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PEEFACE.

The object of the following treatise is to exhibit, in a concise

form, the elementary properties of the expressions known by

the name of Laplace's Functions, or Spherical Harmonics,

and of some other expressions of a similar nature. I do not,

of course, profess to have produced a complete treatise on

these functions, but merely to have given such an introduc-

tory sketch as may facilitate the study of the numerous

works and memoirs in which they are employed. As

Spherical Harmonics derive their chief interest and utility

from their physical applications, I have endeavoured from

the outset to keep these applications in view.

I must express my acknowledgments to the Rev. C. H,

Prior, Fellow of Pembroke College, for his kind revision of

the proof-sheets as they passed through the press.
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CHAPTER I.

INTRODUCTORY. DEFINITION OF SPHERICAL HARMONICS.

1. If V be the potential of an attracting mass, at any
point X, y, z, not forming a part of the mass itself, it is

known that Fmust satisfy the differential equation

da^^dy"^ dz^
" ^^^'

or, as we shall write it for shortness, V*F= 0.

The general solution of this equation cannot he obtained

in finite terms. We can, however, determine an expression

which we shall call V\, an homogeneous function oix,y, z

of the degree i, i being any positive integei', which will

satisfy the equation ; and we may prove that -to every such

solution Vf there corresponds another, of the degree — (i + 1),

V.
expressed by -^^ , where r^ =x'' + y^ + z\

For the equation (1) when transformed to polar co-ordi-

nates by writing x=r sin 6 cos
(f), y =r sin 6 sin (p, z = i- cos 0,

becomes

r
d'irV) 1 d / . ^dr\ 1 d'V ^ ,^.

dr^ sm dO \ dO J sm'* 6 dj> ^ ^

And since V satisfies this equation, and is an homo-
geneous function of the degree i, V^ must satisfy the equa-

tion

^ ^ * sm ^ c^o* V dO J nm'd d^
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since this is the form which equation (2) assumes when V
is an homogeneous function of the degree u

Now, put Vf = r"** Ui, and this becomes

or

... ,v xr 1 d f . ndU\ \ d^U. ^ f^.
i(r + l) ^ + -^-^^ sm^-jr' +-^—j -TT7 =0 (2).

^ ^ • sin ^ d^ V dd J sm' 6 d<\>'' ^ ^

Now, since Z7^ is a homogeneous function of the degree

—
Zj

l/ + r —-—

d^^u;)__.du,
dr" ~ dr

= *(*+ i)y';

or ^_^^_^^=.»(i+l);:^:

therefore equation (2) becomes

^ or- "^ sin ^ flf^ V''""
^ dd)'^ sin^ f^ "rf<^''

~ '

shewing that Ui is an admissible value of F, as satisfying

equation (2).

It appears therefore that every form of Z7j can be ob-
tained from y,, by dividing by r'^^, and conversely, that
every form of F, can be obtained from ^. by multiplying
by r*'*\ Such an expression as F^ we shall call a Solid

Spherical Harmonic of the degree i. The result obtained
by dividing F, by /*, which will be a function of two inde-

pendent variables 6 and <^ only, we shall call a Surface

Spherical Harmonic of the same degree. A very important
form of spherical harmonics is that which is independent
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of (j). The solid harmonics of this form will involve two of

the variables, x and y, only in the form a^ + y^, or will be
functions of x^ -\-y^ and z. Harmonics independent of ^ are

called Zonal Harmonics, and are distinguished, like spherical

harmonics in general, into Solid and Surface Harmonics.
The investigation of their properties will be the subject of
the following chapter.

The name of Spherical Harmonics was first applied tc
these functions by Sir W. Thomson and Professor Tait, in

their Treatise on Natural Philosophy. The name " Laplace's

Coefficients" was employed by Whewell, on account of

Laplace having discussed their properties, and employed
them largely in the Mecanique Celeste. Pratt, in his

Treatise on the Figure of the Earth, limits the name of

Laplace's Coefficients to Zonal Harmonics, and designates

all other sjjherical harmonics by the name of Laplace's

Functions. The Zonal Harmonic in the case which we shall

consider in the following chapter, i.e., in which the system
is symmetrical about the line from which 6 is measured,
was really, however, first introduced by Legendre, although
the properties of spherical harmonics in general were first

discussed by Laplace; and Mr Todhunter, in his Treatise,

on this account calls them by the name of "Legendre's

Coefficients," applying the name of "Laplace's Coefficients"

to the form which the Zonal Harmonic assumes when in

place of cos ^, we write cos ^cos^' + sin ^sin^'cos(^ — ^'),

The name " Kugelfunctionen " is employed by Heine,
in his standard treatise on these functions, to designate

Spherical Harmonics in general.

1—2



CHAPTER II.

ZONAL HARMONICS.

1. We shall in this chapter regard a Zonal Solid Har-
monic, of the degree i, as a homogeneous function of

{x^ +y^)K and z, of the degree i, which satisfies the equation

dx^
"^

dy'
"^

dz'

Now, if this be transformed to polar co-ordinates, by
writing r sin 6 cos <^ for x, ?-sin 6 sin ^ for y, r cos 6 for z, we
observe, in the first place, that x^ -f- y' = r^ sin'* 6. Hence
V will be independent of <^, or will be a function of r

and 6 only. The differential equation between r and 6

which it must therefore satisfy will be

a-r sm 6 dd \ dO J

Now "F, being a function of r of the degree i, may be
expressed in the form r*P^, where P, is a function of 6 only.

Hence this equation becomes

or, putting cos 6= fiy

In accordance with our definition of spherical surface

harmonics, P, will be the zonal surface harmonic of the



ZONAL HARMONICS. 5

degree i. When it is necessary to particularise the variable

involved in it, we shall write it P, (yx).

The line from which is measured, or in other words
for which yu. = l, is called the Axis of the system of Zonal
Harmonics; and the point in which the positive direction

of the axis meets a sphere whose centre is the origin of

co-ordinates, and radius unity, is called the Pole of the

system.

Any constant multiple of a zonal harmonic (solid or

surface) is itself a zonal harmonic of the same order.

2. The zonal harmonic of the degree i, of which the

line fi = 1 is the axis, is a perfectly determinate function of

/x, having nothing arbitrary but this constant. For the

expression 7*Pi may be expressed as a rational integral

homogeneous function of r and z, and therefore P^ will be
a rational integral function of cos 0, that is of fi, of the

degree i, and will involve none but positive integral powers
of/*.

But F. is a particular integral of the equation

|{(l-/)I^)j + i(' + l)/M = (3).

and the most general form of f(fi) must involve two ar-

bitrary constants. iSuppose then that the most general

form ofy(/i.) is represented by P^ Ivd//.. We then have

(1 - ''')^^ = (!-''')
?f •/»* + (1 - ^') ^'''

^f - ''
) -if]

=
T^ {(1

- "
) di^lH'^

+ 2(l-;.')f « + P.|((l-^')..}.

Hence, adding these two equations together, and ob-

serving that, since I\ satisfies the equation (3), the coefficient
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of IvdfjL will be identically e\\iaX to 0, we obtain, for tbe de-

termination of V, the equation

whence P. (1 -/x*) ^+ 2 1(1 -/x") ^-mP,|».= 0,

the integral of which is

log V + log'P/ (1 — fi^) = log Cj = a constant

;

a
v=

Hence Ivdfi = C+ C^ I -jj.

and we obtain, for the most general form oif{fi),

Now, P^ being a rational integral function of /x of i

r j1

dimensions, it may be seen that /tt ^', .. will assume the

form of the sum of i + 2 logarithms and i fractions, and
therefore cannot be expressed as a rational integral function

of /i. Expressions of the form P, I j- ^ p^, are called Kugel-

fiinctionen der zweiter Art by Heine, who has investigated

their properties at great length. They have, as will hereafter

be seen, interesting applications to the attraction of a sphe-

roid on an external point. We shall discuss their properties

more fully hereafter.

3. We have thus shewn that the most general solution

of equation (2j of the form of a rational integral function of a



ZONAL har:moxics. 7

involves but one arbitrary constant, and that as a factor.

We shall henceforth denote by Pj, or P^ {jx), that particular

form of the integral which assumes the value unity when /x

is put equal to unity.

We shall next prove the following important proposition.

If hie less than unity, and if (1 - 2/xh + h^)~"^ he exjianded

in a series proceeding hij ascending powers of h, the coefficient

of h' will he Pj.

Or, (1 -2/.h + h^)-^ = P„ + P,h + ... + P^h' + ...

We shall prove this by shewing that, if H be written for

(1 — 2/A/i + h^Y'-, H will satisfy the differential equation

For, since - ^= (1 - 2yu^ + /i')-^,

'''

E' dfjt,~
'

1 da „3
h dfji

'

= -2^^r+3(i-/.^)/p'^|^

= -2iJ.iP + s(i-fz')hrp.

, , 1 dE ,

^^^ m-dh^^-^\
d ,, T~r\ T7- 7 dE rrl /' 1 . '^ dE\

=^E'{l-2/jih + h' + h{fM-h)]

=/f^(i-M);
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.•.^.(*ff)=J-{fl'(i-M)}

= 3 (1 - ^/.) E' (i^-h)- iiH'.

= - 3/i£-' + 3 {(1 - /) A + (1 - iih){ji^h)] H'

= - SfiH' + S {fi {l + h') - 2fi'k] H''

= - 3/i [H' - (1 - 2/i/i + Ji") H']

= 0, since l-2fih + It' = H~^.

Therefore | jd " m')f} + Af,
(Aff) = 0.

This may also be shewn as followa

If X, y, z be the co-ordinates of any point, / the distance

of a fixed point, situated on the axis of z, from the origin,

and B, be the distance between these points, we know that.

and that
(i)--

Now, transform these expressions to polar co-ordinates,

by writing

JB = r sin ^ cos 0, y = r sin ^ sin ^, z = r cos 6,

and we get

R^ = r' - 2zr cos e -f z"",

and the differential equation becomes

'dr (£)+^/4'^'^i^^©H^'
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or, putting cos 6 = fi,

m-i}^-^m
Now, putting r = z'h, we see that

R^ 1

^, = 7*^-2^ + 1 = -^.,

I H
or P =~ '

II z

the above equation becomes

?|.(..0.|{(i-.',,^(f)} = o.

,(f (AH) , (f
f,,

^(^Hl .

4. Having established this proposition, we may proceed

as follows:

If
J5^

be the coefficient of /t* in the expansion of H^

H= 1 +pji + pji' + ...+pji' + ...

.-. hH= h + pji' +pji' + ...+ pJV*' + ...

/. h ^3 {hH) = 1 . 22},h + 2 . Spji' +...+i(i+ l)pji' + . .

.

Also, the coefficient of h* in the expansion of

Hence equating to zero the coefficient of A*,
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Also Pi is a rational integral function of fi.

And, when fi = l, 11= {l-2h + hy^

= l+/i + /t'+...+/t' + ...

Or when /* = 1, j^i
= 1-

Therefore Pi is what we have already denoted by ^^.

We have thus shewn that, if h be less than 1,

If h be greater than 1, this series becomes divergent.

But we may write

(A»-2M + l)-i = i(l-2^+^v'

since , is less than 1,
h

=!(-•4 +

ll,

~ h
+-^'+- ^^^ +

+ A'
+ •)•

Hence P^ is also the coefficient of h-^^'^'^'^ in the expan-

sion of (1 — 2fjJi + A') "^ in ascending powers of t when li is

greater than 1. We may express this in a notation which is

strictly continuous, by saying that

This might have been anticipated, from the fact that the

fundamental differential equation for Pj is unaltered if

— [i + 1) be written in place of i ; for the only way in

which i appears in that equation is in the coefficient of Pj,

which is i (i + 1). Writing — (i + 1) in place of i, this be-

comes — (i + 1) [— [i + 1) + 1} or (i + 1) i, and is therefore

unaltered.
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5. We shall next prove that

where t^ = ;^ -\-y^ -\- z^.

Let ^=(a^^ + 2/^ + ^T^=/(^^),

and let k be any quantity less than r.

Then [x^ +f + {z- Jcf]-^=/ (z - Ic),

and, developing by Taylor's Theorem, the coefficient of Ic' is

Also [x' +7f + {z- ky]-' = ('•' - 27^2 + Jc')--'

r \ r r

since z = ^ir,

in the expansion of which, the coefficient of h* is

P,

Equating these results, we get

The value of P^ might be calculated, either by expanding

(1 — 2fiJi + /t^)"-' by the Binomial Theorem, or by effecting the

differentiations in the expression (— 1)* —^ -^ .-r-.f- .
'-

^ ' 1 . 2.S ... iaz\rj

and in the result putting - = /j,. Both these methods how-

ever would be somewhat laborious ; we proceed therefore to

investigate more convenient expressions.
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6. The first process shews, by the aid of Lagrange's
Theorem, that

^ = 2M.L.... £(^-^)'

Let y denote a quantity, such that

h being less than 1,

Then
1

Abo (y_iy=i_^+i,;

.•3' = M + ''(^).

Hence, by Lagrange's Theorem,

therefore, differentiatiog with respect to /i and observing

that

^ = (1-2M + A0-*,

^i.a...»v^'l 2
;^--
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7. From this form of P^ it may be readily shewn that

the values of /a, which satisfy the equation P^ = 0, are all real,

and all lie between — 1 and 1.

For the equation

{(j^ — 1)* = has i roots = 1, and i roots = — 1,

— {fi^ - 1)' = has i - 1 roots = 1, {i- 1) roots = - 1, and l>^hj(^')

(yu,* — 1)' = has (t — 2) roots = 1, one root between 1

0-'

d/j,

on(

dfi

and 0, one between and = — 1, and {i — 2) roots = —1,

and so on. Hence it follows that

d' i i
-^. (jjb' — iy=0 has ^ roots between 1 and 0, and - roots be-

tween and — 1, if i be even,

I — 1 z — 1
and —^— roots between 1 and 0, —^— roots between and

1, and one root = 0, if i be odd.

It is hardly necessary to observe that the positive roots of

each of these equations are severally equal in absolute mag-
nitude to the negative roots.

8. We may take this opportunity of introducing an im-
portant theorem, due to Rodrigues, properly belonging to

the Differential Calculus, but which is of great use in this

subject.

The theorem in question is as follows:

If rale any integer less than i,

a^i-^{^ ^) -
1 . 2 ... ii + m) ^^ ^^ duT- ^* ^^ '
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It may be proved in the following manner.

If {x-—iy be differentiated i -m times, then, since the
equation

has ?* roots each equal to 1, and i roots each equal = — 1, it

follows that the equation

has i — {i — m) roots (i. e. m) roots each = 1, and m roots

each = — 1, in other words that {x^ — 1/" is a factor of

We proceed to calculate the other factor.

For this purpose consider the expression

(a; + aj (^+a,) ... (x + a,) (^ + ^J (a; + /SJ ... (a;+A).

Conceive this differentiated (I) i — m times, (II) i + m
times. The two expressions thus obtained will consist of an
equal number of terms, and to any term in (I) will corre-

spond one term in (II), such that their product will be
{x+ aj (x + a^) ...(x+ a,) {x + /S^) {x + ^,)...(x + /S,), i. e. the

term in (II) is the product of all the factors omitted from
the corresponding term in (I) and of those factors only.

Two such terms may be said to be complementary to each

other.

Now, conceive a term in (II) the product of p factors of

the form x + a, say x + a, x + a" ... x + a^\ and of q factors

of the form x+^, say x + /3^, x + ^^^...x + /S,,^,. "We must
liave p + q = i— m.

The complementary terra in (I) will involve

p factors a; 4-/3', x + ^" ... a: + /3"",

q factors x + a^, x + a^ ... x + a^J~.
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Now, every term in (I) is of i +m dimensions. We have

accounted for p+ q (or i — m) factors in the particular term
Ave are considering. There remain therefore 2???- factors to

be accounted for. None of the letters

can appear there. Hence the remaining factor must involve

m a's and m fi's,—say,

,^, ^...^.

There Avill be another term in (II) containing

{x + ^') {x + ^") . . . (a; + /S'-') {x + a) {x + a,) . . . (^ + aJ.

The corresponding term in (I) will be, as shewn above,

(^ + a') {x + o!') ... [x + rj-) {x + ^) (a; + /SJ ... (^ + ;8,J

{x + ^o) {x + ^o) ... {x-\-J) {x + ^jB) {x + ^^) ... {x + ^).

Hence, the sum of these two terms of (I) divided by the

sum of the complementary two terms of (II) is

(x + ^'x) {x + ./x) ... (x + ,„ot) {x + ^8) (x + ^8) ... {x+,^).

Now, let each of the a's be equal to 1, and each of the /S's

equal to — 1, then this becomes (x' — 1)'". The same factor

enters into every such pair of the terms of (I). Hence

-®- = (x^ - V]'"
(II) ^^ ^^ '

Or ^i->ii-^ = (•»' - 1)" ^^^ ' to a numerical

factor pres.

The factor may easily be calculated, by considering that

the coefficient of a;'"^ in
, ,-„> is2z(2z-l)...(t+m+l),

and that the coefficient of a;'"™ in ^~i^i.— '^^

2t (2i- 1) ... (^ + TO + 1) (i + to) ... (i - TO + 1).
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Hence the factor is

1
,or

1.2...(i-m)
{i + m) {i + m-l) ... (i-m + l)'

"'
1.2... {i + m)

'

9. This theorem affords a direct proof that Cj—̂ (jjJ' — iy,

C being any constant, is a value of / (/n) which satisfies the

equation

from above,

=.-(;+i)|;(/-i)'

d -i\£i^l f„'--[v\ = -ivl

or

cifjL

Hence, the given differential equation is satisfied by put-

Introducing the condition that P< is that value of / (fu)

which is equal to 1, when /t = 1, we get

1 d* , ,

•^*
" 2M.2...i d/Z'

^' " ^^'•

10. We shall now establish two very important proper-

ties of the function P. ; and apply them to obtain the develop-

ment of Pf in a series.
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The properties in question are as follows :

If i and m he unequal positive integers.

The following is a proof of the first property.

We have

Multiplying the first of these equations by P„, the second

by P^, subtracting and integrating, we get

+ [i (^ + 1) - m (m + 1)} jP.PJf^ = 0-

Hence, transforming the first two integrals by integration

by parts, and remarking that

we get

i {i +1) —m{m + l)=(i — m) (i+ m + 1),

+ {i-m) {i +m + 1)jP,PJiJL = 0,

or

(1 - /.^) (P„ f^
- P,^) + fi -m)(i + m + 1) \p,PJii=0,

since the second term vanishes identically.

F. H. ' 2
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Hence, taking the integral between the limits — 1 and
4- 1, we remark that the factor l—fi^ vanishes at both limits,

and therefore, except when i — m, or i*+ m + 1 = 0,

-1

We may remark also that we have in general

a result which will be useful hereafter.

11. We will now consider the cases in which

i — m, or I + m + 1 = 0.

We see that i + w + 1 cannot be equal to 0, if i and m are

botl^fcositii^ integers. Hence we need only discuss the

cas^n which m = i. We may remark, however, that since

Pj = P_(i+i,, the determination of the value of I P] d^i will also

give the value of I P^ ^_(v+i) <^/*-

The value of 1 Pidfi may be calculated as follows

:

(1 -2M+ ;i'^}-i = P„ + P,A + ... + P/t' + ...

;

.-. (1 -2/.A + ^T' = (Po+ Px^+ - + PJ^' + •••)'

= Po^ + P,'A^+... + P,7t^^+...

+ 1P,PJi + 2P„P/t« + . . . + 2P,P,/t' + . .

.

Integrate both sides with respect to /i. ; then since

/
(1 - 2fJi + hT)-"- dfi =-^ log (1 - 2fj^h + /O,2h

we get, taking this integral between the limits — 1 and + 1,

^log[^ =
J'

P,'dfi + h'fp,'dfj,+ ...+h''j'p,'df.+ ...

all the other terms vanishing, by the theorem just proved.
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Hence2(l + ^ + ...+2i:-^
+ ...)

=£ PJdfl + h'j'' P^'dfl + ... + /t"

J'
P.'dfM + ...

Hence, equating coefficients of A",

/
'/''^'' = 2/+-l-

• 12. From the equation 1 P^P„^d|l = 0, combined with

the fact that, when fi = l, Pj = 1, and that Pj is a rational

integral function of fi, of the degree i, P^ may be expressed

in a series by the following method.

We may observe in the first place that, if m be any

integer less than i, I |JJ^P^dfl = 0.

For as P^, P„_j . . . may all be expressed as rational in-

tegral functions of fi, of the degrees m, m — 1 ... respectively,

it follows that /Lt" will be a linear function of P^ and zonal

harmonics of lower orders, /a'""* of P,^, and zonal harmonics of

lower orders, and so on. Hence l/j^Pid/j, will be the sum of

a series of multiples of quantities of the form I PJPJfi,

m being less than i, and therefore I ijJ^Pidfi = 0, if m be any
J -1

integer less than i.

Again, since

(l-2/iA + 7iVi = P„ + P,A+...+P,/V+...

it follows, writing — h for A, that

(l + 2/xA + AV^ = P,-P,A+... + (-iyP,A'+...

2—2
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And writing — /m for fi in the first equation,

P;, P;...P/... denoting the values which P„ P,...Pt,
respectively assume, when —/a is written for /i. Hence
P! = P^ or —Pi, according as i is even or odd. That is,

P^ involves only odd, or only even, powers of L according ^
as i is odd or even*. '

Assume then

P, = ^,/i* + -4,_,/t*-*+...

Our object is to determine -4,, Ai_^....

Then, multiplying successively by /x*~*, fi^~*, ... and inte-

grating from — 1 to + 1, we obtain the following system of

equations

:

1
«-2 I I _'r?! L =0

2i-l 2i-'S'^'"'^ 2i-2s-l'^"' '

A A A

2i-3 2i-5 2i-2s-3

^i I
-"<-8+s^.-—K+ - H-^T^—:"'^-T + ... = 0.

2i-2s-l 2i-2s-3 2i-4s-l

And lastly, since P< = 1, when /x = 1,

the last terms of the first members of these several equa-
tions being

-^^, -r-^...—5, ^„, if I be even, :

13. The mode of solving the class of systems of equa-
tions to which this system belongs will be best seen by
considering a particular example.

* This is also eyideut, from the fact that Ft is a constant multiple of



ZONAL HAKMONICS. 21

Suppose then that we have

X y z ^
+ 7-T— + -r- = 0,a+a 6+ a c+a

a + /S ' 6 + y3
' C + /S

a?
_j_ ?/ _j_^_ ^ 1

a + (o b-\-(o c + co (o
'

From this system of equations we deduce the following,

6 being any quantity whatever,

X y z ^ 1^ {6 -a) (0-/3) ja+co) (h + o)) (c+ (o)

u+e b + d^c + d~ CO {(o-a){(o-l3){a+e){h+e){c+d)'

For this expression is of — 1 dimension in a, h, c, a, ^, y,

dy w; it vanishes when 9 — a, or 6 — ^, and for no other

finite value of 6, and it becomes = — , when 6 = «.

We hence obtain

'^'^^''^^\h+d^ c+dl <o {o,-a){co-^) (b+e){c+e) '

and therefore, putting 6 = —a,

__ 1 (a + oc)(a + /3) (a + co) (b + (o) (c + to) ^~
(o {a — b)(a — c) (tu — a) (<u — /S) *

with similar values for y and z.

And, if ft) be infinitely great, in which case the last

equation assumes the form a;-}-y + ^r=l, we have

_ (
a + «) (g+yg)

^~Xa-b){a-c)'
with similar values for y and z.

14. Now consider the general system

<^i + a< «.-2 + «< «i-2. + ai

+—v^— + ... +—•=?^— + ... = 0,
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+ -^'-^ +...+ —%—+..• =0,
Oi + ai_2, «<-2 + «<-2. «<-8. + «<-2

a, + o> ai_j+ o> ai_2. + « w '

the number of equations, and therefore of letters of the
i+ 1 • . i

forms X and a, being if t be odd, ^ + 1 if i be even ; and

I — 1 .

the number of letters of the form a being —^— if i be odd,

and ^ — 1 if » be even.

/
We obtain, as before,

^ i (6>-a,)(^-«,J...(6>-g,.J... (a,+o))(a^+ft))...(a^^+o))...

« (ft>-a,)(w-0—(«*-«*-8.)-- (a*+^)(a,_j+^)..-(a,_a.+ ^)...

and, multiplying by a,_j,-f ^, and then putting 6 = — a^,^,,

*-^
(o (o)-a,)(o)-a,_g)...(a)-a,_J...

(tti-s.- 0«) («i-2. - «.-2) • • • (a.-2. - «i or aj
*

15. To apply this to the case of zonal harmonics, we see,

by comparing the equations for x with the equations for Ay
that we must suppose w = co ; and

(^i
= i a^^ = i-2,...at_^, = i-2s...

a, = i-l, a,_5j = i-3,...aj_2, = i-2s- 1...

Hence

_ (2i -2s-l) (2^ -2s- 3). ..{2 (z - 2s) - 1|...

-^i-z'- (_2s) |_(25-2)}...{(i-25-l) or (i-2s)}

.(21-25-1) (2i-25-3)...{2(t-2s)-l|...= (-1)
2s (2s - 2).. .2 X 2. 4.. .(i- 25-1) or (i-2s)*
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Or, generally, if i be odd,

_ {2i-l) (2z-3)...(z + 2)

2.4...(i-l) »

. __(2i-3)(2i-5)...i
'-^~ 2.C^^Ci-3)x2 '

^ (2^-5)(2^-7)..(^•-2)
•-* 2.4...({-5)x2.4 '

_ V ^(^•-2)...3
^'-^ ^^ 2.4...(i-r)-

And, if I be even,

_ (2.-l)(2t-3)...(^+l)
*

2.4...Z

(2z-3)(2i-5)...(t-l)
'-='

2.4...(t-2) x2

^ (2t-5)(2t-7)...(t-3)
*-* 2. 4. ..(i- 4) X 2.4 '

_ J (z-l)(z-3)...l
^»~^~

^ 2:4:::i •

We give the values of the several zonal harmonics, from

Pj to P,o inclusive, calculated by this formula,

'^ 2 2

'

~ 2 '

-^3=2'" 2^"

_ 5/^° — 3/x

~ 2 '
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„_7.5 , 5.3 .8.1

„ 9.7 5 7.5 . 5.3

_ 63/x,''-70/x'+15/^

8
'

^ 11.9.7 , 9.7.5 , T^.S , 5.3.1
' 2.4.6'* 2.4 X li'* "''2x2.4'^ 2.4.«

_ 231m° - 315a6^ + 105/i." - 5

16

p ^ 13.11.9 , 11.9.7 5 9-7.5 3 7.5.3
' 2.4.6'^ 2.4x2^ "^2x2.4^ 2.4.6'^

_ 429/x,^ - 693/t'+ 315/i,^ - 25fi

16

^15 .13.11 .9 8 13.11.9.7 e 11.9.7.5 ,

* 2.4.6.8 '^ 2.4.6x2'* 2.4x2. 4^*

9.7.5.3 ,
^
7.5.3.1

2x2.4.6'* ' 2.4.6.8

_ 6435^" - 12012/^" + 6930/i* - 1260/t' + 35

128

17.15.13.11 a 15.13.11.9 7 ,
13.1K9^7 »

" ~ 2.4.6.8 ^ 2.4.6x2 '^ 2.4x2.4 '^

11.9.7.5 3 9.7.5.3

2x2.4.6'* '^2.4.6.8'*

_ 12155At°- 25740/i,'' + 18018/ - 4620/^' + 315/x~
128

*

_19.17.15.13.11 „ 17.15.13.11.9 3 15.13.11.9.7 ,

""2.4.6.8.10 '*- 2.4.6.8x2 '*'*'2.
4. 6x2. 4'*
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13.11.9.7.5 ,11.9.7.5.3 , 9.7.5.3.1
2.4x2.4.6'* '^2x2.4.6.8'* 2.4.6.8.10

^ 46189At"- 109395/+ 90090/^*^- 30030/^*+ 3465/t^- 63

256

It will be observed that, when these fractions are reduced

to their lowest terms, the denominators are in all cases

powers of 2, the other factors being cancelled by correspond-

ing factors in the numerator. The power of 2, in the

denominator of P^, is that which enters as a factor into the
continued product 1 . 2...i. fM C t^ '*T*T

t<^-<l-o t> Z^~^ . i^s k ^^

16. We have seen that / ^i!^P^.d^l = ^, if m be any

integer less than i.

It will easily be seen that \im-\-i be an odd number, the

values of I fju"* F^ . dfi are the same, whether fi be put = l or

— 1 ; but if «i + i be an even number, the values of IfjJ^ P^. d/j,

corresponding to these limits are equal and opposite. Hence,
(m + i being even)

and

j\'^p,.dfi=^2jyp,.dfi,

then
\

fi"'P^.d{ji = 0, if m = i-2,{-4<
Jo

We may proceed to investigate the value of / fJ^'^Pi- dfi,
Jo

if m have any other value. For this purpose, resuming the
notation of the equations of Art. 13, we see that, putting
6 = m + 1, and tu = x , we have

^' + ^-—T + + ^^=^^—r +Ot+m + l aj_jj + m + l ai_^ + m + l

^ (m + 1 - g,)(m + 1 -O ... Cm + 1 -Q ...
.

(a, + m+l)(a<_2+ m + l) ...{a^_^ + m-i- 1)...'
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and therefore, putting a;j = J.,..., a, = »..., aj=2 — 1...,

we get

1 A A A

(m-i + 2)(m-i+ 4)...(m-l) .... ,,= 7—^i—iTT—^—?\

—

I
—

. A\, , <^\ li * oe odd,
(»» + «+ l)(m + i-l) ... (7» + 4)(to + 2)

J (m — 1 + 2) (?» — 1*+4) ... w .„ .,
and = , . -,,,

—
. . -,

^

r^—w.—,—r-^ru * oe even.
(«i + * + 1) (w + 1 - 1) ... (w + 3) (m + 1)

In the particular case in which m = i, we get

f"^^^^ = (2.>l)(2>-l)...(> + 4)(^>2) ^*
'^^^'

2 . 4 . . . i
a-nd =7^-:

—

..w^-—T,
'"/—^TT—:—TT (zeven).

(2i+l)(24-l)... (t + 3)(i + l)
^ ^

17. We may apply these formulaB to develope any positive

integral power of /x in a series of zonal harmonics, as we
proceed to shew.

Suppose that m is a positive integer, and that /a*" is de-

veloped in such a series, the coefficient of P^ being (7^, so

that

then, multiplying both sides of this equation by P^ and inte-

grating between the limits — 1 and 1, all the terms on the

right-hand side will disappear except (7, P^^ dfi, which will

2
'

become equal to ^.—^ (7..^ 2t + l

Hence C, =^^ j\''P,d/M,

which is equal to 0, if w + i be odd. Hence no terms appear
unless m + 4 be even. In this case we have

•I a
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Hence tlie formula just investigated gives

• r - Wj- ^^
(m-t + 2)(m-i+4)...(w-l)

^*~^^'^ \m+ i+\){m + i-l)...{m + ^)(m + ^)

if i be odd, and

p _ /o;
, ^^

(m-t + 2)(m-t + 4)...w
^i - K-^ -^ ^)

{^rn + i+ 1) (m+ e- 1) ... (m + 3) (m+ 1)

if i be even.

Therefore if m be odd,

2.4.6...Cm-l)
/i"* _ (2w + 1)

^2^^ + 1) (2m - 1) ... (w + 4} {m + 2)
P™+...

+ 7
^-^ p+-i-p.^ * (OT + 4)(m + 2)^^m + 2 ^

If m be even.

m_/9 IN 2.4.6...W p
fi =(-«i + l;(2m + l)(2m-l)... (m4-3)(w+l) "'^••*

,5
^ P I

-*• P^ (m + 3)(m+l)^^m+l <»•

Hence, putting for m successively 0, 1, 2 ... 10, we get

2 ^ 7~) 7~l 7^ Tl

5 ^ ^ 5 '
i>

-Ip+^p.lp
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11.9.7 " 9.7 '7

63

=i«P+2fp+10 1

231 "77 * 21 =^7 "^

..^15 2.4.6
,11 4.6

. 7_6_ p .3
'^

15 . 13 . 11 . 9 ' ^ 13 . 11 . 9 '^ ^ 11 . 9 » "^ 9 »'

. -i6.p _8p 14 Ip
~ 429 ' 39 ' 33 =» 3

^'

2.4.6.8 4.6.8
'^ ~^^ 17. 15. 13. 11. 9^^ + ^'^

15. 13.11.9^'

4.9
^-^ p

I 5
^ p . ^p

• 13.11.9 '^11.9^^9 °'

_ 128 64 48 40 1
~ 6435 « "^ 495 "

"^
143 *

"*
99 ^»

"^
9 <"

^3= 19
2.4.6.8

,1,^
4.6.8

'^ 19.17.15.13.11 »^ 17.15.13.11 '

+ 11
^'^ p

I 7
^ p +sip^15.13.11^^ 13.11^^ 11 »'

^ 128 192 16 .56 3

12155 "
"^
2431 '

"^
65 ">

"^
143^ "^

11 "

^.0 _ 21
2.4.6.8.10 4.6.8 . 10_

'^ ~ 21.19.17.15.13.11 ""^^ 19.17.15.13.11 «

,13
6-8-lQ p .9 8-lQ p +5_15_p . J_p

17.15.13.11 "15.13.11 *^ 13.11 «^ 11 <•

-156 .128 32^ 48^ 50 Ip
~ 46189 ^"^ 2717 ' 187 " 143 *^ 143 *^ 11

"'
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18. Any zonal harmonic P^ may be expressed in a finite

series of cosines of multiples of 6, these multiples being

id, {i- 2)6.... Thus

{1 -2fih + hr^^ = P,+PJi + ... + PJi' + ...;

therefore, writing cos 6 for fi, and observing that

l-2coseh + h' = {l- Ae^'^i
«) (1 - Ae"^^*),

we obtain

(1 -he^~^'y^ (1 - Ae-^^«)-i = P„ + p^/i + ... + PJi'+.-r-

or

=P„+P,^ + ... + p,/i* + ...

whence, equating coefficients of h\

1.3. ..(2^-1) 1.3. ..(2^-3) 1

r*- 2.4... 2i
'^^''''^ + 2.4... (2i-2j2'^*^'^^'^* "^^

^

1.3...(2i-5)1.3„ ,. ,, .

+ o A )o-—^^ o~A 2 cos I - 4) ^ + ...

.

2.4 ... (2i — 4)2.4 ^ '

the last term beino^ J
' ",' —-.— \ if i be even, and

° \ 2.4 ...* J

'

«-^t /•
, IN 5—i

r-—r 2 cos e, if z be odd.
2 .4... (i + 1) 2.4... (i — 1)

19. Let us next proceed to investigate the value of

I
P^ cos mO sin 6 dd.

Jo

ii-c.^^ ^P'
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This miglit be done, by direct integration, from the above
expression. Or we may proceed as follows.

The above value of P, when multiplied by cos m6 sin

(that is by ^ (sin {m+1) 6 — sin {m — 1) 6]) will consist of a

series of sines of angles of the form {i — In ±{m ±1)] 6, that

is of even or odd multiples of 6, as i + m is odd or even.

Therefore, when integrated between the limits and tt it

will vanish, if i + rni be odd. We may therefore limit our-

selves to the case in which t +w is even.

Again, since cos mO can be expressed in a series of powers
of cos 6, and the highest power involved in such an expression

is cos "'^, it follows that the highest zonal harmonic in the

development of cos md will be P^. Hence / P^ cos mO sin 6 dO
Jo

will be = 0, if m be less than i.

Now, writing

P, = Ci cos 10 + C^ cos {t-2)e + ...

we see that P^ cos mO sin 6 dO will consist of a series of sines

of angles of the forms {m + i+V) 6, (m + i — l) 6 ... down to

[m — i— 1) 6, there being no term involving mO, since the

coefficient of such a term must be zero. Hence

Pj cos mO sin 6 d6,

will consist of a series of fractions whose denominators in-

volve the factors m + « + 1, w + 1 — 1 ... m — i—1 respectively.

Therefore when reduced to a common denominator, the result

will involve in its denominator the factor

(m + i+1) (m+*-l) ... (wi + 1) (m-1) ... {m-i-l)
if m be even, and

(m + i + l)(w + i-l)... (m + 2) (?/i-2) ... (w-e-1)
if m be odd.

For the numerator we may observe that since
r

P^ cosm 6 sin OddfJO
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vanishes if m be less than «*, it must involve the factors

wi — (i — 2), m — (z — 4) . . . w + (^ — 2), and that it does not
change sign with m. Hence it will involve the factor

{m - {i- 2)} [m - {i - 4)} ... (m - 2) m' (w + 2) ... (m + 1 - 2)

if m be even, and

[in - {i- 2)} [m - (t - 4)} . . . (jn - 1) (w + 1) . .. (m + 1 - 2)

if m be odd.

To determine the factor independent of m, we may pro-

ceed as follows

:

P, = (7, cos 10 + C,_^ cos (i- 2)0+ ...;

.'. Pj cos m6 = ^ (7j {cos (m ^i) 6 + cos (??i — t) 6]

+ 2 ^i-2 {cos (m + t- 2) ^ + cos (w - 1 + 2) ^} + ...

;

.'. Pj cos mQ sin ^ =
-J ^i 1^^° (w + 1 + 1) ^ — sin (m + 1 — 1) ^

+ sin (m — « +1) ^ — sin (m — i— 1) &\

+ T C'i.a [sin {m + i—\)Q — sin (??i + « - 3) ^

+ sin(w-/+ 3)^-sin(m-i+l) ^] + ...;

.•. I P; cos m^ sin Q dd

=5f__i ^^—1
2 [m + i + 1 w + i — 1 7U — t + 1 m — t — 1

2 (wi + i — 1 m + i— 3 w — t-f-3 m — i + l;

^ \ vi' - (i + If
"^
m' - {i - I)'-
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Now, when m is very large as compared with i, this be-

comes

o a+(7,_,+ ... _ 2
— — ^ j

— "" 2»m m
since C^ -f CTj + ... = 1, as may be seen by putting ^ = 0.

('"
. .2

Hence I P. cos mO sin ^ ci^ tends to the limit— „ , as m
is indefinitely increased.

The value of the factor involving m has been shewn
above to be

[m - (i - 2)} [m - (t- 4)} ... (m-2) m^(m + 2) ... (m+ {- 2)

[m - {i+l)\ [m - (i - 1)} ... (m - 1) (m + 1) ... (7/i + *+ 1)

if m be even, and

[m-{{~2
)] {

m-(t'-4)| ... (m- 1) (m + 1) ... (m + t-2)

{w - 1% + lj]{m - (i - 1)} ... (w - 2) (m + 2) ... (m + 1 + 1)

if m be odd.

Each of these factors contains in its numerator two factors

less than in its denominator. It approaches, therefore, when

m is indefinitely increased, to the value —j , Hence

/,
F^ cos mO sin 6 dO

{7n-(/-2)]{m-(/-4)]...(m-2)m'(m+ 2)...{m+ (t-2)}

{w-(i+l)][TO-(i-l)j...(m-l)(m + l)...im+(i + l)}

if m and « be even, and

_ _ \m - (z-2)| {m- (/-4)] ... (7n-l)(m+ l) ... [m+(/-2)}

{w-(t + l)}{m-(«-l)]...(m-2)(m+2)...[m+(« + l)}

if m and i be odd.

In each of these expressions i may be any integer such

that m — i is even, i being no^ greater than w. Hence they

will always be negative, except when i is efjual to m.
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20. We may apply these expressions to develop cos mO
in a series of zonal harmonics. •

Assume

cosm^ = J5„P^+5,„_,P_3 + ...+4P, + ...

Multiply by Pi sin 6, and integrate between the limits

and IT, and we get

_ 2
{m- (/- 2)} {m - (^•- 4)| ... {m+ (/- 2)} ^ 2

{w - {i + 1)} [7/1 - (^ - 1)} . . . [m + (/ + 1)} 2i + 1 '

Hence

7?- rg/ I
iN

^^-(^-2)}[^-(t-4)}...{7n + (^-2)}

Hence, putting m success]Lvely = 0,1, 2, ....10,

cosO^ =-Po-,

cos^ =-P.->

cos 26 =:-5-
2^

-1.1.3.-5^« -i-o

ip-
3 =>

-Ip.
3 '*'

cos 3^ =:_7-
2.4

-1.1.5.-7^'--.\-;^^

:«P.5^ -?P-

cos ^9 == -9-
2.4'

-1.1.3
.6

.5.7 r9^-
5-
+ IT

4'

3.577

-•A n

35 * 21^ 15 *"

F. H.
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^^ ,, 2.4.6.8 „ ^ 4.G

-1.1.3.7.9.11 ' 1.3.7.9 '

-3 J-P

_128 8 1

63 "^ 9 » 7^

'

2. 4. 6'. 8. 10

1.1.3.5.7.9.11.13
COS Go = — 16 —z,—^

—

» , ^^ ^ -...—T7i X^6

4 fi'^ 8 fi'^ 1

1.3.5.7.9.11 * 3.5.7.9^ 5.7 •

231 * 385 * 21 '^ 35

^^ _ 2.4.6.8.10.12 „^"^^^=-^"
-1.1.3.5.9.11.13.15

-^^

4.6.8.10 6.8 3^

1.3.5.9.11.13^ 3.5.9.11^ 5.9^

_ 1024 128 112 1

429 ' 117^ 495 « 15^'

2.4.6.8M0.12.14
cos 8^ = -17

1.1.3.5.7.9.11.13.15.17 '

' 4.6.8M0.12 6.8M0
1.3.5.7.9.11.13.15 " 3.5.7.9.11.13^

_ K
^'

P _ _i^_ p
5.7.9.11'* 7.9"

_ 16384 4096 p 256 p _ ^4 p_}^p
6435 « 3465 •* 1001^ 693 « g3 °'

2.4.6.8.10.12.14.16
cos 9^ = -19

-1.1.3.5.7.11.13.15.17.19

4.6.8.10.12.14 6.8.10.12
1.3.5.7.11.13.15.17^ 3.5.7.11.13.15 *

7 8.10 p g 1 p'5.7.11.13^ 7.11^
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_ 32768 3072 128 16 „ _^p,
"12155 • 2431 ' 455^ 143 » 77^'

2.4.6.8.10M2.14.16.18 '

cos iu(; - -^ _ 1 1 3 5 7 , 9 , 11 . 13 . 15 , 17 , 19 . 21 "

4.6.8.10M2.14.16
1.3.5.7.9.11.13.15.17.19^

6.8.10M2.14 8.10M2
3.5.7.9.11.13.15.17 ' 5.7.9.11.13.15^

5
iQ' p L.P

7.9.11.13 » 9.11 "

_ 131072 _ 32768 p __ ^2 ^ _^ ^500^
~ 46189 " 24453 ' 1683 « 1001 * 9009 *

99 »

21, The present will be a convenient opportunity for

investigating the development of sin^ in a series of zonal

harmonics. Since sin ^ = (1 — fi^)^, it will be seen that the

series must be infinite, and that no zonal harmonic of an odd

order can enter. Assume then

smd=C,P,+ G,P, + ... + C,P,+ ...

i being any even integer.

Multiplying by P^, and integrating with respect to jm

between the limits — 1 and + 1, we get

/
'P,sin^^/. = 2^^a;

= ?i±irp.sm'0de,
^ Jo

supposing Pi expressed in terms of the cosines of 6 and its

multiples

= ?i+irp.(l_cos2^)fZ^.

8—2
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Hence, putting i= 0,

1 3
Putting 1= 2, and observing that P^ = -t + ^ cos 20,

5 /' (1 + 3 cos 29) (1 - cos 20)

16i,

4 ' 4

d0

1 + 2 cos 2^ - 1 (1 + cos i9)\ dO

= -32''-

For values of i exceeding 2, we observe, that if we write

for Pj the expression investigated in Art. 18, the only part

of the expression I Pi (1 — cos 20) d0 which does not vanish

will arise either from the terms in Pj which involve cos 20, or

from those which are independent of 0. We have therefore

^ 2^+1 p ri^3^(*+^l) ij...(.-3)
^' 4 Jo L2.4...(t + 2)2.4...(^-2)'^''°'-'''

[1.3...(t-l)]n^l_^^g2^^^^
^[2.4... i

^ 2i-f 1 1.3...(t-l)1.3...(t-3)

4 •2.4... t 2.4... (V- 2)

• /;C-7-
+ ^2cos2^)(l-cos2^)cZ^

^ 2/+ 1 1 . 3 ... (t- 1) 1 . 3 ... (t - 3) fi-l i-¥\\

4 2.4... i 2.4... (z- 2) V i * + 2/

2^ + 11.3... {{-\) 1.3... (/-3)= — TT-
2 2.4...V(z + 2) 2.4...(*-2)**

Hence sin^ = ^P„- gl'P^- ...

(2t + l)7rl.3... (t-1) 1.3... (r-3) __

2 2A...%{i + 2)2A,..{i-2)i '

{ being any even integer.
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dP.
22. It will be seen that -r-' > beinoj a rational and intecrral

d/jb
° <=

function of /a'~S fi*'^..., must be expressible in terms of

-Pj-u -Pj-s"' To determine this expression, assume

then multiplying by P^, and integrating with respect to fi

from — 1 to + 1, /I / • ' « N
fi ^p /•! 2 1 /

c dP r dP Hi^h^^ ^

JNow, smce i>m, .

since either m or i must be odd, and therefore either P„, or

Pj = — 1, when /w. = — 1

;

.•.^'=(2t-i)i',_, + (»;-3)P,.,+(2;-9)p,,+...

23. From this equation we deduce

p,~p,_,=-i^^i-r)^P^Ji^,
J ft

the limits fi and 1 being taken, in order that P, - Pi.„ may
be equal to at the superior limit.

444685
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Now, recurring to the fundamental equation for a zonal
harmonic, we see that

ly^'^-W:^)^'-^'^
dPi^.

24. We have already seen that I PjP^cZ/i. = 0, i and m
being different positive integers. Suppose now that it is

required to find the value of I PiP^ d^i.

J u,

We have already seen (Art, 10) that

{i — m) (i +m + 1)Jm (i-m) a + m+l)

And, from above,

^ ^'
dfJi. 2771+1^"*+* "*-*'

•

\^PP ill-
^ fw(m+l) p ,p _p .

"Jm * "•^ (i-w)(*-|-«n-l)l2m + l •^'^^'"+1 ^-"-i^

i(v+l) _ I
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25. We will next proceed to give two modes of ex-

pressing Zonal Harmonics, by means of Definite Integrals.

The two expressions are as follows

:

* Trio {fx,±{fjL^-l)^coa^y^''

P^ =^ r [fi ± (ji^ -1)^ cos fydf.

These we proceed to establish.

Consider the equation

IT Jo a

d^

The only limitation upon the quantities denoted by a
and b in this equation is that ¥ should not be greater than
a^. For, if b'^ be not greater than a^ cos ^ cannot become

equal to r while ^ increases from to tt, and therefore the

expression under the integral sign cannot become infinite.

Supposing then that we write z for a, and V— 1 p for 6,

we get

1 p J^ ^ 1

TtJo — V— IpCOS^ (s*+/3*)^*

We may remark, in passing, that

r ^ - r ^
Jo s —V— Ipcos^ ^0 2 + *J — Ipcoa^

Jo'o z^ + p''cos'%*

and is therefore wholly real.

Supposing that p^ = x' + y'', and that x^+y'^ + z^=ir^,^\e

thus obtain

1 f' ^ 1

irJa z — 'sf—l p cos^

- i
tTc.^
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Differentiate i times with respect to z, and there results

y;

.1.

^ p r'« (-1)' tZ' p ^Hence i^, =— n o~o

—

^-i /—,-

* IT 1.2 .B...%dz^ Jqz — w — 1

TT Jo (z — V— 1 D(3_V-lpC0S^y^^

In this, write fir for 2r, and (1 — /u,'')- r for p, and we get

1 /•' <?^

^'"^Jo{/i-0^'-l)*cos^}'^^'

which, writing tt — ^ for ^, gives

^ 1
f-

^
^* 7rJo{;*+(/t^-l)icos^r'

26. Again, we have

1 1 f' dyjr

(a^—b^)^ "TT J Q a— b cos ylr'

In this write l-/u.h for a, and + Qx' - 1)* /t for b, which is

admissible for all values of h from up to fi—iji^ — Vp, and

we obtain, since a^ — b^ becomes 1 — 2fih + h\

(l-2M + A^^"^Jo l-/[t^+0[t*-l)Ucos>^

1 /•«• d^
,

"ttJo 1 - {fi ± (jl" -l)^ cos ylr]h*

.'.l+PJi+...+PJi' + ...

= i r df [l + {fi± 0*'-!)^ cosf] h + ...

+ {fi±{^'-l)^cosf]'h'+...].
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Hence, equating coefficients of h\

-Pi = ^
/" 1/^ ± (^' - 1)* cos y^Y df.

The equality of tlie two expressions thus obtained for P^ is

in harmony with the fact to which attention has already

been directed, that the value of Pj is unaltered if — (* + 1)
be written for i.

27. The equality of the two definite integrals which
thus present themselves may be illustrated by the following

geometrical considerations.

Let be the centre of a circle, radius a, C any point

within the circle, PGQ any chord drawn through C, and let

OC=b, GOP = %GOQ = yfr. Then CP^ ^a'^+b^- 2ab cos ^,

CQ^ = a' + h''-2abcosy}r. Hence

y(
{a" + 6" - 2ab cos ^) (a' +b'- lab cos f) = (a' - &7

;

sin ^ d!^ sin i/r <?^
+

-:^ ' a" + 6"' - %oh cos ^ a" -f
6"' - 2a6 cos -i/r

= 0.

^v/!^JuJ^ /'
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Again, since the angles OFC, OQG are equal to one

another,

sin^ 8inOP(7_ sinQ^(7 _8in>^

CP " OG ~ 00 ~ OQ '

sin ^ sin ^fr

" (ar+b^- 2ab cos^)* (a" + 6' - 2ah cos f)^
'

whence , j.
r
= 0.

(a' + 6' - 2ab cos ^)^ ^ (a* + 6* - 2a6 cos -f)^

J^^ (^--^T- (,.^,._^,,,,^^..
= -(a- + ^'-2a6costy^^.

In this, write a^ + ¥ = fi, 2ah = + {fjb^
— 1)^ , which gives

0^ — 1^ = 1, and we get

{M±o.'-i)4cosar
= - !'' ± (^' - ^)* <=°^ ^i'"^^-

We also see, by reference to the figure, that as ^ in-

creases from to TT, -^Ir diminishes from tt to 0. Hence

28. From the last definite integral, we may obtain an ex-

pansion of Pj in terms of cos 6 and sin 0. Putting fi = cos 6,

we get

1 /•«•

'^*^¥n-Jo
^^'^^^ ^+ V- 1 cos i/r sin $)]'

+ {cos ^ — V— 1 cos ^/r sin 6]^ d\fr

= - ['{(cosey-^^ cos'^ (cos ^r (sin^)'' +...
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+ <- 1)"*
'^'^~f,f~i^'^^^ i^^'rr (cos ey-'^ (sin ^-

AT f/ ,x2«^, (2m-l) (2m-3)...l
Now j/costrc?^=7r ^

2m(2m-2)...2
--

^•(^-l)...(^•-2m + l) (2m- 1) (2m-3)...l

1.2.. .2m 2m(2m-2)...2

_ ^(^•-l)...(^•-2m+ l)

(2.4....2mf
'

.-. P,= (cos ^)*_1^^ (cos 6T (sin 6)'+...



CHAPTER III.

APPLICATION OF ZONAL HAR5I0XICS TO THE THEORY OF

ATTRACTION. REPRESENTATION OF DISCONTINUOUS

FUNCTIONS BY SERIES OF ZONAL HARMONICS.

1. We shall, in this chapter, give some applications of

Zonal Harmonics to the determination of the potential of a
solid of revolution, symmetrical about an axis. When the

value of this potential, at every point of the axis, is known,
we can obtain, by means of these functions, an expression

for the potential at any point which can be reached from
the axis without passing through the attracting mass.

The simplest case of this kind is that in which the

attracting mass is an uniform circular wire, of indefinitely

small transverse section.

Let c be the radius of such a wire, p its density, k its

transverse section. Then its mass, M, will be equal to lirpck,

and if its centre be taken as the origin, its potential at any
M

point of its axis, distant z from its centre, will be r

.

Now, this expression may be developed into either of the

following series

:

cr 20^^ + 2.40* '"^^
^ 2A...2i c'i + -\-W»

•^ 274^*— + ^"^'*
2.4...2i 7^ + -l-(2)-

We must employ the series (1) if z be less than c, or

if the attracted point lie within the sphere of which the ring

is a great circle, and the series (2) if z be greater than c,

or if the attracted point lie without this sphere.
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Now, take any point whose distance from the centre is r,

and let the incUnation of this distance to the axis of the

ring be 0. In accordance with the notation ah^eady em-
ployed, let cos 6 ^ fji. Then, the potential at this point will

be given by one of the following series

;

1.3.5...(2^-1) r-'
]

+ (-1)
-~2T4.G...2i; ^=.,.. + -y(l)'

r \ " 2 '^r' 2.4 *r* ""

^^ ^^ 2.4. 6.. .2* ^^'r'^ + '"\-^^)'

For each of these expressions, when substituted for V,

satisfies the equation V^F = 0, and they become respectively

equal to (1) and (2) when is put = 0, and consequently

r = z. The expression (2') also vanishes when r is infinitely

great, and must therefore be employed for values of r greater

than c, while (1') becomes equal to (2') when r = c, and will

therefore denote the required potential for all values of r
less than c.

These expressions may be reduced to other forms by
means of the expressions investigated in Chap, 2, Art. 25, viz.

P^ = I r (^ + V/^^1 cos ^)' d%

or P, = ^
[ {fM +V/?^ cos f)-''+"

df.

Substitute the first of these in (!') and (observing, that

fxr = z) we see that it assumes the form

\:hTrc j I z c

.
1.3{^ +(^'-0^cos^r \j^
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which is equivalent to

Mr ^
'I.irJolc' + {z+ {z' - r')^ cos ^}^i

'

The substitution of the last form of P, in the series (2')

brings it into the form

Mr (

IT Jo 1s + (^ - r^)i COS ^ 2 {a 4. (/ _ ^^)h cos ^}^

1.3 c^ (^

which is equivalent to

Mr ^Mr
IT Jo [[2; + (^^-/)^cos^f + c']^*

2. Suppose next that the attracting mass is a hollow shell

of uniform density, whose exterior and interior bounding
surfaces are both surfaces of revolution, their common axis

being the axis of z. Let the origin be taken within the
interior bounding surface ; and suppose the potential, at any
point of the axis within this surface, to be

A^ + A^z + A^z^ + ... +A/+ ...

Then the potential at any point lying within the inner

bounding surface will be

A,P, + A,P,r + AJP,r' +... + A.P/ + ..,

For this expression, when substituted for V, satisfies the

equation ^^V=0; it also agrees with the given value of

the potential for every point of the axis, lying within the

inner bounding surface, and does not become infinite at any
point within that surface.

Again, suppose the potential at any point of the axis

without the outer bounding surface to be

„ ~
-,2 T^ „3 T^ • • • T^ „l+l • • • •

z z z z
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Then the potential at any point lying without the outer

bounding surface will be

For this expression, when substituted for V, satisfies the
equation V^ V= ; it also agrees with the given value of the
potential for every point of the axis, lying without the outer

bounding surface, and it does not become infinite at any
point within that surface.

By the introduction of the expressions for zonal har-

monics in the form of definite integrals, it will be found that

if the value of either of these potentials for any point in the
axis be denoted by <fi (z), the corresponding value for any
other point, which can be reached without passing through
any portion of the attracting mass, will be ,,, -- -*- " .

^ (f>{z + {z^-r')icos'^}d!^.
-f^^ a-e-^^'^-'^^^

3. We may next shew how to obtain, in terms of a series of

zonal harmonics, an expression for the solid angle subtended
by a circle at any point. We must first prove the following

theorem.

The solid angle, subtended by a closed plane curve at any
point, is ijroportional to the component attraction perpendicidar
to the plane of the curve, exercised upon the point by a lamina,

of uniform density and thickness, bounded by the closed plane
curve.

For, if dS be any element of such a lamina, r its distance

from the attracted point, the inclination of r to the line

perpendicular to the plane of the lamina, the elementary
solid angle subtended by dS at the point will be

ds cos e

And the component attraction of the element of the
lamina corresponding to dS in the direction perpendicular
to its plane will be

pk -y^ cos 9,
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p being the density of the lamina, k its thickness. Hence,
lor this element, the component attraction is to the solid

angle as pk to 1, and the same relation holding for every
element of the lamina, we see that the component attraction

of the whole lamina is to the solid angle subtended by the
whole curve as pk to 1.

Now, if the plane of xi/ he taken parallel to the plane

of the lamina, and V be the potential of the lamina, its

component attraction perpendicular to its plane will be

—
-J-, Now since Fis a potential we have V^V=0, whence

--V'''F=0, or V'^(--7-)=0. Hence -j- is itself a potential,

and satisfies all the analytical conditions to which a potential

is subject. It follows that, if the solid angle subtended by
a closed plane curve at any point {x, ;/, z) be denoted by
CO, CD will be a function of x, y, z, satisfying the equation

V'o) = 0. Hence, if the closed plane curve be a circle it

follows that the magnitude of the solid angle which it sub-

tends at any point may be obtained by first determining
the soHd angle which it subtends at any point of a line

drawn through its centre perpendicular to its plane, and
then deducing the general expression by the employment
of zonal harmonics.

Now let be the centre of the circle, Q any point on the

line drawn through perpendicular to the plane of the
circle, E any point in the circumference of the circle. With
centre Q, and radius QO, describe a circle, cutting QE in L.

From L draw LN, perpendicular to Q 0.

Let OE=c, OQ = z.

Then-^.E'i = (c* + ^)^-^, ON=:-^~^^[{c^+ z')^ -z]

z"
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And the solid angle subtended by tbe circle at ^

= 47r
2^

To obtain the general expression for the solid angle sub-

tended at any point, distant v from the centre, we first

develope this expression in a converging series, proceeding

by powers of z. This will be

"'^l'- c^2c^ 2.4c=^'" ^ ' 2.4...2i c""^^'"]

if z be less than c, and

-""llz' 2Az*^- ^ ^^ 2.4...2i r*+-j
if z be greater than c.

Hence, by similar reasoning to that already employed,
we get, for the solid angle subtended at a point distant r
from the centre, /

1° G ^2 c' 2.4 c=
^'

'^ '' 2.4...2i c'*""'

if ?' be less than c, and

[2 r' 2.4 7-' ^ ^ 2. 4.. .2* r^' ^•"J

if r be greater than c.

4. We may deduce from this, expressions for the potential

of a circular lamina, of uniform thickness and density, at an
external point. For we see that, if F be the potential of

such a lamina, k its thickness, and p its density, we have for

a point on the axis,

F. H.
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whence V=27rpk{(c^+ z')i-z}

if 21 be the mass of the lamina.

Expanding this in a converging series, we get

iff ,l^_hLl^ ^L^^^^'_

l1.3.(2^-3) g^^

^ '' 2.4.6...2i c''-^"^"'"'

if 2? be less than c, and

3_/flc'_lJ^c* 1.1.3 c'

c'l2« 2Az''^2A.6z' '"

1.1.3...(2i:-3) c^'

^ ^ 2.4.6...2i g«-i"^-"

if 2 be greater than c.

Hence we obtain the following expressions for the po-

tential of an uniform circular lamina at a point distant r

from the centre of the lamina :

Jl/fp
,

IP/ I.IP/

^ ^ 2.4.6...2* c"''-'

"^•'

]

if r be less than c, and

if (1 Po^ _1_J P/ 1.1.3 P/_
c'\2 r 2.4 7^ *'2.4.6 r" "*•

^ ^ 2.4. 6.. .2i 7^'-'
"*"

if r be greater than c.
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It may be shewn that the solid angle may be expressed

in the form

+ (2' — r^) - cos 6 ,/j
do,2^ of ^ + (^-0^cos^

h[c^+{z+ (z'' - r')i cos 0]']^

and the potential of the lamina in the form

~- r [c^ +[2 + {z' - r'f cos BYfd6-^.

5. As another example, let it be required to determine
the potential of a solid sphere, whose density varies inversely

as the fifth power of the distance from a given external point

at any point of its mass.

It is proved by the method of inversion (see Thomson
and Tait's Ncdural Philosophy, Vol. 1, Art. 518) that the

potential at any external point P' will be equal to- ,p, ,
0'

being the image of in the surface of the sphere, and M
the mass of the sphere. We shall avail ourselves of this

result to determine the potential at a given internal point.

Let C be the centre of the sphere, the given external

point. Join CO, and let it cut the surface of the sphere in A,
and in CA take a point 0\ such that CO.CO = CA\ Then
(/ is the image of 0.

Let P be any point in the body of the sphere, then we
wish to find the potential of the sphere at P.

Take as pole, and OC as prime radius, let OP = r,

POO= 0. Also let CA = a, C0 = c.

Let the density of the sphere at its centre be p, then its

density at P will be p -^ . Hence

M=2ir{\p^r'&vci6drdd,

4—2
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the limits of r being the two values of r which satisfy the

equation of the surface of the sphere, viz.

r^ -\-<r — 2cr cos 6 = a',

and those of 6 being and sin"* - .

c

Hence, if r^, r^ be the two limiting values of r, we have

Now 1,-1^^^4^(1-1).

,, 11 2c cos ^
Also - + - = —

r^ r^ c* - a*

1 1

ra'-c'sin'6>)^= 2
c —a

dd. . J/= — . -i—;-3 • ;r "2 COS ^sin e{a-c^ sin' 6')-'

= T-t'^sVo
['''' ''

COS ^ sin e (a' - c' sin' 6) ^ dO

_ 4 -rrpc*

Now, if F be the potential at P, we have (see Chap. i.

Art. 1)

(P{rV) ,1 d f . ^dV\ iirpc'

t/r sin^ d6 \ dO

}

i^
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This is satisfied by F= — ^ -^-r-.

Assume then, as the complete solution of the equation,

It remains to determine the coefficients A^, A^...A....B^,

B^...B., so that this expression may not become infinite for

any value of r corresponding to a point within the sphere,

and that at any point F on the surface of the sphere it may

be equal to 77-p, where O'P : OP :: a : c, and therefore, at

the surface,

p._ Mc 1 _ 4 Trpc"a*

a OP 'i{c'-a'fr'

And, at the surface, we have

r* - Icr cos ^ + c' - a' = ;

1 _ 1 / 1 2c cos 6\

(7? \
A^r+ -t/J P^+ ... identicallrj.

and B^, B^,...B,...A^, A^...A, all = 0.
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Hence since P» = 1,

2 TTpc''
f

1n^
\

and i? = ^
4 Trpc®

3c'-a^

whence we obtain, as the expression for the potential at any
internal point,

F=? "^pg" 3ff'-c' 4 Trpc" cos^ _ 2 Trpc'

3(c"-a7 r "^Sr-tt^*"^ 3"r' *

6. "We shall next proceed to establish the proposition that

if the density of a spherical shell, of indefinitely smcdl thick-

ness, be a zonal surface harmonic, its potential at any inteiiial

point will he propoHional to the corresponding solid har-

monic of positive degree, and its potential at any ecctei'nal

point will he proportional to the corresponding solid harmonic

of negative degree.

Take the centre of the sphere as origin, and the axis of

the system of zonal harmonics as the axis of z. Let b be the

radius of the sphere, 8b its thickness, U its volume, so that

U^iirb^Bb. Let CP, be the density of the sphere, P, being

the zonal surface harmonic of the degree i, and G any con-

stant.

Draw two planes cutting the sphere perpendicular to the

axis of z, at distances from the centre equal to f, f+ d^
respectively. The volume of the strip of the sphere inter-

dt ^ .

cepted between these planes will be ^ ZT^ and its mass will be

'"
' 26

^'

Now ^=bfi, hence d^=bdfi, and this mass becomes
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Hence the potential of this strip at a point on the axis of s,

distant z from the centre, will be

CU P,
^

which may be expanded into

'-^nd ^^(p^+ F,l+... + P,^, + ....)dfMiiz>b.

To obtain the potential of the whole shell, we must inte-

grate these expressions with respect to fi between the limits

- 1 and + 1. Hence by the fundamental property of Zonal
Harmonics, proved in Chap. II. Art. 10, we get for the po-

tential of the whole shell

9^=—f li+i at an internal point,

,?^4 at a. external point.

From these expressions for the potential at a point on
the axis we deduce, by the method of Art. 1 of the present

Chapter, the following expressions for the potential at any
point whatever

:

CTJ P.r*
Fj = —-.—= j^ at an internal point,

y-i= TT-—T -ITT at an external pomt.
' zi + 1 r ' ^

From hence we deduce the following expressions for the

normal component of the attraction on the point.

Normal component of the attraction on an internal point,

measured towards the centre of the sphere,

dV,_ J^ p/-'
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Normal component of the attraction on an external point,

measured towards the sphere,

In the immediate neighbourhood of the sphere, where r is

indefinitely nearly equal to &, these normal component at-

tractions become respectively

and their difference is therefore

And writing for TJ its value, 47rZ'^S5, this expression be-

comes
47rS6.CP,.

Or, the density may be obtained by dividing the alge-

braic sura of the normal component attractions on two points,

one external and the other internal, indefinitely near the

sphere, and situated on the same normal, by W x thickness

of the shell.

7. It follows from this that if the density of a spherical

shell be expressed by the series

Cj, Cj, Cg ... (7. ... being any constants, its potential (P"J at

an internal point will be'

and its potential
(
V^ at an external point will be

(C^p, \c,F,h \G.p}? 1 ap,&' ^

In the last two Articles, by the word "density" is meant
"volume density," i.e. the mass of an indefinitely small

element of the attracting sphere, divided by the volume of
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tlie same element. The product of the volume density of

any ej/jment of the shell, into the thickness of the shell in

the ireighbourhood of that element, is called "surface den-

sity^' We see from the above that, if the surface density

bo^ expressed by the series

the potentials at an internal and an external point will seve-

rally be

This variation in surface density may be obtained either

by combining a variable volume density with an uniform

thickness, as we have supposed, or by combining a variable

thickness with a uniform volume density, or by varying both

thickness and density.

8. We have seen, in Chap, ii., that any positive integral

power of
fj,,

and therefore of course any rational integral

function of //-, may be expressed by a finite series of zonal

harmonics. It follows, therefore, that we can determine the

potential of a spherical shell, whose density is any rational

integral function of /a.

Suppose, for instance, we have a shell whose density

varies as the square of the distance from a diametral plane.

Taking this plane as that of xy, the. density may be ex-

pressed by p^i?, <^ pj^. We have seen (Chap. ii. Art. 20)

that

/.^ = |(1 + 2P,).

Hence, by the result of the last Article, the potential

will be
U /I 2 P r\

p .-)[r + ^ -h- ] at an internal point.
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p "o ( ~ + K ~~T~j ^^ ^^ external point

;

or, since F^r' = -^—-— r =—^— , we obtain

TT /I 1 *^2^ r^\

p „- (r + - —rs— ] for the potential at an internal point,

p-o i~+'f(—3"^—s")!^"^^ *^^^ ^* ^^ external point.

9. As an example of the case in which the density is re-

presented by an infinite series of zonal harmonics, suppose we
wish to investigate the potential of a spherical shell, whose
density varies as the distance from a diameter. Taking this

diameter as the axis of z, the density will be represented

by p sin 0, or p (1 — fj^)'^.
We have investigated in Chap. Ii.

Art. 21, the expansion of sin 6 in an infinite series of zonal

harmonics. Employing this expansion, we shall obtain for

the potential

Ti^Ilp-lpr!- l-3...(i-l) 1.3...(z-3) r* 1

2 6 [2 « IQ n' '" 2.4...t'(i+2) ' 2.4...(i-2>* '¥ '"]'

or

^.rrjl^o.lp^^ 1.3...(t-l) 1.3...f^-3) l^
\

2 ^ (2 r 16 V •*
2.4..i(t+2)'2A..(i-2)i V^' "']'

according as the attracted point is internal or external to the

spherical shell, i being any even integer. All these expres-

sions may be obtained in terms of surface density, by writing,

instead oi pU, ^iirc^a:

10. We may next proceed to shew how the potential of

a spherical shell of finite thickness, whose density is any solid

zonal harmonic, may be determined. Suppose, for instance,

that we have a shell of external radius a, and internal radius

a, whose density, at the distance c from the centre, is

V7 P4C*, h being any line of constant length.

Dividing the sphere into concentric thin spherical shells,

of thickness dc^ the potential of any one of these shells, of
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radius c, at an internal point distant r from the centre will

be obtained by writing c for h, jj- for G, ^ir&dc for U, in

the first result of Art. 6. This gives

p 47rcWc PJr^ 47r P -r> , ^

J i IT-—T frT or —.—r- f .
F.rcdc.

/i* 2i + 1 c*^ 2^ + 1 /i' *

To obtain the potential of the whole shell, we must inte-

grate this expression, with respect to c, between the limits

d and a. This gives

2i + 1 /i*
^ '

Again, the potential of the shell of radius c, at an external

point, will be

£47rcVcP,c" _^ e-P^l'^
U 2i + 1 7^^' ^^ 2i + i h' * r'^'

Integrating as before, we obtain for the potential of the

whole shell,

47r p ^ (d''-''-a"'^')

(2i+l)(2i + 3) h'

Suppose now that we wish to obtain the potential of the

whole shell at a point forming a part of its mass, distant r

from the centre. We shall obtain this by considering sepa-

rately the two shells into which it may be divided, the

external radius of the one, and the internal radius of the

other, being each r. Writing ?' for a, in the first of the fore-

going results, we obtain

2z + 1 /t'
^ ^

And writing r for a in the other result, we obtain

47r pP, r^-a'^
{2i + 1) {2i + 3) h* r'"-' '

Adding these, we get for the potential of the whole
sphere

21+1 h' I" 2 ''
"^

(2i + 3)0'
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It is hardly necessary to observe that the corresponding

results for a solid sphere may be obtained from the foregoing,

by putting a' = 0.

If the density, instead of being ^ P^ c\ be ~;^ P^ c", similar

reasoning will give us, for the potential of the thin shell of

radius c and thickness dc at an internal and external point

respectively,

And, integrating as before, we obtain for the potential of

the whole shell,

-,^^—^f'^ . o^ -feP/a'^-'^^-a'"'-"") r* at an internal point,
(2i + l)(m — j + 2) /t ^ ' r

'

47r
m+*+3 _ 'JIl-H+3

y^Pj ^.+j at an external point.
(2i + l)(m + z + 3)/r * r

And, at a point forming a part of the mass,

\ m — I +2 ,i+l
2i + 1 /i'" V w - 1 + 2 w + i + 3 r

11. Suppose, for example, that we wish to determine, in

each of the three cases, the potential of a spherical shell

whose external and internal radii are a, a', respectively, and
whose density varies as the square of the distance from a
diametral plane.

Taking this plane as that of xy, the density may be ex-

p n „ 2P +1
pressed by p2^ or j-.^c^fi'. Now /i^ =—^— . Hence the

density of this sphere may be expressed as

The several potentials due to the former term will be,

. . 2
writing 2 for * and multiplying by ;r

,
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r —a
-773-

15 A"*
^* * ^^'lOoP^ 7'^ ' 15 K' \ 2 ^

And for the latter term, writing for i, and 2 for m, and

multiplying by .,,

4'7r p . 4_ ,4. 4^ ^ o^cT' 47r ^ / g'^ - r* r^-a^

And, since P^r^ = -^,5— , we get for the potential at an

internal point

at an external point

p [^ir a! — a'' ,„ „ „, 47r dC" — a'^)

h' (lOo r* ^
'^ lo r j

at a point forming a part of the mass

P f4.r /g- - r- r-- g'^ 47r /g^-/ r»-a-^[

/ini5 V 2 +^;^;^'^^ "^^+3 14 + Srjj-

12. We may now prove that by means of an infinite series .

of zonal harmonics we may express any function of /u. what-
ever, even a discontinuous function. Suppose, for instance,

that we wish to express a function which shall be equal to

A from /A = 1 to
fj^
= \, and to B from yu- = X to //,= — !.

Consider what will be the potential of a spherical shell,

radius c, of uniform thickness, whose density is equal to A
for the part corresponding to values of fx. between 1 and X,

and to B for the part corresponding to values of yj between X
and — 1.

Divide the shell, as before, into indefinitely narrow strips

by parallel planes, the distance between any two successive

planes being c(i/i.
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We have then, for the potential of such a sphere at any
point of the axis, distant z from the centre,

for the first part of the sphere

and for the latter part

.p.^-rrBc'hc
'

^^

These are respectively equal to

27rAc^hc

c

2'n-Bc'Bc r^

/;(p„+p.I+p,^+...+p4+....)<;;.,

£(p.+p,?+p,i:+...+p,^:+....)<7^,

at an internal point ; and to

27rAc'Bc

z
/;(p.+p.£+...+p.^.+..,.)rf^,

£(p.+p,^^+...+p.^.+....)<7^.
z

at an external point.

Now it follows from Chap. II. (Art. 23) that if i be any

positive integer,

whence, since I P^cZ/a = 0, it follows that



TO THE THEORY OF ATTRACTION. C3

Also I F.dfi = 1 -\,
J

F.dfM = 1 + X.

Hence the above expressions severally become :

For the potential at an internal point on the axis

'Ittc'Sc
A{l-X) + B{l + X) -^L^{P^{x) -P,(X)}

A-B,^,^. . z

c

'^5-l-PsW--P.Wl^

-^i^«w-f-w)|--
and for the potential at an external point on the axis

27rc'Sc 4(l^L+^l±^_^(P^(,)_P,(,))j

Hence the potentials at a point situated anywhere are

respectively

c
[(4{l-X)+iJ(l+X)}P»

^^tP,(X)-P»!SM:i-

A-B
{P.(\)-P.W)^^'-

|^if(P,„W-P,-.Wl^'

at an internal point;
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aud

^TTc'Sc [{A (1 - X) + B{1 + X)} -j^

at an external point.

Now, if we inquire what will be the potential for the

following distribution of density,

i[A{l -\) + 5(1 + X) - iA-B)[PXX) - Po(^)}i'x(/^)

-(A-B){F,{X)-P,(X)]P,i/.)-...

-{A- B)[P,M - i^..,(X)|P,0.) -...],

we see by Art. 6 that it will be exactly the same, both at

an internal and for an external point, as that above in-

vestigated for the shell made up of two parts, whose densities

are A and B respectively.

But it is known that there is one, and only one, dis-

tribution of attracting matter over a given surface, which
will produce a specified potential at every point, both ex-

ternal and internal. Hence the above expression must
represent exactly the same distribution of density. That is,

writing the above series in a slightly ditferent form, the

expression

^-^[x+ {P.(X)- P,(X)}P»

+ {P,{-^.)-PMP.iM') + -
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is equal to A, for all values of fi from 1 to \, and to B for all

values of fju from X, to — 1.

13. By a similar process, any other discontinuous function,

whose values are given for all values of fi from 1 to — 1, may
be expressed. Suppose, for instance, we wish to express a
function which is equal to A from fji,

= lto fi = \, to B from

fjb = \ to fji. = \, and to C from fi =X^ to fjL = — l. This will

be obtained by adding the two series

+ [pu\)-p^-^i\)]pi(f^') + -l
For the former is equal to A —B from /x = 1 to /u. = X^,

and to from /* = X^ to /* = — 1 ; and the latter is equal to

B from /j, = l to fi = \, and to G from fi = \ to fi =— 1.

By supposing A and C each = 0, and 5 = 1, we deduce a

series which is equal to 1 for all values of
fj,
from /j, = \to

/jb = \, and zero for all other values. This will be

I [\ -\ + {PM-P.(^^ - P„(XJ-P„(X,)]P,(^) + ...

+ {Pi.A\) - Pi.^i\) -pa\) -p^^i\m (^) +•••].

This may be verified by direct investigation of the

potential of the portion of a homogeneous spherical shell,

of density unity, comprised between two parallel planes,

distant respectively c\ and c\ from the centre of the

spherical shell.

14. In the case in which Xj and \ are indefinitely nearly

equal to each other, let X,= X,, and Xj = X, + d\. We then

have, ultimately,

PM-P.i\)=^-^dX.

F. H. 5
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Hence ]>^,{\) - P,,(\J - P,_,(XJ - P,,(\J

\ d\ d\ )

Hence the series'

^ {1 + 3P,(X)P» + 5PJ:k)PM + '•-

+ (2^ + l)P,(\)P,(/.) + ...l

is equal to 1 when fi= \ (or, more strictly, when fi has any
value from X to X + dX) and is equal to for all other values

of /It.

We hence infer that .

l+3P,(X)P» + ... + (2i + l)P,(X)PX/.)-f... ^"^
is infinite when fi— \, and zero for all other values oi /m. f "^

"^

15. Representing the series

i(l + 3P,^X)P,(/.) + ... + (2t + 1)P,(X)PX/.) + .,.}'

by <^(X) for the moment, we see that p(j>{\)d\ is equal to p
when /i = X, and to zero for all other values. Hence the

expression

is equal to p^ when fji = \y^ to p, when fi = \i:. Supposing
now that \, \... are a series of values varying continuously

from 1 to — 1, we see that this expression becomes

r pif>{X)dK
•' -1

p being any ftmction of X, continuous or discontinuous.

Hence, writing <p{X) at length, we see that

^fjd\ + 2P,{fi)f pP,(X)cZX+...

+(2*+i)p.(/.)J%p,(xyx+..j

is equal, for all vaIucs of /* from — 1 to + 1, to the same
function of /x that p is of X.
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16. The same conclusion may be arrived at as follows

:

The potential of a spherical shell, whose density is p,

and volume U, at any point on the axis of z, is

EC pd\

which is equal to -^< I pdX -i— I pPi(X)d\+ ...

for an internal point,

U(l f^ c r*
and to 2]-/ pd\-\-~2l pPi{X)d\+ ...

+ ^,j ^pP]{\)d\ + ..X,

for an external point.

It hence follows that the potential, at a point situated

anywhere, is

for an internal point,

and to Ei^lj\dX+?^'f^pP,{X)dX + ...

r

for an external point.

And these expressions are respectively equal to those

for the potentials, at an internal and external point re-

spectively, for matter distributed according to the following

law of density

:

6—2
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I |J'
pd\ +SPMf pP,{\)d\ + ...

+ (2t + l)P,{fM)f pP,{\)d\ + . .j

.

It will be observed, in applying this formula, that if p be
a discontinuous function of \, each of the expressions of the

form
I

pP.{\)dX will be the sum of the results of a series of

integrations, each integration being taken through a series of

values of \, for which p varies continuously.



CHAPTER IV.

SPHEEICAL HARMONICS IN GENERAL. TESSERAL AND SEC-

TORIAL HARMONICS. ZONAL HARMONICS WITH THEIR

AXIS IN ANY POSITION. POTENTIAL OF A SOLID NEARLY
SPHERICAL IN FORM.

1. We have hitherto discussed those solutions of the
equation V'^F=0 which are symmetrical about the axis of z,

or in other words, those solutions of the equivalent equation in

polar co-ordinates which are independent of ^. We propose,

in the present Chapter, to consider the forms of spherical

harmonics in general, understanding by a Solid Spherical

Harmonic of the ^^ degree a rational integral homogeneous
function of x, y, z, of the i^ degree which satisfies the equa-
tion V^F= 0, and by a Surface Spherical Harmonic of the

i* degree the quotient obtained by dividing a Solid Sphe-

rical Harmonic by {p^ + ?/''+ s^)^ Such an expression, as we
see by writing a; = r sin ^ cos ^, y = r sin ^ sin ^, z = r cos 6,

will be of the i^ degree in sin ^ cos 0, sin ^ sin <^, cos^; and
will satisfy the differential equation in F^

sm Q dQ\ dd / sm^ 6 d(f>^
\ > / i

>

or, writing jx for cos 9,

d L^ 2sdY^ 1 (fr, ... ,. ^, ^

It will be convenient, before proceeding to investigate the
algebraical forms of these expressions, to discuss some of
their simpler physical properties.

2. "We will then proceed to shew how spherical har-
monics may be employed to determine the potential, and
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consequently the attraction, of a spherical shell of indefinitely

small thickness.

"We will first estabhsh an important theorem, connecting

the potential of such a shell on an external point with that

on a corresponding internal point. The theorem is as follows:

If he the centre of such a shell, c its radius, P any in-

ternal point, P' an external point, so situated that P' lies on
OP produced, and that OP . OP' = c', and if OP = r, OP' = r',

then the potential of the shell at P is to its potential at Y
as c to T, or {which is the same thing) as r' to c.

For, let A be the point where OP' meets the surface of

the sphere, Q any other point of its surface. Then, by a
known geometrical theorem,

QP: QF y.AP'.AF ::c-r: r'^c.

. , c — r cr — i^ cr — r^ r c
And -7—

r — c rr — cr c — cr c r

Again, considering the element of the shell in the im-

mediate neighbourhood of Q, its potential at P is to its

potential at P' as QP' is to QP, that is, as c to r, or (which

is the same thing) as r' to c, which ratio, being independent

of the position of Q, must be true for every element of the

spherical shell, and therefore for the whole shell. Hence
the proposition is proved.

3. Now, suppose the law of density of the shell to be

such that its potential at any internal point is F (ji, <p) —i

.

c

r*
Then F (jjl,

<f))
'-^ must be a solid harmDnic of the degree t.

c

Hence F (ji,
(f>)

must be a surface harmonic of the degree i.

Let us represent it by y,.

By the proposition just proved, the potential at any
external point, distant r from the centre, must be

Y ~—
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Hence, the component of tbe attraction of the sphere on
the internal point measured in the direction from the point

inwards, i. e. towards the centre of the sphere, is

c*

And the component in the s^iae direction of the attraction

on the external point, measured inwards, is

Now suppose the two points to lie on the same line

passing through the centre of the sphere, and to be both

indefinitely close to the surface of the sphere, so that r and r

are each indefinitely nearly equal to c.

And the attraction on the external point exceeds the

attraction on the internal point by

{2i + l)
c

Now, supposing the shell to be divided into two parts,

by a plane passing through the internal point perpendicular

to the line joining it with the centre, we see that the at-

traction of the larger part of the shell on the two points will

be ultimately the same, while the component attractions of

the smaller portions, in the direction above considered, will

be equal in magnitude and opposite in direction. Hence the

Y
difference between these components, viz. (2i+ 1) —^ , will be

c

equal to twice the component attraction of the smaller

portion in the direction of the line joining the two points.

But if /3j be the density of the shell, 8c its thickness, this

component attraction is 27rpj^c. - ^ ZH^lS^jJ^'^

Y.
Hence (2i+ 1)

—
' = 4;TrpfBi,,

2i+l „

Fc-
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And, if 0-, be the corresponding surface density,

^ It hence follows that if the, .petentift^f a spherical shell,

of indefinitely small thickness, he a surface harmonic, its

potential at any internal paint will he proportional to the

corresponding solid harmonic of positive degree, and its po-
tential at any external point luill he proportional to the

corresponding solid harmonic of negative degree.

That is, the proposition proved for zonal harmonics in

Chap. III. Art. 6, is now extended to spherical harmonics in

general.

4. The spherical harmonic of the degree i luill involve

2i + 1 arhitrary constants.

'-^. ju >For the solid spherical harmonic, r*Yj, being a rational

\ r integral^function of x, y, z of the i^'^ degree, will consist of

(i + l) (t + 2)~ terms. Now the expression V'F, being a

rational integral function of x, y, z of the degree t — 2, will

consist of -^—^-^ terms ; and the condition that it must be

= for all values of x, y, z, will give rise to -^

—

-— relations

among the ^^ -— coefficients of these terms, leaving

({+l)(i + 2) {i-V)i «. ^ . , J . ^ . .~ -~—
, or 2t + 1, mdependent coemcients.

5. We proceed to shew how the spherical harmonic of the

degree i may be arranged in a series of terms, each of which
may be deduced by differentiation from the Zonal Harmonic
symmetrical about the axis of z. The solid zonal harmonic,
which, in accordance with the notation already employed, is

represented by r^P^ (/i), is a function of z and r of the degree i,

d^V d^V d^V
satisfying the equation V^F= 0, or -r-z- + ^-9- + t-? = 0.^ dx dy dz

Now, if we denote this expression by P, {z), we see that
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since it is a function of z and r, it is a function of the dis-

tance (z) from a certain plane passing through the origin, and
of the distance (r) from the origin. Further, if we write for z

the distance from any other plane passing through the origin,

dW <PV d^V
leaving r unaltered, the equation -j-i "^ 3~2 + ~;7~a

=0 will

continue to be satisfied.

Now z + a(x + J—ly), a being any quantity whatever,

represents the distance from a certain plane passing through
the origin, since in this expression, the sum of the squares

of the coefficients of z, x, y is equal to unity. Hence

Pj {2 + a (« + •/— 1^)} is a sohd zonal harmonic of the

degree i, its axis being the imaginary line - = — = z.

Therefore the equation

dx''^ dy''^ dz'
'

is satisfied by V=Pi [z + a (x+ '^—ly)}, that is, expanding
by Taylor's Theorem, it is satisfied by

P^{z)+a{x + '^-ly)—^ + ^-^(x +'^-lyy—^ + ...

a*(x + ^^lyydT,(z)
^

1.2... i dz' '

for all values of a.

Hence, since the equktion in V is linear, it follows that

it is satisfied by each term separately, or that, besides Pj (2)

itself, each of the t expressions,

satisfies the equation F=0.
By similar reasoning we may shew that each of the i ex-

pressions,

satisfies the same Equation.
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Now each of the 2i solutions, thus obtained, is imaginary.

But the sum of any two or more of them, or the result

obtained by multiplying any two or more by any arbitrary

quantities, and adding the results together, will also be a

solution of the equation. Hence, adding each tenn of the

first series to the corresponding term of the second, we ob-

tain a series of i real solutions of the equation. Another
such series may be obtained l?y subtracting each term of the

second series from the corresponding term of the first, and

dividing by V— 1. "We have thus obtained (including the

original term Pi{z)) a series of 2/+1 independent solutions

of the given equation, which will be the 2i + 1 independent

solid harmonics of the degree i.

6. We may deduce the surface harmonics from these by
writing r sin 6 cos

<f>
for x, r sin 6 sin ^ for y, r cos 9 for z,

and dividing by r*. Then, putting cos d = ii, and observing

that P, iz) = rT, (/.), ^^ = r* ^^^^ ... we obtain the fol-
dZ ClfjL

lowing series of 2* + 1 solutions

:

cos<^sin^^5i^\ cos2</>sin'^'?:^*l'^, ... cosi<^sin*^^^

sm<^ sm 6
'

, sm 2<j> sm^6 —72 . • ;• sin e^ sm'^ ' f ,

Expressions of .the form

Ccoso-«^sin-^^^\

„ . _. . ^d'^PM
or /Ssmo-^sm""^

—

, ^ ,

or their equivalents,

ccos<7<^a-^fi?^\
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{0 and S denoting any quantities independent of 9 and 0)
are called Tesseral Suifaee Harmonics of the degree i and
order a. The particular forms assumed by them when
<T = i are called Sectorial Surface Harmonics of the degree i.

It will be observed that, since —r-^- is a numerical constant,
dfi

Sectorial Harmonics only involve 6 in the form

The product obtained by multiplying a Tesseral or

Sectorial Surface Harmonic of the degree i by r* (that is,

the expression directly obtained in Art. 5) is called a Tesseral

or Sectorial Solid Harmonic of the degree i.

7. We shall denote the factor of a Tesseral or Sectorial

. . . d'^P ill)
Harmonic which is a function of 6. that is sin"^^—7^-^

, or

(1 —fi^y ,
' ^ , by the symbol Tf"^^, or, when it is necessary

to particularize the quantity of which it is a function, by

It will be convenient, for the purpose of comparison with
the forms of Tesseral Harmonics given in the Mecanique
Celeste, and elsewhere, to obtain T^^ in a completely de-

veloped form.

AT • 75. ^
1 d'ifi'-iy

JNow, smce JriUi) =777—
i

—

7^--: .

—

-^.—-, we see that

dfi'' ~2M.2.3...t dfj^+''

~2.\i.2.d...idfi'--Y' ~i ^~T:2r^
~*

= 2i(2i-l)...(z-o-+l)At^-'
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-
J

{2i - 2) (2t - 3)...(i - o- - 1)
/z^-'-a

+
"-yf^ (2* - 4) (2i- 5)...(t - or - 3)/.*—*

J 2 . ^z — J.

(^•-^)(^,o-l)(^_o.-2)(^-^-3) ,.^., )

2.4.(2i-l)(2e-3) ^ '"y

And therefore

-0--22t(2e-l)...(zW+l) f f .,. (/-^)(z-cr-l)
^' ~ 2^1.2.3...^ ^^ '^^ r 2(2^-1) ^

(^-o)(^•-,,-l)(^-^-2)(^-c.-3) , )
"^

2.4(2i-l)(2i-3) ^ •**]

The form given by Laplace for a Tesseral Surface Har-
monic of the degree i and order a- is (see Mecanique Celeste,

Liv. 3, Chap. 2, pp. 40—47)

^ (1 - f^r {/^^- -
^'

" 2^(2ill)"
^^

Z^^"'^-' -^^ -} ^^' ^^'

A being a quantity independent of 6 and
(f>.

The factor of

this, involving /x, is> denoted by Thomson and Tait {Natural
Fhilosophy, VoL 1, p. 149) by the symbol 0/"^^ Thomson
and Tait also employ a symbol ^^"^j adopted by Maxwell in

his Treatise on Electricity and Magnetism; Vol. 1, p. 164,

which is equal to

{i+a){i+(i-V)...{i-a + \)^ ^^ dfji'
*

or 2" ^ •2...q- »,(^j
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Heine represents the expression

(^-q^)(^-c^-l)(^•-o-2)(^•-o--3) ._^_^

2.4.(2t-l)(2t-3)

or (-1)^ ©iH by the symbol PJ{fi), and calls these expres-
sions by the name Zugeordnete Functionen Erster Art [Hand-
buch der Kugelfunctionen, pp. 117, 118) which Todhunter
translates by the term "Associated Functions of the First
Kind," which we shall adopt.

Heine also represents the series

^ 2(2i-l) ^

(,•-^)(^-o-l)(^-o— 2)(^-q•-3) ,_^_ ,**
2.4(2t-l)(2i-3) ^

by the symbol ^^(/i), (p. 117).

The several expressions, T'f\ ©]'), ^('), P^, ^^, are con-

nected together as follows

:

2M.2.3...r yM^0(<,)
2i(2i-l)...(i-o- + l)

(i + (r + I)(i + <7 + 2)...2t ' ^ ^^ ^' ^^ ^J V-

8. It has been already remarked that the roots of the

equation P^ = are all real. It follows also that those of the

dP dj'P
equations -7-^=0, -y-a =0... are real also. Hence we may

arrive at the following conclusions, concerning the curves,

traced on a sphere, which result from our putting any one

of these series of spherical harmonics = 0.

By putting a zonal harmonic=0, we obtain i* small circles,

whose planes are parallel to one another, perpendicular to
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the axis of the zonal harmonic, and symmetrically situated

with respect to the diametral plane, perpendicular to this

axis. If i be an odd number this diametral plane jtself

becomes one of the series.

By putting the tesseral harmonic of the order <r=0, we
obtain i— a small circles, situated as before, and <t great

circles, determined by the equation cosa^ = 0, or sin c<^ = 0,

as the case may be, their planes aU intersecting in the axis

of the system of harmonics, the angle between the planes of

any two consecutive great circles being - ,

By putting the sectorial harmonic = 0, we obtain i

great circles, whose planes all intersect in the axis of the

system, the angle between any two consecutive planes being

TT

9. The tesseral harmonic may be regarded from another

point of view. Suppose it is required to determine a solid

harmonic of the degree i, and of the form Y^r*, such that Y^

shall be the product of a function of ^l, and of a function of ^,
which functions we will denote by the symbols Jl/^, <l>i, respec-

tively. The differential equation, to which this will lead, is

, (, + 1) J/.*. +^ |(i - ^') ^j *. + n:^. d^'
= 0.

Now this will be satisfied, if we make M^ and ^^ satisfy

the following two equations

:

The latter equation gives

c^. = (7 cos o-(/) 4- C sin a^.

And, taking o- as an integer, positive or negative, the
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And e(t + l) T/<^)=i(z + l)(l-/.'f 1^*;

•••

J{(-''')?'}--<«--)-.'">

Hence the equation above given for M^ is satisfied by
M^ = T/''), and the equation in Y^ is satisfied by

r,= CrW cos o-<^ + C" T,(<^) sin o-c/).

10. In Chap. II. Art. 10 we have established the fundamental
property of Zonal Harmonics, that if i and m be two unequal

positive integers, I P^P^y. = 0. This is a particular case

of the general theorem that if Y^, Yj,, be two surface har-

monics of the degrees i and m respectively,

pJ^^Y,YJf.d<l> = 0.
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former is satisfied by M^= Ty\ i.e. {I- fi^fl^Y"{I -/t')',

as we proceed to prove.

We know that

Differentiate o- times, d.nd we get

whence, by Leibnitz's Theorem,

a-A^')S;^'-2(.+ l)4^-(.4-l)cr-^'^'

d'P

or

and, multiplying by (1 —//.")%

<r+l

Now, putting (l-/.f0'=2',H

we get

-djr=^^-^^w^'^"^^^~^^ ^'
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For, let Vi, V^ be the corresponding solid harmonics, so

that V^=r'Y„ V,, = r"'Y,,. Then, by the fundamental pro-

perty of potential functions, we have at every point at which
no attracting matter is situated,

do? ^ df
"^

dz' ' da?
'^
df

"^
dz"

~^'

and therefore

^'\dx'^ df "^
dz^ ) ^'"Ua;" dy"

"^ dz')~^'

or, in accordance with our notation, F.y'' F„— Vj^^ F] = 0.

Now, integrate this expression throughout the whole
space comprised within a sphere whose centre is the origin

and radius a, a being so chosen that this sphere contains no
attracting matter. We then have

jjf{V^7''V^-V^vW,) dxdydz = Q.

But also, when the integration extends over all space
comprised within any closed surface, we have

dS denoting an element of the bounding surface, and -7-

differentiation in the direction of the normal at any point.

Now, in the present case, the bounding surface being a
sphere of radius a, and T^, V^ homogeneous functions of the
degrees i, m, respectively,

d8 = a^df.d<l>, ^ = ia^-'Y. ^ = rm^-'Y^,

and, the integration being extended all over the surface of
the sphere, the limits of /a are — 1 and 1, those of ^, and 27r.

Hence

F. H. 6
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whence, if m. — i he not — 0,

The value of / I Yidfid^ will be investigated here-

after.

11. We may hence prove that if a function of fi and
<f)

can he developed in a series of surface harmonics, such de-

velopment is possible in only one way.

For suppose, if possible, that there are two such develop-

ments, so that

and also

f(ji,<i>)=y:+y,'+...+y:+,..

Then subtracting, we have

0= r;-F;+r,-r;+... + r,- y; + ... identically.

Now, each of the expressions F, — Y/, Y^— F/... Y) — F/
being the difference of two surface harmonics of the degree

0, If ...i ... is itself a surface harmonic of the degree

0, 1, ........ Denote these expressions for shortness by

^, Zi ... Zi... so that

0=Z^+ Z^+...+Z^+... identically.

Then, multiplying by 2^ and integrating all over the
surface of the sphere, we have

0=1 I Z,'dfid<f>.

That is, the sum of an infinite number of essentially

positive quantities is = 0. This can only take place when
each of the quantities is separately = 0. Hence Z,. is identi-

cally = 0, or F/ = F„ and therefore the two developments
are identical.

We have not assumed here that such a development is

always possible. That it is so, will be shewn hereafter.
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12. By referring to the expression for a surface har-

monic ofiven in Art. 4, we see that each of the Tesseral and

Sectorial Harmonics involves (1 — /u,"^)*, or some power of

(1 — fj^)^, as a factor, and therefore is equal to when /a = + 1.

From this it follows that when /^ = ± 1, the value of the

Surface Harmonic is independent of <^, or that if Y (ji, ^) repre-

sent a general surface harmonic, Y {± 1,
<f))

is independent of

<f),
and may therefore be written as F(+ 1). Or F(l) is the

value of Yi/i, <f))
at the pole of the zonal harmonic Piiji),

Y{—T) at the other extremity of the axis of P, (ji).

We may now prove that

r2v

i';#=2^r,(i)P.w.

For, recurring to the fundamental equation,

Now, if we integrate this equation with respect to ^,
between the limits and 27r, we see that, since

/
<PY dY,

and the value of F^ only involves ^ under the form of cosines

or sines of d> and its multiples, and therefore the values of

dY
-T~ are the same at both limits, it follows that

/,

^* d^Y

Hence

Hence I Y^d(|) is a function of /4 which satisfies the
Jo

fundamental equation for a zonal harmonic, and we therefore

have

6—2
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Jo

G being a constant, as yet unknown.

To determine C, put /x=l, then by the remark just made,
Y^ becomes ¥^{1), and is independent of

<f).
Hence, when

/•2?r

/^= 1, j Y,d(l> = 277 Y, (1). Also P,{fi) = 1. We have there-

fore

^

27rr,(l) = Cr,

/•2ir

• .-. Y,dcf> = 2-7rY,{l)PM.
Jo

It follows from this that

13. We may now enquire what will be the value of

ri ri*

j_J^
Y,Z,dixd4>,

Y^, Z^ being two general surface harmonics of the degree %.

Suppose each to be arranged in a series consisting of the
zonal harmonic P, whose axis is the axis of z, and the system
of tesseral and sectorial harmonics deduced from it. Let us
represent them as follows

:

+ C^TP cos </> + C,T,(2) cos 2.^ + ... + G^Ty^ cosa<f>+...

+ C,TP cos i(l>

+ SJPsm(f> + S,TP sin 2^ + ... + iS^T^ sino-c^ + ...

+ c, TP^ cos <^ + Cj ?;(2) cos 20 + . . . t c^Tl''^ cos o-<^ + . .

.

+ s^Tp sin + s,r/2) sin 2<^ + . . . + s^r/*^) sin o-<^ + . .

.

Hence the product YiZ^ will consist of a series of terms,

in which ^ will enter under the form cos o-0 cos cr'^, or

cos cr0 sin o-'^. This expression when integrated between



TESSERAL AND SECTORIAL HARMONICS. So

the limits and 2'ir vanishes in all cases, except when
a =a- and the expression consequently becomes equal to

cos" acf), or sin\cr^. In these cases we know that, a- being any-

positive integer,

/•2ir r2TT

I
cos'' a^d^=\ sin" cr^^(^ =

Jo J 9

TT.

Hence the question is reduced to the determination of the

value of

Now Tyi = (l-fMy
diiP

1 ^_^sf*'ij^-r^

But, by the theorem of Kodrigues, proved in Chap. II.

Art. 8, we know that

Hence T,W may also be expressed under the form

^ ^ 2\1.2.3:..i\i-<T^ ^^ d/j.i-''
'

I

whence it follows that

m')Y=(-.iy ( -^ \'\i±^d^^'^{fj^-iy 3-<^{f.^-iy
\ i

)
K ^) [2\1.2.S...iJ

\
i-<7 dfju^+'^ dfjui-" '

Now, putting (/i," — l)* = if for the moment, and inte-
grating by parts,

d^^"M d^-"M , d'+''-'^M d'-'

M

Cd^+^M d^-'M
^ _

* V.^-Ul'/^'^^ ^ ^^ ^,
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The factor , . vanishes at both limits, hence

j.i cf/A»+' (//i»--
^"

j-i f//**+<^-i <^/i^-'+i '^

by a repetition of the same process.

And by repeating this process <t times, we see that

= (-l)'(2M.2.3...T7r P,= c?/i

\

i + a- 2

and therefore

fl /•2jr fl f2ir

j j
{T,^-^ COS a^ydfid(f>=j j

{T(-^ sin <T(}>Ydfid<l)

_ [^' + <r 27r

~
Liz^ 2i + 1

•

It will be observed that this result does not hold when
<r = 0, in which case we have

Hence
j / YiZfdfxd<f> ,

/I U* + cr 2

2i + l

• In thia case J coa'^ vtpdfp =J Bin'<r0(i^=2r.



TESSERAL AND SECTORIAL HARMONICS. 87

" 27r fU* + l U'+2

+ u=l ^
^^'' + ^"^'^ + • • • + 1-

??' ( ^'''' + '^'*4 •

14. "We have hitherto considered the Zonal Harmonic
under its simplest form, that of a " Legendre's Coefficient " in

which the axis of z, i. e. the line from which 6 is measured, is

the axis of the system. We shall now proceed to consider it

under the more general form of a "Laplace's Coefficient,"

in which the axis of the system of zonal harmonics is in any
position whatever, and shall shew how this general form may
be expressed in terms of P^ {fi) and of the system of Tesseral

and Sectorial Harmonics deduced from it.

Suppose that $', <})' are the angular co-ordinates of the
axis of the Zonal Harmonic, i.e. that the angle between this

axis and the axis of z is 6^, and that the plane containing

these two axes is inclined to a fixed plane through the axis

of z which we may consider as that of zx, at the angle
<f)\

In accordance with the notation already employed, we shall

represent cos 6' by /jf.

The rectangular equations of the axis of this system
will be

X _ y _ z

sin & cos ^' sin & sin ^ cos &

'

Hence the Solid Zonal Harmonic of which this is the axis

is deduced from the ordinary form of the solid zonal har-

monic expressed as a function of z and r by writing, in place

of z, X sin & cos </>' + y sin & sin
(f>
+ z cos 6'.

To deduce the Surface Zonal Harmonic, transform the solid

zonal harmonic to polar co-ordinates, by writing rsin^cos^
for X, r sin 6 sin

(f>
for y, r cos 6 for z, and divide by r*.

The transformation from the special to the general

form of surface zonal harmonic may be at once effected,

by substituting for fi, or cos 6, cos^cos^'+sin^sin ^cos(^— ^').

Now, in order to develope

P, (cos ^ cos ^ + sin 6 sin ff cos (<^ — <f))}
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in the manner already pointed out, assume

P, {cos ^ cos ^ + sin 6 sin^ cos (^ — <^')}

= AP^ {ji) + (Cd) cos 4> + ^(1) sin <^) ^«
+ (C(2)cos2<^+/S'<2)sin2<^)rw + ...

+ ( C(<^) cos o-<^ + >S'(<^> sin o-</)) ?;(') + . .

.

+ ( C^^ cos i<^ + S'^^ sin t<^) i;<''),

the letters A, ... C^'^\ S^'K.. denoting functions of /jl and
^', to be determined.

To determine C^'^ multiply both sides of this equation

by cos (T<f)
T^'^'i and integi*ate all over the surface of the sphere,

i.e. between the limits — 1 and 1 of /it, and and 27r of ^.

We then get

r\ rZrr

I PJcos^cos^' + sin^sin^cos(<^-<^')}coso-<^7;('^>J/t^<^

= c^-''p r (cos o-(^rw)' dfidcf>

\i + a- Stt

|t-o- 2i + l

It remains to find the value of the left-hand member of

this equation.

Now cos a(}>T['^^ is a surface harmonic of the degree i, and
therefore a function of the kind denoted by F< in Art. 12.

And we have shewn, in that Article, that

that is, that if any surface harmonic of the degree i he multi-

plied hy the zonal harmonic of the same degree, and the product

integrated all over the surface of the sphere, the integral is

equal to ^.—^ into the value which the surface harmonic

assumes at the pole of the zonal harmonic.
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Hence
"1 r2a-/•I /•Zir

I Pj [cos cos $' + sin ^ sin ff cos (<^ - <^')1 ^i {H'> ^) <^f^#
= 5^F.O.',^0,+

and therefore

f f
"
P, (cos ^ cos ^ + sin ^ sin 6' cos (<^ - <f>')}

cos o-^r<'') (?/^<?<^

Hence

^ cos <rf T<') (^O = [l±^ „-a^, CM,

or OW = 2 L^^cos a<f>' T^"^ (ji').

Similarly ^(<-) = 2 ^^^ sin acj}' T/-^) (/*')•

And to determine A, we have

/I raff

J
P, (cos 6 cos ^' + sin d sin ^ cos (<^ - (f>)

] P^ (z^) dfid<f)

= ^j_JjP.(/.)}V/.#;

or ^ = P, (/.').

Hence, P^ [cos ^ cos ^' + sin sin ^ cos
{<f)
— 4>)]

= P. 0^') p. (/^) + 2 [^cos (</, - </,') r/i)
if.')

TM^ (/.)

+ 2 ^-cos 2 (<^ - ,^') Tp (/.') T/2) Ox) + ...
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+ 2^oos a{^- <}>') T^^
if.') T(') {,.) + ...

15. We have already seen (Chap. ii. Art. 20) how any
rational integral function of /j, can be expressed by a finite

series of zonal harmonics. \Ye shall now shew how any
rational integral function of cos 6, sin 6 cos

<f>,
sin 6 sin

(f>,

can be expressed by a finite series of zonal, tesseral, and
sectorial harmonics.

For any power of cos ^ or sin ^, or any product of such
powers, may be expressed as the sum of a series of terms of

the form cos a^, or sin (T<f), the greatest value of cr being the

sum of the indices of cos (p and sin
<f),

and the other values

diminishing by 2 in each successive term. Hence any
rational integral function of cos 6, sin cos (j), sin sin <}), will

consist of a series of terms of the form

cos™ £ sin* 6 cos a^ or cos*" 6 sin" 6 sin a(f>,

where n is not less than cr.

Ifn be greater than a;n — a must be an even integer. Let
71— o-= 25, then writing sin"^ under the form (1 — cos*^)' sin*^^,

we reduce cos"* 6 sin* 6 cos o-^ to the sum of a series of terms
of the form cos^ 6 sin" 6 cos o-^, or, writing cos 6 = fi, of the

form /**• (1 — fi*)
* cos acf).

Similarly cos*" 6 sin" sin ff<f> is reduced to a series of

terms of the form /u,'' (1 — fi^^sin a(f>.

1 rf'

and /u^"*"* can be developed in a series of terms of the form
of multiples of Pp+„., Pp+0-2 .... (Chap. 11. Art. 17.)

Hence /jlp can be expressed in a series of the form

J— (Jo Pp+a + -4j i^+,_2 + . . .),
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A^, A^ representing known numerical constants, and therefore

fxP {1 — fi^y assumes the form

(AQTp+a + A^Tp+v-2-^- "•)>

consequently multiplying these series by cos a^ or sin a^, we
obtain the developments of

fiP{l — fjb^
'^ cos o-^ and ^ (1 — /u,*)

'' sin a^

in series of tesseral harmonics.

16. We will give two illustrations of this transformation.

First, suppose it is required to express cos^ sin^O sin cos^
in a series of Spherical Harmonics.

Here we have sin ^ cos ^ = ^ sin
2<f>.

Hence cos' 6 sin' Q sin ^ cos ^ = - cos' 6 sin* Q sin 2^.

Comparing this with cos"* Q sin" Q sin <t^, we see that n is

not greater than <r.

Hence cos' Q sin' B sin ^ cos ^ = ^ /it' (1 — /tt') sin 2^.

and ^* = ^^* + |^2 + i^o,

,_ 1 /8 J'P 4J'PA
^ 12^35 dii' ^1 di^)

2 cfP, 1 ^P,
105 c?/^- 21 (^/a'*

'

.*. cos' Q sin' sin ^ cos ^
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Next, let it be required to transform cos'^ sin^ 6 sin ^ cos''^
into a series of Spherical Harmonics.

1 1
Here sin ^ cos^ ^ = ^ sin 2^ cos ^ = 7 (sin 3^ + sin ^).

Now cos" 6 sin' 6 sin 3^ = /^" (1 - /i'')' sin 3<^

1 d^

Also cos' 6 sin' ^ sin ^ = /-t' (1 — /a^) (1 — yu,'')^ sin
<f)

Also (Chap. II. Art. 17)

^ ~ 231 « "^ 77 <
"^

21 ^ 7 "*

Hence cos' ^ sin' 6 sin 30

= 120(231^ +77^)^^-'^^^^"^^^

= {3^5^«''^ + 3l5^^-^^-

Andcos'^sin'^sin0 =-(A|e^^g^^^.

2 cZP, 1 dP,\ ,. ^\ .

-Vo-dff-7-d^J^^-^^'''''^

- [6dS^ 3S~o~d^ MW)^ ^^^ ^

V693 « 385 * 63 » J^^^9y

,-. cos'^ sin'^ sin.^ cos'<f> =^^ T^) +j^ !r;3)|sin3,^

_1^ y a) _ J_ J (1) _ JL 7^ {1)1 sinrf).

(693 « 770 * 63 M ^
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17. The process above investigated is probably tbe most
convenient one when the object is to transform any finite

algebraical function of cos 6, sin 6 cos ^, and sin 6 sin <^, into

a series of spherical harmonics. For general forms of a
function of /x and j>, however, this method is inapplicable,

and we proceed to investigate a process which will apply

universally, even if the function to be transformed be discon-

tinuous.

We must first discuss the following problem.

To determine the potential of a spherical shell whose
surface density is F(jx,^), ^denoting any function whatever
of finite magnitude, at an external or internal point.

Let c be the radius of the sphere, / the distance of the

point from its centre, 6', ^' its angular co-ordinates, V the

potential. Then
fj,
being equal to cos

y^r P- F{f,,cf>)c'dpdcf>

J _J [r^- 2cr {cos cos 0'+ sin sin 0' cos {<j) -<f)')] + c']*

'

The denominator, when expanded in a series of general
zonal harmonics, or Laplace's coeiB&cients, becomes

for an internal and an external point respectively, P, (//-, <^)

being written for

P, (cos cos 0' + sin sin 0' cos
(<f>
— <}>)].

Hence, F^ denoting the potential at an internal, V^ at an
external, point,

[J-iJa

+
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+ ...+f,fJ'JPM <t>) Fifi, </,) df.d<j> + ...y

It will be observed that the expression P^ {fi, <f))
involves

fi and fi symmetrically, and also
(f>
and

<f>.
Hence it satisfies

the equation

1^ {(!-"")
dP) 1 (fP' ,.,.,,, „ „

And, since fi and ^ are independent of fi and <p', this

differential equation will continue to be satisfied after P, has

been multiplied by any function of /x and <}>, and integrated

with respect to /* and ^. That is, every expression of the

form
/•I r2ir

jj^ P,(fi,<f>)F(ji,<f>)dfMdcl>

is a Spherical Surface Harmonic, or "Laplace's Function"
with respect to fi and (fi' of the degree i. And the several

terms of the developments of V^ are solid harmonics of the

degree 0, 1, 2...i... while those of V^ are the corresponding

functions of the degrees —1, —2, — 3... — (^4- 1), ... And
these are the expressions for the potential at a point (/, fi, ^')

of the distribution of density P(/i', <!>') at a point (c, jjf, ^').

Now, the expressions for the potentials, both external

and internal, given in the last Article, are precisely the same
as those for the distribution of matter whose surface density is

~\f J*V(/., <!>) diid<f> + 3
J'JJ"P,0, </>) PO, <^) dfid4>+..,

+ (2/+ 1) \[jy, (/^, ^) Fill, <!>) dfid<f> + . .

.|

,

or, as it may now be better expressed.
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ri r2ir

+ 3 I Pi [cos^ cos^'+ sin^ sin^ cos i<f>-(f>) F(fi,
<f>)

dfid(j)

+ ...

+ {2i + 1)1 I F,{cos0cose'+sixi6sme'cos{(li-(}>')]F{fi,({>)dfJid4+.

.

. .

And, since there is only one distribution of density which

will produce a given potential at every point both external

and internal, it follows that this series must be identical

with F{fi', <f>').
We have thus, therefore, investigated the

development of F{fi, (j)) in a series of spherical surface

harmonics*.

The only limitation on the generality of the function

F{fi, (j>) is that it should not become infinite for any pair of

values comprised between the limits —1 and 1 of /x, and
and 27r of ^.

18. Ex. To express cos 2^' in a series of spherical har-

monics.

For this purpose, it is necessary to determine the value of

(2i + 1)
I

1 Pj.[cos^ cos^+sin^ sin^' cos (^-^')1 ^^^ 2<f)dfMd<f).

Now F^ [cos cos 6' + sin 6 sin 6' cos (^ — (p')]

= P,(cos^)Pj(cos^')

2 . ^dP, (cose) . ^dR (cose') ,, ,„+ ,,..,, sm^ — rf—^ sm^—'---,—'- cos (<^ - ^

)

+ -7-'—,. ./—^rr-T'
—

^\ sm 6/

(i-l)e(* + l)(i + 2)

<fP,(cos6') . ^.,d?F,{co%&) ^f, ,»
,

/•2jr

Now
I

cos o" (^ — ^') cos 2^ cZ^ = 0,

for all values of o- except 2.

* In connection with the subject of this Article, see a paper by Mr G. H.
Darwin in the Messenger of Mathematics for March, 1877.
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'SirrSur

And I COS 2 (<^ — (f>')
cos 2^d(p = '!r cos 2<^'.

Jo

Also

And

Now when /i = 1,

And when ^ = — 1,

Hence

/I
^'°'«P <*" =2M.L..i2M .

2 . 3...i (1 - (- 1)'«)

= 4 or 0, as i is even or odd
;

.'.I I sm'^y —-^—^cos 2 (^ - ^ ) cos 2^ dfid<l>

= 47r cos 2<^' or 0, as i is even or odd

;

.*. cos 2^'

*'T- -{o -
. o o ^ ^ sin^ ^ ^y-F2— TT cos 2d>

47r ( 1 . 2 . 3 .

4

dfj,""
^

2 . . ^ ^ d'F, (cos 0') -,,
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+ 13 , ^ - „ 4 Singly '
,, V cos2<^

o . b . 7 . 8 a/A

*
1

Hence the potential of a spherical shell, of radius c and
surface density cos 20', will be

^'^ ^°^ 2"^' (rifo ? + 3:4X6 ? + sTe^TTs ? + •4
and

"'^^^^^c^
(i:2f3:4r^ + ^^!5:6/^+]rdX8P+-j'

at an internal and external point respectively.

19. We will now explain the application of Spherical

Harmonics to the determination of the potential of a homo-
geneous solid, nearly spherical in form. The following

investigation is taken from the Mecanique Celeste, Liv. ill.

Chap. II.

Let r be the radius vector of such a solid, and let

r = a + a {a^Y^ + a^Y^ + ... + aiY, + ...),

a being a small quantity, whose square and higher powers
may be neglected, a^, a.^,...a.... lines of arbitrary length, and
Y^, Fj,...!^... surface harmonics of the order 1, 2,...i... re-

spectively.

4
The volume of the solid will be ^7ra^.

o
For it is equal to

r^drdfid^

= ^ Tra^ since I 5"^ dixd<^ = 0,

for all values of i.

F. H. 7
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Again, if the centre of gravity of the solid be taken as

origin, a^ = 0.

For if z be the distance of the centre of gravity from the

plane of xi/,

^77a'2=( I I r'*/jidrd^d(f>

= lj[jy*+Wx{a^y\+aJ\+...+ c,Y,+ ...)dfid<f>^
.

= 4a'^aj
I

1 /j,Y^dfJid(f).

Similarly

4
-gTra x=ia'a.a^l [

"(1 - i^'j ^ cos cf) J\ dfidj>,

^ Tra"^ = 4a' a . «!
I

I (1 — fj?)^ sin ^ 5^^ d(idj>.

Now y^ is an expression of the form

Afi + B{l- /i';^ cos <^ + C(l - /a')^ sin <^,

and therefore all the expressions x, y, z cannot be equal to 0,

unless a^ = 0.

We may therefore, taking the centre of gravity as origin,

^^Tite

r = a + a(a,r,+ ... + a,y;+...),

as the equation of the bounding surface of the solid.

Now this solid may be considered as made up of a homo-
geneous sphere, radius a, and of a shell, whose thickness is

a(a,F,+ . .. + a, Y; +...).

The potential of this shell, at least at points whose least

distance from it is considerable compared with its thickness,

will be the same as that of a shell whose thickness is aa, and
density

.(\

Ar
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Po being the density of the solid. Therefore the potential,

for any external point, distant R from the centre, will be

I
irp,E' + 27rp, {a" - R) or 27rpU - -.-

1

The potential at any internal point, distant R from the

centre, will be made up of the two portions

3/

for the homogeneous sphere,

for the shell, and will therefore be equal to

20. If the solid, instead of being homogeneous, be made
up of strata of different densities, the strata being concentric,

and similar to the bounding surface of the solid, we may
c

deduce an expression for its potential as follows. Let - r be

the radius vector of any stratum, p its density, r having the

same value as in the last Article, and p being a function

of c only. Then, he being the mean thickness of the stratum,

that is the difference between the values of c for its inner

and outer surfaces, the potential of the stratum at an ex-

ternal point will be

R +^''^"
a [ 5 R'^ 7 2f^"'

a,Y, c' \ ,,,

To obtain the potential of the whole solid at an external

point Ave must intep^rate this expression with respect to c,

between the limits and a, remembering that p is a func-

tion of c.

7—2
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Again, the potential of the stratum, above considered,

at an internal point will be

+ _^.^V....) (2)

To obtain the potential of the whole solid at an internal

point we must integrate the expression (1) with respect to c

between the limits and R, and the expression (2) with

respect to c between the limits R and a, remembering in

both cases that p is a function of c, and add the results

toijether.



CHAPTER V.

SPHERICAL HARMONICS OF THE SECOND KIND.

1. "We have already seen (Chap. ii. Art. 2) that the

differential equation of which P^ is one solution, being of

the second order, admits of another solution, viz.

CRl ^^of af^

Now if /jb between the limits of integration be equal

to + 1, or to any roots of the equation P^ = (all of which
roots lie between 1 and — 1), the expression under the

integral sign becomes infinite between the limits of inte-

gration. We can therefore only assign an intelligible

meaning to this integral, by supposing /x to be always be-
tween 1 and 00 , or between — 1 and — oo . We will adopt
the former supposition, and if we then put G= — l, the

expression p^ 2\ (i-^. p^ , a—rr) will be always posi-

tive. We may therefore define the expression

7" dfi

as the zonal harmonic of the second kind, which we shall

denote by Q., or Q. {fju), when it is necessary to specify the

variables of which it is a function.

It will be observed that, if /x be greater than 1, P^ is

always positive. Hence, on the same supposition, Q^ is

always positive.

We see that Q^ = i ,

^ = ^ log -—-
,
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n - r "^f"

1 , fl + l -

And, in a similar manner, the values of Q^, Q^,... may
be calculated.

2. But there is another manner of arriving at these

functions, which will enable us to express them, when the

variable is greater than unity, in a converging series, with-

out the necessity of integi'ation.

This we shall do in the following manner.

Let U= , V being not less, and fi not greater, than

unity.

Then ^= - ^ ^= 1
^

dv {v — //.)*
*

dfi {y — fif

'

djL p^ ~ '*'^ ^) (i^^=^ V r-v "^ i^^/ " ^ (^^^)'

'

Now, let be expanded in a series of zonal harmonies

P», P,(/x)...P,(/.), sothat

by the definition of P (ji).
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A.da.so,4{(l-..)f| = ...+|,{(l-.-)''f!^}p,W + ...

And these two expressions are equal. Hence, equating
the coetficients of P^ {fi),

Hence <f>i{v) satisfies the same differential equation as P^

and Qj. But since U= when i/ = x , it follows that ^^ {v)=0
when v=cc . Hence ^^(y) is some multiple of Qi{v)=AQi{v)
suppose. It remains to determine A.

Now, <j>i{v) may be developed in a series proceeding by

ascending powers of - , as follows.

We have —- = - -r ^i + ...+~ + ....
V— fJL V V V

and also = ^,{v) P,(/x) + ^^{v) P^ +-+ <t>i{^)PM + -"

Now, by Chap. II. Art. 17, we see that, if m be any
integer greater than i, the coefficient of P^ in /a"' is

/o- . i\ (m-t+ 2) (m-i + 4)...(m-l) .^ . , ,,
(2i + 1) -. >-.

—

..,
^ ^

~-.—r^—7— ,- —sr if I be odd,
^ ^ (m + i + 1) (m + i-1) ...(m + 4) (m + 2)

J /n •
, n N

(m — * + 2) (m - I + 4) . . . m . „ .

,

and (2i + 1) -.
. ., .

.', ,

—^—^r—,—-^r- if i be even,

m — i being always even.

Hence, writing for m successively i, i + 2, 4 + 4, ... we get

. , s /«. -.N f
2.4...(t-l) 1

^,{v) = (2. + 1) |(2i:^T)72^^-l)...(* + 2) ^
4.6...(/ + l) 1

,.•+1

+
(2i+3j (2i+l)...(i + 4) v'

.<+3

+ /T ,s /^. ..,
—

-r.
—

TT -T+5 + . . .. MI ^ be odd,
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2. 4...

I

1
and = (2* + l)|

+

(2i+l)(2i-l)...(i+l)//*'

4. 6.. .(1 + 2) 1

{2t + 3){2i+l)...{i+S) v'
+3

+ Tr-
—

>n',o'-' o\
—

! .
. g, -Tfg +....[ if t be even.

Now, recurring to the equation

we see that, if Q^v) he developed in a series of ascending

powers of -, the first term will be ^ ,^.—, , ,+. , where G^ V C(2i + l)i/'^

is the coeflficient of /i* in the development of Pj(/i.)

;

^, . ^ (i + 2){/+4)...(2i-l) .- ., ,,
that IS C=-—J . ^ /

-^-^— if « be odd,
2. 4.D...(i— 1)

,„d = ('+!) (» + 3)>>5)...(2.--l) .^ .

^^ ^^.^^

Hence the first term in the development of Q^ {v) is

2.4. 6.. .(4-1)

(i+2)(i + 4)...(2i-lj (2i + l)
if i be odd,

, ^2. 4. 6...

I

.„.,
and = -r.

—^r-r;^—i^^;^

—

,cr-
—

-.v /^.—^r it » be even,
(t+l)(i + 3)...(2i-l) (2i + l)

which is the same as the first term of the development of

P,(i/), divided by 2^-^.

Hence A = 2i+ 1, and we have

1

V — fJ,

= QMPM + 3^,(0 PAf^) + 5QA^)PM + -

3. The expression for Q, may be thrown into a more

convenient form, by introducing into the numerator and de-
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nominator of the coefficient of each term, the factor neces-

sary to make the numerator the product of i consecutive

integers. We shall thus make the denominator the product

of i consecutive odd integers, and may write

1.2.3...t 1 3.4.5...(t + 2) 1
^'^''^ 1.3. o...{2i+ 1) p'^' "^3.5. 7...[2i + 3) v'^

5.6.7...(t + 4) 1

(2A:+1) {2k+2)...i{+2k) 1
"^

{2k + 1) (2^' + 3) . . . {2i+2k + l) i;'^"-'
"^ •

*

"

whether i be odd or even.

4. We shall not enter into a full discussion of the pro-

perties of Zonal Harmonics of the Second Kind. They will be
found very completely treated by Heine, in his Handhuch der

Kugelfunctionen. We will however, as an example, investi-

gate the expression for -j-^ in terms of ^^^j, ^,^.3...

Recurring to the equation

1

+ {2i + \)oQ,{v)PM + ...

we see that

+ (2i + l)/GW^'^+(2.-+3)(3,„M^+....

Now we have seen (Chap. 11. Art. 22) that

dPM
dfjb

= (2t - f)
P.., (/^) + (2e - 5) P,_3 (^) + ...

Hence ^^i^ = {2i+ 1) P^ + (2i- 3) P^» +...



106 SPHERICAL HARMONICS OF THE SECOND KIND.

^^^ = (2* + 9) P^M + {2i+o) P^i^)

+ {2i+l)PM + .,.

And therefore the coefficient of PjOu.) in the expansion
r d 1 .

01 -J- IS
a/M V — fjb

(2*+l) {(2i+3) Q,^^(^) + (2t+7) ^,,3M + (2i+ll) Q.Jj,) + ...].

Again,

And ^^ +/_JL = o.

Hence, comparing coefficients of P^ (ji),

-(2.-+ll)Q,,,(.)-...

^^ = - (2t + 3) Q,,,(.) - (2^+ 7) ^,.3('')

Hence it follows that

dp dif

and therefore that

5. By similar reasoning to that by which the existence of

Tesseral Harmonics was established, we may prove that there

is a system of functions, which may be called Tesseral Har-
monics of the Second Kind, derived from T/"^) in the same

f./ //^
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manner as Q^ is derived from P^. The general type of such
expressions will be

and this when multiplied by cos a(f> or s\n a-<f), will give an
expression satisfying the differential equation

|(1 - f.^)
I^y

U+ [i {i + 1) (1 - f.^)
- a'] U= 0,

and which may be called the Tesseral Harmonic of the

second kind, of the degree i and order c



CHAPTER VI.

ELLIPSOIDAL AND SPHEROIDAL HARMONICS.

1. The characteristic property of Spherical Harmonics
is thus stated by Thomson and Tait (p. 400, Art. 537).

"A spherical harmonic distribution of density on a spheri-

cal surface produces a similar and similarly placed spherical

harmonic distribution of potential over every concentric

spherical surface through space, external and internal."

The object of the present chapter is to establish the ex-

istence of certain functions which possess an analogous pro-

perty for an ellipsoid. They have been treated of by Lam^,
in his Legons sur les fonctions inverses des transcendantes et

les fonctions isothermes, and were virtually introduced by
Green, in his memoir On the Determination of the Exterior

and Interior Attractions of Ellipsoids of Variable Densities,

(Transactions of the Cambridge Philosophical Society, 1835).

We shall consider them both as functions of the elliptic co-

ordinates (as Lam^ has done) and also as functions of the

ordinary rectangular co-ordinates ; and after investigating

some of their more important general properties, shall pro-

ceed to a more detailed discussion of the forms which they

assume, when the ellipsoid is a surface of revolution.

2. For this purpose, it will be necessary to transform

the equation

into its equivalent, when the elliptic co-ordinates e, v, v are

taken as independent variables. If a, b, c be the semiaxes

of the ellipsoid, the two sets of independent variables are

connected by the relations
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2 y 2 8 2 2^ 11 z - X y Z _

d^ + e b^ + 6 c' + e ' d' + v b^ + v c' + v

x^ y^ z^ _.

Thus (j^ -\- €, h^ + e, c^ + e are the squares on the semiaxes

of the confocal ellipsoid passing through the point x, y, z.

a^ + V, ¥ -j- V, (? + V, the squares on the semiaxes of the
confocal hyperboloid of one sheet. _

a^ + v, h^ + v, c* + V, the squares on the semiaxes of the

confocal hyperboloid of two sheets.

Thus, 6 is positive if the point x, y, z be external to the

given ellipsoid, negative if it be internal.

And, if (j^ be the greatest,- & the least, of the quantities

6 will lie between — <? and oo

,

V „ ,y -y^ „ -c',

d^V d'V d^V
3. Now -7-7i + -7-2 + -j-n = is the condition that

taken throughout a certain region of space, should be a mini-

mum. In the memoir by Green, above referred to, this

expression is transformed into its equivalent in terms of a
new system of independent variables, and the methods of the

Calculus of Variations are then applied to make the resulting

expression a minimum. We shall adopt a direct mode of

transformation, as follows

:

Suppose a, yS, 7 to be three functions of x, y, z, such that

V^a = 0, v'/3 = 0. vV = (1),

such also that the three families of surfaces represented by
the equations a = constant, /3 = constant, 7 = constant, inter-

sect each other everj'where at right angles, i.e. such that
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d^ dy d^ dy d0 dy _ dy dx dy dx dydx_
dx dx dy dy dz dz ' dx dx dy dy dz dz '

d2dl_^d2d^_^d2d§^^
dx dx dy dy dz dz

^"

Then

dV^dVda dVd§ dVdy
dx dx dx dfS dx dy dx*

' ^_^fdaV ^V/d^\' d^/dyV
dx^ ~ 'dJ \dx) ^

dff' \dx)
"^

dy^ \dx}

^dn^d^dy ^d^dydxd^dxd^
d^dy dx dx dydx dv dx " dxd/S dx dx

da da^ d^ dx^ ' dy d£-

'

<?'F dW
-7-2" ^^d ~j~i being similarly formed, we see that, when the

three expressions are added together, the terms involving

-V- , -7—, -7- will disappear by the conditions (1), and those

dW d^V dW
iavolving -T?rr- >

-7—1- * -7—
its by the conditions (2). Hence

'^ dpdy dydx dxdp ''
^

v-=g{(iyH-(i)ve)]

'^W\\dx} +(^) ^\dz)\

4. Now, let

d^
=/:

{(«' + t)(^' + t)(cN t)l^'
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-^"
dyjr

7-

All these expressions satisfy the conditions (1), for a is

the potential of a homogeneous ellipsoidal shell, of proper

density, at an external point, and /3 and 7 possess the same
analytical properties.

Again, a is independent of v and v, and is therefore con-
stant when e is constant. Similarly /3 is constant when v is

constant, and 7 is constant when v is constant. Hence a, ^,
7 satisfy the conditions (2).

Now

/^Y fdxV fdxy
[dxj

"^
[dt/J

"•"W
(a^ + ej ^6"" + e) (c' + e)

[W ^ \d(/J ^ \dz)
J

*

x^ v^ z^
And -2—

f- rr^ 1-
-^

= 1.

with similar expressions for , and -7- . Hence, squaring

and adding,

But from the equations

* ^ is a purely imaginary quantity. We may, if we please, write \ —\^
for /3.
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x' f Z* _..

we deduce

ic* 1/* z* _ (g) — e) (g) — v) (g) — V

)

1-
a' + (u 6* + w c' + (u (G) + a')(a> + ^>')(w + c')'

CO being any quantity whatever. For this expression is of

dimensions in co, e, v, v, it vanishes when (o=^€, v, or v,

and for those values of w only, it becomes infinite when
o) = — a", — ¥, or — c*, and for those values of <a only, and it is

= 1 when o) = 00

.

From this, multiplying by a' + a>, and then putting

0) = — a", we deduce

,_ (e + a'){v-\-a')(v' + a')
^

(a*-6^j(a''-c'') '

a result which will be useful hereafter.

Again, differentiating with respect to co, and then putting

C0 = €,

it
g' _ (6 - V) (g - V^

(a" + e)"
"^

(6-^ + €)*
"^

(c='+€)* (e + a''; (e H- 6") (e + c") \

• ' \dx) \dy)
"^

U-^/ (e-u) (e-i;')

• • \dxj ^ \dy) ^ \dz) (e - i;) (e - v)
'

The equation V V= is thus transformed into

4 f ^F
(u— i;) (u -e) (e — k) (^ ^ d'x ^
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or w -v)

+ (^--v)

+ iv -e)

1 d
{(6 + a^)(6 + 6^)(e + 0]^^^

1 d
[iy + a')(y+i;^)[v + e)]^g

d
{(u'+a^)(z.'+&^)(u'+ c')}4£>

dv

V

V.

5. A class of integrals of this equation, presenting a close

analogy to spherical harmonic functions, may be investigated

in the following manner. Suppose ^ to be a function of e,

.satisfying the equation

{(6 + a^) (e + If) (6 + 0]4 ^jy= (me + r) E,

tn and r being any constants.

Then, if H and H' be the forms which this function

assumes when v and v are respectively substituted for e,

the equation V'F=0 will be satisfied by V=EHH'.

6. We will first investigate the form of the function

denoted by E, on the supposition that E is a rational integral

function of e of the degree w, represented by

We see that

{(e + a^) (6 + J^) (e + 0]i|J|e"+ni>,6»-+'^^2-^^

+ .^.i

{n - 1) (6 + a') (e + h') (e + c') |e"-^ + (n - 2)^;/

(n-2)(n-3) „_, ]

+ (6+7.-) (6+C-) + (f+ (e4-a^) + (6+ a-) (e+ ?/) f^„_,
^

^^^^ ^^^^^^,..

H-^^i^^ii^..-+...-..J
1.3 )J-

F. H.
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Hence -writing

(6 + a') (e + 6^) (6 + c^) = 6« + 3// + 3/,6 4-/3,

we see that

«[(»-!) (e» + S// + 3/,e +/,) |e-» + (» - 2) ^,e-'

(»-2)(n-3)
,

1.2 ^'^ ^-'-^^P..-!

+ 1 (e^ + 2/6 +/J {e"- + (n - 1) ^,e- + (^^^^^^e^

= (me + r) |e" + n;,,e- + "^^^^ ;,./- + ...+^ .

Hence, equating coefficients of like powers of e, we get

n[n+-]=m,

{n

-

1) [{n -2)p^+ 3/J + 1 {(ti - 1) i), + 2/j] = nmi?, + r,

(n - 1) j^^|^^i>, + 3 (n - 2)f,p, + 3/,j

n (n — 1)
= 12 ^-Pa + ^^A

or, as they may be more simply written,
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n\(n- 1) ill -
^j

p^* + 3n/ [ = nmp^ + r,

1.2

n (n. — 1

)

12 ^A+^^'A

It thus appears that p^ is a ratiooal function of r of the

first degree, p^ of the second, p^ of the ti***, and when the

letters Pj, |)2-'-i^« have been eliminated, the resulting equa-

tion for the determination of r will be of the (n + 1)* degree.

Each of the letters p^, p^-'-Pn will have one determinate

value corresponding to each of these values of r; and we

have seen that m = n(n + -x]. There will therefore be (n + 1)

values of E, each of which is a rational integral expression

of the 71*'' degree, n being any positive integer.

7. But there will also be values of E, of the n"" degree,

of the form

(e+6-)i(e+c-)-^|e"-^+(n-l)g/--+^^"^^^/^~^^g./--+...+g,._j.

We thus obtain

= (e + a% (e + h') (e + c^) (ti - 1) je-^ + {n-2) (7,6""'

+ ^

—

^h— ^' "^ •••

"^
M'

8—2
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+ (e + a')-3 (e + 6'')| (n - 1) je""' +{n-2) ^^e""'

(n-2)(n-3) „_ 1+ 172~ ^2 +--- + S'«-2|

+ (e+a^)^ (€+*'} (6+c') (71-1) (n-2) je'-'+Cn-S) ^/

(n - 3) (n - 4) „ ,

^^ 12 • • • ~ ;^„_;

Hence

1^
[e + b') (e + + (6 + a') (e + c^) + (e + a') (e + 5^)1

(„ _ 1) |e- + (n - 2) q,e-^ + (^-2)(^-^) ^^,n-. ^_^ ^^_\

+ ie + a') (e + h') (e + c^) (n -1) (;i - 2) L"-" +{n-S) ^.e""*

(n-3)(n-4)
|

12 ^* T^"'T^Sf»i-3i

= (7ne+r)|e"-^ + (n-l)^/-«

(n - 1) (w - 2) „_3 ]

+ YJ2
^2-/ +-+?»-.j-'

... (n-l)g + n-2) = m,

•(„_l)|2a« + |(6^ + c')+|(n-2)y.|

+ („_!) (^_9)ra' + ?/ + c' + (n-3)g,| = (n-l)w^, + 7-,

(n - 1) |(^' + aV + a'J*) ^„., + (n - 2) aW ^„_3}
= r<7„.,.
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By a similar process to that applied above, we shall find

that r is determined by an equation of the n^^ degree, and

that 171= (n — l) in — -^], and that each of the letters q^

,

92--'9n-i ^^ ^ rational function of r. Thus, there will be u
solutions of the form

(e + bf^ (e + cf {e"- +{n-l) q.e^^ + ... + 2„_J.

There will also be n solutions of a similar form, in which

the factors (e + c^)^ (e + a^)^ (e + a^)* (e + h^)^ are respectively

involved. Hence, the total number of solutions of the ?i"'

degree will be 47z + 1,

8. We may now investigate the number of solutions of

the degree n-\- -^ , n being any positive integer. These will

be of the following forms : three obtained by multiplying a

rational integral function of e of the degree w by (e + dy^,

(e+6^)^, (e + c*)^, respectively, and one by multiplying a

rational integral function of e of the degree w — 1 by the

product

An exactly similar process to that applied above will

shew us that there will be ?i + 1 solutions of each of the

first three kinds, and n of the fourth. Hence the total number
of such solutions will be 3 (w + 1) + n, or 4/i + 3, that is

To sum up these results, we may say that the total

number of solutions of the n^^ degree is 4ri + 1, n denoting

either a positive integer, or a fraction with an odd numerator,

and denominator 2.

Similar forms being obtained for H, H', we may proceed

to transform the expression EHH' into a function of x, y, z.

9. Consider first the case in which
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Write this under the form

E= (e - 0),) (e - wj . . . (e - toj.

Then H ={v — co^) (u — o)J . . , {v — &)„),

H' = {v'-Q)^) [V-
6)J ... (i/' -&)„).

Hence

EHH' = (e - a>j) (v - (o^) (v - wj . . . (e - ©J {v - «„) (i;' - «„).

Now we have shewn (see Art. 4 of the present Chapter)

that (e — <yj (u — wj (u' — Wj)

2 2

t'+ Wj ' c^+ ft)i

Each of the factors of EHH' being similarly transformed,

we see that EHH' is equal to the continued product of all

expressions of the form

(„ + «') (» + J=) (0, + 0=) (-^ +^ + -^^ _l) ,

the several values of o) being the roots of the equation

«"

+

npy-'

+

""^^'^^py^ + . . . +p„ = 0.

As this equation has been already shewn to have (n 4- 1)
distinct forms, we obtain (n + 1) distinct solutions of the

equation ^^^=0, each solution being the product of n
expressions of the form

S 2 S

J ^
1 1

a* + 0) 6* + o) c** + o)

That is, there will be n + 1 independent solutions of the

degree 2n in x, y, z, each involving only even powers of the

variables.

10. To complete the investigation of the number of solu-

tions of the degree 2;i, let us next consider the case in which E

= (e+5^)* (6+c^)4 16»-+ {n-\)p,.^-^^^^^^p/-'-V. . .+i)„_.}

.



ELLIPSOIDAL AND SPHEROIDAL HARMONICS. 119

The object here will be to transform the product

(e + h')- (u + Iff {v' + h'f (e + c^)^ {v + c'f (v' + c')\

since the other factors will, as already shewn, give rise to the

product of n — 1 expressions of the form
9 3 2X y z ^

a' + w 6' + ft) c' + fo

Now, by comparison of the value of x' given in Art. 4,

we see that

(e + b') {v + If) {v + ¥) (e +c^) (u + c') {v' + c')

= {}f - c') {If - a') (c^ - a') (c' - If) fz\

Hence, we obtain a system of solutions of the form of

the product of (n — 1) expressions of the form

^'
4. 2/^ 4-

'^ -1
a^+CO If+Oi C'+G)

multiplied by yz. Of these there will be n, and an equal

number of solutions in which zx, xy, respectively, take the

place of yz.

Thus, there will be 4w + 1 solutions of the degree In in

the variables of which /i + 1 are each the product of n
expressions of the form

x'' f z"

a' + CO If + 0) c'+(o '

n are each the product of {n— 1) such expressions, multiplied

by 2/2.

n ... ... ... zx,

n ... ... ... xy.

11. We may next proceed to consider the solutions of the

degree 2n + 1 in the variables x, y, z.

Consider first the case in which
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Here the product (e + a^)- (v + a^)' (v + a^)^ will, as just

shewn, give rise to a factor x in the product EHH'.

Hence we obtain a system of solutions each of which is

the product of n expressions of the form

a*+ G) J*+ o) c" + 0) '

multiplied by x. Of these there will be n 4- 1, and an equal

number of solutions in which y, z, respectively take the

place of the factor x.

Lastly, in the case in which

we see that in EHH' the product

{e-Va^f {vWi" iy'+a')^ {e^h")^^ {v+h")^ {v -^h')^ {e-¥c')^

will give rise to a factor xyz.

Hence we obtain a system of solutions each of which is

the product of (n — 1) expressions of the form

X y ^
a'^ + o) 6^ + 0) C' + ft) '

multiplied by xyz. Of these there will be n.

Thus there will be 4n + 3 solutions of the degree 2/i + 1

in the variables, of which

(m + 1) are each the product of n expressions of the form

.«

-i V -rr- V -^ 1 multiplied by x,

(n + 1) are each the product of n such expressions, multiplied

(« + l) ... ... ... ... z,
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n are each the product of {n — 1) such expressions, multi-

pHed by xyz.

12. Now an expression of the form G . EHIF, C being

any arbitrary constant, is an admissible vahie of the potential
2 2 2

at any point within the shell '-2+p-+ -2 = 1. But it is

not admissible for the space without the shell, since it

becomes infinite at an infinite distance. The factor which
becomes infinite is clearly E, and we have therefore to

enquire whether any form, free from this objection, can be
found for this factor. We shall find that forms exist, bearing

the same relation to E that zonal harmonics of the second
kind bear to those of the first.

Now considering the equation

U= (me -\- r) U,

which we suppose to be satisfied by putting U= E, we see

that, since it is of the second order, it must admit of another

particular integral. To find this, substitute for U, E \vde,

we then have

[(e+a^)(e + i'0(e + c^)]i1^
de

U

= {{e+a')(e + b'){€ + c')}^j^ E . jvde

{{e+ a')(e + h')(e + c')]

+ {{e + a') ie+b') {e + 0")]^ Ev;

1 d

+ {e + a^(e + b')(e+c')'^.v

1 d'

d€

i

E /

U

vde

+ 2 {{e-ib') (e + o') + (e + c') (e + a^) + (e + a^) (e + b')] Ev

fdE ,dv\
+ (e + <,=)(.+ 5=)(. + o=)(^^,„ + E^j.
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Now, since by supposition, the equation for the determi-
nation of U is satisfied by putting U= E, it follows that

when Elvde is substituted for C^ the terms involving \vde

will cancel each other, and the equation for the determina-
tion of V will be reduced to

^dv {.dE 1 [ 1 1 1 \ E,]

de [ de 2 Ve+ a e + b^ e-tc J j

1^ ^dE 1
f 1 1 1 \_

^"^

vde'^Ede "^2V^+V"^e + 6^"^6 + cV~ '

whence log v + 2 log E + log {(e + a^ (e + &*) (e + c")]^

= log v^+ 2 log ^^,+ log abc,

t'o and ^j, being the values of v and E, corresponding to e = 0.

Hence v = v^-=^ ,:

We may therefore take, as a value of the potential at

any external point,

V=v^E'ahcEHH
'f.

de

E'{ie + a'){€ + b'){e + c*)\^'

For this obviously vanishes when e = oo . It remains so

to determine v\ that this value shall, at the surface of the
ellipsoid, be equal to the value C. ERH', already assumed
for an internal point. This gives

C=v,.E'abc r— r.

Hence, putting v^ . E^^ . abc = F„, we see that to the value
of the potential

V.EHH
Jo E'

de

[[e + a')(e+i;'){e + cyy
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for any internal point, corresponds the value

V.EHH
1.

for any external point.

13. We proceed to investigate the law of distribution of

density of attracting matter over the surface of the ellipsoid,

corresponding to such a distribution of potential.

Now, generally, if Bn be the thickness of a shell, p its

volume density, the difference between the normal compo-
nents of the attraction of the shell on two particles, situated

close to the shell, on the same normal, one within and the

other without will be ^TrpSn. This is the attraction of the

shell on the outer particle, minus the attraction on the inner

particle.

But the normal component of the attraction on the outer

particle estimated inwards is — -7- .

And, if V denote the potential of the shell on an in-

ternal particle, the normal component of the attraction on

it estimated inwards is— ,-.
an

Hence ^Trpbn = —j -j— •
' an an

dV_dVdx dVcly dVdz
dn dx dn dy dn dz dn'

dec
And -7- is the cosine of the inclination of the normal at

an
the point x, y, z to the axis of x, and is therefore generally

equal to e —^ , e denoting the perpendicular from the

centre on the tangent plane to the surface

a^-He 6^+6 c'-he *
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And Ave have shewn that

whence

or

2dx_ 1

OS de a* + e

'

-^ =2T;
a' + 6 de'

dx_ dx
' ' dn de'

' ' dn ^ \dx de dy de
"*"

dz de)
~ ~^

de
'

SimUarly ^' = 2e—

.

a/i de

Now r=V,.EHH'r "^^

JoE'\(e + d'

^^ «^e J j;=' [{e + a') (e + b') (e + OJ^

And F= F, . ^ZT^' f ^
J ;

therefore, generally,

— = F HH'~r ^
de

"'
de J, E' {{d' + e) {b'' + e) (c^ + e)}^

-K.EHH' r.
E^(a' + e){b'+e)ic' + e}]^

But, when the attracted particle is in the immediate
neighbourhood of the surface, € = 0. Hence, the first line
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dV . * . dV
of the value of — becomes identical with the value of — ,--

,

de de

and we have

dV dV^ HH' 1

de de~ ' E^ abc'

E^ denoting the value which E assumes, when e = 0.

Hence, ^irphn = 2e F^ —^ —

.

But hi, being the thickness of the shell, is proportional to

e, and we may therefore write ^ = ^ > ^ct being the thick-

ness of the shell at the extremity of the greatest axis

;

^V, a 1 HH'
" P

27r Ba abc E, '

and this is proportional to the value of F corresponding to

any specified value of e, since MM' is the only variable

factor in either.

Hence functions of the kind which we are now considering

possess a property analogous to that of Spherical Harmonics
(pioted at the beginning of this Chapter. On account of

this property, we propose to call them Ellipsoidal Harmonics,
and shall distinguish them, when necessary, into surface and
solid harmonics, in the same manner as spherical harmonics
are distinguished. They are commonly known as Lames
Functions, having been fully discussed by him in his Legons.

The equivalent expressions in terms of x, y, z have been con-

sidered by Green in his Memoir mentioned at the beginning
of this chapter, and for this reason Professor Cayley in his

Memoir on Prepotentials," read before the Royal Society

uu June 10, 1875, calls them " Greenians."

We may observe that the factor

47r ha abc

1 11
is equal to . , ^ , and therefore also to -. srr or -.— ,^ .

4:7rocc>a 47rcaoo ^iraboc
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Hence, it is equal to

-- [bcBa + ca8b + abBc)
o

or to
volume of shell

'

and the potential at any internal point

= i volume of shell x UE,'o-P
Jo

and the potential at any external point

= i volume of shell x EE^ . p I r

;

^ ' ^Je E-' {(a* + e) [b' ^ e) (c' + e)}^

where for p must be substituted its value in terms of v and v.

14. We will next prove that if V^, V^ be two different

ellipsoidal harmonics, dS an element of the surface of the

ellipsoid, j\eV^V^dS=0, the integration being extended all

over the surface.

We have generally

And throughout the space comprised within the limits of

integration, V F, = 0, V V^ = 0. Hence

//<^.f--«f)^---
Now it has been shewn already that V^, V^ are each of

the form EHIT , where J? is a function of e only, H the same
function of v, H' of v. We may therefore write

and similarly F, =/, (e)/^ [v)f^ (u).
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Hence F, ^^ = F, F,^r! >

Now, all over the surface, 6 = 0. Hence

f (0) f CO)
Hence, unless ^^. — %?

.^
= 0, which cannot happen

y 2 \ / y 1 \ /

unless the functions denoted by f^ and /, are identical*, or

only differ by a numerical factor, we must have

//«
evy.ds=o.

Now e is proportional to the thickness of the shell at

any point. Calling this thickness Ze, we have therefore

\heVJJS=0.

Hence, adding together the results obtained by integrating

successively over a continuous series of such surfaces, we get

jjjv,V^dxdydz = 0;

F, , Fg now representing solid ellipsoidal harmonics, and the

integration extending throughout the whole space comprised
within the elUpsoid.

* This may be shewn more rigorously by integrating through the

space bounded by two confocal ellipsoids, defined by the values X and /* of e.

We then get, as in the text,

Now the factor within
{ } cannot vanish for all values of X and n, unless the

functions devoted by /^ and /g be identical, or only differ by a numerical
factor.
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15. It will be well to transform the expression

[eKV.dS
//^

to its equivalent, in terms of w, v.

For this purpose we observe that if ds, ds be elements of

the two lines of curvature through any point of the ellipsoid,

dS= ds ds.

Now,

ds^ is the value of dx^ + dif + dz^ when e and v are constant,

ds'^ ... ... ... 6 and v

therefore if € and v do not vary,

2dx _ dv ^

~lc y + a"'

.*. dx = -—^-— dv.

Similarly dg^^-^^dv, dz^-^-^—dv;

,.,^^d^^d/^d.^=iy^,+^,^^^]d.K

Again, differentiating with respect to co the expression

of v'^ z^ ^

obtained for -r. h ,.. + 1, we geta+(oO'+(oc+o)

X* y^ ^ (i> — 6)) {v — o))

{y — o)) [e — &)) (e — &>) (v — w) (v' — <«^)
,
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therefore, putting (o = v,

s^ ff ^ _ W " ^) (^ ~ ^)

. . us ./o. \/79. N/5 dl^.
4>(a' + v){b'+v){c' + v)

A similar expression holding for ds'^ we get

jo2^_ Jl (u-u)''(e-t;) (e-v) „
16 (a^+v) (I^'+ v) (c'+v) {a'+ v') {h'^v) (c^+v') '*''

'

Again,
^,
-

^^, ^ ^^,
+

^^, _^ ^^,
+

(c« + e)» ^' ^ >t ,_^^ ..

^

(e - u) (e - u)

(a*+e)(6'' + e)(c^ + e)'

writing e for eo in the expression above
;

• e^d^^— 1 (a'+6)(6'4-6)(c'+e)(t;--t;)'

• • ^ '^ 16 (a'+i.) (6^+1;) (cVu) {a'+v) {b'+v') {c'+v')
"''' '^'^ '

It has been shewn that, integrating all over the surface,

the limits of v are - & and —b^, those of v\ — b* and — al

Hence, F^, V^, denoting two different ellipsoidal har-

monics

r" j-'' V,VAv-v)dvdv' ^^
J -b^- J -a« [{a'+v) {b'+v) {c'+v) {a'+v') (6"+ v') {c'+v')]^ '

The value of the expression 1 1 1 V^dxdydz, or its equiva-

lent

„tc f
^' ["'' V^{v-v)dvdv'

J-bd -a^ {{a'+v) (b'+v) {c'+v) (a'+v') {b'+ v') (c'-^ v'}]-

'

in any particular case, is most conveniently obtained by
expressing F as a function of x, y, z.

F. H. 9
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16. Before proceeding further with the discussion of ellip-

soidal harmonics in general, we will consider the special case

in which the ellipsoid is one of revolution. We must enquire

what modification this will introduce in the quantities which
we have denoted by a, /3, 7, viz.

i. (a" + yfr)^ (6* + i/r)^ •^c'' + f)^'

;3=r ^

and in the difierential equation

W^ will first suppose the axis of revolution to be the
greatest axis of the ellipsoid, which is equivalent to supposing
i* = cl To transform a and 7, put a'* 4- -(/r = ^, a* + e = 77-,

tt' + u' = (0^ ; we then obtain

fl-gf ^^ ^ ^
1

^+(«'- ^')^

To transform yS, we must proceed as follows.

Put ^/r = -c'cos'«r-6'sin'CT, V = - c" CDS'
(f)
- h' s'm^

(f),

we then get generally

b' + ^|r={b''- c') COSV, c'' + ^fr=(c'- b') sin' tir
;

dyfr = 2 (c''— 6') COS CT sin ct c?cj-
;

^
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Hence. |.= -1 (,-_,.+ j.) |

,

ay 2^ ^ du)

d^ 2\/^ #*

Also, e = Tf- a\ V = to' -a\ v = - h\ and our differential

equation becomes

or („^_a^ + S«)|(^«_a« + J^)^|V

This equation may be satisfied in the following ways.

First, in a manner altogether independent of ^, by sup-

posing V to be the product of a function of rj and the same
function of &), this function, which we will for the present

denote hy f{r]) orf{(o), being determined by the equation

9-2
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drV
Secondly, by supposing -,-^ a constant multiple of V,

= — cr* F, suppose.

Our equation may then be written

- iv' -a'^lf) 1(0)^- a' + ¥) £r V

•which may be satisfied by supposing the factor of V inde-

pendent of to be of the form F {rj) F{o)), where

|(^^_ a« + b') ^|V(^) - 0-' {a' - h') F{ri) =m [rf-a'+l') F[7j\

(a,2_a« + 6^) £1 F{<a) -a' {a'-b") F{a>)=m(co'-a*-\-b')F{a>).

The factor involving
<f>

will be of the form

A cos a-^ + B sin ar^.

' Now, returning to the equation

we see that, supposing the index of the highest power of i]

involved infi^) to be i, we must have m = iii-\-\).

Now, it will be observed that 77 may have any value

however great, but that to'', which is equal to c^ + v , must
lie between a^ — b^ and 0. Hence, putting w^ = (a^ — V) /u.^

where yi^ must lie between and 1, we get
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Hence this equation is satisfied by /[fa^— h'^)'^ fi] = CPf,
C being a constant ; and supposing 0=1 we obtain the

following series of values for / (&>),

^ = 0, /H = l,

{a'-b')^'

1=2, /(«) =—

t = 3, /(a,j =

2 {a' -I)')
'

5G)^-3w(a^-65

Exactly similar expressions may be obtained for/(T;), and
these, when the attraction of ellipsoids is considered, will

apply to all points within the ellipsoid. But they will be
inadmissible for external points, since tj is susceptible of in-

definite increase.

The form of integral to be adopted in this case will bo
obtained by taking the other solution of the differential

equation for the determination of /{v), i-e, the zonal har-

V
monic of the second kind, which is of the form Q,

,

^'[{a'-by
where

^'L-fc-o^j'^'L-z^'^i."
d9

(O'-a'+F)
l(a^ - b-^)^) {{a' - Iff) J r, ( \

Or, putting rj^ = {a^ - ¥) v^ 6'^ = {a^ - b^) \^, we may write

17. We may now consider what is the meaning of the

quantities denoted by rj and o). They are the values of '^

which satisfy the equation

x'
,

f + z' _.
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and are therefore the semi-axes of revolution of the surfaces

confocal with the given ellipsoid, which pass through the

point X, y, z. One of these surfaces is an ellipsoid, and
its semi-axis is i). The other is an hyperboloid of two sheets

whose semi-axis is w.

Now, if 6 be the eccentric angle of the point a, y, z,

measured from the axis of revolution, we shall have

x^ = rf cos* 6.

But also, since rf, ay', are the two values of ^ which

satisfy the equation of the surface,

Hence w* = (a* — V^) cos'' 6,

and we have already put

0)*=(a^-JV*,

whence the quantity which we have already denoted by fi

is found to be the cosine of the eccentric angle of the point

X, y, z considered with reference to the ellipsoid confocal

with the given one, passing through the point x, y, z. We
have thus a method of completely representing the potential

of an ellipsoid of revolution for any distribution of density

symmetrical about its axis, by means of the axis of revo-

lution of the confocal ellipsoid passing through the point

at which the potential is required, and the eccentric angle

of the point with reference to the confocal ellipsoid. For
any such distribution can be expressed, precisely as in the

case of a sphere, by a series of zonal harmonic functions of

the eccentric angle.

18. When the distribution is not symmetrical, we must
have recourse to the form of solution which involves the factor

A cos a(f)+ B sin a<f). It will be seen that, supposing F to

represent a function of the degree i, and putting m = i (t+1),

the equation which determines F{(a) is of exactly the same
form as that for a tesseral spherical harmonic. For F{r)), if

the point be within the ellipsoid, we adopt the same form.
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if without, representing the tesseral spherical harmonic by

^/'' I
—^—il . or r/<^» (v), we adopt the form

((a - by)

TW(.)r.—

-

—

.

19. It may be interesting to trace the connexion of sphe-

rical harmonics with the functions just considered. This may
be effected by putting h^ = a". We see then that 97 will become
equal to the radius of the concentric sphere passing through
the point, and if — a' 4- b^ will become equal to 7)'\ Hence
the equation for the determination of/ (77) will become

|(.'|)/W--(«+i)/W,

which is satisfied by putting /{t}) = 7)\ or rj'^^'^^K The former
solution is adapted to the case of an internal, the latter to

that of an external point. '

With regard to /(&)), it will be seen that the confocal

hyperboloid becomes a cone, and therefore tw becomes inde-

finitely small. But a, which is equal to 1 , remains

finite, being in fact equal to - or cos 6. Hence /(/a) becomes

the zonal spherical harmonic.

Again, the tesseral equations, for the determination of

F {r}), F {(o), become

which are satisfied by F^i]) =77* or 77"''"^^'.

And, writing for w^ [d^—lf) y^, we have, putting i^(&)) =xiH)>

{(/^^ - 1)
|,f

X (f^) + <^\ (m) = i (i + 1) {h^ - 1) % {h)>

which gives
;;^

(/a) = T/"^) (/x).
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20. We will next consider the case in which the axis of

revolution is the least axis of the ellipsoid, which is equi-

valent to supposing a" = 6*. To transform a and /9, put
c^ -\-'^ = 6\ c^ + e = 7f, c' + V = ft)', we thus obtain

^='11^
d9 2 ^ ., (o

tan

To transform 7, we must proceed as follows

:

Put a/t = — a^ sin** isj — b^ cos'' cr, v = — d? sin' ^ — 5" cos^ ^,
we then get, generally,

a--\-'^={a^ — h^) cos'' w, h^ + y^=-{a^ - h^) sin* cr,

c^+yjr=c^—a^sin^ <p—b^ cos^^, Ji/r=— 2 (a^—V) sinw cos to- dvr.

Hence

dvr 2(f>

J 4, (a" si4. (a" sinV + b' cos^TO - c")^ (a^-c'}^

Hence, |^
= _ ^ (a*_c^ + ^'>) |,

also, 6 = 7^'— c^,

a 9
V=ft) —C ,

V = — a
,

and our differential equation becomes

+ ('?•--«') (a' -c^)^J=0.

if a' = 6"



ELLIPSOIDAL AND SPHEROIDAL HARMONICS. 137

We will first consider how this equation may be satisfied

by values of V independent of
(f).

We may then suppose V to be the product of a function

of 77, and the same function of tw, this function, which we will

suppose to be of the degree i, being determined by the
equation

I {(«._,. + ,^ II
/(,) = i(i + !)/(,),

On comparing this with the ordinary differential equa-

tion for a zonal harmonic, it will be seen that, on account

of a* being greater than c', the signs of the several terms in

the series for /(??) will be all the same, instead of being

alternately positive and negative. We shall thus have

{a'-c')h'

.•=3, /(,)=^!^±i(^^^i^,

. _ 35^^ 4- 30 (g' - c') rf + 3 («' - cy
.

and generally

We will denote the general value of/ (7;) by p^ \
j^

,

[{cL^ — c)'^)

or, writing 7^ = (a" — &)^v, by Pi {v)

.

-^^
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For external points, we must adopt for / (^7) a function

which we will represent by qi \ -~j^-fi\ > or q^^), which will

be equal to

d0

It js clear that f(io) may be expressed in exactly the
same way. But it will be remembered that rf and eo'^ are

the two values ofy which satisfy the equation

^' + ^' -U^-1
r ex 9 *-•

Hence tj, as before, is the semi-axis of revolution of the

confocal ellipsoid passing through the point {x, y, z). But
rf(o^ = — {a? — c^) z^, an essentially negative quantity, since

a^ is greater than c^ Hence co^ is essentially negative. Now,
if 6 be the eccentric angle of the point (x, y, z) measured
from the axis of revolution, we have 2* = 'rf' 0.0^ d. Hence

^V = - (a'-c*) 97' cos'^^,

and therefore to" = — {(j^ — c") cos' 6

= — [a^— c^ fi^, suppose.

Hence the equation for the determination of/(&)) assumes
the form

the ordinary equation for a zonal spherical harmonic. Hence
we may write

/(a,)=P,(/x),

fjb being the cosine of the eccentric angle of the point cc, y, z,

considered with reference to the confocal ellipsoid passing

through it.
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21. We have thus discussed the form of the potential,

corresponding to a distribution of attracting matter, sym-
metrical about the axis. When the distribution is not

symmetrical, but involves
<f)

in the form A cos a^-k- B sin a<^,

we replace, as before, P^ (fju) by T>' (fi), and Pi (fi) by a

function i/°'^(i^) determined by the equation

and q, {v) by «/-) {v)
j ^

d\

r-)(A,)f (V+1)

22. As an application of these formulae, consider the fol-

lowing question.

Attracting matter is distributed over the shell whose

surface is represented by the equation -j- + ^—r^— = 1, so

that its volume density at any point is P^ (fi), fi being the

cosine of the eccentric angle, measured from the axis of

revolution ; required to determine the potential at any
point, external or internal.

The potential at any internal point will be of the form

CPMP.iv) (1),

and at an external point, of the form

C'PMQM (2),

where {(j^ — lf)^v = i\ve semi-axis of the figure of the con-

focal ellipsoid of revolution passing through the point (/i, v).

Now the expressions (1) and (2) must be equal at the

surface of the ellipsoid, where v = ^

.

(a' - b')^

Hence
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But generally

J V J

dX

Hence

o\
^ l=p| ^ If ^

.

^*
l(a^ - b')^ ' \{a' - ¥)^] J-^ F, (\j,'^ (\^ - 1)

'

. cp f

^
] = c'p I

^
1 r ^^

(a2-62)*

We may therefore, putting C" = -4P,
-I—

^ ^^ , write

and we thus express the potentials as follows :

^^i (/*) ^i (»') Qi
I

2_72| r
^* ^ internal point,

AF^ (fi) Q. (v) P^
\

—-~\- at an external point.

Or, substituting for Q^ its value in terms of P^,

at an internal point,

K = AP, ifi) P, (v) P, I

—

-—X f ,

at an external point.

Now, to determine A, we have, Ba being the thickness

of the shell at the extremity of the axis of revolution,

(02-62)i

dX
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^ 4!7r Sa . 7} \ drj dr] Jr, = a

1 a 1 /dV, dK
47r 8a a^-b^\ du dv /"^TTTJ

{a'—o')

^\a^lm\\ [a'-b'

iwiaa'-b'^'"
It; —

^^
1

d' -b' ^

1/g^JP.M.

Hence, if p = P^ {h)> we obtain

A-.= 47r =
a

4<7rb8b.

And we thus obtain

V, = 47r 686 P, (/.) P, (z;) P, | ^

"^

, 1 f

"

"^^

(a''-62)i

If the shell be represented by the equation

it may be shewn in a similar manner that we shall have
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C
V, = 4<7radaPMp,{v)q^

(a^-c^jir

V^=4<iradaP^{/M) q.{v) p^
'

23. We may apply this result to the discussion of the

following problem.

If the potential of a shell in the forw, of an ellipsoid of
revolution about the greatest jpircfbe inversely proportional

to the distance from one focus, find the potential at any
internal point, and the density.

If the potential at P'be inversely proportional to the

distance from one focus 8, andH be the other focus, we have,

HP+SP = 2r), HP-SP=2(o,

.'. SP = T} — a).

Hence if M be the mass of the shell, V^ the potential at

any external point.

77 — ft)

31 1

(^a'-b')^v-/M

M
{d'-b')^

t{2i+l)PMQXv).

Now, by what has just been seen, the internal potential,

corresponding to P, (/x) Q^ {v), is

Pi (n Pi (y)

Pi
[{a'-by^}

Hence, if V^ be the potential at any internal point.
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And the volume density corresponding to P, (ji) Q^ [v) is

Hence the density corresponding to the present distri-

bution is

P
= 1

—

Z(2i + 1) .
^/

'{{a'-b'f)

If Fj had varied inversely as HP^ we should have had

MV =
rj + o}^

and our results would have been obtained from the foregoincr

by changing the sign of (o, and therefore of fi.

24. Now, by adding these results together, we obtain

the distributions of density, and internal potential, corre-

sponding to

"
7] — CO r) + (o 7] —oy'

or, in geometrical language,

,, M M ^,SP + HPV = 1 = 31

= M multiplie<l by the axis of revolution of the confocal

ellipsoid, and divided by the square on the conjugate semi-

diameter. We may express this by saying that the potential

at auy point on the ellipsoid is inversely proportional to the
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square on the conjugate semi-diameter, or directly as the
square on the perpendicular on the tangent plane.

Corresponding to this, we shall have, writing 2k for t,

since only even values of i will be retained,

k being 0, or any positive integer.

Again, subtracting these results we get

7J
— (O 7] + (0 if— CO^

'

=M multiplied by the distance from the equatoreal plane,

and divided by the square on the conjugate semi-diameter.

This gives, writing 2k + 1 for i,

2M "^^ Ka"
_^1

25. In attempting to discuss the problem analogous to

this for an ellipsoid of revolution about its least axis, we see

that since its foci are imaginary, the first problem would re-

present no real distribution. But if we suppose the external

potential to be the sum, or difference of two expressions, each

inversely proportional to the distance from one focus, we
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obtain a real distribution of potential—in the first case

inversely proportional to the square on the conjugate
semi-diameter, in the latter varying as the quotient of the
distance from the equatoreal plane by the square on the
conjugate semi-diameter.

It will be found, by a process exactly similar to that just

adopted, that the distributions of internal potential, and
density, respectively corresponding to these will be

:

In the first case

S'..

P-^

Iz being 0, or any positive integer.

In the second case

7c being 0, or any positive integer. . >

2G. We may now resume the consideration of the ellip-

soid with three unequal axes, and may shew how, when the

potential at every point of the surface of an ellipsoidal shell

is known, the functions which we are considering may be
employed to determine its value at any internal or external

point. We will 'begin by considering some special cases,

F. H. 10
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by which the general principles of the method may be made
more intelligible.

27. First, suppose that the potential at every point of

the surface of the ellipsoid is proportional to a; = —^- suppose.

In this case, since x when substituted for V, satisfies the

equation v*F= 0, we see that F^- will also be the potential

at any internal point. But this value will not be admissible

at external points, since x becomes infinite at an infinite

distance.

Now, transforming to elliptic co-ordinates

And the expression

•I

satisfies, as has already been seen, the equation ^^V=0, is

equal to F<,- at the surface of the ellipsoid, and vanishes

at an infinite distance. This is therefore the value of the

potential at any external point. It may of course be written

a J,' it

+

a') [if + «') (t + ^') if + 01*

dyfr

•I a

28. Next, suppose that the potential at every point of

the surface is proportional to y« = Fp r- , suppose. In this
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case, as in the last, we see that, since yz when substituted

for V, satisfies the equation ^7*^7"= 0, the potential at any

internal point will be F"„ ^— ; while, substituting for y, z their

values in terms of elliptic co-ordinates we obtain for the
potential at any external point

be i.

dyfr

J

29. We will next consider the case in which the po-

tential, at every point of the surface, varies as ic" = F^ -j

suppose. This case materially differs from the two just con-

sidered, for since x^ does not, when substituted for V, satisfy

the equation v"V— 0, the potential at internal points cannot

in general be proportional to x\ We have therefore first to

investigate a function of x, y, z, or of e, v, v which shall

satisfy the equation v^y=0, shall not become infinite within

the surface of the ellipsoid, and shall be equal to x"^ on its

surface.

Now we know that, generally

(&- + G)) (c' + w) ^' + (c'+ «) (a^ + ft)) 2/' 4- (a' + w) (&' + «) z"

- {a? + (o) {V + <o) (c' + ft)) = (e-G>)(i;-ft)) {v - co).

And, if 6^, 6^ be the two values of w which satisfy the

equation

(&''+«) (c^+ft)) + (c^+o,) {a'+u>) + (a^+ft)) (6^+a)) = 0...(l),

we see that

and ^-^e-e,){v-d^{v'-e,) = ().

And, by properly determining the coefficients -4^,, A^, A^,

it is possible to make

A,+A,(e-e,){v-e,)(y'-e,)^A,{e-e:){v-e,){v'-e,)...{2)

=^ when 6'cV + cV/ ->r.a%\'' - a'bV = 0.

10—2
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Hence, the expression (2) when Ag, A^, A^ are properly

fletermined will satisfy all the necessary conditions fox an
internal potential, and will therefore be the potential for

every internal point.

Now, we have in general

and, over the surface

bVx' + c'ay + a'h'z^ - a%V = 0.

Hence, ^ being any quantity whatever, we have, all over

the surface,

-{a' + ^){b' + ^)ic' + '^)

and therefore, putting ^ = — a^

Hence, the right-hand member of this equation possesses

all the necessary properties of an internal potential. It

satisfies the general differential equation of the second order,

does not become infinite luithin the shell, and is proportional

to x^ all over the surface.

"We observe, by equation (1), that

(i'+a>)(c'+&))+ (cVa)) (a'+a)) + (a'+a>) (6Vw) =3(^,-0)) [9 -to)
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identically, and therefore, writing — c^ for w.

Hence, over the surface of the shell,

and we therefore have, for the internal potential.

This is not admissible for external points, as it becomes
infinite at an infinite distance. We must therefore substi-

tute for the factor e — 0^

^'-'^ll^

•I a (t-^ir[(^+*')(v^+ ^0(^+^1='

with a similar substitution for e — 0^, thus giving, for the

external potential,

^r ^±

^ {e-0,)iv-9,){v'-0;) r d^
0^ i^,-0t) K+^.) J< {f-0J iif+a') (t+&^) (^+01*

^r #^
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^ 27r da 3a6c L ^i" (^i

- ^,) («' + <
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The distribution of density over the surface, correspond-

iug to this distribution of potential, may be investigated by
means of the formula

*^ 27rrfaWe de J,^o*

or its equivalent in Art. 13 of this Chapter. We thus find that

^f d^

_ jv-od jv-o,
) ^

r

d±

+i.r ^j^
1

30, Tlie investigation just given, of the potential at an
external point of a distribution of matter giving rise to a
potential proportional to cc^ all over the surface, has an in-

teresting practical application. For the Earth may be re-

garded as an ellipsoid of equilibrium (not necessarily with

two of its axes equal) under the action of the mutual gravi-

tation of its parts and of the centrifugal force. If, then,

V denote the potential of the Earth at any point on or with-

out its surface, and 11 the angular velocity of the Earth's

rotation, we have, as the equation of its surface, regarded as

a surface of equal pressure,

.*. V+^ ^'
i^^ + 2/') = a constant, IT suppose.

Hence, if a, h, c denote the semi-axes of the Earth, we
have, for the determination of F, the following conditions

:
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V= at an infinite distance (2),

,o,v
2

V=Il-\a\a? + f)yi\iQn

-! + C + ^=l (3).

The term 11 will, as we know, give rise to an external

potential represented by

n r ^^ - r d^
Je [(y|r+ a;'){^lr+b'){ylr+c')]^ ' Jo {(f+a^) (f+^'O (f+c')}^

*

1 1 . . .
"

The two terms —^ nV, —^Q/^y^, will give rise to terras

which may be deduced from the value of V^ just given by

successively writing for F^, — -^ O'a^ and — ^ 0^6^, and (in

the latter case) putting 6' for c^ throughout. We thus get

p. (^i- ^J J. (t - e;)' \{^ + a^) (./r

+

w) (f + c')]^

^ r d± jr / a' &' \

(6-^,)(u-JJ(iA-^r _df
:

Ki^-^J L {f-e,f[{f+ar) (^+j2)(^+c^)]^

^r djr
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31. Any rational integral function V of x, y, 2, which
satisfies the equation y'^F=0, can be expressed in a series

of Ellipsoidal Harmonics of the degrees 0, 1, 2...i in x, y, z.

For if y be of the degree «* the number of terms in Y will

be
(^•+l)(»'+2)(t + 3)

^ Now the condition v'F=0 is

equivalent to the condition that a certain function of x, y, z

of the degree i— 2, vanishes identically, and this gives rise

to -^^ —TT^ conditions. Hence the number of inde-

pendent constants in T'' is

(t + 1) (t+ 2) {{+ 3) (e- 1) I (» + 1)

6 6

or (i+ l)^ And the number of ellipsoidal harmonics of the

1 Si
degrees 0, 1, 2...i m. x, y, z or of the degrees Q, ^,1,-^...^

in e, u, v, is, as shewn in Arts. 6 to 10 of this Chapter,

1 + 3 + 5+.. . + 2t + l,

or (t + 1)'. Hence all the necessary conditions can be satis-

fied.

32. Again, suppose that attracting matter is distributed

over the surface of an ellipsoidal shell according to a law of

density expressed by any rational integral function of the

co-ordinates. Let the dimensions of the highest term in this

expression be i, then by multiplying every term, except those

of the dimensions i and i — 1 by a suitable power of

a? f z"

a c

we shall express the density by the sum of two rational inte-

gral functions of x, y, z of the degrees t' i— 1, respectively.

The number of terms in these will be

(» + l)(t + 2)^£(i+l)„,(-^l).
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And any ellipsoidal surface harmonic of the degree *, i — 2...

in X, y, z, may, by suitably introducing the factor

be expressed as a homogeneous function of a;, y, & of the

degree i ; also any such harmonics of the degree t— 1, «— 3...

in X, y, z may be similarly expressed as a homogeneous
function of x, y, z of the degree * — 1. And the total number
of these expressions will, as just shewn, be (t + I)**, hence by
assigning to them suitable coefficients, any distribution of

density according to a rational integral function of x, y, z

may be expressed by a series of surface ellipsoidal harmonics,

and the potential at any internal or external point by the
corresponding series of solid ellipsoidal harmonics.

33. Since any function of the co-ordinates of a point on
the surface of a sphere may be expressed by means of a series

of surface spherical harmonics, we may anticipate that any
function of the elliptic co-ordinates v, v may be expressed by
a series of surface ellipsoidal harmonics. No general proof,

however, appears yet to have been given of this proposition.

But, assuming such a development to be possible at all, it

may be shewn, by the aid of the proposition proved in

Art. 15 of this Chapter, that it is possible in only one way,

in exactly the same way as the corresponding proposition

for a spherical surface is proved in Chap. IV. Art, 11.

The development may then be effected as follows. De-
noting the several surface harmonics of the degree i in x, y, z,

or \ in V, v\ by the symbols VP, F/^), ...F/3*+i), and by

F{v, v) the expression to be developed, assume

Then multiplying by eF/"^^ and integrating all over the

surface, we have

Lf {v, v) F,(-> dS = (7^) [e {V.^'^Y dS.
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' The values of jeF [v, v) F/'') dS, and of fe ( F/*^')' dS must

te ascertained by introducing the rectangular co-ordinates

X, y, 2, or in any other way which may be suitable for the

particular case. The coefficients denoted by C are thus

determined, and the development efifected.
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1. Prove that {dn Oy = ~ P,-^F, + ~P^. .

"Why cannot (sin Of be expanded in a finite series of spherical

harmonics I

2. Prove that 1 + -F^+^F^ + -^ P3+ ... =log --f »

sin^-

3. Establish the equations

rf. = (2«-l)j.J',..-(«-l)P....

4. If jM = cos 6, prove that

P, (jit) = 1 -i(i + l) sin^- + ... + (- ir —̂ ^==— (sin^n) + -
*

^'^'^
^ ' 2 ^ ^ {\my\i-m \ 2/

and also that

^^()^) =(-iy+(- ir *(»+!) cos^i+ -.

U*+7M / 0\
+ (- 1) '+« 7,-717^-- ( cos^ I) +...

^ ' i\mY\%-m \ 2/

5. Prove that, if a be greater than c, and * any odd
integer greater than m,

6. Prove that T (^-)V = * (** + 1). /^' ^7
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-/

7. Prove that, when u = ± 1, -7-^' = -; -^.— .

8. Prove that

i«-i)

P P P

P P P

is a numerical multiple of

9. Prove the following equation, giving any Laplace's co-

efficient in terms of the preceding one

:

P... = pP.-^'^\/Jp-^Cr

where Cp = [ifJL + J i - fx." Jl - fx!* cos (to - w) and C is zero if n be

even, and
«+i [w+1

(- ^)"'"2^
1^^TT)}'

'

^^
** ^^ ^^'^

10. If i, y, ^ be three positive integers whose sum is even,

prove that

j^' P,P^P,di.

/_ ,
1.3...(j + ;S;-t-l) 1.3..(y^ + ^-i-l) 1.3 ... (t +i-l'- 1)

2.4...0 + ^-i) 2.4...(^ + i-j") 2.4... (i+j-^-)

2.4...(i+i + ^") 1

1.3 ... (i + j + A;- 1) i+j+^-+l'

Hence deduce the expansion of PiP^ in a series of zonal

harmonics.

11. Express x^y + y' + yz + y + z as a sum of spherical

harmonics.

12. Find all the independent symmetrical complete harmonics

of the third degree and of the fifth negative degree.

13.' Matter is distributed in an indefinitely thin stratum over

the surface of a sphere whose radius is unity, in such a manner
that the quantity of matter laid on an element (hS) of the surface

is hS {\ -ir ax + hy -k- cz +fx^ + gy^ + /w*).
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where x, y, z are rectangular co-ordinates of the element ZS re-

ferred to the centre as origin, and a, h, c, f, g, h are constants.

Find the value of the potential at any point, whether internal

or external.

14. If the radius of a sphere be r, and its law of density be

p = ax + by + cz, where the origin is at the centre, prove that its

potential at an external point {$, rj, ^ is {a$ + brj+c^) where

li is the distance of (^, -q, ^) from the origiril

15. Let a spherical portion of an infinite quiescent liquid be

separated from the liquid round it by an infinitely thin flexible

memjprane, and let this membrane be suddenly set in motion,

eveiy part of it in the direction of the radius and with velocity

equal to aS";, a harmonic function of position on the surface. Find
the velocity produced at any external or internal point of the

liquid. State the corresponding proposition in the theory of

Attraction.

16. Two cii'cular rings of fine wire, whose masses are M and
M, and radii a and a, are placed with their centres at distances

h, b', from the origin. The lines joining the origin with the

centres are perpendicular to the planes of the rings, and are in-

clined to one another at an angle 0. Shew that the potential of

the one rino: on the other is

i/if'2„":r(^^„^'„(?„),

i^,

where ^„ = 5"- ^^^^"^U-V-f ^^^-
^^^^'^^^f

~ ^U'-^g*- ...

and J3'^ and <2„ are the same functions of b' and a' and of cos

and sin respectively, and c is the greater of the two quantities

*/a* + 6'and Jc^^T¥\

17. A unifonn circular wire, of radius a, charged with
electricity of line-density e, surrounds an uninsulated concentric
sphei-ical conductor of radius c; prove that the electrical density
at any point of the surface of the conductor is

--(^1-5 ^'V+9 ^-^'V ,o 1-3.5 c«/ \

the pole of the plane of the wire being the pole of the harmonics.

(V/
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18. Of two spherical conductors, one entirely surrounds the

other. The inner has a given potential, the outer is at the

potential zero. The distance between their centres being so

small that its square may be neglected, shew how to find the

potential at any point between the spheres,

19. If the equation of the bounding surface of a homo-
geneous spheroid of ellipticity e be of the form

r = .(l-|.P,),

prove that the potential at any external point will be

m: c-a
r r^ -" *

'

where C and A are the equatoreal and polar moments of inertia

of the body.

Hence prove that V will have the same value if the spheroid

be heterogeneous, the surfaces of equal density difiering fi'om

spheres by a harmonic of the second order.

20. The equation E= a(l + ay) is that of the bounding
surface of a homogeneous body, density unity, differing slightly

in form and magnitude from a sphere of radius a; a is a
small quantity the powera of which above the second may be

neglected; and y is a function of two co-ordinate angles, such

that

where Y^, T^... Z^, Z^ ... are Laplace's 'functions. Prove that

the potential of the body's attraction on an external particle,

the distance of which from the origin of co-ordinates is r, is

given by the equation

^ 47rV 47raaV^ a „ a" ^ ")

r ( 2r ' in + 2 r'' " J
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21. If J/ be the mass of a uniform hemispherical shell of

radius c, prove that its potential, at any point distant r from

the centre, will be

2c 2 c* V2 ' 2 . 4 ^ c*

3 pr' 3.5 r

2.4.6 *c* 2.4.6.8^0'

or
2r 2 V2^r* 2.4^r*

.4.6.8 ^V« ^"7'^2.4.6 ^r" 2

according as r is less or gi'eater than c; the vertex of the hemi-

sphere being at the point at which /x = 1.

22. A solid is bounded by the plane of xy, and extends to

infinity in all directions on the positive side of that plane.

Every point within the circle a;* + y'' = a*, z — Q is maintained at

the uniform temperature unity, and every point of the plane xy
without this circle at the unifoi-m temperature 0. Prove that,

when the temperature of the solid has become permanent, its

value at a point distant r from the origin, and the line joining

which to the origin is inclined at an angle Q to the axis of z will

be

r 1 r' 1 . 3 r'P - P - 4--P — _il_ P - +
" * a 2 a* 2.4 a

2.4...2i

if r < a, and

Ip^^hlpt^ ( .v
l-3...(2.-l) •««

2 W 2.4 »r* ^ '' 2.4. ..2i ^^+v^« •

'••

if r > a.

23. Prove that the potential of a circular ring of radius c,

whose density at any point is cos «n/^, cx^/ being the distance of the

point measured along the ring from some fixed point, is
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1 d-P„ c-

.4.6...2W t^/A™ r^**

1
"^ 2.4.6. ..(2m + 2) t^yx" r"-''

1.3.5...(2;5;-1)
"*"

2.4.6...2(7;i + ^

where r is greater than c. If r be less than c, r and c must be
interchanged.

24. A solid is bounded by two confocal ellipsoidal surfaces, and
its density at any pointF varies as the square on the perpendicular

from the centre on the tangent plane to the confocal ellipsoid

passing throiigh P. Prove that the resultant attraction of such

a solid on any point external to it or forming a part of its mass
is in the direction of the normal to the confocal ellipsoid passing

through that point, and that the solid exercises no attraction on a
point within its inner surface.
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