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PREFACE.

I HAVE endeavoured in the following treatise to place

before the student a complete series of those propositions

in Hydrostatics, the solution of which can be effected with-

out the aid of the DiflFerential Calculus, and to illustrate

the theory by the description of many Hydrostatic Instru-

ments, and by the insertion of a large number of examples

and problems.

In doing this I have had in view the courses of prepara-

tion necessary for the first three days of the Examination

for the Mathematical Tripos, for some of the Examinations

of the University of London, and for various other Exa-

minations in which more or less knowledge of Hydrostatics

is required.

As far as possible the whole of the propositions are

strictly deduced from the definitions and axioms of the

subject, but it is occasionally necessary to assume empirical

results, and these assumptions are distinctly pointed out. I

have thought it advisable to give a slight account of some
cases of fluid motion, and also to give an explanation of

some of the more important phenomena of sound ; in each

of these cases I have assumed, as the basis of reasoning,

certain facts which can be deduced from theory by an
analytical investigation, but which it may be useful to the

student to accept as experimental results.

The Geometrical facts which are enunciated at the end

of the Introduction are such as can be demonstrated with-

out the aid of the Differential Calculus.



vi Preface,

By Professor Miller's kind permission, I have been

allowed to make use of the Chapter on Instruments in his

Hydrostatics : of this permission I have availed myself in

many cases, and, in particiilar, I am entirely indebted to

Professor Miller for the descriptions of the Piezometer and

Stereoraetcr, and for information and references having

regard to those mstruments.

The slight historical notices appended to some of the

Chapters are intended to mark the principal steps in the

progress of the science, and to assign to their respective

authors the exact values of the advances made at different

times.

I have given, in most cases, the answers to the examples

and problems, and these will, I hope, sufficiently illustrate

the subject, and form for the student a collection of useful

and instructive exercises.

W. H. BBSANT.

St John's College,

Apnl, 1863.

PREFACE TO THE TENTH EDITION.

In the present edition the text has been carefully revised,

a chapter on Capillarity has been inserted, and other ad-

ditions have been made. I venture to hope that these

additions will be an aid to the Student aiid will increase

the utility of the treatise as a Textbook.

W. H. BESANT.
8t John's College,

April 1882,
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ELEMENTARY HYDROSTATICS.

INTRODUCTION.

THE object of the science of Hydrostatics is to discus*

the mechanical properties of fluids, or to determine

the nature of the action which fluids exert upon each other

and upon bodies with which they are in contact, and to ex-

plain and classify, under general laws, the varied pheno-

mena relating to fluids which are oflfered to the attention

of an observer. To effect this purpose it is necessary to

construct a consistent theory, founded upon observation

and experiment, from which, by processes of deductive

reasoning, and tlie aid of Geometry and Algebra, the ex-

planations of phenomena shall flow as consequences of the

definitions and fundamental properties assumed ; the test

of the theory will be the coincidence with observed facts of

tlie results of such reasoning.

We shall assume in the following pages that the student

is acquainted with the elements of Plane Geometry, with

the simpler portions of Algebra and Trigonometry, and of

Statics, and, in the later chapters, with a few of the proper-

ties of Conic Sections, and certain results of Dynamics.

In dealing with any mechanical science, we may take as

the basis of our reasoning certain known laws, derived from

experiment, or we may deduce these laws from a set of

B. K. H. 1



2 Introduction,

axioms and definitions, the axioms being tho result of in-

ductive reasonings from observed facts. With our present

subject it is generally necessary to rest upon empirical

laws, but in some oases these laws can be deduced from

tho axiomatic definition of a fluid. For instance, in the

first chapter we have stated as experimental laws the prin-

ciples of the equality of pressure in all directions and tho

transmission of pressure, but this formal statement of fact

is followed by a deduction of tho laws, by strict reasoning,

from the axiomatic definition.

The idea of a varying fluid pressure and of the measure

of such pressure is one of the first which presents itself as

a difiiculty ; the student Will perceive that it is a difficulty

of the same kind as the idea of varying velocity and its

measure. A body in motion with a changing velocity has,

at any instant, a rate of motion which can bo appreciated

and measured; and, in a similar manner, the pressure at

any point of a fluid can bo conceived, and, by reference to

proper units, can be made the subject of calculation.

In problems relating to tho equilibrium of fluids, an

artificial mode of thought enables us to reduce such pro-

blems to the form of statical problems, and we are thus

enabled to employ the laws of equilibrium^ which have been
proved for rigid bodies.

Some of tlio most important results of the science will

be found in the construction of Hydrostatic instruments

;

a consideration of these instruments, many of which we
shall describe, will show how universal are the practical

applications of fluids, and that, while doing tho hardest

work of levers and pullies, they at the same time assist in

the most delicate manipulations for determining weights

and measures. The Hydraulic Press and the Stereometer

illustrate these extreme applications of the properties of

fluids.

The articles printed in smaller characters in tlie follow-

ing chapters may if necessary be omitted during a first

reading of the subject, and the Examination papei*s whicli

follow the first eight chapters are intended as a first course

of questions upon the chapters. The examples which follow

the Examination papers are somewhat more difficnlt, and
should be dealt with after the former have been studied

and discassc(i



Introduction. 3

The following geometrical facts are assumed and em-
ployed in some of the examples.

The volume ofa pyramid or of a cone is one-third of
the prism or cylinder on the same base and of the same
altitude.

The volume of a sphere is ^Trr^, and its surface is

47rr2, r being the radius.

The volume of a paraboloid of revolution is one-half

the cylinder on the same base and of the same altitude.

The surface of a cone is -nx^coseca, r being the radius

of the base and a the semivertical angle. This may also

be written Trrx/r^ + h-^, h being the altitude of the cone.

The area of an ellipse is Trab, 2a and 2b being the

lengths of its axes.

The area of the portion of a parabola cut off by any
ordinate is two-thirds of the rectangle, the sides of which
are the ordinate and corresponding abscissa.

It is also assumed that the weight of a cubic foot of
water is 1000 oz.

1—2



CHAPTER I

D^nition ofa Fluid, Compressibility of Liquids, Fluid
Pressure, Transmission of Pressure, Equality of
Pressure in all directions, Hydrostatic Bellows,

Hydrostatic Paradox, Hydraulic Presses, and
Safety Valves.

1. TT is a matter of ordinary observation that fluids are

X capable of exerting pressure.

A certain amount of effort is necessary in order to im-

merse the hand in water, and the effort is much more sen-

sible when a light substance, such as a piece of wood or

cork, is held under water, the resistance offered to the im-

mersion being greater as the piece immersed is larger.

This resistance can only be caused by the fluid pressure

acting upon the surface of the body immersed.

If an aperture be made in the side of a vessel contain-

ing water, and be covered by a plate so as to prevent the

escape of the water, a definite amount of force must bo
exerted in order to maintain the plate in its position, and
this force is opposed to, and is a direct measure of, the

pressure of the water.

That the atmosphere when at rest exerts pressure is

she^vn directly by means of an air-pump. Amongst many
experiments a simple one is to exhaust the air within a

receiver made of very thin glass; when the exhaustion hab

reached a certain point depending on the strength of the

glass, the receiver will be shivered by the pressure of the

external air. The action of wind, the motion of a wind-

mill, the propulsion of a boat by means of sails, and other

familiar facts offer themselves naturally as instances of the

pressure of the air when in motion.



Definition of a Fluid. 5

2. All such substances as water, oil, mercury, steam,

air, or any kind' of gas are called fluids, but in order to

obtain a definition of a fluid, we have to find a property

which is common to all these different kinds of substances,

and which does not depend upon any of the characteristics

by which they are distinguished from each other. This

property is found in the extreme mobility of their particles

and in the ease with wluch these particles can be separated

from the mass of fluid and from each other, no sensible

resistance being off'ered to the separation from a mass of

fluid of a portion whether large or small.

If a very thin plate be immersed in water, the resistance

to its immersion in the direction of its plane is so small as

to lead to the idea that a perfectly fluid mass is incapable

of exerting any tangential action, or, in other words, any

action of the nature of friction, such for instance as would

be exerted if the plate were pushed between two flat boards

held close to each other. Observations of such experiments

have led to the following definition

:

A Fluid is a substance, such that a mass of it can be

very easily divided in any direction, and of which por-

tions, however small, can he very easily separated from
the whole mass ;

And also to the statement of the fundamental property

of a fluid, viz.

;

The Pressure ofa fluid on any surface with which it

is in contact is perpendicular to the surface.

3. Fluids are of two kinds, liquid and gaseous, the

former being practically incompressible, while the latter,

by the application of ordinary force, can be easily compress-

ed, and, if the compressing force be removed or diminished,

will expand in volume.

Liquids are however really compressible, but to a slight

degree.

Experiments made by Canton in 1761, Perkins in 1819,

Oersted in 1823, CoUadon and Sturm in 1829, and others,

have proved the compressibility of liquids.

The last two obtained the following results, employing

a pressure of one atmosphere, that is 14^ lbs. on a square

inch, at the temperature 0".



g Fluid Pressure.

Compression of unit of volume.

Mercurj' 000005

DistiUed water 000049

„ „ deprived of air 000051

Sulphuric ether 000133

Moreover the decrease in volume, for the same liquid,

is proportional to ihe pressure.

If V be the original volume of a liquid, and V its

volume under a pressure p, V- V is the decrease in the

V— V
volume r, and therefore —p=— is the decrease m each

unit of volume.

Hence the lavr may be thus stated

:

V-V

where f* is different for dififcrent fluids.

Thus for mercury, if /? be measured by taking one atmo-

spheric pressure as the unit, we have /x= .000005. We shall

however, in all questions relating to equilibrium, consider

liquids as incompressible fluids.

Measure of fluid pressure.

4. The pressure of a fluid on a plane is measured,

when uniform over the plane, by the force exerted on an

unit of area.

Thas, if a vessel with a moveable base contain water,

and if it be necessary to employ a

force of 60 lbs. upwards to keep the

base at rest, then 60 lbs. is the pres-

sure of the water on the base ; and,

supposing the area of the base to be

4 square inches, and that a square

inch is the unit of area, the measure

of the pressure at any point of the base is 15 lbs.

The pressure on a point of the base is of course zero

;

the pressure at a point is used conventionally to express

the pressure on a square unit containing the point.
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Tf the pressure be variable over the plane, as, for in-

Btaiice, on the vortical side of a vessel, the pressure at any

point is measured by the pressure which would be exerted

on an unit of area, supposing the pressure over the whole

unit to bo exerted at the same rate as it is at the point.

In order to measure the pressure of a fluid at any point

within its mass, imagine a small rigid plane placed so as

to contain the point, and conceive the fluid removed from
one side of the plane and the plane kept at rest by a force

ofP lbs. Then if a be the area of the plane, and the pres-

p
sure over it be uniform, — is the pressure on each unit of

area, and this is usually represented by p.

If the pressure over the plane be variable, we may sui>-

pose the area a made so small that the pressure shall bo
sensibly uniform, and in this case P will be small as well

p
as a, but — or jp will measure the rate of pressure at tlie

point*

p
Or we may say that — is the measure of the mean

pressure over the area a, and that, when a is small, this

mean pressure is the actual pressure.

5. Transmission offluid pressure.

Any pressure, applied to the surface of a fluid, is

transinitled equally to all parts of the fluid.

If a closed vessel be filled with water, and if -4 and B
Ik) two equal openings in the ^ 3 c
top of the vessel, closed by ill

I T I lil
pistons, it is found that any r=^l'=:^^;^rJ-.-=J^;^a=,.J^
pressure applied at A must
be counteracted by an equal
pressure at B to prevent its

being forced out, and if C be a piston of diflerent size, it

is found that the pressure applied at C nmst bear to the
pressure on A the ratio of the area of G to that of A, and
that this is the case whether the piston B exists or not.

• Tills may be expressed by saj-ing that p U Uio ultlmatp value of
^^
when

o, aud therefore P, are indefinitely diminished.
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Taking a more general case, if a vessel of any shape

have several openings closed

by pistons, kept at rest by suit-

able forces, it wll be found that

any additional force P applied

to one piston will require the

application, to all the other

pistons, of additional forces,

which have the same ratio to

P as the areas of the respec-

tive pistons have to that of the

piston to which P is applied.

6. To explain the reason of this equal transmission,

imagine a tube of uniform bore filled with water and closed

by pistons at A and B. Then it may bo assumed as self-

evident, that any additional force applied at A will require

an equal additional force at B to counteract it and keep

the fluid at rest.

Now suppose in the figure that A and B are equal

pistons, and draw a tube of uniform bore and of any form

connecting the two, and imagine all the fluid except that

contained in the tube to be solidified. This will not affect

the equilibrium, inasmuch as the fluid pressure on the sur-

face of the tube is at all points perpendicular to the sur-

f\ice whether the fluid be or be not solidified, and the ad-

ditional pressures on A and B are equal as before.

Also, one piston {A) remaining fixed, the other {B)

may be jjlaced with its plane in any direction, and it follows

that the pressure upon it is the same for all positions of its

plane, or, in other words, the pressure of the fluid is the

same in every direction. This proposition, wo shall enun-

ciate in a general manner in the next article.
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The experimental fact that the pressures on pistons of

different areas are proportional to those areas may be de-

duced as follows.

Suppose in a closed vessel two apertures be made in

which pistons are fitted, one being a square A, and the

other a plane area B, formed by placing together two,

three, or any number of squares equal to A ; tlien the ad-

ditional pressure on each square being equal to the addi-

tional pressure on A, the whole additional pressure will be
to the additional pressure on ^ as the area of B is to that

of^*.

7. The pressure at any point of a fluid is the same
in every direction.

It is intended by this statement to assert that if at any
point of a fluid a small plane area be placed containing the

point, the pressure of the fluid upon the plane at that point

will be independent of the position of the plane.

The second figure of Art. (6) will serve to illustrate the
meaning of the proposition. The aperture in which one of
the pistons is fitted may be so constructed as to allow of its

plane being changed ; and it will be found that in any
position, the pressure, or additional pressure, upon the

piston is the same.

8. If a mass offluid he at rest, any portion may he

supposed to become rigid without affecting its equilibrium

or tlie pressure of the surrounding fluid.

For any portion of a fluid mass may be contemplated as

a separate body surrounded by fluid, which presses upon its

surface perpendicularly at all points, and its solidification

will intrdduce no change in the pressures upon it, and there-

fore no change in the pressure at any other point of the

fluid.

This proposition enables us to apply the laws of statics

to cases of the equilibrium of fluids.

9. The two principles of the equal transaiiaaion of pressure

and of the equality of pressure in all directions, for the truth of

* If ^ and B be two pistons of any shape and size, they can be divided
into small areas of the same shape and size, and by making tliese areas small
enough, it will be seen that their numbers will be ultimately In the ratio

of the areas A and B.



10 Pressure the same ia all directions.

which we have appealed to experience, can be deduced from the

fundamental property of a fluid, stated as an axiom in Art, (2).

10. The equality ofpressure at any 'point in all directions.

We shall prove this for the case of fluids at rest under the

action of gravity, that is, for heavy fluids at rest.

-*- /

Suppose a small rectangular wedge or prism of fluid, having

its sides horizontal and vertical, and its plane ends vertical, to

be solidified, and let ABG be its section by a vertical plane

bisecting its length. This prism is kept at rest under the action

of gravity and of the pressures of the fluid on its ends and sides.

The ends are supposed to be perpendicular to the sides of the

prism; hence, the pressures on these ends being perpendicular to

all the other forces must balance each other, and the pressures

on the sides AC, CB, BA, must balance the weight.

Taking d for the length of the wedge, a, h, c the sides of

the triangle, w for the weight of an unit of volume of the fluid,

and p, p, p" for the measures of the pressmres on the sides A C,

CB, BA, these pressures are

phd, p'ad, and p"de,

and the weight is ^abdw.

Hence resolving vertically and horizontally,

^ abw =p'a - p"o cos B,

ph =p"c sinB
;

but o— ccosi?, and 6=csinJ5j

•*• i'=P"» aQ<i p'-p"=\hw.

If now we suppose the sides a, h indefinitely diminished, in

which case p, p' and p" will be the pressures in difi*erent directions

at the point C, we shall have p' =p", and therefore the three

pressures are equal •.

By turning the wedge rovmd AC and changing the angle

A and B it will be seen that the proposition is true for all direc-

tions.

* In strictness p'pp" are the measures of the mean pressures on the sides
of the wedge, but a reference to Art. 4 on the measure of variable pressure
will shew why it is unnecessary to repeat an explanation already made.



Hydrostatic Bellows.

11. Tlie transmission ofpressure.

11

\B

Let A and B be two points in a fluid at rest, and about the

straight 'line AH as axis describe a cylinder having plane ends

perpendicular to A£, and imagine this cylinder solidified.

The equilibrium of the cylinder is maintained by the fluid

pressures on its ends, which are parallel to its axis, by the fluid

pressures on its curved surface, which are perpendicular to its

axis, and by its weight.

Now resolving along AB, the difference of the pressures at

A and B must be equal to the resolved part of the weight in

the direction BA, and the weight

remaining the same, any change of

pressure at A involves the same
change at B. Moreover, if fluid be
contained in a vessel of any shape,

and the straight line AB do not lie

entirely in the fluid, the two points

may be connected by a series of straight lines such as A CDB,
and any change of pressure at A produces an equal change at C,

and therefore, taking account of the previous article, the same
change is produced at D, and therefore at B.

12. The Hydrostatic Bellows is a machine illustrating

the principle of the transmission of fluid pressure.

B is the top ofa cylinder

having its sides made of

leather, and CA is a pipe

leading into it. If this ves-

sel and the pipe bo filled

with water and a pressure

applied at ^, a very great

weight uponB may be raised

by a small pressure at A, the

weight lifted being greater in proportion to the size of B.
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Even without water weights may be raised by simply

blowing into the tube A.

13. The Hydrostatic Paradox.

Any quantity offluid, however small, may he made to

support any weight, however large.

This is another mode of enunciating the same principle.

For in the previous figure we may suppose the tube CA
extended vertically, and the pressure produced by pouring
in water to a considerable height, so as to produce a pres-

sure at A by means of the column of liquid above it. The
tube may be very thin, so that the pressure upon the sec-

tion A of the tube may be very small, but, as this pressure

is transmitted to every portion of the surface B, which is

equal to the section A, the force produced can be as large

as we please. To increase the upward force on B we must
enlarge the surface B, or increase the height of the column
of li(iuid in the tube, and the only limitation to tlie increase

of the force will be the want of sufficient strength in tbe

pipe and cylinder to resist the increased pressure. By
making the height BC very small, and the tube A of very

small bore, the quantity of fluid can be made as small as

we please, and heuce the paradoxical statement made above.

Hydraulic Presses.

14. The transmission of fluid pressure is the principle

upon which Hydraulic or Hydrostatic Presses are con-

structed.

A

g

Thus, if ^,-Bbe two pistons working in hollow cylin-

ders connected by a pipe C, and filled with water, any force

applied to the piston B is transmitted to A, and the force

upon A is greater than the force on B in the ratio of the

area of A to B.



Safety-Valve. 13
This is a Hydraulic Press in its simplest form. Prac-

tically it is requisite to have a reser\^oir from which more
water can bo obtained by a pump, and we therefore defer
the description of a complete Hydrostatic Press until tlio

principle of the Pump has been explained.

The Safety-VaJm.

15. In many machines, and especially in steam engines,

a very great fluid pressure may be produced, and the
strength of the machine may be very severely tried: in

order to guard against accidents arising from the bursting

of the machine a safety-valve is employed, which serves to

indicate the existence of too large a pressure.

Various forms may be used, but the principle of the

safety-valve is simply that

of the uniform transmission A i\
.

of pressure in a fluid.

ThusifJ5Cbeoneoft,he §
connecting tubes through 2-_ ^,,

which the fluid passes, and
""" ——

—

D a small tube opening out of BG, the pressure on a lid at

the end ofD will measure the fluid pressure within, and if

the lid be of a suitable weight, it will be Ufted when the
pressure is greater than the machine is intended to bear.

Suppose, for instance, the greatest permissible pressure of
the fluid to be 500 lbs. on a square inch, and the sectional

area of the tube D to be j^g^th of a square inch, then a
weight of \*^° or 31| lbs. will be lifted when the pressure
exceeds 500 lbs. The weight employed may be diminished
if the hd be moveable about a hinge at A, and a weight w
be placed at some little distance from A.

Ex. The tube D is circular, its diameter is one-fourth

of an inch, and a weight of Albs, is attached to the lid at

a distance of two inches from the hinge; it is required
to determine tlie greatest fluid pressure which will not

lift the lid.

The resultant fluid pressure vdll evidently act at the

centre of the circle, and therefore at a distance of Jth
of an inch from A : hence if p be the greatest pressure



14 Virtual Velocities.

TT
required, the forces ;»-—-lbs. and 4 lbs. will balance about

64
the point A, and therefore

i> 6^-8 = 4x2,

64 X 64
or »= .

IT

Taking 7r= 3, we obtain roughly p= 1365 lbs.

Ex. 2, If the diameter be J of an inch, and the dis-

tance AW 2^ inches, find the weight which will indicate

a pressiu-e of 1000 lbs. on the square inch.

Answer. 5^ lbs. approximately.

16. It will bo seen that in Hydrostatic presses, as in

all machines, the principle holds that what is gained in

power is lost in motion.

Thus, if there be two apertures in a closed vessel, fig.

art. 5, and the piston B be forced down through any given

space, the piston A is forced upwards, if the fluid be in-

compressible, through a space which is less as the area of

A is greater.

This is a simple case of the principle of virtual velocities

which we proceed to demonstrate, as applied to incompres-

sible fluids.

Let A, B, (7,... be the areas of a number of pistons

working in cylindrical pipes fitted into the sides of a closed

vessel which is filled with fluid. Let the pistons be moved
in any manner so that the fluid remains in contact with

them, and a, b, c,... be the spaces through which they are

moved, these quantities being positive or negative, as the

pistons are pushed inwards or forced outwards.

Then, since the volume of fluid is the same as before, it

follows that
Aa + Bb + Cc+...=0,

the positive portions, that is, the volumes forced in, being

balanced by the negative portions, or the volumes forced

out.

But if P, Q, R,... be the forces on each piston,

P : Q : R :... =A : B : C : ...

.: Pa + Qb + Rc + ... = 0;
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or the sum of the products of each force into the space
through which its point of appUcation is moved is equal to

zero ; and observing that a,h, c,... are proportional to the

virtual velocities of the pistons, this is the equation of vir-

tual velocities, or virtual work.

17. It is not to be imagined that there exists any sub-

stance in nature exactly fulfilling the definition which has

been given of a fluid. Just as the ideas of a perfectly

smooth surface and a perfectly rigid body are formed from
observations of bodies of difi'erent degrees of rigidity, and
surfaces of different degrees of smoothness, so the idea of

perfect fluidity is suggested. Nevertheless in the cases of

fluids at rest the theoretical properties of fluids derived

from this definition will be found to agree with facts, and
it is in cases of fluid motion that sensible discrepancies will

be found. Thus, a cup of tea set rotating will gradually

come to rest, proving the existence of a friction between
the liquid and the tea-cup, and also between the particles

of the liquid, since the dragging force is gradually commu-
nicated from the outer to the inner portions. The motion
of water in inclined tubes also indicates the existence of a
frictional action amongst the particles of water.

18. Recognizing the fact that all fluids possess, more at less,

the characteristic of viscosity, we can give a definition which will

include fluids of all degrees of viscosity.

A fiuid is an aggregation of particles which yield to the slightest

effoi't made to separate them from each other, if it he continued long

enough.

It follows from this definition that in a fluid in equilibrium

there can be no tangential action, or shearing stress, and there-

fore that the pressure on any surface in contact with the fluid is

normal to that surface.

Hence all theorems relating to the equilibrium of fluids are

true for fluids of any degree of viscosity.

EXAMINATION UPON CHAPTER L

1. Distinguish between elastic and inelastic fluids. Are
any liquids absolutely inelastic ?

2. State the property which is assumed as the basis of all

reasonings upon fluid action.
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3. Define the measure of fluid preBsure.

4. It ia found that the pressure is uniform over the whole

of a square yard of a plane area in contact with fluid, and that

the pressure on the area is ISCOSlbs. ; find the measure of the

pressure at any point, Ist, when the unit of length is an inch,

JJnd, when it is two inches.

5. The plane of a rectangle, in contact with fluid, is verti-

cal, two of its sides are horizontal, and it is known that at all

points of the same horizontal line the pressure is the same. The
pressure on the rectangle, for all values of h, is wbh (a + h) where

6 is the width and h the height of the rectangle ; find the pres-

sure at any point of the upper side. (Art. 4.)

6. A cylindrical pipe which is filled with water opens into

another pipe the diameter of which is three times its own dia-

meter : if a force of 20 lbs. be applied to the water in the smaller

pipe, find the force on the open end of the larger pipe, which ia

necessary to keep the water at rest.

7. Account for the fact of the transmission of preasure

through a liquid.

Mention any direct practical application of this principle.

8. In a Hydrostatic Bellows (Art. 12), the tube A is |.th of

an inch in diameter, and the area i? is a circle, the diameter of

which is a yard. Find the weight which can be supported by a

pressure of 1 lb. on the water in A.

9. A safety-valve consists of a heavy rectangular lid which

is horizontrt,! when it closes the aperture beneath it, and is

moveable about one side. The aperture being a square which

has one side coincident with the fixed side of the lid, find the

maximum pressure marked by the valve.

10. Prove the principle of virtual velocities in the case of

the Rix4li question.

11. A triangular axea, ABC is exposed to fluid pressure, and

:t is found that if any straight line PQ be drawn parallel to £C,
and at a distance x from A , the pressure on the area APQ ia jpx*

»

find the pressure at A, and alao at any point of the line £C.

12. A strong cylindrical tube, one foot in diameter inside.

Mid ten feet in length, is filled with distilled water, and closed

with a piston to which a pressure of 10000 lbs. is applied ; shew

that the resulting compression of the water will be nearly -^th of

an iach.



CHAPTER II.

Density and Specific Gravity.

]9. TN the classification of fluids the most prominent
JL division is between gases and liquids, or elastic

and non-elastic fluids, as they are sometimes termed, and
under these two heads all fluids are naturally ranged. It

has been remarked already that the terra non-elastic is in-

accurate, but no confusion will be produced by its use, as

the compressibility of liquids is practically insensible, and
for all ordinary purposes unimportant.

It will be found, however, that the theorj' of sound is

partly dependent on this compressibility, and it is there-

fore of importance at once to recognize its existence.

There are many other characteristics which distinguish

fluids from each other, such as colour, degree of transpa-

rency, chemical qualities, viscosity, &c., but in the theory

of Hydrostatics and Hydrodynamics the only characteristic

which it is necessary to consider is the density or specific

gravity of a fluid.

It is not meant that density and specific gravity arc

synonymous terms, but that these terms have reference to

the substance of a fluid.

Thus, a cubic inch of mercury and a cubic inch of water

have diflcrent weights, the former being more than 13 times

the latter, and it is inferred that the quantity of matter

in the mercury is greater than in the water, or that the

density of mercury is greater than that of water.

These remarks apply to both fluid and solid bodies, and

the density and specific gravity of a fluid or solid must be

measured respectively by reference to the density and spe-

cific gravity of some standard substance.

B. E. n. 2
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20. We may remark at this point that in one respect

all fluids agree, whether elastic or not ; they are all pon-
derable bodies, that is, they are all acted upon by gravity,

and exhibit different degrees of intrinsic weight. The term
density refers to the material of which bodies are com-
posed, and the idea of a difference of density in two bodies

does not involve the conception of weight, while the term
specific gravity refers to the varying effect of the action of

gravity on different bodies.

2 1

.

Definition. The measure of the density of a hody
is the number expressing the ratio which the mass of any
volume of the hody hears to the mast of an equal volume
qfthe standard substance.

For any given fluid let p be this number, and let unity

represent the standard substance
; p is then the density of.

the fluid measured in terms of the density of the standard

substance.

It is clear that if a body be compressed into half its

original volume, its density will be doubled, while its mass
or the quantity of matter contained in it remains the same;
and similarly, if it be compressed in any other proportion,

its density will be increased in the same proportion. This

is expressed by saying that

iJfoc pV,

M representing the mass and V the volume.

Again, it is known that the weight of a body depends
upon its position on the earth's surface, but that in all

cases if g fte the local acceleration due to the action of

gravity, the weight of a given body, that is, a body of given

mass, varies as g,

or Woe g,

and it is obvious that at all places

WccM.
Therefore generally PFqc Mg,

or W<x. Qfi V;

and we may suppose the units involved in these several

symbols so chosen that the relations may be

M=-pV, 1V=Mg,&Tid.: W=gpV.

' '' / • / ^ / , / ,
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22. It must be observed that this formula defines one unit,

if the rest be given.

Thus, if the units of space and time be a foot and a seconJ,

it is known that </=,32.2, and making ft — \, and V—\, i.e. a

cubic foot, we obtain the weight of an unit of volume of the

standard substance
= (32.2),unit of weight;

and therefore the unit of weight is -^r—^ (the weight of a cubic

foot of the standard substance).

Now, if distilled water at a temperature 60'' F. be the stand-

ard substance, the weight of a cubic foot is about 1000 oz.

;

and therefore the formula W—c/pV implies that the unit of

. ,^. 1000
weight IS g2^ oz.

;

and therefore that TF=1000pF oz.

Ex. Taking distilled water as the standard substance, find

the weight of 12 cubic feet of a substance of which the density

is 3.5.

The weight z=r7 x 3.5 x 12 x ^^ oz. = 42000 oz.

This example is more directly solved by observing, that the

weight must be 3.5 times that of 12 cubic feet of water.

23. In the previous articles we have considered homo-
geneous bodios only; if the density be variable, or the

bodies be heterogeneous, the density at any point of a body
is that of a homogeneous mass which has the same density

as the body about the proposed point.

If the density vary continuously from point to point

we may determine it at a point by taking a small mass of .

the fluid containing the point, and comparing its weight

with that of an equal volume of the standard substance, it

being conceived that in a very small continuous mass the

density will not A^ary sensibly throughout.

24. In order to render more clear the mathematical

conception of a continuously varying substance, imagine a
number of homogeneous strata of equal tliickness t placed

on each other, and suppose the density of the lowest stra-

tum to be p and of the highest p, and of the intermediate

strata let the densities increase by successive additions

from p' top ' y

.

/'
''

- e V A (? c7 VA ( -t^Y? Z;^
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If noAv we suppose the thickness of each stratum t to

become indefinitely small, and the numbei* of intermediate

strata to become indefinitely large, while the densities of

the extreme strata p, p remain the same, the densities of

the intermediate strata which are to increase from p' to p
will differ from each other by infinitely small quantities,

and we can thus form an idea of a continuously varjing

medium.

This mode of viewing continuity by means of disconti-

nuity is necessary for the purposes of mathematical calcu-

lation.

The atmosphere in a state of rest is a case in point, as

its density decreases continually as the height increases.

25. The density of a mixture may be determined by

the previous fonnula M—p V.

Thus, if volumes V, V', P',.--of A^iids whose densities

are p, p', p"...be mixed together, and if the mixture form

a homogeneous mass, and no change of volume occur from

chemical action, the whole mass

=pr+p'P-fp"F'+... = 2(pF),

and the whole volume =V+F'+V" + ...^2{V);

:. the density of the mixture = -^Tr" •

26. Definition. The measure of the specific gravity

of a body is the nutnber expressing the ratio which the

weight of any volume of the tody bears to the weight of

an equal volume cf the standard substance.

This definition, it will be seen, makes the measure of

specific gravity the same as that of its density, provided

the standard substance be the same in both cases. The

standard substance, however, is not necessarily the same.

If s be the specific gravity of a body or fluid, and W the

weight of a volume V of the body or fluid, we have the

relation

W=sV,
which means that if the unit of weight be the weight of an

unit of volume of the standard substance, the weight \s sV
times that unit of weight.

1^
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Thus, if distilled water be the standard, and one foot bo
the unit of length, the weight of a volume F of a fluid, of

which the specific gravity is s, =5^" times the weight of a

cubic foot of water,

= 1000a roz., orl?^«nb3.
lb

27. To find the specific gravity of a mixture qf given
volumes of any number offluids, whose specific gravities

are given.

Let V, V, F'V-be the volumes of fluids of which the

specific gravities arc s, s', s"...

Then the weight of the mixture is

sV+s'V+ s" V" + ...or -S-isV),

and the volume is F+ V'+V"-{-.. .or 2( V),

and therefore if o- be the specific gravity of the mixture,

(72(r)-2(5r),

^{sV)

If by any chemical action among the fluids the volume

becomes U instead of 2( V), the specific gravity will bo

U '

28. To find the specific gravity ofa mixture wlien the

weights and specific gravities of the components are given.

Let fF, W, W",... be the weights, and s, s',... the

specific gravities of the respective fluids.

TV W"
Their volumes are respectively— , —ry

W W / W\
and the whole volume = \- —j- + . . . = S(— ),

s s \ s r
while the whole weight=JV+W' + ... = '2{JV).

Hence if o- be the specific gravity of the mixture,

...(Jf)=s(»').

29. To find the unit of specific gravity, or to determine the

specific gravity of the standard substance when the units of length

and weight are given.
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From the equation TF=sF, which gives W—\ when «= 1

and F= 1, it appears that the standard substance is ovie of which

the weight of an unit of volume is the unit of weight.

Thus if 1 lb. and 1 foot be the units, the standard is that

substance of which a cubic foot weighs one pound.

Now a cubic foot of water weighs 1000 oz. ; therefore xuSir °^

a cubic foot of water weighs 1 lb.

The standard substance therefore is such that a cubic foot of

it weighs the same as xw7 °^ * cubic foot of water.

Hence the density of the standard is to the density of water

as 16 : 1000.

30. Comparison of the equations W—sV, W—ffpV.

It appears from the definitions that, if the standard sub-

stances be the same, the measures of the density and specific

gravity of any given fluid are the same, that is, the numbers

S and p will be identical. The standards however not being

necessarily the same, s and p will be in general different num-
bers.

From the equations W=sV, W—gpY, we infer that if the

standard substances are the same and the units of length the

same, the units of weight are different. In fact, the unit of

weight in the first equation would be g times that in the second.

We also infer that if the units of weight and length are the

same, the standard substances are different. Thus if s and p
refer to a substance of which a volume F weighs W, then s=gp,

and therefore the density of the standard to which s refers is less

than that to which p refers in the ratio oi g : 1.

In the equation W=gpV, the unit of time enters, the value

of g depending upon it ; and, by a change in the unit of time,

one or more of the other units, those namely of length, weight,

and density, is necessarily changed.

31. The practical methods of determining the specific

gravities of solids, liquids, and gases will be discussed in a
future chapter.

For solids and liquids tables of specific gravity are

usually given with reference to distilled water at 60" F. as

the standard.

Gases and vapours are, however, generally refen-ed to

atmospheric air at the same temperature and under the

same pressure as the gases themselves.



Examination. 33

EXAMINATION UPON CHAPTER II.

1. Explain how density ib measured.

What convention with regard to units is implied in the equa-
tion W=gpV'\

2. Find the weight of a cubic foot of mercury, the specific

gravity of which is 13.563.

3. If a cubic inch of a standard substance weigh .45 of a.

lb., what is the weight of a cubic yard of a substance of which the

density is 5 ?

4. A mixture is formed of two fluids ; the specific gravity

of the mixture, the ratio, m : 1, of the volumes, and the ratio,

h '. 1, of the specific gravities are given; find the specific gravi-

ties of the fluids.

5. Equal weights of two fluids, of which the densities are

p and 2p, are mixed together, and one-third of the whole volume
is lost ; find the density of the resulting fluid.

6. Taking water as the standard, find the weight of a cubic

yard of a substance of which the specific gravity is .12.

7. A cubic inch of a substance weighs -J°fJ'-^s of a. lb.
;

find its specific gravity referred to water.

8. A mixture is formed of equal volumes of three fluids

;

the densities of two are given and the density of the mixture is

given ; find the density of the third fluid.

9. Volumes F, V of two fluids, the specific gravities of

which are <7, a', are mixed together, and the specific gravity of

the mixture is s ; find the change in volume.

10. Two fluids of equal volume, and of specific gravities

8, 2s, lose Jth of their whole volume when mixed together; find

the specific gravity of the mixtvu-e.

EXAMPLES.

1. A mixture is formed of equal volumes of n fluids, the

densities of which are in the ratio of the numbers 1, 2, 3,...»;

find the density of the mixture. Also find the density of the

mixture when the volumes are :—1st, in the ratio of the num-
bers 1, 2, 3,...w, and 2nd, of the numbers v, n-l,...3, 2, 1.

2. Having given the specific gravity <r of a mixture formed

of equal volumes of two fluids, and also the specific gravity <t' of

a mixture formed by taking a quantity of one fluid double that of

the other ; find the specific gravities of the fluids.
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3. If 25 oz. be the unit of weight, and a yard and a secoud

the units of length and time, what is the density of the standard

substance compared with that of water in the equation W—gpV^

4. If 3 cwt. be the unit of weight, and 4 feet the unit of

length, find the density of the standard compared with that of

water, the unit of time being one second.

5. If tlj© units of weight, length, and time be 1 lb., one

foot, and one second, compare the standards in the formulae

W=8V, W=gpV.

6. If the units of weight and length be the same, the latter

bt-ing one foot, find the unit of time in order that the standard

may be the same in both formulae.

7. If the units of weight, length, and time be lib., one yard,

and half a second, compare the standards iu the equations

]V=ffpV, W=sV.

8. If the standards be the same, and also the Tonits of weight,

find the unit of length in W=gpV, the unit of time being 2\/2

seconds, and the unit of length in W= s V being one foot.

9. If the units of length and time be 3 yards and 4 seconds,

and if the units of weight be also the same in both equations,

compare the densities of the standard substances,

10. When a vessel is filled by means of equal volumes of two
fluids, the specific gravity of the compound is ^ of wiiat it would
have been if the vessel had been filled by means of equal weights

of the fluids. Compare the specific gravities of the two fluids.

Note. In the above examples assume that g=32 when a

foot and a second are units.

Ca-cLA



CHAPTER III.

Pressure at different points of a liquid cU rest, Surfcice

qf a liquid, Liquids maintaining their level. Liquids

in a bent tube. Pressures on Plane /Surfaces, Whole

Pressure, Centre of Pressure.

32. rriHE pressure of a liquid at rest is the same at

JL all points of the same horizontal plane.

Take a thin cylindrical portion AB oi the liquid, hav-

ing its axis horizontal, and its ends A, B vertical, and

^ A;ri --s^

imagine this ijortion to become solid. We have then a

solid body AB kept at rest by the fluid pressures on its

curved surface, all of which are pcrjiendicular to the axis

of the cylinder, by the pressures on the two ends, which

are horizontal, and by the weight of the solid.

If p and j?' be the measures of the pressures at A and

B, and a the area of each end, which is taken to be very

small in order that the pressure may be sensibly uniform

over the whole of either end, the pressures on the ends

are pa and ^a, and since these balance each other, wo
have

p=p\
This proof also holds good for the case of elastic fluids,

or of heterogeneous incompressible fluids.
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33. To find the pressure at any given depth in a

lieavy homogeneous liquid at rest.

Taking any point P in the fluid, draw PA vertically to

the surface, and describing a thin cy-

linder about PA with its base hori-

zontal, imagine it to become solid.

Then the solid body PA is kept at

rest by the fluid pressure on the end

P, the weight of the solid, and the

fluid pressures on the curved surface,

which are all horizontal.
^

Hence the fluid pressure on P must be equal to the

weight, and therefore, if a be the area of the base, w the

weight of an unit of volume, and p the pressure at P,

pa= Wa.AP,

or p —w.AP ;

that Ls, the pressure at any depth varies as the depth below

the surface.

Similarly, if P and Q be any two points in the same
vertical line, by solidifying a cylinder A
PQ, it will be seen that the difference Miv T j

"
;|^H

of the pressures on the ends P and Q Vm^ \
^^

of the cylinder must be equal to the ^i
^^j !

"^'

weight of the cylinder. ^:
Hence if p, p be the pressvu-es at g=g

P and Q,
p'a—pa=Wa.PQ,
or p'—p = w.PQ;

that is, the difference of the pressures

at any two points varies as the vertical distance between

t/te points.

If p be the density of the liquid, the weight of AP is

gpAP, and therefore, i£AP=z,
P=gpz.

34. The form, gpz, of the expression for p is the one which

we shall generally employ, and a few remarks upon it will be

useful.

The symbol p represents the pressure on an unit of area, and

therefore its numerical value depends on the unit of length which
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is adopted. Further, the numerical value of
ff
depends on the

unit of time as well as the unit of length, and the value of p
depends on the standard to which the liquid is referred. Hence

the numerical value of ^ depends on all these elements.

Thus, if water be the standard, and a foot and a second be

units of space and time, we obtain, at a depth of one foot in

water, putting p= l and 2=1, p = 32. Now we know that at

tliis depth the pressure is really 1000 oz. per square foot, and

therefore p being 32, the unit of weight must be -jj^ oz.

Hence with these units the actual pressure at a depth z is

1000/92 oz.

Again, if 1 lb. be the unit of weight, one second the imit of

time, and water the standard, we shall obtain

,1000 32

X feet being the unit of length, and

^ 32x16
lOUO

In all these cases it will be seen that we must have given

some fact relating to the weight or density of the standard sub-

stance.

35. Let the cylinder of which ^P is the axis be bounded at

P by a plane not horizontal, and let a' be its

area and 6 its inclination to the horizon.

of a foot.

A
Then for the equilibrium of the cylinder,

taking p' as the pressure at F upon a', we
have by resolving vertically,

p' a' cos 6=waAP,
but a= a' cos 9 ;

.'. p/=w.AP, which is independent of 0.

We thus have another proof of the propo-

sition that the pressure at any point is the

same in all directions.

It may be perhaps objected to the proof of Art. 33 that the

surface at A is assumed to be horizontal. By making the cy
Under AP & very thin cylinder, that is, of very small radius, it

will be seen that its weight is aenaihly gpaAP, and therefore that

the proof does not depend on any assumption as to the form of

the surface.
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Or, to reason more strictly, draw two horizontal planes

through the highest and lowest points B, A
of the small portion AJ3 o£ the surface inter-

cepted by the cylinder.

Then, if the radius of the cylinder be in-

definitely diminished, these two planes will

coalesce.

If z and z' be the heights above P of these

planes, the weight of the cylinder lies be-

tween

gpaz and gpaz\

and thereforep lies between ffpz and gpz',

and ultimately when the planes coalesce,

p=gpz.

36. Difference of pressures at any two levels in an
elasticfluid.

Wo havo already mentioned in Art. 20, that gases aro

heavy bodies ; hence, by the same reasoning as in Art. (33),

if P and Q be two units of area in an elastic fluid, P
being vertically above Q, the diflferenco of the pressures

at P and Q is equal to the weight of the column of air

PQ. This column is not of uniform density, and hence the

law of variation of the pressure at diflfcrcnt levels in an

elastic fluid does not present itself in a simple form. Fur-

ther information will be found in Chapter V ; at this point

wo need only call attention to the fact that the pressure

decreases as wo ascend in an clastic fluid.

37. The surface of a liquid at rest is a Jtorizontal

plane.

Tako two points P, Q, in the same horizontal plane,

within the liquid, and di-aw PA,
QB vertically to the surface.

Then pressure vA, P = w.AP,
pressure at Q= to .BQ,

and these are equal; therefore

AP and BQ aro equal, and
A, B are in the same horizontal
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plane. Similarly any other point in the surface can bo

proved to be in the same horizontal plane with A or B,

Or we might have argued that, since the pressures are

equal at all points of the same horizontal plane, con-

versely, all points at which tho pressures are equal are in

the same horizontal plane, and therefore all points in the

surface, at which the pressure is either zero, or equal to

the atmospheric pressure, must be in the same horizontal

plane.

38. The pressure of the atmosphere is foimd to be

about 14.73 lbs. to a square inch, or very nearly 16 lbs.

Wo can hence calculate the pressure upon any given area,

and, if n be the atmosjiheric pressure on the unit of area,

the pressm-e at a depth z oi n fluid, the surface of which

is exposed to atmospheric pressure, will be

gpz+ n.

39. Illustration. Take a hollow glass cylinder open

at both ends; in contact with the lower end, and closing

that end, place a heavy flat disc supported by a string

passing up the cylinder.

Holding the string, depress the cylinder in a vessel of

water, and it will be found that, at a cer-

tain depth, the string may be loosened,

and the disc will remain in contact with

the cylinder, being supported by the

pressure of the water beneath.

If w be the weight of the disc and r
the radius of the cylinder, the requisite

depth {x) of the disc is given by the equa-

tion

w=gpxnr^.

The presence or absence of the atmosphere will not

affect this depth, since the pressure of the atmosphere
downwards on the disc would be counteracted by tha

pressure upwards, transmitted from the surface of the

water.

40. If in Art. (32) the line AB do not Uq entirely
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within the fluid, we can still

prove the truth of the jjro-

position by the aid of Art.

(33).

For A aud5 can be con-

nected by liorizontal and ver-

tical lines as -4C7, CD, DB,
and

pressure at jB= pressure at D-tc.BD
= pressure at C—w.AC
= pressure at A.

41. Hence it appea/s that all points on the surface of

a liquid, at which the pressure is either zero or is equal to

the constant atmospheric pressure, must bo in tlie same
horizontal plane, and that this is true even though the

continuity of the surface be interrupted by the immersion

of solid bodies, or in any other way.

Tliis sometimes appears under the form of the assertion

that liquids maintain their level, and an experimental

illustration may be employed as in the figure.

A number of glass vessels of different forms, all open

into a closed tube or vessel AB, and it is found that if

water be poured mto any one of the tubes, it will, after

filling the tube AB, rise to exactly the same vertical

height in every one of the tubes, and if any portion be

withdrawn from any of the vessels, that the water will sink

to its new position of rest through the same vertical height

in each.
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An important practical illustration of this principle is

seen in the construction by which towns are supplied with

water. A reservoir is placed on a height, and pipes lead-

ing from it carry the water to the tops of houses or to any
point which is not higher than the surface of the water in

the reservoir, and these pipes may be carried under ground
or over a road, provided that no portion of a pipe is above
the original level.

42. The common surface of two liquids that do not

mix is a horizontal plane.

Take two points P, Q in the lower fluid, both in the
same horizontal plane, and let ver-

tical lines PA, QB to the surface

of the upper fluid meet the com-
mon surface of the fluids in C and
D.

Then if w' be the weight of an
miit of volume of the lower fluid,

and w of the upper,

pressure at P =w'.(7P + pres-

sure at G

=w'.CP + w.CA,

and at Q= w' .QD + w.DB;

:. W .CP-\-w.CA=w' .QD + w.DB.

Also AB'i^ horizontal, and therefore

CP + CA = QD +DB;

:. multiplying by w and subtracting,

(«?' -w)CP= (w' - w) QD,

or CP=QD, and therefore CD is horizontal.

43. If two liquids that do not mix together meet in
a lent tube, the heights of their upper surfaces above their
common surface will he inversely proportional to their
densities.

Let A and B be the two surfaces, G the common sur-
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face, and p, p the densities oiBG
und CA.

Let horizontal planes through

A, B, and C meet a vertical line

in a, h, and c, and take C" in the

denser fluid in the same hori-

zontid plane as C.

The pressure at C=gp.'bc, and
at C" -gp'ac, and these are equal,

by Art. 32;

.". pbc=p'ac,

or be
1

ac=-
P

^
i _
. —

.
-

' d
w

=E==i= =.ir=^-.--^

44. Tzco fluids that do not mix are contained in the

same vessel; it is required to find the pressure at a given

depth in tlie loicer fluid.

Let P be the point in the lower fluid, PBA a vertical

line meeting the common surface

in B. Describe a small cylinder

about AP, and suppose it solidi-

fied.

Then, if p be the pressure at

P and a the sectional area of

the cylinder,

^a=weight oi ABP=gpABa + gp'BPa.

p and p' being the densities,

orp=gpAB +gpBP.

This might have been at once inferred from the equa-

tion

_jt)=^p'^P + pressure at i?,

for the pressure at B=gpAB.
And in the same manner the pressure at any point of

a mass of fluid containing any number of strata of different

densities can be determined.

If the surface A be subject to the atmospheric pres-

sure n,

the pressure at P

=

gp'BP +gpAB+n.
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4o. We now proceed to consider two simple cases of

the pressure of a fluid on plane surfaces.

Prop. Tlis pressure of a liquid on any JiorizontcU
area is equal to (lie weight of a column of the liquid of
which the area is the hose and of which the height is equal
to the depth of the area below the surface.

For, if z be the depth, the pressure at every point is

wz or gpz'y

.'. if #c be the area, the pressure upon \i=tczK,

and ZK is the volume of the column described.

It will be seen that this is independent of the form of
the vessel containing the fluid.

This result may also bo obtained in the following
manner.

Draw through the boundary of K vertical lines to the
surface, and suppose the portion of fluid enclosed to be-

come solid. The pressure of the surrounding fluid is en-

tirely horizontal, and therefore the pressure on the base

must be equal to the weight of the solid.

If the vessel be of the form indicated in the dotted

line so that the actual surface does not extend over the

area K, wo may suppose the fluid extended over K by
enlarging the vessel, and the pressure at any point of K
will not be changed. Hence the above reasoning is appli-

cable to this case also.

Thus if a hollow cone, vertex upwards, be filled with

water, and if r be the radius of the base and h the height

of the cone, the pressure on the base = wrcr''h, or gpnr'h,

tliat is, the weight of the cylinder of fluid on the same
base as the cone, and of the same height.

B. E. H. 3
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46. A plane area in the form of a rectangle is just

immersed in liquid with one edge in the surface, and its

plane inclined at an angle 6 to the vertical; it is required

tofind the pressure upon it.

Let tho figure bo a vertical section perpendicular to

the side h of the rectangle in tho surface, AB{ = a) being

the section of the rectangle.

Draw a vertical plane BC through tho lower side B,

and suppose the fluid in ABC to become solid; then its

weight is supported by the i)lane AB, since the pressure

on BC is horizontal.

Hence \i Rho the pressure on AB, perpendicular to its

plane,

i2sin^ = weiglit oi ABG^lic.AC.BG .h

= Iwba^sm 6 co% 6;

.: R = ^wha^ cos 6 = wha .la cos 6,

that is, the pressure is the weight of a column of fluid of

which tho rectangle is the base, and the height is equal to

the depth of the middle point oiAB below the surface.

Since the direction of R makes an angle 6 with tho

horizon, it follows that the horizontal component of R is

Itcha- co%^ 6.

Now the solid ABC is kept at rest by the horizontal

pressure on BC, by its weight, and by the reaction R.

Hence the pressure on BC=R CQsd = ^wba^coii^6

— w.ha cos 6 .\a cos 6

= w.(area BC) (depth of middle point oi BC),

the same law as for AB.
This also appears from the value of R by putting 6-Q.
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The results thus obtained are generalized in the fol-

lowing article in which a- different method is adopted.

Whole Pressure.

47. Def. The whole pressure of a fluid on any sur-

face is the sum of all the normal pressures exerted by the

fluid on every portion of the surface.

In the case of a plane, the pressure at every point is in

the same direction and the whole pressure is the same as

the resultant pressure. In the case of curved surfaces, the

whole pressure is merely the arithmetical sum of all the

pressures acting in various directions over the surface.

48. Pbop. The whole pressure of a liquid on a sur-

face is equal to the weight of a column of liquid of which
the base is equal to tlie area of the surface, and the height

is equal to the depth of its centre of gravity below the

surface of the liquid.

Let the surftxce be divided into a great number of very

small areas a^, 02,03, ...and let Zi, z^, z^...he the depths

below the surface of the centres of gravity of these areas.

By making the areas very small, each may be considered

plane, and the pressures upon them will be respectively

W UxZi, Wa-^i,...

taking the pressure over each area to be uniform.

Hence the whole pressure = WS, (az).

But, if 5 be the depth of the centre of gravity of the

surface,

_ ^ = 2 (a) '

.•. whole pressure =«J^2 (a)

= wzS, if iS be the area of the surface,

and zSia the volume of the column described.

If p be the density of the liquid, the expression for the

whole pressure is gpzS.

Ex. 1. A rectangle is immersed with two sides hori-

zontal, the upper one at a given depth (c), and its plane

inclined at a given angle (6) to the vertical.

Let a be the horizontal side, & the other side.

• See Goodwin's Sialics, or Tarkinson's Mechanict, Art. 71.

3-2
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The depth of the centre of gravity =J(2c + & cos 6), and

the whole pressure = ^tr {2c + h cos 6) ah.

Ex. 2. A vertical cylinder, radius r and height h, is

tilled with fluid.

The surface = 27rr7i and the whole pressure = '?C7rrA-,

Ex. 3. A hollow cone, vertex downwards, is filled with

water.

Let r be the radius, and h the height of the cone.

By cutting the cone down a generating line and unroll-

ing it into a plane, its surface forms the sector of a circle,

of which the slant side is the radius and the perimeter of

the base is the arc.

But the area of a sector= J (arc) (radius);

.'. the surface = Trr/v/r" + A^.

Again, the surface of a cone is the ultimate form of the

surface of a pyramid formed by triangles, liaving the vertex

of the cone as their common vertex, and having for their

bases the sides of a polygon inscribed in the circle, and

since the centre of gravity of each triangle is at a depth

?./i below the surface of the fluid, it follows that \h is the

depth of the centre of gravity of the surface.

Hence the whole pressure

=

^WTrrh Jr'^ + A*.

Ex. 4. The cylinder in Ex. 2, closed at both ends, is

just filled with liquid, and its axis is inclined at an angle

e to the vertical.

The surface of the fluid is a horizontal plane through

the highest point of the cylinder, and the depth of G

= - cos ^ + r sin 6.
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Hence the whole pressure on the curved surface is

wirrh {h cos 6 + 2r sin 6),

and the whole pressure including the piano ends is

to {-rrrh + 7rr-) {h COS ^+ 2r sin 6).

Ex. 5. A cubical vessel is filled with two liquids cf

given densities, the volume of each being the same, it is

required to find the pressure on the base and on any side

of the vessel.

Let a be a side of the vessel, p, p the densities of tic

upper and lower liquids, p
being taken greater than p.

The pressure on the base

=the weight of the whole fluid

^ffPH+ffPn

The pressure on the por-

tion BC

=gp
a \ .

4 = 8^^^-

To find the pressure on AC, replace the liquid DC by
an equal weight of the lower liquid. This change will not

affect the pressure at any point of CA.
IfBU be its surface,

pGb:=pGB=pI,

and the depth of the centre of gravity oiAG below B'

.*. the pressure on AG=gp'— • i ( 1 + "H

f ^\gp'a^{l^.fj.

Centre of Pressure.

49. Def. The centre of pressure of a plane area is

tJie point of action of the resultant fluid pressure upon
the plane area.
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As a simple case, suppose a rectangle immersed in a

liquid with one side in the surface. _
Divide the area into a number

of very small equal parts by equi-

distant horizontal linos.

The pressure on each part will

act at its middle point arid will be

proportional to the depth below the

surface, and we have to find the

centre of a system of parallel forces acting perpendicularly

to the plane at equidistant points of the line EF and pro-

portional to the distance from E.

This is evidently the same as finding the centre of

gravity of a triangle of which E is the vertex and F the

middle point of the base. The centre of pressure therefore

divides ^i^in the ratio 2 : 1.

It will be seen that this result is independent of the

inclination of the plane of the rectangle to the vertical.

If a triangular area be immersed with its vertex in the

surface and its base horizontal, and be divided by equidis-

tant horizontal lines, the pressure on each strip will act at

its middle point and be proportional to the square of the

distance of that point from the vertex E.

Hence if F be the middle point of the base, the centre

of pressure will be the same as the centre of gravity of a
solid cone, vertex E and axis EF, and therefore divides

JS'/'intheratioS : 1,

If a triangular area be immersed
with its base in the surface, the

pressure on a strip will be propor-

tional to the product EN . NF, and
consequently proportional to the

square of the ordinate 2VP of a
semi-circle described upan EF as

diameter.
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The centre of pressure will therefore be the middle
point of BF.

We may also give the following general method, appli-

cable to the case of a plane area immersed in any position.

Through the boundary line of the plane area draw ver-

tical lines to the sUrface and consider the equilibrium of the

liquid so enclosed ; the reaction of the plane resolved ver-

tically, is equal to tlie weight of the liquid, which acts in

the vertical line through its centre of gravity ; and the

point in which this line meets the plane is the centre of

pressure.

50. The student vdll now be able to appreciate more
clearly the nature of fluid pressures, and to see that the

action of a fluid does not depend upon its quantity, but

upon the position and arrangement of its continuous por-

tions. It must be carefully borne in mind that the surface

of an inelastic fluid or liquid is always the horizontal plane

drawn through the highest point or points of the fluid, and
that the pressure depends only on the depth below that

horizontal plane.

Thus in the construction of dock-gates, or canal-locks,

it is not the expanse of sea outside which will aflfect tlie

pressure, but the height of the surface; and, in considering

the strength required in the construction, the greatest

height of the surface due to tides must also be taken into

account. Any violent action due to rapid tides or storms

is of course a subject for separate consideration.

The same principle shews that in the construction of

dikes, or the maintenance of river-banks, the strength

must be proportional to the depth below the surface.
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EXAMINATION UPON CHAPTEE HI.

1. To what extent is the pressure on the base of a vessel

affected by pouring in more liquid ?

2. Find the pressure at a depth of 100 feet in a lake, Ist,

neglecting, 2nd, taking account of the atmospheric pressure.

3. Explain the statement that liquids maintain their level.

4. A reservoir of water is 200 feet above the level of the

ground floor of a house; find the pressure of the water in a

pipe at a height of 30 feet above the ground-floor.

5. Three liquids that do not mix are contained in a vessel

;

prove that their common surfaces are horizontal, and find the

pressure at any depth in the lowest liquid,

G. An equilateral triangular area is immersed in water with

a side 1 ft. in length in the surface ; find the pressure upon it

in lbs.

7. Distinguish between whole pressure and resultant pres-

sure.

8. A hollow cone, vertex upwards, is just filled with liquid ;

find the whole pressure on its curved surface.

9. Prove that the depth of the centre of pressure of a plane

area is greater than the depth of the centre of gravity of the

area.

10. Find the centre of pressure of a rectangular area im-

mersed , with plane vertical and two sides horizontal.

11. A rectangle has one side m the surface of a liquid

;

divide it by a horizontal line into two parts on which the pres-

sures are equal.

12. Divide the same rectangle by horizontal lines into n

parts on which the pressures are equal.

13. A triangle has its base horizontal and its vertex in the

surface ; divide it by a horizontal line into two parts on which

the pressures are equal.

EXAMPLES.

1. Two equal vertical cylinders standing on a horizontal

table are connected together by a pipe passing close to the

Uble, and are partiaUy filled with water. In contact with and
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above tbe water in one cylinder is a closely-fitting piston of

given weight ; find its position of equilibrium.

2. The upper surface of a vessel filled with water is a

square whose side is 2 feet 6 inches, and a pipe communicating

witli the interior 'u filled with water to a height of 8 feet ; find

the weight (in lbs.) which must be placed on the lid of the

vessel to prevent the water from escaping, the weight of a cubic

foot of water being 1000 oz.

3. A parallelogram is immersed in a liquid with one side in

the surface ; shew how to draw a line from one extremity of

this side dividing the parallelogram into two parts on which the

pressures are equal.

4. A fine tube ABC\s bent so that the portions AB, BC
are straight and perpendicular to each other; the tube is placed

so that each branch is equally inclined to the vertical, and equal

quantities of two liquids, the densities of which are in the ratio

of 2 : 1, are poured into the respective branches; find the height

above B of their common surface,

5. A smooth vertical cylinder one foot in height and one

foot in diameter is filled with water, and closed by a heavy

piston weighing 4 lbs ; find the whole pressure on its curved

surface.

6. If a ball, weighing 1 lb. in water, be suspended in the

water by a string fastened to the piston, and if the specific

gravity of the metal be to that of water as 7 to 2, find the

pressure at any depth and the whole pressure on the curved

surface.

7. A cylindrical vessel standing on a table' contains water,

and a piece of lead of given size supported by a string is dipped

into the water; how will the pressure on the base be affected,

(1) when the vessel is full, (2) when it is not full ? and in the

second case, what is the amount of the change ?

8. A hollow cylinder closed at both ends is just filled with

water and held with its axis horizontal : if the whole pressure

on its surface, including the plane ends, be three times the

weight of the fluid, compare the height and diameter of the

cylinder.

* 9. A triangle A DC is immersed vertically in a liquid with

the angle C in the surface and the sides AC, BG equally in-

clined to the surface ; shew that the vertical through C divides

the triangle into two others, the fluid pressures upon which are

as 6' +806' la^+Su^J.
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\ 10. A triangle is immersed in a flviid with one of its sides

in the surface ; find the position of a point within the triangle,

such that, if it be joined to the angular points, the triangle shall

be divided into three others, the fluid pressures upon which are

equal.

>, 11. The side AB oi ^ triangle ABO is in the surface of a

fluid, and a point D is taken in AC, such that the pressures

on the triangles BAD, BDC, are equal; find the ratio AD : DC.

12. The lighter of two fluids, whose specific gravities are

as 2 . 3, rests on the heavier, to a depth of four inches. A
square is immersed in a vertical position with one side in the

upper surface ; determine the side of the square in order that the

pressures on the portions in tlie two fluids may be equal.

13. A vertical cylinder contains equal portions of three

inelastic fluids, the densities of which are p, 2p, and 3p, respec-

tively, the lighter fluid being uppermost, and the lieavier fluid

lowest ; compare the whole pressures on the portions of the

curved surface of the cylinder in contact with the several fluids.

14. A fine tube, which is bent into the form of a circle,

contains given quantities of two different liquids ; if the two

together occupy half the tube, determine the position of equili-

brium.

15. The inclinations of the axis of a submerged solid cy-

linder to the vertical in two different positions are complemen-

tary to each other; P is the difference between the pressures on

the two ends in the one, and P" in the other position : prove

that the weight of the displaced fluid is equal to

' 16. A vertical cylinder contains a quantity of fluid, whose

depth equals a diameter of the circular base. A sphere of four

times the specific gravity of the fluid and of the same radius as

the cylinder is placed upon the fluid and is supported by it: find

the increase of pressure sustained by the curved surface of the

cylinder, the sphere fitting it exactly.

17. Three fluids whose densities are in arithmetic progres-

sion, fill a semicircular tube whose bounding diameter is hori-

zontal. Prove that the depth of one of the common surfaces

is double that of the other.

18. A small cylindrical tube is bent into a semicircle, and
placed with the diameter horizontal; within the tube is placed

a small stop which can slide freely up and down : two fluids of

densities p and p' are poured into the respective ends of the tube

;
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if when the stop is vertical the surface of the lower fluid ia

—- below the horizontal diameter, find the distance of the

higher. ^

19. Prove that, as a plane area is lowered vertically in a
liquid, the centre of pressure approaches to, and ultimately coin-

cides with, the centre of gravity.

20. A lamina in the shape of a quadrilateral ABCD has the

side CD in the surface, and the sides AD, BO vertical and of

lengths a, /3, respectively. Prove that the depth of the centre of

pressure is

i3n

21. A vessel contains two liquids whose densities are in the

ratio of 1 to 14. A triangle is immersed vertically in the liquids

so that its l)ase is in the surface of the upper liquid. If the

pressures on the portions in the two liquids be equal, prove that

the areas of those portions are as 8 to 1.

22. The depth of the water on one side of a rectangular

vertical floodgate is double that on the other. Supposing the

gate to be fastened at the angular points, find the pressures at

these points.

, 23. A vertical cylinder contains equal quantities of two

liquids; compare their densities when the whole pressures of

the two liquids on the curved surface of the cylinder are in the

ratio 1 : 3.

24. If one second be the unit of time, what must be the

unit of length in order that the formula p=gpz may give the

pressure in pounds, supposing the unit of volume of the stand-

ard substance to weigh 1(3 lbs. ?

25. If the density of distilled water be the unit of density,

and 1 foot per second the unit of velocity, find the units of

space and time, in order that the formula, p=spz, may give the

pressure in ounces.

26. If one yard be the unit of length, what must be the

unit of time in order that the formula, p= gpz, may give the

pressure in pounds, the weight of an unit of volume of the

standard substance being 1000 lbs. ?

27. A sphere of 6 inches radius lies at the bottom of a pail

of water, whose depth is 2 feet; find the numerical value of
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the pressure on its surface, a foot being the unit of length, the

density of water the unit of density, and one quarter of a second

the unit of time.

,
28. A solid triangular prism, the faces of which include

angles a, /3, 7, ia completely immersed in water with its edges

horizontal ; if P, Q, B, be the pressures on the three faces, which

are respectively opposite to the angles a, /3, y, prove that

P cosec o + Q cosec /3 + R cosec 7
is invariable so long as the depth of the centre of gravity of the

prism is unchanged.

29. A cubical vessel, standing on a horizontal plane, has

one of its vertical sides loose, which is capable of revolvhig

about a hinge at the bottom. If a portion of fluid equal in

volume to one-fourth of the cube be poured into the vessel, the

loose aide will rest at an inclination of 45" to the horizon : com-

pare the weight of the side with the weight of the fluid in the

vessel.

30. A cubical box, filled with water, has a close fitting

heavy lid fixed by smooth hinges to one edge; compare the

tangents of the angles through which the box must be tilted about

the several edges of its base, in order that the water may just

begin to escape.

31. A cylindrical tumbler, containing water, is filled up with

wine ; after a time hall the wine is floating on the top, half the

water remains pure at the bottom, and the middle of the tumbler

is occupied by wine and water completely mixed, the common
surfaces being horizontal planes ; if the weight of the wine be

two-thirds of that of the water, and their densities be in the ratio

of 11 : 12, prove that in this position the whole pressure of the

pure water on the curved surface of the tumbler is equal to the

whole pressure of the remainder of the liquid on the tumbler.



CHAPTER IV.

Resultant Vertical and Horizontal Pressure on any
Surface, resultant Pressure on the Surface of an
immersed Solid, Conditions of Equilibrium of a
Floating Body, the Camel, Method cf removing
Wooden Piles, Stability of Equilibrium, Metacentre,

Bodies footing in Air, the Balloon.

51. Prop. To find the resultant vertical pressure of
a liquid on any surface.

Let PQ be a portion of surface in contact with a liquid

at rest, and through the boundary lino ofPQ draw verti-

cal lines to the surface AB, thus enclosing a mass of the

liquid.

The pressure of the surrounding liquid on this mass is

entirely horizontal, and it is therefore clear that the weight

of the mass is entirely supported by the reaction of the

surface PQ.

Hence the vertical component of this reaction must be
equal to the weight of the mass ABQP.
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By the previous Chapter this is true whether the curve

AB be really in the liquid, or only in the horizontal plane

through the highest point of the liquid, as in the figure.

Hcuce it follows that the resultant vertical pressure is

the weight qftlie superincumbent liquid.

52. There are other cases which it is requisite to con-

sider.

Thus the Uquid may press upwards on the surface.

In this case, let ^Z? as before be the curve formed by

vertical lines round PQ, and

imagine the liquid within to

bo removed and the outside

of PQ to be under the pres-

sure of a fluid of which AB
is the surface. It will be seen

that the pressure at any point

of PQ is the same as before

in magnitude, but opposite in direction, and the resultant

vertical pressure is therefore the same, only that it is now
downwards, and by the previous article it is equal to the

weight otABQP.

Hence the resultant vertical pressure upwards on PQ
is as before equal to the weight of the liquid above it, tkat

is, between PQ and the surface.

Or the pressure may be partly upwards and partly

downwards, as on PBQ.

Draw QQ' vertical, and consider the pressures on QEQ'
and Q'P separately.
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By the same reasoning tho vertical pressure on QE^
is dowTiwards and equal to

the weight of the liquid con-

tained between the surface

and the vertical plane QQ',

and the diflference between
this and the upward vertical ^{
pressure on PQ' is the result-

ant vertical pressvu-e on tho

surface PQ.

In all cases tho line of action of the resultant vertical

pressure is the vertical through the centre of gravity of

the superincumbent liquid.

53. Prop. To find the resultant horizontal pressure
in a given direction qf a liquid on any surface.

Take a fixed vertical plane perpendicular to the given

direction, and draw horizon-

tal lines through tiie boundary
of the siu-face PQ, meeting

the vertical plane in the curve

AB. Considei'ing the liquid

thus enclosed as a solid body,

its equilibrium is maintained

by its own weight, by the

fluid pressures on its curved

surface which are all parallel to the vertical plane, and by
the fluid pressures on the surfaces AB and PQ.

Hence the horizontal component of the reaction of PQ
must be equal to the pressure on AB, which can bo found
from previous investigations, and the lino of action will be
the horizontal line through the centre of pressure of AB.

54. "We are now in a position to determine the result-

ant pressure in direction and magnitude of a liquid on any
surface ; for wo can obtain separately the vertical and hori-

zontal pressures, and hence, by the principles of Statics,

determine the magnitude and direction of the resultant
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Es. 1. A vessel in the form of an open semi-cylinder with

its ends vertical, is filled with water; it is required to find the

resultant pressure on either of the

portions into which it is divided by
a vertical plane through the axis of

the cylinder.

Let h be the length of the cy-

linder and a its radius, and let the

figure be a vertical section through

the middle point of its length.

The residtant vertical pressure on AB

= the weight of the fluid OA R

, TO*= wA—

,

if ic be the weight of an unit of volume.

The resultant horizontal pressure on AB = \hQ pressure on

the vertical section perpendicular to the plane of the paper, that

is, on a rectangle of which the sides are a and h,

=tooA„ =- iPo'A.

Hence the angle B, at which the direction of the resultant

pressure is inclined to the horizon, is given by the equation

tan e=
2 WTfl'A

Moreover, since the pressure at any point acts in a direction

passing through the axis of the cylinder, the resultant pressure

acts in a line through 0, and, if POB-itar'^ / ^ )
, the point P

is the centre of pressure of the curvilinear surface.

Ex. 2. A hollow cone filled with water is held with its

vertex downwards ; it is required to determine the resultant

pressure on either of the portions into which it is divided by a

vertical plane through its axis.
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Let a be the radius of the base and 2a the vertical angle.

The volume = ^ »<»' cot a.

Hie resultant vertical pressure on
the portion AEVB

= A the weight of the fluid

= ^ rrra' cot o,

if w be the weight of an unit of
volume.

The resultant horizontal pressure

=the pressure on the triangle A VB

49

= w . o' cot a. ^a cot a
o

= r iTo' cot* o

;

therefore the resultant pressure

o
/y/-^- + cot*a,

and if 5 be the angle at which its direction is inclined to the
horizon.

tan 0-'

1

_6_

cot a

= tan a.

In general the determination of the line of action can only be

effected by means of the Integral Calculus, but in the first ex-

ample we were able to infer at once the position of the line of

action, and in some cases it may be determined by special geo-

metrical contrivances.

As an example, the position of the line of action in this la.st

case will be obtained in the appendix by the help of such a
contrivance.

B. E. H. 4
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55. To find the resultant pressure of a liquid on the

surface of a solid either wholly or partially immersed.

Imagine the solid removed, and the space it occupied

in the liquid to be filled with the liquid, and suppose this

liquid to be solidified. It is clear that the resultant pres-

sure on this solidified liquid is the same as on the original

solid. The weiglit of the liquid is entirely supported by the

pressure of the surrounding liquid, and therefore the result-

ant pressure is equal to the weight of the displaced liquid,

and acts vertically upwards in a line passing through its

centre of gravity.

This is sometimes expressed by saying that a solid

immersed in fluid loses as much qf its weight as is equal

to the weight of the fluid it displaces, observing that the

above reasoning is equally applicable to the case of a body
immersed in elastic fluid.

56. Tofind the conditions of equilihrium of afloating
body.

By the previous article the resultant pressure is equal

to the weight of the displaced liquid. It follows therefore

that, the body being supported entirely by the liquid, the

weight of the displaced liquid must be equal to the weight

of the body, and the centres of gravity of both must be
in the same vertical line.

These conditions also hold good when the body floats

partly immersed in two or more liquids, and are, for sucli

cases, established by precisely the same reasoning.

57. If a homogeneous body float in a liquid, its

volume will bear to the volume immersed the inverse

ratio of the specify gravities qfthe solid and liquid.

For if r, P be the volumes, and s, s' the specific gra-

vities,

F»=the weight of the body

= the weight of the displaced fluid

= V's';

.'. r-.r^s'-.g.

58. To find the conditions of equilibrium of a solid

floating in liquid and partly supported by a string.
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First, let the solid be homogeneous and wholly im-

mersed ; then the centres of gravity of the solid and of

the liquid displaced will be the same, and the direction of

the string must be the vertical through the centre of gra-

vity. Also

the tension = the vreight of the body— the weight lost

= V{8-S')

if s, s' "be the specific gravities of the solid and fluid.

Secondly, let the solid be homogeneous and partly

immersed.

Let V' be the part immersed, H its centre of gravity,

and G the centre of gravity of the body.

Draw vertical lines through Jff and G meetmg the sur-

face in C and A, and let the direction of the string meet
the surface in B.

Then, if T be the tension, the three forces, T, Vs, and
V «' acting at B, A, and G will balance each other

;

.-. Vs=T+V's',

and Fs.AB^V's'.CB.

The second equation is the condition of equilibrium,

and the first gives the requisite tension.

The case in which a heterogeneous body is partly sup-

ported by a string may be left for the consideration of the

student.

4—2
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59. The Camel. This is an apparatus for carrying a

ship over the bar of a river. It consists of four, or a
greater number of, watertight chests, which are filled with

water, placed in pairs on opposite sides of the ship, and
attached to the ship, or attached to each other by chains

passing under the keel. If the water bo then pumped
out, the vessel will bo lifted, and may be towed over the

bar into deep water. The lifting power of the camel is

the weight of water displaced by the chests, diminished

by the weight of the whole apparatus.

60. Removing wooden Piles. It is sometimes neces-

sary to remove entirely piles which have been driven down
in deep water ; for instance, the piles employed to keep out

water during the construction of a dock. After the water

has been allowed to flow within the piles, they are sawn
otf to a convenient depth, and a barge is floated over them
and filled with water. The bargo is then attached by

chains to a pile, and the water pmuped out ; as the pump-
ing proceeds the barge is lifted, and the pile is forcibly

drawn out. If the operation take place in the sea, a great

advantage is gained by fastening the barge to the pile at

low tide. The rise of the tide will sometimes draw out

the pile, but, if necessary, additional force must be gained

by pumping water out of the barge.

61. Wo now proceed to exemplify the preceding pro-

positions by their application to some particular cases.

Ex, 1. A man, whose weight ia 150 lbs., and specific gra-

vity 1.1, just floats in water, the specific gravity of which is ],

by the help of a quantity of cork. The specific gravity of coik

being .24, find its volume in cubic feet.

Let V be the volume of the cork, and V of the man, in cubic

feet.

Then V (.24)+ F (1.1)= the weight of the water displaced

= F+F;
or F(.76)=F(.l).

But F (1.1) ^^ Iba. = the weight of the man

= 150 lbs.;
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•• ^ ~1V

.1 24 60
and F=-77-. x ^-r- = rrrT: tl>s of a cubic foot

./o 11 2oy

Ex. 2. A cylindrical piece of wood floats in water with its

axis vertical ; find how much it will be depressed by placing a

given weight on the top of it.

If w be the weight placed on the top, it will be depressed

through such a space that the additional amount of displaced

fluid has its weight equal to w.

Now, if W be the weight of the cylinder, it is also the

weight of the fluid displaced by the cylinder, and therefore, if

/( be the depth of the base of the cylinder originally, and x the

depression,

w : W :: X : h;

•••

<^=w^'

If this value of x exceed the height of the cylinder originally

above the surface, it will be entirely immersed, and the possi-

bility of equilibrium will then depend on the density of w.

Ex. 3. An isosceles triangular lamina floats in water with

its base horizontal : it is required to find the position of equi-

librium when the base is above the surface.

Take p' and p as the densities of the lamina and of water,

h as the height of the triangle, and x the depth to which it is

immersed.

Then p' (volume of lamina) =p (volume of fluid displaced);

and therefore, similar triangles being proportional to the squares

of homologous sides, we have

p'h^= px^, and -='Vp'-

The second condition is obviously satisfied in this and the

preceding example-

Ex. 4. Can an isosceles triangular lamina float with its

base vertical in a liquid of twice its density !
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The first condition requires that lialf the triangle should be

immersed, and therefore its vertex A is in the surface.

Also, if (?, JET be the centres of gravity,

.if? = I i^, andAH=\ AF, F being the middle point of EC ;

.: AG : AH :: AE : AF.

Hence GIT is parallel to EF, is therefore vertical, and both

conditions are satisfied.

Ex. 5. A cylinder floats with its axis vertical, partly im-

mersed in two liquids, the densities of the upper and lower

liquids being respectively p and 2p, and the density of the cy-
Q

-

linder -j ; find the position of equilibrium of the cylinder, its

length being twice the depth of the upper fluid.

Let X be the length immersed in the lower fluid, k the area of

either end, and 2A the whole length.

Then -^k.2h=phh+2phe

;

.'. X=-;h.
4

If the cylinder were just immersed, its density p' would be

such that

2p'h=ph + 2ph;

or p
Bp
'2'

and X would then be equal to h.

Ex. 6. A cubical box, the volume of which is one cubic

foot, is three fourths filled with water, and a leaden ball, the

volume of which is 72 cubic inches, is lowered into the water by
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a string ; it is required to find the increase of pressure on the base

and on a side of the box.

The complete immersion of the lead will raise the surface

^ an inch, since 144 square inches is the area of the surface.

The pressure on the base is therefore increased by the weight

72
of 72 cubic inches of water, i, e. by -y^no 1^00 oz., or 41 1 oz.

The area of a side originally in contact with the fluid was

7 of a square foot,
4

3 3
and the pressure was 1000 x - x ^ oz., or 281-^ oz;

3
^ ths of a foot being the depth of the centre of gravity.
8

• 3 1 19 , ...
The new area is 7 + ^-r > o>" ^ of a square foot

;

4 24 24

19 19

24^48'

= 313T'i^oz.

The increase is therefore a little more than 32 oz.

Ex. 7. A solid hemisphere is moveable about the centre of its

plane base which is fixed in the surface of a liquid ; if .the density

of the liquid be twice that of the solid, any position of t/te solid

vdU be one of rest.

Hold the solid in the position ADB, DE being the surface

ofthe liquid ; continue the sphere
j^^

to the surface E of the liquid, /\, /'\

and imagine the portion of li- / \ /' \

quid within CBE to become solid TW „.V 1 ;t5_

and to be attached to the hemi- "^ I '' \-

sphere. Make the angle DCF --^ V ,.'' V •• -

equal to ECB, the figure being €_._ F\. \-' .: v
a vertical section through the ^^

-::^:^^-ggL^^^^-^^=^'

centre C of the hemisphere per-
'

pendicular to its plane base.

The wedge or lune FOB would be of itself in equilibrium

;

and, without knowing the position of the centre of gravity of a
wedge, it is easily seen that the horizontal distance from C of
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the centre of gravity of ECB is equal to that of the centre of

gravity of ACF ; hence the moment about C of the weight of

ECB is equal to the moment about C of the weight of ACF.
Moreover the fluid pressures on the suiface DBE all act in lines

_
' J 'through C, and tlierefore, releasing the hemisphere, and restoring

C»- '•** CBE to its liquid condition, the solid remains at rest.

The result of this problem has been practically employed in

the construction of an oil-lamp, called Cecil's Lamp, such that

the surface of the oil supplying the wick is always the same.

DEB is a hemispherical vessel containing oil, and ADB a

hemisphere, the specific gravity of which is half that of the oil

;

as the oil is consumed, ADB turns round C, and CE is always

the surface of the oil.

Ex. 8. A solid hemisphere, completely immersed in liquid,

of density p, is held so that the centre of its base is at a depth

c below the surface, and the plane of its base inclined at an

angle 6 to the vertical; it ia required to determine the resultant

horizontal and vertical pressures on its curved surface.

Taking a for the radius, the resultant vertical pressure on its

whole surface= the weight of the fluid displaced,

2 8

This resultant is the difiTerence between the resultant vertical

pressures on the curved surface and the plane base; but the

pressure on the h&BQ^gpirtt^c, in a direction inclined to an angle

to the horizontal ; and therefore the resultant vertical pressure

on the base =^pn-a'c sin 6.

Hence, if the base be turned upwards, the resultant vertical

pressure on the curved surface

2= 5 gpwcP + gpva'c sin 6.
o

If the base be turned downwards, the vertical pressure on the

curved surface

, . ., 2
^gpra'e sm 6--^ gptta^.

o

Also the horizontal pressure on the curved surface

= the horizontal pressure on the base

—gpira-c cos 0.
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Hence the actual resultant pressure on the curved surface

/ 4 '

4
=9p-^a? /^ c^igOC sin + ^a?.

It will he seen that the method of this example can he ap-

plied to find the resultant pressure on the surface of any solid

bounded by a plane of known area, if the volume of the solid

be known.

Stability of Equilibrium.

62. Imagine a floating body to be slightly displaced

from its position of equilibrium by turning it round so

that the line joining its centre of gravity with that of the

fluid displaced shall be inclined to the vertical. If the

body on being released return to its original position its

equilibrium is stable; if, on the other hand, it fall away
from that position its original position is said to be one of

unstable equilibrium.

Metacentre. In the figure let G, II be the centres

of gravity of the body and of the fluid originally dis-

placed, ir the centre of gravity of the fluid displaced in

tiie new position, andM the point where a vertical through

H' meets HG.

The resistance of the fluid acts vertically upwards in

the line H'M, and it is therefore evident that, if iHf be
above G^ the action of the fluid will tend to restore the

body to its original position ; but, ifM be below G, to turn

the body farther from its original position.

The position of the point M will in general depend on

the extent of displacement. If the displacement be very
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small, that is, if the angle between Gil and the vertical

be very small, the point M is called the metacentre, and

tlie question of stability is now reduced to the determina-

tion of this point.

One of the most important problems in naval archi-

tecture is to secure the ascendancy under all circumstances

of the metacentre over the centre of gravity.

This is effected by a proper form of the midship sec-

tions, 80 as to raise the metacentre as much as pfissible,

and by ballasting so as to lower the centre of gi-avity, and

the greater the distance between the points G and M, the

greater is the steadiness of the vessel.

Moreover, the naval architect must have in view the

probability of large displacements, due to the rolling of

the vessel, and not merely the small movement which is

considered in the determination of the metacentra

63. In particular cases the metacentre can Jjo some-

times found by elementary methods, but its general deter-

mination involves the application of the Integral Cal-

culus.

In one case however its position is obvious. Let the

lower portion of the solid be spherical in form; then as

long as the portion immersed is spherical, the pressure of

the water at every point acts in the direction of the centre

of the sphere, and therefore the resultant pressure must

act in the vertical line through the centre {E) of the

sphere.

Now in the original position the centre of gravity of
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the fluid displaced is evidently in the vertical through E,

and therefore the centre of gravity of the body is in the

vertical through E.

Hence the point E is the metaccntre.

Thus if any portion \vhateTer be cut from a solid sphere

it win float in stable etjuiiibrium with its curved surfuct

partly immersed.

64. Bodies floathig in air.

The fact that air is heavy enables us to extend to

bodies, floating either wholly or partly in air, the laws of

equilibrium which have been established for bodies floating

in liquids.

Taking one case, if a body, lighter than water, float on

its surface, it displaces a certain quantity of water and
also a certain quantity of air ; if wo remove the body and

suppose its place filled by air and water, it is clear tliat

the weight of the displaced air and water is 8ui)ported

by the resultant vertical pressures of the air and water

around it.

Hence the weight of the body must be equal to the

weight of the air and water it displaces, and the centre

of gravity of the air and water displaced must be in the

same vertical line with the centre of gravity of the body.

In a similar manner, if a body float in air alone, its

weight must be equal to the weight of the air it displaces.

65. The Balloon. The ascent of a balloon depends

on the principle of the previous article. A balloon is a

very large envelope, made of silk, or some strong and light

substance, and filled witli a gas of less density than the air,

usually coal gas. A car is attached in which the aeronauts

are seated, and the weight of air displaced being greater

than the whole weight of the balloon and car, the balloon

ascends, and will continue ascending until the air around

is not of sufficient density to support its weight. In order

to descend, a valve is opened and a portion of the gas

allowed to escape.

The ascensional force on a balloon is the weight of the
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air it displaces diminished by the weight of the balloon
itself.

66. If a body float in a liquid, the centre of gravity of
the liquid displaced is called the Centre of Buoyancy.

If the body be moved about, so that the volume of

liquid displaced remains unchanged, the locus of the centre
of the displaced liquid is called the Surface ofBuoyancy.

Taking a simple case, suppose a triangular lamina

immersed with its plane vertical, and vertex beneath

the surface, and let the area APQ be constant. Through
H the centre of gravity of the area APQ, draw pHq
parallel to PQ ; then the area Apq is constant, and there-

fore wg always touches, at its middle point //, an hyperbola

of wTiich AB and AC are the asymptotes. This hyperbola

is the curve of buoyancy. Now in the position of equi-

librium, Gli is vertical, and is consequently perpendicular

to pq.

The position of equilibrium is therefore determined by
drawing normals from G to the curve of buoyancy.

67. It is a general theorem that the positions of equi-

librium of a floating body are determined by drawing
normals from the centre of gravity of the body to tJie

surface of buoyancy.

"We give a proof for the case of a lamina with its plane
vertical, or, which is the same thing, of a prismatic or

cylindrical body with its flat ends vertical
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Let PQ, pq cut ofiF equal areas, so that the triangles

POp, QCq are equal.

Then, if // be the centre of gravity o^ PAQ, ^and F
of PCp and QCq, take the point K in FH produced

such that KH : KF :: QCq : QAP;

and in KE the point H' such that

KH' : KE :: PCp : jt?J?;

then //' is the centre of gravity oipAq.

Hence, since KH' : KE :: Z^f/ : KF,

it follows that HH is parallel to J^i^, and therefore, ulti-

mately, when the displacement is very small, HH' if*

parallel to PQ, or, in other words, the tangent to the

curve of buoyancy at // is parallel to PQ.

Now, in the position of equilibrium, GH is vertical, and

is therefore normal, at the point H, to the curve of

buoyancy.

The metacentre having been defined as the point of

intei*section of the vertical through //' with the line HG,
it follows that the meiacentre is the centre of curvature, at

the point H, of the curve ofhuoyancy.
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EXAMINATION UPON CHAPTBK IV.

1. Shew how to find the resultant vertical pressure of a

liquid on a surface; Ist, when it acts upwards, 2iid, when it

acts downwards.

2. Apply the preceding to find the resultant pressure on
a solid completely immersed.

3. A solid cone of metal, completely immersed in liquid,

is supported by a string ; find the tension of the string.

4. State the conditions of equilibrium of a floating body.

\ 5. A wooden plank floats in water, and a weight is placed

at one end of the plank; find the weight which, placed at a
given distance from the other end, will keep the plank in a
horizontal position.

6. Describe a method of removing piles in deep water.

7. A cylinder floats vertically in a fluid with 8 feet of its

length above the fluid; find the whole length of the cylinder,

the specific gravity of the fluid being three times that of the

cylinder.

8. A body floats in one fluid with |ths of its volume

immersed, and in another with ^ths immersed; compare the

specific gravities of the two fluids.

9. A cylinder of wood 3 feet in length floats with its

axis vertical in a fluid of twice its specific gravity; compare

the forces required to raise it 6 inches and to depress it 6

inches.

10. Three equal rods are jointed together so as to form

an equilateral triangle, and the system floats in a liquid of

twice the density of the rods, with one rod horizontal and

above the surface ; find the position of equilibrium.

11. Explain what is meant by stability of equilibrium, and

define the metacentre,

12. A small iron nail is driven into a wooden sphere, and

the weight of the sphere is then half that of an equal volume

of water ; find its positions of equilibrium in water, and examino

ilie stability of the equilibrium.
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13. A block of wood, the volume of which is 4 cubic fe«t,

floats half immersed in water; find the volume of a piece of

metal, the specific gravity of which is 7 times that of the

wood, which, when attached to the lower portion of the wood,

will just cause it to sink.

14. A cylindrical block of wood is placed with its axis

vertical in a cylindrical vessel whose base is plane, and water

is then poured in to twice the height of the cylinder ; find the

pressure of the wood on the base of the vessel.

15. Two cylindrical vessels, containing different fluids, and

standing near each other on a horizontal plane, are connected

by a fine tube, which is close to the horizontal plane; when
the communication is opened between them, determine which

of the fluids will flow from its own vessel into the other, and

find the condition that the equilibrium may not be disturbed.

16. Two bodies of given size and given specific gravities

are connected by a string passing over a pulley, and rest

completely immersed in water; find the condition of equili-

brium.

NOTE ON CHAPTER IV.

The Principle of Archimedes. The enunciation and proof of

the proposition of Article (56) are due to Archimedes, and
it is a remarkable fact in the history of science, that no further

progress was made in Hydrostatics for 1800 years, and until

tlie times of Stevinus, Galileo, and Torricelli, the clear idea

of fluid action thus expounded by Archimedes remained barren
of results.

An anecdote is told of Archimedes, which practically illus-

trates the accuracy of his conceptions, Hiero, king of Syracuse,

had a certain quantity of gold made into a crown, and sus-

pecting that the workman bad abstracted some of the gold

and used a portion of alloy of the same weight in its place,

applied to Archimedes to solve the difficulty. Archimedes, while

reflecting over this problem in his bath, observed the water
running over the sides of the bath, and it occurred to him
that he was displacing a quantity of water equal to his own
bulk, and therefore that a quantity of pure gold equal in weight
to the crown, would displace less water than the crown, the
volume of any weight of alloy being greater than that of an



g^ Not^. Examples.

equal weight of gold. It is related that he immediately ran out

into the streeta, crj'ing out tvpi]Ka.\ eupr/Ko!

The two books of Archimedes which have come down to

us, " De Ha qiuB in humido vehuntur" were first found in an

old Latin MS. by Nicholas Tartaglia, and edited by him in

1537. In the first of these books it is shewn that the surface

of water at rest must be a sphere of which the centre is at

the earth's centre, and various problems are then solved relating

to the equilibrium of portions of spherical bodies. The second

book contains the proposition of Art. (56), and the solutious

of a number of problems on the equilibrium of paraboloids, some

of which involve complicated geometrical constructions.

The authenticity of these books is confirmed by the fact

that they are referred to by Strabo, who not only mentions

their title, but also quotes the second proposition of the first

book.

Stevinut and Galileo. The Treatise of Stevinus on Statics

and Hydrostatics, about 1585, follows that of Archunedes in the

order of thought. In this ho shewed how to determine the

pressure of a liquid on the base and sides of a vessel con-

taining it.

Galileo, in his Treatise on Floating Bodies, published in

1612, states the Hydrostatic paradox, and explains why the

floating of bodies does not depend on their form.

EXAMPLES.

•1. A uniform solid floats freely in a fluid of specific gravity

twice as great as its own
;
prove that it will also float in equi-

librium, if its position be inverted.

2. A block of ice, the volume of which is a cubic yard,

is observed to float with -^ ths of its volume above the surface,

and a small piece of granite is seen embedded in the ice; find

the size of the stone, the Rpecific gravities of ice and granite

being respectively .918 and 2.65.

3. An isosceles triangular lamina floats with its base hori-

zontal and beneath the surface of a liquid of twice its density

;

find the position of equilibrium.

4. A solid cone floats with its axis vertical in a liquid thu

density of which is twice that of the cone; compare the portions

of the axis immersed, Ist, when the vertex ia upwards, 2nd,

when it is-downwards.
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5. If iCx, ifg, «>3 be the apparent weight of a body in three

liquids, the specific gravities of which are «,, «j, s^, prove
that

«', (sj - 83) + Wj («3 - »i) + W3 («i - «,) = 0.

6. An equilateral triangular lamina suspended freely from
A, rests with the side AB vertical, and the side AC bisected
by the surface of a heavy fluid

;
prove that the density of the

lamina is to that of the fluid :: 15 : 16.

7. A vertical cylinder of density '-j floats in two liquids,

the density of the upper liquid being p, and of the lower 2p;
if the length of the cylinder be twice the depth of the upper
liquid, find its position of rest.

8. A wooden rod is tipped with lead at one end; find the

density of a liquid in which it will float at any inclination to

the vertical ; the weight of the lead being half that of the rod,

and its size being neglected.

)^ 9. The weight of the unimmersed portion of a body floating

in water being given, find the specific gravity of the body, in

order that its volume may be the least possible.

10. A cylindrical glass cup weighs 8 oz., its external radius

is l.J inches, and its height 4^ inches; if it be allowed to float

in water with its axis vertical, find what additional weight
must be placed in it, in order that it may sink,

11. . A vessel in the form of half the above cylinder with
both its ends closed, floats in water, with its ends vertical;

find the additional weight which being placed in the centre
of the vessel will cause it to be totally immersed.

12. A uniform rod, whose weight is W, floats in water in

a position inclined to the vertical with a particle, of weight W,
attached to its lower end; shew that, if the density of the
water be four times that of the rod, half the length of the rod
will be immersed.

13. A uniform rod floats partly immersed in water, and
supported at one end by a string; prove that, if the length
immersed remain unaltered, the tension of the string is inde-

pendent of the inclination of the rod to the vertical.

II. A spherical shell, the internal and external radii of
which are given, floats half immersed in water; find its density
compared with the density of water.

u. E. n. r,
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15. A heavy hollow right cone, closed by a base without

weight, is completely immersed in a fluid, find the force that

will sustain it with its axis horizontal.

16. Find the position of equilibrium of a solid cone, floating

with its axis vertical and vertex upwards, iu a fluid of which
the density bears to the density of the cone the ratio 27 : 19.

17. A rectangular lamina ^^CZ> has a weight attached to

the point B, and floats in water with its plane vertical and the

diagonal ^C in the surface; prove that the specific gravity of

the fluid is three times that of the lamina.

18. A solid paraboloid floats in a liquid with its axis ver-

tical and vertex downwards; having given the densities of the

paraboloid and the liquid, find the depth to which the vertex is

submerged.

19. A ship sailing from the sea into a river sinks two inches,

but after discharging 40 tons of her cargo, rises an inch and a

half; determine the weight of the ship and cargo together, the

specific gravity of sea-water being 1.025, and the horizontal

section of the ship for two inches above the sea being invari-

able. ^^ V - ^ ^.^^ -V

20. A cylindrical vessel of radius r and height h is three-

fourths filled with water; find the largest cylinder of radius )*'

and specific gravity .5 which can be placed in the water without

causing it to run over, the axes of the cylinders being vertical

and r' less than r.

21. A hollow cylinder is just filled with water, and closed,

and is then held with its axis horizontal; find the direction and
magnitude of the resultant pressure on the lower half of the

curved surface. Also, if the cylinder be held with its axis ver-

tical, find the direction and magnitude of the resultant pressure

on the same surface.

22. A. solid cylinder, one end of which is rounded ofl' in

the form of a hemisphere, floats with the spherical surface partly

immersed : find the greatest height of the cylinder wliich is con-

sistent with stability of equilibrium.

23. A body floating on an inelastic fluid is observed to

have volumes Pj, Pa, Pa respectively above the surface at times

when the density of the surrounding air is /o., p^, pa; bhew

that

Ps-Pa . Pb-P\ , Pi -/>« _()
Pi P« P. "
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24. A frustum of a right circular cone, cut off by a plane
bisecting the axis perpendicularly, floats with its smaller end
in a fluid and its axis just half immersed; compare the densities

of the cone and fluid.

25. A solid cone and a solid hemisphere, which have their

bases equal, are united together, base to base, and the solid thus
formed floats in water with its spherical surface partly immersed

;

find the height of the cone in order that the equilibrium may te
neutral.

26. Three uniform rods, joined so as to form three sides oi

a square, have one of their free extremities attached to a hinge
in the surface of a fluid, and rest in a vertical plane with half

the opposite side out of the fluid ; shew that the specific gravity

of the rods is to that of the fluid as 31 : 40.

27. A triangle ABC floats in a fluid with its plane vertical,

the angle B being in the surface of the fluid and the angle A
not immersed. Shew that the density of fluid : density of the

triangle : : sin i? : sin ^ cos C.

28. A solid cone floats with its axis vertical and vortex

downwards in an inelastic fluid
;
prove that, whatever be the

density of the fluid, supposing it greater than that of the solid,

the whole pressure on its curved surface is the same.

29. Two fluids are in equilibrium, one upon the other, the

lower fluid having the greater specific gravity, and a solid

cylinder, the height of which is equal to the depth of the upper
fluid, is immersed with its axis vertical: the specific gravity of

the cylinder being greater than that of the upper fluid, find the
position of equilibrium.

What would be the effect of an increase in the density of

the upper fluid? Will the equilibrium be stable or unstable for

a vertical displacement?

30. Two equal uniform rods AB, BO are freely jointed at

B, and are capable of motion about A, which is fixed at a given
depth below the surface of a uniform heavy fluid. Find the
position in which both rods will rest partly immersed, and shew
that, in order that such a position may be possible, the ratio of
the density of the rods to the density of the fluid must be less

than -

.

y

31. An equilateral triangle, ABC, of weight PTand specific

5—2
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gravity <r, is moveable about a hinge at A, and is in equilibrium

when the angle C is immersed in water and the side AB w
horizontal. It is then turned about A in its own plane until

the whole of the side BC is in the water and horizontal
;
prove

that the pressure on the binge in this position

32. A solid hemisphere is completely immersed with the

centre of its base at a, given depth ; if W be the weight of fluid

it displaces, P the resultant vertical pressure, and Q the result-

ant horizontal pressure, on its curved surface, prove that for all

positions of the solid (TF-Pj' + Q' is constant.

33. A hollow cone, filled with water and closed, is held with

its axis horizontal; find the resultant vertical pressiu-e on the

upper half of its curved surface.

34. A solid cylinder which is completely immersed in water

has its centre of gravity at a given depth below the surface, and

its axis inclined at a given angle to the vertical ; determine the

resultant horizontal and resultant vertical pressures upon its

curved surface, and the direction and magnitude of the resultant

pressure on the curved surface.

35. The vertical angle of a solid cone is 60"
;
prove that it

can float in a liquid with its vertex above the surface and its

base touching tlie surface, if the densities of the cone and the

liquid are in the ratio of 2\/2 - 1 : 2V2.

.86. A thin hollow cone closed by an eqaally thin base will

remain wherever it is placed entiiely within a liquid ; prove that

its vertical angle is 2 sin"^ .3.

37. The base of a vessel containing water is a horizontal

plane, and a sphere of less density than water is kept totally

immersed by a string fastened to the centre of a circular disc,

which lies in contact with the base. Find the greatest sphere

of given density, and also the sphere of e^ven size stod

least density, which will not raise the dieo.



CHAPTER V.

ON AIR AND GASES. - .

Elasticity of Air, Effect of Heat, Thermometers, Torri-

celli's Experiment, Weight of Air, the Barometer
and its Graduation, the Relations between Pres-
sure, Density, and Temperature, Determination of
Heights by the Barometer, the Siphon, Graduation
ofa Thermometer, the Differential Tliermometer.

68. rpHE pressure of an elastic fluid is measured ex-
J- actly in the same way as the pressure of a liquid,

and it has been mentioned before that the properties of

equality of pressure in all directions and of transmission of

pressure are equally true of liquids and gases.

There is however this diflference between a gas and a
liquid, that the pressure of the latter is entirely due to its

weight, or to tho application of some external pressure,

while the pressure of a gas, although modified by the ac-

tion of gravity, depends in chief upon its volume and
temperature.

The action of a common syringe will serve to illustrate

the elasticity of atmospheric air. If the syringe be drawn
out and its open end then closed, a considerable eflfort

will be required to force in the piston to more than a
small fraction of the length of its range, and if the syringe

be air-tight, and strong enough, it will require the appli-

cation of very great power to force down the piston through
nearly the whole of its range. Moreover, this experiment
with a syringe shews that the pressure increases with the
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compression, the air within the syringe acting as an elastic

cushion. If the piston after being forced in be let go, it

will be driven back, the air within expanding to its original

volume.

Another simple illustration may be obtained by im-

mersing carefully in water an inverted glass cylindei'.

Holding the cylinder vertical, fig. Art. 94, Ex. (2), it muy
be pressed down in the water without much loss of air,

and it will be seen that the surfoce of the water within

the vessel is below the surface of the water outside. It

is evident that the pressure of the air within is equal to

the pressure of the water at its surface within the cylinder,

which, as we have shewn before, is equal to the pressure at

the outside surface, increased by the pressure due to the

depth of the inner surface; hence the air within, which
has a diminiahed volume, has an increased pressure.

69. Effect of lieat. It is found that if the tempera-

ture be increased, the elastic force of a quantity of air or

gas which cannot change its volume is increased, but that

if the air can expand, while its pressure remains the same,

its volume will be increased.

To illustrate this, imagine an air-tight piston in a ver-

tical cylinder containing air, and let it be in equilibrium,

the weight of the piston being supported by the cushion of

air beneath.

Raise the temperature of the air in the cylinder; the

piston will then rise, or, if it be not allowed to rise, the force

required to keep it down will increase with the increase of

temperature.

70. Thermometer. As a general rule bodies expand
under the action of heat, and contract under that of cold,

and the only method of measuring temperatures is by ob-

serving the extent of the expansion or contraction of some
known substance.

For all ordinary temperatures mercury is employed,

but for very high temperatures a metal of some sort is the

most useful, and for very low temperatures, at which mer-
cury freezes, alcohol must be employed.
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71. The Mercurial Thermometer ia formed of a thin

glass tube terminating in a bulb, and having its

upper end hermetically sealed. The bulb contains

mercury which also extends partly up the tube,

and the space between the mercury and the top of

the tube is a vacuum.

It must be observed that, as the glass expands
with an increase of temperature, as well as the

mercury, the apparent expansion is the difference

between the actual expansion and the expansion

of the glass.

In the Centigrade Thermometer the freezing

point is marked 0", and the boiling point 100°, the

space between being divided into 100 equal parts,

called degrees.

In Fahrenheit's Thermometer the freezing point is

marked 32®, and the boiling point 212"; and in Reaumur's
the fi-eezing point is 0°, and the boiling point SO**.

72. To compare the scales of these Thermometers.

Let (7, F and R be the numbers of degrees marking
the same temperature on the respective thermometers

;

then, since the space between the boiling and freezing

points must in each case be divided in the same proportion

by the mark of any given temperature, we must have

G : F-32 : R :: 100 : 180 : 80

:: 5 : 9 : 4,

C F-Z2 R
°^5=-9-^4"'

it being taken for granted that the temperature indicated

by the boiling point is the same in all.

The method of fillmg the thermometer, and the defi-

nitions of the freezing and boiling points, will be given at

the end of the chapter.

73. Pressure of the Atmx)sphere, Torricellfa Ex-
periment.
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The action of the atmosphere was distinctly ascertained

by the experiment of Torricelli. Taking a glass tube AB,

32 or more inches in length, open at the end A and closed

at the end B, he filled it with mercury, and then, closing

the end ^, inverted the tube, immersed the end ^ in a cup
of mercury, and then opened the end A. The mercury was
observed to descend through a certain space, leaving a

vacuum at the top of the tube, but resting with its surface

at a height of about 29 or 30 inches above the surface of

the mercury in the cup.

It thus appears that the atmospheric pressure, acting

on the surface of the mercury in the cup, and transmitted,

as we have shewn that such pressures must be transmitted,

supports the column of mercury in the tube, and provides

us with the means of directly measuring the amount of the

atmospheric pressure.

In fact, the weight of the column of mercury in the
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tube above the surface in the cup, is exactly equivalent to

the atmospheric pressure on an area equal to that of the

section of the tube- This is about 15 lbs. on a square

inch.

74. Air Jias weight. This may be directly proved by
weighing a flask filled with air; and afterwards weighing

it, when the air has been withdrawn by means of an air-

pump. The difference of the weights is the weight of the

air contained by the flaak.

We are now in a position to account for the fact of at-

mospheric pressure. The earth is surrounded by a quan-

tity of air, the height of which is limited, as may be proved

by dynamical and other considerations ; and if, above any

horizontal area, we suppose a cylindrical column extending

to the surface of the atmosphere, the weight of the column
of air must be entirely supported by the horizontal area

upon which it rests, and the pressure upon the area is

therefore equal to the weight of the column of air.

According to this theory the pressure of the air must
diminish as the height above the earth's surface increases,

and, from experiments in balloons, and in mountain ascents,

this is.found to be the case. As before, taking n for the

pressure at any given place, and p as the density of the

air, the pressure at a height z will be

n-gpz,

if we assume that the density of the air is sensibly the

same through the height z.

75. It has been mentioned that the pressure of a gas de-

pends chiefly upon its volume and temperature, but it is implied

in that statement that the gas is confined within a limited space,

for without such a restriction the effect of its elasticity might

be the unlimited expansion and ultimate dispersion of the gas.

The action of gravity is equivalent to the effect of a com-

pression of the gas, and it is thus seen that the pressure of a

gas is in fact due to its weight, as in the case of a liquid.

76. It may be shewn in the same manner as for air

that any other gas has weight, and that the intrinsic weight

is in general different for different gases.
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Carbonic acid gas, for instance, is heavier than air,

and this is illustrated by the fact that it can be poured, as

if it were liquid, from one jar to another.

The Barometer.

77, This instrument, which is employed for measuring

the pressure of the atmosphere, consists of a j^

bent tube ABC, closed at A, and having the

end (7 open.

The height of the portion AB is usually

about 32 or 33 inches, and the portion BG
is generally for convenience of much larger

diameter than AB. The tube contains a

qiuntity of mercury, and the portion AP
above the mercury is a vacuum.

If the plane of the surface in BC inter-

sect AB in Q, it is clear, since the pressure

at all points of a horizontal plane is the same,

that the pressure at Q is the same as the at-

mospheric pressure, which is transmitted from

the surface at C to Q, and therefore the at-

mospheric pressure supports the column of mercury PQ.
Hence the height of this column is a measure of the at-

mospheric pressure, and if a- be the density of mercury, and

n the atmospheric pressure,

n.=g<rPQ.

The density of mercury diminishes with an increase of

temperature, and it is an experimental result that, for an

increase of 1° centigrade, the expansion of mercury is

—;rth, or .00018018 of its volume; and therefore if at be
5550

the density at a temperature t, and o-© at a temperature 0",

(ro= o-,(l + .000180180,

or, if (9 = .00018018, o-o = o-, (1 + ^0;

and .-. n=g(r,.PQ=g<ro{l-et)PQ.

78. The average height of the barometric column at

the level of the sea is found to vary with the latitude, but

it is generally between 29i and 30 inches. This height is

however subject to continuous variations; during any one

day there is an oscillation in the column, and the mean
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height for one day is itself subject to an annual oscilla-

tion, independently of irregular and rapid oscillations due
to high winds and stormy weather. Usually the height of

the column is a maximum about 9 in the morning; it then

descends until 3 p.m., and again attains a maximum at 9 in

the evening.

79. The Water Barometer. Any kind of liquid will

serve to measure the atmospheric pressure, but the great

density of mercury renders it the most convenient -for the

purpose. If water were employed, it would be necessary

to have a tube of great length ; in fact, as the density of

mercury is about 13.568 times that of water, the height of

the column of water would be about 33i feet.

I 80. Graduation of the Barometer. Suppose the co-

» lumn of mercury to rise above P (fig. Art. 77) ; then it is

clear that it descends below C in BC, and that the vari-

ation in the height of the column is the sum of these two
changes.

Let k, K be the sectional areas of the tubes, and x the

ascent above P, or the apparent variation; then the de-

scent below Cis -^v, and the true variation isK
kx '(4)-

Hence in graduation the distances actually measured

from the zero point must be marked larger in the ratio of

81. To find the atmospheric pressure on a square
inch.

This we can determine at once by observing that it is

the weight of a cylindrical column of mercury of which
the base is a square inch and the height equal to that of
the barometric column.

The specific gravity of mercury is 13.568 times that of

water; hence the atmospheric pressure on a square inch,

taking 30 inches as the height of the barometer at the sea
level,

= 30 X 13.568 X 1000-7-1728 oz.

= 14.7 lbs.
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This pressure varies from time to time, but is generally

between 14^ and 15 lbs,

82. The height of the homogeneous atmosphere.

If the density of the atmosphere were the same through-
out the whole vertical column as it is at the sea level, its

height would be less than 5 miles.

To prove this, let a-, p be the densities of mercury and
of air, each referred to water ; then, if h be the height of
the barometer, the atmospheric pressure =5'{rA. Hence

the height of the atmospheric column would be - h. Now,
P

it has been found that the ratio o- : p is about 10462 : 1,

and if we take A to be 30 inches, we shall find that - h is

P
a little less than 5 miles.

83. The pressure of a given quantity of air, at a
given temperature, varies inversely as the space it oc-

cupies.

The experimental proof of this law, due to Boyle and
Marriotte, is as follows.

A bent glass tube, the shorter branch of

have its end closed, is fixed to a gra-

duated stand. Both ends being open,

a little mercury is poured in, which

rests with its surfaces P, P in the

same horizontal plane. The end A is

nowclosed and more mercury is poured
in at ^; the eflFect is a compression

of the air in AP, the mercury rising ^
to a height Q, which is however below
the surface R of the mercury in BP.

After closing the end A the pres-

sui-e of the air is equal to the atmo-
spheric pressure, and when more mer-
cury has been poured in, the pressure

of the air in AQ is equal to that of

the mercury at Q, the same level in

the longer branch. This latter, pres-

which can

Tl
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Bare is clue to the atmospheric pressure on the surface R,
and the weight of the column RQ.

If now the spaces AQ, AP be compared, which may
be effected by cftjmparing the weights of the mercury they

would contain, and if the height h of the barometer bo
observed, it will be found that

space^P h+QR
&paceAQ h

But, taking n as the original pressure of the air in

AP, and n' as its pressure when compressed,

U=g(rh, and U'=U +gaRQ = g(r{h + RQ);
.: n' : n :: space AP : space AQ,

and this proves the law for a compression of air.

For a dilatation, employ a bent glass tube, of which
both branches are long, and pour in mer- .

cury to a height P; then close the end

A and withdraw some of the mercury

from the branch B; let Q and R be the

new surfaces.

It will now be found that

space ^P _h- QR
space AQ ~ h

But if n" be the pressure of the air |
when dilated,

n" = pressure vAjR—gtrQR ^
=ga{h-QR);

w

-K

And n" : n space AP : space AQ.

In each case care must be taken to have the tem-
peratures the same at the beginning and at the conclusion

of the experiment.

Hence it follows that, since the density of a given

quantity of air varies inversely as its volimie, the pressure

varies directly as the density. If /> be the pressure, and
p the density, this is expressed by the equation

p=kp,
where A; is a quantity to be determined by experiment.
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84. Effect of a change of temperature.

If the pressure rem,ai)i constant, an increase of tem-

perature of 1" centigrade, produces in a given mass cf
air an expansion ,003665 of its volume.

This experimental law, combined with the preceding,

enables ns to express the relation between the pressure,

density, and temperatui'e of a given mass of air Or gas.

Imagine a quantity of air confined in a cylinder by

a piston to which a given force is applied, and let the

temperature be 0° C. Raise the temperature to <"; the

piston will then be forced out until the original volume

( Fo) is increased by .003665 t.Vf^ov at F^, designating the

decimal by a. If V bo the new volume, we have

F=F„(l + aO,

and therefore, if p, p^ be the densities at the tempera-

tures P, 0", po = p (1 + at).

Hence, p=kpo= kp (1 + at).

85. Absolute Temperature.

If we can imagine the temperature of a gas lowered

until its pressure vanishes, without any change of volume,

we arrive at what is called the absolute zero of tempe-

rature.

Assuming tg to be this temperature on the centigrade

scale, we have 1 + a^o = ^>

or io=-273».

In Fahrenheit's scale this is —459".

Hence p = Kp{l + at) = Kpa{t—t(,) = KpaT,

if T be the absolute temperature.

Taking V as the volume of the gas, p F is constant, and

therefore^ is constant; i.e. the product of the pressure

and volume is proportional to the absolute temperature.
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The air Thermometer is a long straight tube of uniform bore

closed at its lower etid, open at the upper end, and containing

air or some other gas, which is separated from the eztemtd air-

by a short column of liquid.

This thermometer is very sensitive, but it has the disadvan-

tage that, as tlie atmospheric pressure is variable, no estima-

tion can be made of the temperature without at the same time

tailing acoount of the height of the barometer*.

86. Illtistration. The efiFect of heat in the expansion
of air may be illustrated by a simple experiment.

Take a glass tube, open at one
end, and ending in a bulb at the

other; immerse the open end in

water, and then apply the heat of

a lamp to the bulb. The air in the

bulb will expand, and will drive out
a portion of the water in the tube.

If the lamp be removed, the
air within will be cooled, and the

water will then rise in the tube.

87. Determination ofheights hy the barometer.

It is found both from theory and from observation,

that the height of the barometric column depends on its

altitude above the sea level, and we are thus provided
with a means of directly inferring from observation the
height of any given station above the level of the sea.

For this purpose it is necessary to construct a formula
which shall connect the height of the barometer with the
height of its position above a given level, such as the sea
level.

A general formula would be somewhat complicated,

and difficult to obtain without the aid of the Integrfd

Calculus, since the atmospheric pressure depends on the
temperature and density of the air, which both vary with
the height, and also on the intensity of gravity, which
diminishes with an increase of height.

"\Vo shall however construct a formula on the suppo-
sition that the temperature and the force of gravity re-

* See Chapter II. of Maxwell's Heat.
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main constant: this will be practically useful for the

determination of comparatively small differences of al-

titude.

88. Xf a series of heights he taken in arithmetic pro-

gression, the densities of the air decrease in geometric

progression.

Take a vertical column of the atmosphere of a given

height z, and let it be divided into n horizontal layers of

the same thickness, i. e. - , and suppose that pi, pj, p^.-.p.^

represent the densities of the successive layers, measuring

upwards.

These layers may be supposed each of the same density

throughout, and, if we take the temperature the same
in all, the pressures on the upper sides of the layers

vnll be
kpi,kpt,...kp„,

k being the constant of variation for the particular tem-

perature.

The difference between any two consecutive pressures

must be equal to the weight of the air between them, and

therefore, taking ther-lj"" and r"" pressures,

kpr-x-kpr=gpr^,

or kpr-, ={f^+ff^Pr',

p, kn^

that is, the densities diminish in geometric progression,

89. To find an expression for the difference of the

altitudes of two stations.

If z he this difference, we have from the preceding

article, putting y for

kn'
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and po for the density immediately beneath the lowest

layer of air,

p«-i=yp»» p»-i=vp«-i--Pi=yp«, Po=ypi.

and therefore

,

Po= y"p,.

Hence, if/?', p be the corresponding pressures

p=y''p'.

Let A', A bo the observed altitudes of the barometer
at the higher and lower stations respectively.

T.« |=|.=V=(..g)-.

And loge^, =nlogn+^-j

\k 2k'n ")'

Xow the larger we make n, the more nearly our hy-

pothetical case approaches to the continuous variation of

the actual density of tho air, and by taking n very large,

we obtain tho approximate expression,

k, h

observing that A' is less than h, and that the temperature
and the force of gravity are supposed constant throughout

the height z.

The Siphon.

90. The action of a siphon is an important practical

illustration of atmospheric pressure.

It is simply a bent tube ABC, which is open at both

ends. When filled with water, the ends are closed and

the siphon is then inverted, and one end G placed in water,

the other end A being below the surface of the water.

B. E. H. <>
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If the end G be opened, it is clear that the pressure at
A is greater than the pressure at Q, which is equal to the
pressure at P, and therefore to the atmospheric pressure.

Ilcnce, if the end A bo unclosed, the water at A will

begin to flow out, and by so doing diminish the pressure

in the tube, and tend to form a vacuum in the upper por-

tion of the tube. But if the height of B above the surface

of the water bo less than the height h of the water-

bai'ometer, the atmospheric pressure will force ti»e water
up the tube, and maintain a continuous flow through the

end A, imtil either the surface has follcn below C, or, if

the siphon be long enough, until it has descended so far

that its depth below B is greater than h.

91. Methods of filling and graduating a Thermo-
meter.

To fill the Thermometer with mercury a paper funnel

is fastened to the open end, and mercury poured into it;

the bulb is then heated over a spirit-lamp, a jwrtion of ti»e

air iji the tube is thereby expelled, and if the bulb be

cooled the mercury descends in the tube. This process is

repeated until the air is completely expelled, and when
the tube is quite full and the mercury overflowing, the

upper end is hermetically sealed by means of a blow-pipe

;

during the subsequent cooling the mercury contracts and
descends, leaving the vacuum at the toji of the tube*.

The freezing and boiling points are now to be deter-

mined.

The freezing point is obtained by immersing the bulb

and the lower portion of the tube in melting snow, and

* This so-called vacuum is filled with the vapour of merctay.
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marking tho tubo outsido at the end of the mercurial

column.

Tho boiliug point is obtained by immersing: the bulb

in the vapour of water boiling under a given atmospheric

pressure, and marking the tube as before.

The temperature of steam depends on the atmospheric

pressure, and it is therefore necessary to fix on some

standard pressure, and to define the boiling point as the

temperature of steam at that pressure. A barometric

column of 30 inches at the level of the sea is the usual

standard.

For the Centigrade Thermometer, tho boiling point,

100**, is the temperature of steam when the height of tJie

barometric column is 29.9218 inches at the level of the sea

in latitude 45".

For some time after boiling the height of the mercury at

the freezing temperature ia gradually increased, and it has been

found that it takes 4 or 5 years for the zero to attain its per-

manent position after boiling.

92. Use qf the Mercurial Thermometer limited.

Mercury freezes at a temperature of— 40" C, and boils

at a temperature of about 350" C ; it is therefore necessary

for very high or very low temperatures to employ different

substances.

For very low temperatures spirit of wine is used, and

this liquid is generally employed in the construction of

minimum Thermometers.

High temperatures are compared by observing the ex-

pansion of bars of metal or other solid substances, and

various instruments, called pyrometers, have been con-

structed for this purpose.

93. The Differential Thermometer is constructed in

two different forms. In one form, of which the figure is a

section, a horizontal tube branches upwards into two short

vertical tubes ending in bulbs of equal size.

These bulbs contain air, and in the horizontal tubo is

a small portion of some coloured liquid, by which the air

in one biilb is separated from the air in the other. The

6—^
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quantities of air are equal, so that when the bulbs have

the same temperature the bubble of liquid rests at the

middle of the tube : if however the temperatures be dif-

ferent, the liquid will rest in a position nearer to the bulb

of lower temperature tlian to the other, since the air-

pressure within it will be less than that in the other.

In the other form of the diflferential thennometer, the

vertical portions, A, B, of the tube extend to a much
greater height, and the liquid fills the whole of the hori-

zontal portion of the tube, and also partly fills the vertical

portion of the tube.

The principle of the construction is the same, and the

diflference consists in the graduation of the vertical por-

tions, instead of the horizontal portion of the tube.

On account of their great sensibility these thermo-

meters are extremely useful in detecting small diflFerences

of temperature.

In graduating the second of these instruments, allow-

ance must be made for the weight of the liquid, which is

contained in the vertical tubes.

94. Ex. 1. The same quanliiies of atmospheric air are con-

tained in two hollow spheres; the internal radii being r, r' and

the temperatures t, t' respectively, compare the whole pressures on

the surfaces.

Taking p,
p' as the densities, we have, since the masses are

equal, and the volunaes in the ratio of f^ : r'\

pr^=p'r'\

9
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If p, p' be the corresponding pressures,

p= hp(l+at), p'= i:p'{l + at),

and the pressures on the surfaces are

4irr*p, and 4irr'V»

which are in the ratio

t^pil + at) : r'y(l + aO,

orr'(l + a<) : r{l + at').

Ex. 2. A hollow cylinder, open at the top, is inverted, and
partly immersed in water; it is required to find the height of the

surface of the water within the cylinder.

A
_

Take 6 for the length of the cylinder, and a for the length

not immersed.

Let X be the depth of the surface within below the surface

without, n, n' the pressures of the atmospheric air and of the

compressed air in EC.

Then IT' : II :: 6 : a+x. Art. 83,

and n' — pressure of the water at the level C=!!{gpx;

^ H+gpx _ _&_
11 a + x'

If A be the height of the water-barometer, 'n.=gph, and

h + x _ h

h a + x*

or a?+ {a+h) ««= {b - a) h.
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This equation gives two values for x, one positive and the

other negative, the positive value being the one which belongs

to the problem before us. The negative value is the result of

another problem, the algebraical statement of which leads to tha

same quadratic equation.

Ex. 3. A small quantity of air is left in the upper part of
a baromder-tube ; it is required to determine the effect on the

height of the column.

Let a be the length of the upper part of the tube which the

air would occupy if its density were the same as that of the

external air, and x the space it actually occupies, when the

height of a true barometer is h.

If n be the pressure of the external air, and 11' of the air in

the space x,

n X*

Let h' be the height of the faulty barometer, then

n= gah, and 11'+ g'a-A'

=

11 ;

.•.^^' = -. (1).
h » ^

'

The column is therefore depressed — inches,
as

. K' a ah' . ,

or, since ^ = 1 - - , inches.
h X x-a

Hence, if a be known, and h' and x be observed, the height of

a true barometer can be infeiTed.

If a be unknown, it can be found from the equation (1) by

taking simultaneous observations of h', x, and the height A of a

true barometer.

EXAMINATION ON CHAPTER V.

1. "What is the effect of heat on the elastic force of air or

gas?

2. If Fahrenheit's Thermometer mark 40", what are the

corresponding marks of Reaumur's and the Centigrade ?
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3. DeMribe a method of shewing that air u a pondvrabk
body.

4. When the mercurial barometer stands at 30 inches,

whnt is the hei(;ht of the barometer formed of a liquid of which
the specific gravity is 5.0 ?

5. The air contained in a cubical vessel, the edge of which
is one foot, is compressed into a cubical vessel of which the edge
is one inch; compare the pressures on a side of each vessel.

6. State the relation between the pressure, density, and
temperature of a gas.

The air in a spherical globe, one foot in diameter, is com-
pressed into another globe, 6 inches in diameter, and the tem-
perature is raised by t" ; compare the pressures of the air under
the two conditions. Also compare the pressures ou the surfaces

of the globes.

7- Describe the siphon and its action. What would be the

effect of making a small aperture at the highest point of a
siphon ?

8. Explain how the boiling point in a thermometer is de-

fined.

9. If a barometer be held in a position not vertical, what
would be the effect on the length of the column of mercury ?

IC. If the sum of the readings on Fahrenheit's and the

centigrade thermometer be zero for the same temperature, find

the reading of each thermometer.

11. At the top of a mountain the barometer stands at 25

inches ; what would be the effect on the action of a siphon car-

ried to the top ?

I 12. A siphon is filled with mercury, and held with its Ieg»

pointing downwards, and the ends closed; what will be the

effect of opening the ends, 1st, when they are, and 2ndly, when
they are not, in the same horizontal plane 1

13. A cylindrical vessel contains water; how will a change
in the height of the barometer affect the pressures on the base

and curved surfaces of the cylinder, and to what extent t

14. A block of wood weighs, in air, exactly the same as a
block of iron ; which is really the heavier ?

15. Examine the effects of making a small aperture, Ist,
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in the longer branch, 2ndly, in the shorter branch of the tube of

a barometer?

16. Explain the uses, Ist, of the small hole which is made

in the lid of a teapot, 2ndly, of a vent-peg.

17. Supposing the air half exhausted in a pair of Magde-

hurgh hemispheres, lAft. in diameter, find the force required

to separate them, taking 15 lbs. as the atmospheric pressure on

a square inch.

18. If a piece of glass float in the mercury within a baro-

meter, will the mercury stand higher or lower in consequence ?

19. Will any change in the action of a siphon be in any

case coincident with a fall in the barometer ?

20. A weight, suspended by a string from a fixed point, is

partially immersed in water; will the tension of the string ba

increased or diminished as the barometer rises?

21. A bladder ^th filled with atmospheric air is placed

under the receiver of an air-pump; the capacity of the receiver

being twice that of the barrel. Shew that it will be fully dis-

tended before the completion of the 6th stroke.

NOTES ON CHAPTER V.

Thermometers were first constructed about the end of the

sixteenth century, but the name of the inventor is not certainly

known.

The various scales were formed in the early part of the 18th

century; Fahrenheit's in 1714, at Dantzic; Reaumur's in 1731 ;

and the Centigrade by Celsius, a Swede, somewhat later.

Tlce Aneroid Barometer. This instrument was invented by

Vidi, and is exceedingly useful in mountain ascents on account

of its small size and weight. Its construction depends on the

varying effect of the atmospheric pressure on a thin metallic

plate closing an exhausted chamber. A small metallic chamber,

cylindrical in form, about an inch in height, and 2 or 3 inches

in diameter, and closed by an elastic metal plate, is exhausted

;

this is placed in a larger cylinder and the top of the elastic

plate is connected by a system of levers with the hand of a

graduated dial-face, so that any slight change of elevation or
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depresvion at the centre of the metallic plate u magnified and
rendered visible by the motion of tbe hand.

Bourdon^t Metallic Barometer, invented in 1850, is another

instrument of u similar kind*.

It ccnsiBts of an elastic flattened tube, A BC, of metal, ex*

B

O

haustod of air, and bent very nearly into a circular form ; the

middle part B is fixed and the rest of the tube is free. The
section of the tube is like an ellipse, J), and it is found that if

the atmospheric pressure increase, the tube becomes more curved,

and the ends A, C approach each other; and if it diminish, that

the ends A, C separate. Hence if these ends be connected with

the hand of a dial-face, the motion of the hand will mark the

changes of atmospheric pressure.

If the tube ABC, instead of being a vacuum, be connected

by a pipe with the boiler of a steam engine, or with any vessel

containing air or gas, it becomes a very convenient manometer,

(see Art. 114), and is in fact sometimes use<l for this purpose on
the engines of locomotives.

The Siphon. The general use of the siphon is to transfer

liquids from one vessel to another without moving either vessel

It is useful in many other operations, such as draining a flooded

field; and lately large siphons, 140 feet in length and 3^ feet

in diameter, have been constructed for the purpose of draining

the lands flooded by the inundation which occurred during the

year 1862 on the eastern coast. These siphons were set working

BuccessfuUy. The Times, Oct. 1, 1862.

The Magdehurgh Hemispheres. A practical demonstration of

the fact of atmospheric pressure was given by Otto von Guericko

in 1654, who constructed this apparatus.

* Tbe term Aneroid is sometimea applied to this Instrument.
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It consists of two hollow hemispheres of brass, fitting each

other very accurately. A tube out of one of the

hemispheres is screwed on the plate of an air-pump,

and, when the two have been fitted together and the

air exhausted, the stop-cock is turned, the apparatus

removed from the air-pump, and a handle screwed

on. Supposing the diameter of the hemispheres to be

3 or 4 inches, it will be found that a force of from

100 to 180 lbs. will be necessary to separate them.

The inventor employed hemispheres of nearly a foot

in diameter, and shewed that a strain of more than

1500 lbs. was required to force them asunder.

Taking the diameter as one foot, we can calculate the requi-

site force. Tlie resultant pressure on one hemisphere is equal to

the air-pressure on a circle one foot in diameter, that is, upon

an area of ZCy-ir square inches. Making allowance for the fact

that a perfect vacuum cannot be obtained, we may take 14 lbs.

as approximately the pressure on a square inch, and the pressure

is 5047r lbs., or nearly 1583 lbs.

Weight of the Air. Galileo measured the weight of the air

by filling a globe with compressed air, and then weighing the

globe. He employed a syringe to force the air into the globe;

and, in order to find the quantity of air, he placed the globe in

an inverted glass receiver filled with water, then opened it, and

observed the amount of water displaced.

Torricelli and Pascal. The experiment of Torricelli, de-

scribed in Art. (73), was made in the year 1643, one year after

the death of Galileo, who had remarked the fact that a pump
would not raise water to a greater height than 32 or 33 feet,

but was unable to account for it. It was reserved for his pupil

and successor, Torricelli, to explain the real cause of the pheno-

menon, and his experiment was repeated and its consequences

were extended by Pascal a few years later.

Torricelli shewed that the pressure of the air supports the

column of mercury in a barometric tube; Pascal demonstrated

that the weight of the air is the cause of the pressure. Amongst
various experiments, Pascal had a water-barometer constructed,

but his most valuable idea was a suggestion that the heights of

a barometer, at the foot and at the top of a mountain, should

be compared. This was eflfected by his friend Perier in 1648,

who ascended the Puy de Dome in Auvergne, and ascertained

the fact of a fall of nearly 4 inches in the barometer at the top
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of the mountain. The observationi* were repeated in various

ways, on the roofa of houses, and in cellars, and it waa thua

rendered clear that the weight of the air is the immediate cauM
of the existence of the barometric column.

The two treatises of Pascal, De V6quilibre da Itqveurt, tt de

lapesanteur de la masse de I'air, contain the theory of the pres-

sure of fluids, and give complete explanations of the actions of

siphons and pumps, and of many common phenomena; tha

main object however of these treatises U to demonstrate the un-

philosophical character of the old explanation that the abhor-

rence of nature to a vacuum accounted for the rise of water in

a pump, and that this abhorrence did not exist beyond a rise of

82 feet.

It appears that Des Cartes was acquainted with the fact that

air has weight, and indeed he made a suggestion that the reason

why water will not rise beyond a certain height is the weight of the

water uhich counterbalances that of the air.

Balloon Ascents. The fall of the barometer in balloon ascents

is a means of determining the altitude attained.

In a balloon ascent by De Luc, the barometer at the greatest

height stood at 12 inches; but in a late balloon ascent by Mr
Glaisher, the column was seen to descend to less than 10 inches,

implying a height of nearly six miles; and it is probable, as the

observations were interrupted by the severity of the cold, and

the rarity of the air, that an altitude of more than six miles was

attained. The Times, Sept. 9, 18G2.

EXAMPLCS.

1. The temperature of the air in an extensible spherical en-

velope is gradually raised <", and the envelope is allowed to

expand till its radius is n times its original length ; compare the

pressure of the air in the two cases.

A 2. A volume of air of any mj^nitude, free from the action

of force, and of variable temperature, is at rest: if the temper-

atures at a series of points within it be in arithmetical progres-

sion, prove that the densities at these points are in harmonical

progression.

3. A given weight of heavy elastic fluid of uniform tem-

perature is confined in a smooth vertical cylinder by a piston of

given weight; shew how to find the volume of the fluid.
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4. A mass of air at a temperature t ia contained in a cylin-

der which has an air-tight piston fitling into it, and it is found

that the air exerts a pressure P on the piston: the air being

suddenly compressed into th of its former volume, and the

temperature changed to t', find the pressure on the piston.

5. A piston moves freely in a closed air-tight cylinder, the

axis of which is vertical. When the piston is in the middle of

the cylinder, the air above and the air below are of ttie same

density. Find the position of equilibrium of the piston.

6. A vertical closed cylinder is half filled with water, the

other half being occupied by air of a given density and tem-

perature; if the temperature be raised t^, find the increase of

the whole pressure on the base, and on the curved surface of the

cylinder.

7. Find the greatest height over which a liquid of density

p can be carried by means of a siphon when the height of the

barometer is A.

8. If h, h' be the heights of the surface of the mercury in

the tube of a barometer above the surface of mercury in the

oiatem at two different times, compare the densities of the air

at those times, the temperature being supposed unaltered.

9. A vortical cylinder, containing air, is closed by a piston,

which is tied by an elastic string fastened to its central point,

and also to the base of the cylinder. If when the piston is in

equilibrium the string have its natural length, determine the

.effect on the length of the string of increasing the temperature

of the air in Uie cylifidj^. by a given ntmaber af dbg^ee^.

10.^ir under an exhajfstea rteeiver a cylmier sinss lo'a

depth equal to three-fourths of its axis; find the alteration in

the depth of immersion when the air (specific gravity = .0013) is

admitted.

> 11. A body is floating in a fluid ; a hollow vessel is in-

verted over it and depressed : what effect will be produced in

the position of the body, (1) with reference to the surface of the

fluid within the vessel, (2) with reference to the surface of the

fluid outside T

12. A pipe 15 feet long, closed at the upper extremity, is

placed vertically in a tank of the same height ; the tank is then

filled with water ; shew that, if the height of the water-baro-

meter be 83 feet, 9 inches, the water will rise 3 feet, 9 inches in

the pipe.
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13. A vessel, in the form of a prism, whose base is a regu-

lar hexagon, is filled with air; prove that, if every rectangular

face of the prism be capable of turning freely about its edges,

and the prism be then compressed so that its base becomes an

equilateral triangle, the pressure of the air within it will be in-

creased in the ratio of 3 to 2.

14. A conical wine-glass is immersed, moutK downwards,

in water ; how far must it be depressed in order that the water

within the glass may rise half way up it ?

-^15. A jar contains water in which a hollow rigid envelope

open at the bottom and partially filled with air just floats; the

top of the jar is closed by an elastic membrane, and a small

space between it and the water is filled with air ; on pressing the

membrane inwards the envelope sinks ; explain this.

16. A barometer is held suspended in a vessel of water by
a string attached to its upper end, so that a portion of the string

is immersed ; find the height of the mercury and the tension of

the string. If more water be poured into the vessel, how will

the tension of the string be affected ?

17. A piston, the weight of which is equal to the atmo-

splieric pressure on one of its ends, is placed in the middle of a

hollow cylinder which it exactly fits, so as to leave a length a at

each end filled with atmospheric air. The ends of the cj'linder

are then closed, and the cylinder is placed with its axis inclined

at an angle a to the vertical ; shew that the piston will rest at a

distance a {(1 + sec^ 0)2 - sec a} from its former position.

18. A cylinder, open at both ends, is partly immersed in

water, its axis being vertical ; the upper end is then closed, and
the cylinder is raised until its lower end is very near the surface

of the water outside; find the height to which the water rises

inside.

19. Two barometers of the same length and transverse sec-

tion each contain a small quantity of air; their readings at one

time are h, k, and at another time h', k' ; compare the quantities

of air in them.

20. Taking the figure of Art. 93, determine the position of

the bubble when the temperatures of the bulbs are respectively

t and t'.

21. In the second of the differential thermometers, calcu-

late the difference of the altitudes of the liquid in the vertical

tubes when the temperatures of the bulbs are t and t'.
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7Vt« Diving Bell, Common Pump, Lifting Pump,
Forcing Pump, Fire Engine, Bramah's Press, Air-

Pumps, Barometer Gauge, Siphon Gauge, Con-

denser, Manometers, Barker's Mill, Piexometer,

Hydraulic Ram, and Steam Engine.

The Diving Bell,

95. rpHIS is a large bcll-aliapcd vessel made of iron,

JL open at the bottom, and containing' scats for

several persons. Its weight is greater tlian that of the

water it would contain, and, when lowered by a chain into

the water, the air within it is compressed, but will prevent

the water from rising high in the bell, and the persons

seated within are thus enabled to descend in safety to

considerable depths.

When the surface of the water within the bell is at a

depth of 33 feet below the outer surface the bell wll be

lialf filled mth water, and the compression of the air

would of course increase with the depth, but the difficulty

arising from this compression is overcome by forcing fresh

air from above tlirough a flexible tube opening under tho

nxouth of the boll. There are also contrivances for the

expulsion of the air when rendered impure.

Tension of the Chain. This is equal to the weight of

the bell diminished by the weight of water displaced by
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the boll and tlio air within. It ia therefore evident that

unless fresh air is forced in from above the tension of tlio

chain will increase as the boll descends.

96. Supposing tlie hell cylindrical, and that no air m avp-

plied from above, it is required to find the height to which the water

rises in the hell.

If the bell be partially immersed, we fall upon a case already

considered, Ex. 2. Ch. V.

If the bell be wholly immersed, let h represent the length of

a

— -.

X

~"

.

—

~-^=~—

^

— —

. .

1

the cylinder, a the depth of its top, and x the length occupied

by air.

The pressure of the air within= 11 -

= U + gp{a-\-x);

and .*, if H—gph,

hb= {h + a)x + x^,

and as before the positive value of x is the one required.

If A be the area of the top of the bell, and if we neglect its

thickness, the volume of water displaced is Ax, and the tension

of the chain

ac weight of bell - gpAx,
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The Common Pump.

97, The Pump most commonly in use is a Suction-

pump, of which the figure is a vertical

section.

AB, BG are two cylinders having a

common axis, M is a piston moveable

over the space AB by means of a ver-

tical rod, connected with a handle, D
is a spout a little above ^, and G the

surface of the water in which the lower

part of the pump is immersed : also in

the piston, and at B, are valves open-

ing upwards.

Action of the Pump. Suppose the

piston at B and the pump filled with

ordinary atmospheric air; raising the

piston, the air in BG will open the valve

B, and then, expanding as the piston

rises, its pressure will be less than that

of the atmosphere at G outside the pump; hence the at-

mospheric pressure on the surface of the water outside will

force water up the tube BG, until the pressure at G is

equal to tlie atmospheric pressure.

As the piston rises the water will rise in BG, the pres-

sure of the air above M keeping the valve M closed.

When the piston descends, the valve B closes, and the air

in MB becoming compressed will open the valve M, and

escape through it.

This process being repeated, the water will at length

ascend through the valve B, and at the next descent of

the piston will bo forced through the valve M and be then

lifted to the spout D, through which it will flow.

The height BG must be less than the height {h) of the

water-barometer, or else the water will never rise to the

valve B.

It is not essential to the construction that there should

be two cylinders; a single cylinder, with a valve some-

where below the lowest point of the piston-range will bo
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sufficient, provided the lowest point of the range l)e less

than 33 feet above the surface iu the reservoir.

In each case the height above the water in the reservoir

of the piston-range should be considerably less than 33
feet ; otherwise the quantity of water lifted by the piston

at each stroke will be small.

In the figure the tubes are represented as straight

tubes; this is not necessary to the working of a pump,
and the tube below the piston-range may be of any shape,

and may enter the reservoir at any horizontal distance

from the upper portion of the pump.

98. Tension of the Piston-rod. If the water in BC
has risen to P when the piston is at M, the pressure n' of

the air in MP = pressure of water at P= pressure at

C-gp.PC
=n-gp.Pa

But if A be the area of the piston, the tension of the

rod is tlie difference between the atmospheric pressure

above and the pressure U'A below, i. e. (n— n')^, or

gpPC.A.

If one inch be taken as the imit of length, and h be

the height in inches of the water-barometer, gph = 15 lbs.

PC.A
nearly, and the tension = 15 —-^— lbs.

99. To find the height through which the water rises during

one stroke of the piston.

Let P and Q be the surfaces of the water at the beginning

and end of an upward stroke of the piston, that is, while the

piston is raised from ^ to .^.

The air which at the beginning of the stroke occupied the

space BP occupies at the end of it the space AQ,; but the pres.

sures are respectively, \ili.=gph,

gp{h-PC), gp{h-QC).

Henoe h-PC : h-QC :: voL AQ : vol. BP.

B. E. n. 7
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If r, R be the radii of the cylinders, (Fig. Art. 9"),

vol. AQ= irR^A B + Trr^BQ= irRU B+trr^iBG- QC),

vol. DP=irr^BP^irr^{BC-PCr),

h-PC _ R?AB + r'''{BC-QC)

h-qO~ r'(BC-PC)

and for any given value of PC this equation determines QC.

J
D

E

Q
B

100. If the range of the piston be less th.an AB, as for in-

stance AE, then EC must be less than k.

Moreover, a limitation exists with regard to

the position of E.

For, if P be the surface of the water

when the piston 31 is at 2I, then as the piston

descends, the valve B will close, but the

valve M will not be opened until the pressure

of the air in 3IB is greater than the atmo-

spheric pressure.

^Vhen M is at A the pressure of the air

=^gp {h- PC), and, unless the valve is opened

before M arrives at E, the pressure of the air

AB
in EB =: ffp (k - PC) =-^ , which must be

E a
greater than gph, and therefore Ji . AE must

be greater than AB . PC. Hence, to ensure

the opening of the valve while the surface is

below B, we must have

h.AE>AB. BC;

i.e. AE must be at least the same fraction of .4-B that BC is

of A.

This condition, although in all cases necessary, may not he

sufficient.

For, suppose that when M is a,t A, the surface of the water

is at Q, in which case the pressure of the air in AQ—gp {h — QC).

When the piston descends to E, the pressure in EQ

=Up{h-QC)^,

which must be greater than gph,

and .-. h.AE>AQ. QC.
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IwTe

The greatest value oi AQ . QC \a j AC*, and .'. we must

h.AE> tAC^.
4

Since -AC->AB. BC, unless B is the middle point of A C,

it follows that this latter condition includes the preceding, which
is therefore in general insufficient.

These conditions must be also satisfied in the case of the

pump with a single cylinder.

lOL Tension of the rod when the pump ia infuM action.

In the figure of the previous Article, let CD = h', then it

will be seen that, at each stroke, the volume DE of water is

lifted, and therefore the tension of the rod when the piston is

ascending will be gpA {h + £D) until the water begins to flow

through the spout.

If ^ be on a level with the spout, all the water lifted will

be discharged, and, as the piston descends, the tension of the rod

will hegpAh.

The Lifting Pump.

102. By means of this instrument, water can be lifted
to any height. It consists of two
cylinders, in the upper of which a
pistonM is moveable ; the piston-rod

works througli an air-tight collar, and
a valve opens outwards at D leading
into a vertical tube. When the piston

ascends, lifting water, the valve D
opens and water ascends in the tube

;

when the piston descends the valveD
closes, and every successive stroke in-

creases the quantity of water in the
tube. The only limitation to the height
to which water can bo lifted is that
which depends on the strength of the
instrument, and the power by which
the piston is raised.

7—2
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Tension of the rod. If CK=h. the piston lifts the volume
BK at each stroke, and, as the air is expelled before the ma-
chine is in full action, the tension =5'p^l . KB, until the water is

lifted to the valve D. The power applied to the piston-rod

must be then increased until tlie pressure of the water opens the

valve D, that is, until the i)ressnre—gp{h+FD), F being the

surface of the water in the tube. The water will then be forced

up the tube, the tension of the rod increasing as the surface P
ascends.

The Forcing Pump.

103. In this pump the piston M is solid, and ranges

over the space AE. AX B and D are

valves opening upwards, DF being a

tube leading out of AB.
When this pump is first set in action,

it works as a common pump, the air

at each descent of the piston being

driven through D, and the water rising

in BG. When however the water has

risen through B, the piston, descend-

ing, forces it through Z>, and when the

piston ascends, the valve D closes and
more water rises through B. The
next descent forces more water through
Z>, and it is obvious that water can be
thus forced upwards to any height

consistent with the strength ofthe instrument.

The stream which flows from the top of the tube will

be intermittent, but a continuous

stream can be obtained by employing
a sti'ong air-vessel DL, out of which
the vertical tube j)asses upwards.
The air in the upper part of the ves-

sel is condensed, and exerts a vary-

ing, but continuous pressure on the

surface of the water within the ves-

sel, and if the size of the vessel be
suitable to that of the pump, and to

the rate of working it, the air pres-

sure will not have lost its force be-

fore a new compression is applied to
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it, and thus a continuous, although var}ing, vertical flow
will bo maintained.

The Fire Engine.

104. The Firo Engine is only a modification of the
Forcing-pump with an air-vessel, as just described.

Two cylinders are connected Mith the air-vessel, and
the pistons are worked by means of a lever GEG\ so that
while one ascends the other descends. The vertical tube
out of the air-vessel has a flexible tube of leather attached
to it, by means of which the stream can be thrown in any
direction.

Bramah's Press:

105. This instrument is a practical application of the
principle of the transmission of fluid pressures.

In the figure, which represents a vertical section of
the instrument, A and C are two solid cylinders woriiing
in au--tight collars; EB and FD are strong hollow cylinders
connected by a pipe BD ; at jB is a valve opening inwards,
and at i) a valve opening upwards, a pipe from D conmiu-
nicating with a reservoir of water. M is a moveable plat-

form, on which the substance to be pressed is placed, and
N is the top of a strong frame ; IIKL is the lever working
the cylinder C, H being the fulcrum, imd L the handle.

Action of the Press. Suppose the spaces EB, FD
filled with water, and C in its lowest position ; on raising

C, the atmospheric pressure forces water from the reser-

voir into FD, and when C is afterwards forced down, the
valve D closes, the valve B is opened, a portion of the

water in FD is driven into EB, and the cylinder A is



102 BramaKs Press.

then made to ascend. A continued repetition of this pro-
cess will produce any required compression of the substance
between M and N.

At G there is a plug which can be unscrewed when the
compression is completed.

The Force produced. If P be the power applied at
JJ T

the handle L, the force on C downwards is P j^^. Let
UK.

r, R ho the radii of the cylinders C and -4, and p the
pressure of the water,

then m-'p^P^,

ULi 72*
and the pressure on A=irB-p=P j^r^- -z^ •

«£zA r^

It is obvious that by increasing the ratio of jB to r, any
amount of pressure may be produced.

We have taken for granted in describing the action of

the press that the cylinders at first were full of water. If

this is not the case the water will be pumped up from
the reservoir by the action of the cylinder C, and whateyer

air there may be within will be compressed until its pres-

sure is the same as that of the water.
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Preascs of tins kind were employed in lifting into its

place the Britauuia Bridge over the Menai Straits.

106. The portion C of the instrument is sometimes

called a Plunger Pok Pump, and an important part of

the machine is the construction of the water-tight collars

at E and F, as without these water under great pressure

would force its way between the pole and the hollow

cylinder in which it works.

A circular aperture DE is made in the side of the
cylinder, and a piece of leather is c.^pvi^

doubled over a metal ring ^vithin it.

The figure is a vertical section of

the cylinder and collar, and it will

be seen that the water pressing on

the under side of the leather keeps

it in close contact with the side of

the cylinder, and the greater the

pressure the closer the contact, so

that no escape of water can possibly

take place, imless the leather be torn.

D

Hawksbee's Air-Pump.

107. Two cylinders, AB, A'B, are connected by pipes

leading from B andB through

C with a receiver. Pistons

MM" are worked in the cy-

linders by means of a toothed

wheel, and at B,E and in the

pistons are valves opening up-

wards.

Suppose M at its highest

and M' at its lowest position,

and turn the wheel so that M
descends and Af ascends; the

valve B closes and the air in

MB being compressed flows

through the valve M, while

the valve M' closes, and air

from the receiver flows through

B into M'B.
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When the wheel is turned and M' descends, the valvo

B closes and the air in M'B flows through M', while

the valve M closes and air from the receiver flows through
B. At every stroke of the piston a portion of the air in

the receiver is withdrawn, and it is evident that a degree
of exhaustion may be thus obtained, limited only by the

weight of the valves which must be lifted by the pressure

of the air beneath.

Let A be the volume of the receiver, and B of either

cylinder; p the density of atmospheric air and p^, pz,...pn

the densities in the receiver after 1, 2,...n descents of the

pistons.

After the first stroke the air which occupied the space

A will occupy the space A + B, and therefore

Pi(A + B)=pA,

similarly p,{A+B)=piA ;

.:p,{A + Bf=pA\
and after n strokes

p,{A + B)''=:pA\

Hence if n„ be the pressure of the air in the receiver

after n strokes, and n of the atmospheric air,

_A
P

In working the instrument, the force required is that

which will overcome the friction, together with the diflfer-

cnce of the pressures on the under surfaces of the pistons,

the pressures on their upper surfaces being the same.

It will be seen that a perfect vacuum cannot be ob-

tained by this instrument, but, since the density decreases

in geometric progression as the number of strokes in-

creases, a very large proportion of the air can be with-

drawn if the instrument be constructed with sufficient

care.

n,^P,^/ A y
n p \A+B/
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SmeatoiTt's Air-Pump.

108. This instrument consists of a cylinder AB in

which a piston is worked by a rod passing through an air-

tight collar at the top; a tube from B leads into a glass

receiver C, and at A and B, and in the piston there are

valves opening upwards.

V-:-

K

B

Supposing the receiver and cylinder to be filled with

atmospheric air, and the piston at B; raising the piston,

the air in AM is compressed, opens the valve A, and flows

out through it, while at the same time a portion of the air

in (7- flows through the valve B, so that when the piston

arrives at A, the air which at first occupied G now fills

both the receiver and the cylinder. When the piston de-

scends, the valves B and A close and the valve M opens

;

the air in ^i5 passes above the piston, and as the piston

rises is forced through A, which is opened as soon as the

pressure in M becomes greater than the atmospheric pres-

sure. Thus at every stroke a portion of the air in the

receiver is forced out through A.

If p be the density of atmospheric air, p„ the density

in the receiver after n strokes of the piston, and A, B the

volumes of the receiver and cylinder respectively, then, as

in the previous article,

pM+Br=pA*,
observing that the volume of the connecting tube is neg-

lected.
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An advantage of this instrument is that, the upper end
of the cylinder being closed, when the piston descends,

the valve A is closed by the external pressure, and the

valve M is then opened easily by the air beneath. More-
over, the labour of working is diminished by the removal,

during the gi*eater part of the stroke, of the atmospheric

pressure on M, which is only exerted while the valve A is

open during the latter part of the ascent of the piston.

A greater degree of exhaustion may be obtained by
making the B aperture in the side of

the cylinder without a valve, and work-

ing the piston, a solid one with or without ;^^-i_

a valve, below the aperture B. The
limitation arising from the weight of the

valve at B is thus removed, and the only

limitations left are those which arise

from the weight of the valve at A, and
the exact fitting of the piston and re-

ceiver.

The Barometer Gauge.

109. The density of the air in the receiver of an air-

pump at any moment is shewn by
this instrument.

It is simply a barometric tube,

the upper end of which communi-
cates with the receiver, while the
lower end is immersed in a cup of
mercury, so that, as the pressure
in the receiver diminishes, the mer-
cury wiU rise in the tube.

If X be the altitude, PQ, of the
mercury in the gauge, and h the
height of the barometer, the pres-
sure of the air in the receiver =^(rA-5'a-a?, if o- be the
density of mercury.

Hence the density in the receiver is to the density of
atmospheric air :: h—x : h.

It is important to use this gauge for experhnents re-
quiring strict accuracy, but for less important experiments
a siphon-gauge may be used.
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1
o

The Siphon Oaxige.

110. Tliis is a glass tube ABCD, the end D of which

can bo scrowcil on a pipe commuiiicating

with the receiver.

The end A is closed and the portion AB
completely filled with mercury, which also

ails a small part BP of BG.

If AP bo not more than 28 inches in

length, the tube AB will at first remain

completely filled, but as the exhaustion pro-

ceeds, the mercury will sink \a AB and rise

in BG, and if at any time x be the difference

of the heights in ^^ and BG,g<rx will be the

pressure in the receiver, and the density will
B

JU

therefore be p h'

HI.
of air.

The Condenser.

This instrument is employed in the compression

A hollow cylinder^5 has one end

screwed into the neck of a strong

receiver G; at jB is a valve opening

inwai'ds, and a piston M also has a

valve opening inwards.

Suppose the cylinder and receiver

filled with atmospheric air and the

piston to be at -4 ; forcing the piston

down, the air in MB is compressed,

and, opening the valve B, is forced

into the receiver. When the piston

is drawn back, the valve B is closed

by the air in the receiver, and the

valve M is opened by the ouOtr air

which flows in and fills the cylinder:

this aur is forced into the receiver at

the next stroke, and at every suc-

ceeding stroke the same quantity of

air is added to the receiver.
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After n strokes, the volume of air of density p, forced

into the receiver, is A + nB, A being the volume of the

receiver and B of the cylinder ; hence, if p, be its density,

p„A=p{A + nB),

or P"-.

P

Gatige of a Condenser. A glass tube AB, closed at

the end B, and connected with the "condenser at the end

B
1 + n -r.A

J
D B

A contains atmospheric air in the i)ortion BC, which is

separated from the air in the condenser by a drop of mer-

cury at C. As the condensation proceeds, the drop of

mercury is forced towards B, until the density in BC is

the same as the density in the condenser. Thus when the

BC
mercury is at D the density=p ^^.

Manometer.

112. The term manometer is applied

ment for measuring the pressure of

condensed air or gas of any kind,

when its elastic force is greater than

that of the atmosphere. The gauge

of a condenser, for instance, is a ma-

nometer. The terra however is some-

times applied to any instrument, such

as the barometer-gauge, for mea-

suring the elastic force of air or gas

under any circmnstances.

The annexed figure represents a

manometer, the principle of which is

nearly the same as that of the gauge

of a condenser.

-45 is a vertical glass tube, closed

at the end A and containing dry air

in the part AP; the tube etids in a

strong bulb B containing mercury,

and from this bulb a tube 5Cpro-

to any instru-

A

f
B' =

I'

^^ 1
£
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cocda, leading to tho vessel which contains the condensed
air or gas. When tho air in tho tube C is ordinary
atmospheric air at a given pressure, tho mercury stands
at the same level CC in both tubes, but when the tube
BC is connected with air or gas at a higher pressure
the mercury rises in CA, compressing the air above it,

until the pressure in PA is equal to the pressure in EC
diminished by the pressure due to the column PE' of
mercury.

113. To find the relation between the pressure to he metisured

and the height of tfie inercuryi

Let n' represent the preaaure in EC, and II" the pressure in

PA;

then n"=n. j^', and IV' + r/ffPE'^W;

Let k, K be the sectional areas of the tubes A C, CE;

.'.iiPO'=x, ceJ^I,
Ji.

and n'=«7(rx (^1 + J,^ + n -^ where a= A C,
\ Kj ax

or if n = gah , II'= fjclif,

A' _ aj / i \ a

h A \ KJ a-x'

This equation gives the ratio of the pressure required to the

atmospheric pressure.

The graduation of the instrument depends on the solution of

the equation; thus, making h'=2h, 3A, &c., the successive proper
values of x mark the altitudes for pressures of 2, 3,... atmrf-

spheres.

114. The Siphon Manometer is a long glass tube
ABC, open at the end A, and communicating at the end C



110 Barker's Mill.

with the gas or vapour, the pressure of

which is to be measured.

The tube contains mercury, and the

height of the mercury in ^i? above its

equiUbrium level measures the excess of

tlie pressure in the part BG of the tube

above the atmospheric pressure.

Then if the mercury ascend to P in

AB, and descend to E in CB, CC being

the original level, GE-G'P, and there-

fore, if G'P=x, and n'= pressure in

CB,
'n.'= TL + gcr2x,

or n'-IlGC X.

A graduated scale is attached to the

tube AB, and, from the equation above,

it is seen that the length of G'P corre-

sponding to a pressure of n atmospheres

^ Y
is —-1— h, if h be the height of the ba-

\^
rometer. Hence by giving successive integral or fractional

values to n, the graduation of the scale can be effected.

The manometers we have now described are con-

structed on purely hydrostatic principles, but tiiere are

others, depending on diflferent mechanical principles, and

a very useful one, from its portability, is Bourdon's Me-
tallic Manometer, which has the additional advantage of

not being fragile. The construction of this instrument is

briefly explained in the notes appended to Chapter v.

Barker's Mill.

115. AGB is a tube, capable of revolving about its

axis which is vertical, and having two or more horizontal

tubes BE, BD connected with it. (7 is a cup through

which water can be poured down the tube, and at D and

E, in the sides of BD and BE, orifices are made which

open in opposite directions. Suppose a stream of water to

flow into C and through the tubes; as the water flows
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tlirough J3D the pressures on the sides balance each
otlier except at D, at which part of the tube there is art

uncomponsated pressure on the side opposite the orifice,

the effect of which is tu turn the tube CD round. The
c

same effect is produced by the water issuing at E, and a
continued rotation of the instnxment is thus produced.

By means of a toothed wheel at A the instrument may be
employed in communicating and maintaining motion in

other machines.
; ^

The Piezometer.

116. This is an instrument for niea-

araring the compressibility of Uquids.

A thermometer tube CD, open at the

end C, is enclosed in a strong glass vessel,

which also contains a condenser-gauge EF.
(Sec Art. 111.)

The liquid to be examined is poured

into CD, and a drop of mercury is then

introduced into CD so as to isolate the

liquid, and the vessel is filled with water

and closed by a piston. The piston A is

moveable in the neck of the vessel, and, by

means of a screw B, any required pressure

can be produced. Tlie gauge EF measures

the pressures, and the compression of the

liquid is obtained by observing the space

through which the drop of merairy P is

forced.
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The area of a section of CD and the volume of the bulb

are found by weighing the quantities of mercury contained

by the bulb and a portion of the tube.

The Hydraidic Ram.

117. The fall of water from a small height produces

a momentum which by means of the Hydraulic Ram* is

utilized and made to produce the ascent of a column of

water to a much greater height.

The figure is a vertical section of the machine, AB
being the descending and FG the ascending column of

water, which is supplied from a reservoir at ^. ^ is an

air-vessel with a valve at C, opening upwards; at Z> is a

valve opening downwards, and // is a small auxiliary air-

vessel with a valve K opening inwards.

The action of the Machine. The valve Z> will at first

be open in its lowest position, and if water descend from

A, a portion will flow through D, but the action on the

valve will soon close it, and the sudden check thus pro-

duced increases the pressure; the valve G is lifted and

water flows into the vessel E, and condenses the air

within ; the reaction of the air thus condensed forces water

up the tube FG.

During this process the pressure of the water in the

large tube diminishes, and the valves C and D both fall

;

the fall of the latter produces a rush of water through the

* Invented by Montgolfiei:
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opening D, followed by an increased flow down A B, tho
I'usult of which is again tho closing of />, and a rci)etition

of tho process just de.Hcribod, tho water ascending higher

in FG, and finally flowing tlirough G.

The action of tlio machine is assisted by tlio air-vessel

H in two ways, first, by the reaction of tho air in H which
is compressed by tho descending water, and secondly by
the valve A" which affords supplies of fresh air. When the
water rises through C, tho air in H suddenly expands,

and its pressure becoming less than that of the outer air,

tho valve A' opens, and a supply flows in, which compen-
sates for the loss of tho air absorbed by tho water and
taken up the column FG, or wasted through D. About
a third of tho water employed is wasted, but the machine
once set in motion will continue in action for a long time

provided the supply in the reservoir be maintained.

The Atmospheric Steam Engine.

118. This instrument, constructed by Newcomen soon

after the year 1700, was the first in which the oscillation

of a beam was maintained by tho elastic force of steam.

4f^
A solid beam EGF, which is moveable about G, has

its ends arched; to these ends chains are attached which

are connected with the rod of a piston in a cylinder AB,
and with a rod supporting a weight P, this weight being

less than the atmospheric pressure on the piston. (7 is u

B. £. 11. 8
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pipe connected with a boiler, B a pipe opening by a stop-

cock, and Z) is a pipe connected with a cistern of cold

water.

This engine was first used for working the pumps of

mines, and a rod Q attached to P is connected with the

piston-rod of a pump.

The stop-cocks at G and D are connected with the

beam, so that when 31 is at A, C is closed, and D opens,

and when M is at B, G opens and D is closed. The stop-

cock at B is made to open when M descends to B, and to

close immediately after.

Action of the Engine. The pressure of the steam in

Jio boiler is a little greater than that of the atmosphere,

and when M is at B, G is open, and steam rushes into

MB ; hence the weight P will cause the piston to ascend.

When M reaches A, G'm closed, D is opened, and a jet of

cold water is thrown in, condensing the steam, and thereby

producing very nearly a vacuum below 31. Tlie pressure

of the air on the piston being greater than the weight

P forces the piston down, and when it has descended, G
again opens, and an oscillation of the piston is thus main-

tained.

As B opens when M descends to the lowest point of

its range the water flows out before the ascent.

In the actual engine constructed by Newcomen the

stop-cocks were turned by hand, but an attendant, left to

work them, invented the machinery by which the engine

became self-acting.

The Single-acting Steam Engine.

119. In the atmospheric engine, the cooling of the

cylinder at each stroke of the piston causes a great loss of

power, for the steam on first entering the cylinder is par-

tially condensed, and its elastic force is therefore dimi-

nished. One of Watt's first improvements was to produce

the condensation in a separate vessel. The tube D was

made to communicate with a vessel containing cold water,

the space above the water being a vacuum. This vacuum

could be produced by filling the vessel with steam and then
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condensing it by cooling tho vessel. When the piston is

at A, tho stop-cock oikjus and tho steam ruslics into the

vacuum, and is therefore condensed by tiie cold water. A
pump from tlio condensing vessel was connected with the

beam, so that the overplus of water arising from tho con-

densed steam would bo drawn off as soon as formed. These
two changes in the atmospheric engine constitute the

single-acting engine, but the additional change of making
the steam drive the piston downwards as well as upwards,

leads to the double-acting engine, the typo of most of the

steam engines now in actual use.

Watfa Doitble-acting Steam Engine.

120. The cylinder AB, in which tho piston works, is

closed at both ends, the piston ranging from a to h. Tho
end of the piston-rod is connected by means of a jointed

8—2
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parallelogram with the end E of the beam EGF, and the

end F of the beam is attached to the crank of the fly-wheel.

At G and D there are stop-cocks which are connected with

the fly-wheel, so that whenM arrives at a, the steam flowa

from the boiler through C into AM, and whenM arrives

at h, the steam* flows through D into BM. In each case

the steam is shut off when M has passed over about one-

third of its range.

K, the condenser, is surrounded with cold water, and
L :s a pump connected with it ; a tube from K, not drawn
in the figure, is connected with C and Z> so that when
steam from the boiler flows into AM, the steam from MB
flows into K, and when steam from the boiler flows into

MB, the steam from AM escapes into K.

Supposing M to be at a, steam enters AM from the

boiler and forces the piston down, its expansive force

being suflScient to complete the piston-range after it is cut

oflF; on arriving at h, the steam in AM escapes into JTand
is condensed, and fresh steam from the boiler enters MB,
drives the piston upwards, and then escapes into K and
is condensed. The continued accumulation of water in K
is prevented by the pump L, by which it is drawn off at

every stroke.

The use o'f the fly-wheel is to maintain a continuous

motion, and prevent the irregularity which would arise

from the intermittent action of the piston.

Parallel motion. The parallelogram EQRS repre-

sents a system of jointed rods, invented by Watt for the

purpose of making the end Q of the piston-rod move very

nearly in a vertical line. The point R is connected with

a fixed centre at P, and, by a proper adjustment of the

lengths of the rods, it is found that the point Q deviates

very slightly from the vertical during its motion.

A full account of the various contrivances for parallel

motion will be found in Professor WiUis's Mechanism.

The High-Pressure Engine.

121. In the double-acting engine the pressure of the

steam need not be greater than the atmospheric pressm-e.
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In tho lugh-pressuro engine it is many times greater, and

the steam instead of being condensed is let off into tho

open air at each stroke. The condenser and air-pump are

thus rendered unnecessary, and the engine simplified. The
engines of locomotives on railways are high-pressure en-

gines.

These descriptions give the raain principles on which the

constructions of steam engines depend, but for the various forms

in which these principles are developed, and the innumerable

details of the mechanism connected with them, the reader must
consult special treatises on the subject, such as Dr Lardner's in

Weale's series. Bourne's works on the Steam engine, or the ex-

cellent article in the JEnci/clopcedia BrUannica.

EXAMINATION UPON CHAPTEE VI.

1. A DmNG-BKLL is lowered until the surface of the water

within is 66 feet below the outer surface; state approximately

how much the air is compressed.

2. If a small hole be made in the top oi a Diving-bell, will

the water flow in, or the air flow out ?

3. Describe the action of a common Pump.

To what height could mercury be raised by a pump t

4. Distinguish between a Lifting Pump and a Forcing

Pump, and state the principle of the construction of a Fire-

eitgine.

6. In a Bramah's Presg, IIR is one inch, IIL is 4 inches,

the diameter of 4 is 4 inches, and that of C is half an inch; find

the force on A produced by a force of 2 lbs. applied at L.

6. If the receiver be 4 times as large as the barrel of an
air-pump, find after how many strokes the density of the air is

diminished one half.

7. State any limitations which exist to the degree ot ex-

haustion producible by an air-pump.

8. Describe the Siphon-gauge, and its use.

9. What is a Manometer ? Describe any such instrument.

What must be the height of a Siphon Manometer that it may
mark a oiessure of 60 lbs. on a square inch ?
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10. Desci'ibe the difference between the Atmospheric Steam
engine and Watt's Double-Acting Engine.

11. The diameter of the piston of a Lifting pump is 1 foot,

the piston-range is 2.^ feet, and it makes 8 strokes per minute

;

fiud the weight of water discharged per minute, supposing that

the highest level of the piston-range'is less than 33 feet above the

Buiface in the reservoir, and that 33 feet is the height of the

water-barometer.

12. If, in working the same pump, the lower level of the

piston-range be 31^ feet above the sxirface in the reservoir, find

the weight discharged per minute.

NOTES ON CHAPTER VI.

Archimedes' Screw.

This instrument, one of the earliest hydraulic machines on
record, is employed for raising water, and depends for its action

only on the weight and mobility of the particles of water.

Let ABCD be a metal tube, bent into the form of a cork-

screw, and then held so that its axis is inclined to the vertical,

and let it be moveable about its axis. The axis is to be inclined

so much to the vertical, that a stone, inserted at A, will fall to

B, and after oscillating rest at B. In the figure the tube is

drawn as if wound round a cylinder moveable about its axis.

If we turn the cylinder in direction of the arrows, £ will

ascend, and the portions of the tube from B to C will succes-

sively take the same positions as B relative to the axis of the

cylinder; as they do so, the stone at B will fall into tliose posi-

tions, and thus hi gradually passed along the tube. Instead of

the stone, suppose water poured in at ^ ; the turning of the
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{nstrunient will gradually raise the water until it flows out at

the upper end. If the end A be immersed in water, a continued

stream will ascend and flow out above.

Tradition assigns to Archimedes the credit of the invention

of this instrument, and it is certain that its use dates at least as

far back as the time of Archimedes. It was employed iu Egypt

in draining the land after an inundation of the Nile.

The point B at whicii the stone will rest is not underneath

the cylinder but on one side, the ascending

side, and between the middle and the undor

part of the surface of the cylinder: this can

be seen experimentally.

Speaking strictly, the point B lies between

the lowest generating line of the cylinder, and

the generating line which lies halfway between

the highest and lowest generating lines.

The machine will not act unless the inclination of the axis

of the cylinder to the vertical be greater than the pitch of the

Bcrew, i. e. the inclination of the thread of the screw to a circular

section of the cylinder. If these inclinations be equal, the point

£ is on the side of the cylinder, on the middle generating line,

and the descending tangent BT is directed downwards at all

other points. To make this clear, take a cylinder, of which BF
is a diameter; let the dotted line represent a portion of the

thread of a screw, £T being the tangent at £, and turn the

cylinder round BF, which is supposed to be horizontal, until BT
is horizontal: the inclination of the axis to the vertical is then

equal to the pitch of the screw.

Turn the cylinder further, and if the screw mark the direc-

tion of a tube, it is an Archimedes' screw, in a position to woi'k

freely in raising water.

The Piezometer.

In the Annales de Chimie et de Physique, Vol. xxxr., 1851, a

full account is given, by M. Grassi, of experiments with this

instrument on the compressibility of water and some other

liquids, and also on the compressibility of glass: these experi-

ments were a continuation of M. Kegnault's on the compressi-

bility of water and mercury.

The apparatus employed by M. Grassi is identical in prin-

ciple with the piezometer of the text, but differs in details. In

one particular point the difference is of practical importance;
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instead of producing pressure by a screw, the pressure on the

surface of the water is produced by means of condensed air. The
advantages gained are tliat the pressure can be measured with

greater precision, and that it can be adjusted more easily, and

changed more gradually.

The following are Grassi's final conclusions with regard to

water

:

(1) The compressibility of distilled water, deprived of air,

varies with the temperature, and diminishes as the temperature

increases.

(2) For distilled water, the compression due to one aimo-

sphere is the same whatever be the pressure, provided the tem-

perature remain constant.

EXAMPLES.

1. If the receiver and the barrel of an air-pump are in the

proportion of 4 to 1, find how much has been pumped out at the

end of the fifth stroke.

^ 2. How would the tension of the, rope of a Diving-bell be

affected by opening a bottle of soda-water in the bell 1

3. If P be the weight of a Diving-bell, P' of a mass of water

the bulk of which is equal to that of the material of the bell, and

IF of a mass of water the bulk of which is equal to that of the

interior of the bell, prove that, supposing the bell to be too light

to sink without force, it will be in a position of unstable equi-

librium, if pushed down until the pressure of the enclosed air is

to that of the atmosphere as W to P^P'.*

4. If a cylindrical Diving-bell, height 5 feet, be let down
till the depth of its top is 55 feet, find the space occupied by air,

the water-barometer standing at 33 feet.

Also find how much air must be forced in to expel the water

completely.

< 5. After a very great number of strokes of the piston of

an air-pump the mercury stands at 30 inches in the barometer-

gauge, the capacity of the barrel being one-third that of the

receiver, prove that after 3 strokes the height of the mercury is

very nearly 12f inches. ^7 r ^,'

6, A fine tube of glass, closed at the upper end, is inverted

and its open end ia immersed in a basin of mercury, within the

* See Appendix, Example 4.
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reiver of a condenner; the length of the tube is 15 inchoa, and

it iB observed that after 3 descents of the piston the mercury has

risen 5 inches; bow fur will it have risen after four descents'?

7. If a cylindrical diving-bell, whoso capacity is V cubic

feet, be sunk to such a depth that the water stands at — th ofm
ittt height, and be then lowered at the uniform rate of n feet

per second, prove that the number of cubic feet of air at the

atmospheric pressure which must be pumped in per second in

order that the water may always remain at the same height

will be
I
1—

J
J F, where h is the height of the water-baro-

meter in feet.

8. The length of the lower pipe of a common pump above

the surface of the water is 10 feet, and the area of tlie upper

pipe is 4 times that of the lower : taking 33 feet as the height

of the water- barometer, prove that if at the end of the first

stroke the water just rise into the upper pipe, the length of the

stroke must be very nearly 3 feet 7 inches.

y 9. If the receiver of an air-pump be over a fluid, on which

a solid is floating, shew how to calculate the density of air in

the receiver after one stroke of the piston.

10. A cylindrical diving-bell, of height a, is furnished with

a barometer and lowered into a fluid : the heights of the mer-

cury in the barometer before and after immersion being h and

h' respectivelyj shew that the depth of the bottom of the bell

below the surface of the fluid is equal to
(
- + p )

(^'•' - ^)t where

<r is the specific gravity of mercury, and p that of the fluid.

11. A bent tube, the arms of which are vertical, and which

is open at one end and closed at the other, is partially filled with

mercury, the density of the air between the mercury and the

closed end of the tube being initially eqxial to that of the ex-

ternal air. If this tube be placed within the receiver of an air-

pump, investigate a formula for determining the diflerence of

heights of the mercury, in the two arms of the tube, after n

strokes of the piston.

* Take 30 inches as the height of the barometer.
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12. If the highest level to which the piston of a commob
pump ranges be below the spout, find the greatest tension of the

piston-rod.

13. Tlie valve in the piston of an air-pump being of given

size and weight, find at what point of the n^ descent the valve

will be raised.

14. If h be the range of the piston of an air-pump, a its

distance from the top of the barrel in its highest position, /3 its

distance from the bottom in its lowest position, and p the density

of the atmosphere; prove that the limiting density of the air

in the receiver will be yr ,,,.-> p.
(h + a) {h+ p)

"^

15. In the ii -Hl"' ascent of the piston of a Smeaton'i air-

pump, find the position of the piston when the highest valve

(whose weight may be neglected) begins to open; and shew that

then the tension of the piston rod : the pressure of t!ie atmo-

sphere on tbepiaton :: 1 - (—-^) : 1 - (j^j ^.
16. A cylindrical diving-bell of internal volume v, is filled

with air at atmospheric pressure IT and absolute temperature f

,

and is lowered to a certain depth below the surface of water.

Shew that if a small rise {x) in the temperature and increase (y)

in the atmospheric pressure now take place, the apparent

weight of the bell will be unaltered provided 7 = ff~
»

*' being

the volume of the air in the bell.
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Method q/* Determining Specif Gravities. Specif
Gravities ofAir and Water, the Hydrostatic Balance,

Hie Common Hydrometer, Silces's, Nicholson's, and
Hare's Hydrometers, the Stereorneter.

To compare tlie specific gravities qf air and water.

122. rMAKE a large flask, which can be completely
X closed by a stop-cock, and exhaust it by means

of an air-pump.

Weigh the flask, and then permit the air to enter, and
weigh the fltisk again, Finally find the weight of the flask

when filled with water.

Let w bo the weight of the exhausted flask, «c', «c" its

weights when filled with air and water

;

/• 'ic'—w='we\g\it of the air contained by the flask,

and uf'—w- water

Hence w'—w and w''—w being the weights of equal

volumes of air and water,

specific gravity of water : that of air •.-.uf'—w : v^ — w.

In the same manner the specific gravity of any gas can

be compared with that of water.

The specific gravity of water at 20.5'* is about 768 times

that of air at o" mider the pressure of 2D.9 inches of mercury

atO».

To compare the specific gravities of two fluids by
weighing the same volume of each.
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Let w be the weight of a flask, ««/ its weight when

filled with one fluid {A), and w" its weight when filled with

the bther fluid {B).

Then

lo' -^c= weight of the fluid A contained in the flask,

'u:f'—w= B ;

.-. specific gravity oiA : that of5 :: ec'-«J :
«?"-«?

If the flask be not exhausted when its weight is determined,

then, for strict accuracy, w must be diminished by the weight of

the air which the flask contains.

123. Tofind the specific gravity ofa solid broken into

smallfragments.

Put the broken pieces in a flask, fill the flask with

water and let its weight be then w"; let w be the weight

of the flask when filled with water, and «/ the weight of the

solid in air.

Then
«j"—tc= weight of solid pieces -weight of the water

they displace

;

= zc'— weight of water displaced

;

therefore

to'+ zc- «/'= weight of water displaced,

- specific gravity of solid w
that of water w'+w -w

If we take account of the air displaced by the solid, its real

weight is greater than w' by the weight of air displaced. This

weight must therefore be added to v/.

27i0 Hydrostatic Balance.

124. The hydrostatic balance is an ordinary balance,

having one of the scale-pans smaller than the other, and

at a less distance from the beam, so that weights immersed

in water may be suspended from it.

The following cases are examples of its use.
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(1) To compare the specific gravities of a solid and a
liquid.

Let io bo the weight of the solid in air.

J<^
><2>^

Place the liquid in a vessel, as in the figure, and suspend

the solid from the scale-pan.

Let «/ be the weight of the solid in the liquid,

.'.w—ijcf is the weight lost by the solid, and is therefore

the weight of the liquid displaced by the solid, Art (39)

;

and «?,«?—«?' are the weights of equal volumes of the

solid and liquid-

Hence,

specific gravity of solid : that of liquid :: w : w—tc'.

If we take account of the air displaced by the solid, we must
add to w the weight of the air it displaces, since its true weight

is diminished by exactly the weight of air.

This remark applies also to the next two articles.

125. We have tacitly supposed the solid to be specifically

heavier than the liquid. If it be lighter it must be attached

to a heavy body of sufiBcient size aud weight to make the two
together sink iu the liquid.

Let w= the weight of the solid in air,

a;=the weight in air of the heavy body attached

to it,

x'=the weight in the liquid of the heavy body,

tc/stbe weight in the liquid of the two togethor.
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w + X-w'= the weight of liquid displaced by the two to-

gether, since it is the weight lost,

a; -a:'— weight of liquid displaced by the heavy body.

Hence

w + a/ - to'= weight of liquid displaced by the solid,

, , , specific gravity of solid w
and therefore r^ r-

—

tt-—n = ~7~ »— > •

specific gravity of liquid W+ X —w

126. (2) To compare the specific gravities of ttco

liquids.

Take a solid which is specifically heavier than either

liquid, and lot uo be its weight in air.

Let «?'= weight of solid in one liquid {A),

and«7"= the other liquid (i?);

.*. zc—tc' = weight of liquid A displaced by the solid,

w-w"= B ;

.'. specific gravity of ^ : that of B :: w—ix/ : w—tc".

The Common Hydrometer.

127. The common hydrometer consists of

a straight stem ending in two hollow spheres

B and G.

This hydrometer is usually made of glass,

and the sphere G is loaded so that the in-

strument will float with the stem vertical.

When the hydrometer is immersed and

allowed to float in a liquid, it displaces its

own weight of the liquid, and by observing

the positions of equilibrium in two liquids,

the volumes displaced are inferred, and the

specific gravities of the liquids can be com-

pared.

Let K be the area of a section of the stem, v tho

Tolume, and w the weight of the hydrometer.

Suppose that when floating in a liquid {A) the level D

Ar

E

-d^

zi^

^-
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of tho stem is in tho surface, and that in liqnid {B) the

level E is in the surface.

Then, if s, s' bo tho spocific gravities of A and B re-

poctivoly,
w = 8 {c—K .AD)

and tc=t^{v—K .AE);

» _v—K.AE
•'• ? ~v^^AD'

Sikes^s Hydrometer.

128. This instrument diflfcrs from tho

common hydrometer in the shape of tho

stem, which is a flat bar and very thin, so

that it is exceedingly sensitive. It is gene-

rally constructed of brass, and is accom-

panied by a series of small weights F, which

can bo slipped over the stem above C so as

to rest on C.

The use of the weights is to compensate

for the gi'cat sensitiveness of the instrument,

which would ;vithout tho weights render it

applicable only to liquids of very r.early the

same density. ^r.-.

Suppose the instrument floating in a W^
liquid {A), with tho level D of the stem in

the surface, and that m/ is tho weight on C. In a liquid {B)
let ^ be in the surface, and w" the weight at C.

Let «o be the weight of the instrument, v its volume,
K the section of tho stem, v', v" tlic volumes of w', w", and
/, s" the specific gravities of the liquitls.

Then «?+fc'= weight of fluid A displaced,

t>+t/— K. .4Z)= volume oi A displaced;

.*. w-¥w'=s' {v + v'—K.AD).

Similarly w + w"=^' {v + v"-k.AE);

and therefore -,, / .
; ^rr

•
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If the liquid {B) be the standard liquid, s"= l, and /,

the specific gravity of {A) is at once determined.

Nicholson's Hydrometer.

129. The two hydrometers just described are used for

comparing the specific gravities of fluids; Nichol-

tson's hydrometer can be also employed in com-
paring the specific gravities of a solid and a fluid.

It consists of a hoUovr vessel B, generally of

brass, supporting a cup ^ by a very thin stem,

which is often a steel wire, and having attached

to it a heavy cup C : on the stem connecting A
and B a well-defined mark I> is made.

We proceed to explain the use of the instru-

ment in the two cases.

(1) To compare the specific gravities of two
liquids.

If tc be the weight of the hydrometer, w' the weight

which must be placed in A in order to sink the instrument

to the point Z> in a liquid of specific gravity s', and w" the

weight for a liquid of specific gravity s", the weights of the

liquids displaced are respectively

w + tc^ and w + to".

Therefore, the volumes displaced being the same,

«':<":: ?c + «/: w + v/'.

(2) To compare the S2)ecijic gravities of a solid and
a I. quid.

Let «? be the weight which, placed in A, causes the

iustnunent to sink to X> in the liquid.

Place the sohd in A, and let w' be the weight, placed in

A, which sinks the instrument to Z>.

Then place the solid in C, and let the weight w",

placed in A, sink the instrument to J).

Hence weight of solid = «?— tr',

and its weight in the liquid =«;-«/'.
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Ilcnco the weight lost, which is the weight of the liquid

displaced by the solid, = w"-«3', and

.*. spec gravity of solid : that of liquid ww — vf :
«/'-«?*.

If we take account of the air, we must, as before, add to

v — vf the weight of the air displaced by the solid.

Harems Hydrometer.

130. This instrument is an application of the principle

of the barometer; it consists of two vcr- ijg

tical glass tubes leading out of a hollow i

—

-^—-i

vessel A, wliich can be connected with an ^ ' ^
air-pump.

D and C are two cups in which the

lower ends of the tubes are immersed,

and which contain the two fluids to be

compared.

Let the air in .^ be partially with-

drawn, so that its pressure is diminished

from n the atmospheric pressure to n'.

Then if i), E be the surfaces of the

liquids in the tubes, and F, G in the cups,

and if p, p' be the specific gravities,

n= n'

+

gpDF, and n = n'

+

gp'EG
;

.\pDF=p'EG,

andp \ p'=EG \ DF.

There is no absolute necessity for an air-pump, as a
partial vacuum may be obtained in several other ways.

mm

,E

?

The Stereometer.

131. The name stereometer* has been given to a
modified form, by Professor Miller, of Say's instrument for

measuring the volumes of small solids.

It consists ot two glass tubes, PQ, DB, of equal dia-

• Prof. MUler, PhxL Trans. Part in. 185«.

B. r- n. 9
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w
M-

meter, cemented into cylindrical cavities

communicating with each other at their

lower ends in a piece of iron G.

Two apertures lead out of PQ and

DB, the one, K, stopped with a screw and

the other, L, having a stojKCOck.

The upper end of P<2 opens into a

cup F, the rim of which is ground plane,

80 that it can bo closed and made air-

tight by a plate of glass JE, smeared with

lard. The tube PQ is gi-aduated by lines

traced on the glass, and measured do^vn-

.
wards from a fixed point P.

Tho solid to be examined being placed

in F, mercury is poured into Z>, till its

surface rises to P, and tho cup is then

closed by the plate of glass.

Tho stop-cock L is then opened and

the merciuy allowed to escape till the
' diflference of the heights of the mercury

in tho tubes is nearly equal to half tho

height of tho mercury in the barometer,

liCt M and G mark tlio height in tho

tubes ; and let u bo the volume of the air

in F before the solid was placed in it, v the volume of the

solid, and h the height of tho barometer.

The pressure at G-gph,

and .•. at M=gp {h—MG).

/Hence, if K bo the section of either tube, since the

voliune varies inversely as the pressure,

u-v+K.PM h

-C

a.

'« jiig^TUp^^""'

K

h-MG'

and v = u—
h-MG
MG K.PM.

The volume u can be found by a similar process, the cup

F being empty, and K is found by weighing the mercury

contained in a given length of the tube.
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If tho weight w of the solid v bo dotcrminod, its spe-

cific gravity 8 is given by tho relation w = 8v.

182. The Bcrew K is used in the process of finding K. To
do this, the cup is taken off and the tuba PQ closed ; the tubes are

then inverted, tho screw K taken out, and mercury is poured in

through a slender glass tube inserted in K; this precaution is

taken in order to prevent the formation of air-bubbles in PQ.

The end P is then opened and the mercury allowed to run

into a glass jar in which It is weighed.

A cubic inch of mercury at 16" weighs nearly 3429i grains,

and therefore if m be the weight of a column of mercury a
inches in length,

w=3429J. iTa,

from which K is determined in square inches.

Say's instrument consisted of one tube PQ, the lower end
being open, so that it could be immersed in a cylindrical vessel

of mercury.

The instrument was invented for the purpose of determining

the specific gravity of gunpowder : it can be employed in finding

the specific gi-avities of powders or soluble substances, for which

the methods which require immersion in water are inapplicable.

EXAMINATIOX UPON CHAPTER VII.

1. A SOLID, which is lighter than water, weighs 51bs., and
when the solid is attached to a piece of metal, the whole weighs

7 lbs. in water; the weight of the metal in water being 9 lbs.,

compare the specific gravities of the solid and of water.

2. A solid weighing 251bs., weighs 16 lbs. in a liquid A,
and 18 lbs. in a liquid £; compare the specific gravities of A
and JJ.

3. The whole volume of a hydrometer is 5 cubic inches,

and its stem is one-eighth of an inch in diameter; the hydro-

meter floats in a liquid A with one inch of the stem above the

surface, and in a hquid B with two inches above the surface;

compare the specific gravities of A and £.

k. 4. Describe the characteristic differences between Sikes's,

Nicholson's, and the Common Hydrometer,

5. Describe the construction and use of the Stereometer.

6. What volume of cork, speciSc gravity .2i, must bo

9—2
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attached to 6 lbs. of iron, specific gravity 7.6, in order that the

whole may just float in water?

7. A body weighs 250 grains in a vacuum, 40 grains in

water and 50 grains in spiiit; find the specific gravities of the

body and of the spirit.

8. A Sikes's Hydrometer floats in water with a given

length (a) of its stem not immersed; it is then placed in a

liquid (A), and when a weight w, volume t/, is placed on the

lower end, it i^ found that the length of stem not immersed
is the same as before ; compare the specific gravity ofA with that

of water.

9. If a piece of metal weigh in vacuum 200 grains more
than in water, and 160 grains more than in spirit, what is the

specific gravity of the spirit ?

10. A piece of metal whose weight in water is 15 ounces is

attached to a piece of wood, which weighs 20 ounces in vacuum,

and the weight of the two in water is 10 ounces; find the

specific gravity of the wood.

EXAMPLES.

1. A PIBCE of wood, which weighs 67 lbs. in vacuo, is

attached to a bar of silver weigliing 42 lbs., and the two toge-

ther weigh 38 Iba. in water ; find the specific gravity of the

wood, that of water being 1 , and that of silver 10. 5.

2. The apparent weight of a sinker, weighed in water, is

four times the weight in vacuum of a piece of a material, whose

specific gravity is required ; that of the sinker and the piece

together is three times that weight. Shew that the specific gra-

vity of the material is .5.

8. A hollow'cubical metal box, the length of an edge ofwhich

is one inch and the thickness one-eighteenth of an inch, will just

float in water, when a piece of cork, of which the volume is

4.34 cubic inches and the specific gravity .5, is attached to the

bottom of it. Find the specific gravity of the metal.

4. A crystal of salt weighs 6.3 grains in air; when co-

vered with wax, the specific gravity of which is .96, the whole

weighs 8.22 grains in air and 3.02 in water; find the specific

gravity of salt.

5. A Nicholson's Hydrometer weighs 6oz., and it is reqiii-

site to place weights of 1 oz. and 14 oz. in the upper cup to
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Bmk the instrument to the same point in two diffurent liquidu

;

compare the specific gravities of the liquids.

6. With the same hydrometer it is found that when a cer-

tain solid is placed in the upper cup a weight of 1^ oz. must he
placed in the upper cup to sink the instrument in a liquid to a
given depth; and that, when the solid is placed in the lower

cup, a weight of 3 oz. must be placed in the upper cup to sink

the instrument to the same depth ; compare the specific gravities

of the solid and the liquid, the weight of the solid being 2 oz.

7. A ring consists of gold, a diamond, and two equal rubies,

it weighs 44^ grains, and in water 38| grains ; when one ruby is

taken out it weighs 2 grains less in water. Find the weight of

the diamond, the specific gravity of gold being 16^, of diamond

3J, of ruby 3.

8. If the price of pure whiskey be IGs. per gallon, and its

specific gravity be .75, what should be the price of a mixture of

whiskey and water, which on gauging is found to be of specific

gravity .8, the specific gravity of water being 1 ?

9. Supposing some light material, whose density is p, to be
weighed by means of weights of density /?', the density of the

atmosphere when the barometer stands at 30 inches being unity

;

shew that, if the mercury in the barometer fall one inch, the

material will appear to be altered by ; ,» /oa / ^\ of its
(p-l) (6Qp -29)

former weight Will it appear to weigh more or lees?

10. A heavy bottle is filled with a fluid A and weighed in each

of two other fluids B, C, the apparent weights being Jj, 4j ; it is

then filled with the fluid B and weighed in C and A , the apparent

weights being B^ B^ ; lastly it is filled with fluid C and weighed

in the fluids A and B, the apparent weights being C,, Ct : shew

that

Ai+ B,+ C,r=A,+ B^+Ci.
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Mixture of Gases, Vapours, Radiation, Conduction
- and Convection of Heat^ Dew, Hoar Frost, Clouds

and Rain, Sea and Land Breezes, Dew-Point,

Hygrometers, Dilatation of Liquids, Maximum
Density of Water, Congelation and Ebullition,

Specific Heat.

Mixture of Gases.

133. TF two liquids aro mixed together in a vessel, and
X if the vessel is loft at rest, the two liquids, pro-

vided they do not act chemically on each other, will gra-

dually separate and finally attain equilibrium with the

heavier liquid lowest, and the lighter liquid superposed

upon it. But if two gases are placed in communication

with each other, even if the heavier gas be below the

other, they will rapidly intermingle until the proportion

of the two gases is the same thi'oughout, and the greater

the diflFcrcnce of density the more rapidly will the mixture

be formed.

Take two different gases, having the same temperature

and pressure, and contained in separate vessels ; open a

communication between the vessels, and it will be found

that, unless a cliemical action take place, the pressure of

the mixture will be the same as before, provided the

temperature bo the same.

We can hence deduce the following proposition

:

If two gases having the same temperature he mixed
together in a vessel of volume V, and if the pressures of
tJte gases when respectively contained in V, at the same
temperature he p and p', the pressure of the mixture will

&flp+p'.
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Suppose the gases separate ; change the volume of the

gas, of which the pressure is /?', without change of tem-
perature, until its pressure is p ; its volume will then bo
p'
*— Ff by Mariotte's Law.

Now mix the two gases without change of volume, so

that the volume of the mixture is F + — F, or -—~ V;
P P

by the preceding experimental fact, the pressure of the

mixture >vill be still p.

Compress the mixture till its volume is V, and when
the temperature is the same as before, the pressure, which
varies inversely as the volume, will be p +p'.

This result is equally true of the mixture of any number
of gases.

134, Tvso v6lume$, V, V, of different gases at the

respective pressures p, p', are mixed together in a vessel

ofvolume U; it is required tofind the pressure.

Change the volume of each gas to U; their pressures

will be respectively

V V ,

-fjP, -jjP,

and therefore the pressure (w) of the mixture will be

V V ,

KjP^-uP'

Hence ayU=p V+p' V.

In Art. (133) we have assumed that Mariotte's law is

true of a gas formed by the mixture of two gases; this

can be shewn by direct experiment, but is in fact already

proved in one case, by the original experiment with atmo-

spheric air, which is itself composed of several different

gases. Moreover, the results of the two preceding propo-

sitions are borne out by facts.

Vapours.

135. The term vapour is applied to those gaseous

bodies, such as steam, which can be liquefied at ordinary
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pressures and temperatures. There is no dififerenco be-

tween the mechanical qualities, as distinguished from the

chemical qualities, of vapours and gases, the laws already

stated of gases being equally true of vapours within cer-

tain ranges of temperature. In fact, there is every reason

to believe that all gases are the vapours of certain liquids,

but those which are looked upon as permanent gases

require the application of extreme cold and of very great

pressure to reduce them to a liquid form.

Professor Faraday found that carbonic acid, at the

temperature — 1 1°, was liquefied by a pressure of 20 atmo-

spheres*, but that, at the temperature 0', a pressure of

36 atmospheres was required to produce condensation.

In 1877, M. Pictet succeeded in liquefying oxygen

by subjecting it to a pressure of 300 atmospheres, and,

at the end of the same year, M. Cailletct eflfected the

liquefaction of nitrogen, atmospheric air, and hydrogen.

136. Formation of vapour. If water be introduced

into a space containing dry air, vapour is immediately

formed, and if the quantity of water be small, and the

temperature high, the whole of the water will be rapidly

converted into vapour, and in all cases the pressure of the

air will be increased by the pressure due to the vapour

thus formed.

An increase of temperature, or an enlargement of the

space, increases the amount of vapour as long as the sup-

ply of water remains; but if the water be removed, an

increase of temperature changes the pressure of the vapour

in accordance with the general law which regulates the

connection between pressure and temperature.

The formation of vapour does not in any way depend

upon the presence of air or upon its density, the only

effect which the air produces being a retardation of the

time in which the vapour is formed. If water be intro-

duced into a vacuum, it is instantaneously filled vdth va-

pour, but the quantity of vapour is the same as if the space

had been originally filled with air.

Saturation. As long as the supply of water remains

* An atmospliere denotes the pressure due to a column of mercury 28.9

Inches iu height.
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as a source from which vapour can bo produced, any given

space will bo always saturated with vapour, that is, will

contain the maximum quantity of vapour for any temper-

ature; but if the temperature be lowered, a portion of

the vapour will bo immediately condensed, and become
visible in the form of liquid.

The quiuitity of vapour by which any given space is

saturated is proportional to the space for any given tem-

perature; it follows that the pressure, or elastic force, of

the vapour is independent of the space it saturates, and
depends only on the temperature. No definite law has

been discovered connecting the temperature and the elastic

force of vapour, but tables Ixave been formed and empi-

rical formula) constructed for certain ranges of tempera-

ture.

137. The laws of the mixture of gases are equally true

of the mixture of vapours with each other, or of vapours

with gases, provided no condensation take place ; or, if

any condensation should take place, provided a proper

idlowance be made for the loss of pressure incun-ed.

Thus all atmospheric air contains more or less aqueous

vapour, and if j9 be the pressure of dry air and -sr of the

vapour in the atmosphere at any time, the actual atmo-

spheric pressure isp + vr.

138. Having given the pressures of a volume V of atmo-

spheric air, and of the vapour it contains, to find the volume of

the air witlwut its vapour at the same pressure and temperature.

Let n be the atmospheric pressure, and 'sr that of the va-

pour.

Then 11 - 'S7 is the pressure of the air alone when its volume

is V;

Hence its volume at a pressure 11=—=— V.

139. Having given the volume Y of a dry gas at a given

temperature under a pressure p, to find its volume under the 8am£

pressure, when saturated with vapour.

Let •03" be the pressure of the vapour.

Then the gas must be allowed to expand until its pressure

ia p-tSt, the supply of vapour being kept up. The pressure of

the mixture is then p, and the volume will be —-— Y,
p-ny
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140. A gas contained in a dosed vessel of volume V is in

contact with water, and its pressure at the temperature t is ^; it

is required to determine its pressure when V is changed to V and
t to t'.

Let VT and •sr' be the pressures of the vapour at the tempera-
tures t and t' respectively, and p' the required pressure.

Then p — tz and p' — tsy are the pressures of the gas alone,

under the two sets of conditions stated.

Hence, if />, p' be the densities of the gas,

p- sr=/c/)(l + a«),

p' - ts'— Kp' {\ +aO,
also pF=/)'F';

.
p'~tST' _ JT 1 + at'

•'• p-vr^ V'l+at'
whence p' is determined.

If <r, ff' be the densities of v.ipour under the two conditions,

w'_<r'(l+a<')

-or
~ a (l + at)'

and combining the two equations,

p' — Tjj' tS Vff

p -ST ' ST'~ Vff'
'

. ,

V(/ PCT* - WOT
or -_— = —. ;

.

Vff p'ST —XJGT

If |)'Br'> P'ot, VV will exceed Vff; i.e. more vapour will

have been absorbed by the gas, but if pvj' < p'ts, then Vff

will be less than Vff, and the gas must therefore, in changing

its volume and temperature, have lout a portion of its vapour.

Radiation, Conduction, and Convection of Heat.

141. Radiation. All bodies give off heat from their

surfaces by what is called radiation, and receive heat by

radiation from other bodies. If two bodies at different

temperatures are placed near each other, it is an experi-

mental fact that the temperature of one will rise, and of

the other diminish until they are both the same.

In a similar manner, if a body is placed in a confined

space, the temperature of the body and of the boundary

of the space will gradually approximate, the one increasing

and the other decreasing till they are the same.
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Difference qf radiating power. Some bodies radiate

heat more freely than others, and the diflFcrence appears

to depend in great measure on the nature of the surfaces.

Thus tlie leaves of trees and woollen substances radiate

heat freely and rapidly, while the radiation from a polished

metal surface is very slight.

Generally if the reflecting power of a surface bo in-

creased its radiating power is diminished.

142. Conduction and convection. There are two

other modes of transference of heat from one body to an-

other. Conduction is the term applied to the transfer-

ence of heat by contact, heat being transmitted through

the successive particles of a body, or from one body to

another in contact with it. Convection is the actual trans-

ference of heat by the motion of fluids or other bodies

from one position to another; the heat thus conveyed

away from one body may be imparted by contact or radia-

tion from the conveying body to any other.

Thus the handle of a poker, inserted in the fire, is

heated by conduction, and in the process of warming
rooms by hot air or hot-water pipes the heat is obtained by
convection.

There are great differences in the conducting powers
of different bodies ; liquids generally are weak conductors,

but metallic substances have large conducting powers.

The cold felt in placing the hand on a marble mantel-

piece is an instance of conduction, the heat being trans-

ferred from the hand to the marble.

Woollen substances, glass, and wood, conduct heat very
slowly, and this fact is practically taken advantage of in

many ways. A heated body rolled up in a woollen cloth

may be kept hot for a long time, and ice in a wooden pail,

wrapped round with a cloth, vrill dissolve very slowly, even
in a warm room.

Another instance of a body with very small conducting

power is sand; heat is transferred through it so slowly

that red-hot shot can be safely carried about in wooden
barrows filled with sand.

One of the many useful applications of the non-con-

ducting powers of certain substances is in the construe-
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tion of Fire-proof Safes; a safe of this kind is simply an
iron box enclosed within another somewhat larger, the

space between being filled up with some non-conducting

substance.

143. The explanations above given of the saturating

density of vapour, and of the radiation of heat, will enable

us to account for many of the ordinary meteorological

phenomena, such as the formation of dew, and the fall of

rain and snow.

Formation of Dew. Any portion of atmospheric air

contains vapour in a greater or less degree, and may be

saturated with it ; if so, the slightest fall of temperature

will produce condensation. If any solid in contact with

the atmosphere be cooled down until its temperature is

below that which corresponds to the saturation of the air

around it, condensation will take place, and the condensed

vapour will be deposited in the form of dew upon the sur-

face of the body.

This accounts for the detc with whicli the gi*ound is

covered after a clear night.

Heat radiates from the ground, and from the bodies

upon it, and unless there are clouds from which the heat

would bo radiated back, the surfaces are cooled and the

vapour in the stratum of the atmosphere immediately

above condenses and falls in small drops of water on the

surface. Any kind of covering will more or less prevent

the formation of dew beneath ; very little dew, for instance,

will be found under the shade of large trees. It will be

seen moreover that good radiators are most abundantly

covered with dew, very smooth surfaces being almost en-

tirely free from it This is in accordance with the facts

stated above of the radiation of heat.

Hoar Frost. If after the deposition of dew the tem-

perature fall below the freezing point, the dew is then

frozen and becomes hoar frost.

The fogs seen at night on low lying or marshy lands

are due to the same cause. The air is charged with

moisture to saturation, and the cooling of the surface ex-

tends sometimes through three or four feet of the atmo-
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Bphcrc, producing a thick fog close to the ground, while

the air above is quite clear.

144. Clouds and Rain. Clouds are formed by the

condensation of the vapour in the upper regions of the

atmosphere. The reduction of temperature requisite for

condensation may occur from several diflferent causes; a
mass of air and vapour in motion may rise into a colder

region or may come into contact with a larger mass of

colder air, so that when the two are mingled together the

temperatm'O may not be sufficient to maintain tlie elasti-

city of tlio vapour.

The fact that the clouds remain suspended may be ex-

plained in various ways. It seems highly probable that in

the process of condensation the vapour assumes the form
of small vesicles of water containing air, and therefore not
necessarily of greater specific gravity than the medium in

which they are formed. Or, again, if the particles do de-

scend, they may, as they fall into a space in which the

temperature is higher, be gradually absorbed, and if new
vapour be formed above, the appearance of a stationary

cloud would consist with the fact of a continuous fall in

the constituent particles of the cloud itself.

The cloud which is often seen about the top of a
mountain is not unfrequently of this kind. A mass of

warm air charged with moisture travels past a mountain,
and by contact with it condensation is caused in that

portion which is near to the mountain. As the condensed
vapour is drifted away, it is again absorbed by the warm
air around it, and .thus the apparently fixed cloud merely
represents a state through which the warm air passes, and
from which it emerges.

If a cloud be very highly charged with moisture, and a
further reduction of temperature take place, the vapour
condenses still further into small drops, and descends in

the form of rain.

145. When vapour is being condensed, if the temper-
ature fall below the freezing point, snow is formed; and
if rain as it falls pass through a region of the air in which
the temperature is below the freezing point, the drops of
rain are congealed and descend in the form of hail.
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Foga and mists arc clouds formed near the eai-th's

surface and in contact with it. The light summer rain

which sometimes falls about sunrise or sunset without the

appearance of a cloud is due to the same cause, the air

becoming suddenly colder, and the vapom* in consequence
being rapidly condensed.

146. Illustration. The phenomena of dew and hoar

frost may be obtained on a small scale by simply putting

ice into a glass of water. The outside of the glass will

soon be covered with a delicate dew, which after a short

time freezes, and the glass is then covered with hoar frost.

The explanations of the preceding articles will enable

an observer to account for most of the phenomena which
depend on the existence of aqueous vapour in the atmo-

uphere.

147. Sea and land breezes. Winds are partly due to

changes of temperature; if, for instance, the air in the

neighbourhood of any particular region become heated, it

^vill expand and rise, its place being filled by air from
other regions, and hence a wind towards the heated

I'egion.

In hot countries on the sea-coast it is noticed that

during the day the wind in general blows from the sea,

and during the night from the land. During the day the

land becomes heated and retains heat ; hence the air above
it rises, and the cooler air flows in from the sea. But
during the night the land cools by radiation while tho

temperature of the sea remains nearly the same ; hence

the land breeze.

Dew-Point and Hygrometers.

148. The Dew-point is the temperature at which the

vapour in the atmosphere begins to condense.

To determine the dew-point a glass vessel must be

cooled until dew begins to be deposited upon it, and its

temperature miist be then observed; again, observe the

temperatiire at which the dew disappears ; a mean be-

tween the two may be taken as the dew-point.
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149. Tenaion qf vapour in the air. If the dew-point

be ascertained we can infer tlio pressure of the vapour iu

the air by means of the tables before referred to of the

relation between the teuiixjraturo and the saturating den-

sity.

For if f be the dew-point, and or the corresponding

pressure, / the temperature of the air, and w the required

l)ressuro,

OJ" : tr' :: 1 + a/ : 1 + a/',

and, the pressure being known, the quantity of vapour in

the atmosphere can bo determiued.

160. Hygrometers are instruments for determining

the quantity of vapour in the atmosphere, or, in other

words, the degree of saturation.

This is measured by the ratio of tlio tension of the

vapour in the air to the saturating tension.

Thus if, m the case of Art. (137), -bt" bo the saturatmg

tension at the temperature t, —^ is the measure required.

Hygrometers may be constructed of any substance

which is affected by the amount of moisture in the air,

such as a piece of cord which elongates as the quantity of

vapour in the air diminishes, or a piece of seaweed, which
is exceedingly sensitive to hygrometric changes in the

atmosphere.

One of the hygrometers most in use is the wet and
dry bulb Thermometer. It consists of two mercurial

thermometers near each other, one of which is covered

with muslin, and kept constantly wet by letting a portion

of the muslin drop in a cup of water. The moisture from
the mushn evaporates, and, as evaporation is always ac-

companied by cooling, the wet bulb thermometer falls,

imd, the drier the air is, the greater will be the difference

between the two thermometers. Empirical formulae and
tables have been constructed by means of which the ten-

sion of the vapour can be mferred from the readings of

the thermometers*.

See Mr Gliusher's pamphlet On the Wet arid Dry Bulb Thermometer.
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The direct determination of the dew-point is a trou-

blesome process, and the quantity of vapour in tlie air is

most easily found by means of the hygrometer just de-

scribed, and its accompanj-ing tables.

Dilatation of Liquids.

151. In general, all solid and liquid bodies expand
imder the action of heat, and contract when heat is with-

drawn. We have before had occasion to take account of

the expansion of mercury, which is within certain limits

proportional to the increase of temperature. This is also

the case with solid bodies, such as glass and steel.

For water and aqueous liquids generally, the law of

expansion is unknown; the rate of expansion is not con-

stant for a constant increase of temperature, but beyond a
certain limit becomes more rapid as the temperature rises.

Maximum density ofwafer. It is a remarkable pro-

perty of water that its density is a maximum at a tempera-

tm'e of about 4''C. or 40** F., and whether the tempera-

ture increases or decreases from this point, the water ex-

pands in volume.

152. Freezing. When the temperature descends to

the freezing-point, a still further expansion takes place at

the moment of congelation. This is sufficiently proved by
the fact that ice floats in water, but it may also be ren-

dered very distinctly evident by a direct experiment.

Fill a small iron shell with water, and close the aperture

witli a wooden plug ; if the shell be then exposed to a
freezing temperature, the water within will freeze, and at

the instant of congelation, the plug will bo shot out with

considerable violence*.

153. Formation of ice on the surface of a lake. It

is known that ice is formed much more rapidly on the

surface of shallow than on the surface of deep water ; and
this fact we can now account for. As the air cools, the

* The results of Playfair and Joule give 3".945 C. as the temperature at
which the density is a maximum. Prof. Miller, Phil. TransacHotig, 1856.

The temperatures at which liquids freeze are different for different liquldSk

but fixed for each liquid. Thus mercury freezes at a temperature -40»C.
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water at the Rurfoco cools, and being contracted becomes
heavier than tlie water beneath. The surface strata then

descend, and the water from bcneatli rises and becomes
cooled in its turn, and this process will go on until the

whole of the water has attained its maximum density,

after which it will remain stationary, and the upper strata

being further coolud will expand and finally congeal. It

is clear that tlie deeper the water is the longer will be
the time which elapses before the whole of the water has

attained its maximum density.

154. Ebullition. When heat is applied to water, it

expands gradually until, at a certain temperature, bubbles

are formed and steam is given off.

This temperature is the boiling-point, and it has been
mentioned before that it depends upon the atmospheric

pressxire.

The bubbles are first formed by the expansion of the

air which water contains. If water be heated from below,

the lower strata expand and rise, the upper strata de-

scending and becoming heated in succession, and air-bub-

bles ascend. As the temperature increases, small bubbles

of vapour ascend, but do not always reach the surface, as

they may be condensed in the less heated strata above.

Finally, larger bubbles are formed, and, the whole mass
being heated, ascend to the surface and give off steam,

which becomes visible by a slight condensation in the air

above.

These bubbles are formed when the tension of their

vapour is equal to the pressure they sustain, and this ex-

plains why a diminution of atmospheric pressure permits
the process of ebullition at a lower temperature ; and, on
the other hand, that an increase of atmospheric pressure
raises the temperature of ebullition.

For instance, imder a pressure of two atmospheres,
the boiling-point is raised 20" C, and, if the atmospheric
pressure be diminished one-half, the boiling-point is lower-
ed about 18".

This accounts for the fact that water boils at a low
temperature on the tops of mountains, and on high table-

lands.

B. E. H. jrt
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Specific Heat.

155. It is found that a certain quantity of heat must

be expended in order to raise the temperature of a mass

of any substance by a given amount. The requisite quan-

tity of heat depends on the nature of the substance and

also on its mass, and for any particular substance it may
be at once assumed that the quantity of heat required

to raise the temperature one degree is directly proportional

to the mass of the substance.

In general, the amount of heat required to change the

tempei'ature of a given mass from i" to (f+ 1)" is the same
for all values of t.

Hence for the same substance the quantity of heat ex-

pended in changing the temperature from f> to C^

^ t — t when the mass is given,

and QC the mass when t' — t\s> given,

and therefore generally qc m{t'-t), ifm be the mass.

If this bo taken equal to cm{t'—t), c is called the spe-

cific heat of the substance, and it is the measure of the

amount of heat which will raise by 1" the temperature of

the unit of mass.

If two masses m, m\ of the same substance, at tempera-

tures t, t', bo mixed together, and if r be tlio tempera-

ture of the mixtm-e, then, since the amount of heat lost by

one is gained by the other,

mt— ntT = rn'r —nvt,

or mt+ rrCt!= {m+ ni') r.

156. For diflPerent substances the quantity c has dif-

ferent values; thus it is found that water requires about

28 times as much heat as mercury in order to change the

temperature by a given amomit, and the specific heat of

mercury is therefore less than that of water in the ratio of

1 : 28.

The specific heat of a gas must be considered from two

different points of view, for we may suppose the volume of

a gas constant, and investigate the amount of heat required

to raise the temperature 1", or we may suppose the pres-

sure constant, the latter supposition permitting the expan-

sion of the gas.
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Tho specific heat in the second case exceeds the specific

heat in tho first case hy tho amount of heat disengaged

when tho gas is suddenly compressed into its original

volume.

157. Tlie specific heat of water is usually taken as the unit,

and one of the methods of finding the specific heat of a sub-

stance is by immersing it in a given weight of water, and ob-

serving the temperature attained by the two substances.

Thus, ifM be the mass of a body, T it's temperature, and

its specific heat,

•n' and m the masses of a vessel and of the water in it, and

t their common temperature,

r the temperature of the whole after immersion, and C the

specific beat of the vessel,

CM {T-T)= m(T-l) + Cm' (r - 1),

since the quantity of heat lost by the body is equal to that

gained by the water and the vessel.

If C* be known, this equation determines C ; and C, if un-

known, can be found by pouring water of a known tempurature

into the vessel at some other known temperature.

The following are approximate values of the specific heats of

a few substances.

Water 1.

Thennometer-glasd... .198

Iron 114

Zinc 1

Mercury 03

Silver 06

Brass 09.

EXAMINATION ON CHAPTEE VIII.

1. A CUBIC foot of air having a pressure of 15 lbs. on a
square inch is mixed with a cubic inch of compressed air, having
ji pressure of 60 Iba. on a square inch ; find the pressure of the
mixture, when its volume is 1729 cubic inches.

2. State the conditions under which a space is saturated

with vapour.

3. A vessel of water is left in a close room for some time

;

what would be the effect of bringing a quantity of ice into the

room?

10—2
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4. Explain the radiation, conduction, and convection of

heat. Why is a cloudy sky not favourable to the deposition of

dew?

5. How do you account for the long trail of condensed
steam which often follows a locomotive in rainy weather?

6. De6ne the Dew-point, and explain the use of the Wet
and Dry Bulb Thermometer.

7. Explain why it is difficult to heat water from its upper
surface.

8. If a piece of ice be put into a glass of water, the ex-

ternal surface is soon covered with a fine dew; account for this

fact.

9. Explain what is meant by Specific Heat.

Three gallons of water at 45" are mixed with six gallons at

90"; what is the temperature of the mixture?

10. At great altitudes it is sometimes found that a sensation

of discomfort is felt ; the lips crack and the skiu of the hands is

roughened; how do you account for these facts?

Can you give any reason why an east wind in England some-

times produces similar effects ?

EXAMPLES.

1. Two volumes V, V of different gases, at pressures jp, p',

and temperature t are mixed together; the volume of the mix-

ture is U, and its temperature tf, determine the pressure.

2. Two vessels contain air having the same temperature t,

but different pressures p, p'
; the temperature of each being in-

creased by the same quantity, find which has its pressure most
increased.

If the vessels be of the same size, and be allowed to commu-
nicate with each other, find the pressure of the mixture at a
temperature zero.

3. A glass vessel weighing 1 lb. contains 5 oz. of water,

both at 20*, and 2oz. of iron at 100* is immersed; what is the

temperature of the whole, taking .2 as the specific heat of glass

and .12 of iron?

4. An ounce of iron at 120", and 2oz. of zinc at 90*^ are

thrown into 6 oz. of water at 10" contained in a glass vessel

weighing 10 oz. ; what is the final temperature, taking .1 and
.12 as the specific heats of zinc and iron ?
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6. The pressure of a quantity of air, saturated with vapour,
is observed ; the mixture is then compressed into half its former
volume, and, after the temperature has been lowered until it

becomes the same as at first, the pressure is again observed;

hence find what would be the pressure of tiie air (occupying its

original space) if it were deprived of its vapour without having
its temperature changed.

6. It is related of a place in Norway that a window of a
ball-room being suddenly thrown open, a shower of snow imme
diately fell over the whole of the room. Account for this phe-

nomenon.

7. A drop of water is introduced into the tube of a common
barometer which just does not evaporate at the higher of the

temperatures /,", ^u".

Given that the elasticity of vapour increases geometrically

as the temperature increases arithmetically, shew that if £,, Eg
be the errors of the above barometer at temperatures <,'*, 1g^,

the common ratio of the geometric progression for an increase of

temperature of 1" in the case of vapour of water is

e being the coefficient of expansion for mercury.

8. A closed cylinder contains a piston moveable by means
of a rod passing through an air-tight collar at the top of the

cylinder. The piston is held at a distance from the bottom of

the cylinder equal to one-third of its height, and vapour is intro-

duced above and below of a known pressure, the temperature

of the cylinder being such as will support vapour of twice the

density without condensation. The piston on being left to itself

sinks through two-ninths of the height of the cylinder. Prove
that the weight of the piston is five-fourths of the pressure of

the vapour upon either side at first.

9. A flask is partially filled with walor which is caused to

boil until the air is expelled, and then the flask is corked and

allowed for a short time to cool. The flask is then placed in cold

water, and it is found that the water in it recommences boiling.

Explain this phenomenon.
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Rotating Liquid.

158. "IITHEN liquid in a vessel is set rotating, it is

' ' known that the surface assumes a hollow form;

by the help of a dynamical law we can determine what this

form is.

If a liquid, contained in a vessel which rotates uni-

formly about a vertical axis, rotates uniformly, as if rigid,

with tJve vessel, its surface is a paraboloid.

Every particle of the liquid moves uniformly in a hori-

zontal circle, and therefore whatever the forces may be

which act on any particle, their resultant must bo a hori-

zontal force tending to the centre of the circle and equal

to m«V, where r is the distance of the particle from the

axis, m its mass, and w the angular force of the liquid".

Since there is no relative displacement of the molecules

of the liquid, we can imagine that it haa no rotation, and is

in equilibrium under the action of gravity and of the

imaginary force niw'r all acting outwards.

We assume from symmetry that the surface is a surface

of revolution.

Let AG hQ the vertical axis of revo-

lution, and consider a point P on the

surface. Round P as centre describe a
very small circle, and take this small

circular area as the base of a very thin

circular cylinder of liquid.

If m be the mass of the element of

liquid, thus imagined, it is in equilibrium

under the action of gravity, of »wcoV

outwards, of the atmospheric pressure on
ita surface, of the liquid pressure on its

* See Garnctt's Dynamics, or Parkinson's Mechanict.

%. Tf^^
Jk
^3~lrr=

i£^S=!l
=-=^=^-

AL
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inside flat end, aad of the liquid pressures ou its curbed

surface.

Tlicso latter pressures, being equal to the atmospheric

pressure, are of themselves in equilibrium, and it therefore

follows thut tlie resultant of gravity, mff, and of the force

mah- must be normal to the surface*.

Let the normal at P meet the axis in G, and draw PN
horizontal

Then two forces acting in directions of the lines

PG, GN have their resultant, which is mm^PN, in the

direction PN, and therefore by the triangle of forces,

NG '. PN . mg : m<^'^PN,

and .'.NG^^,.

Now NG is the subnormal, and it is known that in a

parabola the subnonual is constant, while it can also bo

shewn that the parabola is the only cui-ve which has this

property.

The vertical section in the figure is therefore a parabola

the latus rectum of which is —., and the surface is a
a

paraboloid.

It will be seen that this result is independent of the

form of the containing vessel. The axis of rotation, in fact,

may be within or without the fluid, but in any case it will

be the axis of the paraboloidal surface.

If the vessel were a surface of revolution, having the

axis of rotation for its axis, it would not be necessary theo-

retically that the vessel should rotate. However, by mak-
ing it rotate with the liquid, we get rid of the practical

difficulty which would in this case arise from the friction

between the fluid and the surface of the vessel

159. Tofind the pressure at any point.

Take any point Q in the fluid, and describe a small

vertical prism having Q in its base, which is to be taken

horizontal.

* A particular case of the general theorem that, in fluids at rest under any
forces, the resultant force at any point is normal, at that point, to the surface of

equal pressure passing through it.
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The prism PQ of liquid rotates uniformly under the

action of the pressure around it,

but its weight is entirely sup-

ported by the pressure on its

base.

Hence if p be the pressure,

and p the density,

p=gpPQ.
Now

PQ =OM-0N="^§^- ON,
2£7

and ^=p(^«2r,<o-QN-^

and we thus obtain the pressure in terms of the horizontal

and vertical distances from the vertex of the paraboloid.

It must be observed that ON is measured upwards
and that if Q be lower than O, the equation for p is

p=p(^^ci^QN'+gON\

160. To find the resultant vertical pressure of a

rotating liquid on any surface.

Let PQ be the surface, and draw vertical lines from

its boundary to the surface; then the weight of the in-

cluded portion PABQ of liquid being entirely supported

by PQ, it follows that the resultant vertical pressure oa

PQ is equal to the weight of the liquid above it

If the surface PQ be pressed upwards, as in the fie:are.
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then, contiuuing the freo surface AOP of the liquid, it

can be -shewn, as in Art (52), thut

the resultant vertical pressure up-

wards on PQ is equal to the

weight of the fluid which would

be contained between the para-

boloid al surface, the surface PQ^
and vertical lines through the

boundary of PQ.

161. Dep. a surface of equal pressure is the loctis of
points at which tlie pressures are the same.

If lines be drawn vertically downwards from all points

of the siu-face equal to PQ (fig. Art 159), it is clear that

the pressures at their ends will bo the same as at Q ; and,

as these ends lie on the surface of a paraboloid equal to

the surface paraboloid, it follows that all surfiices of equal

pressure are in this case paraboloids.

162. Floating bodies. If a body float in a rotating

mass of fluid, in a position of relative equilibrium, it is

evident by the same reasoning, as in the case of a fluid at

rest, that the weight of the body must be equal to the

weight of the fluid displaced.

163. Figure of the Earth. A lai^e portion of the

earth's surface is covered with water, and, if it were not

for the earth's rotation, its surface would be a sphere

having its centre at the centre of the earth.

For simplicity, imagine a solid sphere surrounded by
water, and suppose the whole to be in rotation about a
diameter CB of the sphere. Consider an elementary por-
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tion P of the water, which describes a circle of radiusPN
uniformly. The attraction of the solid sphere in the direc-

tion PC, combined with the resultant fluid pressure in

direction of the normal at P, must have as their resultant

the force may^PN in direction PN. Hence the normal

at P must be inclined, as in the figure, towards the axis,

and the form of the surface must be oblate.

Supposing the earth a large fluid mass, it is shewn by
mechanical considerations that the form would be an oblate

spheroid.

It is hence seen that the normal to the surface of still

water, that is, the vertical, at any point of the earth's sur-

face is not in direction of its centre, except at the poles

and the equator.

EXAMPLES.

164. (1) A fine tube, ABCD, of which the equal iranches

AB, CD, are vertical, BC being horizontal, is filled with liquid,

and made to rotate uniformly about the axis of AB ; to find how
much liquid will flow out of the end D.

The liquid will flow out until the surface in AB is the vertex

.4 D

B

O

,' /

./-P

of a parabola passing through D, and having its axis vertical

and latus rectum equal to -^ .
'

0)

If then be the vertex of the parabola,

£C^=^AO.
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This gives A 0, and determines the quantity required.

If however ^ be greater than A B, the surface of the liqaid

will be in £C, at P suppose.

2!7
In this case we have BC^=-4,A0',

and BP-^= ^^BO'=^(AO'-AB),

which determines the position of P.

(2) A straight tube AB, filled with liquid, is made to rotate

unifoitnly about a vertical axis through A ; to find how much
flows out at B.

Let OAB= a, and imagine a parabola, latus rectum -^, to

be drawn touching the axis of the

tube, and having its axis coinci-

dent with the vertical through A.

Then if P be the point of con-

tact, all the fluid above P will

flow out.

To find P,

20
'73PN^-. .ON

= ^AN, since OA = ON,

and PN=AN tan a

;

.:AN=~cot^a,w
, .r, 9 cos O

and AP=-^ . ., .

w^ sm- a

No fluid will flow out unless AP<AB, that is, unless

g cosa
u > —

^

.

AB sin^ a

It will be seen that P is the position of relative equilibrium

of a heavy particle in the rotating tube.

(3) Let the end B be closed and the tube AB, rotating as in

Ex, (2), be ordy partly filled with liquid; it is required to find the

circumstances of relative equilibrium.

Let ^ C7 be the portion of tube filled with liquid (fig. of pre-

vious article).
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Draw the parabola touching in P as before : then, if C is

below P, no change takes place, but if C is above P, the portion

PC of hquid will flow to the upper end of the tube and remain

there.

(4) A semicircular tuhe APB is filled with liquid and rotates

uniformly about the vertical diameter AB ; it is required to find

cohere a hole may be made in the tube through which all the liquid

•will flow out.

Draw a parabola touching the tube at P and having its ver-

tex in BA, axis vertical, and latus rectum 35

equal to —'.;

.

Then, if an aperture be made at P, the

whole of the liquid, being above the parabo-

loidal surface, will flow out through P.

To find its position we have

PN^-.

hut PN^=CN. NT;

. '. CN= --
, which determines P.

If a be the radius {CA ) of the tube, and if rp

ur^<- , then CN>CA, and the aperture must

be made at A.

(5) In a mass of liquid, rotating about a vertical axis, a
very small sphere, of greater density than the liquid, is immersed,

and supported by a string fastened to a point in the axis ; it is

required to find the position of relative equilibrium.

For one position of eqijilibrium it is evident that the string

can be vertical, but we can shew that the sphere may rest with

the string inclined at a certain angle {6) to the vertical.

Let V be the volume of the sphere, r its distance from the

axis in the position of relative equilibrium, and p the density of

the liquid.

To find the pressure of the liquid on the sphere, imagine it

removed and its place supplied by a solidified portion V of the

liquid

;
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The resultant liquid pressure must support the wsight gp V,

and also supply the horizontal pressuro necessary to mamtain the

circular motion, i. e. p Vurr.

Hence if p' be the density of the sphere, and t the tension of

the string, we must have, for equilibrium,

t»\n0-V p Vu-r— p' Vurr,

tcoae + pVff=p'Vg,

and .' taxi6=—

.

9
The position is therefore the same as if the sphere and string

were in motion as a conical pendulum.

It will also be seen that the string coincides with the direc-

tion of the normal to the surface of equal pressure which passes

through the centre of the sphere.

(6) A cylindrical vessel contains liquid, ichich rotates v.ni-

formhj about the axis of the cylinder; to find the whole pressure

on its surface.

Let AOB be a vertical section of the surface, r the radius of

the cylinder.

We have shewn, Art. (159), that the pres-

sure varies as the depth below the surface,

and in this case the level of the free surface is

the same for all points on the curved surface

of the cylinder.

Hence the whole pressure on the curved

surface

=gp2T:r.AD.-AD = Trgpr.AD^.

Let h be the height of the liquid when at rest.

It is known that the volume of a paraboloid is half that of

the cylinder on the same base and of the same height, and

therefore the surface of the liquid at rest would bisect AN.

But ON'^='^,AN, or r2=^JiV:

.'.AD=h + ~AN=h+^/-.

Hence the whole pressiire is given in terms of h.

Also the pressure on the base is equal to the weight of the

fluid, i. e. gpwr^h.
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NOTE OK CHAPTER IX.

The question of the form of the surface of a rotating fluid

appears to have been first discussed by Daniel Bernoulli, in his

Hydrodynamica, which was published in 1733. He there proves

that the form is that of a paraboloid, and 5 years after Clairaut,

in his Figure de la Terre, gives a similar proof, at the same time

quoting Bernoulli.

From the remarks of Art. 17, it follows that the paraholoidal

form will be exactly true for viscous liquids rotating in the

same manner. The point of argument lies in the phrase, as if

rigid, for, without this condition, it would not be possible to

imagine the liquid in a state of equilibrium. It must not

be inferred that the paraholoidal form is that which would be

assumed by a liquid set in rotation by ordinary mechanical

means. The internal friction of a liquid, communicated from

the surface of a rotating vessel may produce the effect, if the

revolution be maintained long enough.

Theoretically, we can imagine the effect produced by

enclosing ice in a strong vessel with a paraholoidal upper surface,

making it rotate, and then melting the ice by pressure,

or otherwise. The melted ice would retain the rotation as if

rigid, and it might perhaps be possible to procure an approxi-

mation to the paraholoidal surface.

If a cup of tea be rapidly stirred, a convex surface is

produced, having a hollow in the middle, but, in motion of this

kind, the angular velocity decreases at increasing distances from

the centre, and there is a constant displacement of the relative

positions of the molecules of liquid. This is the case of

Bankine's free circular vortex, and its discussion belongs to the

domain of Hydrodynamics. (See Hydromechanics.)

Examples.

1. Liquid contained in a closed vessel rotates uniformly

about a vertical axis
;
prove that the difference of the pressures

at any two points of the same horizontal line varies as the dif-

ference of the squares of tlie distances of the two points from

the axis of rotation.
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2. A hollow paraboloid of revolution with its axis vertical

and vertex downwards is half filled with liquid. With what an-

gular velocity must it be made to rotate about its axis in order

that the liquid may just rise to the rim of the vesselT

3. If a solid cylinder float in a liquid which rotates about a

vertical axis having its axis coincident with the axis of revolu-

tion, determine the portion of its surface which is submerged,

the dimensions of the cylinder and the densities of the liquid and
cylinder being given.

4. An open vessel, containing two liquids which do not

mix, revolves uniformly round a vertical axis ; find the form of

the common surface.

5. A conical vessel open at the top and filled with liquid

rotates about its axis ; find how much runs over, 1 st, when u is

leas, and, 2nd, when w is greater than */ r cot a, A being the

height of the cone, and a its semivertical angle.

6. A hemispherical bowl is filled with liquid, which its made
to rotate uniformly about the vertical radius of the bowl j find

how much runs over.

7. An elliptic tube, half full of liquid, revolves about a
fixed vertical axis in its own plane, with angular velocity cd

;

prove that the angle which the straight line joining the free sur-

faces of the liquid makes with the vertical is tan~^ -—„ , where

p is the perpendicular from the centre on the axis.

8. A closed cylindrical vessel, height h and radius a, is just

filled with liquid, and rotates uniformly about its vertical axis

;

find the pressures on its upper and lower ends, and the whole
pressure on its curved surface,

9. A hemispherical bowl, just filled with liquid, is inverted

on a smooth horizontal table, and rotates uniformly about its

vertical radius; find what its weight may be, in order that none
of the liquid may escape. •

10. A cylindrical vessel, containing water, rotates uniformly

about its axis, which is vertical, the water rotating with it at the

same rate ; find the position of relative equilibrium of a small

piece of cork which is kept under water by a string fastened to

a point in the side of the vessel.
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11, A vertical cylinder, of height h and radius a, is half

full of water, •which rotates uniformly about the axis; prove

that the greatest angular velocity which can be imparted to the

water without causing an overflow is ^/2gh -f- a.

12. A conical vessel, of height h and vertical angle 60", has

its axis vertical and is half filled with water ; prove that the

greatest angular velocity which the water can have without

overflowing is v/ -r

.
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Tention qf Vessels containing Fluids.

165. 1'F a cylindrical vessel contain liquid, the pressure
JL of the liquid will produce a strain or tension in

the substance of which the vessel is formed. We may
imagine the vessel formed of some thm flexible substance,

such as silk or paper, and it is obvious that if this sub-

stance be not strong enough, it will be torn asunder by
the pressure of the Uquid.

We proceed to investigate the relation between the

pressure and the tension produced by it.

Measure of tension. Imagine a hollow cylindrical

vessel formed of a thin flexible substance to be filled with

a gas at a given pressure, so that the tension may be the

same throughout.

Divide the surface along a generating line, length I,

and let T be the whole force required to keep the two
parts together

;

then, if T—tl, t is the tension along any unit of length.

If the cylinder be vertical and filled with water, so

that the pressure and therefore the tension vary at diflFer«

ent depths, then the tension t at any point is the tension

that would be exerted along an unit of length, if it were
the same throughout the unit as it is at the point in ques-

tion.

166. A vertical cylindrical vessel contains fluid; to

find tlie relation between the pressure and tension.

The pressure being the same at all points of the same

B. E. H. 11
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P E Q'

horizontal plane, it follows that the tension

will be the same at all points of the same
horizontal section.

Let PQ, P'Q' be small portions of two
horizontal sections very near each other.

PP' and QQ' being vertical. The dimen-

sions of PQ' are taken so small that the

pressure and tension at all points of it arc sensibly the

same.

Let p, t be the pressure and tension ; then t . PP',

t . QQ' are the horizontal forces acting on the portion PQ'
of the surface at the middle points A, B oi its ends, and

these forces must counterbalance the pressure of the liquid,

which is iJ.PP'.PQ.
This resultant pressure acts in the direction CE bisect-

ing the angle ACB, and the two tensions in the directions

of the tangents at P and Q.

Hence, resolving the forces in the direction CE,

p.PP'.PQ =2t.PP'Bm^ACB

= 2t.PP'.l.^^ J-.PP'.PQ,
2 r r

if r be the radius of the cylinder,

and .'. t-pr.

If the cylinder contain a gaseous fluid of which the

pressure is sensibly the same throughout its mass, the

relation t=pr is true at every point, whether the axis be

vertical or not.
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This result can also bo obtained by considering the

equilibrium of a semi-circular portion of thickness PP", for

the resultant pressure will be parallel to the tensions at the

two ends, and will bo equal to the pressure on the projected

area 2r . PP', so that

2t . PP'=p . 2r.PF, or t =pr.

167. If the pressure along the arc ^2? is a variable

quantity the cylindrical form is not a form of equilibrium

for a vessel formed of thin flexible material, but, taking r as

the radius of curvature at E, the relation, t=pr, is true of

every point.

For example consider the Lintearia, which is the form
assumed by a rectangular piece of a thin membrane, two

opposite sides of which are fastened to the sides of a box, while

the other sides fit the box closely, so that liquid can«bo poured

in without escaping.

The figure is a section of the cylindrical surfiaoe so formed,

by a i^ane perpendicular to its generating lines, BC being the

surface of the Uquid.

The tension (<) along BAG is constant, because the liquid

pressure is normal, and, if r be the radius of curvature at P,

t=pr=qprPN, .*. -oc PN,

i.e. the curvature at P is proportional to the depth below

the surface.

This curve is the same as the Elastica, the curve formed by

a bent rod, and is also, as will be seen subsequently, the same
as the Capillary curve,

11—2
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168- A spherical surface contains gas at a given

pressure, it is required tofind the tension at any point.

From symmetry we may take the tension to be the

same at every point.

Moreover, if any line be drawn on the surface we may
assume that the tension between the

two portions parted by that line acts

in a direction perpendicular to it.

Consider a very small square por-

tion of the surface ABCD, and let t

be the tension, O the centre of the

sphere, and r its radius.

Then a being the length of any

side of the square, there are four

forces, each equal to ta, acting at the

middle points of the lines AB, BG,
CD, DA, perpendicular to these lines and tangential to

the surface, and the resultant of these forces must coun-

terbalance the pressure of the gas.

The resultant of ta on AB and CD, in the direction

EO,

= 2ta , sinFOE= 2ta— = - a»:
r r

and similarly the resultant of the tensions on AC and BD

r

therefore, ifp be the pressure of the gas,

2-o'=joa', and 2<-=pr.

Instead of taking a small element we may consider the

equilibrium of a hemisphere, under the action of the tension

iitrt, and of the resultant pressure which is equal to

the presBure on a circular area of radius r, so that

2»rrf = 7rr*/>, or 2<=j9r.

Hence it appears that a spherical vessel is twice as

strong as a cylindrical vessel of the same material and the

same radius.
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169 We have not compared with each other the ten-

sions of vessels formed of substances of different thickness.

To do this it will be seen that for a given value of the

tension t, as we have measured it, the intrinsic strain of

any substance will be diminished by increasing the thick-

ness.

Now if e be the thickness of any flexible lamina, and if

t=eT, then r will be the tension of an unit of area of the

section, and for the comparison of different thicknesses,

this latter measure of tension must be employed.

Ex. A bar of metal one square inch in section can
sustain a weight of 1000 lbs., and of this metal a cylinder

is made one-twentieth of an inch in thickness, and one

foot in diameter; find the greatest fluid pressure which
the cylinder can sustain.

In this case the greatest possible value of t is 1000,

and the greatest value of i=—: . t= 50

;

.'. «=-=-_=8ilbs.^ r 6 ^

Hence 8^ lbs. per sq. inch is the greatest pressure

which can be applied without bursting the cylinder.

170. A conical vessel, formed of a flexible substance, is held

by the rim with its vertex dovmwards, and is filled with liquid;

it is required to find the tension at any point in the direction of the

generating line passing through the point.

Let PP' be a horizontal section of the cone. It is obvious

that along the section PP' the ten-

sion is the same at any point and is

in direction of the generating line

through that point.

Let then t be the tension, which ia

at all points of the circle PP' in a
direction inclined at an angle a to the

vertical, if 2a be the vertical angle.

The vertical resultant of the ten-

sion on the whole circle PP, that is,

27r . PN. t cos a, ia equal to the result-

ant vertical pressure on the surface

POP'.
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Now this pressure

= weight of fluid POP'+ weight of fluid P'Q

=gpQ irPN^ . 0N+tPN^ . PQ\ ,

and therefore if ON=x, and OE=h,

2'irx tan a . t cos a—gpm? tan'o ( ^ + A — t;
J ,

^1 sin a /, 2a;*\

2 cos-* a \ 3 '

femce ^-"3 =3 T6 -(«-iri.

it follows that t has a maximum value when a;= -7^

.

4

A little consideration will shew that there is a horizontal

tension at all points along a generating line, in a direction per-

pendicular to that line, but the investigation of this other ten-

sion would be beyond the limits which must be assigned to an

elementary course, and must therefore be deferred to treatises

taking a higher range.

EXAMPLEa

1. Two vertical cylinders of the same thickness and the

same material, contain equal quantities of water ; compare their

greatest tensions.

2. Two cylindrical boilers are constructed of the same ma-
terial, the diameter of one being three times that of the other,

and the thickness of the larger one twice that of the other;

compare the strengths of the boilers.

3. A bar of metal, one-fourth of a square inch in section,

can support a weight of 1000 lbs.; find the greatest fluid pres-

sure which a cylindrical pipe made of this metal can sustain,

the diameter being 10 inches and the thickness one-tenth of an
inch.

4. Equal quantities of the same material are formed into

two thin spherical vessels of given radii; compare the greatest

fluid pressures they will sustain.
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5. The natural radius of an clastic spherical envelope con-

taining air at atmospheric pressure is a, and, when a certain

quantit}' of air is forced into it, its radius is b. It is then placed

under an exhausted receiver and its radius becomes c. Find
the quantity of air forced in, supposing that the increase of ten-

sion of the envelope varies directly as tlie increase of its sur-

face.

6. The top of a rectangular box is closed by an uniform
elastic band, fastened at two opposite sides, and fitting closely

to the other sides; the air being gradually removed from the

box, find the successive forms assumed by the elastic band, and
when it just touches the bottom of the box, find the difference

between the external and internal atmospheric pressures.

7. A vertical cylinder formed of a flexible and inextensible

material contains water; find the tension at any point.

If this flexible cylinder be put into a square box, the width
of which is less than the diameter of the cylinder, and water be
then poured in to the same height as before, find the change in

the tension at any depth.

8. An elastic and flexible cylindrical tube contains ordinary

atmospheric air; if the ends be kept closed, and the pressure of

the air inside be increased by a given amount, find the increase

in the radius of the cylinder.

If the radius be doubled by a given increase of pressure,

prove that the modulus of elasticity is in that case twice the

tension that would have been produced in the cylinder, if

inelastic, by the same increase of pressure.

9. An inelastic flexible cylindrical vessel, closed rigidly at

the top, is filled with water, and the whole rotates uniformly

about the axis of the cylinder, which is vertical ; find the tension

at any point.
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Capillarity.

171. XfTHEN a glass tube, of very small bore, with its

TV two ends open, is dipped in water it is observed

that the water rises in the tube, and that it is in equilibrium

with the surface of the water inside at a higher level than

the surface outside. If the tube is dipped in mercury, it

is found that the mercury inside is in equilibrium at a

lower level than the mercury outside.

In either case, the ascent, or depression, is greater if

the experiment be made with tubes of smaller bore.

If the surface of water be examined close to the vertical

side of a vessel containing it, the surface will be found to

be curved upwards, the water appearing to cling to, and

hang from the wall, at a definite angle.

rhsenomeua of this kind, with others, such as those

presented by drops of hquid, or by liquid films,- are

grouped together as being instances of Capillary Action.

172. Consider the

equilibrium of a thin co-

lumn of liquid PQ,a8 in

the figure.

If TT be the atmo-

spheric pressure, pres-

sure at Q-iT-gp.QN,
and therefore, taking a

as the cross section, the

column PQ is acted

upon by gravity and also

by the force gpaQN
downwards, that is by
the force gpaPN downwards, which is in some way
counterbalanced.

^^zy

N
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This suggests tho theory of the existence of a surface

tension, the vorticsil resultant of which, acting on the upper

boundary, at P, of the column, will exactly counterbalance

the weight of the column PN.
Various facts support the idea of the existence of a

surface tension. The familiar experiment of gently placing

a needle on the surface of water, on which it will sometimes

float, is a case in point. The needle appears to be supported

oil a thin membrane, which bends beneath its weight.

In summer weather insects may be seen on the surface

of water, a})parently indenting, without breaking through,

the superficial membrane.

As the results of observation and experiment we can
state two laws relating to surface tension.

(1) At the hounding surface separating airfrom any
liquid, or between two liquids, there is a surface tension

which is the same at every point and in every direction.

(2) At the line ofjunction of the bounding surface of
a gas and a liquid with a solid body, or of the bounding
surface of two liquids with a solid body, the surface is

inclined to the surface of the solid body at a definite

angle, depending upon the nature of the solid and the

liquids.

In the case of water in a glass vessel the angle is acute

;

in the case of mercury it is obtuse. It will be seen that in

a tube containing water, the top of the water is concave
;

in a mercurial barometer tube the top of the mercury is

convex.

173. Rise of a liquid between two plates.

Taking the figure of Art. 172 as a vertical section

perpendicular to the plates,

T the surface tension, a the constant angle at which
the surface meets either plate, h the mean rise, and d the

distance between the plates, we have, for tho equilibrium

of one unit of breadth of the liquid,

2T cos a = gphd,

so that h varies inversely as d.
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Rise of a liquid in a circular tube.

Taking the same figure as a section through the axis,

and r as the radius of the tube, we have

27rr7'cos a = gpur'^h,

and therefore h varies inversely as r.

It will be seen that the rise in a circular tube of radius

r is the same as the rise between two plates at a distance r.

In each case the pressure at any point of the suspended

column is less than the atmospheric pressure, and, if the

column were high enough, this pressure would merge into

a state of tension, which would still follow the law of fluid

pressure, of being the same, at any point, in every direction.

The rise of sap in trees may perhaps afford an instance

of this state of things.

174. The Capillary Curve is the form assumed by the

liquid near a vertical wall.

Let PN be the height above the level of the water of a

point P of this curve, and consider the equilibrium of the

column PQLN, taking one imit of breadth perpendicular

to the plane of the paper.

NIj g

The resultant of the tensions at P and Q is in direction

of the normal at the middle point of PQ, and, if r be the

PQ
radius of curvature, it is equal to T. .

The vertical component of this resultant being equal to

the weight of the column,

T.^cose=ffpPN.NL,
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where 6 is the inclination to the vertical of the normal.

Now NL = PQ cos e,

:.T=gpr.PN,

1.0. the curvature at P is proportional to PN.

This is the property which we found to bo true of the

Lintearia, and which can be shewn to be also the

characteristic property of the Elastica.

175. Liquid Films possess the characteristic property

that the tcusicm is the same at every point, and in every

direction.

If t bo the tension of a soap bubble of radius r, and

p the diflFerenco between the internal and external air-

pressure, then 2t =pr.

Liquid films may be formed, and examined, by shaking

a clear glass bottle containing some viscous liquid, or by

dipping a wire frame into a solution of soap and water, and

slowly drawing it out.

In this way films, apparently plane, can be obtained,

shewing that the action of gravity is unimportant in com-

parison with the tension of the film.

These films give way and break under the least tangen-

tial action, and we therefore infer that the tension across

any line is normal to that line.

We can hence deduce the property above stated. For,

considering a small triangular portion, the actual tensions

on the sides must be proportional to the lengths of the

sides, and therefore the measures of the three tensions are

the same.

If one part of the boundary of a plane film be a light

thread, we can prove that it will take the form of an arc of

a circle.

Since the tension of the film is at all points normal to

the thread, it follows that the tension, t, of the thread is

constant.

Let r be the intrinsic tension of the film, and consider
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the element PQ of the thread ; for equilibrium, if r be the

radius of curvature,

r

and therefore r is caiistant.

176. Energy of a plane film.

In drawing out a film a certain amount of work is

expended, and this represents the energy of the film.

Consider for instance a plane rectangular film ABCD,
bounded by wires, and imagine the wire CD moveable on
ACsxiA.BD;

then releasing CD the film will draw CD towards AB, and
the work done, if t be the tension, will be t . CD. AC. But,

if aS' be the superficial energy per unit of area, the actual

energy is S . CD .AC

;

i. e. the superficial energy per unit of area is equal to the

tension per unit of length. (Maxwell's Heat, Chapter xx.)

177. Energy of a soap bubble.

If j» be the diflFerence between the internal and external

pressures, and t the tension, the work done in expanding a

soap-bubble from radius to a radius r' slightly greater is

p.4jrr»(r'— r), or 87rtr(/—r).

If we assume t constant, the total work done in the

formation of a bubble of radius c-'2 8ntr{r'—r),

and, taking r — r= - and r =—
,

this = Sntsl, — 3 , when n is indefinitely increased,

and therefore the superficial energy = t.



CHAPTER XII.

The Motion of Fluids.

178. TF an aperture be made in the base or the side of

JL a vessel containing liquid, it immediately flows

out with a velocity which is greater the greater the dis-

tance of the aperture below the surface. The relation

between the velocity and the depth, taking the aperture

to be small, was discovered experimentally by Torricelli.

.

The following is TorricelU's Theorem

:

If a small aperture he made in a vessel containing
liquid, the velocity with which the particles offluid issite

from the vessel, into vacuum, is the same as if they had
fallen from the level of the surface to the level of the

aperture;

that is, if a; be the depth of the aperture below the
surface, and v the velocity of the issuing particles,

v^=2gx.

The experimental proof of this is that if the aperture
be turned upwards, as in the figure,

the particles of liquid will rise to the
same level as the surface of the liquid

in the vessel. Practically the resist-

ance of the air and friction in the con-

ducting-tube destroy a portion of this

velocity, but experiments tend to

prove the truth of the law, which
moreover can be established as an
approximate result of mathematical
reasoning.
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Assuming the principle of energy*, we can give a

theoretical proof of the theorem.

Let K be the area of the upper surface of the liquid,

and suppose that, during a short time, the height of the

upper surface is diminished by a small quantity y, so that

Ky is the volume which has flowed out through the orifice.

Taking v as the velocity of efflux, the kinetic energy which

has issued through the orifice is - pKyv', and if we neglect

the kinetic energy of the liquid in the vessel, this must be

equal to the loss of potential energy, which is gpKyx,

and .•. v^ = 2gx.

Form qfa jet of liquid. If the aperture be opened in

any direction not vertical, each particle of liquid having the

same velocity, will follow the same path, which by the laws

of Dynamics, is a parabola. Hence the form of the jet is a

parabola.

Contracted vein. If the aperture be made in the base

of a vessel, and if the base be of thin material, it is observed

that the issuing jet is not cylindrical, but that it contracts

for a short distance (a fraction of an inch) and then expands

afterwards contracting gradually as it descends, and finally

breaking into separate drops. The amount of contraction

depends on the thickness of the vessel, and the size and
form of the aperture.

T%e rate of Effiux is the rate at which the liquid flows

out, and this clearly depends both on the velocity of the

issuing particles, and the size of the aperture.

If k be the area of the aperture and v the velocity,

then in an unit of time a portion of liquid will have passed

through equal to a length « of a cylinder of which h is the

base, and therefore vk is the quantity which flows out in

an unit of time, that is, vk is the rate of efflux.

This is however not true unless the liquid issue from

a pipe of some length, in which case there is no contracted

vein. In general k must be taken as the section of the

contracted vein, it being found that the velocity at the

contracted vein is that which is given by Torricelli's

theorem.
* See Maxwell's Matter and Motion.
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179. Steady motion. When a fluid moves in such a

manner that, at any g^ven point, the velocities of the suc-

cessive particles which paas the point are always the same,

the motion is said to be steady. Thus if a vessel having a
small aperture in its base be kept constantly full, the

motion is steady.

180. Motion throtigh tubes of different size. The
continuity of a fluid leads to a simple relation between
the velocities of transit through successive tubes. Thus if a

liquid, after passing through a tube AB,
pass through CD, the tubes being full,

it is clear that during any given time

the quantity which passes through a

given plane AB in one tube must be
equal to the quantity which passes any

given plane CD in the other. Let k, k'

be the areas of these planes, and v, t/

the respective velocities at AB and CD.
Then kv, kfv' are the quantities which

pass through in an unit of time, and
therefore

kv = ^j/.

Hence, as the section of a mass of fluid decreases, its

velocity increases in the same proportion. For instance,

the stream of a river is more rapid at places where the

width of the river is diminished. This also accounts for

the gradual contraction of the descending jet of liquid,

Art. (172), for the velocity increases, and therefore the

section diminishes.

181. A cylindrical vessel containing liquid has a
small orijice in its base ; to find tlie velocity at the sur-

face.

If the orifice be small and the surface large, the sur-

face will descend very slowly.

Let h be the height of the surface, then \'2gh is ap-

proximately the velocity at the orifice. Take K for the
area of the base of the vessel, and k of the orifice.
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Then, neglecting the change of velocity at the orifice

in the unit of time, ij'2gh is the quantity of liquid which

passes through the orifice, and therefore if V be the velo-

city at the surface,

VK = k >j2gh.

If the vessel be kept constantly full, the motion is

steady and the velocities are constant : hence the time in

which a quantity of liquid, equal in volume to the cylin-

der, would, under these circumstances, flow through the

.. h K IT
orifice = -^r- -r Sj TT'V k ^ Ig

It will be seen that this is only a rough approximation

to the actual facts of the case, but its insertion will serve

to illustrate the laws above mentioned.

182. Pressure of air in motion. Early in the 18th

century Hawksbee observed that if a current of air be

transmitted through a small box the air becomes rarefied.

This fact is illustrated by the following experiment.

Take a small straight tube, and at one end of it fix

three smooth wires parallel to the tube and projecting

from its edge, and let a flat disc be moveable on these

wires, with its plane perpendicular to the axis of the tube.

Blow steadily into the other end, and it will be found that

the disc will not be blown oflF, but will oscillate about a

point at a short distance from the end of the tube.

The reason of this apparent paradox is that the dimi-

nution of the density of the air in motion diminishes the

pressure on the disc which would otherwise result from

the continued action of the air impinging upon it, and the

result is that it is balanced by the atmospheric pressure

on the other side.

A full account of this experiment, and of other facta conneoted

with it, W.18 given by Professor Willis in the third volume of the

Cambridge Philosophical Transactions.

A similar experiment was performed, in 1826, by M. Hachette,

with a stream of water, and it was found that the pressure of the

water was diminished by an increase of velocity.
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It is worthy of remark that large shipn of the Devastfttiou

class are observed to siuk mure deeply in the water when their

speed is increased.

In a series of papers in N<Uv,re, for November and December
1875, Mr W. Froude has given a number of experimental

illustrations, with explanations in general terms, of the connec-

tion between the pressure and the kinetic energy of a liquid.

Impulsive Action.

183. Imngino a closed vessel filled with liquid and
having an aperture in its surface fitted with a piston. Let
an impulse be applied to this piston ; then assuming the

incomprcssibility of the liquid, it can be shewn by the

same reasoning as for finite pressures, that the impulse is

transmitted througljout the mass, and is, at any point, the

same in every direction.

The impulse at any point is measured in the same
manner as a finite pressure ; that is, if a be the impulsive

pressure at a point, wk is the impulse on a small area k
containing the point.

A cylindrical vessel, containing liquid, is descending

with a given velocity and is suddenly stopped ; tofind the

impiUsive action at any point.

The impulsive pressure at all points of the same hori-

zontal plane will be the same, and if •or be the pressure at

a depth x, and k the area of the base of the cylinder, vyk

is the impulse between the portion of the liquid above
and below the plane at a depth x, and this impulse evi-

dently destroys, and is therefore equal to, the momentum
of the liquid mass above, which is pkxv.

Plence -Brk = pkxv,

and .'. 'BT = pvx.

If a vessel of any shape, containing liquid, descend
vertically and bo suddenly stopped, we can prove, by con-

sidering a small vertical prism of liquid, that the impulse
at any point varies as the depth below the surface of the
liquid.

B. K. n. 12
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This being the case, it follows that the propositions

relating to whole pressure, and to resultant vertical and

horizontal pressures in Chapters iii. and iv., are equally

true of impulsive pressures for the particular case in which

the motion destroyed is vertical. The question is really

the same if the vessel be made to ascend suddenly from

rest, or have its velocity suddenly changed.

Ex. In a closed vessel of liquid a ball of metal is suspended

hy a vertical string fastened to the upper part of the vessel. Find

the impulsive tension of the stHng when the vessel is suddenly

raised with a given velocity.

The resultant impulse of the liquid on the ball will be the

same as if its place were occupied by the liquid, and therefore

will be equal to the momentum of the ball of liquid.

If U be the volume, and v the velocity, this is pvU, But if

p' be the density of the metal, the momentum of the ball is

p'vU, and this is produced by the impulse of the liquid, and the

tension T of the string.

Hence p'vU=pvU+l.

and T={p'-p)vU.



CHAPTER XIII.

On Sound.

184. rriHE sensation which wo call sound ia produced
X by a vibratory movement of the atmosphere

;

however it ia first caused, it finally afiects the organs of

hearing by means of the air. A blow struck on any elastic

body will produce sound, and the more highly elastic the

body ia the more easily will the sound be produced ; a
piece of metal when struck will ring sharply while the

same blow on a piece of wood produces a dull sound of

less intensity. A sound may traverse intervening bodies

and be finally imparted through air which has no direct

communication with the air in which it originated.

The fact that air is necessary for the transmission

qf sound may be shewn experimentally. Suspend a bell

within the receiver of an air-pump, and provide a means
of striking the bell from without, for instance, by a rod
sliding in an air-tight collar. Then proceed to exhaust
the receiver, and it will be found that as the exhaustion

progresses, the sound of the bell becomes fainter, and ia

finally lost altogether.

That there is an actual motion in the particles of air is

shewn by the transmission of sound through solid bodies,

and also by the fact that a musical note sounded on any
instrument will sometimes produce a sound, in unison witli

it, from some other body not in contact with the instru-

ment.

Velocity of Sound.

The rate at which sound travels depends on the tem-

perature of the atmosphere; it has been found experi-

12—2
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mentally that at tho freezing temperature the velocity is

about 1089 feet per second, and that at a temperature
of ei^F., when the height of the barometer is 29.8 inches,

tho velocity is nearly 1118 feet per second. "We may
therefore take 1100 feet per second as the velocity of

sound under average atmospheric conditions.

Distance of a sounding body. Knowing tho velocity

of sound, we can estimate the distance of a sounding
body whenever the production of sound is accompanied
by the production of light. Tho velocity of light is so

great that its transmission through all ordinary distances

on the earth may be considered instantaneous, and thus

if a cannon be fii*ed from a ship at sea, tho interval be-

tween seeing tho flash and hearing the report will deter-

mine the distance of the ship. In the same manner the

interval between a flash of lightning and the thunder
which follows it will determine the distance of the cloud

from which the flash is evolved.

The rolling of thunder may be accounted for in two
ways. A single explosion may accompany the lightning,

in which case a peal of thunder will be due to the reflec-

tion of the sound by clouds in different directions, and

will be in fact a succession of echoes. Or the electric

flash may pass rapidly from cloud to cloud, and thus the

sounds of a series of explosions taking place almost at

the same instant, but at different distances from the spec-

tator, will arrive in succession and produce a continuous

peal. In tliis latter case the peal is probably intensified

and lengthened by echoes.

Velocity ofsound through water. Sound la transmitted

with much greater velocity through water, and through

highly elastic solids, than through air. By experiments

made in the lake of Geneva, the velocity was found to be

4708 feet per second, when the temperature of the water

was 8" C. The rate of transmission through metallic

substances is very much greater.

Velocity through gases. We have stated that the

velocity in air depends on the temperature, and not

on the density. In fact it depends on the value of k,
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which is different for different gases, and therefore the

velocities in gases differ from each other. For instance,

the velocity in hjdrogen is nearly four times that in air at

the same temperature, the elasticity of hydrogen being

much greater than thai of air.

Transmission through the atmosphere. The various

portions of the atmosphere through which a sound passes,

may have different temperatures, and consequently the

soimd will travel with a variable velocity. Moreover, the

passage through varying strata tends to disturb the vibra-

tions and to diminish the intensity. This accounts for the

fact that distant sounds are heard more distinctly at night

than during the day, the atmosphere being in general

more quiescent, and having a more equable temperature.

Sound Waves.

185. A tcace is the term applied to any state of vi-

bratory motion which is transmitted progressively through

the particles of a body. The effect of dropping a stone in

still water is a familiar illustration; the rise and fall of

the water produced by the plunge of the stone travels

outwards in an expanding circle, while the particles of

water merely rise and fall in succession as the wave passes

over them.

Thus a portion of the atmosphere being in any way set

in motion, the vibrations are communicated to the sur-

rounding air, and the expanding spherical wave impinging

on the ear produces the sensation of sound.

The intensity of a sound diminishes as the distance

of the sounding body is increased. As a spherical

wave expands, its thickness remaining constant, the vibra-

tions are communicated to larger masses of air, and, in

accordance with a general law of mechanics, the intensities

of the vibrations are diminished. The intensity in fact is

diminished in the inverse ratio of the square of the dis-

tance. This law however does not hold, if the sound be

transmitted through tubes or pipes. In such cases the

intensity is very slowly diminished.
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Propagaiion of a Wave along a Straight Tube.

186. Consider a straight tube filled with air, and let

a disc AB sti one end oscillate rapidly over the space aa'.

a'A tt O j> Tl V

ii
l' I
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When the disc oscillates from ^ to a, it compresses
the air before it, and when the disc is at a, the compres-
sion has traversed and extends over the space AC. This

compression travels along the tube with a constant velo-

city, and is called the condensing wave.

As the disc returns from a to ^, it rarefies the air

behind it; and this rarefaction extends over AC, while

the previous compression has been transferred to the

space CD, and thus a rarefying wave follows the condens-

ing wave.

As the disc moves from A to a', another rarefying

wave is produced, and when the disc returns io A,^ con-

densing wave is produced, while during these two pro-

cesses the first condensing and rarefying waves have been
transferred to EF and DE respectively.

The disc having its greatest velocity at A, and coming
to rest at a and a!, it is obvious that the condensation is

greatest at F, and diminishes gradually to E, whore there

is no condensation, or where the density is the same as if

the air were at rest; from EU> D the air is rarefied, and
at D the rarefaction is greatest; from D to G the rare-

faction decreases, and at C condensation commences and

increases to A,

Thus a complete wave or undulation is formed, and if

the disc oscillate once only, a single wave will travel along
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the tube taking successive positions as in the figure; if

the disc continue to vibrate, a succession of these waves

will bo produced and "will follow each other continuously

along the tube. If these waves, on emergence from the

tube, impinge on the ear, the sensation produced will bo

that of a continuous and uniform sound.

The vibrations can be produced without the aid of the

disc, as, for instance, by blowing across the end of tho

tube.

It will bo observed that the velocities of the vibrating

particles of air are zero at F and D, and greatest at E
and (7.

The length of a wave is the distance between any two

points at which the phases of vibration are the same, that

is, at which tho velocities of the vibrating particles are

the same in direction and magnitude.

Motion of a Wave along a Stretclied String.

187. In a similar manner, if a portion of a stretched

cord PQ be set in motion, a wave, or succession of waves,

will travel along the cord, and on arriving at Q will be

reflected and travel back again.

The string may vibrate somewhat in the form of the

curve ABODE, AE being the length of a wave, B and C
tlie points at which the displacement is greatest, and the

velocity zero, and A, G, and E the points at which tho

displacement is zero and the velocity greatest.

In this case the vibration is perpendicular to the line

in which the wave travels, but its analogy with the case of

the tube is suflBciently evident.

^--'«aiWP?wf^'«*- .v*»^#'r»/*'
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The vibrations of the string are communicated to the

air and thereby conveyed to the ear.

Musical Sounds.

188. Any series of waves, following in close succes-

sion, may produce a continued sound ; if they are irregular

in magnitude, the result is a noise, but a musical note u
produced by a constant succession of equal waves.

Pitch, intensity, and quality. Notes may diflTer from

each other in three characteristics; thus, a note may bo
grave or acute, that is, its pitch may be high or low ; and

the pitch of a note depends on the length of the consti-

tuent wave, and is higher as the length of the wave is

less. The intensity of a somid depends on the extent of

vibration of the particles of air, and its quality is a cha-

racteristic by which notes of the same pitch and intensity

are distinguished from each other. The quality of a note,

or, as it is sometimes called, its timbre, depends on the

nature of the instrmnent from which it is produced.

A further distinction of sounds is sometimes marked

by the word tone. Thus the tone of a flute differs fi*om

the tone of other instruments, while two flutes may, and

>vill in general, produce sounds which diflfer in quality.

189. Sounds of different pitch travel tcith the same
velocity. This appears to bo the case from the fact that if

a musical band be heard at a distance there is no loss of

harmony, and therefore there can be no sensible difference

in the velocities of the different sounds.

190. Reflection of waves in a tube of finite length.

It is found both by experiment and theory that a wave

on arriving at the end of a tube is reflected, whether the

end be open or closed, and travels back again, changed

only in intensity, to bo again reflected at the other end.

This accounts for the resonance in a tube when the

air within it has been set in vibration.

191. Coexistence and interference of undulations.

Different sound waves travelling through the air tra-

verse each other without alteration either of pitch or in-
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tensity. In other words, different undulations coexist

without affecting cacli other, and the actual vibration of

any particle of air is the sum or difference of the coexist-

ent vibrations which are at the same instant traversing

the particle of air.

A simple illustration of this coexistence may bo seen

by dropping two stones in water. The expanding circular

waves intersect, and at the points of intersection it will

bo' seen that a depression and an elevation neutralize each

other, and that two depressions or two elevations at the

same point increase the amount of one or the other. If

there bo a sufficient number of circular waves the points

of greatest elevation will be seen to lie in regular curves,

as also those of depression, and of neutralization*. The
vibrations in this case being transverse to the direction of

transmission of the wave are different from those of sound

waves, which are longitudinal or in the direction of trans-

mission, but the effect of coexistence is the same in all

cases.

The effect of coexistence in producing neutralization,

or increase of intensity, is called the interference of undu-
lations, and it must be observed that, while two sets of

undulations are physically independent of each other, their

geometrical resultant may be a form of undulation differ-

ent from that of either component, as in the case just re-

ferred to of the undulations in the surface of water.

* These curves are hyperbolas, for, if A
and B be the centres of disturbance, and
P, P' the points of intersection of two par-

ticular waves, AP and BP increase uni-

formly with the time, and the rate of in-

crease of each is the same.

Hence, their difference is constant, and
the locus of P is an hyperbola of which A
and B are the focL As other waves follow

in succession the series of such points vrtU

lie is confocal h}'perbolas.
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The Notes whic/i can be produced from a Tube closed

<U one end.

192. "When a definite note is being sounded from a
tube, the air within the tube vibrates regularly, every

particle maintaining the same vibration, and there are

certain points of the tube at which the air remains at

rest. These points, or planes of division of the tube, are

called nodesy and the planes of maximum vibration are

called loops.

The motion in fact is the same as if there were fixed

waves in the tube, and the nodes and loops are the points

of zero velocity and zero condensation.

The motion thus described is called steady motion, and
its existence is requisite to the continuance of a definite

note.

In the case of a tube closed at one end B, it is clear

that the end B must bo a node, and since the end A is

open its density is sensibly that of the air outside, and wo
may take it to be a loop.

It is therefore evident that the longest possible wave
for which the motion can be steady is four times the length

oi AB; and the corresponding sound is the fundamental

note of the tube.

Further, AB may be any odd multiple of the distance

from a node to a loop, and if AB=l, and X bo the length

of a wave, wo must have

Ilence the notes which can bo produced from AB have

for their wave lengths,

4/, 3, -, &c..

''^'IBHt.
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and, if v be tho velocity with which a wave traverses the

tube, the times of vibration are

4^ 4^ 4;

and are therefore in the ratio of the fractions

,111.
^' 3' 5' V *"'•

Tlie Notes of a Tube open at both ends.

193. In this case each end is a loop, and there is

therefore a node between; hence the greatest possible

wave length is twice the length of the tube, and further

the length of the tube must be some mxiltiple of half the

length of a wave.

Hence ^=mr,andX= —

.

2 m

The successive waves are therefore

% '' 3' 2' 5' **^-'

and the vibrations in the ratio of the fractions

1 i i ih 2' 3' 4'-

It will be observed tliat the fundamental note of the

open tube is an octave higher than that of the closed tube,

the wave length for the former being half that for the

latter.

The Formalion qf Nodes and Loops.

194. Taking the case of a tube HK closed at the end K,
the aerial particles at the end K are permanently at rest, while

those at A are in a state of permanent vibration. We have

stated, as an experimental fact, that a series of waves travelling

along HK in regular succession are reflected at K and travel in
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the opposite direction ; and this fact enables us to account for

the existence of nodes and loops.

In order to give the required explanation we njust first ex-

plain a method of representing geometrically the state of motion
of the aerial particles in a wave.

Take AE as & wave length, and let the ordinatea of the

curve ABODE represent the velocities of the several particles

parallel to the line AE; thus iV^P represents the velocity of the

particle at N, NP being drawn upwards when the velocity is in

the direction AE, and downwards when the velocity ia in the

opposite direction.

Hence, if two distinct sets of vibrations coexist along a line

of aerial particles, we can determine the resultant motion by
drawing the two curves for the two waves, and the algebraic Biun

of the ordinates at any point will represent the resultant velocity

at that point.

Imagine now a wave travelling along AB, and impinging on

the fixed end K; this wave will be reflected and will travel

along BA with reversed velocities.

In the figure the dotted line will represent the reflected

wave, and the effect of the reflected wave is the same as that of

a wave B'C travelling in the direction KA

.

It will be seen from the figure that the velocities at K from

the two waves are always equal and opposite, and that the re-

sultant velocity at K is always zero, in accordance with the

given conditions. In other words, the effect of the fixed end

K is replaced by the efiect of a reversed wave travelling in the

opposite direction.
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It yrill al'io be senn that there is a succession of points,

K, L, M,... at which the velocity is always zero, and a suc-

cession K', L'y... at which the velocity varies between its great-

est values in both directions, the former set of points being

nodes, and the latter loops.

Let a dotted line KPLQMR be drawn such that its ordinate

at any point is the algebraic sum of thb ordinates corresponding

to the incident and reflected wave; this dotted line will repre-

sent the state of vibration of the air in the tube at the instant

considered, and it will be observed that while the points

K, Lf M... are points of permanent rest, all the intermediate

points represent the positions of aerial particles which vibrate

steadily, their velocities being zero at regular intervals.

Thus, the opposing waves may be so placed that their ex-

tremities C, C" may coincide at K'; in the figure this will occur

when the incident waves have traversed the space CK', and the

opposing waves the space CK', and at this instant the velocity

at A'' will be zero. Subsequently the two waves travelling

in opposite directions will produce at K' a velocity double that

of either, so that the velocity at A" will then be a maximum,
the interval of time being that during which the vibration has

traversed a space equal to one-fourth of a wave length.

It will be now clear that, if a permanent vibration be main-

tained at the open end //, a succession of nodes and loops will

necessarily be formed in the tube, provided that the wave length

emitted from the end // is such as to satisfy the condition of

Art. (192). This condition is that the wave length should be

an odd submultiple of 4 times the length of the tube.

In a similar manner, if KII be a tube open at both ends, it

is found that a wave or a set of waves travelling along HK are

reflected at K, and traverse the tube in the direction UK. An
important difference however exists between the two cases; in

the former case the end K is a node, in the present case it is

a loop, the particles of air vibrating freely, and the density being

the same (very nearly) as that of the external air.

An analogous explanation will account in this case also for

the formation of nodes and loops.

In the case of the tube closed at K, the reflected wave on
arriving at // is partly emitted into the open air and partly re-

flected, thereby reinforcing the new vibration which is at the

instant being excited at U, and aiding to produce another series

of waves which are again reflected at K.
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The effect which is thus produced on the ear is that of a

sustained note, the character of which depends on the material

of which the tube is formed, while its pitch and intensity depend

solely on the lengths of the constituent waves and the extent of

the vibrations of the aerial particles.

The Notes produced by a Vibrating Cord.

195. A stretched cord in a state of vibration may
either oscillate as a whole, fig. (1), or in parts, as in figures

(0

'(3)

(2) and (3), the curved lines representing the actual posi-

tions at certain instants of the cord itself.

In any case the two ends are points of zero velocity or

nodes, and the wave corresponding to the fundamental

note has twice the length of the cord for its length on the

cord.

In general, if the wave length on the cord be X', the

length I of the cord must be some multiple of ^X',

i.e. lo^m—.

The velocity of propagation along the cord will depend

on its tension, thickness and density; and if ©' be this

velocity the time of vibration is --;

.

The pitch of the note produced is determined by the

time of vibration, and tlierefore, if X be the wave length

produced in air by the vibrations of the cord and thereby
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conveyed to the ear as a sound, and v the velocity of pro-

pagation in air, wo shall obtain the noto by tho relation

X V

since the aerial vibrations are performed in the same time

as those of the cord.

Hence - =—
;,

and tbo wave lengths are

These wave lengths give the series of harmonics pro-

ducible from the cord, and it should be observed that any

one may be produced alone, or any number of them may
exist simultaneously.

196. Vibration of rods. We know that sounds are

produced by vibrating rods, and we can determine the

series of notes producible in any simple case by the consi-

derations of tho preceding articles. A rod fixed at one

end and free at the other, will have for its fundamental

note a wave length four times its own length, the fixed

end corresponding to a node and the free end to a loop.

The analogy between a vibrating rod and a vibrating

column of air will be now seen, but attention must be paid

to the fact that the vibrations of air which produce sound

are longitudinal, while the vibrations of a string are

transversal, and those of a rod may be either transversal

or longitudinal.

A common instance occurs in the humming of a tele-

graph-post, which is probably due to a series of longitu-

dinal vibrations traversing the post in a vertical direction.

The transmission ofsound through water is analogous

to the transmission of sound by means of longitudinal

vibrations along a rod, and is treated theoretically in ex-

actly the same manner.

197. '^ pitch qfa note produced by a vibrating cord
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depends on the tension and substance of the cord, and is

heightened by an increase of tension; and in a sirailai-

manner the pitch of a note produced from a rod is found
to depend on its size and substance.

This is due to the fact that the rates of propagation of
vibrations depend on the characteristics above mentioned,
and thus a long wave length, traversing a cord or a rod
very rapidly, may give rise to a short wave length in the
aerial vibrations which result from those of the cord or tho
rod, and a high-pitched note be produced.

Unison and Harmony qf Musical Notes.

198. Two notes are said to be in tinison when the

times of vibration, or the ware lengtlis, are tlie same for

both.

The harmoni/ of two notes consists in the recurrent

coincidence, at short intervals, of their constituent vibra-

tions ; thus, if a note and its octave be sounded, the vibra-

tion belonging to the fundamental note coincides exactly

with two vibrations of the octave, and the two sounds are

said to be in harmony with each other.

More generally two notes are in harmony when a small

number of vibrations belonging to one of them coincides

exactly, in time, with a small number of the vibrations be-

longing to tho other. An instance of this is tho harmony
of a note with its fifth in tho diatonic scale, three vibra-

tions of the upper note being coincident with two of the

lower note.

199. Communication qf vibrations. If two different

bodies can vibrate in unison or in harmony with each other,

that is, if their fundamental notes are either in unison or

in harmony, it is a known fact that when one is set vi-

brating, the other, if not too far ofl", will vibrate also. The
reason is that the sound waves diverging from one body

impinge on the other, and when tho vibrations of the latter

can be in harmony with those of the former, the slight

vibration at first established is maintained and intensified

by the continued impulses of tlio same aerial vibration.
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Thus a person singing or whistling in a room may some-

timos hour notes sounding from thin glass jars or metallic

tubes, and these notes will always bo in harmony with the

note originally sounded.

200. Heats. When a note of a pianoforte is sounded

a series of alternations is generally to be noticed in the

intensity of the sound, these alternations, which are called

beats, occurring at regular intervals.

This phenomenon depends on the fact that there are in

general two strings to each note, which are intended to be

exactly in unison with each other. Practically the unison

is seldom perfect, and hence the two sets of waves do not

exactly coincide with each other.

The intensities are however very nearly the same, and

hence, when the vibrations of the two waves oppose each

other, a diminution of the intensity results, but when they

are in the same direction the intensity is increased.

Suppose that t and r are the times of vibration of the

two notes ; then if a; vibrations of one coincide with x + l

of the other, wo have

tX=t'(x+ 1),

and .'.
; is the interval between the instants of time

T—T

at which the vibrations oppose each other, and is therefore

the period of the beats.

It is evident that the more nearly t and t' are equal to

each other, the longer is the period of the beats, and the

less the number of beats heard while the sound is per-

ceptible.

Beats are also produced when two notes are very

nearly in harmony with each other; the explanation is

the same as for the simple beats above mentioned.

Tartint's Beats. Again, when two notes are actually

in concord, a note is sometimes heard in addition to the

two notes, and of lower pitch than either. The vibrations

of the two notes coincide at regular intervals; these coin-

B. E. H. 13
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cidences are Tai*tini's beats, and the effect of a series of

such beats, at regular and rapidly recurring intervals, is

that of a note which is grave in comparison with the ori-

ginal notes. This lower note is called a subharmonic of

the two notes by which it is produced.

Notes.

Telocity of sound. A calculation from theoretical principles

of this velocity was made by Newton, and again by Lagrange

;

the result obtained was about 916 feet per second.

This notable discrepancy between fact and theory remained

unexplained until Laplace remarked that the heat developed by

tiie sudden compression of the air would increase the elasticity,

and therefore increase the calculated velocity.

New calculations were made, aud the result is in complete

accordance vnth fact.

The theoretical expression is VA/3(H-ot), where j3 is the co-

efficient introduced by the consideration of the heat developed.

Intensity of sound after traversing pipes. Experiments were

made by Biot with some water-pipes in Paris, and it was found

that a whispered conversation could be carried on through a

pipe 3000 feet in length.

The use of speaking-tubes in large houses is another illus-

tration of the fact mentioned in Art. (185).

Vibrating Cords. It is found that the velocity with which

a wave traverses a stretched cord is the same as the velocity

which would be acquired by a heavy body falling through a

vertical space equal to half a length of the cord of which the

weight is equal to its tension. In other words, if the weight of

a length I of the cord be equal to its tension, the velocity with

which a wave travels along it is tJgL

The ejdstence of nodes and loops in the case of a cord may
be practically manifested by placing on the vibrating cord small

pieces of paper, cut so as to rest on the cord; those which are

placed at the nodes will remain on the cord, while those which

are placed near the loops will be thrown off.

The Monochord is a simple instrument for trying the experi-

ments just mentioned, and for testing other results of theory.
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A cord fastened at one end is stretched over a sounding

board, and passing over a bridge is tightened by a weight at the

other end ; the tension may ho varied by changing tlie weight,

and by means of another bridge, moveable along the board, the

length of the vibrating portion may be diminished. The notes

obtained for different lengths and different tensions can be thus

compared, and the wave lengths for different notes can be di-

rectly measured.

Practical illustration of the interference of aerial vibrations.

From Art. (191) we can see that if two waves, exactly similar

to each other, travel in the same direction, and one be half a
wave length behind or before the other, the result will be a
permanent quiescence of the aerial particles along the direction

in which the waves travel.

This has been shewn visibly by an experiment, which is due

to Mr Hopkins,

A straight tube AB branches off at the end B into two por-

tions BC, £D; the end A is closed by a tight

membrane and fine sand is scattered over the

membrane. A vibrating plate of glass is placed

beneath C and J) so that the two portions im-

mediately beneath C and D shall be in opposite

phases of vibration. The waves thus produced

in CB and DB traverse these branches of the

tube, and arrive at B in opposite phases, that

is, one is the half of a wave length before the

other, and therefore there is theoretically no
resultant vibration in BA. Practically it is

found that the sand on A is undisturbed, but,

if the plate be turned round, the sand is imme-
diately thrown into a state of violent commo-
tion.

Beats. The theory of beats is given in Smith's JIarmonics,

published in 1749. Tartini's treatise, in which the sounds called

by hLs name were first discussed, appeared in 1754.

The diatonic scale. The ordinary or diatonic scale consists of

a series of notes, for which the times of vibration are in the
ratio of the numbers in the following table:

CDE FGA B C
4 3 2 3 8

1,
9' 6' 4' 3' 5' 15'

1

2*

13—2
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or, in other words, the numbers of vibrations per second are in

the ratio of

9 6 4 3 6 15
' 8' 4' 3' 2' 3' 8 ' '

that is, of the numbers

24, 27, 30, 32, 36, 40, 45, 48.

As a matter of fact the actual number of vibrations corre-

sponding to the particular C employed as a central note varies

iu different places, and from time to time. As an ordinary-

standard for the concert pitch of this note C, about 128 vibra-

tions in a second is taken as making the note*, and the numbers

of vibrations for the several notes of the scale are then respec-

tively

128, 144, 160, 170, 192, 214, 240.

The range of sounds appreciable by the human ear

varies for different persons, but iu general extends over

above nine octaves. A series of aerial impulses will pro-

duce the impression of a continuous note when they recur

with such rapidity that the ear cannot appreciate the suc-

cession of impulses, and it is found that this is the case

for a wave length of about 68 feet. On the other hand it

has been found that the highest note which is in general

appreciable has about eight-fifths of an inch for its wave

length.

* See Sponcer'a Tnatite on Murie, in Weale's Series.
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The equilibrium (\f fluids under tJte action of any
given forces.

201. In any field of force the measure of the force at

any point is the force which would be exerted upon the

unit of mass supposed to be concentrated at that point.

As in Art. (10), it can be shewn that the pressure at any

point is the same in all directions ; for if we consider the

equilibrium of a very small prism, the forces at all points

of the prism will be ultimately equal and parallel, and the

case then becomes the same as that of a prism under the

action of gravity.

202. The measure of the force at a point, in a given

direction, multiplied hy the density, is equal to the rate of
change, per unit qf length, of the pressure in that direc-

tion.

If P be the point, take any length PQ in the direction

considered and describe a very thin cylinder about PQ.

The equilibrium of this cylinder is maintained by the

pressures on its ends and on its curved surface and by the

external forces in action.

Therefore the difference of the pressures on the ends

P and Q is equal to the force on the cylinder in the

direction PQ, and, if a be the cross section, and PQ be
very small, so that its density may be considered uniform,

and the measure of force, f, the same at all points of PQ,
we have, takingp and p' the pressures,

ip'-p)a = pqfPQ,

so that pf
P-P
PQ '

which is the rate of change of pressure.
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203. Def. Surfaces of equal pressure are surfaces in

the fluid over which the pressure is constant.

Surfaces ofequal pressure are at every point perpen-

dicular to the resultingforce.

To prove this, consider two consecutive surfaces of

equal pressure containing between them a stratum of

fluid, and let a small circle be described about a point P
in one surface, and a portion of the fluid cut out by

normals through its circumference.

This small cylinder of fluid is kept at rest by the

external force and by the pressures on its ends and on its

circumference.

The pressures at all points of the circumference being

equal, the pressures on the two forces must be counter-

balanced by the external force, which must therefore act

in the direction of these pressures, i.e. perpendicular to the

surface of equal pressure.

Again, if d be the distance at P between the consecu-

tive surfaces, we have, as before,

fifd=p'-p,

so that pdx -,

and, in the case of a homogeneous liquid,

204. If in any field of force a particle be in contact

with a smooth surface, it will be in equilibrium if the

normal to the surface coincide with the direction of the

resultant force.

Surfaces of equilibrium are therefore at all points

perpendicular to the resultant force.

If a particle be moved over a surface of equilibrium no

work is done against the force, and these surfaces are

therefore surfaces ofequal energy, or equipotential surfaces.
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If a particle of mass unit bo carried along the normal

from ono surface to another the work done is/. PQ, whicli

is the change of energy and is constant

;

.*. /. PQ is constant

Surfaces of equal pressure are also surfaces cf equal

density ;

For ft/a is constant and we have just shewn that fd is

constant, .*. p is constant.

205. Examples. (I) A mass of liquid at rest under

ths action of a force to a fixed point varying as the

distancefrom that point.

The surfaces of equilibrium, and therefore of equal

pressure, are clearly concentric spheres, and the free surface

is a sphere.

To find the pressure at any point P, take a thin

cylindrical column from P to the surface and observe that

its equilibrium is maintained by the pressure at the end
P counterbalancing the attractive force.

If a be the cross section, OP=r, OA -a, and if jir be
the force at the distance r,

^a = force on the column AP
=pa{a— r) ft^ {a + r), by Leibnitz's theorem

;

.\p=inp(a^~r^.

The Pressure on a diametral plane

= Force on a hemisphere

2 , 3a 1 .
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(2) Liquid at rest under the action offorces t6 any
number of centres varying as the distance.

The resulting force is directed to a fixed point and
varies as the distance from that point ; this case is there-

fore the same as the preceding.

(3) Liquid at rest under the attraction of a straight

rod, the molecules of which attract with force varying

inverMly as the square of the distance.

If AB be the rod, it can be shewn by elementary

geometry that the direction of the resulting attraction at

any point P bisects the angle APB ; from this it follows

that the surfaces of equal pressure are confocal spheroids,

having their foci at A and B.
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We shall now conclude with the solution of some problems

of a more extended character than those which have been hitherto

discussed ; to these the student will find that the principles of

the preceding pages are directly applicable, but that a larger

demand than before will be made upon his skill in algebraic

operations.

(1) Centre of Pressure. A general expression can be ob-

tained for the depth of the centre of pressure of any plane

area.

Let the area be divided by horizontal lines into a number of

very small portions, and let a be the area of one of these portions

and z its depth below the surface.

Then the pressure upon it =gpza, and if z be the depth of the

centre of pressure, we have by the usual formula for the centre

of a system of parallel forces,

-_ S,7pza.z 2(z8tt)

"^
Xc/pza ™ 2(za)

*

gp2{za) being the pressure on the whole area.

Ex. An isosceles triangle is immersed vertically, its base

being horizontal and its vertex ^ at a depth o below the* sur-

face.

Let AD=h,

AN=r -, and NM=-

,

n' n

the line AD being divided into n equal portions.

Then PP'=2 — tan -, and z=c+—

,

» 2 n

2(z'a)= sfc+-V2r-'tan^.
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tan ^=- tan a,

where B is the inclination of RS to the horizon.

S is thereforfe the centre of pressure.

K^

To find its position, we have

Bat

RM_RV-MV
**°^"^~FFVtana'

RV . V ^ .
... ^^-l=-tan«a;

.-. M7='
RV

1+ - t^n'a

R7=\K7=\EVitca;

fi'F=il/7seca=

|£7sec«a

1 + ;r tan'a

(3) One asymptote of an hyperbola lies in the surface of a

fluid; it is required to find the depth of the centre of pressure of

the area included between the immersed asymptote, the curve, and

two given horizontal lines in the plane of the hyperbola.

Taking OA, OB as the axes, let PN, P'N' be two lines near

each other and parallel to OA.
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The pressure on the small area PN*

=gpON Biaw. PN.NN'.

But ON.PN ein u is tbe area of the parallelogram OMPN,
the constancy of which is a known property of tbe hyperbola.

Hence the pressure on PN' varies as its vertical thickness,

and therefore the depth of the centre of pressure of any finit«

area contained between two horizontal lines, the curve and the

asymptote, is half the sum of the depths of the horizontal lines.

(4) Having given the position of the centre of pressure of a

plane area increased vertically at a given, depth, it is required to

find its position when the area ia immersed in the same position to

any other given depth.

Let K be tbe position of the centre of pressure when G tbe

centre of gravity is at tbe depth h.

If tbe dspth be increased to h', the increase of pressure on
the area A is wA{h'-h) acting at 6.

Take the point K* in GK such that

wAh' .OK'=wAh. GK, or GK'^GKy,

;

then K' is the new centre of pressure.

(5) A triangular area is immersed with one angular point in

the surface; it is required to find its centre ofpressure.

Dividing the base BC into a large number of equal parts,

tbe centre of pressure of an elementary triangle AP will be
3

at a point R such that AR=jAP, P being tbe middle point of

the base of the elementary triangle.
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3
If AE—^ AB, the centre of pressure, K, of APC will be on

the line EF parallel to BC.

Further, all the elementary triangles being equal, the pressure

on AP will be proportional to the depth of its centre of gravity,

and therefore will vary as RG.

Hence it follows that K is the same as the centre of gravity

of the frustum EF oi a triangle, vertex G, and

.'.GK (GE^ - GF') = I
(GE^ - GF>)

or GK^

3

2 GE^+ GE.EF+GF-^ 1 BD^'+BD .CD + CD'^

3" GE + GF 2' BD + CD

If /3, 7 be the depths of B and C,

the depth of A'=^^/l±:^\

(6) We can now by the aid of (4) find the depth, z, of the

centre of pressure of a triangle ABC in terms of the depths

o, /3, 7 of its angular points.

Draw a horizontal plane through A and remove the liquid

above; then, if / be the depth of the centre of pressure

below A,

, l (j3-a)''+(/3-a)(7-a) + (7-«)'
* 2 ^ +7-2a
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Replaoing the liquid, and taking S for the area, ifre h&ve

a new pressure toSa at the centre of gravity, and therefore

or 2z(o + /3 + 7) = o«+/3» + 7*+/S7+ 7o + o/3.

If h, i, I be the depths of the middle points of the sides of the

triangle,

(7) A similar method may be employed to find the

centre of pressure of a sector of a circle with its centre in the

surface.

Taking the case of a sector with one bounding radius {c)

in the surface, divide the sector into a large number of small

triangles ; the centres of pressure of these triangles will be on

3
the arc of a circle of radius -. c, and it can be shewn, by the

summation of a trigonometrical series, that the depth of the centre

of pressure is

Be 2a - sin 2a

16 1 - cos a *

2a being the angle of the sector.

(8) A cylindrical vessel, open at the top, ia inverted aiid

pushed down vertically in water; tlie suislance of the vessel being

of greater density than water, it is required to prove that, at a
certain depth, it will be in a position of equilibrium which for
vertical displacements is unstable.

As the vessel is forced downwards the pressure of the water
compresses the air within, and there must be some depth at which
the air will be so compressed that the weight of the water displaced

by the vessel and the air is exactly equiil to the weight of the

vessel and air together. At this point there will be equilibrium

;

but, if the vessel be slightly lifted, the air within will expand,
and the weight of water displaced will be too great for equi-

librium ; hence the vessel will ascend. If on the other hand it

be slightly depressed, a further compression of the air wUl take
place, and the vessel will then descend.

(9) A square lamina floats with its plane vertical and one
angular point below the surface; it is required to find its positions

of equilibrium.

Let PQ be the surface of the liquid, G the centre of gravity
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of \he square, and E of the liquid displaced, E being the ludddle

point of PQ.

Then, if OP=x, and OQ= y, and if />, <r be the densities of

the liquid and the lamina, and 2a the side of the square,

- pxy= iaa?, or xy=S-a?=<? suppose.
2 p

We have now to express the condition that OH is vertical.

Draw HN perpendicular to OP ;

Then 0N= ^x, and nN= ^ y.

Hence, if OM, EL be perpendicular and parallel to OP, the

tangent of the angle which JIG makes with OP

GL GM~EN
1

~HL~ OM-ON~ 1 »

a-^x

but this angle is the complement of OPQ., of which the co«

Za-y _x
^

' ' ba-x y'

or 7?-y'^—oa (x-y).

X
tangent la -

;
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luid

The first result gives the symmetrical position of equilibrium,

for which x=y=c.

From the second,

,9a«

x + r3o,

-IVt-'--
82

Hence, if-j->c', I e. if ->-fr, there are two other posi-

tions of equilibrium.

p 32
If - = -— , it will be seen that these three positions coin-

dde.

(10) A vetatl in the form of a paraholoid it immerted with its

open end doumwards, in a trough of mercury. Supposing the

length of the axis of the vessel to be to the height of tlie barometer

as 45 is to 64, it is required to find the depth of the surface

of the mercury within the vessel when the whole vessel is just

immersed.

Let AM he the height of the vessel, and h the height of the

barometer; then

A3f=f^h.

If PN be the surface of the mercury within the vessel, and
n' the pressure of the air within,

IT _ volume A QM _ A^P

but

volume ^P^ AN'^'

n'=n + gjAN, and 11 =gffh ;

B. £. U. 14



210 Problems.

.'.,TiAN=x,

h+x fisyh?
h ~\6V «^'

Writing — for ^ , tMs becomes

from which we find easily by trial e= 9,

9
and .'. AN=—1i.

16

(11) A cylindrical vessel contains a given quantity of fluid.

In this fluid is placed another cylindrical vessel of half the

diameter of the first and containing half the quantity of fluid

which is of half the specific gravity of that in the first vesseL

la this second vessel is placed a third related to the second aa

the second is to the first ; and so on indefinitely. Find the dis-

tance between the surfaces of the first and vfi^ fluids, neglecting

the weights of the vessels.

Let /), 2 P> nj, ft &c. be the densities,

r, ^r, -—r, the radii, and

A„ Aj, Aj, the heights of fluid in the respective

cylinders.

Then r'-K=2 (0^«= 2" (|,)' A. = 2"-i (^^i)' A-;

If irr^A= V, the whole weight of fluid in all the cylindeni

beginning with the second

nv IV X . ^ . \
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This whole weight it floating in the fluid of the first cylinder,

•od therefore if t be the depth immersed of the second cylinder,

whence z= h.
o '

But the effect of this immersion is to raise the surface in the

first cylinder to a certain height x such that

Tr*« --K -^ = vr*h,

4.

u

The base of the second cylinder therefore just descends to

the base of the first, and the same is the case with all the suc-

cessive cylinders.

Hence the successive heights of the surfaces above the base

4 4 4
gA, -2A, -2"^, &C.

and the required distance is

4
/i(2''-i--l).

(12) A straight tube ABCD of small bore is bent at B and
so as to make A BC and BCD right angles, A B being equal to

CD. The tube thus formed is moveable in a vertical plane

about its centre of gravity, and being placed with BG horizontal

14—2
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and downwards, water is poured in (at A or D) so tliat c ia the

length of BA or CD occupied by the fluid. It is required to

determine the condition of stability.

Let JBC=2a, and take b as the distance of 0, the centre of

gravity of the tube, from BO, and P, Q, as the surfaces of

the water.

Turn the tube through a small angle 6 so that P', Q' are

the new siuriaces, and therefore

PP'= QQ'= a tan 0.

If the moment of the weight of the water about G be in

the direction opposite to the displacement, the equilibrium will

be stable.

Taking k as the area of a section of the tube, this moment

=gpK { 2ab sin ^ + (c - a tan 6) EN- {c + a tan 6) E' N'},

E, E being the middle points of P'B, Q'C; EN, EN' perpen-

diculars on the new vertical through 0, and FL perpendicular

to EN.

But EN=LN+BF cos d-EB am e

— 6 sin + a cos 5— - (c - a tan ^) sin ^,

and E'N'=a cos + ^ (c + a tan 0) sin ^ - 6 sin 0.

Hence, supposing very small, %vci0—d, cos<?= l, and the

moment

=p/)K|2a5^+ (c-o») {h0^a--c0\-{c^aJ0) U- W + -c5
j|

=gpK {2ah0 + 2hc0 - c^0 - 2aH),

and this is positive if

2a& + 26c>2aHc2,

or (?-2bc+lfl<V+ 2ah-2a?.

11 oh, this leads to

c<6+ slb'^-^2ab-2a?,

e<h, to

ob- Jb'^+ 2o6 - 2o'.
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If we suppose the ends A . D, joined by a continuance of the
tube and the figure ABCD to be a st^uare, 6= a, and the con-
dition is simply

c<2a,

so that in this case the equilibrium Lb always stable.

(18) A rectangular lamina floats with two of its sides ver-
tical in a liquid; it is required to

determine when the equilibrium is

stable for a small angular displace-

ment such that the volume of liquid

displaced remains unchanged.

In the figure let PQ be the line

in the surface, and P'Q' the line in

the surface in the displaced posi-

tion ; II the centre of gravity of

the liquid displaced in the pociition

of equilibrium, and K, L the cen-

tres of gravity of the triangles

EQq, EPP'.

Draw HN, KM, LM' perpen- "B

dicular to the horizontal line through 0.

Then, if GA=h, EA=c, BC-la, and = the small angle

Q5Q', the moment about (?, tending to turn the rectangle back
to its original position,

=J7P (^ a'^ . QM^-
^
d?B . QM' - 2ac . Gn\ ,

hMiGM=\a-EO.e, GM'=\a+EG.e, &ndGN=ffG.e;
o o

.'
. the moment=gp l-ra^d- 2acd . HG

) ,

which is positive if IIO<—
,

Let tn be the point in which the line of action of the fluid
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pressure after displacement meets HQ ; then the moment above

considered is equal to

gp2acd . Gm,

and, equating the two expressions, we obtain

I
a' - 2acH0=2ac {Em - EG)

;

This point m is the Tnetacentre, and we thus see that the

stability depends on the position of this point with regard to 0,

aS'in Art. 63.

(14) A cylindrical vessel, containing liquid, is raised up-

wards from rest with a given acceleration; it is required to deter-

mine the pressure at any point of the liquid.

The acceleration here supposed may be obtained by attaching

the vessel to a string passing over a fixed pulley, and having a

weight at its other end; but, however the acceleration be ob-

tained, the fact to be considered is that every element of the

liquid ascends with a constant acceleration.

Taking P a point in the surface, imagine a thin prism PQ, of

the liquid to become rigid, and observe that its vertical accele-

ration is caused by the pressure of the liquid on the end Q, the

atmospheric pressm-e on the end P, and the weight of the

prism.

If PQ,= z, p= i\ie pressure at Q, /c= the area of a section of

the prism, and /=the given acceleration, we obtain, by aid of

the second law of motion,

pZKf=pK -Hk- grzK

;

,

.:p= U. + pz{g+f).

Hence the whole pressure and the resultant pressure on the

Hurface may be obtained as in the case of a liquid at rest, writing

g+fiorg.

(15) A closed vessel, just filled with liquid, slides down a

smooth inclined plane; when the liquid is in a state of relative

etjuUibrium it is required to find the pressure at any point and iJu

aurfacea of equal pressure.
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Erery element of the li<iuiJ moves in a straight line with a

oonstant acceleration g sin a, and since the forces on any ele-

ment are the resultant fluid pressure upon it and its weight, it

follows that the resultant of these forces is mg sin a, parallel to

the plane, m being the mass of the element.

It is hence easy to see that the resultant pressure is perpen*

dicular to the plane and is equal to m^ cos a.

Whatever be the shape of the element, the resultant fluid

pressure upon it in the direction parallel to the plane is zero, and

therefore it follows that the surfaces of equal pressure are planes

parallel to the inclined plane, and that the turface of the liquid

u the plane through its highest point parallel to the inclined

plane.

If there be no ur within the vessel the pressure at the sur-

face is zero, it being given that the vessel is only just filled, or,

which is the same thing, just not filled.

Taking z as the depth of a point in the liquid below the sur-

face thus defined, and drawing a thin cylinder or prism from

this point to the surface, the pressure on the base will be the

resolved part of the weight of the prism perpendicular to the

plane, and, as before,

pK=ffpzKeoaa,

or p= gpz COB a.

As in the previous article the whole pressure and resultant

pressure may be obtained, employing g cos a for g.

The reasoning employed in this and the preceding example is

applicable to any analogous case, that is, to any case in which
the fluid, while bodily in motion, is within its own mass in a

state of relative equilibrium.
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1. A triangle ABO is immersed in a fluid, its plane being

vertical, and the side ABm the surface. If be the centre of

the circumscribing circle, prove that pressure on triangle OCA :

pressure on triangle OOB :: sin 25 : Bin2^.

2. Water is gently poured into a vessel of any form
;
prove

that when so much water has been poured in that the centre of

gravity of the vessel and water is in the lowest possible position,

it will be in the surface of the water.

3. A closed hollow cone is just filled with liquid, and is

placed with its vertex upwards ; divide its curved surface by a

horizontal plane into two parts on which the whole pressures

are equal.

Also do the same when the vertex is downwards,

4. If the cone be placed on its side on a horizontal table,

compare the whole pressures on the curved surface and the base.

5. A triangle ABO has its plane vertical and the side AB
in the surface of a liquid ; divide it by straight lines drawn from

A into n triangles on each of which the pressure shall be the

same.

6. A solid displaces o ' 3 ^"^ 4 °^ ^*^ volume respectively

when it floats in 3 different fluids ; find the volume it displaces

when it floats in a mixture formed, 1st, of equal volumes of the

fluids, 2nd, of equal weights of the fluids.

7. A float is made by attaching to a hemisphere (radius r)

a cone of the same base, and axis of length 2r, If this will

float in a fluid A with the cone just immersed, and in a fluid B
with the hemisphere just immersed, compare the densities of A
andi?.
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8> Compare the whole pressuros on the curved lurface and

plane baae of a solid hemisphere, radius r, iimuorsed in water

with its base horizontal and at a depth (r).

Note, The centre of gravity of the portion of the surface of

a sphere contained between two parallel planes which intersect

or touch the surface is equidistant from the planes.

9. A parabolic lamina floats in a liquid with its axis vertical

and vertex downwards; having given the densities, <r, p, and
the height (h) of the parabola, find the depth to which its vertex

it immersed.

10. A heavy sphere, weight W, is placed in a Tertical

cylinder, filled with atmospheric air, which it exactly fits. Find
the density of the air in the cylinder when the sphere is in a
position of permanent rest, r being the radius and h the height

of the cylinder.

11. If half a second be the unit of time, and the acceleration

of a falling body that of acceleration, determine the ratio of the

unit of density to the density of distilled water, in order that the

formula, p— gpz, may give the pressure in pounds.

12. A cone, of given weight and volume, floats in a given

fluid with its vertex downwards; shew that the surface of the

cone in contact with the fluid is least, when the vertical angle of

the oone is 2 tan~^ —7-

.

13. A hollow sphere is filled with fluid and a plane drawn
through the centre divides the surface into two parts, the total

normal pressures upon which are as m : 1 ; find the position of

the plane and the greatest and least values of m.

14. A uniform tube is bent into the form of a parabola, and
placed with its vertex downwards and axis vertical : supposing

any quantities of two fluids of densities p, p' to be poured into it,

and r, r' to be the distances of the two free surfaces respectively

from the focus, then the distance of the common surface from

the focus will be , .

P-P

15. If water be the standard substance, 4 feet the unit of

length, and 2 seconds the unit of time, find the unit of weight
in the equation W=gpV, assuming 32 as the value of g when a
foot and a second are units.
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16. If there be n fluids arranged in strata of equal thickness,

and the density of the uppermost be p, of the next 2p, and so on,

that of the last being np ; find the pressure at the lowest point

of the n"" stratum, and thence prove that the pressure at any

point within a fluid whose density varies as the depth is propor-

tional to the square of the depth,

17. A fine tube, bent into the form of an equilateral trian-

gle' with its vertex upwards and base horizontal, contains equal

quantities of two liquids, each liquid filling a length of the tube

equal to a side of the triangle. Prove that the height of the

surface of the lighter fluid above that of the heavier : the alti-

^de of the triangle :: p'-p : p'+p, p and p' being the den-

sUies.

' 18. A cylinder is filled with equal volumes of n different

fluids which do not mix ; the density of the uppermost is p, of

the next 2p, and so on, that of the lowest being np : shew that

the whole pressures on the different portions of the curved sur-

face of the cylinder are in the ratio

12 : 22 : Z"^ :...: n\

19. Equal volumes of n fluids are disposed in layers in a

vertical cylinder, the densities of the layers, commencing with

the highest, being as 1 : 2 : : n; find the whole pressure on

the cylinder, and deduce the corresponding expression for the

case of a fluid in which the increase of density varies as the

depth.

Also, if the n fluids be all mixed together, shew that the

pressure on the curved siurface of the cylinder will be increased

in the ratio 3ra : 2ra + 1.

20. A hollow cone floats with its vertex downwards in a

cylindrical vessel containing water. In the position of equili-

brium the area of the circle in which the cone is intersected by

the surface of the fluid bears to the base of the cylinder the

19
ratio of 6 : 19. Prove that, if a volume of water equal to — ths

o

of the volume originally displaced by the cone be poured into

the cone, and an equal volume into the cylinder, the position in

apace of the cone will remain unaltered.

21. A body is wholly immersed in a liquid and is capable of

motion about a horizontal axis. It is found that the total pres-

sure of the fluid on the surface is increased by A when the body
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ia turned through one rifjht anplo, and further increaned by L
when it U turned through another right anglo. Prove that the

difference between the greatest and least pressuroa on the sur*

facei«'\/2(-«l»+i^j.

22. A frustum of a right oone, formed by a plane parallel

to the base and bisecting the axis, ia closed and filled with flaid

by means of a thin vertical pipe, which is also filled. If the tr)p

of this pipe be on a level with the vertex of the cone, find the

whole pressure on the curved surface, and if this bear to the

pressure on the base the ratio of 7 to 6, find the vertical angle of

the cone.

23. If in the last example the base be removed, and the

vessel then placed on a horizontal plane, and filled to the top of

the pipe, find the least weight of the vessel which will prevent

its being lifted.

24. An open cylindrical vessel, axis vertical, contains water,

and a cone the radius of which is equal to that of the cylinder

ia placed in the water vertex downwards. Prove that, in the

position of equilibrium, if the density of the cone be one-eighth

of the density of water, the surface of the water will be raised

above its original level through a height equal to one-twenty-

fourth the height of the cone.

25. A solid cone of wood (density a) rests with its base

on the plane base of a large vessel, and water (density p) is then

poured in to a given height ; B a piece of the same wood is then

attached by a string to the vertex of the cone so as to be wholly

immersed ; find what the size of the piece must be iu order that it

may just raise the cone.

26. An elliptic lamina floats with its plane vertical in a

liquid of twice the density of the lamina, 1st, with its axis ver-

tical, 2ndly, with its axis horizontal ; determine in each case

whether the equilibrium is stable or unstable, the lamina being

displaced in its own plane.

27. A regular tetrahedron has one of its faces removed

and is filled with fluid ; the other faces, which are capable of

moving round the lowest point, are kept together by means of

strings which join the middle points of the horizontal edges of

the vessel ; shew that the tension of the strings ia to the weight

of the fluid asVS to 4^/2.
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28, A number of weights of different densities are attached

to points of a thin weightless rod. Find the density of the fluid

in which it is possible for them to rest, when all are totally im-
mersed.

If there be three weights Wi, Wi, W3, of densities pj, p^, P3,

respectively, and x, y be the distances of TFj, W^ from W.^ the

middle weight, shew that, in order that the system may rest in

equilibrium in any position when totally immersed in the cor-

responding fluid, the following condition must hold true,

-5/^l_M- y /I IN x+ y II \\
W^sU Pi)^~w\p3 J W^ \pi pi'

29, Two heavy liquids rest in equilibrium, one on the top

of the other ; one extremity of a heavy rod of length (a) is fixed

at a given depth (c) in the lower liquid, and the other end reaches

into the upper liquid. Find the positions of equilibrium^ and
determine whether they are stable or unstable.

30, A glass cylindrical vessel is inverted and plunged into

water; by inclining the vessel half the air is allowed to escape,

and the cylinder is then held vertically with the open end im-

mersed and raised until one-fourth only of its length is below

the surface; find the height of the water within,

81. A parallelogram is immersed in a fluid with a diagonal

vertical, one extremity of which is in the surface of the fluid.

Through this point lines are drawn dividing the parallelogram

into three equal parts. Compare the pressures on these three

parts; and, if P^ be the pressure on the middle part, and Pi Pg
those on the other two, prove that

16Pa=ll(Pi-l-P8).

32. If a solid right cone whose angle is 2a be immersed in

a liquid with its vertex in the surface and axis vertical, prove

that if P be the whole pressure on the curved surface and base,

and P' the resultant pressure,

P _ 2+ 3 sing

P'~ sina •

Also, determine this' ratio when the axis is inclined at an
angle 6 to the vertical, 6 being less than the complement of a.

33. Three faces of a regular tetrahedron, which rests with

the remaining face on a horizontal table^ are heavy plates capa-
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ble nf moving about their horizontal edgea. If they fit acoa-

rately and the tetrahedron be filled with fluid through a nnall

hole at tlie vertex, shew that it will hold together if the ratio of

the weight of each plate to the weight of the contained fluid be

not leu than 9 to 2.

84. A vertical cylinder is closed by an lurtigbt piston, and
when the pinion is at the top of the cylinder it is filled with

vapour at a given pressure : if temperature be such as would
maintain vapour of three times the density, find the least weight

of the piston which will not condense the whole of the vapour.

85. If a Diflferential Thermometer be constructed with un-

equal bulbs, will it shew any indication of a change of tempera-

ture to which both bulbs are subject ?

86. A thin conical surface (weight W) just sinks to the

surface of a fluid when immersed with its open end downwards

;

but when immersed with its vertex downwards a weight equal to

mlFmust be placed within it to make it sink to the same depth

as before. Shew tliat if a be the length of the axis, and h the

height of a column of the fluid, the weight of which equals the

atmospheric pressure,

37. If j4 be the area of the section of each pump of a fire

engine, I the length of the stroke, n the number of strokes per

minute, B the area of the hose, find the mean velocity with

which the water rushes out.

88. A piston without weight fits into a vertical cylinder,

closed at its base and filled with air, and is initially at the top of

the cylinrler ; water being poured slowly on the top of the piston,

find how much can be poured in before it will run over. Ex-
plain the case in which the height of the cylinder is less than

the height of the water barometer.

39. "Within a cylinder of height a, open at the top, is placed

another cylinder of the same height, and half the content, closed

at the top, and a quantity of mercury sufiBcient to fill the inte-

rior cylinder is poured into the exterior. If x and y be the dis*
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tances of the surfaces in the two cylinders from the top, prove

that

and find x and y ; h being the height of the mercury barometer.

40. The sides of a rectangle are in the ratio ir : 4, and

semicircles are described on the longer sides as diameters. Prove

that, if the rectangle be immersed in water, with one of the

shorter sides in the surface, the pressure on the two parts ex-

ternal to both semicircles will together be equal to that on the

part common to them.

41. A plane rectangular lamina is bent into the form of a

cylindrical surface of which the transverse section is a rectan-

gular hyperbola. If it be now immersed in water so that first

the transverse, secondly the conjugate, axes of the hyperbolic

sections be in the surface, prove that the horizontal pressure on

any the same immersed surface will be iu the two cases the

same.

42. A double funnel formed by joining two equal hollow

cones at their vertices stands upon a horizontal plane with the

common axis vertical, and fluid is poured in untU its surface

bisects the axis of the upper cone. If the fluid be now on the

point of escaping between the lower cone and the plane, prove

that the weight of either cone is to that of the fluid it can hold

as 27 : 16,

43. A Fquare lamina ABCD, which is immersed in water,

has the side AB in the surface; draw a line BE to a point E in

CD such that the pressures on the two portions may be equal.

Prove that, if this be the case, the distance between the centres

of pressure : the side of the square :: JlOb : 48.

44. A cubical vessel, having one of its vertical sides move-

able about a hinge in the base, is filled with water, the move-

able side inclining inwards; prove that the tangent of its in-

clination to the horizon is to unity as the weight of the side is to

the weight of the water contained by the vessel when the side ie

vertical.

45. A semicircular area is immersed in a liquid with its

bounding diameter in thp surface ; find the pressure on any por-
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tion of the area contained between two radii, and find the area

contained between the Burface and a radius such that the pres*

aure upon it may be one-fourth of the pressure upon the whole.

46. A vortical cylinder is filled with liquid; find the centre

of pressure of the portion of its curved surface contained be-

tween two vertical planes through the axis.

47. Find the centre of pressure of the surface contained

between two planes drawn through a radius of the top of the

cylinder, and through tiie extremities of that diameter of the

base which is perpendicular to the radius.

Also, find the centre of pressure of the same surface when
the cylinder is inverted.

48. A solid, in the form of a right pyramid, the base of

which is a regular polygon of n sides, is completely immersed in

a liquid, with its base vertical ; find the direction and magnitude

of the resultant pressure on its inclined surfaces.

Solve the same question when the base is inclined to the ver-

tical at a given angle.

49. An oblique cono on a circular base is completely im-

mersed in water with its base vertical; find the resultant pres-

Biure on the curved surface.

50. A vessel in the form of an oblique cone on a circular

base is held with its base horizontal and vertex downwards and

is filled with liquid; find the resultant pressure on the surface

and its point of action.

51. If a parabolic area be just immersed in water, and be

turned about in a vertical plane so that the surface is always a

tangent, prove that the centre of pressure of the part above a
fixed horizontal plane lies in the diameter through the point of

contact and at a given distance from that point.

52. A portion of a right circular cone cut off by a plane

through the axis and a plane perpendicular to the axis is im-

mersed in fiuid with the vertex in the surface, and axis vertical

;

shew that the resultant horizontal pressure on any part of the

curved surface intercepted between two horizontal planes will

pass through the centre of gravity of the intercepted portion of

the cone.

53. In exhausting a receiver by an air-pump a cloud is

sometimes seen in the receiver; explain the cause of this.
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64. A hollow sphere is just filled with liquid; find the line

of action and magnitude of the resultant pressures on either of

the portiona into which it is divided by a vertical plane through

its centre.

55. A hollow cone, vertex downwards, is filled with liquid;

find the direction and magnitude of the resultant pressure on the

portion of its surface contained between two vertical planes

through its axis.

56. Solve the same question when the vertex of the cone is

upwards.

67. A hollow cylinder is closed at one end and open at the

other, and a fixed stop perpendicular to the axis divides the

cylinder into two equal parts cutting off the communication be-

tween the parts ; the weight of the whole cylinder is half the

weight of the water which it would contain. Prove that if the

cylinder be placed mouth downwards in water the depth of the

stop in the position of rest will be only half as great as if a hole

had been made in the stop.

68. If a thermometer plunged incompletely in a liquid

whose temperature is required indicate a temperature t, and r be

that of the air, the column not immersed being m degrees, prove

.... m,(t-T) 1 , .

that the correction to be applied is
^j^^ _^^ , -^^ being

the expansion of mercury in glass for 1" of temperature, assum-

ing that the temperature of the mercury in each part is that of

the medium which surrounds it.

69. A weightless cone is very nearly filled with liquid and

inverted on a horizontal table ; the liquid is made to rotate with

an angular velocity w, and tiie pressure required to keep the

cone in contact with the table is equal to three times the weight

of the liquid
;
prove that

«= 2cotaA/£,

where h is the height of the cone, and a the semivertical angle.

60. A right circular cone is constrained to rest in a fluid

with its axis horizontal and the highest point C of its base in the

surface of the fluid. Fmd the magnitude and du-ection of the

resultant fluid pressure on the curved surface of the cone, and

determine the vertical angle of the cone when the direction of
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this preMure (1) pMsea through C, (2) is parallel to a generating

line. Shew also that its direction can never be perpendicular to

a generating line.

61. A conical vessel, having its vertex downwards, is filled

with two liquids which do not mix, their common surface bisect-

ing the axis; compare the whole pressures on the two portions of

the surface.

62. A tube, in the form of an equilateral triangle, is filled

with equal volumes of three liquids, the densities of which are

as 1 : 2 : 3 ; if the tube be held with one side horizontal, and
the opposite angle upwards, prove that the common surfaces of

the liquids divide the sides in the ratio 1 : 2.

63. An open hemispherical cup, filled with water, is placed

on a horizontal table, and the whole is made to rotate uniformly

about its vertical radius; prove that the pressure on the table

: the original weight of liquid :: S(/ - Zuh' : 8y.

64. A hollow vessel in the shape of a weilj^e of a cylinder,

formed by two planes through its axis, is fillctl with water and
closed at the top ; it is then made to rotate uniformly about the

axis, which is vertical ; find the pressure on the top.

65. In the previous problem find the whole pressure on the

curved surface of the cylinder.

66. An isosceles triangular prism, tlie vertical angle of

wliich is a right angle, floats in water with its edge horizontal,

and its base above the surface, find its positions of equilibrium.

67. A cone is totally immersed in a fluid, the depth of the

centre of its base being given. Prove that /', P, P", being the

resultant pressures on its convex surface, when the sines of the

inclination of its axis to the horizon are s, a', s", respectively,

P" («' - S") + ^2 (g" _ j) + p"i
(s _ s') := 0.

68. A hollow cone filled with liquid is suspended freely

from a point in the rim of its base; prove that the total pres-

sures on the curved surface and the base are in the ratio

1 + 11 siu-a : 12 siu^a.

69. A hollow cone without weight, closed and filled with

water, is suspended from a point in the rim of its base ; if ^ be

B. E. H. 15



226 Problems.

the angle which the direction of the resultant pressure on the

curved surface makes with the vertical, and o the semi-vertical

angle of the cone, prove that

, ,
28 cot a + cot^ a

cot^= 48 •

70. A heavy uniform chain is suspended from its two ends

under water
;
prove that its form will be the same as if suspended

in air.

71. An open conical shell, the weight of which may be

neglected, is filled with water, and is theu suspended from a

point in the rim, and allowed gradually to take its position of

2
equilibrium; prove that, if the vertical angle be cos~^^, the

surface of the water will divide the generating line through the

point of suspension in the ratio of 2 : 1.

72. A tube of small bore in the form of an elUpse is half

filled with equal volumes of two fluids which do not mix; find

in wliat manner the tube must be placed in order that the free

surfaces of the two fluids may be the extremities of the minor

axis.

73. If any curved surface, having for its base a plane area

A and enclosing a volume F, be totally immersed in a fluid, find

the resultant pressure on the curved surface, when the depth of

the centre of gravity, and the inclination to the horizon, of the

plane of the base are given.

If P,, Pj, Pa, be these resultant pressures when the depths of

the centre of gravity of the base, in a fluid of density p, are x, y, z

respectively, and the inclinations of the base to the horizon are

the same, shew that

P,Hz-y) + P^{x-z) +P^"[y-x) =gyA\z-y){x-z){y-x).

74. A heavy chain is suspended from two points and hanga

partly immersed in a fluid; shew that the curvatures of the

portions just inside and just outside the surface of fluid are as

p-ff : p, p and <r being the densities of the chain and fluid.

75. Close to the base of a vertical cylinder there is a small

aperture turned upwards as in the figure, Art. 170, but, instead
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of the Burface in Uie oyl'mder being free, a heavy piiton resto

apon it ; find the height to which the jet rises.

7G. A ball of load is let fall in water; afiauming that the

preRsure of the water is the same as if the ball were not in mo-

tion, find its velocity at any given depth.

77. A weightless inoxtensible envelope full of air floats in

equilibrium in Uie receiver of an air pump; find the velocity of

its descent after n strokes of the piston, supposed instantaneous,

and made at equal intervals.

78. If the volume of the receiver be n times that of the

piston, and if v bo the limit of the above velocity when n is inti-.

nite, and v' the velocity which would have been obtained in vacuo

in the same time, shew that v'=fv.

79. A spherical bubble of air ascends in water ; having its

size at depth a, find its si/e when its depth is - a.

80. A vertical cylinder containing water is made to rotate

with a uniform angular velocity about its axis: if -th of the
n

axis of the cylinder was above the surface before the rotation

commenced, shew that the greatest angular velocity that can be

given to the cylinder, without causing any of the water to leave

the cylinder, is

2fffhy
a\n) '

where h is the height of the cylinder, and a the ra<lius of its

base.

81. A bent tube ^5C contains fluid, and the tube rotates

uniformly with an angular velocity u> about the leg A B, which is

vertical: find the position of equilibrium of the fluid.

If I be the whole length of tube occupied by the fluid, and

the angle ABC=a, examine the case in which w-?» _'- cot^„.

82. Two equal uniform rods A B, AC are rigidly connected

at A, and the system floats symmetrically with the point A
downwards.

15—2
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If a be the length of each rod, and c the length of each un-

mersed, prove that the equilibrium will be stable for a small an-
gular displacement in the vertical plane of the rods if

c (3 - cos w)> a (1 + cos w),

where a is the angle BA C.

83. A hollow vertical polygonal prism, open at both ends,

rests upon a horizontal plane; every two contiguous faces are

moveable about their common edge. Supposing the prism to be

in equilibrium, when filled with fluid, prove that

_£j_ _ _^_ _ _£3_ _
sin fflj sin n^ sin a^

aj, ttj, Og,... being the angles of a transverse section AiA^A^

...A%Ai, and ci, Ci, C3,...denoting the lines A^Ag, A^^A^, A^^,...

84. Two cylindrical vessels containing water are suspended

with their axes vertical to the ends of a string passing over a

fixed smooth pulley in a vertical plane ; neglecting the weights of

the vessels, compare the whole pressures, during the motion, on

the curved surfaces of the cylinders.

85. Tlirough the plane vertical side of a vessel containing

fluid, small holes are bored in the circumference of a circle,

which has its highest point in the surface of the fluid ; shew

tliat the trace of the issuing fluid on a horizontal plane through

the lowest point of the circle is two straight lines.

86. A tuning fork held over a glass jar of a certain depth

has its sound greatly augmented ; but a jar an inch deeper, or

an inch shallower, produces but a slight augmentation. Why is

this the case ?

87. On clapping your hands near a long railing, a sound is

heard resembling that produced by the swift passage of a switch

through the air; state the cause of this sound.

88. A hollow cone, vertex downwards, and containing

liquid, is attached to a string passing over a pulley and support-

ing at its other end a given weight : determine the motion and

find the whole pressure of the fluid on the cone and also the

resultant pressure.
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89. Two veaiiels contain nir having the same presaure II but

different temperaturei t, t' \ the teniperaturu of uacli being in-

creiisud by the same quantity, find which lias its ])re88ure moHt
increased.

If the vessels be of the same size, and the air in one be forced

into the other, find the pressure of the mixture at a temperature

zero,

90. The temperature of the air in an extensible spherical

envelope is gradually raised from 0" to t", and the envelope is

allowed to expand till its radius is » times its original length;

compare the pressure of the air in tlie two cases.

91. A cylindrical vessel, closed at both ends, and placed so

that its axis is vertical, is half filled with mercury at a tempera-

ture QP C, the remaining space being occupied by air at the same
temperature. Tlie expansion of mercury between the tempera-

tures 0" and 100" C being "OlS of its original volume, and that

of air "3605 of its original volume for the same pressure, shew
that if the temperature be raised to 20° C the pressure of the

air will be increased in the ratio 1'0772 : 1.

92. If a given body lose in air, when the height of the

barometric column is h, the m'*" part of its weight, find what
part of its weight it will lose when the height of the barometric

column is K.

93. The specific gravity of mercury compared with that of

water at 68« is 13568 and at 212» is 13-704. If the expansion

of mercury between these points be an^^ o^ its volume at the

lower temperature, find that of water between the same points.

94. A hemispherical bowl is filled with water ; if the internal

surface be divided by horizontal planes into n portions, on each

of which the whole pressure is the same, and h, be the depth of

the r*-^ of these planes, prove that

a being the radius.

hr_ Ir

95. If a lamina in the form of a regular hexagon be im-

mersed in liquid with one side in the surface, the depth of its

centre of pressure is to the depth of its centre of gravity as

23 to 18.
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96. Find the centre of pressure upon a portion of a vertical

cylinder containing liquid, the portion being such as when un-

wrapped to form an isosceles triangle, the base of which when
forming part of the cylinder is horizontal, and the vertex at the

surface of the fluid.

97. Two very small spheres, of the same size but different

densities, are connected by a fine string and immersed in a liquid,

which rotates uniformly about a fixed axis, and is not acted upon

by any forces; find their position of relative equilibrium.

98. A hollow cone open at the top is filled with water; find

the resultant pressure on the portion of its surface cut off, on

one side, by two planes through its axis inclined at a given angle

to each other ; also determine the line of action of the resultant

pressure, and shew that, if the vertical angle be a right angle, it

will pass through the centre of the top of the cone.

99. Two equal light spheres of the same substance are at-

tached by strings of lengths r, r' to a point in the bottom of a

vessel of water—they are nmtually repulsive and rest at a distance

X from each other: shew that tlie line joining them is inclined to

the horizon at sm ^—
. ;

a;s/2(r2 + r'*)-x2

also if
(f>

(x) be the repulsion

, . Px
d> (x) = ,

P being the fluid pressure on either sphere.

100. A cylindrical tube, containing air, is closed at one ex-

tremity by a fixed plate, the otlier extremity being open ; a piston

just fitting tiie tube slides within it, and the centres of the plate

and piston are connected by an elastic string, the modulus of

elasticity of which is equal to the atmospheric pressure on the

piston; prove that, if I be the natural length of the string, and a

its length when the air between the piston and the fixed plate is

in its natural state, I being less than a, the length of the string

in the position of equilibrium will be {la)K

101. The readings of a faulty baromoter containing some

air are 29-4 and 29-9 inches, the corresponding readings of a

correct instrument being 29*8 and 30-4 inches respectively; prove

that the length of the tube occupied by the air is 2-9 inches,

when the reading of the barometer is 29 inches; and find the

corresponding correct reading.
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102. A cylinder of deuaity 2p float* with its axis verticAl

between two litiuids of densities p and 3/>, its height being equal

to the dei)th of the upper liquid
;
prove that the pressures on its

ends are in the ratio of 1 to 5.

108. A heavy rope, the density of which is double the den-

ity of water, is held by one end, which is above the surface, the

other end being under water; find the tension at the middle

section of the immersed portion.

104. If the depths of the angular points of a triangle below

the surface of a fluid be a, b, c, shew that the depth of tiie centre

of pressure below the centre of gravity is

{b-c)^+(c-a)* + (a-b)*

12 {a+ b + c)

105. Given that the centre of pressure of a disc of radius r,

with one point in the surface, is at a distance p from the centre,

prove that for a disc of radius R wholly immersed with its centre

at a distance h from the surface, the distance between the centro

of the circle and the centre of pressure is pR'^-i-hr.

106. If an air-pump be fitted with a barometer gauge of

small section k, and length I, prove that at the end of the first

stroke the mercury will have risen a height

Bh (. Ah-i-{A + B}l\ .

h being the height of the barometer.

107. A hemispherical shell is floating on the surface of a
liquid, and it is found that the greatest weight which can be
attached to the rim is one-fourth of the weight of the hemisphere;

prove that the weight of the liquid which would fill the hemi-

sphere bears to the weight of the hemisphere the ratio of

'25J5: 20^5-28.

108. A cylindrical diving-bell fully immersed is in equi-

librium without a chain. Shew that if the exterior atmospheric

pressure increase slightly, the ratio of the distance moved through

by the bell if free to that moved through by the surface of the

water in the bell when held fixed is Hh+ 3? : x^ approximately

;

where If is the height of the water barometer, h the height of

the bell, and x the length of that part of it which is filled with

air.
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96. Find the centre of pressure upon a portion of a vertical

cylinder containing liquid, the portion being such as when un-

wrapped to form an isosceles triangle, the base of which when
forming part of the cylinder is horizontal, and the vertex at the

surface of the fluid.

97. Two very small spheres, of the same size but different

densities, are connected by a fine string and immersed in a liquid,

which rotates uniformly about a fixed axis, and is not acted upon

by any forces ; find their position of relative equilibrium.

98. A hollow cone open at the top is filled with water; find

the resultant pressure on the portion of its surface cut off, on

one side, by two planes through its axis inclined at a given angle

to each other ; also determine the line of action of the resultant

pressure, and shew that, if the vertical angle be a right angle, it

will pass through the centre of the top of the cone.

99. Two equal light spheres of the same substance are at-

tached by strings of lengths r, r' to a point in the bottom of a

vessel of water—they are nmtually repulsive and rest at a distance

X from each other : shew that the line joining them is inclined to
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P being the fluid pressure on either sphere.

100. A cylindrical tube, containing air, is closed at one ex-

tremity by a fixed plate, the other extremity beii!g open ; a piston

just fitting the tube slides within it, and the centres of the plate

and piston are connected by an elastic string, the modulus of

elasticity of which is equal to the atmospheric pressure on the

piston; prove that, if I be the natural length of the string, and a

it« length when the air between the piston and the fixed plate is

in its natural state, I being less than a, the length of the string

in the position of equilibrium will be (la)K

101. The readings of a faulty barom'^ter containing some

air are 29-4 and 29-9 inches, the corresponding readings of a

correct instrument being 29-8 and 30-4 inches respectively; prove

that the length of the tube occupied by the air is 2-9 inches,

when the reading of the barometer is 29 inches; and find the

Corresponding correct x-eading.
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102. A cylinder of density 2p floats willi its axis vertical

between two lic^uidB of densities p and Up, its height being e(]ual

to the depth uf the upper liquid
;
prove that the pressures on its

ends are in the ratio of 1 to 5.

103. A heavy rape, the density of which is double the den-

sity of water, is held by one end, which is above the surface, the

other end being under water; find the tenaion at the middle

section of the immersed portion.

104. If the depths of the angular points of a triangle below

the surface of a fluid be o, b, c, shew that the depth of the centre

uf pressure below the centre of gravity is

(6 -c)a4-(c-a)' + («-&)«

12 {a + b + c)

105. Given that the centre of pressure of a disc of radius r,

with one point in the surface, is at a distance p from the centre,

prove that for a disc of radius R wholly immersed with its centre

at a distance h from the surface, the distance between the centre

of the cii'cle and the centre of pressure is pli? -r- fir,

106. If an air-pump be fitted with a barometer gauge of

small section k, and length I, prove that at the end of the first

stroke the mercury will have risen a height

h being the height of the barometer.

107. A hemispherical shell is floating on the surface of a
liquid, and it is found that the greatest weight which can be
attached to the rim is one-fourth of the weight of the hemisphere

;

prove that the weight of the liquid which would fill the hemi-

sphere bears to the weight of the hemisphere the ratio of

'25J5: 20^5-28.

108. A cylindrical diving-bell fully immersed is in equi-

librium without a chain. Shew that if the exterior atmospheric

pressure increase slightly, the ratio of the distance moved through

by the bell if free to that moved through by the surface of the

water in the bell when held fixed is Ilh + a? : a;^ approximately;

where If is the height of the water barometer, h the height of

the bell, and x the length of that part of it which is filled with
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109. Two hollow cones, filled with water, are connected to-

gether by a string attached to tlieir vertices which passes over

a fixed pulley
;
prove that, during the motion, if the weights of

the cones be neglected, the total pressures on their bases will be

always equal, whatever be the forms and dimensions of the

cones. If the heights of the cones be h, h', and heights mh, nh'

be unoccupied by water, the total normal pressures on the bases

during the motion will always be in the ratio

71^ + 71 + 1 : m^ +m + 1.

110. A hollow cone, whose vertical angle is given, is filled

with water and placed with its base on a horizontal plane ; de-

termine a point in its surface at which, an orifice being made, the

issuing fluid will just fall outside the base of the cone.

111. The times of the aerial vibrations constituting a note

(C) and its fifth ((?) are in the ratio 3:2; compare the times of

the Tibrations corresponding to (C) and the fifth of {G).

112. A pyramid on a square base floats with its vertex

downwards and base horizontal in a liquid. The pyramid is

bisected by a vertical plane perpendicular to two sides of the

base, and the two parts are connected at the vertex by a hinge.

Prove that the parts wiU remain in contact if the ratio of the

density of the pyr.'^mid to that of the liquid exceed

/ 3a' y

where h is the height and 2a the side of the base.

113. A circular tube of fine bore, whose plane is vertical,

contains a quantity of heavy uniform fluid, which subtends an

angle 2a at the centre; a heavy spherical particle, just fitting

the tube, is let fall from the extremity of a horizontal radius;

find the impulsive pressure at any point of the fluid.

114. A cylindrical vessel containing inelastic fluid is de-

scending with a given velocity {v) and is suddenly stopped ; its

axis being vertical, find the whole impulse on the curved sur-

face.

115. A closed hollow cone, filled with inelastic fluid, and

having its vertex upwards, is suddenly raised with a given velo-

city; find the whole impulse on the curved surface, and the

resultant impulse on the base.
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lir>. A hollow sphero formed of a rigid inelastic nubstance,

and filled with inelastic fluid, is let fall on a horizontal plane

;

find the whole impulse on its curved surface, and on each half

of its surface above and below the horizontal plane through its

centre.

Also determine the resultant impulses on each of these sur-

faces.

117. A flexible and elastic cylindrical tube is placed withtn

a rigid hollow prism, in the form of an equilateral triangle, which
it just fits when unstretched ; if there be no air between the

tube and the prism, and if air at a given pressure be forced into

the tube, find the extension and the portion in contact with the

sides of the prism.

118. A conical bag, which is filled with liquid, has its rim

fastened to a horizontal plate, and is then inverted
;
prove that

the tension at any point, in the direction of a generating line,

varies as the square of the distance from the vertex.

119. A bag, in the form of a paraboloid, formed of thin

flexible substance, is supported by its rim, and is filled with

water ; find the tension at any point in direction of the tangent

to the generating parabola at the point.

Hence prove that the tension in everj' direction at the vertex

=gpah, if h be the depth of the bag, and ia the latus rectum.

Also obtain this last result independently by aid of Art.

(167).

120. If the same bag, when filled, be closed and inverted,

prove that the tension at any point P, in direction of the tan-

gent to the generating parabola, varies asi AN . sJSP, A being

the vertex of the baj, S the focus, and AN the depth of P
below the vertex.



SPECIFIO GRAVITIES.

Ratios of the Specific Gravities of different substances

to that of water at 60".

Diamond 3.52

Sulphur 2.

Iodine 4.94

Arsenic 5.959

Gold 19.4

Platina 21.53

Silver 10.5

Mercury 13.568

Copper. 8.85

Tin 7.285

Lead 11.445

Zinc 6.862

Nickel 8.38

Iron 7.844

Flint-glass 3.33

Plate-glass 2.5

Marble 2.716

Rock-salt 1.92

Ivory 1.917

IceCatO") 0.926

Sea-water 1.027

Olive-oU 0.915

Alcohol 0.794

uEther 0.724

Ratios of the densities of gases and vapours of different

substances to that of atmospheric air at the same tem-

perature and under the same pressure.

Oxygen 1.103

Hydrogen 0.069

Nitrogen 0.976

Chlorine.. 2.44

Bromine 6.395

Iodine 8.701

Arsenic 10.365

Mercury 6.978

Water 0.62

Alcohol 1.613

Carbonic Acid 1.524

Ammonia 0.591

Sulphurous Acid ... 2.212

Sulphuiic Acid ... 2.763

uEther 2.586



ANSWERS TO THE EXAMPLES.

CHAPTER I. Examination.

4. 10} lbs. and 42 lbs.

6. 180 lbs.

5. wa.

8. 82944 lbs.

CHAPTER II.

2. 848 lbs.

Examination.

3. 104976 lbs.

m + 1 , mn+ n
4. ;r

<'^ and r ff, ff

inn + 1 mn + i

mixture.

being the specific gravity o

5. 2p. 6. 202JlbB. 7. 13. 8. Zff-^-a",

r,
V{<r-8)+VV-s)

10. 2s.

CHAPTER II. Examples.

2 ' 3 '""" 3 •

2. 8(7^-20- and 40- -3(r'. 3. 4 :

4. 84 : 125. 5. 1 : 32.

6, -7=:th of a second.

^/32

7. The densities are as 3 : 8. 8. 4

9. 9 : 512.

405.

1.

CHAPTER III. Examination.

2. 1st. 43^^ lbs. on a square inch. 2nd. about 58 lbs.

4. 73}j| lbs. on a square inch, neglecting atmospheric

pressure.

2
,

6. 1-25 oz. 8. ^gpvrhsjr^+ h\
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11. If /(. be the vertical side, the depth of the horizontal

r ^
line ——r=.

12. The depths of the horizontal lines are

~~r ' A. / -" ^j A. / - ^j &C'

13. The depth =-^^.

CHAPTER III. Examples.

2. 3125 lbs.

3. The lino divides the opposite side in the ratio of 3 : 1.

4. ——. (whole length of liquid).

1257r 12.5ir
5. 16 + ^-^ lbs. 6. 20 + i^lbs. S. 1:1.

4 4

10. The point lies in the line from the vertex bisecting the

base and at a depth —— (the depth of the vertex).

11. 1 : JI-1. 12. f (1 + ViO) inches.
3

13. 1:4:9.
14. If a, TT-a, be the angular spaces occupied by the

liquids p, p', the inclination to the vertical of the bounding dia-

meter =tan~^ ( cot a + -: ;— I
.

\ sm a p - pi

16. The increase=14 (the weight of the fluid).

20. Produce the rectangle to the surface ; then, knowing the

centres of pressure of the whole and of the upper part, and the

pressures on these parts, the position of the centre of pressure

of the lower part can be inferred.

23. The densities are equal. 24. 2 feet.

2
25. Unit of time= —seconds :

Unit of space=-^ feet. 26. ^vlOsecs.

5v/6 2
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27. 3r units of weight.

29. 4(5-v/2-7) : 8. 80 3 : 6 : 4.

CHAFTER IV. Eiaminatioit.

7. 12 feet. 8. 15 : 16.

9. The forces are equal.

IS. <= tha of a cubic foot
o

15. Weight of wood+ weight of water it displacee.

16. If «r, ff' be the specific gravities, V, V the volumes, and

p the specific gravity of water, the condition is

y_<r'-p
V'~ o-p'

CHAPTER IV. Examples.

2. s-rs of a cubic yard.
o6o

3. Surface divides altitude in ratio 1 : \/^- 1.

4. v'i-l : 1.

7. Y t^ ^'f t^6 cylinder ia in the upper liquid.
4

9
8. — . density of wood. 9. Half that of water.

10,. ri!^-%\oz. 14, <r : p= i^ : 2()-3-r-'). y

15. If w, w' bo the weight of the cone and of the fluid

displaced, the force^w- w', and its line of action must be at a

distance from the centre of gravity' of the solid cone equal to

w* h

w-v/ W X

16. One-third of the axis is immersed

1 Aa/ -, h being the height of the paraboloid.

19. 2186iton8. 20, Height= -7^ -.

21. ffpr^kl -q— ] . and gprh' at depth = A.
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T
22. ——y assuming distance of centre of gravity of hemi-

\/2
3

sphere from centre to be - r.

o

24. 19 : 56. 25. ^/s. r.

33. The resultant vertical pressure= jc/j/w"! 1- - |

.

34. Horizontal pressure= TF sin a cos a, and vertical pressure

= T'rsin^a, where IF is the weight of fluid displaced. Hence
direction of resultant is inclined to the vertical at an angle

^ - a, as is obvious, a prion.

CHAPTER V. Examination.

2. 4^, 3^. 4. 72.7 inches nearly.

6. 1 : 12. 6. 1 : 8 (l + a<), and 1 : 2(l + a<).

10. ll|and-ll?-. 17. 1009 lbs. nearly.

CHAPTER V. Examples.

1. l + a< : n3.

3. If W, W be the weights of the fluid and the piston, IT

the pressure of the fluid at a density />, the length of cylinder

. ^ w n
occupied = -^rrr, - — •

'^ W gp

, P' 1 + 0.1!

^- p="iT^-
5. If m be the r.atio of the air-pressure on the piston to its

weight when the piston is in the middle, its height above the

base is given by the equation

x^ - 2ax + 2m,a (a-x)— 0,

2a being the height of the cylinder.

6. (Tlie area of surface) X jf/oa^ 8. h : h'.

9. Ifn be external air-pressure, TFthe weight of the piston,

A its area, \ the modulus of elasticity, a the natural length of

the string, and t the increase of temperature, the increase x of

the length of the string is given by the equation

X (ax+x-) = a{aat-x) {UA + W).

10. Length above surface is changed in ratio 1 : .9987.

14. 7A, where h is the height of the water barometer.
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16. If o be the depth to wliich the original oiien surface of

the mercury in lowerctl, p, it the densities of tlie water and
mercury, and h, K the sectional areas of the tube, the height of

the mercurial column is increased by

Ml
CHAPTER VI. Examination.

1. To {rd of its original volume.

6. 512 lbs.

6. Early in the 4th stroke.

9. About 45 inches above mercury level.

11. .„ lbs. or about 983 lbs.
lo

SOOOtf „-^g-Iba.

-G)"

CHAPTER VI. Ex^vuPLES.

4. 1.8 nearly; ^^ths of the volume of the bell.

6. If A be the height of the barometer, the ascent x is given
by the equation

15 «_5 20

If A =30, a;= 6.1 nearly.

11. If a be the length originally occupied by air, h the
height of the barometer, and /j the density of atmospheric air, the
diflFerence x is given by the equation

a:'+2o(«-A) + l= A (2a+x) =

CHAPTER VII. Examination

1. 5:7. 2. 9 : 7.

3. 1280 -JT : 1280 -2ir.

6.
198 r ^- ,. .
rr-z of a cubic foot.
J 806

7.
25 , 20
21«°^21-
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8. W+ w : W+ sv', W being the weight of the instrument,

and 8 the density of water.

CHAPTER VII. Examples,

1. The same as that of water.

3. Zg. (3.17) = 10.8 nearly.

4. 1.9 nearly. 5- 4:5.

6. 4:3. 7. 5i grains.

8. 12^ shillings.

CHA-PTER VIII. Examination.

1. ISy^^lbs. 9. 750.

CHAPTER VIII. Examples.

pV+p'V l+al/
••• U ' 1 + at'

2. The air at greatest pressure.

3. ^^211* 104

5. The difference of the observed pressures.

CHAPTER IX.

2. If Z= Latus Rectum, u-=-. .

3. Length submerged=-h+ -j-- .

.

4. A paraboloid.

1 va^u^
6. 7

3. gprra^-j-, grvaH-^ + A
j ,

and firpTraA
\^'* +^ J

•

9. i^/"r«''(l^ + 3J-
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CHAPTER X.

1. Inyersely as the radU.

2. 8:2. 3. 80 lbs. on a square inch.

4. r^ : r».

5. If xirc* be the volume of atmospheric air forced in,

6« 6«-a»)

<-H'-:-?^.!-''-

ANSWERS TO MISCELLANEOUS
PROBLEMS.

3. First The plane divides the axis in the ratio 1 : s/^- 1,

Second. The plane bisects the axis.

Measuring z from the vertex, the equation is

one root of which is ^ .

4. The ratio is 4 : 3 sin a.

5. The distances firom B of the points of division are in the

ratio 1 : -s/2 : /s/S : &c.

1 13
6. 1st, 5 , 2nd, J75 of its volume.

O dO

7. The densities are equal.

8. The pressures are either equal or m the ratio 1 : 3.

10. If n= atmospheric pressure, the height above the hpae

of the centre of the sphere is

IrW+hwrm

16
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11. 1 : 32000.
1 — w

13. The inclination to the horizon = cos~^ 2 . .

1 +m
15. 2000 oz. 20. 60».

17
23. The weight of the vessel must be at least -=- (the weight

of the fluid).

25. The volume must be —— irr^ f « - -
)

, a being the

depth of water, and h, r the height and radius of the cone.

29. If p, p' be the densities of the lower and upper liquids

respectively, o- the density of the rod, and its inclination to the

vertical,

a' <r-/)

30. If a be the height of the cylinder, and k the height of

the water-barometer, the length {x) of the cylinder occupied by

air is given by the equation

ah
2"'

2Aln
37. -g-.

45. The inclination of the radius vector to the surface

is 60».

46. The point lies in the central generating line, dividing

it in the ratio 2:1.

47. In the first case the point divides the central generating

line in the ratio 3 : 1 ; in the second it bisects the generating

line.

48. and 49. See Example 8, page 55.

54. Resultant pressure : weight of liquid :: ijvi ; 2, and

2
its inclination to the horizon =tan~^ — .

o

55, and 56. See Articles 51, 52, 53, and Example 2,

page 47.

61. If p be the density of the upper and p' of the lower

liquid, the pressures are in the ratio

ip : dp+p'.

9 /i 3a\ c
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64. See Art. 160.

65. See Example 6, page 154.

66. See Appendix (6).

75. Reraore the pistou and replace it by an equivalent

weight of water.

84. The pressures are in the inverse ratio of the radii.

88. If / be the acceleration with which the cone ascends,

and 2a the vertical angle, the whole pressure : the weight of

the liquid :: f+g : ^ sin a.

90. n»:l + o«. 92. ^.
n

97. p and p being the densities and <t the density of the
liquid, the axis of rotation divides the string in the ratio

p-<r : p' — ff.

103. The tension is zero.

114. The whole impulse =pirrA*r, r being the radius and h
the height of the fluid.

116. If U=in^pv, the whole impulses are iU, U and SU.

4 1 5
The resultant impulses are -[/, -U, and ;r W.

6 6 6

Note on Art. 84.

The value of a is very nearly the same for all gases, and
moreover remains nearly the same for ditferent pressures. M.
Regnault has investigated the values of a for different sub-

stances
J for instance, between 0" and 100** he finds the value of

a for carbonic aoid gas to be .003689. It has also been ob-

served that the coefficients for two gases separate more from
each other when the pressure is very much increased.

Kegnault's results : values of a for

Air 003665.

Hydrogen 003667.

Azote 003668.

Sulphuric Acid ... .003669.

Hydrochloric Acid .003681.

Cyanogen 003682.

Carbonic Acid ... .003689.



INDEX.

FAOB
Absolute Temperature 78

Air a ponderable body 73

in motion 176
Air-Pumps 108—105
Aneroid Barometer 88

Archimedes 63, 118
Balloon 69, 91
Barker's MiU 110
Barometer 74

gauge 106
Beats 193
Bourdon's Metallic Baro-
meter 89

Boyle's Law 76
Bramah's Press 102

Camel 52
Capillarity 166
CapUlary Curve 163,170
Cecil's Lamp 56
Centre of Pressure 88, 201

Coexistence and Interfer-

ence 184
Common surface of two

liquids 31
Condenser 107
Contracted Vein . . 174

Density 18

Des Cartes 91
Dew 140, 142
Diatonic Scale 195
Differential Thermometer ...83

Dilatation of Liquids 144
Diving-bell 94

Ebullition 145

Elastica 163

Elasticity of air 69

Energy of Film 172
Equilibrium of a floating

body 50
Equipotential Surfaces ...198

Freezing 144
Galileo 64

Heat 138,146

VXOB
Heights by the Barometer...80
Homogeneous Atmosphere ..76

Hopkins 195
Hydraulic Ram 112
Hydrometers 126—128
Hydrostatic Balance 124

Bellows 11
Paradox 12

Hygrometers 143
Impulsive Action 177
Lintearia 163
Liquid Films 171
Magdeburgh Hemispheres...90
Manometers 108—110
Metacentre 57
Mixture of gases 134
Monochord 194
Musical sounds 184
Nodes and loops 187—189
Pascal 90
Piezometer Ill, 119
Pumps 96—99
Rotating liquid 150
Safety Valves 13
Siphon 81
Siphon gauge 107
Sounds, velocity of,... 180, 184
Specific gravity 20
Stability 57
Steady motion 175

Steam Engines 113—116
Stereometer 129
Stevinus 64
Tartini 193
Temperature of air 78
Tension 161

Thermometer 71

TorriceUi 72, 173

Unison and Harmony 192

Vapours 136

Virtual Velocities 14

Water Barometer 75

Waves 181

CASBtUDOB: raiHTED BT C. J. CLAY H BOH AX THB CNITKRSirY PttESS.



Mutj 188.J.

A CLASSIFIED LIST
Ojr

EDUCATIONAL WORKS
rcBLisuKu }ir

GEORGE BELL & SONS.

Full Catalogue* will be tent post free on application.

BIBLIOTHECA CLASSICA.
A Seriet of Greek and Latin Authors, with English Note*, edited hy

eminent Sclwlars. 8i;o.

iEschyluB. By F. A, Paley, M.A. 18».

Cioero's Orations. By G. Long, M.A. 4 vobi. 16<., lis., IZs., 18<.

Demosthenes. By R. Whiston, M.A. 2 vols. 16». each.

Euripides. By F. A. Paley, M.A. 3 vols. 16». each.

Homer. By F. A. Paley, M.A. Vol. I. 12«. ; Vol II. 14s.

Herodotus. By Rev. J. W. Blakesley, B.D. 2 vols. 32«.

Hesiod. By F. A. Paley, M.A. 10«. 6d.

Horace. By Rev. A. J. Macleane, M.A. 18s,

Juvenal and Persius. By Rev. A. J. Macleane, M.A. 12«.

Plato. By W. H. Thompson, D.D. 2 vols. Is. M. each.

Sophocles. Vol. I. By Rev. F. H. Blaydes, M.A. ISs.

Vol. II. Philoctetes. Electra. Ajax and Trachiniae. By
F. A. Paley, M.A. 128.

Tacit\i8 : The Annals. By the Rev. P. Frost. 15».

Terence. By E. St. J. Parry, M.A. 18s.

Virgil. By J. Conington, M.A. 3 vols. 14s. each.

An Atlas of Classical Geography; Twenty-four Maps. By
W. Hughes and George Long, M.A. New edition, Tv-ith coloured Outlines.
Imperial 8vo. 12s. 6d.

Uniform with above.

A Complete Latin Grammar. By J. W. Donaldson, D.D. 3rd
Editiou. Iki.

GRAMMAR-SCHOOL CLASSICS.
A Series of Greek and Latin Authors, with English Notes. Fcap. 8vo.

CsBsar : De Bello Galileo. By Georg* Long, M.A. 5*-. 6d,

Books L-III. For Junior Classes. By G. Long, M.A. 2s. Qd.

Books IV. ami V. in 1 vol. U. Gd.

Catullus, TibuUus, and Propertius. Selected Poems. With Life.
By Rev. A. H. Wratislaw. 3s. 6d.



George Bell and Sons'

Cicero: De Senectute, De Amicitia, and Select Epistles. By
George Long, M.A. 4s. 6d.

Cornelius Nepos. By Eev. J. F. Macmichael. 2s. Gd.

Homer : Iliad. Books I.-XII. By F. A. Paley, M.A. 6s. 6d.

Horace. With Life. By A. J. Macleane, M.A. 6s. Qd. [In
2 parts, 3s. 6d. each.]

Juvenal : Sixteen Satires. By H. Prior, M.A. 4s. &d.

Martial: Select Epigrams. With Life. By F. A. Paley, M.A. &s.Qd.

Ovid: the Fasti. By F. A. Paley, M.A. 5s.

Sallust : Catilina and Jugurtha. With Life. By G. Long, M.A. 5s.

Tacitus : Germania and Agricola. By Bev. P. Frost. 3s. &d.

VirgU: Bucolics, Georgics, and ^neid. Books I.-IV. Abridged
from Professor Conington's Edition. 5s. 6d.—^neid. Books V.-XII. 5s. Gd.

Also in 9 separate Volumes, Is. 6d. each.

Xenophon: The Anabasis. With Life. ByEev. J. F. Macmichael. 5s.

Also in 4 separate volnmes, Is. 6ri. each.

The Cyropsedia. By G. M. Gorham, M.A. 6s.

Memorabilia. By Percival Frost, M.A. 48. Qd.

A Grammar-School Atlas of Classical Geography, containing
Ten selected Maps. Imperial 8\o. 5s.

Uniform with the Series.

The New Testament, in Greek. With English Notes, &c. By
Rev. J. F. Macmichael. 7*. Gd.

CAMBRIDGE GREEK AND LATIN TEXTS.
.aischylus. By F. A. Paley, M.A. 3s.

Ceesar : De Bello Galhco. By G. Long, M.A. 2s.

Cicero : De Senectute et de Amicitia, et Epistolse Selectae. By
G. Long, M.A. Is. 6d.

Ciceronis Orationes. Vol. I. (in Verrem.) ByG. Long, M.A. 3s.6d.

Euripides. By F. A. Paley, M.A. 3 vols. 3s. 6d. each.

Herodotus. By J. G. Blakesley, B.D. 2 vols. 7s.

Homeri Bias. I.-XII. By F. A. Paley, M.A. 2s. 6i.

Horatius. By A. J. Macleane, M.A. 2s. Qd.

Juvenal et Persius. By A. J. Macleane, M.A. Is. 6d.

Lucretius. By H. A. J. Munro, M.A. 2s. &d.

Salhisti Crispi Catilina et Jugurtha. By G. Long, M.A. Is. 6d.

Sophocles. By F. A. Paley, M.A. 3.^. Gd.

Terenti Comcedise. By W. Wagner, Ph.D. 3s.

Thucydides. By J. G. Donaldson, D.D. 2 vols. 7s.

VirgiUus. By J. Conington, M.A. 3s. 6d.

Xenophontis Expeditio Cyri. By J. F. Macmichael, B.A. 2s. 6d.

Novum Testamentum Graecum. By F. H. Scrivener, M.A.
4s. 6d. An edition with wide margin for notes, half bound, 128.

J



Educational Works.

CAMBRIDGE TEXTS WITH NOTES.
A SeUctiim of the most xuttally read of the Greek and Latin Authors,

Annotated for Schools. Fcap, 6vo. Is. 6d. each, with exceptions.

Euripides. Alccstia.—Medea.—Hippolytus.— Heouba.— Bacchas.

Ion. 28.—Orestes.—PhoonisssB.—Troades. By F. A. Paley, M.A.

Asohylua. Prometheus Vinctus.— Septem contra Thebas.—Aga-
momuon.—Perste.—Eumenides. By P. A. Palcy, M.A.

Sophocles. (Edipiis Tyrannus.— (Edipus Coloneus.— Antigone.
By F. A. PiUey, M.A.

Homer. Iliad. Book I. By F. A. Paley, M.A. 1^.

Terence. Andria.—Hauton Timorumenos.—Phormio.—Adclphoe.
By Professor Wn.(?i>or, Ph.D.

Cioero'8 De Senectute, De Amicitia, and Epistolas Selectse. By
Q. Long, M.A.

Ovid. Selections. By A. J. Macleane, M.A.
Others in ])rq)arati(m.

PUBLIC SCHOOL SERIES.
A Series ofClassical Texts, annotated by loell-known Scholars. Cr. Svo,

Aristophanes. The Peace. By F. A. Paley, M.A. 4». 6d.

The Achamians. By F. A. Paley, M.A. 4«. 6d.

The Frogs. By F. A. Paley, M.A. 4«. M.
Oloero. The Letters to Atticus. Bk. I. By A.Pretor, M.A. 4«.6d.

Demosthenes de Falsa Legatione. By R. Shilleto, M.A. 6«.

The Law of Leptmea By B. W. Beatson, M.A. 3«. 6d.

Plato. The Apology of Socrates and Crito. By W. Wagner, Ph.D.
7th Edition, is. 6d.

The Phajdo. Gth Edition. By W. Wagner, Ph.D. 5s. 6d.

The Protagoras. 3rd Edition. By W. Wayte, M.A. 4«. (id.

The Euthyphro. 2nd edition. By G. H. Wells, M.A. 'is.

The Euthydemiis. By G. H. WeUs, M.A, 4s.

The Republic. Books I. & II. By G. H. Wells, M.A. 5s. 6(f.

Plautus. The Aulularia. By W. Wagner, Ph.D. 2nd edition. 4s. fid.

Trinummus. By W. Wagner, Ph.D. 2nd edition. 4s, GiZ.

The Menaechmei. By W. Wagner, Ph.D. 4s. fid.

Sophoclis TrachinlsB. By A. Pretor, M.A. 4s. fid.

Terence. By W. Wagner, Ph.D, 10s. fid.

Theocritus. By F. A. Paley, M.A. 4s. fid.

Others in preparation.

CRITICAL AND ANNOTATED EDITIONS.
.Etna. By H. A. J. Munro, M.A. 3s. fid.

Aristophanls Gomoediae. By H. A. Holden, LL.D. 8vo. 2 vols.
23«. 6d. Plays sold separately.

Pax. By F. A. Paley, M.A. Fcap. 8vo. 4s. fid.

Catullus. By H. A. J. Munro, M.A. 7s. 6d.

Corpus Poetarum Latinorum. Edited by Walker. 1vol. 8vo. 18».

Horace. Quinti Horatii Flacci Opera. By H, A. J. Munro, M.A.
Large 8vo. 11. 1«.

Livy. The first five Books. By J. Prendeville. 12mo. roan, 5«.
Or Books I.-III. 3«. 6d. IV. and V. 3«. 6d.



George Bell and Sons'

Lucretius. Titi Lucretii Cari de Eemm Natura Libri Sex. With
a Translation and Notes. By H. A. J. Munro, M.A 2 vols. 8ve. Vol. I.

Text. (New Edition, Preparing.) Vol. II. Translation. (Sold seiiarately.)

Ovid. P. Ovidii Nasonis Heroides XIV. By A. Palmer, M.A. 8vo. 6«.

Propertius. Sex Aurelii Propertii Carmina. By F, A. Paley, M.A.
8vo. Cloth, 9.S.

Sex. Propertii Elegiarum. Lib. IV. By A. Palmer. Fcap.Svo. 5s.

Sophocles. The Ajax. By C. E. Palmer, M.A. 4s. 6d.

Thucydides. The Histoiy of the Peloponnesian "War. By Richard
Shilleto, M.A. Book I. 8vo. 6s. 6d. Book II. Svo. 5s. 6d.

LATIN AND GREEK CLASS-BOOKS.
AuxUia Latina. A Series of Progressive Latin Exercises, By

M. J.B.Baddeley.M.A. Fcap.Svo. Part I. Accidence. 2nd Edition, revised.
2s. Part II. 4th Edition, revised. 2s. Key to Part II. 2s. 6d.

Latin Prose Lessons. By Prof. Church, M.A. 6th Edit, Fcap. 8vo,
2s. 6d.

Latin Exercises and Grammar Papers. By T. Collins, M.A. 3rd
Edition. Fcap. 8vo. 2s. 6d.

Unseen Papers in Latin Prose and Verse. With Examination
Questions. By T. Collins, M.A. 2nd Edition. Fcap. Sro. 2s. 6d.

in Greek Prose and Verse. With Examination Questions.
By T. Collins, M.A. Fcap. Svo. 3s.

Analytical Latin Exercises. By C. P. Mason, B.A. 3rd Edit. 3s, 6i.

Latin. Mood Construction, Outlines of. With Exercises. Bv
the Rev. G. E. C. Casey, M.A., F.L.S., F.G.S. Small post Svo. Is. 6d.
Latin of the Exercises. Is. 6d.

Scala Grseca : a Series of Elementary Greek Exercises. By Eev. J. W.
Davis, M.A., and R. "W. Baddeley, M.A. 3rd Edition. Fcap. Svo. 2s. 6d.

Greek Verse Composition. By G. Preston, M.A. Crown Svo. 4s. Gd.

Greek Particles and their Combinations according to Attic Usage.
A Short Treatise. By F. A. Paley, M.A. 2s. 6d.

By the Rev. P. Fkost, M.A., St. John's College, Cambbidge,
Eologse Latinae ; or, First Latin Reading-Book, with English Notes

and a Dictionary. New Edition. Fcap. Svo. 28. 6d.

Materials for Latin Prose Composition. New Edition, Fcap, Svo.

2s. 6d. Key, 4s.

A Latin Verse-Book. An Introductory Work on Hexameters and
Pentameters. New Edition. Fcap. Svo. 3s. Key, 5s.

Analecta Grseca Minora, with Introductory Sentences, English
Notes, and a Dictionary. New Edition. Fcap. Svo. 3s. 6d.

Materials for Greek Prose Composition. New Edit. Fcap. Svo.

3s. 6d. Key, 5s.

Florilegium Poeticum. Elegiac Extracts from Ovid and Tibullus,

New Eilition. With Notes. Fcap. Svo. 3s.

By the Rev. F. E. Gbetton.
A First Cheque-book for Latin Verse-makers. Is. 6d.

A Latin Version for Masters. 2s. 6d.

Eeddenda ; or Passages with Parallel Hints for Translation into

Latin Prose and Verse. Crown Svo. 4s. 6d.

Reddenda Reddita {see next page).



Educational Works.

Anthologla Qresoa. A Selection of Choice Greek Poetry, with Notes.
By F. St. John Thnckoray. U)\ and Chtaptr Ediiion. 16mo. i». M.

Anthologla Latlna. A Selection of Choice Latin Poetry, from
Nojvhtg to Bo^tbiuB, with Notes. By S«t. V. St. John Tbaokerfty. Revised
Htui Cheaper Kdition. 16mo. ii. 6d.

By H. a. Holden, LL.D,
FoUorum Silviila. Part I. Passages for Translation into Latin

Eleeriao and Heroic VerM. 9th Edition. Post 8vo. 7s. M.
Part II. Select Passages for Translation into Latin Lyric

and Comic Iambic Verm. 3rd Edition. Post 8vo. 5«.

Part III. Select Passages for Translation into Greek Verse.
3rd Edition. Post 8vo. 8s.

Folia Silvulsa, sive EclogsB Poetamm Anglicoram in Latinnm et
GrsBcum convomaB. 8vo. Vol. I. 10s. 6d. Vol. II. 12«.

Follorum Centurisa. Select Passages for Translation into Latin
and Greek Prose. Hth Edition. Post 8vo. 8«.

TRANSLATIONS, SELECTIONS, &c.
•^* Many of the following books are well adapted for School Prizes.

.ffiBchylus. Translated into English Prose by F. A. Paley, M.A.
2nd Edition. 8vo. 78. 6d.

Translated into English Verse by Anna Swanwick. Post
8vo. 5».

Horace. The Odes and Carmen Saeculare. In English Verse by
J. Conington, M.A. 8th edition. Fcap. 8vo. 5s. 6d.

The Satires and Epistles. In English Verse by J. Coning-
ton, M.A. 5th edition. 6^. 6d.

Illustrated from Antique Gems by C. W. King, M.A. The
text revised with Introduction by H. A. J. Munro, M.A. Largo 8vo. 11. Is.

Horace's Odes. Englished and Imitated by various hands. Edited
by C. W. P. Cooper. Crown 8vo. 6s. 6d.

Lusus Intercisi. Verses, Translated and Original, by H. J.

Hodgson, M.A., fonnr>rly Fellow of Trinity College, Cambridge.
Ibnmedldtcly.

Propertius. Verse Translations from Book V., with revised Latin
Tort. By F. A. Paley, M.A. Fcap. 8vo. 3s.

Plato. Gorgias. Translated by E. M. Cope, M.A. 8vo. 7s.

PhUebus. Translated by F. A. Paley, M.A. Small 8vo. 4<.

Thesetetus. Translated by F. A. Paley, M.A. Small 8vo. 4s.

Analysis and Index of the Dialogues. ByDr. Day. PostSvo.o.*.

Reddenda Reddlta : Passages from English Poctiy, with a Latin
Verse Translation. By P. E. Gretton. Crown 8vo. 6s.

SabrinsQ Corolla in hortuhs Begiae Scholse Salopiensis contexuerunt
tres viri floribus logondis. Editio tertia. 8vo. 8s. 6d.

Theocritus. In English Verse, by C. S. Calverley, M.A. New
Kdition, revised. Crown 8vo. 7s. 6d.

Translations into English and Latin. By C. S. Calverley, M.A.
Post 8to. 7«. 6d.

into Greek and Latin Verse. By E. C. Jebb. 4to. cloth
gilt. lOs. 6i.

Betv^een Whiles. Translations by B. H. Kennedy. 2nd Edition.
revised. Crown 8vo. 6.s.



George Bell and Sons'

REFERENCE VOLUMES.
A Latin Grammar. By Albert Harkness. Post 8vo. 6s.

By T. H. Key, M.A. 6tli Thousand. Post 8vo. 8.5.

A Short Latin Grammar for Schools. By T. H. Key, M.A.,
F.R.S. Uth EcUtion. Post 8vo. 3s. Gd.

A Guide to the Choice of Classical Books. By J. B. Mayor, M.A.
Revised Edition. Crown 8vo. 3s.

The Theatre of the Greeks. By J. W. Donaldson, D.D. 8th
Edition. Post 8vo. 5s.

Keightley's Mythology of Greece and Italy. 4th Edition. 5s.

A Dictionary of Latin and Greek Quotations. By H. T. Eiley.
Post 8vo. 5s. With Index Verborum, 6s.

A History of Roman Literature. By W. S. Teuffel, Professor at
the University of Tiibingen. By W. Wagner, Ph.D. 2 vols. Demy 8vo. 2l8.

Student's Guide to the University of Cambridge. 4th Edition
revised. !Fcap. Svo. Part 1, 2s. 6d. ; Parts 2 to 6, Is. each.

CLASSICAL TABLES.
Latin Accidence. By the Kev. P. Frost, M.A. Is.

Latin Versification. Is.

Notabilia Qusedam ; or the Principal Tenses of most of the
Irregular Greek Verbs and Elementary Greek, Latin, and French Con-
struotion. New Edition. Is.

Richmond Rules for the Ovidian Distich, &c. By J. Tate,
M.A. Is.

The Principles of Latin Syntax. Is.

Greek Verbs. A Catalogue of Yerbs, Irregular and Defective ; their
leading formations, tenses, and inflexions, with Paradigms for conjugation.
Rules for formation of tenses, &c. &c. By J. S. Baird, T.C.D. 2s. 6d.

Greek Accents (Notes on). By A. Barry, D.D. New Edition. Is.

Homeric Dialect. Its Leading Forms and Peculiarities. By J. S.
Baird, T.C.D. New Edition, by W. G. Rutherford. Is.

Greek Accidence. By the Rev. P. Frost, M.A. New Edition. Is.

CAMBRIDGE MATHEMATICAL SERIES.
Algebra. Choice and Chance. By W. A. Whitworth, M.A. 3rd

Edition. 6s.

Euclid. Exercises on Euclid and in Modem Geometry. By
J. McDowell, M.A. 3rd Edition. 6s.

Trigonometry. Plane. By Eev. T. Vyvyan, M.A. 3.9. 6d.

Conies. The Geometry of, 3rd Edition. By C. Taylor, D.D. 4s. Gd.

Solid Geometry. By W. S. Aldis, M.A. 3rd Edition. 6s.

Rigid Dynamics. By W. S. Aldis, M.A. 4s.

Elementary Dynamics. By W. Garnett, M.A, 3rd Edition. 6s.



Educational Works.

Heat An Elementary Treatise. By W. Gamctt, M.A. 2nd Edit.

HydromeohaniCB. By W. H. Beaant, M.A., F.R.S. 4th Edition.

Part I. Uydrostatios. is.

Mechanics. Problems in Elementary. By W. Walton, M.A. C<.

CAMBRIDGE SCHOOL AND COLLEGE
TEXT-BOOKS.

A Series of Elementary Treatises for tlie use of Students in tlu

Universities, Schools, and Candidates for the Public

Examinations. Fcap. 8vo.

Arithmetic. By Rev. C. Elseo, M.A. Fcap. 8vo. 10th Edit. 3s. Od.

Algebra. By the Rev. C. Elsee, M.A. 6th Edit. 4«.

Arithmetic. By A, Wrigley, M.A. 3s. Gd.

A Progressive Course of Examples. With Answers. By
J. Watson, M.A. 5th Edition. 2s. 6d.

Algebra. Progressive Course of Examples. By Rev. W. F.

M'Michaol.M.A., and R. Prowdo Smith, M.A. 2nd Edition. 3s. 6d. "With

• Answers, is. 6d.

Plane Astronomy, An Introduction to. By P. T. Main, M.A.
4th Edition, is.

Conic Sections treated Geometrically. By W. H. Besant, M.A.
4th Edition. 4s. 6d. Solution to the Examples. 4«.

Elementary Conio Sections treated Geometrically. By W. H.
Besant, M.A. Ut^ the press.

Statics, Elementary. By Rev. H. Goodwin, D.D. 2nd Edit. 3s.

Hydrostatics, Elementary. By W. H. Besant, M.A. 10th Edit. 4s.

Mensuration, An Elementary Treatise on. By B.T.Moore, M.A. 6^.

Newton's Principia, The First Three Sections of, with an Appen-
dix ; and the Ninth and Eleventh Sections. By J. H. Evans, M.A. 5th
Edition, by P. T. Main, M.A. 4s.

Trigonometry, Elementary. By T. P. Hudson, M.A. 38. 6d.

Optics, Geometrical. With Answers. By W. S. Aldis, M.A. 3s. 6d.

Analytical Geometry for Schools. By T. G.Vyvyan. 3rd Edit. 4s. Qd.

Greek Testament, Companion to the. By A. C. Barrett, A.M.
4th Edition, revised. Fcap. 8vo. 5s.

Book of Common Prayer, An Historical and Explanatory Treatise

on the. By W. G. llumphry, B.D. 6th Eilition. Fcap. 8vo. 4s. 6d.

Music, Text-book of. By H. C. Banister. 10th Edit, revised. 5s.

Concise History of. By Rev. H. G. Bonavia Hunt, B. Mus.
Oxon. 6th Edition revised. 3s. 6d.

ARITHMETIC AND ALGEBRA.
See foregoing Series.



George Bell and Sons'

GEOMETRY AND EUCLID.
Euclid. The First Two Books explained to Beginners. By C. P.

Mason, B.A. 2nd Edition. Fcap. 8vo. 2s. 6(J.

The Enimciations and. Figures to Euclid's Elements. By Eev.
J. Brasse, D.D. New Edition. Foap.Svo. Is. On Cards, in case, 5s. 6d.
Without the Figures, 6d.

Exercises on Euclid and in Modem Geometry. By J. McDowell,
B.A. Crown 8vo. 3rd Edition revised. 6s.

Geometrical Conic Sections. By W. H. Besant, M.A. 4th Edit.
4s. 6<J. Sohition to the Examples. 4s.

Elementary Geometrical Conic Sections. By W. H. Besant,
M.A. [In the press.

Elementary Geometry of Conies. By C. Taylor, D.D. 3rd Edit.
8vo. 4s. Qd.

An Introduction to Ancient and Modem Geometry of Conies.
By C. Taylor, M.A. 8vo. 15s.

Solutions of Geometrical Problems, proposed at St. John's
CoUege from 1830 to 1846. By T. Guskin, M.A. 8vo. 12s.

TRIGONOMETRY.
Trigonometry, Introduction to Plane. By Eev. T. G. Vyvyan,

Chartevhonse. Cr. 8vo. 3s. 6d.

Elementary Trigonometry. By T. P. Hudson, M.A. 38. 6d.

An Elementary Treatise on Mensuration. By B, T. Moore,
M.A. 5s.

ANALYTICAL GEOMETRY
AND DIFFERENTIAL CALCULUS.

An Introduction to Analytical Plane Geometry. By W. P.
Tumbull, M.A. 8vo. 12s.

Problems on the Principles of Plane Co-ordinate Geometry.
By W. Walton, M.A. 8vo. 16s.

TrUinear Co-ordinates, and Modem Analytical Geometry of
Two Dimensions. By W. A. Whitworth, M.A. 8vo. 16s.

An Elementary Treatise on Solid Geometry. By W. S. Aldis,

M.A. 2nd Edition revised. 8vo. 8s.

Elementary Treatise on the Differential Calculus, By M.
O'Brien, M.A. 8vo. 10s. 6cl.

Elliptic Functions, Elementary Treatise on. By A. Cayley, JM.A.

Demy 8vo. 15s.

MECHANICS & NATURAL PHILOSOPHY.
statics, Elementary. By H. Goodwin, D.D, Fcap. 8vo. 2nd

Edition. 3s.

Dynamics, A Treatise on Elementary, By W, Gamett, ^I.A.

3rd Edition. Crown 8vo. 6s.

Elementary Mechanics, Problems in. By AV. Walton, M.A. New
Edition. Cro-«ni 8vo. 6s.
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Theoretioal Meohanlos, Problems in. By W. Walton. 2nd Edit.
r*;viRed and onlari;«d. Demy 8vo. 16«.

HydroBtatioB. ByW.H.Besant.M.A. Fcap.Svo. lOtli Edition. Am.

Hydromechanlca, A Treatise on. ByW. H. Besant, M.A., F.R.8.
Sro. 4tb Kdition, roriaed. Part I. II/drohtAtios. 5«.

Dynamics of a Particle, A Treatise on the. ByW. H. Besant, M.A.
[Prepariny.

Optica, Geometrical. By W. 8. Aldis, M.A. Fcap. 8vo. 8». 6d.

Double Reflraction, A Chapter on Fresnel's Theory of. By W. S.
Aldis. M.A. 8vo. 2..

Heat, An Elementary Treatise on. By W. Gamett, M.A. Crown
8vo. 2nd Edition rovisod. Z». 6d.

Newton's Principia, The First Tliree Sections of, with an Appen-
dix ; and the Ninth and Eleventh Sections. By J. H. Evans, M.A. 5tb
Edition. Edited by P. T. Main, M.A. 4«.

Astronomy, An Introduction to Plane. By P. T. Main, M.A.
Fcap. 8vo. cloth. -Is.

Astronomy, Practical and Spherical. By II. Main, M.A. 8vo. 14«.

Astronomy, Elementary Chapters on, from the 'Astronomie
Physique • of Biot. By H. Goodwin, D.D. 8vo. 3s. 6d.

Pure Mathematics and Natural Philosophy, A Compendium of
Facts and Formulas in. By G. R. Smalley. 2nd Edition, rovisod by
J. McDowell. M.A. Fcap. 8vo. 3«. 6d.

Elementary Course of Mathematics. By H. Goodwin, D.D.
6th Edition. 8vo. 16.s.

Problems and Examples, adapted to the ' Elementary Course of
Mathematics.' 3rd Edition. 8vo. 5«.

Solutiona of Goodwin's Collection of Problems and Examples.
By W. W. Ilutt, M.A. 3rd Edition, revised and enlarged. 8vo. 9s.

Pure Mathematics, Elementary Examples in. By J, Taylor. 8to.
7s. 6d.

Mechanics of Construction. With numerous Examples. By
S. Fenwick, F.R.A.S. 8vo. 12«.

Pure and Applied Calculation, Notes on the Principles of. By
Rev. J. Challi.s, M.A. Demy 8vo. 15s.

Physics, The Mathematical Principle of. By Eev. J. Challis, M.A.
Demy 8vo. Ss.

TECHNOLOGICAL HANDBOOKS.
Edited by H. Tbueman Wood, Secretary of the

Society of Arts.

1. Dyehig and Tissue Printing. By W. Crookes, F.II.S. 5s.

2. Glass Manufacture. ByHenryChance,M.A.; H. J.Powell.B.A.;
and II. r;. Harris. .3s. Cd.

;. Cotton Manufacture. By Eichard Marsden, Esq., of Man-
chester. [Ill (?i« press.

i. Telegraphs and Telephones. By W. H. Preece, F.R.S.
[Preiiaring,
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HISTORY, TOPOGRAPHY, &c.

Rome and the Campagna. By E. Bum, M.A. With 85 Eh-
gravings and 26 Maps and Plans. With Appendix, ito. 3J. 3s.

Old Rome. A Handbook for Travellers. By R. Burn, M.A.
With Maps and Plans. Demy 8vo. 10s. 6d.

Modem Europe. By Dr. T. H. Dyer. 2ncl Edition, revised and
continued. 5 vols. Demy 8vo. 21. 12s. 6d.

The History of the Kings of Rome. By Dr. T. H. Dyer. 8vo. 16s.

The History of Pompeii : its Buildings and Antiquities. By
T. H. Dyer. 3rd Edition, brought down to 1874. Post 8vo. 7s. 6d.

Ancient Athens : its History, Topography, and Eemains. By
T. H. Dyer. Super-royal 8vo. Cloth. 11. 5s.

The Decline of the Roman RepubUo. By G. Long. 5 vols.

8vo. 14s. each.

A History of England during the Early and Middle Ages. By
0. H. Pearson, M.A. 2nd Edition revised and enlarged. 8vo. Vol. I.

16s. Vol. II. 14s.

Historical Maps of England. By C. H. Peai-son. Folio. 2nd
Edition revised. 31s. 6d.

History of England, 1800-15. By Harriet Martineau, with new
and copious Index. 1 vol. 3s. Gd.

History of the Thirty Years' Peace, 1815-46. By Harriet Mar-
tineau. 4 vols. 3s. 6d. each.

A Practical Synopsis of English History. By A. Bowes. 4tl-'

Edition. 8vo. 2s.

Student's Text-Book of English and General History. By
D. Beale. Cro^-n 8vo. 2s. 6d.

Lives of the Queens of England. By A. Strickland. Library
Edition, 8 vols. 7s. 6d. each. Cheaper Edition, 6 vols. 5s. each. Abridged
Edition, 1 vol. 6s. 6d.

Eginhard's Life of Karl the Great (Charlemagne). Translated
with Notes, by W. Glaister, M.A., B.C.L. Crown 8vo. 4s. 6d.

Outlines of Indian History. By A. "W. Hughes. Small post
. Svo. 3s. 6d.

The Elements of General History. By Prof. Tytler. New
Edition, brought down to 1874. Small post Svo. 3s. 6d.

ATLASES.

An Atlas of Classical Geography. 24 Maps. By W. Hughes
and G-. Long, M.A. New Edition. Imperial 8vo. 12s. 6d.

A Grammar-School Atlas of Classical Geography. Ten Maps
Belected from the above. New Edition. Imperial Svo. 5s.

First Classical Maps. By the Eev. J. Tate, M.A. 3rd Edition.]
Imperial Svo. 7s. 6d.

Standard Library Atlas of Classical Geography. Imp. Svo. 7s. Qd.\
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PHILOLOGY.
WEBSTER'3 DICTIONARY OF TH£ ENGLISH LAN*

QDACJK. With Dr. Miihn'H Ktyraology. 1 vol., 1628 po^es, 3000 IUu»-
tmtions. 21i. With Apixjudioea and 70 additional pages of lUostra*
tioiu, li)l!) pot^H, 31«. 6d.

*THXBBSTPKACriCALEirOLISH DICTIONARY BZTANT.'—()Kart«rly B0Vi«W,1873.
Proapootnaea, with Bpooimon pafiroSt post froo on application.

New Diotionary of the English Language. Combiuing Explan-
ation with Btymolo^ry, and copiously illuBtriitod by Quotations from tho
)M<Ht Aiithoritioa. By Dr. Kiohardaon. Now Edition, with a Bnpplement.
2 vol.^. Ito. U. 1-la. 6(1.; half ruaaia, 51, ISa. 6d.; msaia, 6i. 12«. Supplement
Bupanili'ly. 4to. 12».

AnHvo. Edit, without tho Quotatioua, 15«.; half ra8aia,20s.; ruB8ia,24«.

Supplementary English Glossary. Containing 12,000 Worda and
Muauint^s occurring in English Literature, not found in any other
Dictionary. By T. L. O. Davios. Demy 8vo. 16».

Polk-Etymology. A Dictionary of Words perverted in Form or
Mi'iiuin;; by False Derivation or Mistaken Amilogy. By Rev. A. 8. Pnlmor.
Douiy 8vo. 21«.

Brief History of the English Language. By Prof. James Hadley,
LL.D., Yale Collof,'f. Feap. 8vo. Is.

The Elements of the English Language. By E. Adams, Ph.D.
15th Edition. Post 8vo. 4s. 6d.

Philological Essays. By T. H. Key, M.A., F.R.S. 8vo. 10<. 6d.

Lamguage, its Origin and Development. By T. H. Key, M.A,,
F.R.8. 8vo. Its.

Synonyms and Antonyms of the English Language. By Arch-
deacon Smith. 2nd Edition. Post 8vo. 5s.

Synonjrms Discriminated. By Archdeacon Smith. DemyBvo. 16«.

Bible EngUsh. By T. L. 0. Davios. os.

The Queen's English. A Manual of Idiom and Usage. By tho
late Dean Alford Gth Edition. Fcap. 8vo. 5s.

Etymological Glossary of nearly 2500 English Words de-
rived from the Greek. By the Rev. E. J. Boyce. Fcap. 8vo. 3s. 6d.

A Syriac Grammar. By G. Phillips, D.D. 3rd Edition, enlarged.
8vo. 78. 6d.

A Grammar of the Arabic Language. By Eev. W. J. Beau-
mont, M.A. 12mo. 78.

DIVINITY, MORAL PHILOSOPHY, &c.
Novum Testamentum Grsscum, Textus Stephanici, 1550. By

F. H. Scrivener, A.M., LL.D., D.C.L. New Edition. 16mo. 4s. 6i. Also
on Writing Paper, with Wide Margin. Half-bound. 12s.

By the same Author.
Codex BezsB Oantabrigiensis. 4to. 26s.

A Full Collation of the Codex Sinaiticus with the Eeceived Text
ef tho New Testament, with Critical Introduction. 2nd Edition, revised.
Fcap. 8vo. 5s.

A Plain Introduction to the Criticism of the New Testament.
With Forty Facsimiles from Ancient Manuscripts. 3rd Edition. 8vo.

[In the press.

Six Lectures on the Text of the New Testament. For English
Readers. Crown 8vo. 6s.
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The New Testament for English Readers. By the late H. Alford,
D.D. Vol. I. Part I. 3rd Edit. 12s. Vol. I. Part II. 2nd Edit. 10s. 6(i.

Vol. II. Part I. 2nd Edit. 16s. Vol. II. Part II. 2nd Edit. 16s.

The Greek Testament. By the late H. Alford, D.D. Vol. I. 6th
Edit. 11. 8s. Vol. II. 6tli Edit. 11. 4s. Vol. III. 5tli Edit. 18s. Vol. IV.
Part I. 4tli Edit. 18s. Vol. IV. Part II. 4th Edit. 14s. Vol. IV. 11. 12s.

Companion to the Greek Testament. By A. C. Barrett, M.A.
4th Edition, revised. Fcap. 8vo. 5s.

The Book of Psalms. A New Translation, with Introductions, &c.
By the Very Rev. J. J. Stewart Perowne, D.D. 8vo. Vol. I. 5th Edition,
18s. Vol. II. 5th Edit. 16s.

Abridged for Schools. 3rd Edition. Crown 8vo. 10s. 6d,

History of the Articles of Religion. By C. H. Hardwick. 3rd
Edition. Post 8vo. 5s.

History of the Creeds. By J. E. Lumby, D.D. 2nd Edition.
Crown 8vo. 7s. 6d.

Pearson on the Creed. Carefully printed from an early edition.

With Analysis and Index by E. Walford, M.A. Post 8vo. 5s.

An Historical and Explanatory Treatise on the Book of
Common Prayer. By Rev. W. G. Humphry, B.D. 6th Edition, enlarged.
Small post 8vo. 4s. 6d.

The New Table of Lessons Explained. By Eev.W. G. Humphry,
B.D. Pcap. Is. 6d.

A Commentary on the Gospels for the Sundays and other Holy
Days of the Christian Year. By Rev. W. Denton, A.M. New Edition.

3 vols. 8vo. 54s. Sold separately.

Commentaiy on the Epistles for the Sundays and other Holy
Days of the Christian Year. By Rev. W. Denton, A.M. 2 vols. 36s. Sold
separately.

Commentary on the Acts. By Eev. W. Denton, A.M. Vol. I.

8vo. 18s. Vol. II. 14s.

Notes on the Catechism. By Eev. Canon Barry, D,D. 6th Edit.

Fcap. 2s.

Catechetical Hints and Helps. By Eev. E. J. Boyce, M.A. 4th
Edition, revised. Fcap. 2s. 6d.

Examination Papers on Religious Instruction. By Eev. E. J.

Boyce. Sewed. Is. 6d.

Church Teaching for the Church's Children. An Exposition
of the Catechism. By the Rev. F. "W. Harper. Sq. fcap. 2s.

The V7tnton Church Catechist. Questions and Answers on the
Teaching of the Church Cateahism. By the late Rev. J. S. B. Monsell,
LL.D. 3rd Edition. Cloth, 3s.; or in Four Parts, sewed.

The Church Teacher's Manual of Christian Instruction. By
Rev. M. F. Sadler. 24th Thousand. 2s. 6d.

Short Explanation of the Epistles and Gospels of the Chris-
tian Year, with Questions. Royal 32mo. 2s. 6d.; calf, 4s. 6d.

Butler's Analogy of Religion ; with Introduction and Index by
Rev. Dr. Steere. New Edition. Fcap. S.i. 6d.

Three Sermons on Human Nature, and Dissertation on
Virtue. By W. Whewell, D.D. 4th Edition. Fcap. 8vo. 2s. 6d.



Educational Works. 13

Lectures on the History of Moral Pbilosopby in England. By
W. Whowull, D.D. Crown 8vo. 8».

Kent 3 Commentary on International Law. By J. T, Abdy,
LL.D. Now and Cheap Edition. Crown 8vo. lOd. 6cl.

A Manual of the Roman Civil Law. By G. Leapingwell, LL.D.
8to. 12s.

FOREIGN CLASSICS.
A series for use in Schools, with English Notes, grammatical and

explanatory, and renderings of difficult idiomatic expressions.

Fcap. Qvo.

Sohiller's "Wallenstein. By Dr. A. Buchheim. 3rd Edit. 6». 6d.
Or the La);or and Piccolomini, 3a. 6(L WallenBtein's Tod, 3«. 6i.

Maid of Orleans. By Dr. W. Wagner. 3s. 6d.

Maria Stuart. By V. Kastner. 3«.

Goethe's Hermann and Dorothea. By E. Bell, M.A., and
K. Wolfol. 2s. 6d.

G>«rman Ballads, from Uliland, Goethe, and Schiller. By 0. L.
Bielefeld. 3rd Edition. 3s. 6d.

Charles XIL, par Voltaire. By L, Direy. 4th Edition. 3s. 6d.

Aventures de T616maque, par F6n61on. By C. J. Delille. 2nd
Edition. 4s. 6d.

Select Fables of La Fontaine. By F. E. A. Gasc. 14th Edition. 3s.

Picciola, by X.B. Saintine. By Dr.Dubuc. 11th Thousand. 3s. 6d.

FRENCH CLASS-BOOKS.
Twenty Lessons in French. With Vocabulary, giving the Pro-

nunciation. By W. Brebner. Post 8vo. 4s.

French Grammar for Public Schools. By Eev. A. C. Clapin, M.A.
Fcap. Svo. Oth Edition, revised. 2s. 6d.

French Primer. By Rev. A. C. Clapin, M.A. Fcap. Svo. 4th Edit-
Is.

Primer of French Philology. By Eev. A. C. Clapin. Fcap. Svo. Is.

Le Nouveau Tresor; or, French Student's Companion. By
M. E. S. 16th Edition. Fcap. Svo. 3s. 6d.

F. E. A. GASC'S FRENCH COURSE.
First French Book. Fcap. Svo. 76th Thousand. Is. 6d.

Second French Book. 42nd Thousand. Fcap. Svo. 2s. &d.

Key to First and Second French Books. Fcap. Svo. 3«. 6d.

French Fables for Beginners, in Prose, with Index. 15th Thousand.

.

12mo. 2s.

Select Fables of La Fontaine. New Edition. Fcap. Svo. 3s.

Histoires Amusantes et Instructives. With Notes. 14tli Thou-
sand. Fcap. Svo. 2s. 6d.
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Practical Gmde to Modem French Conversation. 12th Thou-
sand. Foap. 8vo. 2s. 6d.

French Poetry for the Young. With Notes, dth Edition. Fcap.
8to. 2s.

Materials for French Prose Composition; or, Selections from
the best English Prose Writers. 16th Thousand. Fcap. 8vo. 4s. 6d.

Key, 6s.

Prosateurs Contemporains. With Notes. 8vo. Gth Edition,

revised. 5s.

liS Petit Compagnon ; a French Talk-Book for Little ChUdren.
11th Thousand. 16mo. 2s. 6d.

An Improved Modem Pocket Dictionary of the French and
Engrlish Languages. 30th Thousand, with Additions. 16mo. Cloth. 4s.

Also in 2 vols., in neat leatherette, 5s.

Modem French-English and English-French Dictionary. 2nd
Edition, revised. In 1 vol. 12s. 6d. (formerly 2 vols. 25s.)

GOMBEET'S FEENCH DEAMA.

Being a Selection of the best Tragedies and Comedies of MoliSre,

Racine, Comeillo, and Voltaire. With Arpuments and Kotes by A.
Gombert. New Edition, revised by E. E. A. Gasc. Fcap. Svo. Is. each;

sewed, 6d. Contents.
MOLIEBE :—Le Misanthrope. L'Avare. Le Bourgeois GentUhomme. Le

Tartuffe. Le Malade Ima^naire. Les Femmes Savantes. Les Fourberiea

de Scapin. Les Precieuses Ridicules. L'Ecole des Femmes. L'Ecole des

Maris. Le M^decin maJgr^ Lui.

Racine :—Ph6dre. Esther. Athalie. Iphig^nio. Les Plaideurs. La
Th^balde ; on, Les Fr6res Ennemis. Andromaque. Britannicna.

P. CoRNEiLLK :—Le Cid. Horace. Cinna. Polyeucto.

VOLTAISE :—Zaire.

GERMAN CLASS-BOOKS.
Materials for German Prose Composition. By Dr Buchheim.

7th Edition Fcap. 4s. 6d. Key, 3s.

Wortfolge, or Rules and Exercises on the Order of Words in

German Sentences. By Dr. F. Stock. Is. 6d.

A GennEin Grammar for Pubhc Schools. By the Rev. A. C.
ClapinandP. HollMttUer. 2nd)Edition. Fcap. 2s. 6d.

Kotzebue's Der Gefangene. WithNotesbyDr. W. Stromberg. Is.

ENGLISH CLASS-BOOKS.
A Brief History of the English Language. By Prof. Jas. Hadley,

LL.D., of Yalo College. Fcap. Svo. Is.

The Elements of the English Language. By E. Adams, Fh.D.
18th Edition. Post Svo. 4s. 6d.

The Rudiments of English Grammar and Analysis. By
E. Adams, Ph.D. 8th Edition. Fcap. Svo. 2s.
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By C. P. Mabon, Fellow of Univ. Coll. London.

First Notions of Grammar for Young Learners. Fcap. 8vo.
lOtli Tli<msiui(l. Cloth. 8(1.

First Steps in English Grammar for Junior Classes. Demy
18dio. 32n(l Tlious4iud. Is.

Outlines of English Grammar for tho use of Junior Classes.
;Ust Thous.aml. CrowTi 8vo. '2a.

English Grammar, including the Principles of Grammatical
Analysis. 25th Edition. 8Gth Thousand. Crown 8vo. 3«. 6d.

A Shorter English Grammar, with copious Exercises. 8th Thou-
sand. Crown 8vo. 3«. 6<i.

English Grammar Fractioe, being the Exercises separately. Is.

Praotioal Hints on Teaching. By Bev. J. Menet, M.A. 5th Edit.
Crown 8vo. cloth, 2s. 6d. ; paper, 2s.

How to Earn the Merit Grant. By H. Major. [In the press.

Test Lessons in Dictation. 2nd Edition. Paper cover, 1«. 6d.

Questions for Examinations in English Literature. By Bev.
W. W. Skeat, Prof, of Anglo-Saxon at Cambridge University. 2s. 6d.

Drawing Copies. By P. H. Delamotte. Oblong 8vo. 12«. Sold
also in parts at Is. each.

Poetry for the School-room. New Edition. Fcap. 8vo. Is. 6d.

Geographical Text-Book ; a Practical Geography. By M. E. S.
12mo. 2s.

The Blank Haps done up separately, 4to. 2s. coloured.

Loudon's (Mrs.) Entertaining Naturalist. New Edition. Eovised
by W. S. Dallas, F.L.S. 5s.

Handbook of Botany. New Edition, greatly enlarged by
D. Wooster. Fcap. 2s. 6d.

The Botanist's Pocket-Book. With a copious Index. By W. R.
Hayw ard. 3rd Edit, revised. Crown Svo. Cloth limp. 4s. 6d.

Experimental Chemistry, founded on the Work of Dr. Stockhardt.
By C. W. Heatou. Post Svo. 5s.

Double Entry Elucidated. By B. W. Foster. 12th Edit. 4to.
3s.' 6d.

A New Manual of Book-keeping. By P. Crellin, Accountant.
Crown Svo. 3s. 6d.

Picture School-Books. In Simple Language, with numerous
Illustrations. Koyal 16mo.

School Primer. 6d.—School Reader. By J. Tilleard. Is.—Poetry Book
for Schools. Is.—The Life of Joseph. Is.—The Scripture Parables. By the
liev. J. E. Clarke. Is.—The Sc^pture Miracles. By the E«v. J. E. Clarke.
Is.—The Now Testament History. By the Rev. J. G. Wood, M.A. Is.—The
Old Testament History. By the Rev. J. G. Wood, M.A. Is.—The Story of
Bunyan's Pilgrim's Prosress. Is.—The Life of Christopher Columbus. By
Sarah Cronipton. Is.—The Life of Martin Luther. By Sarah Crompton. Is.
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BOOKS FOR YOUNG READERS.
A Series ofReadingBooks desiqiied tofacilitate the acquisition ofthejyawer

ofReadincj by veripjouno Children. In 8 vols, linqj cloth, 8d. each.

The Cat and the Hen. Sam and his Dog Eedleg.
Bob aad Tom Lee. A Wreck.

The New-bom Lamb. The Rosewood Box. Poor
Fan. Sheep Doff.

The Story of Three Monkeys.
Story of a Cat. Told by Herself.

The Blind Boy. The Mute Girl. A New Tale of I

Babes in a Wood.

The Dey and the Knight. The New Bank Note.
The Royal Visit. A Kintf's Walk on a Winter's Day.

Queen Bee and Busy Bee.

Gull's Cragg.

A First Book of Geography. By the Eev. C. A. Johns.
Illustrated. Double size, l.*. J

Suitable

for
InfanU.

Suitable

for
Standard--
I. & 11.

BELL'S READING-BOOKS.
FOB. SCHOOLS AND PAROCHIAL LIBRARIES.

The popularity which the ' Books for Young: Readers ' have attained is

a sufiacient proof that teachers and pupils alike approve of the use of inter-
esting stories, with a simple plot in place of the dry combination of lottsrs and
syllables, making no impression on the mind, of which elementary reading-
books generally consist.

The Publishers have therefore thought it advisable to extend the application
of this principle to books adapted for more advanced readers.

Now Ready. Post 8vo. Strongly bound.

Grimm's German Tales. (Selected.) 1«.

Andersen's Danish Tales. (Selected.) 1«.

Great Englishmen. Short Lives for Young Children. Is.

!

Lamb's Tales from Shakespeare. (Selected.) l.s.

Edgeworth's Tales. A Selection. Is.

Friends in Fur and Feathers. By Gwynfryn. Is.

Parables from Nature. (Selected.) By Mrs. Gatty. Is.

Masterman Ready. By Capt. Marryat. (Abgd.) Is.&d,

Settlers in Canada. By Capt. Marryat. (Abdg.) ls.6d.

Gulliver's Travels. (Abridged.) Is.

Robinson Crusoe. Is. &d.

Marie ; or, Glimpses of Life in France. ByA. E. Ellis.

Suitable

for
Standards
II. & III.

Standards
ir. & V.

Poetry for Boys. By D. Munro. Is.

Southey's Life of Nelson. (Abridged.) Is,

Life ofthe Duke ofWellington, with Maps andPlans. Is.

The Romance of the Coast. By J. Eunciman.
[In the press. 1

Standard
ri.

LONDON:
Printed by Stramobways & Sohs, Tower Street, Upper St. Martin's Lane.







m
o
•H ji
ca o

M
9
CO

&

9
CO

O
•H

O
U

0)

University of Toronto

Library

DO NOT

REMOVE

THE

CARD

FROM

THIS

POCKET

Acme Library Card Pocket

Under Pau "Ret. ln(t«. Vli«"

Made by LIBRARY BUREAU



•\^'\ M

w
K

\ % y^'^- "' -^

il nn

\
\

\ '., \^ /' .-
, \,

\ '-. ''.
'

"'
I '\ .1^' ;;;''

^^^B

'

'''

i'

^Pv:.,:>
;:;*•t" r"-^^\

.
' \. " y :/

\ I

'WU^
\\


