ＋ 6% - 82＋T 10. 

3. 12-2 t r- 2 T1 0. 6. 2295 9. 

What are the curves of intersection of the surfaces represented by 
the equations 

7. y+1=0, 322 73% ＋ 32 207 

8. 12 — % 2 0, z=a? 

9. 12 ＋ ½ f, 4221 5 4 

10. 9 (22 ＋ % — 2 . 25 102, z=+5? 
172 2 

11. 32 — 4% 2 12, 9 71617 

Determine the traces upon the coérdinate planes of the following 
surfaces: 

12. 22 ＋. y? + 42 25 13. 322 — 4% — 22 2 12. 

Find the equation of 

14. the paraboloid of revolution one of whose traces is y? = —5z + 3, 

15. the cone of revolution one of whose traces is ) =— 52+ 3 and 
whose axis is the axis of y. Find its vertex. 

16. the oblate spheroid one of whose traces is = + 1 21. 

17. the prolate spheroid one of whose traces is * 7 21. 

18. the surface of revolution whose axis is the axis of z and one of 
whose traces is 22% —1 2 0. f 

19. the hyperboloid of two nappes one of whose traces is 
1622-92 =1. 

20. the sphere described about the major axis of the ellipse 
422+ 9% 247 0 as diameter. | 



CHAPTER III 

EQUATIONS OF THE FIRST DEGREE 

Ax + By +Cz+ D=0 

PLANES AND STRAIGHT LINES 

IJ. Toe PLANE 

214. Every equation of the first degree represents a plane. 

A plane is a surface such that it contains every point on a 
straight line joining any two of its points. 

Let P, (Z yy zi and P, e V 2) be any two points 
of the surface whose equation is 

4 A4 BC Do. . . [16] 

so that Az, + By, +0z,+D=0 ... Q) 

and Az, + BN TC, TD OO. (2) 

Now, if P. ( ys, 23) be any point on the straight line 
from Pi to P, at a distance di from Pi and d from P,, then, 
by Art. 205, 

412 + . % t+ d 

But this point lies on the surface represented by equation 
[16]; for, substituting its codrdinates from (3) in equation 
[16], the latter becomes 

,n Brat c Bp N, + By, c o 
+ 

TAN. AN. Grom. —23 348 
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which is a true equation, since each parenthesis vanishes 
separately by equations (1) and (2). Hence every point of 
the line P,P, is on the locus of equation [16], and that 
locus is therefore a plane. very algebraic equation of the 
first degree in three variables represents a plane. 

215. Equation of a plane through three given points. The 

general equation of the first degree, | 

Ar ＋ By+@z4+D=0, .. . . Ge 

has only three arbitrary constants, viz. the ratios of the 
coefficients. If three given points in the plane are a 

PI S (ry Yp 210, P. ( Yo 20, and P, ( e 0 

then these ratios may be found from the three equations, 

Az, + By, + Cz,+ D=9, ö 

Az, + B, ＋ O DO,. . (ym 

Ax, + By, + Cz, + D=9, 

considered as simultaneous. 
In solving equations (2) for the required ratios, two special 

cases may occur: (a) The value of one of the coefficients 
may be zero, then the ratios determined must not have that ! 

coefficient in the denominator. E.., if D=0, solution 

should not be made for 75 55 5 but for 5 4 (say). 5 

(4) The equations may differ only by constant factors, then 
the three equations have an infinite number of solutions. 
This is explained by the fact that the points are on a straight 
line, and any plane through the line will pass also through 

the points. | 

216. The intercept equation of a plane. A plane will in 

general cut each codrdinate axis at some definite distance 
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from the origin, and this distance is called the intercept of 
the plane on the axis. If a, , e be the intercepts on the z-, 
2 and g-axes, respectively, of the plane whose equation is 

Ar+By+Cz2+D20, . . . (1) 

then the points (a, 0,0), (0, 4,0), (0, 0, e) are points of the 
plane, and therefore (cf. Art. 215) 

Aa+D=0, Bb+D=0, , 

1. 422. Ba-? au Were 
0 

Hence equation (1) may be written 

* i 
and this is the equation of the plane in terms of its intercepts. 

_ 217. The normal equation of a plane. A plane is wholly _ 
determined in position if the length and direction be known 
of a perpendicular to it 8 
from the origin; and this 
method of fixing a plane 
leads to one of the most 
useful forms of its equa- 

tion. Let 00 be the 
perpendicular from the 
origin 0 to the plane 
A BC, let y be its length, 

always considered as 
positive, and let «a, B. 7 * 
be its direction angles. Let P (, y, 2) be any point of 

the plane, and draw its codrdinates OM, MM’, . Then, 
projecting upon OQ, 
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proj. OP = proj. OP, 
hence proj. OM + proj. MM’ + proj. M = proj. OP, 

that is, wcosa+ycospB+zcosy=p. . . . [18] 

This is called the normal equation of the plane. 
There are two special cases to be-considered : 
(1) If the plane is perpendicular to a codrdinate plane, 

e.g., to the zy-plane (cf. Art. 210), then y = 90°, cosy = 0, 
and equation [18] reduces to 

zcosa+ycoosB=p. . . 119 

(2) If the given plane is parallel to one of the coördinate 
planes, e.g., to the zy-plane (cf. Art. 209); then a= 8 =90°, 
y = 0°, and eq. [17] reduces to 

Z = p. ; . ; [20] 

218. Reduction of the general equation of first degree to a 
standard form.* Determination of the constants a, b, c, p, 

a, B, y I. Intercept form. In Art. 216 a method has been 
indicated for reducing the general equation 

Az+By+Ce+D=0 .. . @G 

to the intercept form. Since the points (a, 0, 0), (0, 5, 0), 
and (0, 0, e) are on the plane (1), it follows that the inter- 

cepts are 
D D D | 

=— — =e — — — —. — > 3 2) 

,, D 
II. Normal form. If equation (1) and the equation 

rcoa+ycosB+zcosy—p=0... @) 

represent the same plane, then their first members can differ 

* The reduction of this article gives a second proof that the general alge- 

braic equation of first degree always has for its locus a plane. 
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only by a constant factor, m (cf. Art. 203, eqs. [5]; also 
Art. 58); 

m. = cosa, mB=cos 8, mO=cosy, mD=—p, 

but, by [4], cos? « + cos? 8 + cost y = 1, 

Thence (A + N +0?) = 1, and m= L 
VAl+ B+ Ot 

Then cos a A + coope= B 5 
VI VE 21 

Cc x — [21] 22 , N e 

Equation (1) written in the normal form is then 

4 B r+ —— 
VAI + B+ CF N +o 

* 0 —D 
- ©) "VE+E+O Vater 

1 therefore, to reduce equation (1) to the normal form, it is nee- 
_ essary only to transpose the constant term to the second mem- 
ber of the equation, and then divide both members by the square 

root of the sum of the squares of the coefficients of the variable 
terms. The sign of the radical is determined by the fact 
(Art. 217) that p is taken positive; hence, the sign of the 
radical is the opposite of the sign of the constant term. 

_ 219. The angle between two planes. Parallel and perpen- 

dicular planes. The angles formed by two intersecting 
planes are the same as the angles formed by two straight 
lines perpendicular to them respectively; ic, are the same 
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as the angles between the respective normals from the origin 
to the planes. If 

and Agr + By + Cz + D = O, . . . (2) 4 

be two planes, then the direction cosines of their normals 

are respectively (eqs. [21]) 

cos c Ay ’ 

VA?+ B+ UP 

cos & Aa „e 

VA TB + C 

and by equation [10], if be the angle between the two planes, 
and hence between the two normals, 

4142 + B, Bz + 0107 

VAI + By? + Cy? V Ag? + B + Cy" 

cos 71 BERR! “Mabe A ea 
VTB Un VAP FBT Un 

to., 

o 22 
There are two cases of special interest. 

I. Parallel planes. If the planes (1) and (2) are parallel, 
their normals from the origin will have the same direction co- 
sines, and differ only in length; therefore, by equations [21], | 
the equations of the planes must be such that the coefficients 
of the variable terms are the same in the two equations, or 

can be made the same by multiplying one equation by a 
constant. In other words, if the planes (1) and (2) are 
parallel, then 

441 B11 * * * 23 4. B. 0! [23] 

and the plane Av+By+02+K=0 . . (3) 

is parallel to the plane 

Ar+ By+Cz+D=0, . . () 

for all values of the parameter K. 
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II. Perpendicular planes. If the planes (1) and (2) are 
perpendicular to each other, then cos @ = 0, 

and 414, + BB. + CyCg=uO3 . «le [24] 

and conversely. 

220. Distance of a point from a plane. Let 

Fi G; 
be a given point, and 

Azr+By+Cz+D=0 . . . GQ) 

a given sae: The perpendicular distance of P, from the 
plane is equal to the distance from the plane (1) to a parallel 
plane through the point, i. e., is equal to the difference in 
the lengths of the normals, from the origin, to these two 
parallel planes. 

The parallel plane through P, has for its equation by 
Art. 219, equation (3), | 

Az + By + Cz = Ax, + By, +z, . . 2) 

By [21], the lengths of the normals to planes (1) and (2) 
are, respectively, 

p= - D 5 pro = Ar, + By, + C2, 

‘ VAP + B+ CF VAP + B+ OF 

therefore, if d p’ — p be the required distance, 

a — 4%1+ Bui + Ca + . em 2 [25] 

VA? + B?+ C 

In formula [25], the sign of the radical is taken opposite 
to the sign of D (Art. 218); and the sign of d shows on 
which side of the given plane lies the given point. 

II. Tue Strrareut Live 

_ 221. Two equations of the first degree represent a straight 

line. Every equation of first degree represents a plane 
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(Art. 214), and two equations considered as simultaneous 
represent the intersections of their two loci (Art. 89). 
Therefore since two planes intersect in a straight line, the 
locus of the two simultaneous equations of first degree, 

is a straight line. As suggested in Art. 212, it is generally 
more simple to represent the straight line by equations in 
two variables only, standard forms, to which equation (1) 
can always be reduced. 

222. Standard forms for the equations of a straight line. 

(a) The straight line through a given point in a given direction. 
Let PI = (Ai, y;, 21) be a given point, and a, B, y the direo- 
tion angles of a straight line through it. Let = (, , 2) 
be any point on the line, at a distance d from PI. Then by 

equation [7], 

d cos a = I, dcosB=y—y,, dcosy =z—%,.-- (I) 

hence Ni faa ct mene ee ee [26] 

which are the equations of a straight line in the first ae | 
form, called the symmetrical equations. 

(b) The straight line through two given points. Let Py= 
(Th Vi 21) and P,=(@y Yo, 2) be the given points. Any 
straight line passing through P, has [26] for its equations. 
{f the line passes also through P,, then 

22 — 21 Ya—ti 22 — 21 
coe We 60 co @) 

and hence from equations [26] and (2), by division to 
eliminate the unknown direction cosines, 

Oy wk ee F [27] 

KTI ½ — Ji 22 21 
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These are the second standard forms for the equation of a 
straight line. 

(e) The straight line with given traces on the coérdinate 
planes. One of the simplest set of planes for determining a 
straight line is a pair of planes through the line and perpen- 
_ dicular respectively to the codrdinate planes (cf. Art. 212). 
Then the equation of these planes will be the same as the 
equations of the traces of the line on the corresponding codr- 

_ dinate planes (Art. 210). Thus, if the equation of the traces 
ol a given line upon the zz- and yz-planes are, respectively, 

z= mz + b, 
3 5 > . [28] 

then, considered as simultaneous, these are also the equa- 

tions of the given line in 

space. f 
In Fig. 155 the given 

traces are ABL’ in the 
plane, and CDN’ in the 
_ yeplane P is any point 
in the given straight line, 
and O, N, S are the points 
where the line pierces the 1. * 

| fy) ye, ar- planes, respec- ay 
tively. Then it is clear . ( 
that in equations [28] 2 

m = tan Z OAB, 12 OR. (8) 

n= tan Z OCD, d= OD. Ti: 

Also, since, by equations [28], 

OAm— >) AR =m 001 cg un 
* m n * 
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therefore the points where the given line pierces the coördi- 
nate planes are 

O. d. O. R= 02 one 8 4, 0. 4). (4) 
m 

223. Reduction of the general equations of a straight line 

to a standard form. Determination of the direction angles 

and traces. 7 

I. Third standard form: traces. The traces of a straight 
line have the same equations as have the planes of projec- — 
tion of the straight line upon the coördinate planes, respec- 
tively. They may be obtained, therefore (Art. 210), by 
eliminating in turn each of the variables 2, % « from the 
given equations. 

This may be illustrated by a numerical example. 

Given the equations 

82+2y+2-5=0,7+2y—-22=8, . (1) 

representing a straight line. Eliminating 2, y, and æ, successively, the 

equations | 

7z+6y—138=0, 22 ＋ 32 20, 4y—72-4=0...(2) 

are obtained, each representing a plane through the given line and per- 
pendicular to a codrdinate plane. Therefore these equations are also the 
equations of the traces of the line, in the zy-, zz-, and s- planes, respectively. 

II. First standard form: direction angles. The method of 
reducing the general equations of a straight line to the first 
standard form, and finding its direction angles, can also be 
illustrated by a numerical case. 

Considering still the line whose equations are (1) above, and whose 
traces are given by equations (2); and taking the equations of any two 
of its traces, e. g., 

24 1 32 22 0, 4 - 72-42-00 (9 



222-220. PLANES AND STRAIGHT LINES 863 

these have one variable, 2, in common. Equating the values of this 
common variable from the two equations, gives 

| 2 Bar ty 

_ which may be written, to correspond with equations [28], 

s—0_z-1_y-1 : a : 

ME ee © 
| Now, although the denominators 1, — J. I of equation (4) are not 

direction cosines of any line, yet, by equations [5), they differ from 
* such direction cosines only by the divisor 

1 Ni- il. 

Rewriting equations (4) in the form 

—1 4 —1 2— 0 
a AY tis . . . (5) 

Voi vidi vidi 

it corresponds entirely to equations [26]. Therefore the line passes 
through the point (1, 1, 0), and its direction angles are given by the 
relations 

1 ee aes 
Nera Ok = agp OT ee 

The method given above is evidently perfectly general. 

224. The angle between two lines; between a plane anda 

Une. If the equations of two straight lines be written in the 
form ö 

| F en ts 
41 51 01 

SS. Sh, 
a4 bs 02 © 

then by Art. 223, II, their direction cosines are, respectively, 

a, a, 
C08 4, = . COs 4. = 8 

2 Va? + I ei 4 Va + 62 e 

by . . . 

N * 

1 ren A 

r 

8 
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and therefore, by equation [10], the angle between the two f 
lines is given by the equation . : 

cos 0 = 2124 51524. 0108 3 
Va; + 512 +} er Va" + 522 + oz 4 

Again, the angle between the straight line 

r FR, 
a b 0 4 

and the plane { 
Ar+By+Cz+D=0 . 0 

is the complement of the angle between the line (3) and the 
perpendicular to the plane (4) from the origin. Therefore, 
by equations [10] and [21], and Art. 223, II, the required 
angle is given by the equation 

sind = aA+bB+cC —— 

V+ B+ 0V 42+ B+ G | 

Conditions for perpendicularity and parallelism precisely 
like those of Art. 219 may be obtained from equations 1200 

and [30]. 

EXAMPLES ON CHAPTER Ill . 

1. Find the equations of a line through the points (I, 2, 3) and 
(3, 2, 1). j 

2. Find the equation of a plane through three points (1, 2, 3), 
(3, 2, 1), and (2, 3, 1). 

3. Write the equations of the straight line through the point 
(1, 2, 3), and having its direction cosines proportional to v3, 1, 2%. 

4. What are the traces of the line of Ex. 1 upon the coördinate 
planes? Where does the line pierce those planes? 

5. Find the equations of a straight line through the point (1, 2, 1 f 
and perpendicular to the plane z+ 25 7 32 26. 

Reduce to the intercept and normal forms, and determine tial 
octant each plane cuts: 

6. 21 — 35 -—z=7; 7. 57 122 — 1K. 
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8. Reduce the equations of the line 

22-3y—2=7, Sy+2e-lez 

to the symmetrical form, and determine its direction cosines. 

9. Find the angle between the planes 
24 3-2 7, Sy+22—-lLe=z. 

10. Find the angle between the line 

1 175712280, 22 —- 722 — 1280 

aud the plane $24+62—-5y+1=0. 

11. Write the equation of a plane parallel to the plane 

21 - 577-520, 

g “and passing through the point (0, 0, 0); through the point (1, 1, 1). 

1142. Write the equation of a plane perpendicular to the plane 

324+5y—2+6=0, 

C and passing through the two points (3, 1, 2) and (0, 2, 4). 

; 13. Find the distances of the points (7, ~2, 3) and (3, 3, 1) from the 
plane 22+5y—z-—9=0. Are they on the same side of the plane? 

| 14. At what angle does the plane az + by + cz +d =0 cut each cotrdi- 
1 nate plane? Each coordinate axis? 

1328. Find the equation of a plane through the point (1, 1, 1) and 
perpendicular to each of the planes 

22-—-38y¥+72e=1, 2-222. 

16. Write the equation of a plane whose distance from the point 
VV 

Point (2, 1. -1). 
17. nr 

which is parallel to the line 

2x - 3 T 22 0, 247512710. 

18. Find the traces on the codrdinate planes of the line 

2 - 32 T4 - 220, sre yte+1 =O, 

19. Prove that the planes 

21 — 35 T2411 20 

51 12 —1 20, 

Wr+3y+42-6=0, 

have one line in common. 

oi Aes . 1 

„„ 



. 22-82+y-2= 0, ee 

aa and the point (5, 2, 6)? | es 

es us 21. Show analytically that the locus of a point equidistant from 
oe ec: given points is a straight line perpendicular to the plane 
ae those three points. 

22. Derive equation [17] directly from a figure, without wing 2 
tion [16]. 



CHAPTER IV 

EQUATIONS OF THE SECOND DEGREE 

QUADRIC SURFACES 

225. The locus of an equation of second degree. The most 

general algebraic equation of second degree in three variables 
may be written 

A. + By? + Cz* + 2 Fs +2 Gas +2 Hey +2 Lae +2 My 
+2Nz+K=0, . . * [31] 

Any surface which is the locus of an equation of second 
degree is called a quadric surface, and is of particular 
interest because of its close connection with and analogy to 
the conic sections. In fact, every plane section of a quadric 
is a conic, as may be easily shown as follows. 
Buy Art. 207, any plane may be chosen as a codrdinate plane, 
and the transformation of cobrdinates to the new axes will 
leave the degree of equation [31] unchanged; te., the new 
equation of the locus will still be of the form [31], though 
with different values for the coefficients. To find the nature 
of any plane section, choose the given plane as (say) the zy- 
plane of reference, and transform to the new axes; the new 

equation will be of form (1). Then let z=0. The equa- 

tion of the section of the quadric is 

Az? + By? + 2 Hry 2 L +2My+K=0;..(1) 

and this, by Art. 175, represents a conic. 
367 
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Moreover, the trace of the surface on any parallel plane, ' 
as z= a, is given by the equation 

Ax? + By? + 2 Hey + 2(L+aG@)2+2(M+aF)y 
4 ( ＋ 2 NTT) O0. “Ge 

Now, by Arts. 177, 181, the loci of equations (1) and 
(2) are conics of the same species, and with semi-axes pro- 
portional; therefore their eccentricities are equal, and the 

curves are similar. Hence, all parallel plane sections of a — 
quadrie are similar conics. | 

226. Species of quadrics. Simplified equation of second 

degree. As will be seen in the following sections, quadric — 
surfaces may be conveniently classed under four species. 
For, although different plane sections of any surface will in 
general be conics of different species, still the general form 

of the surface may be characterized most strikingly by those 
plane sections which are ellipses, hyperbolas, parabolas, or 
straight lines. These species are called, respectively, ellip- 
soids, hyperboloids, paraboloids, and cones; and each species 
has special varieties, depending upon the nature of a second 
system of plane sections. To study these species it will be 
well to simplify the general equation of second degree as 
much as possible by a suitable transformation of codrdinates.* — 
A transformation of coördinates changing to a new 

rectangular system having the same origin as the old, by 
equations [14], will transform the given equation of second 
degree to N 

Al + By? + C ＋ 2 Flyz +2 M ＋ 2 A 2 Li 

＋ 2 2 N= HO.. . Ge 

where A’, B... V are functions of the nine direction angles 

* Compare with Art. 175. 
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a dy of the new axes, which are limited by the six inde- 

pendent equations noted in Art. 207. These angles, therefore, 
may be so chosen that three additional conditions shall be 
fulfilled; hence, so that the coefficients F’, G, and H’ shall 
vanish. Then the new equation of the quadric will be 

A Bly O LET VTV KO. (2) 
Now a second transformation may be made to a parallel 

_ system of axes through a new origin (A, K. J), by equations 
[13], giving for the new equation 

AA + By + O28 +212 +2 My +2N"2 + K' = 0, (3) 

in which L“, M, VV, and K“ are functions of the codrdi- 
nates h, k, and 7 ; and these codrdinates may be chosen so that 
L, M", and “ will vanish, giving for the simplified form 
of the equation of the given quadric, 

ABN OTO. 09 

It may happen, however, that the choice given above for 

the direction angles «,, a, ---, of the new axes is such that 
the coefficient of one more term of second degree, as C, will 
also vanish ; then equation (4) would reduce to 

A't+ Byi+K'=0, . . . (5) 

and the surface is a cylinder (Art. 210). Again, if also IL“, 
M, V' are not independent, and the values of A, K. J as 

given above are therefore indeterminate, then A, k. 7 may 
be chosen so that, for example, L“, M“, and K shall vanish ; 

and the equation of the quadric becomes 

4 + Byfit2ZNvsew0.® . . . (6) 

It the coefficients of two quadratic terms vanish, as H and C, a change 
of origin first, then of direction of axes, may be chosen so that the equation 
will reduce to the form (6). 

TAN. AN, Grom, — 24 
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The two forms of the quadric, not already discussed,“ 
have therefore for their e when simplified (dropping 
the accents), . 

Ax + By? + „ 132 
and 4 ＋ Byt+2Ne=0. . . 33 

A center of a surface is a point such that it bisects every 
chord of the surface which passes through it. It is clear 
that the locus of equation [82] is a central quadric, while 
the locus of equation [33] is non-central (cf. Art. 178). F 

227. Standard forms of the equation of a quadric. For 
convenience of discussion, the intercepts of the locus of 
equation [32] on the codrdinate axes may be represented by 
a, ö, e, respectively, so that 

a = - , . Om —=, s evs (0 

Then, since A, B, C, and K cannot be all of the same sign, 
there will be three types of equation [32], according to the 1 

signs of A, B, C, and K; viz.: 

22 % 22 „ h =! „ ee 

22 2 
e — . . (3) 

22 yp 22 a 

Similarly, equation [33] may be written for convenience in 
the typical forms 

25 0 0 5 (5) 

ges 0 
* An exceptional case occurs where the general equation can be factc 

into linear factors, and therefore represents two planes, 
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_ wherein, however, a and 6 are no longer intercepts as in 

2), @), and (4). 
Again, if the equation [82] has its constant term zero, it 

may be written in two typical forms, 

31 14-0, ° ° 1 

321 - 4-0 „ 

These seven equations are standard forms of the equation 
of second degree, and will be discussed in turn. 

228. The ellipsoid: equation w+ +=. From the 

equation 

2. 3-1. . 030 

the following properties of its locus may be derived: 
() The traces on each codrdinate plane are ellipses, having — << 
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the semi-axes a and b in the zy-plane, ö and e in the 9%“ 
plane, and e and a in the zz-plane. 4 

(2) The traces on planes parallel to any coérdinate plane 

are similar ellipses (Art. 225). 4 

(3) The equation may be written 

2 2— 1 
C ee 

a a 

hence for a plane section parallel to the yz-plane, the semi- 
axes are real if the value of z lies between — a and a, 

imaginary if beyond those limits, and zero if 2 = +a. More- 

over, the length of the axes diminish continuously from the 
values 5 and e, respectively, when 2 = 0 to the value a | 
when & = ad. f 

Similarly for sections parallel to either of the other 

coördinate planes. a 

(4) The surface is symmetrical with respect to each co 
ordinate plane. 4 

This quadric surface, the locus of equation [34], is called 

an ellipsoid. It may be conceived as generated by a variable 
ellipse, which has its vertices upon, and moves always per- 
pendicular to, two fixed ellipses, which in turn are perpen- 7 
dicular to each other and have one axis in common. f 

From this definition equation [34] can be easily derived. Lee 
_ CRA and ASB be fixed ellipses perpendicular to each other, and having 4 

the semi-axis OA in common, 

7 and the second axes OC and 
OB, respectively; and let SPR 
be the variable ellipse, with 
semi-axes MS and MR. If 
OA, OB, OC be taken as the 
2, V, Z axes, respectively; and 
P be any point on the moving 
ellipse, with coördinates OH, 
MM’, HP, then (by Art. 11 ñ 
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WP . Y ae V * . NN ae 
we gs”. 80 Ob OA 

. . ES MR x? | 2 0 I 1. () rar e al @ 

By equations (2) and (3), 
MR? = o (1 -=), WS = (1 -=)} 

Substitution in (1) gives 3 * 3-1. 

Every algebraic equation of the form 

Af + By H K = 

represents an ellipsoid. If two of the coefficients of the 
variable terms are equal it is an ellipsoid of revolution, 
either an oblate or prolate spheroid; and if the three co- 

_ efficients of the variable terms are equal, it is a sphere 
(ek. Art. 213, eqs. (10), (11), and (8)). 

22 (The un-parted hyperboloid: equation “5 +¥)—*)=1. 
From the equation 

2 + 5 5 114 a eee 

the following properties of its locus may be derived: 
(1) The trace on the zy-plane is an ellipse, with semi-axes 

a and 5; while the traces on the yz- and zz-planes are hyper- 
bolas, having the semi-axes 4 and e, e and a, respectively, 
and the conjugate axes along the z-axis. 

_ (2) The traces on planes parallel to any codrdinate plane 
‘are similar conics, ellipses or hyperbolas, respectively 
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(3) The traces on the planes z = d, 4 =- a, yah yaad 
are in each case a pair of intersecting straignt lines. a. 

Fic. 158 

(4) The equation may be written 

22 i 4 
ae + 2) * 52002 ee 2 = 1, . . . (1) i 

* ce j 

— 4 
Kaa) Mao 

a* a2 . 

zy-plane is the smallest of the system of ellipses parallel 
to that plane, and that the sections increase continuously 4 

and indefinitely as z increases from 0 to + œ. ¢ 

From equation (2) it appears that the transverse axis 
of the hyperbolas parallel to the yz-plane is parallel to the 
y-axis. Similarly, for the zz-sections the transverse axis 
is parallel to the z-axis. 



un- parted hyperboloid, or an hyperboloid of one sheet. It 
may be conceived as generated by a variable ellipse, which 
has its vertices upon and moves always perpendicular to two 
fred hyperbolas, which in turn are perpendicular to each 
other, and have a common conjugate axis. Its equation 
dan be readily obtained from this definition.* 

_ Every equation of the form A4 + B/f— C#—K=0 
represents an un-parted hyperboloid. If the two positive 
coefficients are equal, i.¢., if a = 4, the quadric is the simple 

_ hyperboloid of revolution (Art. 213, eq. (12)). 

230. The bi-parted hyperboloid: equation 2-3-1. 

From the equation 

i 
4 
a 

tf. eos 
a * ce * * bel [36] 

the following properties of its locus may be derived: -* 

= he ry 5 * 4 7 

ae ae r 1 

4 ~f 

3 a 
i 

a . . yo 4 
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(1) The traces on the zy- and zz-planes are hyperbolas, 

with semi-axes a and b, e and a, respectively, and with the 

transverse axis along the z-axis, while the traces on the 
planes parallel to the yz-plane are imaginary if z lies 
between a and — a, real ellipses if z is beyond those limits, 
and points if z= + a. 

(2) The traces on planes parallel to any codrdinate plane 
are similar (Art. 225). | 

(3) The elliptical sections parallel to the yz-plane increase — 
continuously and indefinitely as z varies from + @ to ＋ , 
or from — ato — o. | 

(4) The surface is symmetrical with respect to each — 
coérdinate plane. 

This quadric surface, whose equation is [86], is called a 
bi-parted hyperboloid, or hyperboloid of two sheets. It may 

be conceived as generated by a variable ellipse which has 
its vertices upon, and moves always perpendicular to, two 
fixed hyperbolas which in turn are perpendicular to each 
other, and have a common transverse axis. This definition 

leads readily to the equation [36]. | 
Every equation of the form Az* — By? — C2 H = rep- 

resents a bi-parted hyperboloid. If the coefficients of the 
two negative variable terms are equal, t. e., if ö c, the sur 
face is the double hyperboloid of revolution (cf. Art. 213, 

eq. (13)). 
— 

231. The paraboloids: equation 3 A disoussion 

of the equation 2 + yee ° K [87] 

similar to that of the preceding articles shows that its locus 



is as represented in Fig. 160, 
symmetrical with respect to 
che yz- and r- plane, but not 
with respect to the zy-plane. 

a variable parabola which has 
its vertex upon, and moves 
always perpendicular to, a 
fixed parabola, the axes of the two parabolas being parallel 
and lying in the same direction. This definition leads 
directly to equation [37].* 

Every equation of the form Az* + By* — 2 Nz = 0 repre- 

_ sents an elliptic paraboloid. If the two positive coefficients 

are equal, the quadric is a paraboloid of revolution (cf. Art. 

2183, eq. ()). 
Similarly, the equation -- „ 

20-231. QUADRIC SURFACES 377 
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has for its locus a surface as represented in Fig. 161. This 
quadric is the hyperbolic paraboloid, and may be conceived as 
generated by a variable parabola which has its vertex upon 
and moves always perpendicular to a fixed parabola, the axes — 

of the two parabolas being parallel, but lying in opposite 
directions. Equation [38] may be derived at once from 
this definition.* 

Every equation of the form Az*— By*— 2Nz=0 repre — 

sents an hyperbolic paraboloid. 1 

232. The cone: equation 2+ 3-0 The equation a 

＋ * 
GF POE | 

isfied by the codrdinates of only 
one real point, viz. the origin. 

No further discussion of this 

equation is necessary. But the 
equation | 

2+%-5- 0. [89] 

has a locus of importance, hav- 
ing the following properties 

(1) The origin is a point of 
the locus. 

(2) The trace on the 25. 
plane is a point. The traces 

on planes parallel to the zy-plane are similar ellipses, whose 
semi-axes increase continuously and indefinitely as 2 increases 
from 0 to +o. 

(3) The trace on each of the other codrdinate planes is a 
pair of straight lines which intersect at the origin. } 

= 0 evidently is sat- 

See Art. 228, 
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(A) The surface is symmetrical with respect to each codrdi- 
nate plane, hence also with respect to the origin. 

(5) The straight line through the origin and any other 
point of the locus lies wholly in the locus. 
This quadric surface is called a cone, and the origin is its 
vertex. It may be conceived as generated by a straight line 
which moves along a fixed ellipse as directrix, and passes 
through a fixed point in a straight line which is perpen 

_ dicular to the plane of the ellipse at its center. 

_ Every equation of the form Az* + By? = repre- 
_gsentsacone. If the two positive coefficients are equal, it is 
a cone of revolution, or circular cone (cf. Art. 218, eq. (9)). 

_ The reasoning of Art. 225, applied to the special equation 
of the form [31] which represents a cone, gives an analytic 
proof of the fact that every plane section of a cone ia a 
second degree curve (cf. Art. 48; Appendix, Note D). 

233. The hyperboloid and its 

asymptotic cone. The hyperboloid . 

322.1 
„ RB @ 

iad the con 

81 
* 

are closely related. It is clear 
that, since the equations differ 
only in the constant terms, the 
surfaces can have no finite points 
in common; while as the values 
of y and s are increased indefi- 
nitely, the corresponding values 

z from the two equations be- 
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come relatively nearer. In fact, the hyperboloid may be 
said to be tangent to the cone at infinity, and bears to 

the cone a relation entirely analogous to that between 
the hyperbola and its asymptotes. In the same way, 

the cone 2 75 25 0 is asymptotic to the hyperboloid 
a 02 

ae a” 
EXAMPLES ON CHAPTER IV 

1. Derive the equation [35] directly from the definition of Art. 220, 
2. Derive the equation [36] directly from the definition of Art. 230. 
3. Derive the equations [37], [38] directly from the definitions on : 

Art. 231. 4 

4. Derive the equation [39] directly from the definition of Art. 222. 

. Show analytically that the intersection of two spheres is a circle. 

; Find the equation of the tangent plane to the sphere (z e 
+ 25 b)? + (- c)? , at any point of the sphere. 7 

. Show that the equation Az,z + By,y + Czz + K=0 represents . 

a ace tangent to the quadric, 4 + By? + Cz2+K=0, at the pon 
(r V 21) on the quadric. 5 

5 8. Find the equation of the cone with origin as vertex and the ellipse ] 

= +1 =1 in the plane a = — 2, as directrix. 

9. Find the equation of a sphere having the line from PiS (rp V 0 x 
to P. (Ly e 22) as a diameter. 7 

10. Show that a sphere is determined by four points in space. 

Write the equation of the quadric whose directing curves have the 
equations: 3 

2 3° 9 

ie 8 
13 

eat 88 13. ani, and 751 21. 

14. 2 16 , and = 9K. 

15. 22 — 4 = 0, and 22 ＋ 3520 
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NOTE A 

Historical sketch. Analytic Geometry, in the form in which it is 
now known, was invented by René Descartes (1506-1650) and first pub- 
lished by him in 1637, in the third section of a treatise on universal 
science entitled “ Discours de la méthod pour bien conduire sa raison et 
chercher la verité dans la sciences.” He made the invention while 
attempting to solve a certain problem, proposed by Pappus, the most 
important case of which is: to find the locus of a point such that the 
product of the perpendiculars drawn from it upon m given straight lines 
shall bear a constant ratio to the product of the perpendiculars drawn 

_ from it upon n other given straight lines. By pure geometry this prob- 
lem had already been solved for the special cases when m= 1 anda =1 

or 2. Pappus had also asserted, but without proof, that when m = n = 2, 
then the locus of this point is a conic. In his effort to prove this fact 
Descartes introduced his system of cotrdinates and found the equation 
of the locus to be of the second degree, thus proving that it is a conic. 

Analytic geometry does not consist merely (as is sometimes loosely 
said) in the application of algebra to geometry: that had been done by 
Archimedes and many others, and had become the usual method of pro- 
cedure in the works of mathematicians of the sixteenth century. But in 

all these earlier applications a special set of axes were required for each 
individual curve. The great advance made by Descartes was that he 
saw that a point could be completely determined if its distances, say z 
and y, from two fixed lines, drawn at right angles to each other, in the 
plane, were given: and that though an equation f(z, y) =0 is indetermi- 
nate and can be satisfied by an infinite number of values of æ and , yet 
these values of z and y determine the cotrdinates of a number of points 
which form a curve of which the equation r, ) = 0 expresses some 
geometric property, i.¢., a property true for every point of the curve. 
Moreover, he saw that this method enables one to refer all the curves 
‘that may be under investigation to the same set of axes; and that in 

© Taken chiefly from Ball’s History of Mathematics. 

881 
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order to investigate the properties of a curve it is sufficient to select any 
characteristic geometric property, as a definition, and to express it as an 
equation by means of the (current) coördinates of any point on the 
curve; ie. to translate the definition into the language of analytic 
geometry — the equation so obtained contains implicitly every property 
of the curve, and any particular property can be deduced from it by 
ordinary algebra. 

While the earlier geometry is an admirable instrument for intellectual 
training, and while it frequently affords an elegant demonstration of 
some proposition the truth of which is already known, it requires a 
special procedure for each individual problem; on the other hand, 
analytic geometry lays down a few simple rules by which any property 
can be at once proved. It is incomparably more potent than the 
geometry of the ancients for all purposes of research. 

NOTE B 

Construction of any conic, given directrix, focus, and eccentricity. 

DD be the directrix, F the focus, and e the eccentricity of a conic 
(cf. Part 1, Art. 48), to plot the curve. f 

D 

IL. ree 

| 
ban i 

ifa=ZXZIW, tana=e. Now draw FR perpendicular to ZF, cuttin f 
ZW at A; then E is a point of the conic; it is the end of the latus rectum, 

Bisect the right angles at F by FH, and ,, intersecting ZW in H 
and V and draw Hi and HA“ perpendicular to ZX; then A and A” 
are points on the curve; they are the vertices of the conic. 7 
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big . aillijen W; draw 0 pos 
|  pendicular to ZX, cutting it at M; and from F as a center with MG 
* radius describe an are cutting MG at P. Then P is a point of the 
curve. 

Proof: for the point A, 2. tana = ¢; 

4 for the point A, af AM tana = ¢} (CA = 45°] 

bor the point P, pra ya tana =e; 

„ P are. cock thet thelr ee tron thn 
directrix and from the focus are in the ratio e; and each is therefore, 
nn given in Art. 48, a point of the conic. By 

various points Y (and the symmetrical points Y) and connecting 
them by a smooth curve, the conic may be plotted to any required degree 
ol accuracy. 7 
It a<45°, then tan a I, i., „ I, and the conic is an ellipse; if 
a= 45°, the conic is a parabola; and if a > 45°, the conic is an hyperbola 
Gt. Part I, Art. 48). 

NOTE C 

The special cases of the conics. The locus of the second degree curve 
bas been seen to have three species, according as ¢ <1, ¢=1, or e>1. 
Ife = 0, then, since h is defined by the equation 5 = a*(1 , b= a, 
r it is a circle; in this case, 

o, the directrix is at infinity and the focus at the center, fer the equs- 

2 of the directrix is z=", and the distance from the center to the 

‘focus is ae (ef. Part I, Arts. 110, 116). 

D 

L ee * 
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Again, suppose the focus F to be on the directrix. Then, if P is any 
point of the locus, and LP perpendicular to FD, 

FP =e-LP, . . . (1) 

and sin 2PFL = „* 

hence the angle PF is constant, with two supplementary values for a 
given value of e. | 

The locus consists therefore of two straight lines intersecting at V, 
and equation (2) shows that: 4 

if e>1, the lines are real and different; 

if e = 1, the lines are real and coincident; 

and if e<1, the lines are imaginary, and the real part of the locus 1 
consists of the point F. 

Suppose now the directrix, with the focus upon it, to be at infinity; 
then, if e 1, the locus is a pair of parallel lines. : 

These results agree with those already summarized in Art. 182. 

NOTE D 

Sections of a cone made by a plane. The following proposition is 
due to Hamilton, Quételet, and others (see Taylor’s Ancient and Mods 

ern Geometry of Conies, p. 204). | 
If aright circular cone is cut by a plane, and two spheres are inscribed 

in the cone and tangent to this plane, then the section of the cone made 
by the plane is a second degree curve (cf. Part I, Arts. 48, 175), of Which 
the foci are the points of contact of the spheres and the plane, and the 
directrices are the lines in which this plane intersects the planes of the 
circles of contact of the spheres and the cone. 

Construction: Let O-VW be a right circular cone cut by the plane 
HK in the section RPS, P being any point of the section. Inscribe 
two spheres, C-ABF and CAR F, whose circles of contact with the 
cone are AEB and A'E’B’, respectively, and which are tangent to th 
plane HK in the points F and F. Through P draw the element OP of 
the cone, cutting the circles of contact in the points E and E“. Als 

pass a plane MN through the circle AEB, and therefore perpendicular 
to the axis OCC’ of the cone; it will intersect the plane HX in a straight 



' fine GDL, which is perpendicular to the straight line FF. Draw PL 
perpendicular to GDL. 

’ 

Tuben PL makes a constant angle @ (= FDA) with the plane MN 
_ [since PL is parallel to FF], and, if p represents the distance from the 
point P to the plane MV. 

0 v = PL ind. . . . Q) 

Also PE, being an element of the cone, makes a constant angle u 
with the plane MV, and 

. p= PEsina, . . . 

1 Again, since tangents from an external point to a sphere are equal, 

| PE = PF. . . * 

TAN. AN. Grom, —26 
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Hence; from equations (1), (2), and (3) 

PE. sin 9 4 
EA e, a constant, N e 0 (4) 

i. e., the ratio PF’: PL, for every point P of the section SPRQ, is constant, , 
and (Part I, Arts. 48, 175) the section is a second degree curve, with a to 

at V, directrix GDL, and eccentricity n- ein 2 

Similarly, V is the other focus, . the line of intersection of the 
planes HK and A is the other directrix of the conic SPRQ; hence 
the theorem is established. 4 

Moreover, the plaue V W, being perpendicular to the axis of the cone, 
and OVW, being a section made by a plane passing through the axis, 
a= ZOVW, and is constant for a given cone, while 6= ZOSR, and 
varies only with the plane HK. . 

Hence the eccentricity varies with the inclination of the plane HK, a 
and there are the three following cases : 

if 6< a, then e <1, and the section is an ellipse; 

if 0 = a, then e = 1, and the section is a parabola; 

if @> a, then e>1, and the section is an hyperbola. 

Again, if the cutting plane HK passes through the vertex O of the 
cone, then the focus F is on the directrix GDL, and the section will be 
either a pair of straight lines or a point: q 

if 0 < a, the section is a point, the vertex O of the cone. 

it @= a, the section is a pair of coincident straight lines, an element of 
the cone; { 

if 6> «a, the section is a pair of intersecting straight lines, two elements 
through the vertex (cf. Note C). 1 

It is, of course, evident that for every elliptic section of the focal 
spheres both lie in the same nappe of the cone, and touch the plane of 
the section (HRK) on opposite sides; while for every hyperbolic section 
these focal spheres lie one in each nappe of the cone, and both on the 
same side of the plane of the section. 4 

In the above proof, for the sake of simplicity, a right circular cone 
was employed; it is easy to show (see Salmon’s Conie Sections, p. 329) 1 
that every section of a second degree cone (right or oblique) by a plant 
is a second degree curve. 
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ee ee 
in ‘ease of an ellipse (ef. Note E). 

= NOTE E 

Puarabola the limit of an ellipse,* or of an hyperbola. If a vertex 
and the corresponding focus of an ellipse remain fixed in position while 
te center moves further and further away, the major axis becoming 
infinitely long, then the form of the ellipse approaches more and more 
nearly to that of a parabola having the same vertex and focus. 

* 

wn ts caaily shown as follows: 
The equation of the ellipse referred to its major axis and the tangent 
pst ts left-hand vertex, an courdinate axes, is (Part I, Art, 112) 

Teel) ae OS MS ee 

whic may be welson inthe for 

„= Er- 0 . . @) 

If now the fixed distance OF be represented by y, then 

4 p= OF = 0C — FC =a-vVa -¥, 

whence e 

1 

nis fact is of importance in astronomy in connection with the behavior 
of cometa, 
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Substituting these values in equation (2) it becomes | 

=( -A- -( - lo. % 
a 

and the limit of this equation as a approaches , p remaining constant, is 

y*=4 pz; . . . (4) 

which is the equation of a parabola, and the proposition is proved. | 
In the same way it may be shown that the parabola is the limit to 

which an hyperbola approaches when its center moves away to infinity, 
a vertex and the corresponding focus remaining fixed in position 
(cf. also Note D). 

NOTE F 

Confocal conics.— Two conics having the same foci, Fi and F,, are 

called confocal conics. Since the transverse axis of a conic passes through) 
the foci and its conjugate axis is perpendicular to, and bisects, the line 
joining the foci, therefore confocal conics are also coazial,* i.e., they have 
their axes in the same lines. If the equation of any one of such a system 
of conics is 

22 * f 

gt 0 ee oe 
and if & is an arbitrary parameter, then the equation 

x? ye — 

N 
will represent any conic of the system. For, a and b being constant, and 
a>b, equation (2) represents ellipses for all values of A between 
and — }*, hyperbolas for all values of A between — 52 and — a’, and 
imaginary loci when A< — a?; moreover, the distance from the center 
O to either focus for each of these curves is | 

V(a*? + A) - (6+ A), 

which equals Va? — 42, and is therefore constant. i 

The individual curves of the system represented by equation (3) ars 
obtained by giving particular values to A, each value of A determining 
one and but one conic. If any one of these conics is chosen as the 

* Coaxial conics are, however, not necessarily confocal, 



Through any assigned point, P, =(z,, y,), of the plane, there passes one 
ellipse and one hyperbola of the system represented by equation (2). 
For substituting the cotrdinates z, and y, of P, in equation (2), it gives 
the quadratic equation * 5 

=> * * * 

Tex Wek ®) 

for the determination of A. Equation (3) gives two values of A, hence 
two conics of this confocal system pass through Pi. That one of these 
is an ellipse and the other an hyperbola is shown as follows: the quad- 
ratic function in A 

a RS | Soe 
* ＋ A +A 

is negative when A = T, and, as A decreases from +a to — , this 
function becomes positive just before A = — , negative again just after 
A= and positive again just before A - i hence, of the two 

roots of equation (3), one lies between — B and , and the other between 
- and — 5; and therefore of the two confocal conics which pass 

_ through Pi, one is an ellipse and the other an hyperbola. Moreover, the 
two confocal conics which pass through any given point, as P, =(z,, y,), 
of the plane intersect at right angles. This is easily seen 
thus: connect Pi with the foci F. and F, then the tangent P. Ii to the 



ve eS eee 
* * 8 oe oa - 

; ei 
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hyperbola through Pi bisects the interior angle between Fi Pi and F,P,, 
while the tangent 77 75 to the ellipse through this same point bisects the 
external angle formed by these two lines (cf. Part I, Arts. 148, 163); 
these tangents are therefore at right angles, hence (cf. Part I, Art. 100) 
the conics intersect at right angles. . 

This fact could also have been readily proved analytically by compar- 
ing the equations of the two tangents. | 

Remark I. It is easily seen that as A approaches — h from the positive 
side, the ellipses represented by equation (2) grow more and more flat 
(because the length of the semi-minor axis VII A approaches 0), 
approaching, as a limit, the segment FF, of the indefinite straight line 
through the foci. On the other hand, if A approaches — 52 from below, 
then the hyperbolas grow more and more flat, approaching, as a limit, 
the other two parts of this line. Again, if A approaches — a? from 
above, the hyperbolas approach the y-axis as a limit. q 

Remark 2. Since through every point of a plane there passes one 
ellipse and one hyperbola of the confocal system represented by equation 
(2), and but one of each, therefore the two values of A which determine 

these two curves may be regarded as the codrdinates of this point; they 
are known as the elliptic codrdinates of the point. If the rectangular 
coordinates of a point are known, the elliptic coérdinates are easily found 
by means of equation (2). 

E. g., let P. (r V be the point in question, then the elliptic coér- 
dinates of Pi are the two values of A, which are the roots of equation (3). 
So, too, if the elliptic codrdinates are given, the Cartesian codrdinatescan 
be found. ! 

Remark 3. The above observations concerning confocal conics are 
easily extended to confocal quadrics, i.e., to quadric surfaces Whose 

principal sections are confocal conics. They are represented by the 
equation 4 

— 4 y? 22 A fe 
a? + 588 ci ＋ A 



ANSWERS 

Page 8. Art. 7. 

41 u . Yen, 4 Yes, if wis positive; ye, & ame 
10. Yes; yes; yes. 
= Page 10. Art. 9. 

‘ 3+m 1 — 
432 at m) Tarte ee roots are equal if 

maf A VIB 

q . (1) imaginary ; (2) imaginary ; (3) real and unequal. 
8 (1) m=2 er-; (2) m=—- Wi E ib; () m=3 or -—5; 

| 4) masa vii. 

9. (1) c=4; @) ems; (3) c= +2 Vd. 

10 Rx. 2. 2 4 Iv; Ex 3. r= NA NI; 
7 4, 

Ex. ö. 58 

t 2141 . 

DL 2z2t40r 43; z=—2or — . 

Page 14. Art. 12. 

. 2 N 1 1; 

S331 
42 — 222 

20+¢m) 20675 
3 iin. 

G 2(1 +m) } 
& (1) (2-4) (@-1); (2) @ +4) -N 

(8) m{z-3 -1 vo-Tem} {2-3 +1 Wo-Tem}; 

o - (ire, -- Vee} 
(5) (Sw! + 2) (we! — 82); ee +6y) (1—8y). 

oe 
> . 4 
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322 Am 3. 2 
a arri ee a + 5 VIB; 

4; one root becomes infinite if m = — 

m +3 1 2(m+2) {2+ 77 re Re Tm? — 82 m — 30 } 

m +3 1 5 {2 Nr , 

4. The roots are equal if n 0 ; the roots are real for all real 

values of m; one root becomes A wioas if m= 2; one root becomes : 
zero if m= 0; the factors are 

2243 2 G2) { log 1 8 5 555 

2m 73 1 
- 5 5). 

6. Real and equal; imaginary. 

7. () = .= H; ) Y =- N , RC, 6, 

3 ,; (4) - 84 N, y=V—6(84V14); 

(5) 4 0 or — er v bor ©); (6) 4 44, y=0. 

8, 9. (1) b=+av37; (2) ö ; (3) D 4 2 . 

Page 19. Art. 16. 

1. 15 =~” 0.261800 approximately; 75 1.0472 appr. 
mately; etc. 

2 (3) ; (I)“ - 108°; (i)“ = 14° + 10/4. 26,2"; ete. 

8 1 VI. 3. sin = 4 , cosd=+ ——, cot d=}, sec o = VI, esc =; 
vio’ vio’ y N 8 

ame =. N oo tan x = l, cotz=F 1, esc r =+V2; eto. 

4. sin 30° = }, cos 30° = } V3, ete. ; sin 45° = cosa = ete.; sin obe 

cos 30° V, cos60° = J, etc.; sin90°=1, cos 90° =0, 33 sin 135° = 

nt ws 6° = ——L, sin (— 45 — — 45 2 773 cos 1 Vi ete. ; ( P) as Vi cos ( 2 Vi etc. 
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6. tan 36007 =tan 80’ = cot 10"; —cac 200" = cac 70° = ace 20°; sin( —300")= 

un 9 ; — cos tEF = — con; cot (— 1216") cot 45". 

6. (1) ane = — cos210” = cos 30” = ain 00", hence one value of @ is 60"; 
(2) @= 30°; (3) c= 00"; (4) cai WD. 

Page 23. Art. 17. 
8 8 4 4, 0, . a 1. J. i i, 0, 3 Via’ va 

4 <G; it @ te the edge of the cube. 5. , 16 ein a. 6 b ain . 7. O 

Page 28. Art. 22. 

8. Point of intersection is (0, 0); middle point is (0, 0). 

4. On the axis of abscissas (z-axis); on the axis of ordinates (y-axis); on 
the line bisecting the Ist and 3d angles formed by the cordinate axes; on 
the line bisecting the 2d and 4th angles formed by the coUrdinate axes. 

. y= 0, 4 0, 2-7 8 0, z+ y=. 

6 (- 0), (J, o), and (0, 1d) (0, 0), (8, 0), and (0, 5). 
7. (IVI, o), (o, 1), (- 1, o), and (0, —§v%); (0,0), (0, 5), 

(6V2, 0), and (5V2, 8). 
8. (3, 5}. 9. Vite; Vere 

Page 30. Art. 23. 

Se —3 * — 7 r 2. G. 00, 6,07). 4 ( sz), (2. 1). (2, Y. , 
(8, 1085), (-8, 28850; (6, 300), (5, 9005), (6, -0°); (0, 2400), 
(0, 120%, (0, 3005). 

5. On circumference of a circle of radius 7 and center at the pole; same 
circle ; on the line through the pole making an angle of 26° with the initial 

line ; on the initial line; on the initial line. 

6. p=7; p=—7; 0= 25°; 0= 00); O=— 180". 

7. Parallel to the initial line. 

Page 33. Art. 27. 
1. AM, , Vii. 2. MII. VI vi06. 
4 Vera by, 2. 

7 * 13 * 5. Via 12 008 f. v1, V5 — 4.008 Be, 7. 8 or — 16. 

8. V(2+2)?+ -3) 23, Le. 2494 42—6 944-0; s. 

9% 182+4y=61. 10. 1; 4; — 11 



) 

ee ee 

ANSWERS 

Page 37. Art. 29. 

(1) 4; (2) 184; () 73. 3. Yes. 4. Yes. 5. 7 1. 2A. 250 

Page 39. Art. 30. 

(J, o) and (1, 2). 6. (J, ) and (1, 1). 7. OS (8, 0). 

Pages 41, 42. Examples on Chapter II. 

56}. 2. alt. is 12V2, base is 4/2, sides are 2V74, area is 48. 
(4, 9); (8, 21); (7, 24). 4. (7, 9). 5. 4V 1237. 

14 - ; V19 + V89 + -V73 - 24V3. 

Slopes are: 1, 1+v3 1—v3 
1-v3 14+Vv3 

V(h+1)?+ (k—1)?= V(hi— 1)? + (k—-2)%, i.e. 4h42k=3; k =. 
(1, 1), (711, 5) or (18, 1). 15. (3, — 5 
(faz 22. tat is), — i . 

3V 10+ 3V34+6V2+V34+3V2—-v3. 21. (K IVS, V5). 

Pages 53, 54. ‘ast 39. 

(J, ®- 2. (3, 0). 3. (0, 2), (—$, — §)- 

(2V— A- 5V— fr) (-—2v — tr — 5V— sr). 

+ V6(1 + V2) sev), 
2 2 

Two of the four points are: ( 

(0, -a), ( 8 7. (0, 0), (4p, 4p). 
a ab 2 20 4 bas 2 2 3400). (enk 45 C b =, LU r vd 40) 

(X VII, 4æ V5). 10. (14 22, 242V—2). 
(p = 6, 6 = cos). 

p and @ of the points of intersection satisfy the equations: 

p?v2 = 9(1 + Vp? — 1) and @= -(). 

Page 56. Art. 40. 

The two axes, i.e. the loci of y= 0 and z=0. 

The loci of f ＋ 0 and 5-2 =0. 3. 4 0 and 324+ 2 7. 

4 2 0, y=0, and 55 22 20. 5. 4 — 1 0 and & - 10. 1 

42 ＋ * A, 22 O, and - 222 0. ‘yi take 
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Page 56. Art. 41. 

A (a) P+y—24+k(224224+y*) we 0; (f) y —aine + (yy — 20o8z) =O. 
& (4) P-—4yt h(i —4z)=e0; (S) p—2e08l + k(pooné—j) =O, 

Pages 59, 60. Examples on Chapter III. 

1. The first two are not; the third is, 1 Yeu 3. 43; . 
4. This curve cuts the z-axis in the points (2, 0) and (3, 0); it cuts the 

y-axis in the point (0, ). 
6. The z-intercepts are 4 3, and the y-intercepts are 4 4. 

6. The z-intercepts are — 3 + 2 . and the y-intercepts are 2 + V7, 
7. (o, o). . (+a, 0). 
8. The four points are: (+ Vio, 4 IV); the lengths of the sides are: 

2V10 and 8V6; and the lengths of the diagonals are MN. 
10 120%, 1. pV TS. 12. Yes. 13. Yes. 

Distinct points if b << 1. 
14 For m* > 333, 15. {Coincident potnt i b=1. 

Imaginary points if b> 1. 
16. ¢=+ ö. 17. <2 + y* — 26 KN — 42) = 0. 
a (S2—2y+12)(¥—42)(+y¥—a*)=0. 9. (6,0) and (6,0). 

Page 65. Art. 45. 

1. 42—5y+31=0; 832—5y+31 =0; the origin is on the positive 

side of each of these lines. 
2 3-2 2 0 through the origin; yes. 
J £-y=12; 24+y74+2=0. 4. c£+vViy+2V84+6=20 

6. * 4102+ y* =0; outside, 

Page 67 Art. 47. 

. 2-12+y7+9=0., 2 182+4y=61 
E Ar. 4. ¥ =8(z—2). 
02? + 4y* = 36. 6 4y?°—-2=4, 

Pages 79, 80. Examples on Chapter IV. 

4z+y=ll, c—y=9, and 2 T 11. 

r—y=l, 2+y=3, 23, and a2 717571120. 
Center is at (0, 1), radius is 2, eq. of circle is 1 2752 

(2) e+y=0; (8) 624+8y=59; () e-y=9. 

y= §2r+6, ie. 25-32 12. 6 1. 
4 x® + O68 y? + 2h zy — 380 x — B40 y + 775 = 0. 
62-8 y —Ozy 102 71 Wy— 31 <0. % y= 92%. 
(- aT ll. 37 0. 12, 027 218. 

eer 

Sexo sew 
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13. 2724 2y?— 10 105 4 25 =0, 14. O ar 4 2 br =? — at, 
16. r 4% 20. 16. 10 — 27 =9; 10r—8y 21 03 (11,450. 
17. 64 - 35 T1420. 18. b2+4y+4+24=0, or 5 ＋ 4 20 0. 
19. „ = tan . 

Page 84. Art. 52. 

2. (a) x+y=7; (8) y+ 38x=138; () Win (8) 159% 
— 201 T 177 2 0. 

8. (a) -= () 52—-2y=1; 00 - 1. 
6. “a 7. res 
8. No; this point and the origin are on opposite sides of the line. 

13 —13 
+ (52, 7 

4z+y=11, 
10. Equations of the sides are · 92+y=21, 

z—y=9%. 

2=8, 
Equations of the medians are: ] 72+3y= 13, 

174 ＋ 37 43. 

Medians intersect in the point (3, = . ; 

11. -. 12. 34 - 2 0, 34 4 0. 

Pages 85, 86. Art. 53. 

4. =" 4743; Man 4 =-v32+7-8Vv3 hy V5 8 Vi ; y ; 

~-+7+4+Vv3. Sgr 

5. oe (6) y=5-3; 221. 
6. — 41. . . 8. Ves. 

9. They differ in 8 gin re but have the same slope, 

10. The y-intercept. 1. E=; _2, 
＋ 2 — 2 a 

Page 88. Art. 55. 
1. 2 ＋ NY = 10. 3. VT =. 4 14+ IVI. 5. cet y+7=0. 

Pages 96, 97. Art. 60. 

. ( -I (8) , = © Z4+4e1 
. 

2. (a)y=z+4; 0 yatieee 5 faba 85 
3. Ca) 4&1 23 8 — 3 ＋ 283 „ 1 971 (y) Gi Val Va 

“ Vis n JV 
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is 8 distance from ts 2. 5. Slope 5 origin 77 

6. e+ yall; p= 12% 1 am- . da; 20,520 

9. A system of parallel lines of slope 6. 
10. All the lines passing through the point (0, 6). 
11. All the tangents to the circle of radius 6, and center at the origin. 

18. f ane 

(8) cosa = * 

G ——, sine = =; (9) cone =F, sina = 

18. (a) second ; (8) third; (v) fourth. u — 38; ae 

u. 4112. 17. fand — j. 18. and 1 

Page 98. Art. 61. 

— 2 ab — bsina + acosa 
0. arne 

Page 101. Art. 62. 

1. (a) yo G TT; (8) 3e2—Ty=k; ( c un Wek; 

(8) 21. — where & may have any value whatever. 

8. 48; — ii; fy; from the second line to the first in each case. 

4 (a) r+6y=d; (8) Tx+3y=b; () Zn -es; 
(8) 224+3y=b. 

5. 64 -y+55=0. 7. Az + By = Ax, i- 8. y= 22-8, 

9 127738. 10. 1252 — 110% 20. 
8 21 UI. 662 100% + 45=0. 12. (5 7 

Pages 103,104. Art. 63. 

L Sed S en. 4 41 4 „E 
VS A 5v3 12 

5. ern. 51 Aa- 4 cud; pad 
2v3 71 

b 2 ab a 
7. e- -F - 8. 2+2y= Merz - 2778620. 

ll. „22 — 10, 52 — 35 10, 2-5 +1 =O. 1 162-6. 

. (1) 32-25 +3=0; (2) 224+3y=11; 
(3) Q@v3 — 3)24+(8V5 eis; G) y=d 
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16. Yes; tan-! , tan! , tan-! I;. 
17. tan-1 (J), tan-1 (5), tan- (— }). 
18. Parallel if 5 =0; perpendicular if }? = a? +1, 

12 5 26 19. ee eee 20. 20 21. eas 

22. They make numerically equal but opposite angles with the z-axis, 

23. tan-1 (— 34); 7y 1, 724+9y =73. 
. 45°; (-5, 3); 22 2 +8, c= 35 T9. 

Pages 107, 108. Art. 64. 

a. % l ² m 6 
VAI Va? ＋ 5 v5 

F eek 10, M mt —b, 
VD V+ BR V58 v1 + m2 

11. Altitudes are: —2_, I., and V; the area is 1. 
I V 

18. PHT SOE =5 14. 2-512, and 72+7y=36. 

Page 110. Art. 65. 

1. — Sa 2. Other bisector is 212—77 y+61=0. 

35 — 4 24 — 5 5. tan-10 3 ); 4. 
* (Aa): * 4 775). 

— 38 + 15 , 7 — 16+ 25v2 
142 142 7 

Page 114. Art. 67. 

1. 37 T2 ＋6 0, 2y—2+6=0; (, — 4A); 455. 
2. 1 - 35 T1, x+y¥+1=0; (1, 0); tan”2. 

3. «—y(seca + tan a) O, x —y(seca —tana)=0; (0,0); a. 

4. £+3y+5=0, 24+ 3y—1=0; lines are parallel. 

6. k= or 4; the lines corresponding to k=4f are 34 4+4y+4+5= 0, 
27x+3y+4=0, and the angle between them is tan-! (5g), their point of 

intersection is (1, 2). 

7. For k = 28 this equation represents a pair of imaginary lines. 

8. k=4; the two lines coincide, the equation is (22 —3y — 1)? =0, 

9. 62—5y+14=0 and 62+ 5y = 56. q 

10. Real if AO; imaginary if B?—-AC <0; coincident if B AC; 

perpendicular if A+ C0. 
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4. The vertices are; (2 Vfl, 0), (0, 2V3), (-2V%, 2% and the equa- 
tions of the sides are: X TVA, 22 - + 2V9=u0, e-—2y = 2Vvi. 

Page 119. Art. 69. 

A psin@é=+i38; poo @=+ 3. 

3. p{(6 + 2V2) cos @ + Gain e = 10. 

4. pain(¢ — = ein (e- . 5. (on. (20 7) 

Pages 119-122. Examples on Chapter V. 

1. The third vertex is (142V3, 42); equations of the two sides are: 

(I Dy ( V8)z—1F3V3=0, and (14 VA (IA VB)y—1 F5 V5=0. 
⁊ +The area is 18 and the fourth vertex is at any one of the following 

points: (3, ~5), (7, 1), (1, 7). 

. 3y—4z2=9, and y—3=0. & „ r. 6. 237 712% 11. 

7. y=(2iv3)z F V3. 8. 0 75 l, or 72 + Oy = 78. 
I. It the base be chosen as z-axis, and its middle point as origin, then 

the equation of the locus of the vertex is az — @ = 0. 

18. 22-—5y+7=0, e—y=l; 1121. 

13. (7V10 — 3V63)2+ (V5 — 2V10)y + 11.88 + VIO = OVO. 

16. 4V63(y — 32 + 11) = 3V10(7 z — 2y + 1). 

16. x+y = 6V590; 42 35 8 0. 16. (> 5 (> >)- 

17. z+y=2a, orz+y=4a. 18. (pi, e 2% > im the 

4 first line for @= nr (where n = 0, 1, 2, ... ), in the second line for 

@ = +5 (where n=l, +3, +5, +); 

_ the first line is parallel to the polar axis, the second line makes an angle of 
_ 60° with the polar axis; the lines make an angle of 60° with each other. 

10 y=v8r48-V5 0 rr. . Oz 714% . 

22 Center is (J. 2) Fadins is 43. 

Gz 
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base (= 2 a) coincides with the z-axis, its middle point at the 4 978. 2 F 
and if k=the area of the triangle, then the locus of the vertex is 

ay - KK . 

25. 10 = 7 (axes chosen as in Ex. 23). 

26. (a) 4 =, y=0, x—-y=0; (8) 7 =, 2z—y=0; () z=0, y=. 

27. c=— 3. 31. 4-4 T8280; 92—4y =24. 

$2. 262 14% = 120. 33. «= 6. $4. 22 —½ = 0. 
35. 3 — 25 3, 1 314 7785 190. 

88. (a) (oy es (aw 1); & On e V, 3). 
2VH? — AB - @=tan-! N 

1 ( A+B ) 

Pages 125, 126. Art. 71. 

1. 32 2 O. 2. 2 = 31. 3. 2½ 4 f 1 0. 4 82. 

Page 127. Art. 72. 

1. 22 ＋ . 16. 2. 4 8. 3. V2y+1=0. 
4 9 + 25 ½ = 225. 5. 2 — 4% = a2, 

Page 128. Art. 73. 

227 v3 1. 42% = 25. 4 cae LL, y=——; MAT. = >y. 
v3 VB + 2 

3. y=0, 4 0, and V2z+9y=8vi0. 

Page 129. Art. 74. 

2. 3274+ 90% 5; 122 18 2 9% 5. 

Page 131. Art. 76. 

1. 286. 2. ↄ sin o - cot 24 0. 8. 9 cos 20 1. 

4. tan o S tana. 5. p(cos 6 + V3 sin 6) 2. 6. p?cos20= 49. 
7. 2+y= a. 8. 12 — Y= a. 9. zy=5. 

10. (2? + ½% =2 d 11. 2 + y* = ke. 12. lly=2z¢. 
13. „ ＋ 4 r 4. , 

Pages 132-134. Examples on Chapter VI. | 

1. 2 4 720. 2. Vby2+6y=0. 3. ½ — 2 0 

4. fiszy+5bv2y=0. 6. (2, 2). 7. 2 0, 22 37 0. 
A B 

= 0. tan 0 2. 11. tan 0 =- ; tano 2. 8. y=0 9 1 5 4 
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18. une . 14. Any point on the line Az + By + C= 16. (1,1). 
16. The new origin may be any point on the locus of the given equation. 
17. brt+ YP 0, 18 24 Ory + OY + HOV IOy & 0. 
19. (a) (x*+y*)*=a*(z*—y*); (8) P—yma*; (7) (2? +9") md ay. 
20. „ k* con? @. 21. p= Tacosé, 2 „. 23. „„ War 
HM. 22° 427 26. 28. 42° — 0% „ 3. 6B. % 0. BT. 29% 720. 
. 2asin@tand=p. 20. (Ne. 31. c (- =p. 

Page 137. Art. 78. 

1. +P — 1024 6y + 18 = 0. 2 4x? +t — Wy +7 =O, 
a 24+ y'-—624+6y+9=0. 4 2+ . 

Ar; 6. 2 4 + 824+ 16 0. 7. ier 

Page 139. Art. 80. 

1. r WI; (2,4). 4 1M: 8. 9. 3. r=4v5; (4,0). 
M 4 r=}; 0, p. * 1 , 5 6. 2 241 (0, 0). 

7. A point circle; imaginary circle. 8. 2 4 222 — 1% 262 0. 
9. (a+b)(z*+y*) - (dr 0. 10. 22 +29 + 024+ 9y= 11. 
11. 284+? — 1224 2y + 12=0, or 2° + — Mz — 19 + W=0, 

12. 22+ yy? -22-6y+5=0. 
13. n 

2 14. 0(2* + y*)— 422 + 47 0, center is (7, 0), 1 or 

8(z* + y*) — 48x + By + 73 = 0, center is (3, -b. r=. 

Page 142. Art. 82. 

1. 24254 290. 4 3 32 T2 2N◻ . 3. yo tr +1346VE. 

4A I 6. 62 a): 4 (-1,0) and (0, -1). 

7. c=— 36 4 20. 8. v0. 9. (0, 8). 
10. „, y= V324+6, y=—V324+6, area, 27V%5, for one of the 

four triangles. 
Page 144. Art. 83. 

1. „ 24 vi. 1 21274 290. 8. 5 A4 . 
4 2 52 4 6. 5. 2417 224 . 

Pages 148, 149. Art. 85. 
2. (a) 32+4y=25; (8) 5-127 162; ( Sz4+y=19; (8) 2247720. 
8. (a) 4z=3y; (8) 1224+5y4+7=0; (7) 2-37 777 (8) z—2y=0. 

TAN. AN. Grom, —26 
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1. 283; — 263; 1134; —4y. 2. 33, 21, 5, 4. | 
VIII. —* vi, 5, J. 4. 2 L 2 61; (3, + Vip), 

4. 41 ＋ 7 = 65; 72 -—4y 65, 4177 = 65. 

Pole is at infinity, in the direction @ tan-1 (— ). 

„ orp „ 

„ (ay, 71 (2, 6), or (1. — ). 

(a) 25; (8) 2V34. 

10 14% 53. 5. (6, 8). 6. 34 717 25; 32 12 25. 5 

112457480. 3. (Se gg ) 8 IId 

. 2-—y=0; v2 (a + 502 — 16 c. 4. (2, “1), 

- y=38; b4=y¥y4+7;4274+y74+1=0., 

* aS 

ANSWERS — 

y+4=0. 6. r+ 38y= 20; 312 — 27 y = 260. 

13 2? + 13 y? — 1802 — 78 y + 321 0. ere tes 

21 ): * ( ) 55 1 

Page 151. Art. 87. 

Pages 155, 156. Art. 90. 

(a) <+2y=14; (6) (= E aval, aval), 

(vy) (7 ¥ 2V21) 2 +(14 + V21)y = 119 F 4V21. 

1 0, 212 420% 0 y-2=—!! „ (6-9. 

Page 158. Art. 93. | 
82+4y=7. 2. 82—y=14. 3. (20, 30); (35a, 35 5). 

Page 162. Art. 97. 

73 73 

Page 164. Art. 100. 

p? — 7 V2 p(sin 6 + cos @)= 51; — vo ; 
p? — 30 psind+125=0; sin: % = g. 3. p?-—12psind+27=0;6 

2 U T8720 5. 2 ＋ 4 4. 
N -e ονe= . 7. 2 V22y+y’—2V2 ax—2 ay+a*=0. a 
tan-12V2; tan-! VI9. a 
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Pages 165-169. Examples on Chapter VII. 

1. 10 + 10% — 128 % = 123; (. — 48); fy WITS. 
% (Ca. % this family consists of all circles of radius Va? N, and 

having their centers on the circle whose equation is z* + y* = a* + K 

8. Gi Gy, and H= Fy; Gf + Py — C= Gy + Fe — Cy 

4 Pe F'=iAF. . 22° +2 = 13z. . 43, -8). 

7. The circles are; 

ty —Me—sy=— AY, ty 42248 ym Ay, +9 —-62-6y— th 
The radical axes are; 

8 2 = 35, dz +3y=9, 82+ dy =1; radical center (W. — 47). 

8. * y—2e+y=lb, +yY—Oxr4+2y=16, N- iO r- o; 
dz—y=0, 4371771, 427137 = 21; (H. 4). 

8. C + y*) e i). 10. 32 —- 575 =H, 

I. 22 — 12 + 1220. 12 # += 

13. by - az = N, ax — by =a", az + by = 0. 

16. (x — 1) + (y — 10% = 74, (2 — 16)* + (y —6)* = 74. 
16. (32 — 14)*+ (37-4 25; 324 Oy= , 324 yell, 32-3726. 

16. 2° + y* = zz + yy. 20. (i, 0. Bl. Gy: HN: Ge: Fe 

99. 22242? + 402 —85y—3=0, 
. y= 2, z= 1, 42-375 10, 3211728. 

94. The radical axis is 22 + y = 2, the ratio is 8 7. 
25. (4A, 2), J; this point is the radical center. 

96. ( - )( + ¥*) — 2(6 e - 2( FP + OF )y — C+ F(a + =O, 
where r is the given ratio and (a, 5) the fixed point, N. p= r(1 + cosé). 

28. N N= ret 29. 3; (1, 2). 

=; E-Mu. (2, 3 0 
enn ( vs)! G 3 

$2. Equations of sides of inscribed triangle are: y+1=0, y= + V2; 
equations of sides of circumscribed triangle are: y = 2, y= + V3z2—4; and 
the lengths of the sides are respectively 2V3 and 4V%. 

33. Compare Example 32. 

34. Chords are: 2z+y=4and2z+y=<44. Normals are: 42—Sy=38 
and y = 2. 

36. 22+? +224 4y= 15, or 2+ ff —-2e-—474+5=0. 

t+ yY+izctiy+2 =O N. 47 
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2) (-) - the fixed point being toa 90: 

2) (-) 40. 5 2 4 6 ½ — 50 7 40% + 22 2 0. 

(* 

( 

No. 42. 2 ＋ ½ ＋ 10 ＋ 10% 36, or C- 8 - 205 / 810. 

24 — 37 13, 2y+32=0; 324 VIz 6, 820. 

y g = 24 VT (9), 45. 45°. 

Equation of diameter is 524+4y=1, equation of chords 1s by=42+k. 

7 ＋ N = ry? + 12%. 

The locus is the circle (4 - 41) ＋ (- yi)? = * — 22)? + (y )]. 

The condition that these circles cut each other at right angles is 

2 6102 +2 Fi Fo = Ci + Co. 

Page 175. Art. 106. 

25 x? + 30 zy + 9 % + 80% — 224y + 336 2 0. . 

e+4ey+4y—1224+6y-9=0. 3. 12. 4. 2 12. 

72 ＋ 4 ＋ 165% = 70. 6. 18 — 1212 8. 7. ¥Y=4p(e—p). 

12; 12; 16; 12, 

Page 177. Art. 107. 

— 31 ( 2) (= 205 5; 20 81 03 y+2=0. 

(2, 5); (2, , ; 3 = 16; 2 120. 

(H. Bs Gs. Ds 6; 48K = 29; 6y =5. 

(1, ); (2, 1); 12; +4=0; y+1=0. 

Page 178. Art. 108. | 

22 — 0g. 2. = 8, „32 

Pages 185, 186. Art. 112. 

1. 72 4 220 T 7 ＋ 10 10% 4 7 0 3. 82 ＋ 9% 182 61. 

25 2 + 24 ½ = 600. 4. 2 % = 15 haus rectam = —. 

3246 = 82. 6. 211 1. f+ a1. 

4 4h 2 E i 4 A 1. 9 24-1, 10. 61 71441 
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10 e foot ares (3 4 V. 

+O, eat; fool ares (. 1 + VII). 

Se + WD a; focl are: (0, 7 + 7V§q). 

Ee ener-. (-u 
A circle. 

Page 189. Art. 113. 

(1, Dia IW. b= Eves; GA, , (144985, p; 3. 
(1, -1); 5 =1, a= 2; (1, 14 V3); (1, 1), (1, 0; 1. 

(2%, % . (2 NIG, - (24 7, 7 6 

2 2 2 mie — 2 151 K 1.6 1. 

Page 190. Art. 114. 
25 2 he te 2 . 1. 

c 08)(nt— Ft ο + )(n* - F) 

Pages 196, 197. Art. 118. 

41 2? —iry — 31 y*® — 458 2 + Hy + 361 = 0. 

— #3 = 2 om 3. 16 35 = 1. 4. 8(2* — y*) = 26. 

2 (2 — 3)* _ (y+ 3)* 3 sam) 6. 1 A 21 

a. 8. G5, H. 1 (A, 4 2d, ¢. 
2 2 N N 4 Mai; -l. 1% (+ Vii, 0); (4 VI, 0); (0, 4 Uh. 

Page 199. Art. 119. 

(72, -Die. b = gv3; (-24 IAM. - (24 M4, -: 1. 

6 . = V8, - Gay VI, Di G1. h 1955. 
(1,71); N, b=3; (I, 14 20: (1, 14 V9), A 
D 
nr 
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* 

Tie, My _ ; We _ ty = a — b*\ 3. +53 13 5 nn (Sr) 

AES > = 10x, +821 + 3%. 

8. 

10. 

12. 

14. 

1. 
equations of tangents : 42474180 4 ＋ 23. 

4. 

6. 

9. 

* 

0 

SAS Pere 

ANSWERS 

Pages 204, 205. Art. 123. 2 

Yes. 2. 32 Vid. 

xx 1: E 7 _ a? + 52 2 F- F. ( 
11 2 -= 10); 2 r. ＋ r = 2 ＋ ). 

3 ( ＋ 4)e2-—Syy+12%,=0; by274+8@1+4)y= n . 
» (2% -—3) 2410 ) = 31 10% 78; 10 0-2 1-3) 

ny = 25 ( ＋ 21). 9. (41 — 40 4 2(2½ 7 50) . 471 — 10 . 

213 2422. ll. 342 125 20; 22350. . 
1 47140; „2242. 13. 2+V8y=4; VNA. 
34 — 25 28 24135 1. 

Pages 208, 209. Art. 126. 

Chord of contact: 22 7 1; points of contact: (I, 3), (2, 5); f 

z+4y= 27; Yes. 5. 2y+92=0; 2y+32=0, © 

1 (- 4 v.02) (2 + 1). 8. „2 A-. 

The four normals are: y2=0 and y = (=I). 

Pages 212, 213. Art. 129. 
4 — 25 6. 

41 — 2 6; (4 4 25, 5 4 VI5); 
(5 # 2V15) x - (io ꝙ 2V15) y + 2V15 = 0. 7 

2—8y+19=0; yes. 7. tan-1 (4 ). 8. It is. 9. 2—-3y+9=0. — 

Pages 216-218. Examples on Chapter VIII. . 

4y=4vV102+4 4. 3 
632+ 382 y= 144; 632 4 325 = 4 12V505. ; 

A NV; r+p=0. 
O- ＋ O- ABC— AF? — B=; cf. Art. 60, p. 95. 

The foci: (+ 2V6, 0). 

The directrix x="; x + my de; they are perpendicular to each other. 

. tumpibsk a the Yerkes 8. 2 4 3, = 0. 

The directrix. 11. The focus. 12. At infinity ; at infinity. 
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18. 829+ 39 42-0. An ellipse. 
1. (o, , (v3 Vid, — 3) and (- vi — IG, — 3); or (0, Vt). 
(v5 + V10, 3) and (— VAIO, 3). 
16. Oz — 18y + 18 0; Or — 18y + 1 O, 

19. Hyperbola ; (i). IAM -In . i 2 

20. This equation may be written: — C+D" + 2—D" = 1, which shows 

that it is an hyperbola ; that the center is at (— J. }); that the transverse 
axis is AVH = Iv and is parallel to the y-axis, ete, 

81. This equation may be written: (Z — 2)* = 4-4» (y + 1),—a parabola, 

. This equation may be written: (2 „ + E+ OE 2 1, —an e 

93. This equation may be written: (z — y) (32+ 3y —56) =0,—a pair 
ot lines. 

2. An ellipse ; 0 . D) 2 =I d. D. A1 

I This question may be solved by assuming that the focus is at (A, K) 
and that the directrix is iz + my = 1, and then finding A, K, I, and m by a 
comparison of equations ; cf. Arta. 108 and 114, 

1-2 cos 

Page 224. Art. 137. 

S y= MIV, andy =- vir -v; 1:2 

4 102 T4 p80 (5 <2) 6. 2y (K VO)(24+1)4+2. 

6. 22 12715 2 0, 22—2y+5=0; the directrix. 

7. 45 = 32 12; 42 T1375 = 81. . 227272. 

9. 4z2—2y+p=0; Ay. 10 0 
u. y¥ = p(z—p).: 12. yf? =z; }. 13. 12; 8. 

M y=32+1; (4, 2); vi; 3. 16. Y= 3x 

Pages 229, 230. Art. 138. 

me Be yo V—2iz-3(V—-2-1) 5. (—p, %. 

Pages 234, 235. Art. 141. 

1. 251720. 2% 147438 . 3. y=}. 4221 

6 25 41k. 7. 2 A. . (, ). 
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Pages 235, 236. Examples on Chapter IX. 

1. Sy? = 4z. 2. y—24-—8y+10=0. 3. (y +7)? 462 — 3). 

4. 2 — 21 - 4% T 5 0. 5. (1,1); 42 - 1 0. 6. „ 45 ( C- p). 

7. * 4 ( ZD). 8. = — Oz. 9. „* 2 8K. 

O. y=2; c+y+p=9. 11. 90°; tan-1(4). 12. 4p’. 

18. * fr. 14. 2 2 pr. 

N. se=p. 18. y = kp. 19. „ Apr + p*k’. 

20. A parabola whose focus is the given point and whose directrix is the 
given line. 

22. % = p(1 hex, if æ is the given constant ratio. 23. 2y=32—-—4. 

25. A parabola whose focus is the center of the given circle, and whose 
directrix is a line parallel to the given line and at a distance from it equal to 
the radius of the given circle. 

26. If m is the slope of the normal, these points are: (pm*, — 2pm) and 

2 2p 4 } 
{ 2 (mt hn, = (m2 +2), and the length is a + m2)?, 

29. 21 + 1 4 al, where a = 4V2p. 30. (p, 2p); slope is 1. 

Pages 241, 242. Art. 145. 

4. , the left-hand directrix, 5. y=4or2y+32=117. ; ' 
| a? 7. Through the points for which & . 

Va? + 2 

8. V38a2+2y=4; 41 —2V3y=8v3; —25 svi 

9. The points for which z =+ IVB. 10. 251 

ll. 34 185 24; 22 23. 12. 2/ 2 4 4.6. 
54 9 

a 47 2 32 4 4; 4V73y =8V7382 + 72. 
92 a? (1 — e cos? 0) 3 : * 3 

+a? 15. (, -); 74, 9%. 16. The points for which z= 45 
4 

; the same. 

Pages 258, 259. Art. 156. 

1. 16y=15z. 2. 824+5y=0. 4 (a) aty+b%x=0; (8) a be. 
7. 4% 4 342 0. 8. 5 ½. 9. tan 2; 2Vby+2=0. 

10. 2y=2; 32 427 0. 11. V16, V13. 12. av2; 46°. 

14. (-3,-V3); 210°. 16. er d; der = ba. 16. (ae, 0); (ao). 



ANSWERS 409 

Pages 262-264. Examples on Chapter X. 

1 (0, +4vi6); yma gvid; }. a bev 

4. One of these equations ks; „-le. 6 22 — 3720. 

7. 26 + 16 % — 48y = 81. 8. 254. 9. 16; 2; Mr. 
10, If the generating point divides the line in the ratio a:b, the equation 

“ — „ of the locus 1 +) 1. 

du 

2 as}, 
uu. * = 1. 14. (2? + y*)* = atx? + By’, 

17 1 
16. If the base coincide with the z-axis, its middle point at the origin, the 
equation is b*z* + oy* = a*b*. 

2 ＋ 17. 20. (a* + NC N = eee. 
(¥ —x* + a? — *) tan 2 + 2zy = 0. 23. 2zy = ¢(2* — a*). 

bz — ay cota = 0. 1. 3 

8 E BS 2 E- 27. y= tyler viet). 

Pages 271, 272. Art. 164. 

10% — 922 = 144; (0, +5); K. 
10-90 = 28; UT Wy = 100; 1 . 

at b? Qi z — Oly F 144 0. 6. ; 
3 C *75=5) 

(vii 1). & +65. 9. 4 K Villy JZ via. 

y= (15 = +): 

The polar of one vertex is the tangent at the other, 

$22 -* 341. 17. Vb; a. 

„ -*). V3(23 — 87); there are three other solutions, 
v3 

P5453 95 4 
Pages 277, 278. Art. 167. 

lr; 2tan~'{ = tan ¥. 1 At infinity. 

(6229 -4P =—5a*; 5622-4 = 0. 

6x? 4 Sey —3y — 3lz 10% + 20 = 0, 

zee 

SEF K 2 
5 

9 2 
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62? + 82y - 3y*° 312 — 16% — 189 =0, 

22+y=0, - =I; 22 - -yY-—22-—-y+6=0. q 

82+y+2=0,24+1lly=1. 10. 92 — 16% + 3624+ 160y = 220, — owes 

Pages 283, 284. Art. 170. 

1. 576 zy = 625. 2. 2V2, 2½; v2; (2, 2), (-2, % 

3. 2V3, 6; 2; (2V3, 2), (-2V3, -2V3); (4d, 4V8), (-4V3, AV). 
4/2ve—1 f 

6. -( Ze) 
Page 287. Art. 172. g 

1. 16% 32; = gr. 3. y 2; 165 . 3. 16 = 75 . 

4. 87 3 26. 

Pages 289-291. Examples on Chapter xl. l 
1. 2 3 16. 2. 15% 16 ; (4, 42), (4, . 

4. - E= 1 the middle point of the base is the origin and the 
base of the triangle on the z-axis. 

5. 2 = k(c? — z*), if k is the constant and axes chosen as in Ex. 4. 

6. (4%). where a’, „are the conjugate semi-diameters. 

11. zy +32—2y—6=0. 

12. ( v6, -$ v5), (3 v8, av); ( v6, 4 6) (- v6, —ave), 3 

15. (-4, 3); 2}. 16. 6y—52=7. 18. 82A 4 = NF. 
19. The four normals are: 

+V175(4y - 342 7 1) + 300 =0, +V175(4y + 32 —17)+300=0. 

24. V ab Ve — aby +Vab(a + P)=0. 

25. 32y=(VB281441)z. 209. z+ y=VOEB; ( 2 
Vet Vato! 

30. 1 . 2, = 3; 2 - 342 — 2% T 120. 

31. 34 712) T4280; 32 ＋ 22y7+4274+9=0. 

Pages 296, 297. Art. 176. N 

1. Center S (0, V2); foi (K VG, VL 4 VI); axes: - VN. 

y+2=v2; directrices: 2452229. 
v2 
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1 Parabola; = 90”; vertex, referred to old axes, is at the point; 

3. he eee i.e, @ main % center, referred to old 

| uA s 465 405 | axes, fs at the point (>, 5). r- 

1 4. Ellipse ; @= 45°; center u (1. 3), referred to old axes; foci are on 

the new y-axis, the semi-axes being VI and g. 
, &. Parabola; @= 45°; the vertex (referred to old axes), is the point (J. $); 

sv3 p= iv 

Page 308. Examples on Chapter XII. 

1. Hyperbola; o 46°; coUrdinates of center (old axes) are: (. 
—); @ = Vy, & = “AP. 

2% Parabola; @ = 46°; the new equation is: 

0 4 0-834) 
2 Ellipse; @=0; center (old axes) ( =) a Il. 0 = $f; focl 

on new y-axis. 

4. Two straight lines: 32 + y = 5, and 35 2 =2. 
Two parallel lines: 2 —y 0, and 2z2—y+2a=0. 

A point ellipse,“ or two imaginary straight lines through the origin. 

Circle ; center (old axes) = (— 44, }); . 

Hyperbola ; center (old axes) = (-A. -1); @= 224°; @& == 2. 
Two straight lines: 22+ y+1=0, and 3z—y=0. v2 
Two straight lines: z — y = 0, and y + 5 = 0. 

The hyperbola 48 * — 11 zy — 17 y*' — 120 + My + 81 = 0. 

The parabola 16 * + 72 zy + 81 y* — 06 2 — 378 y + M4 = 0, 

The circle (x — 6)* + (y + 2)* = 25. A SFS SSA 

Page 341. Examples on Chapter I. Part II. 

2. men. cos p 2. 0 y = — 2 3. cos @ = A Va. 
VII vil V4 

4. (4, 30°, 30°). 8. (Vd. v2. 19). 

6. d= VN een (008 (0; — Op) n e BIN Gp c COS Gy). 
7. Internally: (. -V. ) externally: (-. . i). 6 . 
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1 9. 51 = 5 V3, 1 „ „ 

= v6, = =— =——; pa COS ag ve COS Bg TR COS 12 77 

ps = Vai , C08 as =X cos fs = 0, £08 74 = 2 

1 v3 —1 10. (2, 2, 2). 11. a=fB= vy = cos~!——. 12. cos* 8 =—— — 
) v3 4 

Page 352. Examples on Chapter II, Part II. 

1. Two coincident planes parallel to the yz-plane and at the distance + 3 
from it. 

2. A plane parallel to the yz-plane and at the distance — 2 from it. 

3. Two coincident planes parallel to the z-axis and intersecting the 
xy-plane in the line x —- T1 0. 

4. Two planes intersecting in the z-axis, and intersecting the zy-plane in 

the lines y= at . 

5. Hyperbolic cylinder with generators parallel to the z-axis. 

6. A parabolic cylinder with generators parallel to the z-axis. 

7. A circle whose plane is parallel to the æz- plane and whose equation is 
322 ＋ 322 2 17. ; 

8. A pair of lines respectively parallel to y = + z. 

9. The projection of this curve upon the zz-plane is the hyperbola — 
3 22—22+45=0, and its projection on the yz-plane is the ellipse 3 y2+422=32, — 

10. For z= 5, the point (0, 0, 5); for 2 =— 5 it is a circle parallel to the 
xy-plane, and whose equation is 9 z* + 9 y? = 100. 

11. Solved like No. 9. 12. 224+ ½ = 25; 1 ＋ 42 U 25; y*+ 42% =: 25, 
13. Solved like No. 12. 14. ½ . 2 . 5 3. 
15. (y 3) 2 = 25 (a? + 27); vertex= (0, 3, 0). g 

16. ete Fa. 17. E. 18. 20% 4. 20 1. 
19. 102 9 922 1. 20. 2 ＋ ½ 2 = . 

Page 364. Examples on Chapter III, Part II. 
3. 1 K 2 2.8. 

v3 i 3sv3 3 
4. y=2 (on zy-plane), y = 2 (on yz-plane), 4 + z = 4 (on zz-plane) ; it 

pierces the zy-plane at (4, 2, 0), the yz-plane at (0, 2, 4), and is parallel t 

the zz-plane. 

z—1 —2_ 2-3 
well . 

1. & 42214, y=2. 2. 1 ＋ T2 =. 
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. * at bbl il * 
2 Via 
. 2117 8 n 

3 9 + Vi Vm 
9. 

=i 
* 11 vii Vi 5 

a N 3 = 

1 1 Ne Y Ve 9 
. = Ml. 22—y 47200; 2 5 +724 10 =O, 

© 

a -8 1 un n- 22 = 22. 18. ——. ——; no, 1 Vi Vi0 

DD 

. n, r 

14 = ) for u- 

* * „and in-! 2 respectively for the z-axis, 

7, (as) (laa) 

. a My +e =25.° 16 2 - 301 K V8). 
3 z-—6 y-—2 s-6 — 

1 527110. 2-42 3, 521 17180. 

80 1 ＋ Wy — 172 = 10. 

= Page 380. Examples on Chapter IV, Part II. 
„ (er— a) —0)+ (m1 — DY — 2) + (a1 ~ 00 — ¢) Q 
vlane at (21, Yi, 21). 

2429 = Ost. 
4 0. 24% (- 44 4 -A 
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The numbers refer to pages. 

Abscissa, 28. Cirele, normal to, 147 
Agnesi, 314. polar equation of, %. 
Analytic geometry, A. through three ts, I 
fundamental problems of, 40. tangents to, 141, 143, 144. 

Angle, 15, Ciasold, 
between two lines, 97, 338, 5. Conehold, 312. 
between two planes, 357. directrix of, 312. 
bisectors of angles between two lines,| modulus of, 312. 

pole of, 312. 

for an ellipse, 183. 

of contact for conic, 207. 
Chords, of a diameter of a conic, 211. 

supplemental, for ellipse, 200. 
supplemental, for hyperbola, 287. 

Circle, center and radius of, 135. 
equation of, in oblique axes, 165. 
general equation of, 136. 

1M. 

major (transverse) minor (conjugate) 

that a point les on locus of an equa- 
tion, 48. 

Cons, 251, 38: 
, 379. 

sections of, by planes, 354 
Confocal conics, . 
quadrics, &. 

Conic, central and es 1%), N. 
chord of contact for, N 
confocal, . 
diameter of, 211. 
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Conjugate, diameters of ellipse, 252. 
diameters of hyperbola, 285. 
hyperbolas, 270. 

arbitrary 3. 
Coordinates, of a point, 24. 

axes of, 26, 332. 
elliptic, 300. 
origin of, 26, 332. 
polar, 25, 29, 333. 
positive and negative, 25. 
rectangular, 27, 332. 
relation between rectangular and 

polar, 130, 333. 
transformation of, 123, 339. 

Cramer, 315. 
Curves, 347. 

algebraic, 309 
higher plane, 309. 
transcendental, 321. 
use of, in applied mathematics, 73. 

Cycloid, 321. 
Cylinders, 343. 
perpendicular to coördinate planes, 

344. 

Diameter, of conic, 211. 
conjugate, of ellipse, 252. 
conjugate, of hyperbola. 285 
of ellipse, 250. 
of hyperbola, 284. 
of parabola, 230. 

Diocles, 309, 310. 
Direction, angles, 334. 

cosines, 334. 

Directrix, of conchoid, 312. 
of conic, 68. 
of ellipse, 179, 
of hyperbola, 190. 
of parabola, 171. 

Distance, between two points, 31, 336. 
of point from a line, 105. 
of point from plane, 359 

Eccentric angle, for ellipse, 243. 
for hyperbola, 288. 

Eccentricity, of conic, 68. 
of ellipse, 179. 
of hyperbola, 190. 

Ellipse, auxiliary circles of, 242. 
center of, 183. 
conjugate diameters of, 252. 

„ 

INDEX 

Ellipse, construction of, 240. 
defined, 70, 179, 237. 
directrix of, 179. 
eccentric angle of, 243 
eccentricity of, 179. 
focus of, 179. 

imaginary, 188. 
major or transverse axis of, 182. 
minor or conjugate axis of, 183. 
point, 188. 
principal axis of, 182. 
subtangent and subnormal of, 244. 
sum of focal distances constant, 239. 

Ellipsoid, 371. 
Elliptic coördinates, 390. 
Equation, 4. 

condition that quadratic, represents 
two lines, 111. 

degree of, unchanged by transforma- 
tion, 129. 

discussion of, 49. 
homogeneous, 14. 
locus of an, 43. 
locus of the product of two or more, 

54. 
locus of the sum of two or more, 56. 
of a locus, 61. 
of circle, 64, 66, 135. 
of locus traced by moving point, 65. 
of straight line, 61, 63, 81, 83, 84, 

86. 
of straight line in oblique coordinates, 

115 
of straight line in polar codrdinates, 

118. 
of tangent to circle in terms of slope, 

142. 
of tangent to circle in terms of coér- 

dinates of point of contact, 144. 
of the form Az+ By + C=0 repre- 

sents a straight line, 81, 89. 
properties of quadratic, 12. 
quadratic, 9. 
reduction of, to standard forms, 91. 
special cases for straight line, 95. 
to trace the locus of an, 94. 

Focus, of conic, 68. 
of ellipse, 179. 
of hyperbola, 190. 
of parabola, 170. 

Formula, for area of triangle, 34, 36. 
for angle between two lines, 97. 
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Formula, for coirdinates of point di- Limacon, 314. 
viding line in given ratio, . Lines, bisectors of angles between two, 

for distance between two points, 51, 108. 
aM. broken, 21. 
E N ee ees 

trigonometric, 19. directed, 14, 
Functions, 3. distance of point from, 105. 
algebraic, equation of straight, 61, Gi, 51, . 4, 
classified, 4. . 
continuous, 6. equation of two, 110, 
discontinuous, 7. equation of, in oblique cobrdinates, 
explicit, 4. 115. 
implicit, 4. equation of, in polar codrdinates, 114. 
of related angles, 14, initial, 
transcendental, 5. pole of, 154. 
trigonometric, 17. positive side of, . 

slope of a, . 
Gregory, 315. — line divided in given ratio 

Higher plane curves, 309. 2 

Hyperbola, 72 E — 
asymptotes of, 373. Locus, classification of, 48. 
* construction of, 49. 

parabola, . 
Lemniscate, 315. 

; TAN. AX. Gon. —27 

intercepts formed by, 49. 
of an equation, 45, 47, 42. 
of an equation remains unchanged by 
multiplication and transposition, 52. 
9 first degree lu three 

of an 5 of second degree in 
three variables, MN. 

points of intersection of two, 53. 

Neil, 320. 
312. Nicomedes, 

Normal, 140. 
form of equation of straight line, W. 
length of, 149, 150, 
to the cone, 
Az? + By? +2Gz+2 Fy + C= 0, MB. 

. 
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Parabola, directrix of, 171. Slope of a line, 33. 
focus of, 170. Sphere, 351. 
latus rectum of, 173. Spheroid, oblate, 351. 
limit of ellipse, 387. prolate, 351. 
properties of, 225, 232. Spiral, 325. 
semi-cubical, 320. center of, 325 
subtangent and subnormal of, 222. logarithmic, 329, 
vertex of, 172. measuring circle of, 325. 

Paraboloid, 376. of Archimedes, 325. 
elliptic, 377. parabolic, 328. 
hyperbolic, 378. reciprocal or W 326. 
of revolution, 352. spire of, 325. 

Parameter, 87. Subnormal, 149, 150. 
Pascal, 318. Subtangent and subnormal, 149, 150. 
Point, coordinates of, 24. for ellipse, 244. 

distance between two, 31. for parabola, 222. 
distance of, from line, 105, Surfaces, 342, 346. 
power of, 152. of revolution, 343, 348, 

Polar, construction of, 159. traces of, 347. 
equation of, 156. 

Pole, 29, 333. Tangents, 140. 
and polars, 209. equation of, to circle in terms of codr- 
construction of, 159. dinates of point of contact, 144, 
of a line, 156 equation of, to circle in terms a _ 
of conchoid, 312. 

Power of a point, 152. 
Projection, 21 
formulas for transformation of coör- 

dinates by, 126, 129. 

Quadrants, 27. 
Quadrics, 368, 370. 

confocal, 300. 

Radical, axis, 161. 
center, 161. 

Radius vector, 29, 333. 
Rice and Johnson, 328, 
Root, 4. 

condition for equal, 10. 
condition for zero and infinite, 11. 
condition for real and imaginary, 10 

Salmon, 315. 
Secants, 140. 
Semi-cubical parabola, 320. 
Shearer, 73. 
Slope, form of equation of straight line, 

85. 

slope, 142, 
lengths of, 149, 150, 151. 
to circle, 141, 152. 
to the conic, 
Ax? + By? 2 Gz+2 Fy + C=0, 200. 
two can be drawn to conic througt 

external point, 206. 
Transformation, of coördinates, 123. 

of codrdinates by projection, 126, 129 
Triangle, area of, 34, 36. 
Trigonometric ratios, 17. 

Variables, 2. 
dependent, 3. 
independent, 3. 

Vectorial angle, 29, 333. 
Vertex, of an angle, 16. 

of conic, 69. 
of hyperbola, 192. 
of parabola, 172. 

Wallis, 320. 
Willcox, 76. 
Witch, 314. 
Wren. 321. 

1 
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DAVIES'S ELEMENTS OF SURVEYING (Van Amringe) . . $1.75 

ROBINSON’S SURVEYING AND NAVIGATION (Root) 32 

SCHUYLER’S SURVEYING AND NAVIGATION . : ; Pree 

Copies will be sent, prepaid, to any address on receipt of the price. 

American Book Company 

New York * Cincinnati . Chicago 
(76) 



Scientific Memoir Series 
Evrrep ny JOSEPH S. AMES, Ph.D, 

Johas Hopkins University 

The Free Expansion of Gases. Memoirs Lassac, 
and Jouls and Thomson. Edited by De Deb Anns =e 

Prismatic and Diffraction emoirs cep 
Fraunhofer, Edited ie te aoe md . 

n Memoirs by Rontgen, Stokes, and J J. Thomo, 
Dr. Gronda F. Baxxen 

The Modern . Solution. og cy Peller. vun -t Hol, 

$0.75 

Raoult, Edited by Dr. II. C. Jon. 1.00 
The Laws of Gases. Memoirs bea. — 

Dr. Cant haus. 2 „ 75 

The Second Law of The 5 Memoirs | Comet 
Clausius, and Thomson. ited by Dr. W. F. Mace . 9 

The Fundamental Laws of „ Conduction. 2 
Faraday, IIittorf, and Kobirausch. Edhed by Dr. Hi 
Goopwix . 75 

The Effects of « Megnetic Field on Radiation. — —— 
Faraday, Kerr, and Zeeman. Edited by Dr. E. F. Lewis. 73 

r Memoirs — 8 
Cavendish. ted by Dr. A. * Panam . 100 

The Wave oe t. Memoirs Huygens, Young, and 
Fresnel. oe De. Henny . . 1.00 

Discovery of Induced Electric Currents. Vol. 1. 8 
neal 4 — Edited by Dr. J. S. Ames . 73 

The Discovery of Induced Electric Currents. Vol. II. Memoirs 
by Michael Faraday. Edited by Dr. J. S. Ames. . J 

Stereochemistry. Memoirs Pasteur, Le Bel, and Van't Hoff, 
together with selections r 
and others. Edited by Dr. G. M. Ricnanbso n 1.00 

Ins E of Gases. Memoirs Lomac and Regn 
by Prof. W. W. 1 1.00 

Radiation and Absorption. Memoirs deres Elter Stewart 
Kirchhoff, and Kirchhoff and Bunsen. Edited by Dr, 
Dewees BD. Deace . wlll lll Cl 

Copies sent, prepaid, te any address on receipt of the price, 

American Book Company 
New York . Cincinnati . Chicago 



Biology and Zodélogy | 

DODGE’S INTRODUCTION TO ELEMENTARY PRACTICAL 
BIOLOGY 
A Laboratory Guide for High School and College Students. 
By CHARLES Wricut Dopce, M.S., Professor of Biology 
in the University of Rochester „„ A 

This is a manual for laboratory work rather wan a 
text-book of instruction. It is intended to develop in the 
student the power of independent investigation and to 
teach him to observe correctly, to draw proper conclusions 
from the facts observed, to express in writing or by means 
of drawings the results obtained. The work consists 
essentially of a series of questions and experiments on 
the structure and physiology of common animals and 
plants typical of their kind—questions which can be 
auswered only by actual investigation or by experiment. 
Directions are given for the collection of specimens, for 
their preservation, and for preparing them for examination; 
also for performing simple physiological experiments. 

ORTON’S COMPARATIVE ZOOLOGY, STRUCTURAL AND 
SYSTEMATIC 

By James Orton, A.M., Ph.D., late Professor of Natural 

History in Vassar College. New Edition revised by 
CHARLES WRIGHT Dopce, M.S., Professor of Biology in 

the University of Rochester „ 

This work is designed primarily as a manual of 
instruction for use in higher schools and colleges. It 
aims to present clearly the latest established facts and 
principles of the science. Its distinctive character con- 
sists in the treatment of the whole animal kingdom as a 
unit and in the comparative study of the development and 
variations of the different species, their organs, functions, 
etc. The book has been thoroughly revised in the light a 
of the most recent phases of the science, and adapted to 
the laboratory as well as to the literary method of teaching. 

Copies of either of the above books will be sent, prepaid, to any address 
on receipt of the price. 

American Book Company 
New York ‘ Cincinnati . Chicago 

(167) 



Standard Text-Books in Physics 

ROWLAND AND AMES'S ELEMENTS OF PHYSICS 

By Henry A. Rowtanp, Ph. D., LL. D., and Joszrn 
S. Ames, Ph. D., Professors of Physics in Johns 
Hopkins University. 

Cloth, 12mo, 275 pages „ 7 „„ Piles, S180 

This is designed to meet the requirements of high 
schools and normal schools, and is simple but logical and 
direct, being divided into two parts—the first — be 
the theory of the subject, and ge second con 
Suggestions to teachers. 

AMES'S THEORY OF PHYSICS 

By Josern S. Ames, Ph.D. 

Cloth, 6%. 531 pages. „ 
In this text-book, for . classes, the aim has 

been to furnish a concise and logical statement of the 
fundamental experiments on which the science of Physics 
is based, and to correlate these experiments with modern 
theories and methods. 

AMES AND BLISS’S MANUAL OF EXPERIMENTS IN PHYSICS 

9 Joskrn S. Ames, Ph. D., Professor of Physics, and 
WILLIAM J. A. Biiss, Ph. D., Associate in Physics, in 
Johns Hopkins University. 

Cloth,8vo, 560 pages « « #« £«Price, $1.80 

A course of laboratory instruction for advanced classes, 
embodying the most improved methods of demonstration 
from a modern standpoint, with numerous questions and 
suggestions as to the value and bearing of the experiments. 

Copies sent, prepaid, te any address on receipt of price by the Publishers: 

American Book Company 
New York : Cincinnati . Chicago 



Text-Books in Geology. 

By JAMES D. DANA, LL.D. 

Late Professor of Geology and Mineralogy in Yale University. 

DANA’S GEOLOGICAL STORY BRIEFLY TOLD bo . $1.15 

A new and revised edition of this popular text-book for beginners in 
the study, and for the general reader. The book has been entirely 
rewritten, and improved by the addition of many new illustrations and 
interesting descriptions of the latest phases and discoveries of the science. 

In contents and dress it is an attractive volume, well suited for its use. 

DANA'S REVISED TEXT-BOOK OF GEOLOGY . . . $1.40 

Fifth Edition, Revised and Enlarged. Edited by WILLIAM NorTH 

Rice, Ph. D., LL. D., Professor of Geology in Wesleyan University. 
This is the standard text-book in geology for high school and elementary 
college work, While the general and distinctive features of the former 
work have been preserved, the book has been thoroughly revised, enlarged, 
and improved. As now published, it combines the results of the life 
experience and observation of its distinguished author with the latest 
discoveries and researches in the science. 

DANA'S MANUAL OF GEOLOGY . . . 85,00 

Fourth Revised Edition. This great work is a complete thesaurus of 
the principles, methods, and details of the science of geology in its 

varied branches, including the formation and metamorphism of rocks, 
physiography, orogeny, and epeirogeny, biologic evolution, and paleon- 
tology. It is not only a text-book for the college student but a hand- 

book for the professional geologist. The book was first issued in 1862, 
a second edition was published in 1874, and a third in 1880. Later 
investigations and developments in the science, especially in the geology 
of North America, led to the last revision of the work, which was most 

thorough and complete. This last revision, making the work substantially 

a new book, was performed almost exclusively by Dr. Dana himself, and 
may justly be regarded as the crowning work of his life. 

Copies of any of Dana’s Geologies will be sent, prepaid, to any address on 
receipt of the price. 

American Book Company 
New York * Cincinnati . Chicago 

4 



BOWNE’S ‘THEISM 
BY BORDEN P. BOWNE 

Professor of Philosophy in Boston University 

FOR COLLEGES AND THEOLOGICAL SCHOOLS 

PRICE. $1.75 

HIS BOOK is a revision and extension of the author's 
previous work, “Philosophy of Theism.” In the 
present volume the arguments, especially from episte- 

mology and metaphysics, receive fuller treatment. The work 
has been largely rewritten, and about half as much additional 
new matter has been included. 

The author, however, still adheres to his original plan of 
giving the essential arguments, so that the reader may discern 
their true nature and be enabled to estimate their rational 
value. He does this from the conviction that the important 
thing in theistic discussion is not to make bulky collections of 
striking facts and eloquent illustrations, nor to produce learned 
catalogues of theistic writers and their works, but to clear up 
the logical principles which underlie the subject. From this 
point of view the work might rightly be called the Logic of 

Special attention is given to the fact that atheistic argu- 
ment is properly no argument at all, but a set of illusions which 
inevitably spring up on the plane of sense-thought, and acquire 
plausibility with the uncritical. The author seeks to lay bare 
the root of these fallacies and to expose them in their base- 
lessness. In addition, the practical and vital nature of the 
theistic argument is emphasized, and it is shown to be not 
merely nor mainly a matter of syllogistic and academic 
inference, but one of life, action, and history. 

Copies sent, prepaid, om receipt of price 

AMERICAN BOOK COMPANY 
PUBLISHERS 

NEW YORK ~- CINCINNATI . CHICAGO 
(19) 



A DESCRIPTIVE CATALOGUE OF HIGH 

SCHOOL AND COLLEGE TEXT-BOOKS 

E issue a complete descriptive catalogue of our 

text-books for secondary schools and higher 

institutions, illustrated with authors’ portraits. 

For the convenience of teachers, separate sections 

are published, devoted to the newest and best books 

in the following branches of study: 

ENGLISH 

MATHEMATICS 

HISTORY AND POLITICAL SCIENCE 

SCIENCE 

MODERN LANGUAGES 

ANCIENT LANGUAGES 

PHILOSOPHY AND EDUCATION 

If you are interested in any of these branches, we 

shall be very glad to send you on request the cata- 

logue sections which you may wish to see. Address 

the nearest office of the Company. 

AMERICAN BOOK COMPANY 
Publishers of School and College Text-Books 

NEW YORK CINCINNATI CHICAGO 

Boston Atlanta Dallas San Francisco 

i 
f 

— ä 

a , oa oe 

6 ee ee ee eee ee 

— . 

e 



A Complete System of Pedagogy 
IN THREE VOLUMES 

By EMERSON k. WHITE, A.M., LL.D. 

THE ART OF TEACHING. Cloth, 321 pages . . Price, $1.00 

This new work in Pedagogy is a scientific and practical considera- 
tion of teaching as an art. It presents ina lucid manner the fundamental 

of teaching, and then applies them in generic and compre- 
ve methods, The closing chapters discuss in a masterly way the 

ELEMENTS OF PEDAGOGY. Cloth, 336 pages . . Price, $1.00 
This treatise, by unanimous verdict of the teachers’ profession, has 

been accepted as the leading standard authority on the subject. From 

and the reputation of its author, who is everywhere recognized as pre- 
eminently qualified to speak or write with authority on educational 
subjects. 

SCHOOL MANAGEMENT. Cloth, 320 pages . . Price, $1.00 

The first part of this work is devoted to school organization and 
and the second part to moral training. Principles are clearly 

dra stated and aptly illustrated by examples drawn 
own wide experience. A clear light is thrown on the 

for 

Copies sent, prepaid, te any address on receipt of the price, 

American Book Company 
New York * Cincinnati . i 



A New Astronomy 
BY 

DAVID P. TODD, M.A., Ph.D. 
Professor of Astronomy and Director of the Observatory, Amherst College. 

Cloth, 12mo, 480 pages. Illustrated - Price, $1.30 

This book is designed for classes pursuing the study in 
High Schools, Academies, and Colleges. The author's 
long experience as a director in astronomical observatories 
and in teaching the subject has given him unusual qualifi- 
cations and advantages for preparing an ideal text-book. 

The noteworthy feature which distinguishes this from 
other text-books on Astronomy is the practical way in 
which the subjects treated are enforced by laboratory 
experiments and methods. In this the author follows the 
principle that Astronomy is preéminently a science of 
observation and should be so taught. 

By placing more importance on the physical than on 
the mathematical facts of Astronomy the author has made 
every page of the book deeply interesting to the student 
and the general reader. The treatment of the planets and 

other heavenly bodies and of the law of universal gravita- 
tion is unusually full, clear, and illuminative. The mar- 

velous discoveries of Astronomy in recent years, and the 
latest advances in methods of teaching the science, are 
all represented. 

The illustrations are an important feature of the book. 
Many of them are so ingeniously devised that they explain 

at a glance what pages of mere description could not make 
clear. 

Copies of Todd’s New Astronomy will be sent, prepaid, to any address 
on receipt of the price by the Publishers: 

American Book Company 
NEW. YORK ’ CINCINNATI . CHICAGO 

(281) 
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