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PREFACE
TO THE FIFTH EDITION.

In preparing this edition for the press, I have made

new endeavours to render the work fit for the circulation

which it has obtained. I will briefly notice the principal

instances of these.

I have added several Articles (85, &c.) upon the Theory

of Arches. The theory of the equilibrated arch, which I

had introduced in the earliest editions of the work, I rejected

in subsequent editions, since, in the way in which it was

then treated, it was quite inapplicable in practice. But

though the theoretical arch of equilibration would not be

of any practical value on the grounds formerly adopted, it

is nevertheless, in fact, an important subject of considera-

tion to the engineer. I have, in the Articles just referred

to, shown the reason of this; and have, I hope, thus placed

in a clear point of view the office which the resistance of

the archstones, and the cohesion of the rest of the struc-

ture, respectively discharge.

Having in the Fourth Edition introduced several propo-

sitions concerning locomotive steam-engines, I )iave now bor-

rowed from M. De Pambour's excellent work on that subject

a new problem, highly important in its bearing on practice

;

namely, to determine the velocity of such an engine by

means of that condition on which it mainly depends, the

evaporating power of the boiler. Although such motions
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have not been so completely reduced to their elements as to

enable us to calculate with precision the motion of steam-

carriages under given conditions, it cannot be doubted that

this investigation has put the problem in a shape in which

we are more likely than we have hitherto been to arrive at

that desirable result.

These additions are made with a view of ffiving the

work that practical character, the absence of which in the

common books on Mechanics has lonor been a serious evil.

The want of such information, I have already said*, in our

theoretical Treatises, produces an estrangement between the

theoretical and practical cultivators of Mechanics which is

prejudicial to both ; it reduces the theory to a barren

exercise of the intellect, and renders practical men careless

of the philosophical correctness of their views.

I may add, that the introduction of these practical subjects

into an Elementary Treatise on Mechanics is not without its

value, even when the subject is considered mainly as an

instrument for exercising and disciplining the mind. In the

attempts to master these practical problems, we are called upon

for a kind of intellectual exertion different from that which

belongs to the usual course of mathematical reasoning. In-

stead of starting with given principles and tracing their

consequences, we have to select out of several principles

those which have the most important influence on the result;

instead of finding our abstractions ready made, as accele-

rating force, moving force, and the like, we have to form

new abstractions, as mechanical power, work done, such as

may group together the effects which we wish to consider

;

instead of insisting upon rigorous precision of reasoning from

the first, we must be content if we can approach to it

* Preface to Fourth Edition.
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after several concessions. And thus the treatment of prac-

tical questions in Mechanics, though not so perfect an ex-

ample of exact logic as the pure theory, is more of the

nature of the exercise of the reason on common occasions;

and may provide a discipline of a different kind from that

which the study of pure Mathematics affords.

I have also introduced into the present volume several

of the simpler propositions which respect the doctrine of the

rotatory motion of a rigid body, transferring them from my

Treatise on Dynamics. There can be no doubt that the

principles which govern such motions are really the same as

those which regulate motions of translation. To exclude

these principles from an elementary treatise, looks like evi-

dence of a disposition to ascribe to them an independent

basis ; and indeed, I believe many students have thus been

led to suppose that " D'Alembert's principle" contains some

peculiar law of motion or method of mechanical reasoning,

in addition to the other foundations of Mechanics. By in-

cluding this extension of the third law of motion, (for such

it is) and its simpler applications, in this Elementary Treatise,

the distinction between this and the portions of Dynamics

which are to be afterwards studied, is made to consist

solely in the simplicity of the pure mathematical processes

which are here introduced ; the Differential Calculus being

excluded from this work, with the exception of one or two

problems near the end. And thus the present volume con-

tains all the Princijiles of Mechanics; and there is left for

the succeeding volumes on Dynamics, only the application

of these principles by means of the methods of the higher

Mathematics.

The value of the science of Mechanics as a portion of

academic study, depends principally on its being a good
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example both of physical and mathematical reasoning. If

the science can have this character secured to it, it tends

not only to cultivate logical habits of thought, as do all

branches of Mathematics, but to show that the rigour of

necessary reasoning is not confined to the domain of space

and number. But such a beneficial influence cannot flow

from this study, except the science be pui'ified from all

fallacies of reasoning and indistinctness of principle; and

this has been one of the points at which I have laboured

in the present as well as in former editions.

On this account I have always insisted earnestly vipon

the distinction of Statics and Dynamics, the doctrines of

equilibrium and of motion. These two branches of the

subject rest upon different fundamental principles ; and the

mixture of the two has been a fertile source of confused

thought and vicious reasoning. It has given rise to many

false or unphilosophical steps in mechanical treatises ; as

for instance, the attempt to prove the law of the composition

of pressures by the consideration of motion ; the attempt to

prove the third law of motion by defining momentum gained

and lost to be action and re-action ; and the like. I trust

that this error is now very generally recognised and avoided

by the students of the subject.

Some persons appear to doubt* whether there are, in

the })hysical sciences, other grounds of necessary truth than

tlie intuitions of space and time. We might demand of

such persons whetlier the properties of the pressures which

balance each other on the lever, as proved by Archimedes,

be not necessary truths.^ whether our conceptions of pres-

sures, and the properties of pressures, are modifications of

* Edinburgh Review, Note to No. 127, P- 27'1.
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our conceptions of space and time P and if they arc not,

whether necessary truths concerning pressures must not have

some other ground than the Axioms of Geometry and

Number? We might ask them whether we do not, in fact,

in works like this, show that there are such other grounds,

by actually enunciating them ? whether the Axiom, that

the pressure on the fulcrum is equal to the sum of the

weights, be not self-evident, and therefore necessary ?

If it be said* that the establishment of such proposi-

tions as this " requires nothing but experience and the

logical analysis of thought," we cannot help replying, that

such a remark seems to betray confusion of thought and igno-

rance of the subject. For it would appear as if the author

denied the character of necessary truth to such principles

because they depend only on experience and analysis ; and

that if, besides these, they depended upon some additional

grounds, he would allow them to be necessary. Again, it

is clear that, in fact, such propositions do not depend at

all upon experience; for, as has elsewhere been urgedt, "Who
supposes that Archimedes thought it necessary to verify this

result by actual trial ? Or if he had done so, by what more

evident principle could he have tested the quality of the

weights?" And if such propositions depend upon logical

analysis only, how can they be otherwise than necessary ?

Does the objector hold that truths which resolve them-

selves into logical analysis, are einpirical truths ?

I conceive, therefore, that the cultivation of such a

subject as this may be of great use both to the Students

of this University and to other persons, not only in familiar-

izing them with the character of necessary truths, and the

" lb. p. 27j. f Thovffhts on the Study of Mathematics, ^c. p. 33.



Vlii 1' HE FACE.

processes of reasoning by which a system of such truths is

built up ; but also by shewing that such truths are not con-

fined to the domain of space and number merely.

We must undoubtedly allow, or rather we must urge it

as an additional recommendation of this study for the dis-

cipline of the mind, that the evidence of mechanical truths

cannot be seen without a clear possession of the fundamental

mechanical ideas ; for example, the ideas of pressure, and

of action and re-action. But in this respect the necessary

truths of Mechanics do not differ from those of Geometry.

The Propositions of Euclid cannot be seen to be necessarily

true, except by persons who have distinct and steady ideas

of the relations of space. Those properties of figures might

be known, and in fact have been known, as matters of ex-

perience and tradition, by many persons who did not perceive

them to be true a priori. But this is not enough for our

purpose: it is only when the fundamental conceptions of space

are clearly and distinctly developed, that a right appre-

hension of the nature of the evidence of geometrical truths

can be attained. And just the same is the case in Me-

chanics. A person who rightly understands the axioms of

Archimedes will see that they are not only true, but self-

evident and necessarily true; and thus he will perceive that

the whole structure of Statics, being built upon these axioms

by the infallible operations of mathematical logic, is, no less

than Geometry, a system of necessary truths.

If it be said that we cannot possess the ideas of pressure

and mechanical action without the use of our senses, and

that this is experience ; it is sufficient to reply that the same

may be said of the ideas of relations in space ; and that thus

Geometry depends upon experience in this sense, no less than

Mechanics. But the distinction of necessary and empirical



f R EF ACE. IX

truth does not refer to experience in this sense, as I need

not now stop to show.

1 venture to repeat, therefore, that the study of the

branch of Mathematics which is the subject of the present

volume, is fitted to be a very useful instrument of education,

not only as inuring the student to the salutary forms and

habits of the strictest reasoning, but also as teaching him to

extend to other subjects than position and number, that

distinctness of ideas from which the evidence of his reasoning

must spring. Till some other subjects, equally definite,

are pointed out, by which the same result may be hoped

for, we cannot cease to think the study of pure and mixed

Mathematics deserving of special encouragement as a means

of mental cultivation.

With reference to another assertion, made on the same

occasion as those to which I have referred, I will merely

remark, that the charge that the University of Cambridge

bestows not only a special but a paramount and exclusive

encouragement on these sciences* is not only unfounded, but

is inexcusably so, because it is impossible to refer to any

record of the prizes which the University bestows, without

seeing that there is a much greater number offered and

given in other subjects than in Mathematics.

Trinity College,
April 2b, 1836.

Edivhurgh Jievieu; No. 127, P- 274.
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ELEMENTARY TREATISE

O N

MECHANICS.

INTRODUCTION.

1. Mechanics is the science which treats of the laws

of the motion and rest of bodies.

In the science of Mechanics, as in every other branch

of Natural Philosophy, we assume that the material world is

governed by constant and determinate laws ; and our object

is to discover these laws, and to trace their consequences.

We shall, for example, have to investigate such subjects

as the following ;—the motion of a stone when it falls to

the earth ; the velocity with which it moves, and the path

which it describes when thrown in any direction ;—the mode

in which a heavy body may be supported by any instrument,

simple or complicated ;—the motion of any machine by which

weights are raised or removed ;—the requisite form and

adjustment, or the possible strength and stability, of any

material structure;—and in general, any case in which bo-

dies are pulled, or pushed, or struck, or stopped, or sup-

ported by other bodies in contact with them ; or in which

they are attracted or repelled by bodies at a distance.

Any cause ivhich moves or tends to move a body, or

which changes or tends to change its motion, is called

Force.

The appearances and occurrences of the material world

suggest to us the conception of Motion. Moreover we find

that we can often, by our own volition and exertion, influence

the motions of bodies ; we perceive that they appear to influence

each other''s motions ; and we thus obtain the conception of

A
/
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Foi'ce. Motions, and change or prevention of motion, being

considered as effects, and referred to their immediate causes.

Force is the general term applied to such immediate cause.

Thus, when a man supports a stone in his hand, his

hand is said to exert force upon the stone : and in the same

manner if he moves a machine by turning a winch, he is said

to exert force on the winch, and, by this, on the machine.

If the machine be moved by the weight of a heavy body,

this heavy body is said to exert force. When a stone falls,

it is said to be moved by the force of gravity, or of the

earth"'s attraction.

2. Body or Matter is any thing extended and possessing

the power of resisting the action of force.

In the conception of force exerted, there is involved the

notion of a certain power of resistance, residing in the ob-

ject on which the force is exerted. This power of resistance

shews itself by the object excluding other bodies from the

space it occupies, by its transmitting force to other bodies,

by its requiring a larger force to produce a quicker motion,

and in other ways.

In this manner the solid bodies which are treated of in

Mechanics differ from the solids treated of in Geometry.

In the last mentioned science we conceive figures to possess

extension only, without tangible solidity ; they are mere mo-

difications and limitations of our notion of space ; they occupy

space without excluding other figures from the same space

;

they have no material substance or mechanical attributes.

In Mechanics we consider bodies as they really exist ; not

only as extended, but as impenetrable, stiff or flexible, inert,

heavy.

In the science of Mechanics, as in all other sciences, our

object is to establish general speculative truths ; and we modify

and refine our usual conceptions so that they may answer this

purpose. The ideas which we obtain in the common practical

employments of our faculties, are the original materials of our

knowledge ; but, in their familiar form, they are too vague and

too partial to be the immediate objects of exact science. We
must define and fix, purify and abstract, extend and generalise



PR I NCI PL K 3. 3

them. In this manner they may become capable of having

their nature expressed by means of definitions, axioms and laws,

and of being precisely measured ; and they may then lead to

scientific propositions.

This rectification of the original loose notion of force is

requisite as the first step in our knowledge of Mechanics.

Force must be conceived as a measurable quantity, and the

truth of certain fundamental principles respecting it must be

clearly seen before we can proceed in our reasonings.

The following considerations are to be attended to for this

purpose.

3. Forces may produce either rest or motion in bodies.

It has already been stated that the science of which we

have to treat includes the laws of the i^est and motion of

bodies. A single force will necessarily produce motion,

but two or more forces may be so combined as to destroy

each other's effects, and to produce rest. Thus if two persons

pull with equal strength at two ends of a straight rope, as in

fig. 3, or of a rope which goes round a peg, as in fig. 4 ; or

if two weights, as P, Q in fig. 7, balance each other on a

prop C ; we have two forces producing rest. Again, if a person

standing on the bank of a canal, as at P, fig. 1, pull a

boat B which is in the water, by means of a rope BP, he

will cause it to move in the direction BP ; but if there be other

persons, as at Q, R, also pulling the boat in the directions

BQ, BR, it may happen, by properly adjusting the direc-

tions of the ropes and the strength exerted, that the boat

shall remain at rest by the united action of the three forces.

Force is originally received as the cause of motion, and

when it does not produce motion, this happens by its being

counteracted by an opposite force or forces. In this case the

forces are said to balance each other, or to be in equilibrium.

They are also said to destroy each other.

4. Two opposite forces which thus balance or destroy each

other are equal forces. Thus the forces Q, R, in fig. 3 or 4,

(supposing the weight P removed,) are evidently equal. Each
may be considered as measuring the other, since it exactly

destroys its effects.
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Forces are capable of addition: thus two men, pulling

one way, exert a force which is the sum of their separate

forces. It would require a man as strong as both together

to resist them by pulling the opposite way.

Forces are capable of being compounded: thus the two

forces which act in the directions BQ, BR, fig. 1, are com-

pounded, and produce the same effect as a single force in the

direction BS. For they are kept in equilibrium by a force

in the direction BP, just as a single force in the direction

BS would be.

When two or more forces are thus compounded into one,

the one is said to be equivalent to the component forces. The
force in BS is equivalent to the forces in BQ and BR.

The above principles lead to a measure of force; but

it is proper for this purpose to consider particularly a kind

of force of frequent occurrence in mechanical reasonings,

namely that which arises from the weight of bodies.

5. All bodies within our observation fall or tend to fall

to the earth ; and the force which they exert in conse-

quence of this tendency is called their Weight.

Weight is considered with reference to its mechanical

effects, and two bodies which produce the same effect are

said to have equal weights. Thus let MA, fig. 2, be a steel

spring in its natural position, and let a mass of lead P bend it

into the position MB ; then a mass of iron Q, which, sus-

pended in the same manner, bends it into the same position

MB, has the same weight as P. If P be one pound, Q is

one pound.

If we apply two bodies at once, in the same manner, to pro-

duce the same kind of mechanical effect by their weight, we

add the forces arising from their weight. Thus if in fig. 2, P
be one pound, and Q be one pound, the two together are two

pounds. Let MC be the position into which the spring is bent

by P and Q together, or by two such as P ; then any weight

which bends it into the position MC is called two pounds ;

and, in the same manner, if three weights such as P, bend it

into the position MD, any weight which bends it to D is

called three pounds ; and so on for any number.
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If instead of the bending of a spring we had taken any

other mechanical effect, the mode of explaining the way in

which weight is measured would have been the same.

6. The weight of the ivhole of any body is the sum of

the weights of its parts.

It has appeared, in what has been said, that by joining

bodies together we add their weights; and thus weight is

a property which belongs to a body as consisting of parts.

It appears, by closer examination, that the weight depends

on nothing but the number of parts : their arrangement, or

other circiunstances, do not affect the weight of the whole.

A basket of stones is of the same weight, however the stones

are shaken into new positions. The same lump of material

is of the same weight, into whatever new form it be moulded.

If 2-^ cubic inches of lead be one pound, 25 cubic inches of

lead will be 10 pounds, whatever be its shape.

Matter is originally apprehended, as we have said, by
its resistance to force ; but its properties are also manifested

by any of its mechanical effects. The Qiiantity of Matter is

considered to be the same when the mechanical effect is the

same : and in order to measure a quantity of matter, we
must take some property such that the amount of the property

in the whole mass is the same as the sum of the amounts in the

several parts. Since weight is such a property, we may mea-

sure the quantity of matter hy the weight.*

The same effect may be produced by masses of dif-

ferent magnitudes, when the materials are different. Thus
3-|- cubic inches of iron will produce the same effect by its

weight as 2-1- cubic inches of lead. Now it is assumed that

so long as the mechanical effect is the same, the quantity

of matter is the same. Hence the quantity of matter in 3-g-

cubic inches of iron is said to be the same as the quantity

of matter in 2i cubic inches of lead ; and the difference of

magnitude is supposed to result from the different spaces in

the two bodies which are porous, or not occupied bv matter.

* The quantity of matter is sometimes said to be proportional to its inertia

:

that is, to its resistance to the communication of motion. But in practice the quantity
of matter is always measured by the weight. It will be shewn in considerint? tlie

third law of motion that the inertia is as the weight.
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7. A heavy body may act by means of a string, or by

means of a rigid rod in the direction of its tveight ; and if we
suppose the string or rod to have no tveight, the effect of the

heavy body ivill not be altered by the length of the string or rod.

In fig. 3, let a weight P be supported by a hand at Q,

by means of a string QP; the force exerted by the hand

is equal to the weight itself : for instead of the weight P,

let a hand, as at R, exert a force equal to the weight

;

then this force will be supported as before, because the

force of the hand produces the same effect as was produced

by the weight ; but in this case it is clear that the forces

exerted by Q and R must be equal, whatever be the length

of the string, because they are similar forces and act upon

it in exactly the same manner. Hence, the force exerted

by Q is equal to the weight P, to which the force of R
was assumed equal. And thus the force exerted at Q is

the same, whatever be the length of the string.

The same reasoning would hold good, if QP were a

rigid rod. In both cases the only property of the line QP
which we consider is its capacity of transferring the action

of the force from one point, P, to another, Q.

We may consider the string or rod to be without weight,

for its weight has nothing to do with its office as transfer-

ring the force from one point to another. Its weight might

be very small in fact, and in reasoning we need not con-

sider it at all.

8. A heavy body may act by means of a string which

is capable of sliding over affved point, {as 0,Jig. 4) ,• and if

we suppose the string to have no weight, the heavy body

will be supported by the same force, whatever be the length

or direction of the string.

Let a weight P be supported by a hand at Q, acting

over a fixed point O; take OR= OQ, and let a hand act at

R, with a force equal to the weight P; then by the last

Article, this force will still be supported by Q ; but the

forces of Q and R must be equal, because they are similar

forces and act on the string QOR in exactly the same

manner ; the only diflPerence being that one of them is in
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a vertical direction, and the other not so ; which difference

cannot disturb their equilibrium, since neitlier of the forces

depends at all upon gravity. Hence, the force exerted by

Q is always equal to that exerted by R, and therefore to

the weight P : it is therefore the same, whatever be the

length or direction of the string OQ.

Instead of a fixed point at O, we may suppose a circular

pulley moveable about its center, and the reasoning will be

the same.

9. The science of Mechanics is divided into two parts :

Statics and Dynamics.

Bodies have no natural preference for a state of rest or

motion, as will be shewn hereafter. If they are at rest they

remain at rest, so long as no force acts upon them ; but the

slightest force, acting and not counteracted, would produce

motion. Hence when any number of forces act upon a body

at rest, or upon any system of bodies, there are two possible

cases :—the forces may be such as exactly to counteract or

balance each other, or to produce equilibrium : (see Art. 3)

—

or they may produce motion. In the latter case we have to

consider the direction, velocity and duration of the motion ;

in the former case we have only to consider the relations of

the forces which thus balance each other. Hence these two

cases may most conveniently be treated of separately.

We shall therefore divide our subject into the part which

relates to the action of forces in equilibrium, and the part

which relates to the action of force producing motion. The
first part is called Statics, the second Dynamics.

Force being considered as balancing force in one case, and

as producing motion in the other, is differently measured in

the two divisions of the science.

10. In Statics a force is measured by the weight which

it would support.

Whatever be the direction and magnitude of a force, we

may suppose it, as Q, in fig. 4, to act by means of a string

which, passing over a pulley O, supports a weight P ; and

the force will be measured by the weight so supported.
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Statical forces are called Pressures. Thus, when a heavy

body is supported, it exerts a pressure downwards on its sup-

ports, and is sustained by their pressure upwards.

The pressure exerted upwards by each support, is equal

to the pressure downwards tcpon it ; and the latter being

called the Action, the former is called the Re-action.

The pressures exerted by strings pulled by any forces are

called Tensions.

In the following articles we have to reduce all cases of

equilibrium to the simplest principles by which they can be

reasoned upon. And this may be done by various considera-

tions. Thus in the case which has been already mentioned

where, in fig. 1, three forces, BP, BQ, BR keep each other

in equilibrium, each may be considered as balancing the other

two, acting at the same point. In fig. 17, a force AP sup-

ports a wheel AC against an obstacle C and may be considered

as acting at A to balance the weight which presses the wheel

and which is supposed to act at the same point. But in this

instance we might also, by Art. 7, consider the force AP as

acting at M, and the weight as acting at N; and we should

thus have to reason concerning forces acting upon different

points of a rigid body, moveable about a point C. In the

same manner, in fig. 41, we may consider the strings AJC and

BC, with the pulley AB and the weight IF, which they sup-

port, as all exerting their force at the same point n, where the

lines of their directions meet. But we may also consider these

forces as exerted at A, B, and o, points in the rigid body AB,
and as keeping it in equilibrium. By similar views the most

complicated cases of equilibrium can be reduced to simple

principles.

The simplest principles to which the doctrine of Statics

can be reduced, are, the equilibrium of forces on the same

point, and the equilibrium of forces on the lever. And these

two principles are so connected that one can be deduced from

the other. The most simple course appears to be, first to

establish the latter principle, which is done in the following

chapter, and then to deduce the composition of forces from it,

which is the object of Chap. ii.
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CHAP. I.

THE LEVER.

11. A LEVER is a rigid rod, moveable, in one plane,

about a point wbicli is called the fulcrum or centre of motion,

by means of forces which tend to turn it round the fulcrum.

The portions of the rod between the fulcrum and the

points where the forces are applied, are called the arms.

When the arms are in the same sti'aight line, it is called

a straight lever ; otherwise it is called a hent lever.

The forces which act upon it are supposed to act in the

plane in which the lever is moveable.

The lever is generally considered to be without weight.

Its properties will be deduced from the following Axioms :

12. Axiom I. Equal forces acting perpe7idicularly at

the extremities of equal arms of a lever to turn it opposite

ways, will keep each other in equilibrium.

For the forces act in a manner perfectly similar, and hence

there can be no reason why one of them should prevail rather

than the other ; and as both cannot produce motion, neither

of them will do so. Therefore there will be an equilibrium.

If one of the forces be greater, the arms remaining equal

;

or if one of them act at a longer arm, the forces being

equal ; the greater force or the longer arm preponderates,

and the equilibrium is destroyed.

Cor. 1. Hence, the converse propositions are true;

namely,

If two equal and opposite forces, acting perpendicularly at

the extremities of the arms of a lever, keep it at rest, the arms

are equal. For if they were not, the longer would preponderate.

B
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If two forces, acting oppositely and perpendicularly at

the extremities of equal arms of a lever, keep it at rest,

the forces are equal. For if they were not, the greater would

preponderate.

Cor. 2. If a weight, as IF, fig. 5, be supported upon

a rod AB, on two fulcrum s A and B, at equal distances from

it, the pressures on the two fulcrums are equal. For there

can be no reason why either of them should be the greater.

Cor. 3. If two equal weights, P, Q, fig. 5, be supported

on two fulcrums, A and B, situated so that PA, QB, are

equal, the pressures on A and B are equal. The reason is

the same as in the last corollary.

13. Axiom II. If two equal weights balance each other

upon a straight lever, the pressure upon the fulcrum is equal

to the sum of the tveights, whatever be the length of the lever.

Thus if, in fig. 5, AB be a lever resting on two fulcrums

A, B, and supporting a weight W at its middle point, the

pressures upon the two fulcrums A, B are together equal to

the weight W.

Axiom III. If two equal weights be supported upon

a straight line on two fulcrums at equal distances from the

weights, the pressures upo7i the two fulcrums are together

equal to the sum of the two weights.

Thus if, in fig. 5 or 6, the two equal weights P, Q, be sup-

ported on A, B, {PA being equal to QB) the pressui-es on

A and B are together equal to the weights P and Q.

These two axioms are self-evident when we distinctly

conceive pressure, weight, and equilibrium. The pressures

which are entirely employed in supporting the whole weight

must be equal to it (Art. 4) ; and the whole weight is equal

to the weights of the parts (Art. 6).

It may be observed, that the axiom thus appears to be

true for any weights, as v/ell as for equal ones. For the sake

of simplicity we confine our employment of it as an axiom to

the latter case.
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Coll. If a iveight he supported upon a lever which

rests on tivo fulcrums at equal distances from the weight,

the whole pressure upon the fulcrums is equal to the

iveight.

The pressures of the fulcrums upwards in this case

balance the pressure of the weight downwards, in exactly the

same manner in which the pressures of the weights downwards

in the case of the Axiom, balance the pressure of the fulcrum

upwards. The pressures in each direction are supported by

those in the opposite direction ; and the notion of upwards

and downwards does not at all affect the relation of the

forces. Hence the relations of the pressures in this and in

the former case will be the same ; that is, the pressure which

acts in one direction is, in this case as well as in the other,

equal to the pressure which acts in the opposite direction.

14. Prop. If two equal tceights act perpendicularly

on a straight lever, they may he kept in equilihrium round

any fulcrum hy the same force as if they were collected at the

middle point between them.

Let P, Q, fig. 5, or 6, be the two weights, A the fulcrum,

and W the middle point. Take WB = WA, and suppose a

fulcrum placed at B.

When equal weights P and Q are supported on the lever,

the pressures on the two fulcrums are equal by Cor. 3. to

Axiom 1 ; and the whole pressure is P + Q by Axiom 3 ;

therefore the pressure on each fulcrum is half P + Q.

When a weight TF, equal to P + Q, is placed at the mid-

dle point, the pressure on each of the fulcrums is, by Cor. 2.

to Axiom 1, equal to half the whole pressure; but the whole

pressure is P + Q, by Axiom 3 ; therefore the pressure on each

fulcrum is half P + Q.

Hence, the pressure on the fulcrum B is in each case equal

to half P + Q: and therefore the lever will in both cases be

kept in equilibrium by the same force applied at B.
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Cob. Hence, a horizontal prism or cylinder of uniform

thickness and material, will produce the same effect as if it

Avere collected at its middle point.

Thus, a cylinder BD, fig. 7, will produce the same eflPect

on a lever CB as if it were collected at its middle point N : for

this cylinder may be considered as composed of pairs of equal

small weights (as d and h) at equal distances from A'', and each

such pair will produce the same effect as if collected at iV,

and hence, the whole cylinder will produce the same effect as

if it were collected there.

15. Prop. If two weights, acting perpendicularly upon a

lever, on opposite sides of the fulcrum, have their distances from
thefulcrum inversely as the iveights, they will balance each other.

Let P and Q, fig. 7, be the weights; and let AB be a

cylinder equal to the sum of the weights. Divide AB in D
so that AD : DB :: P : Q. Then the weight of the por-

tion AD of the cylinder will be equal to P, and the weight of

the portion DB equal to Q. The cylinder AB will balance

on its middle point C.

Let 31 be the middle of AD, and N of Bli: then, by
last Article, the cylinder AD will produce thy !!.3fne effect as

if it were collected at M, and the cylinder BD as if it were

collected at A^. Hence, if we suppose AB, instead of being

a cylinder, to be a rod without weight, and upon this rod a

weight equal to AD to be placed at M, and a weight equal

to BD to be placed at N, these weights will still balance

each other on the point C-

That is, P placed at M, and Q placed at A^, will

balance each other on C. And hence, by Art. 7, they will

balance when suspended by the strings MP, NQ.

Now, since DM is half DA, and DA^ half DB, MN is

half AB.
Also, CM=CA - AM =\AB -\AD,
and DN = MN -DM =\AB -^AD ;

.-. CM = DN, and hence DM==CN
Hence, CM : CN :: DN : DM :: DB : DA

:: Q : P.



THE L K V K R

.

13

Hence, when the weights and distances have this proportion,

they will balance each other.

Cor. 1. Conversely, if the weights P and Q balance each

other on C, we have P : Q :: CN : CM; for if not, let

P : Q' :: CN : CM, and therefore by the proposition, P and
Q' will balance each other ; and hence Q and Q' produce

the same effect at iV, and therefore must be equal.

Cor. 2. The pressure on the fulcrum C will be the

sum of the weights P and Q.

For the pressure of the weights P, Q on the fulcrum

C will be the same as the pressure of the cylinder AB on

that fulcrum: and this pressure (Art. 14.) will be the same

as if the cylinder AB, which is the same weight as P + Q,
were collected at C.

Cor. 3. What has been proved of weights, is true of

any forces whatever, for these may be represented by weights

(Art. 10) : for instance, it applies to forces acting in the

directions CR and MP, fig. 8, about a fulcrum N.

16. Prop. If two forces, acting perpendicularly on a

straight lever on the same side of the fulcrum, are inversely

as their distances from the fulcrum, they will balance each

other.

In this case the forces must act in opposite directions, as

P and Q, in figures 8 and 9, acting at M and N.

If we suppose that there is at the fulcrum C a force R,
acting parallel to that at M, and such that R : P :: NM : NC,
the forces P and R will produce equilibrium about a ful-

crum N, and the pressure on N will be P + R, by last

Article and Cor. 2 and 3. Hence, if at iV a force = P + R
act in the opposite direction, it will produce the effect of

the fulcrum. If therefore Q = P + R, the three forces P, Q, R,
will keep the lever in eqviilibrium. And this is true, if

NC,

And therefore, if Q and P have this proportion, they

will balance each other.

R
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Cor. 1. Conversely, if the weights balance on C,

P : Q :: CN : CM.

CoR. 2. The pressure on the fulcrum C will be the dif-

ference of the forces, for it will be R, and since

P + K= Q, R= Q-P.

Also, it will be in the direction of the greater force Q.

CoR. 3. Multiplying extremes and means, we have, both

in this Proposition and the last,

P.CM= Q. CN.

17. When a lever is used as a mechanical instrument,

one of the forces, as Q, is a weight to be raised or supported,

and the other, P, is employed to produce this effect. Hence

P is called the power, and Q the weight.

Straight levers are divided into three kinds.

The lever of the Jirst kind is that in which the power

and the Aveight are on opposite sides of the fulcrum, as in fig. 7.

Scissars, Pincers, &c. are examples of double levers of

this kind ; the fulcrum being at the center of motion ; the

power being the force of the fingers ; and the weight, the pres-

sure exerted by the cutting or holding part.

The lever of the second kind is that in which the power

and the weiffht are on the same side of the fulcrum, the

power being more distant from it.

A stock-knife, a pair of nutcrackers, &.c. are examples

of this kind. Ati oar also belongs to this class, the fulcrum

being that point of the blade of the oar which is for a mo-

ment stationary in the water while the boat is impelled for-

wards ; the power being the pull of the rower ; and the

weight, the pressure of the oar upon the side of the boat.

In these cases, the lever always acts at a mechanical

advantage, in consequence of the power acting at the longer

arm ; that is, the pressure produced is greater than the

power exerted.
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The lever of the third kind is that in which the power

is on the same side as the weight, and nearer to the ful-

crum, as in fig. .9-

In this case, the power always produces a pressure less

than itself, and the instrument is employed not to obtain

a mechanical advantage, but to enable the force to act at a

greater distance.

Examples of this kind of lever are a pair of toiigs, and

a pair of sheep-shears: some hones of animals considered

with respect to equilibrium only, are also levers of this kind,

the fulcrum being the joint ; the power, the muscle which

is attached near the fulcrum ; and the weight, the force

exerted by the limb further from the joint.

18. Examples of the Straight Lever.

Ex. 1. On a lever of the first kind, 3 feet long, a weight

of 100 pounds is suspended at the extremity, and 2|- inches

from this end is placed a fulcrum ; what weight at the other

end will preserve the equilibrium ?

In fig. 7, i/A^=36 inches; Cil/=2|- inches ; .-. CN=33^^-

inches,

P : Q :: 33| : 2f :: 100 : 8 ;

and P=100lbs. ; .-. Q = 8lbs.

Ex. 2. On a straight lever MO, fig. 10, let j\IC, CN,
NN', N' N", &c. be all equal ; then if a weight Q be slid

along the arm CO, what are the weights at M, which it will

balance when at iV, A^', N", &c. ?

Q at N balances Q at M ; Q at N' balances 2 Q at J/

;

Q at iV" balances 3 Q at M, &c.

Hence, excluding the weight of the lever, the weight at

M might be known from knowing the place of Q. We
shall see hereafter how the weight of the lever itself may be

taken into account.
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If CM = CN, the weights at M and N are equal, and

one of them may be used to measure the other. This is

the case in the common balance, but when the arms are un-

equal, it is called a false balance.

Ex. 3. In a false balance, to find the true weight of

the substance weighed.

Let CM, CNf be unequal, and let x be the weight to

be determined. Let ,v at JV be balanced by a ounces at il/,

and let x at M be balanced by b ounces at JV. Therefore,

.V : a :: CM : CN,

.V : b :: CN : CM;
.-. od" : ab :: 1 : 1,

OD'^ = ab. and 6;

.-. X is a mean proportional between a and b, the apparent

weights in opposite scales.

Ex. 4. When a weight is supported on a lever at two

points, to compare the pressures supported at the two points.

Let a weight R be supported on a lever MN, fig. 11, by

forces P, Q. The same force is exerted at il/ as if iV were a

fulcrum : hence.

p
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Produce NC to /^, so that CD = CM, and at D let a force

R, equal to P, act perpendicularly to CZ>: also take CE = CJ/,

and at E let a force S^ also equal to P, act perpendicularly

to CA^.

The forces P and .9 would balance each other, because

they are equal, and act in a manner exactly similar upon the

arms CM, CE. But the force R would balance S, because

CD = CE. Therefore P and R produce the same effect on

the lever.

Now, since P : Q :: CN : CM, we have

R : Q :: CN : CD;

therefore, by Art. 15, R would balance Q on the straight lever.

Hence, P will balance Q on the bent lever.

Coil. 1. Conversely, if the forces act perpendicularly and

balance each other, they are inversely as the arms.

CoR. 2. If the arm CM or CN were bent so as to have

any other form, CFM, its extremity being the same, the same

proportions would be true.

For, CFM being perfectly rigid, if we join CM, the effect

produced will be the same if, instead of the arm CFM, we sup-

pose the rigid surface CFMC And, in this surface, if we

remove any portion of the surface by lines parallel to CM, so

as to leave only a strip CM, the effect will manifestly be the

same as before. Hence, whether we have the rigid rod

CFM, or CM, the effect will be the same.

50. Prop. If two forces, acting at any angles on the

arms of any lever, are mversely as the perpendiculars from
the fulcrum upon their directions, they will balance each

other.

Let ACB, fig. 13, be the lever moveable about C; P, Q,

two forces acting in the lines AP, BQ, and CM, CN perpen-

diculars on those lines. And let P : Q :: CN : CM; the

forces will balance each other.

Let AM and CAI be considered as rigid rods ; then by

Cor. 2, to last Art., the same effect will be produced whether

C



18 THE LEVER.

we suppose the force P to act by means of the crooked arm

CAM, or the sti'aight one CM. In the same manner the

force Q, acting at B, will produce the same effect as if it

acted at N. But the forces P and Q, acting at M and N,
would produce equilibrium, by last Article, because

P : Q :: CN : CM,

hence, acting at A and B, they will produce equilibrium.

CoK. 1. P.CM^Q.CN.

CoR. 2. Conversely, if this proportion is true, or if these

products are equal, the forces will balance.

CoE. 3. P. CA.&m A = Q. CB sin B.

CoR. 4. The proposition is true, whatever be the angle

made by the arms CA, CB, and hence it is true when this angle

vanishes, and the arms coincide. That is, if two forces P, Q,
fig. 14, act in directions AP, BQ, at points, A, B, of the same

straight lever, when they are inversely as the perpendiculars on

their directions, there will be an equilibrium.

Cor. 5. Hence, if two forces act at the same point of

a lever to turn it in opposite directions ; when they are in-

versely as the perpendiculars, there will be an equilibrium.

21. Examples of the Bent Lever.

Ex. 1. Fig. 13. P is 99 pounds, Q 100 pounds ; CA = 9,

CB = 5, and the angle CAP = 30" ; to find the angle CBN,
that there may be an equilibrium ;

P CA. sin. A = Q.CB. sin. B ;

. P.CA
. 99.9 1

.-. sm. B = ^ ^^ . sm. A = .

Q.CB 100.5 2

= . 891 = sin. 62%

as appears by the table of sines; whence CBN =62".

Ex. 2. In a straight lever AB, fig. 15, acted on by
weights P, Q; if there be an equilibrium when it is horizontal,

there will be an equilibrium in every position.
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Let AB be any position of the lever ; MCN a horizontal

line ; PAM, QNB, vertical lines. If there be an equilibrium

in the horizontal position,

P : Q :: CB : CA.

But, by similar triangles, CB : CA :: CN : CM; therefore

P : Q :: CN : CM;

and therefore the equilibrium subsists.

Ex. 3. In a bent lever ACB, (without weight) fig. l6,

having given the lengths of the arms, the angle which they

make, and the weights P, Q, appended to them ; to find

the position in which it will rest.

Draw MCiV horizontal, meeting the vertical lines PA, QB,
in M, N. Let CA = a, CB = b, ACB = w; and ACM=0,
which is to be found. Therefore BCN = tt — w — 9, tt being

two right angles.

P.CA. COS. ACM = Q.CB . cos. BCN,

P a COS. = Qh COS. (tt - w - 0) = - Qb cos. (w + 9)

= — Qb |cos. o) cos. 9 — sin. to sin. 9] ,

(Pa + Qb cos. no) COS. 9 = Qb sin. co sin. 9 ;

Pa + Qb COS. u)
.-. tan.0 =

Qb sin. CO

Ex. 4. In the same case, having given P, to find Q,
such that the arm CA may be horizontal.

In this case, 9 = 0;

Pa
Pa + Qb COS. CO = ; Q =

b cos. w

The problem will not be possible, except w be greater

than a right angle, in which case cos. w is negative, and Q
is positive.

Ex. 5. To find the force requisite to draw a carriage

wheel over an obstacle, supposing the weight of the carriage

tollected at the axis of the wheel.
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Let J, fig. 17, be the axis of the wheel, CD the

obstacle. Then if the wlieel turn over the obstacle, it must

turn round the point C ; and the force Avhich moves it

being supposed to act in the line AF, and the weight in

the vertical line AE, the wheel will be a lever such as

that referred to in Cor. 5, Art. 20. Hence, in order that

P may balance the weight Q,

F : Q :: CN : CM :: sin. CAE : sin. CAP,

sin. CAE
'

sin. CAP'

Hence, P is least when sin. CAP is greatest, or when

CAP is a right angle. In this case, P = Q sin. CAE.

If the wheel be made larger, the obstacle being the

same, the versed sine iV£, or CD, remains the same ; and the

radius being increased, the angle CAE is diminished. Hence,

ccBteris parihits, P is diminished, and the larger the wheel,

the smaller is the force requisite.

22, Prop. Fig. J 8. If any number of forces P, Q, 4'C.

atid P\ Q', <§-c., acting upon the arms of a lever to turji

it opposite tvays, be such that

P.CM +Q. CN + &c. = P' . CM' + Q'
. CN' + &c.

there icill be aji equilihrium.

Here CM, CN, &c., and CM', CN', &c. are the per-

pendiculars on the directions of the forces ; and the lever is

supposed to have any number of arms inflexibly connected.

Draw any line 00' through C, and at O and O' let forces

X, Y, &LC., and N', Y', &c., act, perpendicularly to 00', to

turn the system opposite ways. Let these be such that

X .CO = P. CM, Y .CO = Q. CN, &c. ;

X'. CO' = P'. CM', Y' . CO' = Q'.CN', &c.

;

.'. X.CO + Y.CO + &c. = P.CM+ Q.CN + &c.,

X'. C0'+ r. C0'+ &c. = P'. CM'+ Q'. CN' + &c.

But by supposition

P . C31 + Q . CN + Sec. = P'. CM' + Q'
. CN' + &c.
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therefore

X. CO +V.CO + &c. = X'. CO' + r. co' + &c.

or, (.¥+ F+ &c.) CO = {X' + F' + &c.) CO'.,

and hence, by Art. 16", Cor. 3, the force X + Y + &c. at

O, and X' + F' + &c. at 0\ produce equilibrium.

But, since X . CO =^ P . CM, P would balance X :,
simi-

larly, Q would balance F, &c.; and similarly, P' would

balance A", Q' would balance F', &c.

Hence, P, Q, &.c. together, would balance X, F, &c. to-

gether ; and hence P, Q, &c. produce the same effect as

X\ F', &c. which together balance X, F, &:c. But, in the

same manner, X\ F', together, would balance P\ Q' to-

gether ; therefore P, Q, &c. will balance P', Q', &c.

Cor. 1. Conversely, if there be an equilibrium,

P. CM+ Q.CN+ kc. = P'. CJ/'+ Q'. CiV' + &c.

For, making the same construction, P, Q, &c. will balance

X, F, &c., and P', Q', will balance ^Y', F', &c. Hence,

since P, Q, &c. balance P', Q', &c. X, F, &c. will balance

X, Y', &c. ; and therefore,

{x+ F+ &c.) CO = (.r + F' + &c.) ca.

But the first side

= X . CO + Y. CO + &c. is = P^\M + Q.CN -i- &c.

by supposition.

And the second side, in the same manner,

= X'. CO' + r. CO' + &c. is = P'. CM' + Q'. CN' + &c.

;

.-. P. CM + Q . CX + Svc. = P'. CM'. + Q'. CX' + &c.

CoK. 2. If the forces be weights acting at points M, N'^

M', N', &c., on a horizontal lever, fig. 19, the equilibrium

will subsist, when

P.CM+ Q.CX+ &c. = P'. CM' + Q'
. CN' + &c.

If P . CM +Q.CN+kc. be greater than

P'.CM'+Q'.CN'+ kc.
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the lever will turn in the direction in which P, Q, &c. would draw
it, and vice versa. Hence, the quantity P . CM + Q . CN + &c.

may be considered as the measure of the power or energy to

turn the system in that direction. This quantity, viz., the sum
of the products of each force into its perpendicular distance

from the fulcrum, estimated in the same direction, is called

the moment or momentum of the forces round C ; and the

product of one force P, by its perpendicular CM, is called the

moment of that force.

23. Ex. 1. In fig. 19, let P, Q, P', Q', be weights of

3, 5, 7, 9 pounds respectively, and MN, NM\ M'N', equal

distances of one foot : to find the point on which the weights

will balance.

Let MN = NM' = M'N' = a, and MC = x ;

.-. NC =x -a, CM' = 2a- a, CN' = 3 a - x ;

and therefore, by last Corollary,

3 0) + 5 {x - a) = 7 (2 a - x) + 9 (3 a - a) ;

5a + 7.2a + 9.3a 46 a 23 a

3 + 5 + 7 + 9 ~ 24 ~ 12 '

.•. a; = 23 inches, and C is one inch from M'.

Ex. 2. To shew how the steelyard must be graduated.

The steelyard is a lever AB, fig. 20, which is moveable

about a center C, and on which substances to be weighed are

suspended from the extremity B, as at Q. A known weight

P, moveable along the arm CA, is placed at such a distance

from C as to balance the body Q : then, from the place of

A we may know the weight Q : and, if at different points

of CA we place figures to represent the corresponding weights

of Q, the arm CA is graduated.

The lever is now supposed to have weight, and the arm

CA being longer and heavier than the other, will preponderate.

Suppose, that when Q and P are removed, a weight equal to

P, placed at Z>, would keep the beam horizontal. If we then

take CO = CD, it appears that the whole beam AB produces

the same effect as a weight P placed at O; for either of the two

would balance P, placed at D. Now let P and Q balance at

B and M: therefore, Q balances P at M, together with the
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beam ; that is, Q balances F at M, together with a weight

which produces the same effect as P at does. Hence,

Q . CB = P . CM + P . CO = P . CM + P . CD
= P . DM.

Hence, if we make DE, DF, DG, &c. equal to CB, 2 CB,
CB, &c. we shall have, when P is at E, at F, at G, &c.

Q = P, Q = 2P, Q = 3P, &c.

And therefore, the beam is graduated, by taking such equal

distances from the point Z>, and numbering the points thus

found 1, 2, 3, &EC.

24. The reasonings of this chapter will apply if the

arms of the lever, instead of being all in the same plane, are

in any planes perpendicular to the axis of motion, the forces

being supposed to act in these planes. The perpendiculars

in these planes from the axis upon the force must be taken

instead of CM, CN, &c. in the preceding Articles, and the

same propositions are still true.

A windlass moved by handspikes, is an example of

forces acting in this manner.
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CHAP. II.

THE COMPOSITION AND RESOLUTION OF FORCES.

25. Having considered the action of forces, and their

equilibrium, upon a lever, we now proceed to consider the

effect of the combined action of two or more forces on a

point. If two forces act on a point, as the forces in 5Q,
and BR^ fig. 1, they will produce the same effect as a single

force acting in some intermediate direction as BS.

In this case, the force in ^^S* is called the Resultant of

the forces in JBQ, BR ; and the forces in BQ, BR, are called

the Components of the force in ^^S*.

When two forces act in the same direction, the combined

effect is equivalent to the sum of the forces. Thus, if a

force of 2 pounds, and another of 3 pounds, act upon the

same point, in the same direction, the point will be drawn

with a force of 5 pounds. And, in the same manner, if two

forces act in opposite directions, the resultant will be the

difference of the two, and in tlie direction of the greater.

Thus, if a point be acted on by a force of 7 pounds in

one direction, and 4 pounds in the opposite, it will be drawn

with a force of 3 pounds in the first direction. For the

force of 7 may be considered as composed of 4 and 3 ; of which

the 4 will be destroyed by the opposite force, and the 3 will

remain effective.

26. Prop. If any two forces act at the same ])omt, the

force tchich is equivalent to the two is in the direction of
the diagonal of the parallelogram, of which the sides repre-

sent the magnitude and direction of the componeyit forces.

Let Ajj, Aq, (fig. 21.) represent in magnitude and direc-

tion the forces P, Q: complete the parallelogram ApCq ;

and draw AC Draw also CM, CN perpendicular upon Ap,
Aq produced. Now suppose CA to be a lever moveable about

a point C, and acted on by the forces P, Q, in the directions

Ap, Aq. The triangles CpM, CqN, have right angles at
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M and N, and angles CpM = qAp = CqN. Hence they

are similar, and

CM : CN :: Cp : Cq :: Aq : Ap

:: Q : P hy supposition.

Therefore the forces P, Q are inversely as the perpendicu-

lars CM, CN, and would therefore together keep the lever

CA at rest. (Art. 20, Cor. 5.)

And since the force equivalent to the two P, Q, would

produce the same effect as they would together, this force also

would keep the lever CA at rest. But manifestly no single

force can keep the lever CA at rest, except it act in the direc-

tion AC*: for if it made an angle with CA on either side,

it would turn CA round C in that direction. Hence the equi-

valent force acts in the direction AC ; and ^C is the diagonal

of the parallelogram whose sides are Ap, Aq, which represent

the forces.

Cor. 1. If a point acted on by two forces Ap, Aq, be

kept at rest by a third force, this force must act in the

direction CA.

Cor. 2, Hence if three forces act at a point and keep each

other in equilibrium, each of them is in the direction of the di-

agonal of the parallelogram whose sides represent the other two.

27. Prop. If any two forces act at the same point, the

force which is equivalent to the two is expressed in magni-

tude by the diagonal of the parallelogram, of which the sides

represent the magnitude and direction of the component

forces.

Let Ap, Aq, fig. 22, represent the two forces in magni-

tude and direction. Complete the parallelogram Apqr, and, by

last Article, Cor. 2, the two forces Ap, Aq will be kept at rest

by a force in the direction rA. Let Ay represent the force in

magnitude; and complete the parallelogram ^p.ry. Since the

* If the force were to act in the opposite direction CA it would keep the lever

attest, but in that case it manifestly could not be equivalent to forces -4f, AQ
which include an angle on the side towards C.

D
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forces A J), Aq, Ay, keep each other in equilibrium, we may
consider Aq as counteracting Ap, Ay. Hence, by last Art,

Aq will be in the direction of the diagonal of the parallelo-

gram py, and xAq will be a straight line. Hence, in the tri-

angles x Ay, qAr, the angles xAy = qAr:, as also .ryA = Arq
by parallel lines ; and therefore the triangles are equiangular.

Also, by parallels, qr = Ap = y'^v ; therefore the triangles x Ay,

qAr are equal : and Ay = Ar: that is, the force Ay h repre-

sented in magnitude by the diagonal Ar. And Ap, Aq would

counteract Ay, and therefore their resultant in Ar would coun-

teract Ay, and is therefore equal to it. Hence, the resultant is

represented in magnitude by Ar.

CoR. If the components be represented by the sides of

a parallelogram, the resultant is represented in magnitude and

direction by the diagonal.

28. Prop. Forces may he represented by lines parallel

to their directions, and proportiotial to them in magnitude.

For the direction of a line parallel to a force is the same

as that of the force itself: and hence the force is properly

represented in magnitude and direction.

CoR. 1. If AB, BC, fig. 23, represent two forces, AC
will represent their resultant ; for, completing the parallelogram

ABCD, the force represented by BC is the same with the force

represented by AD; and therefore AC, the resultant of AB,
AD, is the resultant of AB, BC

CoR. 2. If two forces be represented by two sides of a

triangle proceeding from the same angle, as AB, AD ; their

resultant may be found by doubling the line which joins the

angle and the bisection of the opposite side. For if the

parallelogram be completed, its diagonals bisect each other,

and therefore AC is twice AE.

Cor. 3. If three forces, represented in magnitude and

direction by the three sides of a triangle taken in order, act

on a point, they will keep it at rest. Let ABC, fig. 23,

be the triangle; AB, BC are equivalent to AC by Cor. 1;

therefore AB, BC, CA are equivalent to AC, CA, and

therefore will keep the point at rest.
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Cor. 4. Conversely, if three forces act on a point in

the directions of the sides of a triangle, and keep it at rest,

they are represented in magnitude by the sides of the tri-

angle. For if one of these forces, as that in direction EC,
be liot represented by BC, let it be represented by BC' ;

then the two AB, BC' are equivalent to AC\ and therefore

cannot balance a force in direction CA : which is contrary

to the supposition. ;

Cor. 5. Hence, knowing; the directions of three forces.... . >
which keep each other in equilibrium, we may find their re-v

lative magnitudes, by making a triangle whose three sides are

parallel to these directions ; these sides will be in the pro-

portion of the forces.

CoR. 6. If three forces keep a body in equilibrium, an^
three lines be drawn making with the directions of the forces

three equal angles towards the same parts ; these three lines

will form a triangle whose sides will represent the three forces

respectively.

Let AB, BC, CA, fig. 24, and 25, be the directions of the

forces ; D3f, EN, FO three lines such that the angles ADM,
BEN, CFO are equal ; these lines, produced if necessary,

form a triangle ahc. In the triangles aEM, ADM, the

angle aME equals AMD, and by supposition aEM, that is

BEN, equals ADM ; hence the remaining angle MaE or bac
equals AfAD or BAC; similarly, the angle abc equals ABC,
and bca equals BCA. Hence the triangles abc, ABC are

equiangular, and therefore

ab : be :: AB : BC
:: force in direction AB : force in direction BC,

by Cor. 4. And similarly of ca.

If therefore ab represent the force in direction AB ; be,

ca will represent the forces in directions BC, CA.

CoR. 7- If three forces keep a point at rest, they are each

as the sine of the angle contained by the other two.

Let P, Q, R, acting in Ap, Aq, Ay, fig. 22, keep a point A
at rest. Produce yA, and draw jt^r parallel to Aq, and A p, pr.

vA will be as the forces, (Cor. 4.) Now
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P : Q :: Ap : pr :: sin. Arp : sin. pJr
:: sin. qAr : sin. pAr
:: sin. qAy : sin. pAy.

And similarly, we should have

R : P '.: sin. pAq : sin. yAq,
and Q : R :: sin. t/^jt> : sin. ^^J^.

Cor. 8. If the angle between two given forces be dimi-

nished, the resultant is increased.

Let two forces Ap^ Aq,^g. 26, act at the angle pAq; pr
being equal and parallel to Aq, Ar is the resultant.

Let Ap, AQ, the same forces, act at the angle pAQ; pR
being equal and parallel to AQ, AR h the resultant.

pR is equal to pr, and if the angle pAQ<pAq, we have

Apy^Apr and therefore AR > Ar. (Euc. xxiv. l.)

29. We have instances of the composition of forces in such

cases as the following.

Suppose a boat fastened to a fixed point by a rope, and

acted on at the same time by the wind and the current. Then
the direction of the rope will indicate the direction of the

resultant of these actions.

In fig. 1, let BQ„BR, the directions of two forces which

act at B, be at right angles, and let the forces exerted be

48 pounds, and 20 pounds : to find the magnitude and direc-

tion of the resultant.

If we make BRS a right angle, and BR = 48, RS = 20,

BS will be the resultant. And BS = 48" + 20^ = 2704 ; .-. BS
= 52, and the resulting force is 52 pounds.

20 5
Also to find the angle SBR, we have sin. SBR = — = —

;

52 13

.-. SBR = 22° 37' nearly.

We have many examples of the resolution of forces, in cases

where the force exerted being resolved into two, one of them is

somehow lost or counteracted, and the remaining part only is

effective. Thus, if we drag an object along the ground by

a rope attached to it, if we suppose this rope to be inclined
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to the horizon at an angle of 45°, the force which we exert is

effective only in part. If we thus exert a force of 17 pounds,

this force is equivalent to two equal forces, one in a horizontal

and one in a vertical direction. And if each of these be called

tT, we shall have

17 .w + cf- = l?-, ,v = —7-= 12 nearly.
^2 ^

Hence the force witli which we draw the body horizontally is

12 pounds.

30. Proi'. To find the resultajit of any number offorces

AB, Ac, Ad, Ae, acting in the same plane at a point A,

fig. 27.

Complete the parallelogram Be, and draw the diagondtl^iC;

Complete the parallelogram Cc^, and draw the diagonal ^Z>;

Complete the parallelogram De, and draw the diagonal ^£^;

and so on, if there are more forces.

A^ Ac, are equivalent to AC.,
.'. AB, Ac, Ad, are equivalent to AC, Ad, that is, to AD

.,

.'. AB, Ac, Ad, Ae, are equivalent to AD, Ae, that is, to AI].

That is, AE is the resultant of the forces JB, Ac, Ad, Ae.

Cor. 1. If any number of forces be represented by sides

of a polygon taken in order, as AB, BC, CD, DE, their re-

sultant will be represented by the line AE which completes

the polygon. (See Art. 28.)

Cor. 2. A number of forces which are z'epresented by
all the sides of a polygon taken in order, as AB, BC, CDy
DE, EA, acting upon a point, will keep it at rest.

For AB, BC, CD, DE are equivalent to AE : therefore,

AB, BC, CD, DE, EA, are equivalent to AE, EA, and will

keep a point at rest.

CoR. 3. It does not follow conversely, as in the case of

three forces, that if they act in the direction of the sides of the

polygon and are in equilibrium, they are proportional to the

sides. For the directions of the sides may remain the same
while their proportions are altered. Thus, if we draw D'E'
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parallel to Z>jE, forces parallel to the sides of the polygon will

keep a point at rest, if they be proportional to AB, BC, CD',

D'E\ E'A, as well as if they be proportional to AB, BC, CD,
BE, EA.

31. Prop. To Jind the resultant offorces which are not

in the same plane.

Let AB, AC, AD, fig. 28, be three forces not in the

same plane. Let the planes BC, BD, CD, be drawn, and

the planes DG, CG, BG, parallel to them, completing the

parallelepiped, whose sides will be parallelograms. Join AF,

DG ; DF will be a parallelogram, as is evident ; and by Art. 27,

AB, AC, are equivalent to AF;

.-. AB, AC, AD, are equivalent to AF, AD, that is, to AG.
Hence, if the edges of a parallelepiped, drawn from the same

point, represent the components, the diagonal will represent

the resultant.

Cor. 1. If ABEG be any four-sided figure, not all in

the same plane, and if AB, BE, EG, represent three forces,

AG will represent their resultant.

Cor. 2. If four forces acting upon a point, be represented

by the sides of any four-sided figure, taken in order, they will

keep the point at rest.

Cor. 3. If any number of forces be represented by sides,

taken in order, of a polygon, which is not in the same plane,

their resultant will be represented by the line which completes

the polygon.

Cor. 1-. If any number of forces be represented by all

the sides, taken in order, of any polygon, they will keep a

point at rest.

The three last Corollaries are proved from this Article, as

those of Art. 30. are from Art. 30.

32. From the preceding principles, we may find the con-

ditions under which a point will be kept in equilibrium, as

will appear in the following Problems.
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PiiOB. I. Fig. 29. A, B are two pohits in the same

horizontal line, and AC, BC, two strings from which, at

the knot C, the weight W hangs : tofind the forces exerted by

the strings CA, CB.

The point at which the equilibrium is produced is, in this

case, the point C ; and the forces which produce it are the

forces of the strings CA, CB, and the weight W acting by

the string CW. From any point d in the vertical line WC
produced, draw dh, da, parallel to CA, CB. In order to

support the weight W the resultant of the forces of the strings

CA, CB, must be in the direction Cd, and must be equal to

the weight W. The forces must therefore be as Ca, Cb, and

their resultant will then be as Cd by Art. 27. Hence if Cd
represent the weight W, we have the forces of the strings repre-

sented by Ca, Cb. Or ii P, Q represent the forces of the

. strings CA, CB ; we have

p
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Ca=Cb = ad; .-. z aCd = Cda = dCb ; .-. the triangles

ACE, BCE are equal, and AE = EB. Hence E bisects AB,
and C will be in the vertical line passing through E.

Join ah meeting erf in e; aec, AEC are right angles.

^ .P Ca Ca CA ^ . .^ . ^And —- = —— = ——- = —--= by similar triangles.W Cd 2Ce 2CE -^
^

Let AE = EB = a, EC = x ; .-. CJ = (a^ + a?"^) ^,

P _ (a^ + a?^)^

4P-' „ „ „ 4P-- J^'
>,2 _

Wa

whence the position of C is known.

Cor. 1. In order that x may be possible, we must have

the quantity under the radical sign positive, and therefore

or W<2P;
if FT be equal to or greater than 2P, it will descend, drawing

up both the weights, and will never find a place where it will

rest.

Cor. 2. In order that the string ACB may be drawn so as

to be in the horizontal line, we must have x = 0,

Wa
or ^ FT = ;

which cannot be, except either W be indefinitely small or P in-

definitely great. That is, no weights P, Q, however great, can

draw up a weight W, so that the string ACB shall be a hori-

zontal straight line. If ACB, instead of being a line without

weight loaded with a weight at its middle, be a cord of which

each part has weight, the same will be true.

Prob. III. Fig. 31. P, Q, support W as in the last Pro-

blem, the values of P, Q, and the positions of the pullies A, B,

being any whatever ; to find the position of eqidUbrium of C.
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As before, let Cd be vertical, and da parallel to BC. Then

P, Q, W^ are as Ca^ ad, dC Hence, in the triangle Cad, -we

have the proportions of three sides given, to find the angles

aCd, Cda.

Also BAC = BAP - CAP = BAP - aCd,

ABC = ABQ - CBQ = ABQ - b Cd

= ABQ- Cda.

Hence, knowing the position of the points A, B, and therefore

the angles BAP, ABQ, we know the angles BAC, ABC ; and

hence knowing the side AB, we may solve the triangle ABC,
and calculate the position of C.

Prob. IV. A strhig ACDEB, Jig. 32, of which the

extremities A, B, are fixed, is kept in a given position by

weights P, Q, R, suspended at knots C, D, E ; to compare

the weights P, Q, E,.

Let the sides of the polygon AC, CD, DE, EB make with

the horizontal line angles /3, y, S, e. Then it is easily seen

that if AC be produced to c, DCc = /3 - 7. Similarly, EDd
= y — S, &c.

The point C is kept at rest by three forces; viz, the

weight P, the tension of CA, and the tension of CD : let the

latter be called C, and we shall have, by Cor. 7, Art. 28,

P _ sin. ACD _ sin. DCc
C ~

sin. ACP ~
sin. ACx

sin. (/3 — 7) sin. /3 cos. y — cos. j3 sin. y
cos. (3 COS. fi

= COS. y (tan. /3 - tan. y).

Also the point D is kept at rest by three forces ; the weight Q,
the tension of DE, and the tension of CD at D ; and the last

is the same as C, the tension of CD at C, because the string

must be kept at rest by equal and opposite forces, and therefore

must exert equal and opposite tensions at its two extremities.

E
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Q sin. (7 - ^)
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to be retained in its place by a force, as AR, this force must

manifestly, with the forces in AP and AQ., produce equilibrium

at the point A. Hence, if we produce RA to any point ?•, and

draw rp parallel to AQ; Ap, pr^ rA will, by Art, 28, be pro-

portional to the forces in AP, AQ, and AR. Also it has been

shewn that the forces in AP, AQ are equal, and therefore Ap,

pr are equal, and the angle r Ap = Arp = rAQ. Hence ^r
bisects the angle PAQ, and if po be perpendicular to Ar,

Ar = 2A0 = 2Ap COS. pAr = 2Ap cos. ^ PAQ.

Hence, if we put the forces P, Q, each = P, and the force

in AR = R; also < PAQ = A,

R Ar 2Ap COS. ^

A

, , „ ,. , .

n=T-= ,
= ^cos.^A; ..R = 2Pcos.^A;

P Ap Ap ^ -^

and R, the force which would keep A at rest, is evidently

equal to the pressure upon that point produced by the chord

PAQ: hence we have the pressure upon A = 2P cos. ^ A.

CoR. 1. HA, instead of a point, be a pully round which

the cord passes, the pressure on the pully will be the pressure

at the center of the pulley. For in this case, fig. .S4, the strings

aP, bQ, touch the circle abd of the pulley, and would if pro-

duced meet in the line CA which passes through the center,

and would make equal angles witli it. Hence the resultant of

the tensions in aP, bQ passes through the center, and is,

as before, equal to 2P cos. ^A.

CoR. 2. If a string pass over any number of fixed points

ABCD, and be kept at rest by forces or weights P, Q drawing

it in opposite directions, these forces or weights must be equal.

And the pressure upon any one of the points, as B, will be

2P COS. \ ABC.

Prob. VI. Fig. 35. A given weight W is supported by

two props AC, BC, upon a horizontal plane AB. Tojind
the pressure jtpon each prop, their lengths and the distance

at which they stand being given.
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If we take Crf, in the vertical line CD, to represent the

weight of the body, and draw da parallel to BC, Ca, ad will

represent the pressures (Art. 31.) ; but, to prepare the student

for the solution of succeeding problems, we shall obtain them

by a different method.

Let the re-actions of the props in the direction AC, BC,
be P, Q, (see Art. 10 ) Let P be resolved in the horizontal

and vertical directions JD, DC Then

horizontal part of P AD
= COS. A ;P AC

vertical part of P DC
= sin. A ;P AC

and similarly for Q

;

.-. horizontal force of AC at C = P . cos. A ; of BC = Q . cos. B ;

vertical force of ^C at C = P . sin. A ; of BA = Q . sin. B.

And, since these forces support the weight, the horizontal

parts must counteract each other, and the vertical parts must
together = W;

.•. P COS. A = Q cos. B ;

P sin. A + Q sin. B = W.

By the first, Q = ; hence, by the second,
COS. B

„ . P cos. A
P sm. A + —- sm. B = IF;

COS. B

. . P (sin. A COS. B + cos. A . sin. B) = W cos. B :,

or P . sin. {A + B) = W cos. B

;

or P . sin. C = IV cos. B ;

Wcos.B
and P =

Similarly, Q =

sin. C

JF COS. A
sin C
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Wherefore, as we can express cos. ^4, cos. B, sin. C, in

terms of AC, BC, AB, we can thus obtain the forces or re-

actions P, Q. And the pressures upon the props are equal to

these the re-actions which the props exert.

Cor. 1. If we make AC, BC, AB equal to «, h, c, re-

spectively, we shall have

^2 _|_ p2 _ ^2
COS. B = , (Bridge's Trig. p. 58.)

sin. C =

. P =

and Q =

26c

c-^(2a-6^ + 2a^c^+ 26'^ c^ - a^- 6'- c')

2a6
'

PTa . (6- + c' - o^)

c^ (2a-6^ + 2 a^c=^ + 2b'c' -a"- 6' - c^)
'

Wh . (a^ + c- - b-)

Cor. 2. The props exert upon the plane at A and B
pressures equal to those which are exerted on their upper

extremities : these pressures at A and B may be resolved in

directions perpendicular and parallel to the plane.

The parts perpendicular to the plane will be

IF. COS. J5 . sin. ^ ^ . \V . con. A . sin. B
:— at A, and ;— at B,

Sin C Sin. C

and these are counteracted by the re-action of the plane.

The parts parallel to the plane will be

W. cos. 5. cos. J ^ ,
IF. cos ^ . cos. 5 „

;— at A, and -,
— at B ;

sin. C sm. C

and these, if not counteracted, will make the props slide in

opposite directions from A and B along the horizontal plane.

They may be counteracted by immoveable obstacles placed

behind the props at A and B. They will sometimes be coun-

teracted by the friction of the plane.
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Prob. VII. Fig. 36. A Weight W is supported by three

props, AW, BW, CW, upon a horizontal plane ABC. To
Jitid the pressure on each : the lengths of the props and the

distances at which they stand being given.

Draw WO perpendicular to the horizontal plane, join AO,
and produce it to meet BC in K, and join WK.

The pressures of the three props in their own directions

together support the weight, and therefore produce a pressure

in the vertical direction OW; also the pressure of AW will

not be altered if we substitute for the pressures of BW, CW a

pressure equivalent to them both ; and this equivalent pressure

must, along with AW, produce a vertical pressure in OW;
hence it must be in the plane A WO, and therefore in the line

KW, for it must manifestly be in the plane BWC ; hence the

weight W may be supposed to be supported by two props

AW, KW, and the pressure on ^TF found by the last problem.

Let as before P, Q, R, represent the pressures of the props

AW, BW, CWx then

„ „, co^. AKW
, . ., ,P = W .

— 777^7= ; and similarly,
svn.AWK

R= W.

sin. BWL'

cos. CMW
siu.CWM'

CoR. 1. Since WO is perpendicular to AK, we have

O K^
cos.AKW=^^,

AK KW OW
si„.AWK^— .s...KJW^— .— ;

KW KW AW
hence, P = W

.

OK AK OW
OK AW , . ., ,

= ^V —rr^

•

-tttt;^-, «nd similarly.
AK OW
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,„ OL BW

CM OW
CoK. 2. If we draw AD, OE perpendicular to BC, we

shall have

=
; and hence P = W

,

.

AK AD AD OW
OE AW

'on^'^dD

tan. OEW AD

and similar expressions may be obtained for Q and R.

Cor. 3. It is easily shewn that WE is perpendicular to

BC ; hence O^PF" measures the inclination of the planes CBA,
CBW. Hence if a sphere with radius = 1, and center C, cut

the pyramid, and make a spherical triangle efg, the angle e

will be equal to the angle OEW. And if the angles made
by the lines CA, CB, CW are known, the sides ef, fg, ge

are known, and e may be found.

CoR. 4. The horizontal pressures which are to be resisted

by obstacles at the lower ends. A, B, C, are in the directions

OA, OB, OC, and are equal to

AW AK'OlV

^OB OL OB
BW BL OW

CW CM OW

Cor. 5. If the point O fall without the triangle ABC,
the weight W cannot be supported.
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CHAP. III.

ON THE MECHANICAL POWERS.

33. Machines, or, as they are called in their simplest

state, the Mechanical Powers, are contrivances to enable a

smaller force to keep at rest, or to put in motion a larger

weight, or to overcome a greater resistance. We shall at

present only consider the case where equilibrium is produced ;

for, knowing the force which would, by means of any machine,

just support a weight, it is manifest that a larger force would

raise it.

In these cases, as in the case of a lever, the force applied

is called the power, and the resistance overcome is called the

weight, and is measured by a weight to which it is equivalent.

The mechanical powers may be reduced to the lever,

THE WHEEL AND AXLE, THE TOOTHED WHEEL, THE FULLY,

THE INCLINED PLANE, THE WEDGE, AND THE SCREW.

The four first are, in the state of equilibrium, reducible to

the lever. The screw may be reduced to the inclined plane, as

may the wedge. The way in which the latter is considered is

not immediately applicable to it in its common use : instead of

being kept at rest by pressure, and put in motion by excess of

pressure, as is supposed in our reasonings, it is practically kept

at rest by friction, and put in motion by impact.
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SECT. I.

MECHANICAL POWERS REDUCIBLE TO THE LEVER.

1. The Lever.

This instrument has already been considered in Chap. I.

2. The Wheel and Axle.

34. The Wheel and Axle consists of a cylinder or axle

AB, fig. 37, and a concentric circle or Wheel EF, joined toge-

ther, so that the whole is moveable about the axis of the

cylinder : the weight W is attached to a chord NW, and will

manifestly be raised or lowered as the wheel and axle are

turned one way or the other. It is supported by a force ap-

plied at the circumference of the wheel EF, either by another

weight P acting by means of a string wrapped the contrary

way to that at iV^, or by some other force as P', acting at a

point M' in the circumference of the wheel.

Prop. In the Wheel and Axle the power is to the weight

as the radius of the axle to the radius of the wheel*.

Let fig. 38 be a representation of the machine referred to

the plane EF, which is perpendicular to the axis. It is evident

that the equilibrium will continue to subsist, if we suppose P
and W, retaining their distances from the axis, to act in this

plane. Let them act in the vertical lines MP and NW, and
let MCN be a horizontal line through the center. Hence,
considering MCN as a lever,

P W :. CN : CM by Art. 15.

:: rad. of axle : rad. of wheel.

It is obvious, that in the state of equilibrium this is the

same machine with the lever. When they are put in motion,

the two machines differ. In the wheel and axle the weight W

In this and the following Propositions of this Chapter, the machines are sup-
posed to be in equilibrium.

F
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ascends or descends in a vertical line ; in the lever it describes

a circular arc.

Cor. 1. The power may act by means of a bar CM', and

the Avheel may be removed ; this is the case in the capstan and

windlass.

CoR. 2. If the direction of the power be not perpendi-

cular to CM, we must draw a perpendicular upon it from C,

and the proportion will be

P : W :: rad. of axle : per. on dir", of power.

3. Toothed Wheels.

35. If two circles, A , B, fig. 39, moveable about their

centers, have their circumferences indented or cut into equal

teeth, all the way round, and be so placed that their edges

touch as at Q, the prominences of one of them at that part

lying in the hollows of the other ; then if one of them, as A,

be turned round by any means, the other will be turned round

also. Such circles are called Toothed Wheels.

If we suppose the two circles in fig. 39, to be in the same

plane, and if, one of them A being turned by a power P acting

on a winch CE, the other raise a weight W by means of an

axle DF, we shall have the proportion of P and W by the

following proposition.

Prop. In Toothed Wheels, the moment of P about the cen-

ter of thefirst loheel is to the mome?it o/W about the center of
the second wheel, as the perpendiculars from the centers of the

wheels upoti the line of direction of their mutual action.

The edges of the teeth which act upon one another are

conceived to be perfectly smooth ; that is, they are supposed

by their pressure to exert only a force perpendicular to their

surface. All the effect produced to resist motion along a sur-

face is supposed to arise from a defect of smoothness. If the

pressure exerted at the point of contact were not perpendicular

to the surface pressed, this pressure might be resolved into two

forces, one perpendicular to the tangent, and the other in the di-
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rection of the tangent, and the latter force is understood to arise

from friction, &ec. and is at present left out of consideration.

Let the wheel A act upon the wheel B at Q; the action

there exerted will be perpendicular to the surfaces which are in

contact at that point : and the action of A on B, and the re-

action of 5 on ^ will be equal and opposite : let this action be

a pressure Q in the direction MQN. Then the force Q acting

on the wheel B supports the weight W, and the re-action op-

posite to Q is supported by the power P. Hence, if CM, DN,
be perpendiculars on MQN, we shall have, by Art. 20,

P : Q :: CM : CE,

Q : W :. DF : DN-f
.-. P : W :: CM . DF : DN . CE.

Hence multiplying the first and third terms by CE, and the

second and fourth by DF, we shall have

P . CE : IF . DF :. CM : DN,

or mom. of P : mom. of W :: CM : DN.

CoR. 1. If CD meet AIN in O, we have, by similar

triangles,

CM : DN :: CO : DO

;

.: mom. of P : mom. of W :: CO : DO.

CoR. 2. If the form of the teeth be such, that the point O
is fixed while the wheels revolve, the force continues the same
during the motion.

This is the case when the form of the teeth is the involute

of a circle.

CoR. 3. If the teeth be small in comparison with the radii

of the wheels, Q will nearly coincide with O ; and CO, DO
will be very nearly the radii of the wheels measured to the

point at which the contact takes place. Hence

mom. of P : mom. of W :: rad. of A : rad. of B.

CoR. 4. In order that the two wheels may work during a

whole revolution, the intervals of their teeth must be equal

;
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hence the numbers of teeth in each wheel will be as the

circumferences, and therefore as the radii : hence

mom. of P : mom. of W :: number of teeth of A : number

of teeth of B.

Cor. 5. The case in the figure is a combination of a

winch, two toothed wheels, and an axle. If we suppose the

radius of the axle DF and the winch CE to be equal, the

whole of the mechanical advantage will be owing to the

toothed wheels. In this case, we have

P : W :: CO : DO.

When the number of teeth in A is very small, A is called

a Pinion, and its teeth are called Leaves.

The teeth in which those of the wheel A work may be dis^

tributed along the edge of a straight bar instead of the circum-

ference of a circle, the bar being restrained to move in the

direction of its length.

Wheels are sometimes turned by simple contact with each

other ; sometimes by the intervention of cords, straps, or

chains, passing over them ; and in these cases the minute

protuberances of the surfaces, or whatever else may be the

cause of friction, prevents their sliding on each other. And
» at the points of contact an action and re-action are exerted

corresponding to those which are supposed in the Proposi-

tion.

4. Pullies. (i.) The Single Moveable Fully,

36. A pully has already been mentioned, Art. 8, &c., as

a means of changing the direction of part of the cord by which

force is exerted ; it is a small wheel which is moveable about

its axis, and along part of the circumference of which the

cord passes. So long as its axis is immoveable, it can pro-

duce only a change of direction ; but Avhen its axis is fixed

in a block or sheaf which is moveable, it may produce a

mechanical advantage.
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PRor. In the single moveable pully, the strings being

paralleli

P : W :: 1 : 2.

Let CBAP, fig. 40, be the cord passing round the pully

AB ; and let the force P act by this chord. By Art. 8, the

tension of the string is the same throughout, and equal to

the power P. Hence AB is supported by two equal and

parallel forces in AP, BC \ each equal to P; and hence, by

Art. 25, the force TF, which acts in the opposite direction upon

AB, must be equal to their sum. Therefore W =2P.

Cor. 1. If the strings be not parallel, as KA, CB,
fig. 41, let them be produced and meet in n; and join 07i,

being the center of the pully. Then oA and oB, drawn

to the points where the string touches the pully, are equal,

because the pully is circular. And on is common, and

oAti, oBn, right angles. Hence onA, onB, are equal.

The strings AK, BC will produce the same effect as if

they acted at n. And the forces or tensions exerted by them
are equal, each being equal to P. Hence the resultant bisects

the angle AnB, and is in the direction no: and since the

forces of the strings support the weight, no must be opposite

to the direction in which the weight acts ; and therefore

vertical.

Let a horizontal line meet the strings in p, q, and the

vertical line oim in m. np, nq, will be equal, and may be

taken to represent the tensions of the strings AK, BC
And np is equivalent to nm, mp, and nq to nm, mq. And
of these, the parts mp, mq destroy each other; and hence

the force acting upwards in 2nm. Therefore,

P : W :: np : 2?im -=7^- ~^ -? "'^Z'

:: l^ad. i (3 coci pwilwiv

If rad. ^ 1,-Qnd pnm = «, TF"=2Pcos. a.

If a = 0, the strings are vertical, cos. a = 1, and TF= 2/*,

as before.

If a = 6o", or AnB = 120", cos. a = i, and W = P.
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Cor. 2. When a weight is supported on a moveable

pully, the two portions of the string make equal angles with

the direction in which the weight acts.

Coil. 3. We may deduce the relation of P to W, in

fig. 40, by considering BA as a lever. For if we suppose

the point 5 to be a fulcrum, and the weight W to be sup-

ported by a force P acting vertically at A ; we have

P : W .-.Bo : BA :: 1 : 2,

as before.

Hence, the pully, in the state of equilibrium, may be

reduced to the lever.

(2.) First System of Pullies. Each Pully hanging by
a separate String.

37- The first system of pullies, fig. 42, is merely a

repetition of the single moveable pully. The weight W is

supported by the pully A^; the string which passes round Ai

is supported by A^'-, the string which passes round A2 by ^3,

and so on ; and at the last string (which may pass over a

fixed pully B) the power of P acts.

Prop. In the First System of Pullies., where all the strings

are parallel, and the weights of the pullies inconsiderable,

P : W :: 1 : 2";

n being the number of moveable pullies.

By last Article,

W
tension of AyA2 = ^ weight at Ai =—

,

W
tension of ^2^3 = 2 weight at ^2 = 2 tension 01 A^A2= —

,

W
tension of A^B = ^ weight at ^3= i tension of ^2-43= —^ •

And similarly, we should have, if A„ \vere the last of the

moveable pullies,
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— = tension of A„B = power P,

for the tension of the string at which P acts is equal to P.

Hence

W = 2"P,

when M is the number of moveable pullies.

CoR. 1. If ^1, y^s, ^3, &c. be the weights of the pullies

(including the blocks, &c.) respectively, we may consider

each pully as a weight appended at that point : hence

weight at Ai= W+Ai,

W A
tension of A^A2= ^ weight at A]^= — h 1;

W A
.'. weight at A.7= 1 h Ao;'22

IV A A
.-. tension of AoAo= ^weight at Ao= 1 ^ h -:

, TF J, A,
,

.-. weight at A3= — + -—+— + A3;
2" 2 2

.-. tension of A^B = ^ weight at A^

2 2 2 2

and so on ; and if there be n moveable pullies,

rV Ai A2 A,

I

— + — + + — = P;
2" o" gn — 1 o

.'. W+ A^ +2A0+ +2"-^A„=2"P.

CoR. 2. If the pullies be all equal, and each equal to A,

W+ A{l +2 + 2" - ^) = 2"P,

W+A{2"-1)=2"P,

W = 2"P- A{2" - 1).
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Cor. 3. Hence the weight W is less as A is greater.

If we have 2"P = A (2"- l), W will = 0, and the power will

only just support the puUies.

Cor. 4. If the strings be not parallel, we must com-

pare the tension of each with that of the preceding by

Cor. 1, to last Article.

(3.) Second System of PiiUies. The same String

passing round all the Pullies.

36*. This system, fig. 43, consists of two blocks; an

upper one BiBa and a lower one AiA2- each contains a cer-

tain number of pullies, and the string passes round them

alternately. The weight is hung to the lower block, and

the power acts at the loose extremity of the string.

Prop. In the Second System of Pullies, if the strings

be parallel,

P : W :: 1 : n;

n being the Jiumber of strings at the lower block.

Since the same string passes round all the pullies, its

tension will be every Avhere the same, and equal to the

power P. And n being the number of strings at the lower

block, since each of them supports a weight P, they will

altogether, supposing them parallel, support a weight nP:
hence

W=nP.

Cor. 1. If we consider the weight of the pullies, it is

manifestly only requisite to add the weight of the lower

block to ir; hence if A be this block,

W^A = nP: W=nP-A.

CoR. 2. If the strings be inclined to the vertical we must

take the resolved part of the force. But the angle made

with the vertical is generally so small that this correction

may be omitted.
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(4.) Third System of Pullies. Each String nffetched

to the IVeight.

37*- In this system, fig. 45, each string, as PA^Ci, sup-

ports the weight, partly by its action at Ci, where it is

attached, and partly by its pressure on the next string, as

J, J,.

Prop. I>i the Third System of Pullies, the strings being

parallel, and the weight of the pullies inconsiderable

,

P : TF :: 1 : 2" - 1 ;

n being the number of pullies.

For, tension of PAi = P;

.-. weight supported at Ci = P;

tension of AiAo = pressure on Ai = 2P;

.-. weight supported at C2 = 2/*;

tension of ^^^^3= pressure on A-i^^^P;

..-. weight supported at C. = ^~P;

and so on.

Hence the whole weight IF, which is the sum of all those

supported at Ci, Co, C3, &c. is IF=P + 2P + 2'P+
= (1 + 2 + 2- + 2" "

') . P, if there be n pullies

;

.-. TF= (2"-!). P.

Cor. 1. If we consider the weights of the pullies, and
call them A^, A.,, A3 A„, we shall have

tension of PA^ = weight supported at Ci = P;

'. pressure on Ai = 2P;

. tension of AiAo = weight supported at C^ = 2 P + ^j

;

'. pressure on ^2 = 2^P + 2 ^,

;

'. tension of A-^A^ = weight supported at C3 = 2^P + 2A + A^;

• pressure on ^3 = 2^P + 2^^, + 2A. + A^ ;

and so on.

G
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Hence, since the weight W (including tlie hook, &c. at d)
is equal to the sum of all the weights supported, if n be the

number of puUies ;

W= (1+2 + 2- +2'"')P

+ (1+2+2- +2"-')^,

+ (1 +2 + 2' +2"-'')X

+ (1 + 2) A„_,

+ A-x

= (2"-i) p+(2"-'-i)^, + (2"-^^-i)^, + A.;.

Cor. 2. Hence, contrary to the other cases, W becomes

greater by giving weight to the pullies. If we make P = 0,

we may find the weight which will be supported by the pullies

alone.

Cor. S. If all the pullies be equal and each = A,

W= (2"-l). P + (2«-*- 1 + 2»-2- I +2- 1) . A

= (2" - 1) . P + [2" - 2 - (n - 1)] . J

= (2" - 1) . P + (2" -n -1) .A = (2" - 1) (P + A) - nA.

Cor. 4. If the strings be not parallel, we must use

Cor. 1, of the single moveable pully.

SECT. II.

MECHANICAL POWERS REDUCIBLE TO THE RESOLUTION

OF FORCES.

5. The Inclined Plane.

38. An Inclined Plane, that is, a plane inclined to the

horizon, is sometimes used as a mechanical power. Let a

weight W, fig. 46, be supported on an inclined plane AC,
(inclined to the horizon at an angle CAB) by a power P

>' acting in the direction WK.
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Peop. Ill the Inclined Plane ^ if WK in the direction of
the power and WN perpendicular to the plane, he intercepted

by a vertical line KN ;

P : W :: WK : KN.

The effect of the plane AC on the weight W will be

in a direction WR perpendicular to the plane ; for the plane

cannot produce any pressure on W in a direction parallel to

AC or CA. (See Art. 35.) Hence the weight will be sup-

ported in the same manner as if, instead of the plane AC, it

were sustained by a string in the direction WR. It may
therefore be considered as supported by a string WR, ex-

erting a force equal to the re-action of the plane (= ^) ; a

string WK exerting a force equal to the power P; and its

weight (= W) acting in the vertical direction WD.

Hence, since KN is parallel to WD, by Art. 28,

P : W :: WK : KN.
Similarly, R : P :. WN : WK.

CoR. 1. If the force act parallel to the horizon, in the

direction WE, fig. 47, K coincides with E, E is a. right angle,

and

P : W :: WE : EN :: BC : AB, by similar triangles.

In the same manner,

R : W :: WN : EN :: AC : AB.

Cor. 2. If the force act parallel to the plane, K coin-

cides with C,

P : W :. WC : NC :: BC : AC,

R : W :: WN : NC :: AB : AC.

Cor. .'). If the force act perpendicular to tlie horizon,

in the direction WZ, we must suppose the point K removed

to an infinite distance, so that WK) NK, are infinite and

equal. Hence

P = 11^, R = 0.

Cor. !•. If the force act so as to make an angle CWV
below the plane equal to CWZ above it, take away from the
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right angles CWN, CWB, equal angles CWV, CWZ, and

we have YWN = ZWR ; and this = FiV IF by parallels;

therefore

YW= YN; .-. P= W.

Also YWC ^ YCW == CWZ . .. YW = YC,

and iVC = 2FC = 2FiV;

.-. R : W :: WN : NY :: 2 WN : NC :: 2AB : AC

Cor. 5. If the force act in a direction WS, situate be-

tween WZ the perpendicular to the horizon, and WR the per-

pendicular to the plane, the point K will fall below N', as at

M, and the weight, the power, and the re-action of the plane,

are represented in magnitude and direction by NM, AIW, WN.
Hence the re-action of the plane is in the direction WM-> and Ji

the body W is supported on the underside of the plane.

CoR. 6. In fig. 46, if we draw CT parallel to KW, we have

P : W :: KW : KN :: CV : CN
Hence, W being given, P is least when CV is least, that is,

when CV coincides with CIF, or the force is in the direction of

the plane.

Cor. 7. Let two weights IF, IF', fig. 48, support each

other on two inclined planes AC, A'C, by means of a string

which is parallel to the planes. Let P he the tension of the

string, which will be the same on each, then, by Cor. 2,

P : IF :: BC : AC,

W : P :: AC : BC

;

. . IF' : IF :: A'C : AC

Cor. 8. If a body is supported on a curve surface to

which ^C is a tangent at IF, fig. 46, the effect will be the same

as if it were supported on the plane AC For the equilibrium

depends only upon the direction of the surface at the point IF,

which is the same in the plane and in the curve.

CoR. 9. If the weight IF, instead of being in contact with

the plane in one point only, touch it in a finite portion, or the

whole, of its length AC, (as in fig. 18) the proportion of the
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power and weight will be the same as before, supposing the

friction not to be considered. For the weight supported at

each point will be in the same proportion to the part of the

power which supports it ; and hence the whole weight will

have this proportion to the whole power.

Cor. jo. Let the angle of inclination of the plane to the

horizon {CAB) be a ; the angle which the string makes with

the plane {KWC) be e : then

WK : KN :: sin. WNK : sin. KWN,
:: sin. CAB : sin. A'Tr/if,

:: sin. CAB : cos.A'irC;

or P : W :: sin. a : cos. e.

6. The IVedge.

39. A Wedge is a triangular prism ; and, when applied

as a mechanical power, is generally used to separate obstacles,

by introducing between them its edge and then thrusting it

forwards. Thus, if ^Cc, fig. 49, be the end of a wedge, two

objects JEW, Ew, which have a tendency to rush together,

may be separated by a force, (as a weight P,) applied at the

back of the wedge, provided there be an immoveable obstacle

at E. In the present Chapter we must consider the power as

in equilibrium with the resistance, that is, P must be such a

power as is just sufficient to prevent the wedge from being-

driven upwards, and not great enough to force it downwards.

In consequence of the innnoveablc obstacle at £, and of

the nature of the object EW, the point W in the object will,

if it move at all, be compelled to move in a certain direction

WU*. Whatever force tends to produce motion in W will be

effective only so far as it acts in this direction. Tlius, if WV
be a force acting on the object IF, it will be equivalent to

WU, and to UV perpendicular to WU : of which the latter

is counteracted by the immoveable obstacle at E, and WU
is effective in opposing the resistance.

" ff will move ill a curve (o which IVIT js a lanjjcnt nt W.
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It is manifest, that the weight or resistance at IV must be

measured by the force which must be applied immediately at

W to balance it. That is, if UW, uw, be the directions in

which the points W, w will move if they move at all, and if

we suppose W, iv, to represent the forces which must be applied

at those points in the directions WU, wu, to keep the parts

EW, Eiv in their present position when the wedge is re-

moved ; IF, w, will also represent the resistances which are

to be balanced by the wedge.

If we suppose the sides of the wedge to be perfectly

smooth, their action at W, w, will necessarily be perpendi-

cular to their surfaces, (Art. 38.)

This being premised, we can find the proportion of the

power, and the weight or resistance. We shall take the case

in which the wedge is isosceles, that is, when AW is equal

to A 10, and the angles AWU, Aivu, as also the resist-

ances W,tv, are equal. In this case the direction DA in

which the power acts, must pass through the point A, and

bisect the angle WAw.

Prop, hi the Wedge, tofind the proportion ofT and W.

Draw OWV perpendicular to AW, and join Otv, which

will be perpendicular to Aw, because the triangles OAW
and OAtv are equal. Join Ww meeting AO in M; therefore

WM = wM.

Let WV, equal to WO, represent the action of the wedge

perpendicular to its side ; WV is equivalent to a force WU
(which immediately opposes the resistance, and is therefore

equal to it,) and a force UV, perpendicular to WU, which

is counteracted by the obstacle at E. Hence, UW repre-

senting the resistance, WO = WV may represent the re-action

on the side of the wedge. Similarly, the re-action on the

wedge at iv, arising from an equal resistance similarly ap-

plied, may be represented by w O. Also WO is equivalent

to WM, MO; and wO, to tvM,MO; of which WM, tv

M

balance each other ; and if the remaining forces MO, MO be

balanced by a power 2P represented by 2 MO, the whole will

be in c(|uilil)riuni,

. 2P : W :: 2MO : WU
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Cor. 1. If I'Fr^ coincide with H^F, or the resisting body

be to be moved perpendicularly to AC, WMO^ ADC will

be similar triangles,

.-. P : W :: MO : WV :: MO : WO :: DC : AC,

.-. 2P : W :: Cc : AC

CoR. 2. If WU be perpendicular to AD.,

.-. P : W :: MO : IFf/ :: MO : il/TF :: DC : ^D;

.-. 2P : IF :: Cr : AD.

CoR. 3. The action of the resistance upon the side AC
is necessarily perpendicularly to AC*. The reason why W
does not move in that direction, is that it is also acted on

by the resistance of an immoveable obstacle E.

CoR. 4. Let CAD, half the angle of the wedge, = a,

and UWV, the angle contained between WV perpendicular

to AC, and WU the direction of the resistance, = i ; W the

resistance on each side ; 2P the power,

2MO WU
,2P : W :: -—— :

—— because OW = WV;

:: 2 sin. OWM : cos. UWY,

:: 2 sin. a : cos. t,

and 2P : 2 TF :: sin. a : cos. t,

where 2 IF is the whole resistance.

7. T/ie Screw.

40. The general form of a screw is well known. It

consists of a cylinder, as CD, fig. 50, on the surface of which
is a projecting rib or thread which runs round the cylinder,

and at the same time proceeds uniformly along the cylinder

• This is different from the way in which the wedge is sometimes considered,
when the resistances are supposed to act in any direction, as for instance, parallel
to^ AD. This is unpossible ; for if a body, as JV, be pressed upon the side AC
with a force parallel to AD, and with no lateral force, it will necessarily slide
along AC, and the equilibrium cannot be established.
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lengthways. Tliis part of the instrument is inserted into a

similar hollow cylinder AB which, with its thread, it exactly

fits. In fig. 50, half of the internal and half of the external

screw are supposed to be removed, for the purpose of shew-

ing its construction.

It is manifest that if the external screw be fixed, the in-

ternal one can only move by turning on its axis, by which

means it will also move lengthways. If we suppose the ver-

tical cylinder DC to be urged in the direction of its length

by a weight Tl^, it will be clear, by considering the form of

the machine, that DC will descend ; each point of the thread

which is in contact with the external screw descending upon

the inclined surface of the external thread, as upon an in-

clined plane. And the weight may be prevented from de-

scending by a force P acting at an arm CM, which prevents

the screw from turning round.

The form of the screw is such that when its axis is ver-

tical, the inclination of the thread to the horizon is at every

point the same. The thread may be considered as an in-

clined plane wrapped round the cylinder. Let in fig. 51,

fhf be a right-angled triangle, of which the base fof is

equal to the circumference of a horizontal section FoF of

the cylinder. If then this triangle be wrapped round the

cylinder so that fof coincides with the circle FoF, the

hypotenuse fnh will coincide with FnH, the thread of the

screw. And FH will be parallel to the axis, and is called

the distaiice of two contiguovs threads.

Prop. In a vertical Screw, when a weight W is sup-

ported by a horixontal force P acting perpendicularly at

the end of an arm CM, P : W :: distance of two contiguous

threads : circumference of the circle ivhose radius is CM.

In fig. 51, let the internal screw, which sustains the

weight W, be supposed to be supported by its thread resting

on the fixed thread FGH of the external screw. Then we
may suppose a portion of the weight to be supported at

each portion of the thread, and the whole weight will be

the sum of these portions. Let a weight tv be supported
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at 11. by means of the arm CM \ let cum be an arm equal

to CM-t and let a force j;>, acting horizontally, and perpen-

dicularly to cw, support xc. Then w will be sustained in

the same manner as if it were upon the inclined plane fnh^
for this plane and the thread FnH are in the same direction

at the point 7i. And the effect of the force p is to produce

a horizontal pressure on n, which prevents it from descending

;

let this force be q. Then we have, by the property of the

lever,

p : q :: en : cm;

:: circumf. to rad. en : circumf. to rad. cm;

and, by the property of the inclined plane,

q : w :: fh : ff :: FH : circumf. to rad. en ;

.-. p : w :: FH : circumf. to rad. cm :: D : C, suppose;

D
.'.p=-w.

In the same manner, let the weight w' be supported at any

other point by p acting at the end of an arm = CM ; w" by

p'\ &c. And we shall have

p = -^w ,
p" = -w , &c.

... (p + p' + p" + &c.) = — (ic +w + w" + &c.).

And the sum of all the partial weights will be the whole

weight supported ; and the power p + p + p" + &c. acting at

M will produce the effect of the separate powers p at qm, &c.

(Art. 24.) Hence,

p + p' + p" + &c. = P, w +w' +w'' + he = W\

D
and P = -7, ^^> or

P . W :: D : C :: dist. of two threads : circumf. to

rad. CM.

CoR. 1. Instead of supposing the screw to support a

weight W acting vertically, we may suppose it employed to

H
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produce a pressure W in any direction, and the proportion

will be the same as before.

Cob. 2. In fig. 50, the form of the thread which is

wrapped round the cylinder is such that its section through

the axis of the screw gives a rectangular profile, with sides

parallel and j:>erpendicular to the axis. But the mechanical

advantage will be the same, whatever be the form or depth

of this profile, so long as the inclination of the thread is the

same.

Cor. 3. The proportion of the power and weight would

be the same, if the internal screw were fixed, and the external

one, carrying the weight, were moveable.

Cor. i. The diameter of the cylinder does not affect the

proportion of P to W, so long as the distance of the threads

remains the same.

8. Comhination of Mechanical Powers.

41. The advantage of a simple machine is the number
expressing the multiple which the weight or effect produced is

of the power or force producing it. The advantages of the

different simple mechanical powers are as follows ; (see the

preceding Articles).

_ „ , , ,
arm of the power

Ur the JLever, advantage = -—

;

. ,

arm of the weight

,_,, , , ,
radius of wheel

Wheel and axle r—

,

radius of axle

^ , , , ,
i/. of teeth of wheel ("^^^'^^'^^^"^1

Toothed wheels -— —
„ . . { the teeth are

1

n . oi teeth or pinion „^
[ small.

Single moveable Fully 2 'when the strings

First System 2"
J

are parallel and

Second System .^;i
] the pullies with-

Third System 2" - l [ out weight.
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Inclined Plane
length of plane fwhen the power actsl

height of plane [parallel to the plane.)

• J p J (when the resistance
T»r 1

side oi wedge
| ,. , ,Wedge -

—

-— ~l acts perpendicularly
back of wedge ^^ ^j^^ ^j^^_

circumf. desc . by power
Screw ^-r^ =>

distance of threads

when the power

acts in a plane

perpendicular to

the axis.

From these the advantage of compound machines may be found.

42. Prop. The advantage of a combination is found
by multiplying together the advantages of the separate

machines.

This may be shewn without difficulty in any particular

case.

Fig. 52, represents a combination of the screw, the wheel

and axle, the pully, and the inclined plane. A winch BC
turns a cylinder CD, on which is the thread of a screw. This

thread works in the teeth of a wheel ED, which has an axle

EF. The cord which passes round this axis acts on a system

of pullies of the second kind, attached to the fixed point G.

This system draws a mass W up the inclined plane GH.

Let P be the power at B, acting perpendicularly to CB ;

pressure at D circ. desc''. by B
r;;^

= —^. ;r-i ^— = n suppose,
P dist. of threads '

'

pressure at F rad. of wheel ED ,

pressure at D rad. of axle EF

force at H
tension at F

- number of strings at H=n\

W length of plane ,

force in GH height of plane
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W
I If "f

.-. — = nn n n .

P

For the sake of example, take the following numbers.

Let CB =18 inches, distance of threads = 1 inch ;

.-. circumf. hy B = 113 inches nearly ; n = 113.

ED = 2 feet, EF = 6 inches ; .-. n' = 4.

Number of strings at /Z" = 4 ; .*. w" = 4.

Inclination of plane = 30"; .-. n"= 2 ;

W
.-. — = 113 .4.4 .2 = 36l6.

Hence, on such a machine a force of 3 pounds would raise

a weight of 10,000 pounds.

43. The following example of a Combination of Levers

has some remarkable properties.

In fig. 59 «, let CA, AB, BD be three bars moveable in

the plain of the paper about centers at C and Z>, and about

joints at A and B. A force acts at E in the direction EF^
and produces a pressure at B. Let this pressure be exerted

in the direction CB, against a body placed between B and

the immoveable obstacle G ; and let it be required to deter-

mine the magnitude of the pressure. Draw CM perpendicular

on EF; CN, DO on AB ; DL on CB.

Let the force which acts in EF be P ; and let W be the

pressure produced at B in the direction CB. The lever CA
communicates pressure to the lever DB by means of the bar

AB; and the pressure thus communicated is in the direction

of the length AB. Let Q be this pressure. The force Q
acting on the lever CA in the direction BA balances the force

P acting in EF: hence

^ P _CN
Q~CM'
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Also the force Q acting in the direction AB on the lever DB
produces the pressure W : hence

Q _ DL
'W~ DO"

P CN . DL
JV CM . DO

If we suppose CA, AB to be in the same straight line,

CN will vanish, and W will be infinitely greater tlian P. And
if, at the moment when the pressure W is exerted, CA, AB be

nearly a straight line, the pressure will be very great in com-

parison of the force employed, and may be increased without

limit.

A combination depending upon principles nearly similar is

used in the Stanhope and the Columbian printing presses, for

the purpose of pressing together the types and the paper. The
considerations by which its convenience is shewn belong partly

to the following articles. It will there be seen that when W is

very great compared with P, the velocity of B^s motion must
in the same proportion be small compared with P's. But by
the contrivance above described, S's velocity is not small com-

pared with P's, till CA, AB are nearly a straight line. Hence
B moves with a convenient rapidity while it is going toward

the position in which the great pressure is to be exerted, and
then only moves very slow, when it is come into this position

and is actually exerting the pressure.

SECT. III.

GENERAL PROPERTY OF THE MECHANICAL, POWERS.

44. By means of machines a given force may be made to

overcome any resistance, or to raise any weight whatever: but it

will be shewn in the following Propositions that what is gained
in power is lost in time : that is, in proportion as the force

which we exert to move a weight is increased by machinery,
the velocity with which the weight moves is diminished.

When bodies move through spaces which have always the

same proportion, their velocities have this proportion also. Rut
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when the proportion of the space is variable, we may suppose

the bodies to describe very small spaces, and the ratio of

these will be the ratio of the velocities ultimately^ that is, by

supposing the spaces to be diminished without limit.

Pjiop. To find the velocity of a body estimated in a

given direction.

Let a point W, fig. 56, move in a direction Ww. Let WP,
wp be parallel lines drawn in any other direction ; and let wn
be perpendicular on WP. If Wiv represent the body's ve-

locity in the direction of its motion, Wn will represent its

velocity estimated in the direction WP.

Also we have Wn = Wiv . cos. P Ww.

45. Prop. In any of the Mechanical Powers^ we shall

have power : iveight :: weighfs velocity in the direction of

its action : powers velocity in the direction of its action.

We shall prove this by an enumeration of the cases of the

different mechanical powers.

1. The Lever.

46. Let JCB, fig. .53, be a Lever, acted on in direc-

tions JP, BW, by forces, PW: and let CM, CN be per-

pendiculars on the directions of the forces. Let the lever

move through a small angle into the position aCb. A and B
will describe circular arcs, Aa, Bb, which will be as the

velocities of the points A and B, and being very small,

may ultimately be taken for straight lines ; and hence if

am, bn be drawn perpendicular to AP, BW, Am, B7i will be

as the velocities in the directions of the forces, by last Article.

Now, considering A a as a straight line, CAa will ulti-

mately be a right angle ; hence,

; CAM + aJM = a right angle = CAM + AC31,

and taking away CAM, a Am = ACM. Hence, the triangles

CAM. A am are similar. In the same way CBN and Bbn are

similar Also the angle aCb being equal to ACB, taking away
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aCB, we liave AC a = BCb ; and CA = Ca, CB = Ch, there-

fore the triangles ACa, BCb, are similar. Hence, we have

these proportions,

Am : Aa :: CM : CA,

A a : Bb :: CA : CB,

Bb : Bn :: CB : CN.

Hence, compounding the proportions,

Am : Bn :: CM : CN
:: W : P, by Art. 20.

.-. P's velocity : Ws velocity :: JV : P.

2. The Wheel and Axle.

47. If the Wheel and Axle, fig. 38, turn through any

angle, it is manifest that the arcs described by the points

M and iV are as CM and CN. But the arcs described are

equal to the length of string wrapped at one point and

unwrapped at the other, and are therefore as the velocities

of P and W. Hence

P's velocity : JF's velocity :: CM : CN
:: W : P, by Art. ,r

3. Toothed JJ^ieels.

48. Let A, Bf fig. 54, be Wheels which turn each other

in any manner by means of their circumferences. If they are

toothed wheels, we suppose the teeth small, so that the

point of contact may be conceived to be at O, in the line

joining their centers. We will suppose also that the power

and weight hang from equal axles CE, DF. In this case

P : W :: CO : DO, by Art. 35.

Now, let the wheels turn through a small angle, so that

the points which were in contact at O, come to yn and n.

Om and On will be equal, because they have been applied to

each other. And drawing meC meeting the circle CE in e,
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and *iZ>/ meeting- the circle DF m f, Ee and /y will be the

spaces ascended and descended by P and IV. And we have,

by the similar sectors in the figure,

Ee : Om :: CE : CO,

07i{=0m) : Ff :: DO : DF {= CE)

;

. . Ee : Ff :: DO : CO,

or P's velocity : TF's velocity :: W : P.

Cor. Ee, Ff are as the angular velocities of the wheels

A and B. Hence, in wheels which work in each other, the

angular velocities are inversely as the radii. Hence also the

number of revolutions in a given time will be inversely as the

radii.

4. PiilUe^.

49. (1-) In the Single Moveable Piilly with 'parallel

strings, if the weight W, fig. 40, be raised through any space,

as 1 inch, each of the strings, AP, BC, will be shortened one

inch at the lower end, and hence the power P will move
upwards through 2 inches. Hence,

P's velocity : W?, velocity :: 9. : \ :: W : P.

50. (2.) I71 the single moveable pully with strings not

parallel ; fig. 55, let the pully at A be considered as a point.

Let CAK be the position of the string, and let it be moved
into the position CaK, so that W ascends through the small

space Aa, and P descends through Pp. Take Km, Cn equal

to Ka, Ca respectively; and Am + An is the quantity by

which the string CAK is shortened, and therefore the quantity

by which KP is lengthened, or Pp = Am + An. Now when

the angle AKa is very small, atn may be considered as

ultimately perpendicular on AK, and an on AC: hence

At}} = A a COS. aAm = A a cos. a, if a = KAa.

Similarly, An = Aa cos. a ;

.-. Pp = 2 Aa cos. a ;

.•. Pp : Aa :: 2 cos. a : 1 ;

or P's velocity : W's velocity :: W : P, by Art. 36.
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If the pully be of finite magnitude, as in fig. 41, since, when

the change of position is small, the strings KA, CB, may be

considered as remaining parallel to themselves, the part of the

string AB which is wrapped round the pully is not altered ;

and hence the length of the space described by P is not

altered on this account.

51. (3.) In the First System of Ptcllies, fig. 42, if the

weight W be raised through any space, as 1 inch, the pully Ao

is, as in the single moveable pully, raised 2 inches ; hence,

for the same reason, the pully A-^ is raised 2x2 inches ; and

similarly, a succeeding pully would be raised 2x2x2 inches

;

and so on to P, which will, by this reasoning be lowered

2" inches : hence

P's velocity : Ws velocity :: 2" : 1 :: W : P.

52. (4.) In the Second System of Pullies, fig. 43, if

the weight W be raised 1 inch, each of the strings by which

the lower block hano-s will be shortened 1 inch ; and hence

the whole length of the string between the blocks will be

shortened n inches, and P will descend n inches; hence

jP's velocity : W's velocity :: n : 1 :: W : P.

Cor. In this system, while 1 inch passes round the

pully ^1, 2 inches pass round the pully -Bj, 3 round A2,

4 round B.,, &c.

Hence, if the radii of Jj, B^, A2, B>, Sec. be as 1, 2,

3, 4, the velocities of their circumferences will be as the

radii, and therefore the angular velocities will be equal ; and

hence ^,, Ao may be on the same axis, and may form one

mass, and similarly B^ and B^ may be united on one axis,

as in fig. 44.

53. (5.) In the Third System of Pullies ^ fig. 45, let

the weight be raised 1 inch ; then the pully Ao will descend

1 inch : on this account the pully A^ will descend 2 inches ;

and also on account of Co being raised 1 inch, A^ will

descend 1 inch ; therefore it will descend 2+1 inches. Again,

on this account P will descend 2 (2 + l) or 2^ + 2 inches,

I
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and 1 inch more in consequence of Cj being raised 1 inch ;

hence, P will descend 2^ + 2+1 inches =2^ — 1 inches ; hence,

jP's velocity : W^s velocity :: 2^-1 : 1 :: W -. P

;

and similarly for any number of pullies.

5. The Inclined Plane.

54. Let W, fig. 5Q, be raised through a small space Wwy
WP being supposed parallel to wp. Draw WE horizontal,

and turn, wn perpendicular to WE, WP. Therefore Wn,
wm are ultimately as the velocities in the directions of the

power and weight. But if CAB = w Wm = «, and CWP = e,

we have

Wn : wh :: Ww. cos. e : Ww.fim.a

:: cos. e : sin. a ;

or P's velocity : Wa velocity :: W : P, Art. 38. Cor. 10.

6. The Wedge.

55. Let an isosceles Wedge ADC, fig. 57, in which AD
is the line bisecting the back, move in the direction of the line

DA through a small space AQ. Let the point W move
through a space Wn, in the direction WU, making an angle

I with WV, which is perpendicular to the side AC. Then we
shall have

Wm Aa.sm.aWn = =
, a bemg = DAC ;

cos. I cos. L

.•. Aa or Dd : Wn :: cos. t : sin. a,

P's velocity : Ws velocity :: W : P, by Art. 3.9. Cor.or

7. The Screw.

56. If M, fig. 51, make a whole revolution with a uni-

form velocity, W will rise with a uniform velocity through

the distance of two contiguous threads ; and the space de-
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scribed by P, estimated in a horizontal direction (in which

direction the force is supposed to act) is the circle whose radius

is CM., hence

P's velocity : ^V^s velocity :: circle rad. = DE : distance of

threads :: W : P.

8. Any Combination qf Machines.

57. In any combination of these machines, the ratio of

the power''s velocity to the weight"'s velocity will be found by

multiplying the ratios which obtain in the machines of which

it is composed ; and the ratio of the weight to the power is

found by multiplying the ratios in each of the component ma-

chines, which ratios has been shewn to be the same as the

former ; hence the resulting ratios will bc/the same ; and hence,

in all combinations of machines by which a power P sustains

a weight W, if the machine be put in motion through a very

small space,

P\ velocity in its direction : Ws velocity in its direction

:: W : P.

Cor. 1. Hence we have P . P\ velocity = W. Ws velocity.

A weight multiplied into its velocity is called its Momen-
tum : hence P's momentum = Ws momentum.

CoR. 2. UP. Ps velocity = W. TF's velocity, P and W
will balance : for if not, let P and W" balance on the same

machine : then P . P's velocity = W" . Ws velocity : and the

velocity of W is the same as that of W, so long as the ma-

chine remains the same. Hence W — W, and therefore P and

W balance.
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CHAP. IV.

ON THE CENTER OF GRAVITY.

58. The Center of Gravity of any Body or System of

Bodies is a point upon which the Body or System^ acted upon

only by the force of Gravity ^ will balance itself in all positions.

It will be made to appear that in every system there is

such a point, by shewing how it may be found in every case.

And it will also appear that there is only one point to which

the definition is applicable.

Many of the properties of the point which we call the

center of gravity, do not depend upon the action of gravity,

and might be enunciated and proved without supposing that

force to exist. This point has been by some authors called

the center of magnitude, and by others the center of parallel

forces.

The definition given above supposes the particles of the

system to be connected inflexibly ; but the point may be

found by the same rule, when the particles are detached from

one another.

It follows from our definition, that if a line or a plane

which passes through the center of gravity be supported, the

system will balance about the line or plane in all positions.

59. Prop. If a System balance itself upon a line in

all positions, the Center of Gravity is in that line.

When a system of material points balances itself upon

a straight line, the moments of the forces which tend to turn

it one way and the other must be equal. The moment of

the force of each particle to turn the system round the

line, will be found by resolving the force into two, one

parallel to the line or axis, and the other in a plane per-
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pendicular to the axis. The latter force alone is effective,

and its moment, in a given position of the axis, is pro-

portional to the quantity of matter in the particle, and to

the distance of the particle from a vertical plane passing

through the axis, as appears by Art. 24.

If the center of gravity be not in the line on which the

system balances in all positions, the system may be placed

in such a position that the line on which it balances itself,

and the center of gravity, are not in the same vertical plane.

While the system is in this position, let the line on which

the system balances be moved parallel to itself, till it passes

through the center of gravity; then we have, on one side

of the line, increased both the quantity of matter and the

distance of each particle from the vertical plane ; and on the

other side we have diminished both of these. Hence, if the

system balanced itself before we moved the line, the tendency

of one side to descend will, in this position, be increased on

both accounts, and the system will balance no longer, and,

therefore, cannot now balance about the same line in all po-

sitions ; but since the line passes through the center of gravity,

the system should now balance upon it by the last article.

Hence a contradiction follows from supposing the line about

which the system balances itself in all positions to pass other-

wise than through the center of gravity.

Cor. 1. By similar reasoning it appears that a system

cannot have more than one center of gravity.

CoR. 2. If there be two lines, about each of which a

system will balance in all positions, the center of gravity must

be at their intersection.

Cor. 3. If a system balance itself upon a line in one

position, the center of gravity will be in the vertical plane

which in that position passes through the line.

For if not, we might draw a line thi'ough the center of

gravity, and the system would balance on this line. And
hence it would balance on two lines in two different vertical

planes, which is impossible, by the reasoning of the Propo-

sition.

60. Prop. To find the Center of Gravity of two bodies

P, Q, considered as points, Jig. 59.
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Suppose PQ joined by an inflexible rod, and take P + Q :

P :. PQ : GQ, and .: Q : P :: PG : QG ; G will be the

center of gravity. For let the horizontal line MGN meet the

vertical lines PM, QN. And since P : Q :: QG : PG .:

GN : GM by similar triangles, we have P . GM = Q . GN ;

hence P and Q will balance on G, in every position. There-

fore G is the center of gravity.

Cor. 1. The effect of the weights P, Q is the same as if

they acted at the points M, N; but in this case, by Cor. 2,

Art. 15, the pressure on the fulcrum G is P+Q; hence in

every position of the two weights the pressure on the center of

gravity is equal to their sum.

CoR. 2. To find the center of gravity of any number of

bodies Pi, Pg, P3, P4, fig 60, considered as points.

Suppose Pi P2 joined by an inflexible rod, and take Pj Pg :

P\ffi ''• P\ + P2 A? and, as before, it will appear that P^ Pg

will balance on gi in every position. Also by Cor. 1, the

pressure on g^ is Pi + P.^.

Join g-iPg, and take g.P.^ : g^g., :: Pi 4- P, + P3 : P3

;

whence goP^ : gig,, :: P^ + P., : P3 ; or go P3 : g.g^ :: pres-

sure at ^1 : pressure at P^ ; whence, as in the beginning of

this Article, g^ and P3, that is. Pi, Pg, P3, will balance in every

position on g2, which is therefore the center of gravity of Pj,

P2, P3. Also, in the same way, the pressure on g., is P^

+ P,+ P..

Join g.,Pi, and take g^ P4 : gzg-^ :t Pi + P. + P3 + P, : P4

;

whence, as before, Pi, P2, Pg, P4 will balance in every position

on ^-3, which is therefore their center of gravity. Also the

pressure on g-^ will be Pj 4- P^ + P3 + P4.

And similarly, we might go on to any number of points.

This construction is applicable if the points be not in the

same plane.

CoR. 3. If we take the points P,, P^, P3, P4, in any other

order, we shall find the same point g^. This appears from the

last Article ; for a system cannot have more than one center of

gravity. It might also be shewn geometrically.
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Cor. 4. It appears from the demonstration of Cor. 2, that

the pressure on the center of gravity, when it is supported, is

equal to the whole weight of the system.

CoR. 5. In order that the parts may balatice each other,

it is necessary that they should be connected, as we have sup-

posed them to be ; but the point found as in Cor. 2, is called

the center of gravity when they are unconnected, and even in

motion. Also if the force which acts upon them be not gravity,

but any other uniform force acting in parallel lines, this point

retains the same denomination.

61. Prop. To find the Center of Gravity of any 7iumher

of bodies, Pj, Pg P3, P4, considered as points, in the same

straight line, fig. 61.

Let G be the point on which they will balance in a hori-

zontal position ; by Art. 46, G will be the centre of gravity.

To find G, take any point A in the straight line ; and since the

weights Pj, P„, P^, P4 balance, we have (Art. 22. Cor. 2.)

P, . P,G + P^. P^G =^ P^. P^G + P^. P^G

;

or Pi . (AG - AP,) + Pg {AG - AP.,)

= P3 {AP^ - AG) + P, (A>, - AG) ;

or P, . ^ - P, . AP, + P^. AG - P.,. AP.

= P3 rAP^ -Ps.AG + P,. AP, - P,.AG;

.-. P,. AG + P^. AG + P^.AG + P^. AG .^

= Pi . AP, + P, . AP, + P3 . JP3 + P, . AP^ ;

and similarly, for any number^f bodies

;

^^ ' Pi . AP, + P, . AP, + P3 . APs + P4 AP,

P, + P,+P, + p,

Hence ^G is known, and therefore G.

Cor. 1. If the center of gravity do not lie between P,
and P3, but, otherwise, as for instance, between Pi and P^ ; in-

stead of having Pg (t4G - AP^) on the first side of the above
equation, we shall have Po (AP^ - AG) on the second side,

so that the result will be exactly the same.
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Cor. 2. If any of the points be on the other side of A^

their distances from A are to be reckoned negative ; thus, in

this case, instead of a term P^(AG — AP^), we shall have a

term P, (AG + AP,), or P, [AG - (- AP,)].

62. Peop. To find the Center of Gravity of any num-
ber of Bodies Pj, Pg, P3, P4, , considered as points^ in

the same plane, fig. 60.

Let G be the center of gravity, found as in Art. 46, Cor. 2.

Draw Ax any line in the plane, and draw on it perpendiculars

P,M,, P,M,, P,M, P,M, , g,h,, g.Ji,, g,h
Also draw mgin parallel to Ax, meeting PiM^, P2M2, mm, n.

Then the triangles P^g^m, P-^gyn, are similar; hence, by Art. 46,

P,m P,g, P.,—— = —— = TT ; • • ^1 • ". m = Po. Pon ;

P,n P,g, P/ ' '
- ' '

or P, . (J/,m - M, P,) = P, . (M,P, - M,n) ;

or since M^m = ilfg^i — S\^^\ '•> transposing

{P^ + P2) . g,K = P^ P^M, + P, . PM,.

Similarly, since by Art. 60, (P, + P^) g^g., = P3 . Pg^^, we
should have

(P, + P, + P3) .g,h, = (A + P.) gJh + ^3 PsM,

= P, . P,M + P,.P,M, + P3 . P,M,:

and

(P, + P,+ P, +P,)gjH = {P, +P2 + P,)gJh + P. P.M.

= P, . P,M, + P,.P,M, + P,.P,M,+ P, . P,M,.

And in like manner manner for any number of points,

(P, +P, + P3 + ) GH
= P,.P,M+P,.P,M,+ P,.P,M,+ ;

^^_ P, . P,M, + P,P,M, + P3. Psit/s +
•

'''^
P^+P,+ p,+

—

'

and is therefore known. Hence if we draw a line Kk parallel

to Ax at this distance, G must be in this line Similarly, if

we draw any other line Ay, we may find the distance of G from

Ay, and drawing a line Hh parallel to Ay at this distance, the

intersection of Hh with Kk will give the point G.
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Cor. If P,il/i, P.M., &c. and GH, instead of being

drawn perpendicular to Ax, were drawn in any direction pa-

rallel to each other, and meeting Ax m M, M.>, &c. and H

;

P,.P,M, + P.>.P,Mo+
we should still have GH = —

Py+ P2 +

63. Prop. To find the Center of Gravity of any System

of points whatever, Pj, Pg, P3 Fig. 62.

If we draw any plane, yAx, and draw perpendiculars upon

it, P^M^, P2M2, P3M0 from the bodies, and gji^, g-Jh^

from the centers of gravity of Pj, Pg, of P^, P.,, P3 ; and

GH from the center of gravity of the system : since P^M^,

P2M2, gji^ are in the same plane and perpendicular to M^M.>,

we shall have, by last Article,

(P, + P, ).g,h,=:P,. P,M, + P, . P,M2.

For the same reason, since gjti, g-h.,, P^M^ are in the

same plane

(A + P, + P3) g.h, = (P, + P,) g,h, + P, . P,M,

= P,.P,M,+ P.,. PM, + P3 . P^M^,

and, for any number of bodies,

{P, + P, + P, +...) GH=P,. P,M, + P.P.M^ +P,.P,M, + ...

^„ P,- P.M. + P, . PM, + P3
. PM, + ....

• ^^ =
P,4-P.+ P3 + ....

'

and is therefore known. Hence, if we draw a plane parallel to

the plane xAy, at this known distance, G must be in this plane.

Also if we take two other planes, as xAz and yAz, and find

the distance of G from each of these, we shall be able to draw

two other planes parallel to these, in each of which G must be:

therefore it must be at the intersection of these three planes.

64. Prop. The effect of any System P,, P^, P3, to

produce Equilibrium is the same as if it were collected at its

Center of Gravity. Fig. 60,

Let the system produce equilibrium about a point, or a line,

and let a vertical plane pass through the point or line ; and let

PiMy, P-iM.j, P^M:^ — be perpendiculars on this plane : then

K
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the effect in producing equilibrium about this plane will be the

same so long as the moment P^ . PiMi -+>P.^M2 + A . PzMs + •••

remains the same. See Art. 22. But when all the system is

collected at G, this moment becomes (P, + P2 + P^-r ) GH ;

and this, by Art. 62, is equal to the moment in the other case,

however the plane be drawn. Therefore the effect remains the

same as before.

It has been shewn (Cor. 4, Art. 60,) that when the system

is supported at the center of gravity, the pressure there is the

same as if the system were collected at that point.

Cor. Hence if Pi, Pg, P., P4, fig. 60, instead of being

points, be bodies of finite magnitude, we may find the center of

gravity of the system, by supposing each body collected in its

own center of gravity, and then proceeding as in Art. 60, 6l^

62, or 63.

65. Examples of Jinding the Center of Gravity.

Ex. 1. To find the center of gravity of a Straight Line;

supposed to be of uniform thickness and density.

A straight line will balance itself about its middle point in

every position : this point is therefore the center of gravity.

Ex. 2. To find the center of gravity of a Parallelogram,

as ABCD, fig. 63.

Bisect the opposite sides AB and DC in E and i^, and the

opposite sides AD and EC in i/and K ; and let the lines EF,
HK meet in G ; G is the center of gravity.

For the parallelogram may be conceived to be made up of

lines parallel to AB., as for instance PMQ, ; and since PM =
AE = EB = MQ, each of these lines, as PQ, will balance in

every position on the point ill, that is, on the line EF : hence

the whole parallelogram will balance on the line EF. Simi-

larly the whole parallelogram wall balance on the line HK.
Hence it will balance in every position on the point G ; which

is therefore the center of gravity.

Ex. 3. To find the center of gravity of a Triangle

;

as ABC, fig. 64,



THE CENTER OF GRAVITY. 7^

Bisect AB in E, and JC in F; join CE, BF ; the

intersection G is the center of gravity.

For the triangle may be conceived to be made up of

lines parallel to AB^ as PQ : and we have by similar triangles,

PM MC MQ , . .^ ^„ „,. -._—— = -—- = —— , and smce AE = EB, PM = MQ.
AE EC EB'

Hence each of the lines PQ will balance on the line

CE in every position, and therefore the whole triangle will

balance on that line. Similarly the whole triangle will balance

on BF in every position ; and hence it will balance in every

position on the intersection G, which is therefore the center of

gravity.

Join FE : and since AE = \ AB, and AF = ^ AC, EF
is parallel to BC ; hence by similar triangles, AEF, ABC,

EF AE 1

~BC~AB~2'
whence by similar triangles EFG, CBG,

if = l? = ^ •. GC = .£G; .-.EC^SEG,

hence EG =^- EC, and GC ^^ EC.
3 3

CoR. 1. If we call the sides opposite to A, B, C, a, b, c

respectively, and CE, e ; since AE = EB = -
,

2

e^ = *.

• In any triangle ABC, fig, 64, , if a side AB be bisected in E; retaining the

letters in the text, we have

in triangle ACE, b°-= (Y\^+e^ -2 .^.e cos. CEA,

triangle BCE., a-=r^'+e'+2. |.ecos. CEA,

add, and we have

whence the formula in the text-

ff2+62 = t + 2e';
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Hence CG = ? e = liiil-^1::^
.

3 3

Cor. 2. If we call GA, GB, GC, h, k, I, respectively,

2
we shall have I = - e ; whence

3

3l= {2(a"+ b') -c-}i

Hence 9 /- = 2 a^ + 2 6" - c^

;

similarly, Qh^ = 2b^ -^ 2c^ - a^ ;

gk^ = 2c~ + 2a^ — b' ; and, by addition,

9 (^2 + fc' + P) = 3 (a' + 6- + c') ;

or 3 (h^ + k^ + P) = a^ + b- + c~.

Cor. 3. If three equal bodies be placed in the angles

of a triangle, the center of gravity of these bodies is tlie

same as the center of gravity of the triangle.

CoR. 4. To find the center of gravity of any Polygon,

divide it into triangles ; and supposing each of these collected

at its center of gravity, find the center of gravity of the

whole ; which, by Cor. to Art. 64, will be the center of

gravity of the polygon.

Ex. 4. To find the center of gravity of a Quadrilateral

ACBC\ fig. 65, which has two adjacent sides equal, and also

the two other adjacent sides equal : AC = BC, and AC' = BC'.

Join CC\ which will bisect AB in D, and will be per-

pendicular to AB. Let E be the center of gravity of ABC
and F of ABC ; if we take G so that

EG : FG :: ABC' : ABC :: DC' : DC,

G will be the center of gravity :

DC . EF
and hence EG : EF :: DC : CC, and EG =

CC

Let DC = c, DC = c' ; .: DE = -, DF = - ; . . EF = ^^
3 3 3

C C + C- c c c — c
.-. EG =—-,

-^^ = -; ..DG = DE-EG = =
C + C 3 3 3 3 3
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Cor. Similarly if C and C' were both on the same side

of AB, we should have

^ c + c'DG= -—^.

Ex. 5. To find the center of gravity of a quadrilateral

JBDC, fig. 66^ of which two sides AB, CD are parallel.

Bisect AB, CD in H and K, and join HK ; all lines

parallel to AB will balance on HK, and therefore the center

will be in that line. Join BC, CH, BK; and take CE

= -CH, and BF = -BK; E and F will be the centers of
3 3

gravity of the triangles ABC, DBC, which may, by Cor. to

Art 64, be considered as collected at those points. Hence,

by Cor. to Art. 62, if EM, FN be parallel to HK, and G
be the center of gravity,

trianole ABC . EM + triangle BCD. FNGH =
triangle ABC + triangle BCD

Let CL be parallel to KH, CI perpendicular to AB

;

therefore, by similar triangles,

EM HE I FN BE _ 2

CL~HC~3" KH~ BK" 3''

.-. EM = ^CL=^KH, FN = ^KH;

J^AB.CI.^KH+^CD.CI.jKH
\AB.CI + \CD.CI

AB .KH+2CD.KH
~

HAB + CD)
'

If AB = a, CD = h, KH = c.

GH=- "'^^^

3 a + b

Cor. When h = 0, this gives GH = -
, and the trape-

zium becomes a triangle.

Ex. 6. To find the center of gravity of n Pyramid whose
base is a triangle ABC, fig. 67, nnd whose vertex is O.
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Bisect BC in D, join AD, OD, and take DE = - DA,

DF = - DO ; join OE, AF; their intersection G will be the

center of gravity of the pyramid.

The pyramid may be conceived to be made up of planes

parallel to ABC, as PQR; E is the center of gravity of the

triangle ABC, and N, where OE meets PQR, will be the

center of gravity of PQR ; as may easily be shewn. Hence
each of the triangles PQR will balance on the line OE, and

hence the whole pyramid will balance in any position about

OE. Similarly, the whole pyramid will balance on the line

AF : hence it will balance in every position on the intersection

G, which is therefore the center of gravity.

By similar triangles,

EF ED 1 EG _EF _\
Io'Td^s" ^" Gd~Ad~3'

hence GO = 3EG; EG = - EO, and GO = - EO.
4 4

Cor. 1. Bisect AO in H, and draw HK parallel to OE ;

hence by similar triangles,

since AH = - AO, .-. AK = - AE = DE ; . . DK = 2DE.
2 2

Also HK = - OE, and GE=-OE; .-. HK = 2 GE.
2 4

Hence DE : DK :: GE : HK, and DGH is a straight

line bisected in G.

Hence we have this theorem : if in a triangular pyramid

we bisect two edges which do not meet, and join the points

of bisection, and bisect the joining line; the last bisection

is the center of gravity of the pyramid.

Cor. 2. To find OG, let the edges of the pyramid

adjacent to O, viz. OJ, OB, OC he a, b, c; and the others

BC, CA, AB, a', h', c, respectively : also lei AD, OD, OE,
be e, f, g.
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Then we shall have *

And by Cor. 1, to Ex. 3, we have

o2 _

r-

4

2 62 ^2c2 _„'2

Hence, by substitution,

3 („"- + ^2 ^ cO - (a'- + 6'^' + c"0
^•• = , — •

And 0G = -.^= - J3(a2 + 6^ + c^)-(«'' + 6'=^+ c'^)i'i
4 4

Cor. 3. If we join the center of gravity with each of

the four angles 0, A, B, C, and call the distances h, k, /, m,

respectively, we shall have A^ k", l\ m", by formulae easily

derived from the preceding ; and adding these together, we

shall have

4 (h' + k' + /' + m') =a^ + h^ + c' + a" + //" + c'\

Cor. 4. Since £G is - of EO, it is manifest that if we
4

draw parallel lines through G and O, meeting the base,

the distance of G from this plane will be - of the distance
^ 4

of O.

* In any triangle AOD, fig. 67, if a side ^Z> be divided so that DE is

5- of i)/l ; retaining the letters in the text, we have

in triangle DOE, f'= (^Y +g- + 2 . ^ .g cos. OEyi ;

yj^+.V--^- -j.^cos. 0£yl.

Add twice the first to the second, and we hcve

2 /-" + ««-'-!£:+ 3i,^;

whence the formula in the text.
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Ex. 7. To find the center of gravity of any Pyramid.)

whose base is a polygon ABCDE, fig. 68, and vertex O.

The polygon may be divided into triangles by lines drawn

from one angle to another ; and if planes pass through these

lines and through the vertex, the pyramid will be divided

into triangular pyramids. If a plane be drawn parallel to

the base, at a distance equal to ^ of the altitude of the

pyramid, by Cor. 4 to last example, the center of gravity of

each of the triangular pyramids, and therefore of the whole

pyramid, will be in this plane. But if we join O with F the

center of gravity of ABCDE, it will appear, as in the last

Example, that the center of gravity will be in this line. Hence

it will be in the point G where the line meets the plane. Also

it is manifest that

FG = l FO, and OG = | OF.

Cor. If the number of sides of the polygonal base of the

pyramid be increased without limit, the method of finding the

center of gravity remains the same. Hence it will be true in

the case to which we thus approximate, that is, that of a

Conical body with a Curvilinear base. In all such cases

we must find the center of gravity by measuring from the

vertex -| of the line which joins that point with the center of

gravity of the base.

Ex. 8. To find the center of gravity of a Frustum of

a Pyramid ; cut off by a plane parallel to the base.

The two ends will be similar figures ; let a, b, be homo-

logous sides of the larger and smaller end. Also let the

centers of gravity of the two ends be joined, and let the line

which joins them be called the axis and be = c. Then the

center of gravity will be in the axis, and it may be shewn,

as in Ex. 5, that its distance from the larger end along this

side will be

c a' + 2ab +3b^

4 '

a^ + ab + b^-

Cor. The same will be true of the Frustum of a Cone

;

a, b, representing the radii, or any homologous lines, in

the two ends.
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GENERAI, I'KOl'ERTIES OF THE CEXTEll OF CUAVITV.

66, Pkoi'. If in a system consisting of any number

of particles, a point be taken, and if each particle be mul-

tiplied into the square of its distaiice from the point, the

stem of these products ivill be the least ivhen the point is the

center of gravity.

Let O, fig. 6d, be the point, and G the center of gravity of

Pi, Po, &c. Join GO, and draw P^M^, PoM.^, &c. perpendicu-

lar on it, and join P, G, P,G, &c. and P, O, P,0, &c.

Then

P~0- = P^~ + GO' -2 GO. GM„
Ko' = ~p^a' + 'Ga' -2G0. gm„

&c. = &c.

Hence P, . P^0^+ P,. P, O' + &c.

= Pi . PV^ + P, . P^' + Sec

+ P,.Gd, + P.,. GO' + &c.

-2P,.G0. GM, - 2P2 . GO . GMo - &c.

= Pi . pTg' + P2 . Kg' + &c.

+ (Pi + P2 + &c.) GO'

-2GO (P, . GM, + P, . GMo - Ps . GMs - P, . GJ/4.)

But by the property of the center of gravity.

Pi . GM, + P, . GM, - P3 . GM, - P, . GM, = 0;

.-. P, . P^O- + Po . i^- + Ps . P^' + P,~P^'

= P^.P, G' + Po.P.G' + P3. PsG- + Pi . P4G

+ (Pi + P, + P3 + P4) G0\

And it is manifest that the second side will diminish as GO
diminishes, and will be least when GO is 0, or when O coin-

cides with G.

Coil. If with center G and radius GO we describe a

circle, the sum of each particle into the square of its distance

from O will be the same in whatever part of the circumference

Ois.

For GO will be the same in all the situations of O.

L
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67- Prop. In any machine kept in equilibrium by the

action of two weights, if an indejinitely small motion be

given to it, the center of gravity of the weights will neither

ascend nor descend.

It is easy to shew this independently, in each of the

mechanical powers.

In the straight lever, the center of gravity is at the

fulcrum, and remains fixed, however the lever be moved.

In the wheel and axle, fig. 38, the center of gravity of P
and W is at G, in the vertical line passing through the

center C, and if P descends, W ascends, and G remains fixed,

as if PGW were a lever.

In the toothed wheels, fig. 54, if P ascends W descends

;

and the center of gravity G remains fixed in a point G,

such that

PG : WG :: DO : CO.

In the systems of pullies, fig. 41, 42, 43, 44, 45, if we join

P and W, and take PG : WG :: W : P, G will be the center

of gravity ; and if P descend W will ascend, so that P's

descent : T'Ps ascent :: W : P •.: PG : WG ; whence G
remains fixed.

In the inclined plane, fig. 5S, when the force is parallel to

the plane, let P support W: and let P, W be their situations

when they are in the same horizontal line. Let P descend

to p, and W ascend to w ; .-. Pp = Ww: join wp meeting

WP in g; draw ivm perpendicular on TFP; now by similar

triangles,

wg : pg :: wm : Pp :: wm : Ww :: BC : AC :: P : W;

therefore g is the center of gravity of p, iv. Hence the center

has moved in the horizontal line Gg.

This is true, whatever be the space described.

The wedge and screw do not generally act by gravity ;

when they do, the same property is easily proved.
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CHAP. V.

PROBLEMS CONCERNING THE EQUILIBRIUM OF RIGID BODIES.

68. Bodies are hard or soft, rigid or flexible, extensible

or inextensible, elastic or inelastic ; and in all cases the condi-

tions of their equilibrium may be deduced from the properties

of the lever ; which, as we have seen, leads to the properties

of other mechanical combinations. For the present we shall

consider only the case of rigid bodies ; that is, of bodies which

do not change the dimensions or figure of any of their parts

by the action of any of the forces which we suppose to be

applied to them.

Prop. A lever is kept at rest by any two forces ; it is

required to jind the pressure on the fulcrum.

Let ACB, fig. 70, be a lever acted on by two forces P
and Q ; the lever and the two forces will be in the same plane.

Let a portion of this plane, as EF, including the lever, be

supposed to be material and rigid, moveable about C in its

own plane, and acted on by the forces P and Q. Then this

plane will be kept at rest in the same manner as the lever was ;

and if CM, CN be perpendicular upon the directions of the

forces, we shall have

P : Q :: CN : CM.

Let the directions of the forces meet in Z>, and let Cp, Cq be

parallel to BD, AD., then the angle CqN is equal to CpM,
and the triangles CpM, CqN are similar; and

CN : CM ; Cq : Cp.

f
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Therefore P : Q :: Cq : Cp, that is, P : Q :. Dp : Dq.
Hence, Dp, Dq may represent the forces P and Q, and DC
would, on the same scale, be their resultant, if they acted at D.

But the force P produces the same effect as if it were applied

at any other point of its direction AD, considering JD as a

material line; and similarly of Q. Hence P and Q produce

the same effect as if they acted at D ; therefore they produce a

pressure on C, which is equal to the resultant of the two

forces.

Now the pressure on C will continue the same if any

portion of the plane be removed. Suppose portions of the

plane to be removed till nothing is left but the material

line ACB composing the lever : then the pressure on C will

be the same as before. Hence the pressure on the fulcrum of

a lever agrees, in magnitude and direction, with the resultant

of the two forces which act upon the lever, and keep it at rest.

This pressure acts in the direction of the line joining the

intersection of the forces and the fulcrum.

Cor. 1. If the point C be acted upon by a force Ji, which

is in the direction CD, and equal to the resultant of P and Q,

the three forces P, Q, R, will keep the line ACB at rest, sup-

posing no point of it to be fixed.

Cor. 2. If the forces be parallel, by Art. 18, the pres-

sure on the fulcrum will be the sum of the forces, and also

parallel to them. And by the same Article it appears that its

distance from the two forces will be inversely as the forces.

CoR. 3. Hence it appears that two parallel forces pro-

duce the same effect as a force equal to their sum, acting in a

direction parallel to them, and so situated that its distance

from each force '^ is inversely as the force.

This gives us the resultant of two parallel forces.

69. Prop. In a Lever acted on by any number of forces

in the same plane, the pressure on the Fulcrum is equal to

the resultant of all the forces, supposing them applied at that

point.
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Let any forces P, Q, and P', Q\ &c. act on a lever CJ,

CB, &c. fig. 71.

Let P and P' meet in D, and let their resultant be K, in

the direction DR : let DR meet Q in JE, and let the resultant

of R and Q be R', in the direction ER' ; let ^i?' meet Q' in

F, and let the resultant of R' and Q' be *S'; then jS* will be

the pressure on the fulcrum. For since a force pi'oduces the

same effect at whatever point of its direction it be supposed to

act, P and P' produce the same effect as if they acted at D,

and therefore the same effect as R ; R and Q prod uce the same

effect as if they acted at E, and therefore the same effect as R' ;

and K' and Q' produce the same effect as if they acted at F,

and therefore the same effect as S- Hence P, P', Q, Q' pro-

duce the same effect as S ; but P, P', Q, Q' keep the system

in equilibrium round C : therefore S does so ; and therefore

it passes through C; and hence it produces on C a pressure aS';

therefore P, P', Q, Q', produce on C a pressure S.

Also, since ^ at Z> is equivalent to P, P'; R at E is also

equivalent to P, P' ; therefore R and Q at E, or R', is equi-

valent to P, P\ Q ; therefore also at F, R' is equivalent to

P, P', Q; therefore R' and Q', or S, is equivalent to P, P\

Q, Q' acting at the same point.

Hence the pressure on the fulcrum is the resultant of all

the forces applied at one point.

It will be in the direction CF, for the force in FS pro-

duces the same effect as the forces P, Q, P', Q'. But these

forces keep the lever at rest about C. Therefore the force in

FS does not tend to turn the lever about C, and therefore

passes through C.

Con. Hence if ABA'B' were a rigid body, and were acted

on by the forces P, Q, P', Q', and also by a force S acting in

FC, the body would be kept at rest, supposing no point to be

fixed.

For the force S, acting thus, would produce the same efl'cct

as a fulcrum.

t
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70. Prop. When three forces act iipon ani/ body and
keep if at rest, (l"), any one of them must be equal and oppo-

site to the resultant of the other two; (2"), and ?nust pass

through the intersection of the other two.

Let a body EF, fig. 70, be kept at rest by three forces P,

Q, R. Take a point C in the direction of one of the forces R ;

and instead of a force i2, suppose an immoveable fulcrum at C ;

then the re-action of this fulcrum will produce the same effect

as the force R : but in this case, by Art. 6'S, the re-action will

be equal to the resultant of the two forces P and Q, and will

pass through their intersection. Hence the force R must fulfil

these two conditions. And similarly, the Proposition is true

of the forces P and Q.

Cor. In the same manner, by Art. 69, if a rigid body be

kept at rest by any number of forces, as P, Q, &c. and ^S*. fig.

68 ; any one of them, as S, must be equal to the resultant of

all the others. Also it must pass through the point F, found

as in Art. 69; and its direction must be opposite to the direc-

tion of the resultant of the other forces.

We shall proceed to give examples of the manner in which

we may determine, in particular problems, the conditions of

equilibrium of a rigid body.

1. Equllibr/mn on a Point.

71. When a rigid body is moveable about a fixed point,

its conditions of equilibrium are reducible immediately to those

of a lever, of which the fixed point is the fulcrum ; including,

amongst the forces which act upon the lever, the weight of the

body, supposed to be collected in its center of gravity.

Prob. I. In the Commori Balance, the iveights being

unequal, to find the position in which it will rest.

The common balance consists of a beam AB^ fig. 72, which

is moveable about an axis C, and from which the scales arc

suspended at points A and B. The axis C is so placed, that,

in the horizontal position, it is a little nbovo ihe straight line
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^i? joining the points of suspension. Let CD be perpendiculai-

to AB ; then the two arms DA, DB, must be equal in length

and weiirht. Let DA = DB = a, CD = b. Also let G, a

point in CD, be the center of gravity of the beam, and

CG = h.

Draw MCN horizontal, meeting in H and E the vertical

lines through G and D ; and let d be the angle which AB
makes with the horizon, and therefore the angle which CD
makes with the vertical. Then, since

AD = DB, EM = EN = a cos. 9 ;

CE = h sin. 6; CH = h sin. 0.

xVnd if P and Q are the weights at A and 5, and W the weight

of the beam,

P. Cil/= Q.CA^+ W.CH;

or P {a cos. 0-6 sin. 0} = (^ ]a cos. + h sin. 6>} + TFAsin. 0.

(P - Q) a
Hence, tan. = ^^—^^^—^^

.

If we suppose D to be the difference of the weights, so

that P = Q + D, we shall have

tan. 0. a

D (2Q + D)h+ Wh

'

The requisites of a good balance are the following : J . It

should rest in a horizontal position when loaded with equal

weights. 2. It should have great sensibility ; that is, the

addition of a small weight in either scale should disturb the

equilibrium, and make the beam incline sensibly from the

horizontal position. 3. It should have great stability ; that is,

when disturbed from the position of equilibrium it should

quickly return to it.

The first requisite will be obtained if the arms are equal,

and the center of gravity lower than the point of suspension.

The sensibility is greater in proportion as for a given

small difference of weights the inclination of the balance is

greater, that is, in proportion as for a given small value of D,
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is greater. It is greater also in proportion as tor a given

value of 6, D is less. It may therefore be conceived to be

measured by — or nearly by —=— . Hence the sensibility of

a balance is as

(2 Q + Z)) 6 + Wh

'

But D is small compared with 2 Q, and may be neglected.

Hence the sensibility is as

2Q6+ Wh

Hence the sensibility of a balance is increased—by in-

creasing the length of the arms («)—by diminishing the

weight of the beam {W)—by diminishing the distance between

the center of motion and the center of gravity of the beam {Ji)

—by diminishing the distance between the center of motion

and the line joining the points of suspension (6).

The stability is as the force which at a given angle of incli-

nation urges the balance to the position of equilibrium. Let

the weights be equal, and this force is

2 Q . C£ + W . CH = (2 Qb + Wh) sin. 9.

Hence the measure of the stability is 2Qb + Wh.

CoR. By increasing the lengths of the arms we increase

the sensibility without diminishing the stability.

Prob. II. Fig. 73. Fi'om a given rectangle ABCD, of

uniform thickness, to cut off a triangle CDO, so that the

remainder ABCO, when stispended at O, shall hang with the

sides AO, BC horizontal^.

Let G be the center of gravity of BO, and H of CEO ;

OE, Gg, Hh, being vertical, and therefore perpendicular to

AD.

* This is Prop, j, of Pappus's iNIathematical Collections, Book K.
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Hence Og=^OA, Oh = ^ OD.

Let AD = a, AB = h, DO = ,v; .: AO = a - .r.

Now

Og. rectangle AE = Oh . triangle CEO,

a — w ,v X
or .h.((i-oo) = -.h. ;

.-. 3 (a — x)'- = X' ;

.-. 2x^ - 6ax = - Sa^;

••• ^' = ^(3 ±^3).

= . 634 a.

The negative sign is to be taken : the positive sign would

place O beyond A.

2. Equilibrium on a Surface.

72. When a body rests on a given surface it will touch

it either in one point, or in several points, or with a finite

portion of its surface. In all these cases the body must be

supposed to be acted on by forces perpendicular to the surface

at the points wliere it is in contact ; that is, by the re-action

of the surface at those points.

Prob. III. Fig. 74. A Paraboloid DAd rests upon a

horizontal plane ; to find its positioti.

If PK be a vertical line drawn through the point of con-

tact, meeting the axis in A', this line must pass through the

center of gravity ; for the body may be supposed to be col-

lected in its center of gravity, and it will then be supported by
the re-action which acts in the line PK. And since the center

of gravity is a point in the axis, K must be this center. Also,

since PK is perpendicular to the tangent at P, PK is a nor-

mal ; and bence if PN be perpendicular to the axis, by Conic

Sections, NK = ^ parameter = 1/..

M
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And

-^/{^-^

If AK he less than -i-L, this answer is impossible, that is,

there will no longer be an oblique position of equilibrium, and
the figure will not rest except when the axis is vertical.

It will be seen (in the Supplement,) that in a homogeneous
paraboloid, if K be the center of gravity, AK = fAC. Hence
the oblique position of equilibrium is possible so long as

iAC>iL, or AB>\L.

Prob. IV. Fig. 75. A solid composed of a Cone and a
Hemisphere on the same base rests on a horizontal plane : to

Jind its dimensions that it may rest on the hemispherical end
in all positions.

PCi the vertical line, will, in all positions, meet the axis in

the center of the sphere ; and hence this point must be the

center of gravity of the whole figure. Let G be the center of

gravity of the hemisphere, and H of the cone ; and we must

have,

mass of cone x CH = mass of hemisphere x CG.

The cone is i, and the hemisphere is
J-,

of the circumscrib-

ing cylinder. Hence cone = base DE x i BC, and the hemi-

sphere = base DE x f AC. Also by Art. 65, CH = ^BC ;

and by the Supplement, AG = f AC, and CG = fAC. Hence

base DE X iBC x^BC = base DE x ^ AC x i AC

;

.-. BC~ = 3AC\

Hence 52)' = BC^ + CD^ = 4^C'; and BD = 2AC = DE.

Hence the triangle DBE is equilateral.
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Prob. V. Fig. 76. When a body is supported on three

vertical props (A, B, C) ; to find the pressure on each.

Let G be the center of gravity of the body, Gg a vertical

line meeting the plane ABC in g ; join Ag., meeting BC in D ;

then, if we suppose the whole mass collected at the center of

gravity, it may be considered as supported on a lever AD ;

and if W be the whole weight,

pressure at A : W :: Dg : DA :: triangle BgC : triangle

BAC.

In the same manner,

pressure at B (or C) : W :: triangle AgC (or AgB) : triangle

BAC.

Hence the pressure on each prop is as the triangle opposite

to it, made by joining the angles of the triangle ABC with the

point g.

CoR. When a body is supported on four vertical props,

as a table on its four legs, the pressures will be indeterminate,

if we consider the body as perfectly rigid. For since it may be

supported on three of these props, the fourth may support

either nothing, or a finite portion of the weight. The only

conditions are, that the pressures have their sum equal to the

weight of the body, and that they be such, that if they be con-

sidered as weights, their center of gravity and the center of

gravity of the body are in the same vertical line.

The same is true if the props be more than four.

Prob. VI. Fig. 77, 78. A body ABCD rests with its

base on a horizontal plane ; to find when it will be sup-

ported.

The effect of gravity will not be altered if the body be

supposed collected at its center of gravity G ; G being still

supposed to be connected with the base AB, as for instance,

by means of rigid lines GA and GB. In this case, if the verti-

cal line Gg fall within the base, AB, fig. 77, G will have no

tendency to turn round A in the direction BG, or round B in



92 PROBLEMS OF EttUILIBllIUM.

the direction JG : and consequently the body will manifestly

be supported.

If Gg fall without AB, fig. 78, the body will fall over on

the side on which Gg falls. In order that this may be the

case, G must evidently turn in the direction Gh round B,

which is supposed to be prevented from sliding. Now if a

vertical line Gm represent the weight of the body at G, this

force may be resolved into Gn, in the direction of the tangent

to the circular arc Gh, which G would describe round B, and

nm perpendicular to this, and therefore in the direction GB.
Of these, the force Gn tends to cause motion round B, and is

not at all counteracted : hence the point G will move in Gh,

and the body will fall over.

The force nm is counteracted by the resistance. at B, if B
be prevented from sliding ; but if the base JB and the plane

on which it rests be supposed perfectly smooth, the body will

slide as well as fall : and in fact, since there is no lateral force,

G will descend in a vertical line whenever the body rests on

a horizontal plane, as will be shewn when we consider the

motion of such a body.

If we consider the base as an area, the same still holds

;

viz. that the body will be supported if the perpendicular from

the center of gravity falls within, and will fall if this perpendi-

cular falls without the base.

If the body be supported on several points, or on several

portions of its surface, we may suppose a string to pass round

all of them, and the area comprehended within this string is to

be considered as the base.

3. Equilibrium on a Point mid a Surface.

73. When a body rests with one part of it upon a point

and another upon a surface, as in fig. 79, the forces by which

it is supported are the re-actions of the point and of the sur-

face. If A be the supporting point, the re-action will be in

Agf perpendicular to the surface of the body. And if PB be

the supporting surface, and P the point of contact, the re-action
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there will be in Pg perpendicular to both the surfaces. And
by Art. 70, the point g of intersection of the two forces must

be in the line in which the third force acts ; that is, in the

vertical line passing through G the centre of gravity. Hence

Gg is vertical ; and from this property the position of equili-

brium may be determined.

PiioB. VII. Fig. 80. A beam PQ, considered as a line,

rests upon a point A, tvith its eyid against a vertical plane

BC ,• to find the position in which it ivill rest.

Let G be the centre of gravity, Pg horizontal, Ag perpen-

dicular to PA, Gg joined ; and since the re-action of the plane

is in Pg, and that of the point A in g A, the point of intersec-

tion g, of these forces, must be in the vertical line through

the centre of gravity : hence Gg is vertical, and perpendicular

to Pg. Draw AE vertical. By the Elements, the triangles

PAE, PgA, PGg, are all similar ; hence

PE PA
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also let AEF be vertical, and AD perpendicular to BC We
have by similar triangles,

FP _PE
DF~ AD'

PG _ PA
P^~PE'
Pe PA
TA^ AD"

'''"'^ "i^'ltiplying,

FP . PG PA- PA' PG . AD-
FD .PA AD^' ' PF FD '

Let PG = a, AD = h, FD = c:, PA = x ;

.-. PD = (x^ - by^, PF = c - {x^ - b^ ;

hence we have

a^ _ ab-

c - {x^ - b')h
~ ~V

whence .r must be found.

4. Equilihrmm on two Pointfi.

74. When a body is supported with its surface resting on

two points, the re-action at each point will be in the direction

of a perpendicular to the surface ; and these perpendiculars

must meet in the vertical line passing through the centre of

gravity as before.

Prob. IX. Fig. 82. A plane figure., two contiguous

sides of ivhich are straight lities forming a right angle, rests

in a vertical plane ivith these two sides on two given fixed

points : to find its position.

Let A, B, be the fixed points, CP, CQ two sides of the

figure, G its centre of gravity.

Let GH be a perpendicular to PC ; draw AD, HL hori-

zontal, BD, CFL, GKE vertical. And if yl^ and Bg be

perpendicular to the sides CA, CB, they will be in the direc-
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tions of the pressures exerted at A and B on their sides ; and

these directions will meet in the vertical line passing through

G. Draw also D3f perpendicular to BC

Let AD = a, BD = b, CH = h, HG = k ; and let the

angle CAD be : then DBM, CHL, HGK also = 0.

And since AgBC is a rectangle, Ag = CB., and hence it

appears that

AE = DF; .. EF = AD -2FD.

Also BC = CM - BM = a sin. 9 -h cos. ;

.-. FD = BC sin. = a sin.- 6 -h cos. sin. G ;

.-. EF = AD - 'iFD = a-2a sin.=^ 9 + 2h sin. cos. 9.

But £F = KL = HL - HK = h cos. 9 -k sin. 9 ;

.*. a - "Ha sin.~ + 26 sin. cos. = A cos. 9 - k sin. ;

or a cos. 20 + 6 sin. 29 = h cos. - /c sin ;

from which equation is to be determined.

5. EqniUbi'ium on two Surfaces.

75. When a body rests on two surfaces, the re-actions at

the points of support will take place in lines perpendicular to

these surfaces ; these lines must meet, for otherwise the body

cannot be supported. And as before, the point of concourse

will be in the vertical passing through the center of gravity.

PiioB. X. Fig. 83. A given beam PQ, considered as a

line, is supported on two given inclined planes CP, CQ : to

find the position in which it ivill rest.

Let Pg, Qg-, perpendicular to the planes, meet in g, and

G being the centre of gravity of PQ, Gg will be vertical. Let

gG meet the horizontal line drawn through C in //, and the

plane PC in K. The angle PgK is the complement of PKg,
as is also KCH. Therefore PgG is equal to KCH or PCA ;

similarly, QgG is equal to QCB.
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Let PCA, the inclination of the plane PA^= i, QCB = i'

;

.-. PgG = I, QgG= I ; also let PG = a, QG = a, and let QP
produced meet the horizontal plane in D, and PDC = ^

:

hence CPQ = PCD + CDP = i + ^,

CQP = QCB - QDC =i' -I

Now

PG _ sin. PgG
~Gg ~

sin. GPg '

Gg _ sin. GQg
QG ~ siiTo^^

PG _ sin. PgG sin. GQg _ sin. PgG cos. PQC
" QG~ sin. QgG ' ^nTcPg ~

sin. QgG '

cos. QPC

'

a sin. i cos. (t' - ^)
<>y — = . ^^ /

a sin.t cos. (t -t- a)

sin. I COS. I . cos. ^ + sin. i . sin. ^

sin. t' COS. I . cos. o — sin. i . sin. ^

tan. I 1 + tan. / . tan. S

tan. t' 1 — tan. i . tan. ^

Whence

f/ tan.t' - a tan.t . tan. i . tan. ^ = a . tan. t + «'. tan. t . tan.t' . tan.^;

» a tan./' — a' tan. t acotan. i — a'cotan.t'
.-. tan. d =

J-
7 7 = -, ;

{a + a) tan. i tan.

t

n + «

whence we know the inclination of PQ to the horizon.

Cor. 1. If a = a', which it will be if the line PQ be of

uniform thickness and density

;

^ tan.t' - tan. t 1 / 1 I \
tan. S = —, = - .

J ;

2 tan. I tan.t 2 \tan. t tan.t /

cotan.t — cotan.i'
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Cor. 2. If I = h oi* tlie planes be equally inclined,

a — a'
tan. S = . coVitan. i.

a + a ^

Cor. 3. In order that PQ may rest parallel to the

horizon, we must have ^ = ;

.•. a tan. i — a' tan. i = ;

a tan. i

a tan. i

the segments GP, GQ must he as the tangents of the in-

clinations.

Prob. XL Fig. 84. Let p, q be two Spheres, touching

each other and resting on tfvo inclined Planes C P, CQ ; to

find their Position.

Join p, q, their centers. In every position the distance

of their centers is equal to the sum of their radii : and hence

they have no tendency to change their point of contact with

each other, and may be considered as one mass. Also the

re-action is perpendicular to the planes which touch the spheres,

and will therefore pass through the centers p, q. Hence pq
will be supported in the same way as if it rested at p and

7, on planes cp, cq, parallel to CP and CQ. Hence we may
find its position by the last problem. ^

Let r and r' be the radii of the spheres, p and q their

weights, and ^ the inclination of pq to the horizon. Let G
be the center of gravity of the mass pq, therefore we shall

have, retaining the notation of the last problem,

pq = r + r , pG = = a, qG = ^-^ = a ;

p+q p+q
. ^ a tan. i — a' tan. i

hence tan. o =
(a + a') tan. i tan. i

... q tan. t — p tan. i

will =
(p + q) tan. i tan. t

N
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Cor. Hence it appears that the inclination o( pq is

independent of the radii ?*, r', and depends only upon the

weights of the spheres.

The eiFect will be exactly the same whether the body

be supported by the re-action of a surface, or by the tension

of a string perpendicular to the surface. If any point of it

hang by a string of given length, it will be confined to the

surface of a sphere, and the case will be the same as if it

rested on a spherical surface.

Prob. XII. Fig. 85. A given Beam PQ hangs hy two

Strings of given lengths AP, ^Q, from two given fixed

Points A, B : to find its Position when it rests.

Let AP, BQ meet in^; therefore ^G through the center

of gravity G is vertical ; let this meet AB in E, and let

PJSi^ QN be parallel to it ; also let QP meet BA in D.

Let AB = c, and its inclination to the vertical, AEG = e ;

AP = p, BQ-q, GP^a, GQ = b; PAB = a, QBA =
ft,

PDA = S. Hence

gPQ = APD = PAB - PDA = a - ^,

gQP = QBD + QDB =
ft + S,

AgB=PgQ = 7r-(a + ft);

sin. AgB sin. (a + ft)

Bg = AB . -: — = c

but

sin. BgA ' sin. (a + ft)

'

r» . ^ ^ sin. ftPg^Ag-AP = c. . , -3, -Pi
sin. {a + ft)

Qg^Bg-BQ = c. .

"'"• "
- q ;

sin. (a+ft)

sin. PgQ sm. (a + ft)
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sin. /3 sin- (/3 + ^)
.

hence c .
-—

-, — - p = (« + h) .
-— ^ ,

sin. (a + /3) sin. (a+/3)

sin. a / , X
sin. (a - ^)

c.-^—7
H^

- 9 = (a + 6). -—
j^;

sin. (a + 13) sin. (a+/3)

or c sin. ;8 -j9.sin. (a + /3) = (« + 6) • sin. ()3 + ^) (l),

c sin. a - q . sin. (a + /3) = (a + 6) . sin. (a - ^) (2).

To obtain a, /3, S, we must have a third equation ; for

this purpose we must find the tensions of the strings PA,
QB ; and as these tensions must be equivalent to the weight,

which acts in a vertical direction, their components in a hori-

zontal direction must destroy each other.

To find the tension of the string PA, we may suppose

the point Q to be a fulcrum on which the beam PQ is

sustained by the string PA ; hence if we draw Qx and Qy
perpendicular on Gg and Ag, we have

tension of P^ Qa?.

weight of PQ Qy

or, if we call the tensions of PA, QB, P, Q, and the weight

of PQ, IV ., we shall have
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But the forces which draw the beam in the horizontal

direction are the resolved parts of these tensions ; that is,

P sin. APM and Q sin. BQN .,
.-. P sin. AMP-= Q sin. BQN.

But sin. APM = sin. (AMP + PAM) = sin. (e + a)

sin. BQN= sin. {ANQ - QBN) = sin. (e - jS) ;

sin. (e - /?)..P = Q
sin. (e + a)

hence
'"''."•

^^^
"^

j' = siM^:^) („,
a sin. (a - 6) sin. (e + a)

And the three equations (l), (2), (3), will give the three

unknown quantities a, (3, o.

Cor. 1. If the center of gravity of PQ be in its middle

point, which it will be if the beam be of uniform thickness

and density, a = b ; hence

P _ sin. (/3 + S) _ sin. BQP
Q ~

sin. (a-S) ~
sin. APQ '

or the tensions are inversely as the oigna of the angles at

P and Q.

CoR. 2. If A, B be in the same horizontal line, e = —
,

and equation (3) becomes

b . sin. (/3 H- S) COS. /3

a . sin. (a - S) cos. a

Pros. XIII. Fig. 85. A Beam PQ is supported by

Strings which go over given Pullies A, B and have given

Weights P and Q attached to them at p and q : to find its

Position.

Liet PAB = a, QBA = (3, and the rest of the notation

as in the last problem : the tensions of the strings Ap,
Bq must be equal to the weights P, Q : hence, by the

expressions there found for the tensions

;

P b sin. (^ + e)

W " (^T) *
sin. (a - S)

'

Q a sin. (^ + e)

W "
(a + b)

' sinTOS+T)
*
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Also, as before, the equation (3) of last problem must be

satisfied ;

^ h sin. (^ + ^) _ sin, (e - /3)

a sin. (a — ^) sin. (e + a)

from which three equations a, /3, ^, must be determined.

If a body be acted on by more than three forces in

the same plane, we may suppose any two of them to be

applied at their point of concourse. We may then suppose

that at this point the resultant of the two forces is substituted

for them : by this means the number of forces will be less by

one than it Avas ; and by successive operations of this kind

we may reduce the forces to three, which is the case already

considered.

6. Stable and Unstable Equilibrium.

76. In some cases if a body be made to deviate slightly

from the position of equilibrium, it has a tendency to return

to it, in consequence of the action of the forces. In other

cases if the position of the body be altered ever so little, it

has a tendency to recede further and further from the position

of equilibrium, and to assume some new position. In this

latter case therefore the equilibrium would subsist only till

some disturbing force, however slight, acted on the body

;

in the former case, if a slight disturbing force were to act,

the body would come back to its position of equilibrium, and

would rest there, if by any means the oscillatory motion,

which would be produced by its returning, were put an end

to. In the former case the equilibrium is stable, in the

latter it is unstable.

The following problems will serve to illustrate this dis-

tinction.

Prob. XIV. Fig. 86". A Body, the lower surface of
which is spherical, rests ttpoti a Sphere: to jind in what
case the Equilibrium will be Stable.

In the position of equilibrium, the body must rest with

its spherical surface touching the sphere at the highest point.
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and its center of gravity in the vertical line passing through

the point of contact. Let A be this point, G the center

of gravity, C the center of the sphere, and D the center

of the spherical surface.

Let the body come into any other position touching the

sphere in P, so that A, G come to A', G': the plane PA'G'

being vertical. Draw PR vertical, meeting A'G' in R : and

since the whole mass of the body may be supposed to be

collected at the center of gravity, it is manifest that if G' fall

between R and A', the body will have a tendency to return to

the position of equilibrium ; and if G' fall beyond R, it will

have a tendency to recede farther from it. Hence the equi-

librium will be stable if AG' or AG he less than A'R.

PA' is obviously equal to the arc PA, because, in moving

from one position to the other, each point of PA' has been

applied to each point of PAi

Hence,

, arc^'P JP
, , ,^„ AP

angle PD'A = -p^r- = j^'^ and angle ACP=j^.

Now D'R : RP :: sin. D'PR : sin. PD'R

:: sin. PCA : sin. PDA'.

And when the angles become very small, the sines are

as the angles; therefore when AP is very small

AP AP
D'R : RP :: PCA : PDA' y. -- . .: AD : AC

;

AC AD

.-. DR ^ RP : RP :: AC + AD : AC, ultimately.

But ultimately, when the angle ACP is indefinitely diminished,

D'R + RP becomes D'P or DA, and RP becomes RA':,

AD AC
.-. DA : RA' :: AC + AD : AC; .-. RA' =

AC + AD'

and the equilibrium will be stable, if AG be less than this.
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If AC be infinite, we have the case of a body with a

spherical surface resting on a horizontal plane, and the equi-

librium will be stable if AG be less than AD.

If AD be infinite, we have the case of a body with

its lower surface plane, resting upon a sphere ; and the equi-

librium will be stable if AG be less than AC

If the body be a hemisphere, AG = f AD, (Supplement).

Hence the equilibrium will be stable, if

, ^^ AD. ACiAD< AD + AC
i{5AD + 5AC<8AC;

if AB<fAC.

If the body rest on the concave surface of a sphere, we

shall find in the same manner that the equilibrium will be

stable, if

AD. ACAG<
AC -AD

If the lower part of the body, and the surface upon which

it rests, instead of being circular, have any other curvilinear

form, the stability of the equilibrium will be the same as

if the surfaces where both spherical, with radii equal re-

spectively to the radius of curvature of the body and of the

surface of the point of contact.

Prob. XV. A homogenous Elliptical Spheroid rests on

its smaller end in a concave Hemisphere; to Jind ivhat the

Radius of the Hemisphere must he that the Equilibrium may
he Stahle.

Let the radius of the hemisphere = c ; and let a, b, be the

semi-axes major and minor of the ellipse. Then, by conies, the

radius of curvature at the extremity of the major-axis is — ;

which must be put for AD in the formula Also the center of
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gravity is at the center of the ellipse : hence AG is

And the equilibrium will be stable, if

a.

if rrc - a ¥ <frc, or if r < , -^ , or c <
«- - 6-

'

b^

Also, in order that the spheroid may be within the hemisphere,

the radius must be greater than the radius of curvature of

the ellipse at the point of contact. Therefore

b^
c> —

a

a a
Let b = ^a ;

.-. c> -
, and < -

2 ' 4 3

7- The EqulUhrium of Roofs.

77- We shall consider a few problems relating to the

subject of the pressure or thrust which beams, combined

so as to support themselves and other weights, exert in

the direction of their length. The consideration of the

strength of such structures, requires also an examination of

the force which tends to produce fracture, and of the power

which different materials and different forms have to resist

this tendency ; but this part of the subject does not belong

to our present investigation.

Prop. Fig. 87. A Roof ACA\ consisting of Beams form-

ing an isosceles triangle ivith its base horizo7ital, supports a

given iveight at C : the weights of the beams being also given,

it is required to find the Horizontal Force at A and A'.

Let G be the center of gravity of AC, and Gg a vertical

line : and let Cg be the direction of the force at C, arising
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both from the weight at C, and from the beam A'C. Then

Ag must be the direction of the force exerted at A ; for it is

requisite that the three forces which support the beam AC
should meet in the same point.

In the same manner if G' be the center of gravity of A'C,

and G'g' vertical, Cg' and A'g' will be the directions of the

forces at C and A' ; and if the beams Ad AC be exactly simi-

lar, gg will be horizontal : and if Ag and A'g be produced,

they will meet in iV, a point in the vertical line NC

NC, Cg, gN, which are in the directions of the forces

which support the beam AC, are therefore as these forces. In

the same way NC, Cg', g N are as the forces which act on BC
Hence the weight at C is supported by the two re-actions

gC, gC. Let gg' meet NC in M, and the two forces gC, g C,

are equivalent to a vertical force 2MC. Also the force at A
being represented by gN, the horizontal part of it is repre-

sented by gM. Hence NC representing the weight of the

beam AC, 2CM represents the weight at C, and Mg represents

the horizontal force at A or A', which stretches the beam A A'.

Let G bisect AC ; .•. Gg = ^CN. Hence, if we bisect CN
in 0, CO = Gg, and g O will be parallel to AC And by

what has been said, if B be the weight of the beam

AC, C the weight at C, and H the horizontal pressure at A,

Mg Mg Mg AD
CN + 'ZCM "

2 CO + 2CM " 2M0 " 2DC'

by similar triangles.

If therefore a be the tangent of the angle which AC makes

with the horizon,

H 1 __ 5 + C
; H =

B + C 2 tan. a 2 tan. n

If the beam AA' were not there, so as to destroy the

lateral pressure by tying the two points A, A', together, the

horizontal pressure H must be counteracted by the supports

on which the ends A, A', \vere placed.

O
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If the roof ACA' support a covering of uniform thickness,

the formula will still be true, including in the weight of B the

weight of that portion of the covering which rests upon the

beam.

The weight C, at the point C, may arise from a longitu-

dinal beam perpendicular to the plane AA'C.

78. Prop. Any number of given beams, arranged

as sides of a polygon, in a vertical plane, support each

other, and support also given weights at the angles ; it is

required tojind the horizontal pressure at the points of sup-

port.

Let AC, fig. 88, be any one of the beams ; and, G being

its center of gravity, let Gg be a vertical line. Then the

pressures at A and C will converge to some point in Gg, as g ;

and their directions will be Ag, Cg. Produce Ag, meeting

in N the vertical line through C. And since the beam ^C is

supported by three pressures in directions A^C, Cg, gN, those

forces are as these lines. Hence, NC representing the w^eight

of the beam, Ng and gC represent its re-action at A and C.

Also JV^ is equivalent to NM, Mg, and ^C to gM, MC.
Hence Mg represents the horizontal pressure of the beam
at A, and gM the equal horizontal pressure at C. NM its

vertical pressure downwards at A, and MC its vertical pres-

sure upwards at C.

Let O bisect CN; and suppose G to bisect AC; then

CO = Gg, and therefore ^O is parallel to GC; and OgM will

be the angle Avhich AC makes with the horizon : let this be
called a, and let H be the horizontal pressure at A or C,

and B the weight of the beam,

pressure downwards at A NM MO ON
H Mg Mg Mg

= tan. a + '~r'->
Jri

'.' pressure downwards at A = H tan. a + ^B,
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Similarly,

pressure upwards at C MC MO OC
H Mg Mg Mg

= tan. a — ^^r==r;
It

.-. pressure upwards at C = H tan. a — ^B.

In the same manner we should find, calling the weight of

CD = Bi, and the angle which it makes with the horizon = ui ;

pressure downwards at C = H tan. oj + ^ 5i

;

pressure upwards at D = H tan. oi — \Bi ;

and similarly for the other angles.

Now the pressure upwards at C must support the pressure

downwards at C, together with the weight at C Calling this

weight C, we have

H tan. a - ^B = H tan a^ + ^B^ + C;

.-. H (tan a - tan. oj) '=^(B + B,) + C;

: H =
\{B + B,) + C
tan. a — tan. a\

whence the horizontal pressure is known.

It appears from the proof that the horizontal pressure is

the same at each angle.

Cor. 1. If we suppose the weights of the beams = 0, we

have

tan. a — tan. oj

CoR. 2. If we suppose that there are no weights except

the beams, we have

^^ \{B + B,)

tan. a — tan. a.
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79. Prob. To find the positions of the beams, having

given their iceights Bj, B2, B^, SfC. the iceights Ci, C^, S^c.

and the jmsitions of two of the beams.

By the last Proposition we have the following equations ;

"15 "2) "3? &c. being the angles which the beams make with

the horizon,

H (tan. ax - tan. a^) = 1 (J?i + 5.) + Ci,

H (tan. a. - tan. a^) = ^ {Bo + B,) + C2,

&c. = &c.

If there be n beams, there will be n - 1 weights Cj, C^, &c.

and ?i — 1 equations. The number of unknown quantities

is w + 1 ; viz. the 7i tangents tan. ai, tan. a,, &c. and the

pressure H. Hence if we know two of the angles ai, ag, &c.

we can find the rest.

In this investigation, if any one of the beams have its

farther end (beginning from A) lower than the other, it makes

an angle below the horizon, and the corresponding value of a

will be negative.

Cor. 1. If the weights of the beams be 0, we shall have

IT ^1 ^2 „

tan. ui — tan. a2 tan. 02 — tan. as

Hence it appears that the weights C,, C^, &c. are as

tan. ui — tan. og, tan. a2 — tan. a^, &c.

;

which agrees with the proportion of the weights on a funicular

polygon (Art. 32.) ; as it should do. For if each side of

the funicular polygon were supposed to be rigid, and if

the polygon were inverted, so that the vertical lines should

remain vertical, the angles being upwards, it is clear that all

the forces would act in the directions opposite to their former

directions, and the equilibrium would continue to subsist.

Cor. 2. If we suppose the weights C,, Co, &c. to be

each 0, we have

i (B, + ^,) i (B, + ^3)
,

tan. ui — tan. a, tan. «„ - tan. a^
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Hence ^ {B^ + 5.), ^ {B.^ + S3), &c. are as the differences of

the tangents of the angles which the beams make with the

horizon.

Cor. 3. If the positions of the beams be all unknown,

their lengths 6,, 6.,, 63, &c. and the positions of the extreme

points being given, we shall have, in addition to the above

n — \ equations, these two, from which we must determine

the n + 1 unknown quantities.

61 cos. «! + h., cos. era + 63 COS. a^ + &c. = A,

6, sin. a, + />2 sin. a, -I- 63 sin. a^ + &c. = k ;

h and k being the horizontal and vertical co-ordinates AH, HB
of B measured from A. For it is easily seen that the part

of AH which corresponds to h.^-, is 6, cos. ao* and so of the

rest.

80. Prop. Four beams of equal length and weight are

to he placed loith their extreme points in the same horixontal

line, so that they, with the horizontal line, may form an

irregular pentagon, and may balance each other : to find their

position, fig. 89.

It is manifest that the beams must be placed so that the

two halves of the pentagon are symmetrical. Let a, ax be the

two angles made by the lower and upper beam on one side

with the horizon. Then, by Prop. 78,

H (tan. a - tan aj = B.

And there is no weight at the highest point, therefore the

pressure upwards at that point must = 0. Therefore, by
Prop. 78, also,

H tan. a, - ^B = 0, or H tan. ui = \B.

Dividing the former equation by this,
' 1=2;

tan. Oi

tan. a = S tan. Uy

If the extremities A, A', and the vertex B be given, wc
may find the figure by the following construction.
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BH, perpendicular to AA\ bisects it. Bisect AH in E,
and erect EF perpendicular to AH^ meeting in F the circle

passing through A, B, A'. Join AF, and this will be the

position of the lower beam ; and if we take BG equal to AF,
meeting AF in C, AC, CB will be the positions of the two

beams on one side of DH ; and A'C B, their position on the

other side, will be a figure exactly similar to ACB.

For supposing BC' to meet the circle in G.

AG' = A'B-BG'
= AB - BG
= AB - AF = BF;

.-. BG' is parallel to AF

;

.-. angle BCK = BC'K = FA'E.

Hence

FF ^FF
tan. CAD = = y = 3 tan. FA'E = 3 tan. BCK;

EA EA'

and the condition of equilibrium found above is satisfied.

CoR. If the beams be not in the position of equilibrium,

there will be a horizontal pressure, which may be resisted by a

horizontal beam CC , fastened at C and C.

If it be not resisted, the beams will fall, B descending or

ascending as it is too low or too high. The position ACBC'A'
is one of unstable equilibrium.

8. The Eqidlihrmm of Arches.

81 . Suppose a number of bodies of the form of wedges

with the points truncated, as C3, Cg, Ci, C, c, Cj, Cg, Cg, fig. 90,

to be arranged with their lateral planes PQ, P, Qi, &c. in con-

tact, and all perpendicular to the same vertical plane, which

may be supposed to be the plane of the paper. Let these

wedges be pressed downwards by their gravity or any other

forces: then, if their lateral planes be supposed perfectly

smooth, they will have a tendency to slide past each other in

consequence of the action of these forces ; and if their efforts

do not balance each other, (and if the friction be not consi-
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dered) those which have the stronger tendency will descend,

pushing up the others out of their places. But it is possible

so to adjust the magnitudes and forms of these wedges that

they shall exactly balance, and that the combination shall

remain supported in its present situation by the mutual action

of its parts. In this case it is called an Arch. The wedges

C, C], Co, 8ec. are called Voussoirs : and the voussoir which

is at the top or Croivn of the arch, is called the Key-stone.

The surfaces PQ, P^Qi, P2Q,, &c, which separate the vous-

soirs, are called Joints.

82. Prop. It is required to find what must he the pro-

portion of the weights of the voussoirs that there may be an

Equilibrium of the Voussoir-course alotie.

In most cases, a bridge consists of a course of voussoirs

and of a superincumbent mass of masonry, a road, and other

materials, which the voussoir-course supports. But we will

in the first place consider the equilibrium of the voussoir-course

by itself.

In order that there may be an equilibrium, each voussoir

must be kept at rest by the forces which act upon it. Now
these are, besides its own weight, the pressures of the two

voussoirs with which it is in contact on each side. These pres-

sures are necessarily perpendicular to the surfaces which act

on each other. At each joint the pressure may be supposed to

act over the whole surface in contact, but it will be equivalent

to a single force, acting at a certain point of the surface. The
point of application of this force is determined by the con-

dition that the forces at two successive joints must meet in the

vertical passing through the center of gravity of the voussoir

which is between them.

Let the voussoirs PQ„ P, Q,>, &c. be called C^, C,, &c.

Now since the body C^ is kept at rest by three forces, (its

weight and the two pressures,) these forces must have the same

proportion as if they acted on a point. Hence they will be as

the sides of a triangle which are perpendicular to their direc-

tions, (Art. 28). Let OT be in the line PQ or parallel to it.
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and therefore perpendicular to the pressure on PCj; OT^
parallel to P, Qj, and therefore perpendicular to the pressure

on Pi Qy ; TTi horizontal, and therefore perpendicular to the

direction of gravity. The triangle OTTi will therefore have

its sides as the three forces; hence

weight of C, TT,

pressure on P^Qx OTi

Similarly if 0T„^ parallel to P.^Qi^ meet the horizontal line

TT^ in 7^2, the sides of the triangle OT^T^ will be as the

forces which act on Cg ; hence

pressure on PjQi OT^

weight of Co " T,T^'

But the pressures at the joint P^Qx on C, and on Cg, arising

from the action and re-action of the voussoirs, are equal.

Hence, multiplying the above equations together,

weight of C, TT,
weight of Cg Ti T^

Similarly, if 07*3 be parallel to P^Q^, another joint, we have

weight of C, _ TT, weight of C, _ T^T^

weight of C.
~ T\T. '

^"
weight of C^

~ T\T,

'

Hence the weights of the voussoirs are as the portions

TTj, TjTo, TgTg of a horizontal line, which are intercepted

by lilies draivn from any point O parallel to the joints.

CoR. 1. If we draw a vertical line OX meeting the hori-

zontal line in X, OX being made radius, XT., XT^^ XT,;.,

XT-i, are, to radius OX, the tangents of the angles which the

joints PQ, PiQi.> P>Qi, P3Q3 make with the vertical. Hence
we have this theorem.

In a Voussoir-course which is in Equilibrium the iveights

of the voussoirs are as the differences of the tangents of the

angles which their joints make tvith the vertical.
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Cor. 2. This agrees with what was proved of a system of

beams, Art. 78, Cor. 2. For suppose each beam in fig. 88 to

be bisected, and suppose the two halves contiguous to C to be

collected at C, the two halves contiguous to D to be collected

at D, and so on. And instead of a line CD, suppose a joint

perpendicular to CD ; then the pressure on this joint will be

in the direction of CD, and therefore the equilibrium will

subsist if we consider the system as an arch, with weights

l(Bi + 5,), \{B., + B^), &c. at the points C, A &c. But

these weights are as tan. a^, — tan. a.,, tan. a., — t-an. ^3, &c. :

and oi, os, &c., the angles made by the beams with the horizon,

are the angles made by the joints perpendicular to them with

the vertical. Hence this agrees with the last Corollary.

Cor. 3. Let the pressure at any joint, as P^Q], be re-

solved into forces parallel and perpendicular to the horizon

;

and since the pressure and its resolved parts are perpendicular

respectively to OT^, OX, XT^, those forces will be as these

lines. Hence the horizontal force is represented by OX, and

is the same at each joint.

If H be the horizontal pressure at DE, H is the horizontal

pressure at each joint.

Cor. 4. The pressures at the joints are as OT, 07\, &c.;

hence it appears that the pressures are as the secants of the

angles which the joints make with the vertical.

If 9 be the angle of any joint with the vertical, H sec. is

the pressure at that joint.

CoE. 5. Since the weights of the voussoirs C, C,, Co, C3,

&c. are as XT, TT^, T^T.., &c. ; the line XT^ will represent

the whole weight of the mass between DE and P2Q25 and

similarly for any other joint. Hence the weight of any portion,

beginning from the vertex, is as the tangent of the angle made
by the joint which bounds it with the vertical.

H tan. 9 is the weight of any portion of which the angle is 9.

CoR. 6. If the joint be horizontal, the weight of the arch

must become infinite, in order that it may be exactly in equi-

librium.

P
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The conclusions here obtained are greatly modified by

introducing the consideration of friction, as will be seen here-

after.

83. The Pier or Abutmetit, is the solid mass which forms

the lowest part of an arch on each side, and on which the lowest

voussoirs rest.

Prop. To find the horizontal pressure exerted on the

pier of an arch.

The pressure at the surface RS, fig. 90, acts at all its

points ; but it is equivalent to a single force acting at a certain

point. Let this point be A, and let the force act in the di-

rection KA. Also the pressure at the vertical joint DE is

equivalent to a horizontal force acting at a certain point B :

Let KH be the vertical line (passing through the center of

gravity of the half arch) in which the weight of the half arch

acts. Then the Avei^ht of the half arch acting; in the line

KH is supported by the two pressures in AK and BK. And
if AH be horizontal, the forces are as KH, AK and HA.
And KH representing the weight A of the half arch, KA will

represent the pressure at A, and therefore HA the part of it

which acts in a horizontal direction. Hence

1-1 . . UA
horizontal pressure eit A = A . .

This is true whether friction act or not, if the half arch

be supported by a pressure in the direction AK.

If the joint RS be perfectly smooth, and make an angle ft

with the vertical, the pressure will be perpendicular to the

surface RS ;

HA
and horizontal pressure = A —— = A tan. (3.KH

84. Prop. To Jind the pressure exerted to overturn the

pier of an arch.

If the pier AF be overturned by the pressure of the arch,

it will turn about the point F of its base. The force to over-
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turn it is the pressure (see last Article) acting at J. This

pressure may be supposed to act at Z,, in the direction AL.

Let it be resolved in AN, NL; the former part will be A, the

weight ; the latter force, acting in NL, will not tend to turn

the pier round F. Hence the force to overturn the pier is A,

acting perpendicularly at an arm FL.

The force which opposes this is the weight of the pier,

which may be supposed to be collected at its center of gravity

G, and to act in the vertical line GM. Let B be the weight

of the pier; then, in order that it may stand, we must have

B.FM>A.FL,

also FL = NL- NF.

If we draw AH horizontal, meeting the vertical line KIT,

AH

By introducing this value for NL, the expression for the

force becomes independent of the angle which RS makes with

the horizon, provided we suppose that no sliding can take

place.

85. If, instead of supposing the pressure to be dis-

tributed over the surface of each joint, we suppose an equi-

valent pressure to act at a single point of the surface in the

same direction, the polygon formed by all the lines in which

these forces act is called here the line of pressure.

Thus if BC, CCi, CiCg, fig. 90, represent respectively the

lines in which the pressures at the joints DEy, PQi, PiQn P-zQi

act, the line BCCiC,, is the line of pressure.

Prop. If we know any one point of the line of pressure

we may determine the whole of the line.

Thus if C be a point in the line, draw CCi perpendicular

to the next joint PQ and meeting in Ci the vertical line

passing through the center of gravity of the voussoir PQ^.

From the point C^ thus found, draw dC^ perpendicular to

the next joint PyQi, and meeting in C^ the vertical line passing
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through the center of gravity of the voussoir PiQ^- From
C2 draw a line perpendicular to the next joint ; and so on.

For the three forces which keep the voussoir PQ, at

rest must meet in a point (Art. 70.) ; the pressures at the joints

which are perpendicular to the joints are two of these forces ;

the weight of the voussoir, which acts in the line Z^C^, is the

third. Whence the construction is manifest.

85f/. Prop. The line of pressure imist not fall without

the voussoirs.

Let, as in fig. 94, CC\ be part of the line of pressure, meeting

in Ci the vertical line ZiG, which passes through Gj the center

of gravity of PQ^ ; and let the perpendicular C^O^ upon

PiQi, fall beyond Q,. Hence the line of pressure CC^C^ falls

without the voussoirs.

The pressure which acts at the joint P]Qi must act in the

line CvC], in order that it may support the voussoir PQ^.

But no pressures, acting at the points of the line P,,Qo, and all

of them being pushing forces, can produce a force which lies

beyond P^Q], since the resultant of the forces at any two points

of the line would fall between the two points. Hence there

cannot be equilibrium in this case.

In such a case, the pressure at the joint P^Qi, which

pushes vipwards, would meet the vertical line Z^G^ below the

point where the pressure at the joint PQ meets it ; and the

voussoir PQ] would turn over, the end Pj coming inwards.

In like manner if the line of pressure fall beyond Pj,

the equilibrium Avould be impossible ; and the voussoir would

turn, the end Pj going outwards.

Each voussoir, and the extraneous materials which act

upon it, produce a vertical force which acts in a vertical line

passing through the voussoir. Let ZC, Z^C^, ZoC,, &c. fig. 90,

be these lines. Now in order that each voussoir may be kept

at rest, the three forces which act upon it must meet in one

point (Art. 70.). Hence we shall obtain the lines in which the

pressures at each joint must act, in the following manner.
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Let B be the point in DE at which the pressure may be

supposed to act. Draw BC horizontal, meeting the first

vertical line in C. Draw CCi perpendicular to the joint PQ,
meeting the next vertical line in C,. Draw C^Co perpendicular

to BiQi, meeting the next vertical line in C^ ; and so on.

Then BCC^C^, &c. is the line of pressure. And at any joint,

as for instance, P^Q^-, the pressures at different points of the

surface P^Q^ must be such that their resultant may be in the

line C^Cz' And this is impossible if the line C^Cs do not fall

between Pj and Q,. Hence the line of pressure must every

where fall within the voussoirs.

This will be the case, when the voussoirs are small, if the

lower surfaces of the voussoirs be perpendicular to the joints,

and if the vertical forces pass through the centers of gravity

of the voussoirs.

If the first condition of the equilibrium of an arch, (Art.

82.) be not satisfied, the voussoirs will tend to slide past one

another. If the second condition (contained in this Article)

be not satisfied, the voussoirs will turn round the inner or

outer edges of the joints.

In the proofs of the preceding Propositions we have sup-

posed a joint at the highest point of the arch D. In general

there is not such a joint ; but the reasoning is the same as if

there were, because the line of pressure will there be neces-

sarily perpendicular to the vertical line DE.

86. Pkoh. The arch consisting of the Voussoir-course

alone, and the In trados being a circle with the joints in the

direction of the radii.) to find the Extrados so that there may
be equilibrium.

The intrados is the curve which bounds the arch inter-

nally, as DP, fig. 91 ; the extrados is the curve which bounds

it externally, as EQ.

Let P be any point of the intrados, O its center ; POP' a

small angle = (p; and let the whole arch be made up of vous-

soirs, such as PQQ'P, the angle of each being = 0. Let there
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be n of these between DO and PO ; therefore DOP = ^ic^ = 0,

DOF = {n + 1) 0. Also let OD=OP= I, OQ = r, OE = k.

And if, with center O and radius OQ, we describe an arc Qq,

the area PQry P' = 1 (r - /-) 0. Also if we take DOD' = (p, and

describe Ee with radius OE, the area DEeD' = ^(k^ - l^) (p.

And we have, by Art. 82, considering PQqP', DEeD' as

voussoirs

;

^ (r^ - / ) tan. (n +1)0- tan. n (p

i (A;^ - /O " tan.^
'

r"^ — /' sin. <p COS.

k^ — P tan.(p.cos.(n + l)(p.cos.n(p cos. (w + l)0.cos.n0

Now if we make indefinitely small, DEeD', PQqP'
will approach indefinitely near to the portions DEED',
PQQP', of the area contained between the cui'ves. But in

this case, 91(6 and {n + 1) (p are indefinitely near to equality,

and each equal to DOP = 6 ; also cos. (p approaches to 1.

Hence we shall have

r' - P 1

k''-l cos.^0'

,-. r~= P + (k"'-P) sec.^a

Cor. 1. We have the following construction :

Make OR horizontal, RF = OE, FG horizontal. Let OP
meet FG in ^S*; draw .ST vertical, and take OQ = ET ; the

locus of Q will be the extrados.

For OF'=-RF~-RO'=k'-P; therefore FS' = {k-P) tan.-^

and ET' = EO' + OT- = EO' + FS' = k^ + (/r - P) tan.^ 6

= p+ (f{^+ P) sec- 9 = r\

CoR. 2. ET is always greater than FT or OS ; hence P
is always above FG., and the extrados has FG for an asymp-

tote.
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87. Proh. To Jind the conditions of the equilibrium

of a voussoir-course terminated by vertical planes and by a

horizontal plane above and below.) as in Jig. 92.

The weights of the voussoirs must be as the differences of

the tangents of the angles: and the weight of each, as PQQ^P^,
will be as the surface PQQ^P^, &c. Now if ODE be vertical,

the surface

PQQ.Px = i^E (PP, + QQ,). And QQ, =pp^.^;

•'• PQQ,P, = iDE.PP,{^i +^).

PD PD PP
Also the difference of the tangents is as — = '

:

^ DO DO DO

DO ^ ' \ OP

And since DE is the same for all the voussoirs,

1 OQ OE OD + DE

DE
.-. oc 2 H :

OD

ov 1OC20D + DE;

and since DE is constant, OD is constant.

Hence it appears that the point O is constant, and all the

joints must converge to the same point. If this be the case

the weights of the voussoirs will be such as to produce equili-

brium.

It is also requisite, as before, that the line of pressure

DCC^CiA should cut the joints within the limits of the

voussoirs.
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87«' When the voussoir-course supports a superincumbent

mass, the same reasoning still applies ; provided we substitute

for the weights of the voussoirs the forces which act upon

them, arising both from their own weights and the super-

incumbent materials.

In this case, for any given system, of pressures on the

different parts of the voussoir-course, the voussoir-course

must have a certain form, in order that there may be equi-

librium ; this form is sometimes called the equilibrated arch.

It may be found, under given conditions, by the application

of the differential calculus; as will be seen in the Analytical

Statics.

8jb. Prop. When the voussoirs are short, the line of

pressure nearly coincides with the intrados.

The lines in which the forces on each voussoir act, pass

through the respective voussoirs; therefore the line of pres-

sure, which meets all these lines, and does not pass without

the voussoirs, must lie upon the voussoir-course; and, since

the voussoirs are short, must nearly coincide with the in-

trados.

This is true even if it be supposed impossible for the

voussoirs to slide past each other. Its truth depends upon

this, that the voussoir-course is supposed to be the only part

of the structure which can resist pressure; the rest of the

structure having no coherence.

On this supposition, the part of the arch incumbent on

any part of the voussoir-course, as BP, fig. 95, is supported

by the pressures which act at the joints at B and P. Hence
if BC, PC be the directions in which these pressures act,

these directions must meet in C, a point of ZG, the line of

action of the pressure of the whole superincumbent mass DQRP.

If the pressure of each part of the superincumbent mass

be supposed to be vertical, the line ZG in which the pressure

of the whole mass acts will be the line passing through the

center of gravity of the mass BERP. If the structure be
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formed of square stones or bricks, we may make this sup-

position without much error.

87c. Prop. In the equilibrated arch, the pressure on the

crown of the arch may be increased, so as to occasion a

tendency to burst outwards at the haunches.

The highest part of an arch is called the crown, and the

parts of the arcli on each side the crown, are called the

haunches.

Let BP, fig. 95, be the curve which represents the vous-

soir-course of an equilibrated arch : then the tangents to the

curve, BC, PC meet in C, a point of ZG, the line of action of

the pressure of the whole mass superincumbent on BP.

This pressure is the resultant of the pressure of all the

parts of the superincumbent mass BERP; and if the pressure

at the crown of the arch B be increased, this resultant will be

brought nearer to B, and will, for example, be in the line

Z'C instead of ZC.

But in this case, if we draw C'P' perpendicular to the

joint at P, it is requisite that the force at the joint at P
should act in the line P'C' in order to support the super-

incumbent mass : that is, the line of pressure must now pass

through P'.

Hence if P' fall beyond the surface of the voussoir-

course, the joints at P will tend to open, the end P going-

outwards.

CoR. In the same manner if the pressure at the haunches

be increased or that at the crown diminished, the line of

pressure may be thrown beyond the voussoir-course and with-

out it ; and the joint P may tend to burst, the end P going

inwards,

87 d. Prop. If the superincumbent mass have any cohe-

sion, the arch may stand, though the /i7ie of pressure falls

unthout the voussoirs.

Suppose in fig. 95, the line of pressure to meet the joint

QP at P'. The equilibrium requires a pushing force at this
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joint, in the line PC'. Such a force cannot be produced by

the resistance of the voussoir-course at P. But let the re-

sistance which is required in the line P'C be R ; and let also

a cohesive force C act at the point Q in a direction opposite

to R ; such that C x QP = R x: PP. Then there will be

supplied the proper pushing force in the line PC, and the

equilibrium will subsist.

Hence it appears, that when the voussoir stones are very

short, it is necessary, in order to avoid the necessity of

cohesive forces, that the voussoir-course should have the form

of the eqviilibrated arch, although the sliding of the vous- f

soirs on one another be considered to be impossible. The
voussoir-course may be considered as a flexible arch, which,

in order to retain its form, requires an equilibrium of the

pressures acting upon it. This is the case if the superin-

cumbent mass be altogether without coherence. But if the

parts of the superincumbent wall adhere to each other, the

arch may stand, although it do not possess the form of the

equilibrated arch

We have hitherto supposed the parts to be without fric-

tion. If friction be considered, it is no longer necessary that

the joints be perpendicular to the line of pressure, as will

appear in the next chapter. Friction may also operate as a

cohesive force, and thus tend to sustain the structure, accord-

ing \o last Article.

87 e. Prop. Within certain limits, t/ie equilibriiim of

an arch is stable.

If the voussoirs be of evanescent length, and the mass per-

fectly incoherent, the equilibrium is unstable, and the slightest

addition or subtraction of weight in any part would destroy

the arch, by throwing the line of pressure to a place where

there was no structure to supply pressure. But (l) the

voussoirs are of some length, so that small alterations of the

pressures may take place, and may somewhat alter the line

of pressure, without altering it so much as to make it fall

without the voussoirs.
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(2). Even if the line of pressure do fall without the

voussoirs, the cohesion of the superincumbent mass may be

such as to produce, along with the thrust of the voussoirs,

a pushing force in the line of pressure, and thus may sustain

the mass.

It thus appears that the equilibrium of an arch is main-

tained by the thrust at the joints of the voussoir-course and

by the cohesive forces in other parts of the mass. If these

forces be slightly altered, the line of pressure passes into dif-

ferent positions, and the principal stress of the pressure at each

joint is thrown near to the inner or the outer boundary of

the voussoirs. And when the cohesive forces of the different

points of the mass, or the thrusting force of the different

points of the voussoirs, which are thus requisite for equili-

brium, become larger than the nature of the material can

supply, the material yields, by breaking in the one case and

by crushing in the other, and the structure is destroyed.

87/- The following is the manner in which the late Pro-

fessor Robison has illustrated this view of the subject.

An arch, when exposed to a great overload on the crown (or

indeed on any part) divides of itself into a number of parts,

each of which contains as many voussoirs as can be pierced by

one straight line ; and, it may then be considered as nearly in

the same situation with a polygonal arch of long stones or

beams abutting on each other. Thus the arch ABA', fig*! 93,

may be divided into four portions AC, CB, BC', C'A' by
straight lines AC, &c., drawn so as not J;o fall within the inner

curve nor without the outer one. It may then be considered

as resembling the roof ACBC'A, fig. 89. When pressed from

above at B, it tends to break at the angles A, C, B, C, A' ;

and it is not sufficiently resisted there, because the materials

with which the flanks are filled up have so little cohesion that

the angle feels no load except what is immediately above it.

Hence the arch will fail, the part B falling inwards, and the

part C and C' bursting outwards.

In confirmation of this view of the subject, it was ob-

served that an arch in which the arch-stones were too short.
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fell in this manner : splitting in several points ; viz. in the mid-

dle B ; at another point C, intermediate between the crown

and the springing of the arch; and at the springing A. Also,

about a fortnight before it fell, chips were observed to be

dropping off from the joints of the arch-stones, at two points

E and F, between A and B, and between B and C. This

splintering may be conceived to have arisen from the lines

of pressure BC, CA passing near the lower ends of the vous-

soirs at C and F, so as to throw almost all the pressure upon

the inner edges. Upon making the experiment by means of

models or arches in chalk, Professor Robison found that in

all cases the overloaded arch always broke at some place C,

considerably beyond another point F where the first splintering

was observed. (Robison's System of Mech. Phil. Edinb. 1822.

Vol. I. p. 639).
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CHAP. VI.

ON FRICTION IN STATICS.

88. When a body tends to slide along a material surface,

or tends to move so as to rub against the surface, there is a

resistance exerted to this tendency. This resistance is called

Friction. It may be measured and reasoned upon in the

same way as other forces, but in the problems of equilibrium

treated in the preceding pages its effect is neglected. We
shall here consider its consequences in some of the cases of

equilibrium.

Different surfaces exert more and less of this resistance

or friction. When we suppose it to vanish, the surface is

said to be perfectly smooth.

Prof. When a body presses a perfectly smooth surface,

the effect of the surface ivill he e.verfed in a direction perpen-

dicular to the surface.

A surface is perfectly smooth, as has been said, when it

exerts no resistance in consequence of the tendency of a body

to move along it. Hence the direction of the resistance which

it does exert, must be similarly related to all the directions in

which a body can move along the surface ; that is, it must be

equally inclined to all these directions ; or it must be perpen-

dicular to the surface.

89. When a surface is not perfectly smooth, it exerts,

besides the resistance perpendicular to the surface, another

resistance along the surface, or in the direction of a tangent,

and directly opposed to the direction in which the body tends*

to move along the surface. This resistance is the friction
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And when this resistance is employed in producing equili-

brium, it is to be considered as a pressure like any other statical

force, and its effect with regard to the equilibrium is to be

estimated in the same manner in which the effect of other forces

has been estimated in the chapters on equilibrium. Hence

The friction of a body which is moveable along any sur-

face, is measured by the force which would just put the body

in motion, the force being supposed to act in the direction in

which the body must move, if it does move.

Let a weight W, fig. 174', rest on a horizontal table AB^
and let it be drawn horizontally by a force P. If the table be

not perfectly smooth, P may be so small that its pressure will

not overcome the friction, and W will remain at rest notwith-

standing P's action. If P be gradually increased, W will at

last begin to move, the friction being overcome. Hence there

is a force P, such that any smaller force will not put W in

motion, and any larger force will do so. This value of the

force P measures the friction of W upon the table.

90. The friction in this case depends upon the materials

of which the table AB and the body W consist ; upon the de-

gree of roughness of each ; and upon the weight of W. It is

not much affected by the form, of TF, or by the magnitude or

form of the surface MN, which is in contact with the table.

These laws of friction are proved by experiment.

91. Prop. The friction is not altered by altering the

surface of contact, so long as the pressure continues the

same.

Let LMN, fig. 17^, be a rectangular parallelopiped, and

let it be placed on its broader side MN on the horizontal table

AB, and let the force P be ascertained, which acting horizon-

tally will put it in motion. Again, let it be placed on its nar-

rower side LAI, and put in motion as before. It will be found

that the force Q requisite for this purpose is the same as P
which was requisite before. And in this case it is manifest

that the pressure is the same, viz. the weight of the body,

while the surface in contact is different.
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92. In what follows we shall suppose the friction to be

proportional to the pressure. This is not exactly true ; for the

friction corresponding to large pressures is less than it would

be accordinsT to this law.

Hence if R be the pressure of the body against the surface,'

fR may represent the friction, / being a friction varying

according to the nature of the substances, Sec.

Friction operates in various ways, some of which are the

following.

1. FrictioH hetween finite Surfaces in contact.

93. Let a weight IF, fig. iT^or 17.5, of which the side

MN is plane, be placed in contact with a plane AB. If R be

its pressure on the plane, and fR the friction, the surfaces AB
and LM being supposed to be made smooth by the usual pro-

cesses of art, we shall have the value of / as follows.

When the surfaces are wood, the grains being in the same

directions, /=-§-•

When the grains are placed across each other, /= i.

When one surface is wood and the other metal, f= i.

When both surfaces are metal, f = \.

Friction is diminished by greasing or oiling tlie surfaces

in contact. Fresh tallow is said to diminish the resistance by
one half.

94. Prop. To determine by experimejit the magnitude

of the friction.

Let AB, fig. 175, be an inclined plane, the angle of which

can be altered at will. Let the weight W be placed upon it,

and lef the plane be gradually raised from a horizontal position

CBi to a greater and greater angle, till W begins to slide down
the plane. Let the inclination of the plane be measured at

which this just does not take place, and let this be the position

represented in the figure.
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In this position the force of the friction, which necessarily

acts along the inclined plane, just keeps in equilibrium the

body upon the inclined plane. Hence if we draw CD perpen-

dicular to AB, the body W is kept at rest by three forces, its

weight, the resistance of the plane, and the friction, which are

perpendicular respectively to CB, BD, and DC Those forces

are therefore as these lines: and, (as in Art. 38,)

friction : pressure :: CD : DB.

CoR. 1. If we draw CA vertical we have also

friction : pressure :: AC : CB.

CoR. 2. Using the same notation as before,

AC
fR : R :. AC : CB and / = —- .

BC

Cor. 3. If /3 be the angle ABC at which the body begins

to slide, / = tan. /3.

CoR. 4. If the friction be proportional to the pressure,

the angle /3, at which sliding takes place, is the same for all

weights.

CoR. 5, Hence we may ascertain experimentally whether

the friction is proportional to the pressure, by observing

whether this angle remains the same when we alter the weight.

Since the friction is proportionally somewhat less for larger

pressures than for small ones, the angle at which sliding takes

place will be less where the weight is large.

When a ship is launched, it slides upon planes of which

the inclination is very small, and along which a small weight

would not slide,

95. One property by which friction differs from other

forces, is, that it is not exerted except there be a tendency to

motion which it has to resist : and it increases as the tendency

increases. Thus when the plane AB in fig. 175 is horizontal,

the friction is nothing : it increases as the inclination increases,

being always of such a magnitude as is requisite to prevent the
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body from sliding, till it reaches its limit. And if the body
had a tendency to slide in the opposite direction, the friction

would also be e.xerted in the opposite direction.

This property of friction makes it modify in a remarkable

manner all the conditions of equilibrium of bodies in actual

practice. For it results from this effect of friction, that the

equilibrium will not be destroyed although the conditions in-

vestigated in the preceding pages are violated. The force of

friction, to a certain extent, will enter the system as far as

it is wanted, and supply the deficiency which occurs : so that

the balance will not be lost till the conditions of equili-

brium have been transgressed to an amount deviatinsr con-

siderably from the calculated state.

We will take one remarkable example of this.

96. In deducing the conditions of equilibrium of an arch,

we have (Art. 81) found the weights which its parts must have

in order that they may have no tendency to slide past each

other. But in point of fact the destruction of the equilibrium

in this manner is what can never or scarcely ever happen.

Prop. When two plane surfaces are in contact^ with

friction, to find ivhat the direction of the surface of contact

must he, in order to produce the same effect without friction.

Let two bodies of which the centers are C and C,, fig. 176,

be in contact at the surface PQ. Let M be the point at which

the mutual action of the surfaces may be supposed to take place.

And let Mn be taken in MQ. to represent the friction, and n^
perpendicular to Mn to represent the pressure; so that Mn :

nc :: f : 1. Then if the whole friction in the direction PQ
be called into action, the force which acts at M will be com-
pounded of Mn and 7ic^ and will be represented in magnitude

and direction by MC And if Mc be drawn similarly the

other way from M, Mc will be the direction of the force which

acts at M, when the whole friction in the direction QP be called

into action.

The degree of friction which will really be exerted will

depend upon what is wanted to preserve the equilibrium ; and

R
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according to this event the resulting force may hcive any direc-

tion between Mc and Mc.

If we draw pq perpendicular to Mc, and suppose that pq
is the plane of contact, the effect of the contact without friction

would be a force in the direction Mc. And similarly if p'q' be

perpendicular to Mc, the effect of a surface p' q would be in

Mc.

Hence we may suppose the surface of contact to have any

position between pq and p'q If any of these positions with-

out frlctio7i will preserve the equilibrium, the surface PQ will

preserve it with friction.

97- Prop. To eorplain the effect of friction in supporting

an arch.

Without friction the conditions of equilibrium of an arch

are, that the pressures on the voussoirs shall be proportional

to the differences of the tano-ents of the angles which the

joints make with the vertical, and that the line of pressure

shall fall within the voussoirs. The action of friction does

not affect the latter condition except so far as it gives cohesion

to the mass (see Art. Sid). But with regard to the former

condition, the effect is, that a joint, as PQ, fig. 176, may be

supposed to occupy any position between the limiting posi-

tions pq and p q\ without the equilibrium being destroyed;

the tangent of the limiting angle PMp, or PMji being /,

the coefficient of friction.

If there were no friction, the line of pressure of the arch

would be a jjolygon having an angle on the line of the force

which acts on each voussoir, and having its sides perpendicular

to the joints. But by the effect of friction, the line of pres-

sure will be a polygon in which the sides may make with the

joints any angles within the limiting angle on each side of a

perpendicular.

If the positions of the joints be given, we may begin at

any point and draw the line of pressure of the arch, making,

at every joint, the limiting angle on one side of the perpendi-
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cular. We may also, from the same point, draw the line of

pressure of the arch, making, at every joint, the limiting angle

on the other side of the perpendicular. We have thus two

limiting lines of pressure ; and if either of these, or any line

between them, fall in the voussoirs, we shall have equilibrium.

If the form of the voussoir-course be given (the course

being narrow), the joints, which if there were no friction must

be perpendicular to the curve of the course, may make any

angle, not greater than the limiting angle, with this direction.

If the force on each voussoir be vertical and be given,

then, one joint being known, all the others would be known
if friction did not act. For in fig. 90, the lines XT, TT^,
T^ T.2, &c. would be given ; and if one of the lines TO were

known, the position of the point O would be known, and hence

the positions of all the lines TO, T^O, T>0, &c. to which the

joints are parallel, and the joints being given, the line of

pressure might be found ; and this line must fall within the

voussoirs. But if friction act, each joint may deviate from

the position thus found by any angle less than the limiting

angle : and thus the limits of the conditions within which

equilibrium is possible are extended according to the princi-

ples just explained.

2. Fi'iction of Cylindrical Surfaces in Contact.

98. Let two circles en, dn, fig. 177, be in contact inter-

nally in the point n. If these two circles be the ends of two

cylinders, the cylindrical surfaces will touch each other in a

straight line. And if one of the cylinders turn so as to slide

upon the other, there will be a friction between them ; which

will be proportional to the pressure as in the preceding case,

that is, friction =fR. But the fraction (/) of the pressure

which expresses the friction will be different from what it was

in that case.

Thus if both surfaces be of wood, /' = y^.

If iron turn in contact with brass, /'= \.
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This is the kind of friction which takes place at the axle

of a lever, pully, 8tc. And we shall consider its effect in such

a case.

99- Prop. To investigate the limits within which

friction will preserve the equilibrium of the lever.

Let a lever AB., fig. 177) consist of a bar pierced with a

cylindrical hole yn, by means of which it turns upon a solid

cylinder xn, which is something smaller than the hole. The
friction takes place at the point w, and is there in the direction

of a common tangent to the two surfaces of the circles xn, yn.

Let the lever be acted upon by forces P, Q, acting at

A^ B, and let it tend to turn in the direction AP. Then the

friction will act in the direction nF. All the forces P, Q-

which act upon the lever are equivalent to a single force acting

in some direction as HG ; and this force combined with the

friction nF keeps the lever at rest at the point n on the surface

of the cylinder ,xn. Hence the force arising from the compo-

sition of these forces must pass through the point w, and there-

fore HG must pass through n.

Also the resultant of the forces nF and nG must be per-

pendicular to the surface of the cylinder xn, and must therefore

pass through the center c. Hence if GK be perpendicular to

nc, the forces nF and nG must be as GK, nG.

But on the same scale the pressure on the cylinder xn
must be as nK. Hence we have in the extreme case

GK = f. nK, and wG = \/\ +f . nK.

If aS* be the resultant of all the forces P, Q, and R the

pressure on the cylinder, we have

> ^S*

S = ^/l + f~ . R, and R =
Vi+r

Let ch be perpendicular upon HQ, and let ch = s. Also

let r be the radius en. Then we have by similar triangles
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ch : en :: GK : Gn,

or s : r :: fR \/l +/' K;

fr

This is the condition for the limiting case of equilibrium.

Hence if the resultant of the forces P, Q pass through c,

there will be an equilibrium without the action of friction. But

if this resultant pass at a distance s from c, the friction will

A
preserve the equilibrium so long as « is not greater than / .

^ TT ^ ^^ * /Lor. 1. Hence cos. One = — = - = / .

en r V 1 +/

CoR. 2. Also tan. Gnc =/.



DYNAMICS.

CHAP. I.

DEFINITIONS AND PRINCIPLES.

100. Dynamics (see Art. 9) is the part of Mechanics

which relates to the action of force producing motion. In any

of the machines and mechanical combinations which we have

described, if the forces be not in that relation which is requisite

for the equilibrium, the excess of force will produce motion.

Thus, in fig. 29, if the weights P, Q and W had not the pro-

portion which their position makes requisite to the equilibrium,

they would move in a manner depending upon their magnitudes:

and the laws which we are about to lay down, are those by
which their motions are to be calculated.

101. The pressure which produces motion is to be

conceived to be of the same kind as pressure in Statics. Let

two equal bodies A, B, fig. 136, hang over a pully E. They
will balance each other, exerting equal and opposite pressures

on the string AEB, and no motion will be produced. Let

now a weight P be added to A, and the pressure of P will

cause A to descend and B to ascend. In this case the string

exerts its tension upon A and B equally and in opposite

directions. The mass A + P is pressed downwards by its

weight A + P, and upwards by the tension of the string, and

descends by the difference of these forces. And in the same

manner B is drawn upwards by the tension, and downwards
by its weight, and ascends by the difference of these forces.

In this case the bodies move in the directions of the forces ;

but if we suppose one of the weights to be compelled to move
obliquely to the force, as would be the case with P in fig. 98,

if P and Q were to move, the pressures will act obliquely, and

must be resolved by the rules given for resolution of force in
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Art. 27, in order to obtain the pressure which produces the

motion.

In order to obtain the effect of pressures in producing

motion under given circumstances, we shall establish the three

laws of "motion, defining also the measures of velocity, accele-

rating force, and moving force.

102. All motion is performed in time: and the time em-

ployed is measured by the number of units of time which it

contains. The passage of time is marked by the events which

take place in it, and those intervals in which there is no

discoverable reason why they should be unequal, ai'e supposed

equal. The intervals thus taken as a standard are in all

countries the natural day and its divisions. The unit of time

may be any portion we choose : in Mechanics a second is

generally taken for the unit.

103. Velocity is the measure of the degree in which a

body moves quickly or slowly : that is, one body is said to

have a greater velocity than another when it moves over a

greater space in the same time, or an equal space in a less time.

When a body moves over equal spaces in ec^ual successive

times the motion is said to be uniform. vVnd the velocity is

measured by the space described in a unit of time, as for in-

stance, in one second.

In variable motions it will be seen hereafter that the

velocity is measured by the space which would he described

in a unit of time, if the velocity were uniform.

104. Prop. In uniform motions the space described in

anrj time is equal to the product of the numbers which eaipress

velocity and the time.

Let V be the velocity expressed in feet ; then by the last

article, v is the number of feet described in one second. And
since the motion is uniform, 2w is the space described in two

seconds; 3u in three seconds; and generally, /r in ^seconds.

If s be the space, s = tv.

If we suppose the space described in equal fractions of a

second to be equal, this equation will also be true when / is a

fractional or mixed number.
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Lou. bince s = tv, v = -
t

Hence in uniform motions the quotient of the space by

the time is constant, and measures the velocity.

Thus if a ship, sailing uniformly, move 10 miles in 1 hour,

the velocity, measured by the space described in a second, is

10 X 5280 „ ^= 14-i- feet.
60 X 60

3

105. When the velocity is not uniform, it can no longer

be measured by the quotient of the space divided by the time

;

for these quotients will be different for different times. Thus
if we suppose P, A and B, fig. 136, to be such that A shall

fall from rest l6 feet in the first 4 seconds, A will move,

not with a uniform, but with an increasing velocity. And if

we then measure the space described by this body in the

4 seconds succeeding, we shall find it 48 feet ; in three seconds

from the end of the first four, the space would be 33 feet ; in

two seconds, 20; in one second, 9; in the half-second imme-

diately following the fourth, it will be 4i feet, and in the

quarter-second after the fourth, it will be 2-jig-. Hence we

shall have the following values of the quotient of the space

by the time, measuring from the beginning of the fifth

second.

20 9 4i 2-fV

Values of ^, 4"
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we approach nearer and nearer also to the velocity at that

point of time.

106. Hence the velocity at any point is measured

by the limit of the quotient of the space by the time be-

ginning from, that point

;

the Limit being taken by supposing the space and the time

indefinitely diminished.

Thus in the above instance, if we were to suppose more

minute values of t to be taken, as i,
jg, it would appear

that the value of - would always be greater than 8. But
t

•' ^

the excess above 8 might be diminished, by diminishing s and#

sufficiently, so as to be made smaller than any assigned

quantity. Hence 8 is the Limit of the fraction -
, and 8 feet

measures the velocity of the body at the beginning of the

5th second.

Instead of taking the time immediately after the point

considered, we may take the time immediately before it,

and we shall have analogous results.

107. Prop. In any motion, the velocity is measured by

the space which icoiild have been described in a unit of

time, if the velocity had cotitinued constant.

Let the velocity be increasing, and let s be the space from

the given point, which would be described in the time t if the

velocity were to continue constant from that time ; let s' + s''

be the space which is actually described in t. Then, by last

Article, the limit of is the measure of the velocity.

In this expression, s" is the part which arises from the aug-

mentation of the velocity after the body leaves the given

point, and its effect diminishes as t diminishes. Hence in

taking the limit, the effect of s" cannot appear. Therefore

s' + s" s s'
the limit of is the same as the limit of - ; and -

t t t

measures the velocity.
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When ^ = 1, s' is the space described in a unit of time,

supposing tlie velocity to become constant. Hence the space

so described measures the velocity ;

And similarly for a decreasing velocity.

108. Prop. If s he the space, v the velocity, t the

time,

ds

dt

For by the definition of the Differential Coefficient, the diffe-

rential coefficient of « with respect to t is the limit of the

quotient of the increments of s and t. Hence, by Art. 106,

ds
the differential coefficient, or — , is equal to tlie velocity.

Of the Laws of Motion.

109. It has already been stated that we conceive the

world of matter and motion to be governed by constant and

determinate laws. We may express this otherwise, by saying

that, in the cases which we consider, no change can take

place without a cause, and that causes are measured by

their effects.

To these two principles, which are the basis of all phy-

sical philosophy, we must add another, belonging to the parti-

cular kind of cause with which we are here concerned : namely

force, the cause of motion and of tendency to motion. This

force is conceived as pfessure, as we have already seen

(Art. 10.) And it is a principle universally true, in all parts

of the science of mechanics, that pressure at any point implies

at the same point an equal and opposite pressure, which resists

the first ; or, as it is usually stated, action is accompanied

by an equal and opposite reaction.

These principles are necessarily the basis of the doctrine

of force producing motion ; but they require to be defined

and interpreted by observation and experiment.

110. The velocity and direction of a body's motion are

regulated by the forces which act upon it ; and the simplest
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principles to which the relation of these quantities can be

reduced, are called the Laws of Motion. We must first

establish the law of the motion of a body when it is not acted

upon by any force, but left to itself.

FiKST Law of Motion. A body in motion, not acted

on by any force, ivill move on in a straight line, with a

uniform velocity.

This law consists of two parts : first, that the body will

go on in a straight line; and second, that it will move with

a uniform velocity.

First, it will move in a straight line : for there is no

force acting upon it : that is, tiiere is no cause in existence

which tends to change its direction ; therefore the direction

will remain unchanged, and the path will be a straight line.

Secondly, it will move with a uniform velocity : for since

no force acts upon the body, there is no cause which can

change its velocity except there be some cause depending

upon tii}7e which produces that effect. The question therefore

occurs, is time alone a cause of change of velocity ?

At first men believed that time alone did tend to di-

minish velocity. For all the bodies which we see in motion

we observe to move more and more slowly, and finally to stop.

But on farther consideration, we find that there is always

some other cause of this diminution of velocity, besides the

lapse of time alone. There is some impediment, resistance,

friction, which operates to destroy the velocity of the body ;

and time causes the change, because time is requisite for those

other causes to produce their effect.

If a ball be thrown along a level surface, as a bowling-

green ; or if a wheel, supported by its axis, have a rotatory

motion given it ; or if a pendulum, hanging freely, be made
to oscillate*; these motions will, after a short time, cease.

" It is easy to see that in the first of these three cases the action of gravity does

not, except by producing friction against the plane, tend to retard the velocity : and
that in the other two cases, though the irotion is not rectilinear, it would go on for
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But this extinction of the motion arises from external causes

which act in these cases. Thus the ball is resisted by the

friction of the surface along which it runs ; the wheel by the

friction of the axis ; and the bodies in all the cases, by

the resistance of the air.

Hence the cause of the retardation in these cases is not

the time, but certain external forces.

Also we find that in proportion as we remove the im-

pediments to the continuance of the motion, we diminish the

retardation ; and this is true without limit.

Thus the ball will soon stop if thrown along rough

ground ; its motion will continue longer if it be projected

along a smooth pavement ; and if it be thrown along a sheet

of smooth ice it will lose its velocity very slowly, and move

a long way before it stops, though it is still retarded by

the resistance of the air, and by the ice, which is never,

mathematically speaking, devoid of friction.

In the same manner, if in a wheel we diminish friction by

the employment of friction-wheels, we cause its motion to

continue longer. And if we remove also the resistance of the

air by making the experiment in a vacuum, the motion will

continue apparently unabated for a great length of time.*

In the same manner a pendulum, which, in the air, ceases

to oscillate after a short time, will, in a vacuum, continue its

ever if rectilinear motion would do so. In the case of the wheel, the actions of

gravity in the different parts counteract each other, so that there is no force to re-

tard the velocity ; and in the case of the pendulum, the quantities of velocity alter-

nately generated and destroyed, would, if it were not for the impediments mentioned

in the text, be perpetually the same.
* Experiments shewing how rotatory motion tends to become uniform by removing

the resistance of the air, may be seen in accounts of the effects of the air-pump.

An account of the effects of friction-wheels may be found in the Phil, Trans.

Vol. III.

The undisputed authority which is now allowed to the laws of motion mentioned in

this Chapter, is the result of imiumerable experiments never recorded and discus-

sions now forgotten, to which they were subjected during the seventeenth century.

Great numbers of trials were made, both by individuals and before learned bodies,

to prove almost every one of the propositions which are now considered as nearly

self-evident. An experiment for proving this first law was made before the Royal

Society by Hooke in 1669; of which there is an account in Birch's History of the

Royal Society, Vol. ii, p. 312.
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oscillations for a long time ; and the time will be longer as

the vacuum is more perfect.

From these and similar instances we infer that if we

could entirely remove the external forces which retard the

motions of bodies, we should get rid of the whole of the re-

tardation ; therefore time alone is not a cause of retardation.

Hence when a body moves not acted upon by any ex-

ternal force its velocity will be uniform.

111. Hence, under such circumstances, a body would

continue its motion for ever.

112. This first law of motion being proved, it follows,

that if a body, considered as a point, move either in a curve

line, or in a straight line with a velocity not constant, it is

acted upon by some external force : and the deviation from

rectilinear and uniform motion depends upon the direction

and magnitude of the force which acts upon the body.

The Direction of a force is the straight line in which

the force would cause a body to move if it acted on the

body at rest. When a force acts on a body already in

motion, the motion which the force would communicate to

the body at rest will be combined with the other motion

which the body h^is, according to laws which will be men-

tioned hereafter. If a force act upon a body in motion, so

that the direction of the force coincides with the direction of

the body''s motion, the body manifestly will not be made to

deviate on one side or the other of the direction, but will

go on in this straight line with an altered velocity. If a

force act so as to make an ano-le with the direction of the

motion of the body, it will cause the body to describe a

curvilinear path, the concavity of the path being on the side

towards which the force tends.

Since causes are measured by their effects, the Magnitude
of forces is measured by their effects, and the effect of forces

which we consider in Dynamics is Velocity. Hence forces

are greater or less as they produce a greater or less velocity

in the same time.
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113. Accelerating Force is force measured by the

velocity which, in a given time, it would produce in a body.

If an accelerating force, acting upon a body in the direc-

tion of its motion, add equal velocities in each equal time, the

force is called uniform or constant.

When a body is acted upon by a continuous force, as

pressure or attraction, the velocity communicated to the body

goes on increasing as the force acts for a longer time. Thus^i

if a stone fall from rest during one second, and another stone

fall during two seconds, the velocity of the latter stone, upon

which gravity has acted for a longer time, will be the

greater of the two. Similarly, if we produce velocity by

the continued action of the hand, as when we turn by hand

a machine carrying a fly-wheel ; or by means of a spring,

as when a bow impels an arrow ; the velocity goes on in-

creasing so long as the operation of the force continues.

Now we may, at any point of time, suppose the action of

the force to cease ; and, by the first law of motion, the

body would then go on with the velocity already acquired:

and if, after this, we suppose the force again to begin

to act in the direction of the motion, an additional velocity

will be communicated. Thus force produces a velocity in a

body at rest, and adds velocity to the motion of a body already

moving ; and if the force be supposed to act for any time,

it is adding velocity during the whole of that time; and the

velocity produced at last is the aggregate of all the succes-

sive additions.

If, vnider these circumstances, the velocity added be

equal in equal times, the force is said to be uniform or

constant.

113«. Gravity is a, Uniform Force.

This is proved by experiment and calculation. Tlie laws

of the space and time which follow from tlie above definition

of uniform force being established, it is found that these

laws ])rcvail in the case of bodies falling by gravity. The
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laws will be deduced in the Chapter on " Uniformly Acce-

lerated IVIotion." The agreement was shewn by Galileo by

means of inclined planes, and by Atwood by means of his

machine.

Historically speaking, however, the course of proof was

not exactly what is here represented. Galileo assumed that

gravity is a uniform force, and proved by experiment that

for this uniform force the velocity increases in the proportion

of the time.

1136. Uniform Accelerating Force is measured by the

velocity added {or subtracted) ifi a given time, as for instance^

one second.

Thus gravity, which every second generates, in a body

moving vertically downwards, a velocity of 324- feet, may be

represented by this velocity (that is by 32-i- feet) ; and then

any other uniform force, as for instance, one which would

generate a velocity of l foot in a second, will be measured

by this its velocity, and its proportion to gravity will be that

of 1 to 32-1- or 10 to 322.

114. Prop. WitJi uniform accelerating forces^ the ve-

locity generated in any time is equal to ' the product of

the force and the time.

Let / be the accelerating force ; then / is the velocity

generated in one second. And since the force is uniform, f
will also be the velocity added in the next second ; and 2/ will

be the velocity at the end of 2 seconds. In the same man-
ner 3f will be the velocity at the end of 3 seconds ; and,

generally, tf will be the velocity at the end of t seconds.

If V be the velocity, v = tf.

If we suppose the velocity generated in equal fractions

of a second to be equal, this equation will also be true

when # is a fractional or mixed number.

CoR. Since v = tf, f= -.
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Hence, in uniform forces, the quotient of the velocity

generated, by the time in which it is generated, is constant,

and measures the force.

Thus if, as in Art. 106, a velocity of 8 feet be generated

in 4 seconds, the accelerating force is
-f^

or 2.

The velocity generated by gravity in one second is 32-i-

feet. Hence the accelerating force of gravity is SS-^-*.

115. The ACCELERATING FORCE at aiiy 'point of a

body's motion is measured by the limit of the quotient of the

velocity generated, {beginning from that point,^ divided by

the time in which it is generated.

When the accelerating force is not uniform, it can no

longer be measured by the quotient which results from

dividing any velocity by the time in which it is generated.

This quotient will vary with the time during which the force

is supposed to act, in the same manner as the quotient of

the space by the time in Art. 106 was shewn to be variable;

and the quotient of the velocity by the time will have a

limit, in the same manner as the quotient of the space by

the time in that case was shewn to have a limit. And this

limit will measure the accelerating force at the given point

in the same manner as the limit of the quotient in Art. 106

measured the velocity. For, by taking the value of the

quotient of the velocity generated by the time in which it

is generated ; and by taking the whole of this time smaller

and smaller beginning at the given point ; we approximate

to the measure of the force at the given point. And hence

by taking the ultimate limit of this quotient, we obtain the

exact measure of the force at the point which is considered.

• According to some writers a force is proportional to the velocity generated in

1", but not equal to it. Forces are measured on such a scale that gravity is = 1.

If we put 32i feet = £f, and if F be any other force which generates a velocity /
in 1", measured on the scale now mentioned,

F : 1 (gravity) :: / : g; .-. F = ^.

Also ^^f=Fg.
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If the velocity be diminished by the force, the force is

a retarding force, and the same is true.

116. Prop. In any motion, the force is measured by

the velocity which would have been generated in a unit of

time, if the force had continued constant.

If the force be an increasing one, the augmentation of

velocity in any time, beginning from a given point, will be

due, partly to the force at that point, and partly to the

increase of force after that point. And the latter portion

of the augmented velocity must disappear when we consider

only what belongs to the given point itself. Hence the force

is to be measured as if it had continued constant from the

given point ; that is, it is measured by the velocity generated

in a unit of time on that supposition. See Art. 107-

117. Prop. If { be force, v the velocity, t the time,

dv

•'^'di'

For —— is the limit of the quotient of the increments of
dt

V and t, and therefore, by Art. 115, it is equal to the force.

ds
CoR. 1. If 6" be the space, — = v ; hence multiplying

V—- =/-— . And (Lac. D. C. Art. 9)— = — • — .

dt -^ dt
^ ^ dt ds dt

Hence substituting and omitting-— on both sides r — =/.
dt ds

\dt!„ Txr , . n dv \dtj d~s
CoR. 2. We have also f=— = = —

,

•' dt dt dt^'

t being the independent variable.

T
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118. We have already seen that when a body in motion

is acted on by a force which is not in the direction of its

motion, it will no longer describe a straight line. We proceed

to consider the law according to which the action of the force

takes place in this case : for that purpose we shall first esta-

blish the following proposition.

119. When two velocities are combined, if separately

they be represented in magnitude and direction by the two

sides of a parallelogram, when compounded they will be ex-

pressed by the diagonal.

Let PQ, fig.ISt^be a plane, as the deck of a ship, which

moves parallel to itself, with a uniform motion, from the po-

sition PQ to the position j^g- Let a body have, on this plane,

a uniform motion, which would carry the body through BD,
while the point B of the plane moves through Bb. If the

parallelogram BDbd be completed, and the diagonal Bd
drawn, the body will describe the diagonal Bd uniformly by
the composition of the two motions.

When B comes to 6, BD comes to the position bd, and

therefore the body will have moved from B to d. Also, at any

intermediate time, let BD have come into the position /3^, pa-

rallel to BD ; and take (^y : (3S or bd :: time in Bfi : time

in Bb; that is :: 5/3 : 56, because the motions are uniform.

But since /3|y: bd :: Bfi : Bb, By^Ss a straight line.

Also B0y: Bd A Bfi : B^h:: time in 5/3 : time in Bb;
hence the motion in Bd is uniform.

We have here supposed that the moving point has and re-

tains the two velocities ; it retains the velocity represented by

Bb, because it is carried along with the plane, and it has the

velocity represented by BD, with which it moves on the plane,

and relatively to it.

120. Second Law of Motion. When any force acts

upon a body in motion, the change of motion ivhich it pro-

duces is in the direction and proportional to the magnitude

of the force which ants.
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This may be also thus expressed. When any force is

exerted upon a body already in motion, the motion which the

force would produce in a body at rest, is compounded with the

previous motion, in such a way, that both produce their full

effects parallel to their own directions.

Thus, suppose a body, considered as a point, to be moving

in the direction JB, fig. 135, with such a velocity that it may

describe AB uniformly in l". Then by the first law of motion

it would in the next l" describe 56 in the same straight line

equal to AB. But when it conies to B, let a force in the

direction BM begin to act and act uniformly upon it for l"

;

the force being of such a magnitude that it would in l" cause

the body to describe BM from rest. Then at the end of l"

from the time when the body is at 5, it will be found at C, so

that MC and bC are equal and parallel to Bb and BM.

If when the body comes to C the force were to cease to

act, the body would go on moving in the direction and

with the velocity which it has at C. Let Cc be the space

it would thus describe in l". But now suppose a force to

begin to act at C, which by its uniform action for l" would

carry the body through CN. Then its place at the end of

l" from C, will be Z), DiV and Dc being parallel and equal

to cC and NC
Similarly, if other forces act uniformly for successive se-

conds, we may find their effects. If the forces be not such

that they can be considered as constant in magnitude and direc-

tion for l", we must apply this law of motion to them for any

small time during which they may be considered as constant.

If they vary continuously, we must consider the Limits of Bb
and BMi &c. as will be seen hereafter.

121. If a body were moving in the direction and with

the velocity Bb, and if a velocity BD were impressed upon

it at B, and it were then left to itself; it would, by the

second law of motion, move in the direction and with the

velocity Bd.

And in this case the body's motion, relatively to the

moving space PQ, would be represented by BD, by Art. lip.
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Thus it appears, as a consequence of the second law of

motion, that if a body, which is moving along with a moving

space, have any velocity impressed upon it, the motion of the

body, relative to the moving space, will be the same as if the

body and the space had been originally at rest.

Hence, if this second law of motion be true, all the me-

chanical actions, which take place in a space moving uniformly,

will be the same, relatively to the parts of this space, as if the

space were at rest.

Hence this law is confirmed by our finding that the re-

lative motions and actions of bodies, in a space which moves

uniformly, are exactly the same as in the space at rest.

Thus in a ship under way, a ball will go equal distances

when thrown with equal force, whether towards the bow or the

stern. The effects of the mutual pressures and impacts of

bodies in such a case are the same in every direction. Also the

motions of bodies on land are the same, under the same con-

ditions, whether they take place east, west, north, south, or in

any other direction, although in some of these cases the Earth's

motion conspires with, in others is transverse or opposite to,

the motion of the bodies. The oscillations of a pendulum are

performed in the same time whether they take place east and

west, or north and south. It may be shewn that a very small

deviation from exactitude in the asserted law would produce

a perceptible difference in the last experiment.

Let PQ, fig. 134, be a boat moving uniformly in the di-

rection Pp : let ^be a ball at rest upon the deck, carried along

by the motion of the boat, (the deck being supposed to be

horizontal.) Let BD be a line drawn upon the deck, and

by the motion of the boat in any time, let BD come into the

position bd. At the instant when the boat is in the situation

PQ and the ball at B, let the ball be struck, so as to receive

an impulse in the direction BD. Then it is found that the

ball moves uniformly in the line BD, so that when B comes

to b, the ball is at some point in bd, moving, relatively to the

boat, in the line BD.



DEFINITIONS AND PRINCIPLES, 149

Now since the ball, if no impulse had been commmuni-

cated to it, would have moved from B to 6, and since it is

found in d at tffe end of the same time, it appears that the

effect of the impulse has been to compound a motion in hd

with the motion m Bh; which is agreeable to the second law

of motion.

Again, let BK, fig. 135, be the mast of a vessel, and let

this in one second be transferred by the motion of the ship

into the position bk. When it is at BK, suppose a body to

be let fall from B, and let BM be the space through which

a body would fall from rest in l". Then it is found by ex-

periment that at the end of l" the body has fallen down

the mast through a space bC, bC being equal to BM. Now
at B the body had the velocity bB, and was then acted on

by a force which would carry it over BM ; and it appears

that these motions are compounded so that BMCb is a

parallelogram, as by the law which we have enunciated it

should be.

It appears that according to this second law of motion,

all motions are compounded so as not to disturb each other ;

each remaining, relatively, the same as if there were no others.

If this law of motion were not true, it would follow that

bodies placed upon a horizontal plane which is in motion, and

struck in a given direction, would not move, relatively to the

plane, in the direction of the impact, except when the impact

was in the direction of the plane's motion. Hence if we sup-

pose the Earth to revolve on its axis, a body struck in a direc-

tion north and south, would not move in that direction, but

would deviate to the east or west ; which is not found to be the

case. In the same manner the oscillations of a pendulum would

be performed in different times, according as it oscillated in

a north and south plane, or in an east and west plane*: and

similarly in other cases.

Besides the motion of the Earth on its axis, which is com-

bined with all terrestrial motions according to this second law

* According to Laplace, Mec. Cel. Tom. I. liv. i. No. 5, this experiment would
indicate a deviation from the above law of motion if any existed, though it should be
very small.
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of motion, the motion of the Earth round the Sun, which is

much more considerable, is also combined with them ; and if

the whole solar system be in motion, the motion of the solar

system is also similarly combined.

122. We now proceed to the principles which regulate

the motions of bodies, taking into account the quantity of

matter.

Def. The Momentum of a body is the product of the

numbers which represent its quantity of matter and its

velocity.

Def. Moving Force is measured by the mometitum,

generated by the direct action of a force in a given time.

The action of a force is direct, when the line of its direc-

tion passes through the body acted on.

123. Third Law of Motion. When pressure commu-
nicates motion directly, the moving force is as the pressure.

The most obvious and universal experience shews us that

when we move a body by pressure ; as for instance by pushing

it, the motion is increased by increasing the pressure. Also

it is clear that for a given pressure, the motion is less when
the mass to be moved is greater. The question now is,

according to what exact law does the velocity communicated

depend upon the pressure and the quantity of matter.?

When one body exerts pressure upon another, it suffers

an equal and opposite pressure, for re-action is equal and

opposite to action. Therefore if a body B press and accele-

rate a body A, A retards B by an equal opposite pressure.

If we suppose a body A to be laid on a smooth horizontal

table, and another body B fastened to ^ by a string, to hang
over the edge of the table*, B will descend, drawing A along

the table. Hence B accelerates A, and A retards 5 by a

pressure equal to the tension of the string.

• It is supposed that the table is perfectly smooth, and the body A so small that
the string may be considered to be parallel to the talilc.
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If the nionientuni which B comnuinicates to A be called

momentum gained, and if the momentum which B has be

less than it would have been if B had not been connected

with it by a certain quantity which we call the momentum
lost, the momentum gained and lost in any time are equal

in all such cases.

Thus if ^ be 3 pounds and B 1 pound, there will be

generated in one second a velocity of 8 feet per second. But

if B had fallen freely, its velocity in one second would have

been 32 feet. Hence the momentum gained by -^4 is 8 x 3, and

that lost by 5 is 32 X 1 — 8 X 1 ; and these are equal.

If A "be still 3 pounds, and B be also 3 pounds, the ve-

locity will be 16 feet ; the momentum gained and lost will be

l6 X 3 and 32 x 3 - l6 x 3, which are equal.

In this case, though the moving weight B is tripled, the

velocity is (mly doubled ; for the body B has to move itself,

as well as A, and part of its weight is employed in doing this.

But since the momentum gained and the momentum lost

in the same time are equal, the moving force which accelerates

A and the moving force which retards B are equal by the

definition above given. Now the pressure which accelerates

A and the pressure which retards B are equal, being action

and re-action. Therefore so long as the pressure which pro-

duces or destroys motion is the same, the moving force is

the same.

124. Also, since two equal pressures acting for the same

time will put two equal bodies in motion with equal velocities,.

we may suppose the two bodies to coalesce, and the pressures

to be compounded into a single pressure ; therefore a double

pressure will produce a double momentum ; and the same

will be seen to be true in the same manner for any other

multiple. Therefore when the pressure increases in any ratio,

the momentum produced in a given time, and therefore the

moving force, increases in the same ratio.

Therefore the moving force in such cases is as the pressure.
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Since in virtue of the equality of the action and re-action

between two bodies, the momentum gained and lost are always

equal, the momentum gained and lost are sometimes called

action and re-action ; and the third law of motion is then

expressed by saying, that in the communication of motion

re-actioti is equal and opposite to action.

125. Experiments of the kind above mentioned, if they

could be made with accuracy, Avould establish the proposition

which we are considering. Instead of supposing the body A
to rest on a horizontal plane, we might suppose A and B to

hang over a pully, (as in fig. 136,) in which case it would be

only the excess of B above A which would produce motion.

A machine invented by Atwood enables us in this case to

reduce the magnitudes of the velocities, while we retain their

law ; so that we can more easily measure their quantities.

The experiments being made, are found uniformly to agree

with this law*. See Atwood on Rectilinear and Rotatory

Motion, Sec. 7 ; also Mr Smeaton's Experiments, Phil. Trans.

Vol. LXVI.

If we should communicate motion to A by means of the

pressure of the hand, or of a spring, as was before supposed, it

would be more difficult to illustrate this law by experiments.

In the case of pressure by the hand it is impossible to ascertain

whether in two cases the effort be exactly the same, and still

more impracticable to determine its ratio when different. In

a spring this ratio might be ascertained by observing the

weights which bend it to given curvatures. But in both cases

the pressure would not be uniform, because it is perpetually

* To compare the velocities observed in such machines as this, with the results of

the third law, we must take into account the rotatory inertia of the machine, which is

calculated upon principles depending also upon this third law of motion.

It is here assumed that gravity, which by its action upon B produces the pressure,

and consequently the motion, acts with the same intensity whatever be the velocity with

which B is moving. This is proved hereafter. (Chap. III.)

The result of Mr Smeaton's experiments was, that when pressure or weight, which

he calls Impulsive Force or ImpeUing Poiver, produces velocity in a given mass, the

velocity produced in a given time is as the pressure, consideration being had of the

mechanical advantage at which the pressure acts.
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diminished as the body acted upon recedes and moves away

from the agent : and a part of the force, the amount of which

it is not easy to ascertain, is employed in moving the hand

itself in one case and the spring in the other.

126. Prop. The Accelerating Force is as the Pressure

directly, and the Quantity of Matter inversely.

This follows from Article 124. For the accelerating

force is as the velocity produced in a given time.

Ex. 1. To find the moving force of a body P, which falls

freely by gravity.

Let g be the velocity generated in a time 1 by gravity.

Then (Art. il6.) g represents the accelerating force on P. Also

the moving force is the product of the accelerating force by
the quantity of matter. Therefore the moving force = Pg.

Ex. 2. To find the accelerating force, when two equal

bodies A, B are caused to move over a pully by a body P, fig.

136.

When a body falls freely by gravity, let the accelerating

force = g. In this case, the pressure which produces motion is

the weight of the body, and the quantity of matter moved is

the mass of the body itself.

When P produces motion in P, A, and B, since A and B
balance each other by their equal pressures in opposite direc-

tions, the weight of P only is in the pressure which produces

motion. Also in this case the mass moved is P, A, and B,
which all move with the same velocity, and therefore are moved
in the same manner as if they were one mass*. Hence
P + A + B, or P + 2 A is the mass moved. And
accelerating force in fig. 136 : accelerating force of P falling

• If, instead of supposing the mass B to hang over the puUy E, we suppose the
string AE to be continued in a straight line, and B', equal to B, to be annexed to the

string ; and if we suppose A and B' to be destitute of gravity, so as to have no tendency
to move, and to be put in motion entirely by the pressure of P; the case will manifestly

be the same as that in the text ; because it will make no difference whether A and B' be
kept at rest by the absence of gravity, or by their weights balancing each other.

But in the case thus supposed, it is clear that motion is produced in A, P and B' an

if they were one mass at A. Hence the truth of the above reasoning is manifest.

u
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- , . . pressure . „ pressure .

freely {g) :: —^— in first case :
—^ in second

mass moved mass moved

case

P
or 1

P + 2A P

accelerating force in fig. 136, P + 2A

Ex. 3. The velocity generated by a gun in a bullet of

1 oz. is 1000 feet per second : supposing that the bullet de-

scribed the length of the barrel in ^ of a second, and that the

force is uniform, to find the moving force.

Since the velocity generated in -^ of a second is 1000 feet,

if the force were uniform, the velocity generated in one second

would be 10000. Hence

Moving force : force of gravity (l oz.) :: 10000 : g. And
putting 32-|- for g, the moving force is equal to that of a

weight

10000
= ounces = 310 ounces.

32-1-

It appears from the first example that the moving force

of a weight P is Pg. In Statics we represented a weight P
by the quantity of matter P, but in Dynamics it is requisite

also to introduce the force of gravity g-, and Pg represents

the moving force of the weight.

127- Def. The Inertia of a body is its Quantity of

Matter, considered as resisting the communication of motion.

If a force Pg produce motion in a mass A, the accelerating

.
Pg . .

force is —— , and therefore the velocity produced in a given

Pg
time is proportional to —— . Hence the greater A is, the

less is the velocity produced. And hence A is sometimes con-

sidered as measuring the resistance or disinclination of the

body to motion, and is called its Inertia.

It appears from what has been said, that this term implies

a law of motion rather than a property of matter.
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128. Besides pressure, Impact or Collision is a mode in

which bodies act upon each other, and the laws of motion

are applicable to this case also.

Prop. Impact is really a pressure of short duration.

All bodies are susceptible of a change of figure sensible

or insensible ; and this change occupies the time, apparently

infinitely small, which bodies employ in changing their mo-

tions by impact. Thus, if an ivory ball in motion strike an-

other at rest, they appear to separate as soon as they touch,

and the second ball appears to have a certain finite velocity

communicated to it instantaneously. Similarly, if there be

two balls which do not separate when one strikes the other,

either from their want of elasticity, as in balls of lead or

clay, or from their adhering to each other when they come

in contact ; the alteration of velocity which is produced by

the impact will appear to take place in an instant.

But in all cases, if it were not for the rapidity of the

change, we should see that the communication of motion was

gradual, and that the ball which was at rest was brought into

motion by insensible degrees of velocity. As soon as one ball

comes in contact with the other, their surfaces are compressed,

and motion is, by the pressure, communicated to the ball which

is at rest. The change of figure increases so long as the im-

pinging ball has a tendency to move faster than the other, and

during the whole of this time, the one is gaining and the other

is losing velocity. When this action ceases, the bodies move

on together, if inelastic ; or if they are elastic, they separate

by their elasticity ; recovering their globular figure, and pro-

ducing a further change of velocity, by the pressure they thus

exert upon each other.

That this change of figure takes place in impact, is evident

by trial in soft bodies which do not recover their shape; and

may be made manifest in elastic balls by covering one of them

with some substance, as ink, which will, in the impact, stain

those parts of the other with which it comes in contact. The
spot thus produced is found to be of a finite magnitude,

which could not be if the balls retained their globular shape

;

and it is found to be larger as the force of the impact is greater.
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That the communication of motion is thus gradual, is

obvious also by considering that the action is of the same
kind, whether the bodies, which undergo this change of shape

in impact, are compressible easily or with difficulty. But in

the case of a body which easily admits a certain change of

figure, as for instance, a balloon filled with air, it would be

manifest to the senses that any motion produced by impact

would be generated by degrees, and the change and restitution

of figure would employ a finite time. Hence in other cases

where the magnitude and elasticity are different, the same is

true.

129. Prop. The Third Law of Motion is true in the

case of Impact.

Impact is a pressure continued for a short time ; increasing

from nothing to a finite magnitude, and then decreasing to

nothing again. And hence, if the third law of motion be true

for pressure, it will be true for impact.

We can easily see from this, the effects that impact would

produce in generating, and consequently also in destroying,

velocity : for the same force which would generate any velo-

city, would also, applied in the opposite direction, destroy it.

Now when two bodies impinge on eacji other, the pressures

on each, arising from the contact of their surfaces, must

be eqiial, and in opposite directions. Hence, by this third

law, the momenta which the impact would generate (and con-

sequently destroy) in each, must be equal. Hence it appears,

that if two bodies move in opposite directions with equal

momenta, and meet, (being supposed not to separate after the

impact,) the impact will destroy both their velocities, and the

mass will remain at rest. Now this is found to agree with

experiment*.

* The way in which the experiment may be made is described by Newton

(Scholium to the laws of motion, Principia, Book 1.). Two pieces of wood ^/, B,

fig. 137, are hung up by equal strings from two points C, D, which are in the same

horizontal line, so that the bodies can swing in arcs 3fA, NB. One of them, A,

has a steel point, which when it strikes against the other, sticks into it, so that the two

move on together. The bodies are drawn aside into positions M, N^ and let fall so

as to meet at the lowest points A^ B. The weights may be made to bear any proportion
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130. The following consideration may serve to shew

that the third law of motion, as above stated, though not

demonstrable a priori, is agreeable to the most simple sup-

positions.

Let two inelastic bodies, A, B, fig. 138, approach each

other with velocities which are inversely as their quantities

of matter. If C be taken so that A : B :: BC : AC, C will be

the center of gravity of the bodies. At the end of a certain

time suppose that by their motions they come into the posi-

tions a, h. Then, since the velocities are inversely as the

bodies, we have A : B :: Bb : A a. From this and the former

proportion we have A : B :: bC : aC. Hence C is still the

center of gravity. Hence it appears that during the whole

time in which the bodies approach each other, the center of

gravity remains at rest. But if they do not destroy each

other's motions, they will move together after impact, and

therefore their center of gravity will also move. Hence,

if this third law be not true, it follows that the center of

gravity, having remained at rest during the separate move-

ments of the bodies, will start into motion as soon as the

impact takes place. But it is more simple, and therefore

more probable, to suppose that the center of gravity will con-

tinue at rest, that is, that the third law of motion is true.

The same reasoning may be applied to cases of continued

pressure. Thus let A and S be a boat and ship afloat,

and let a person in one of them pull the other by means of a

rope AB. The force on each of the two is the same, namely,

the tension of the rope ; and hence the velocities produced

should be inversely as the quantities of matter in A and B ;

to each other by loading one of them with lead ; and the velocities may be made to bear

the inverse proportion of the weights, by taking properly the arcs A3f, BX, as will

be seen Iiereafter. If this be the case, when they meet at A, B, they will stop each

other.

Newton makes the experiment in a form a little different. He draws one of the

weights, as A, into the position _!/, and letting it impinge on the other, which is at

rest, he examines the velocities after impact, which he can do by observing the arcs

through which the bodies rise. These velocities he finds to be those which, in the

Chapter on Collision, will be shewn to result from the third law of motion.

In the place referred to, Newton shows how allowance may be made for the small

errors which arise in this experiment from the resistance of the air.
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in which case the center of gravity will remain at rest all the

time the bodies are moving towards each other, and they will

meet in this point. This is the most natural supposition ; for

after they have met, if we suppose the tension to continue,

it is manifest that the center of gravity must remain at rest,

because the tension will produce only a statical action and

re-action which balance each other.

This may be applied also to attractions. If we suppose

J, 5, to be two bodies, as a magnet and a piece of iron,

which are at liberty to approach each other*, their attraction

Avill act in exactly the same manner as the tension of a cord

by which one should be pulled to the other. Hence the

pressures on each of the two, arising from the attraction, are

equal ; and therefore, by this third law, the velocities of the

two will be inversely as the quantities of matter. The bodies

will approach, their center of gravity remaining at rest all

the while, and will meet in this point : and this agrees with

experiment.

131. The motions of bodies under all circumstances

are governed by the third law of motion. But in order to

trace its consequences in general, we must consider it as ex-

tended from the case in which we have hitherto considered,

in which the action is direct, to cases in which the action

is indirect.

Thus, in fig. 99, a weight W moves certain bodies

w, n, p, although the string Bf by which the action is com-

* This experiment made be made by placing the magnet and the iron each on a

piece of cork, and setting them to float in water.

There is another consideration which has sometimes been brought forwards as a

confirmation of this third law of motion. It has been seen (Art. 43,) that if two

A, B, balance each other on any machine, as for instance a straight lever, when they

are supposed to move through small spaces, their velocities are inversely as their

masses. Since, therefore, when the velocities of bodies acting on a machine would be
inversely as the masses, they keep each other at rest; it is considered as agreeable to

the uniformity of nature, that when bodies meet with velocities which are inversely as

their masses, they will reduce each other to rest. This is nearly the same illustration

as the one in the text, and like that, is only an analogy, not a demonstration.
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municated does not act directly on any of these bodies. The
force turns the system about a fixed axis AC, and the bodies

turn as being part of the system.

In this case the pressure which produces motion is trans-

mitted from f to niy by means of a lever, of which the arms

are cf and cm.

Third Law of Motion extended. When Pressure,

transmitted by any material system, produces motion, the

Moving Force is proportional to the Pressure.

The third law of motion, as already explained, asserts

that the moving force is as the pressure, in cases of direct

action ; it is here asserted that the same rule applies to

indirect action, produced by means of any machine or mate-

rial combination whatever. The moving force on each body
is still measured by the momentum generated in the body in

a given time, as one second.

The proof of the law in this case must be of the same

nature as the proof of it in the case of direct action. In
the first place, this is the simplest law which we can conceive.

If two equal pressures acting together in a similar manner
did not produce a double momentum, it would follow that the

action of the second pressure is different when it acts alone,

and when it is combined with another pressure ; and if this

were so, there must be a law which should determine this

difference, in addition to the other laws of motion ; whereas,

if the double pressui'e produce a double momentum, each

pressure produces the same effect as if it acted independently,

and no additional law is necessary.

In the second place, there is no such difference obvious,

in common phenomena. Two men can turn a wheel twice as

fast as one can, making allowance for the additional force ex-

pended in moving their own limbs when the speed increases.

A very small overbalance of weight in a machine produces

a very small velocity ; with the amount of overbalance, the

velocity increases ; a very great overbalance produces a velocity
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approaching to that of a body falling freely. There are no

common and general facts which contradict the assertion that

the velocity produced in a given mass in a given time is as

the pressure which produces it. Hence if this assertion be

not exactly true, its falsity must be detected by experiments

conducted with precise measures. And

/« the third place, it is found that in such experiments,

the facts agree v.ith the results of calculation on the assump-

tion of the truth of the third law of motion, thus extended.

The experiments of Atwood and Smeaton, referred to as proofs

of the third law of motion (see Art. 125), are, in fact,

examples of the action of weights transmitted by means of

certain machinery ; and therefore prove the law in the ex-

tended sense here considered.

The application of the third law of motion, thus extended

to cases of indirect action, will be further pursued in a suc-

ceeding chapter.

13:2. The preceding laws of motion are, it would seem,

the fewest and most simple principles to which mechanical

phenomena can be reduced. And it appears, from what

has been said, that these laws depend upon self-evident

truths concerning cause and effect, action and reaction, which,

though they come with our experience, cannot properly be

said to come from it, since experience is not possible without

the conviction of these truths. But in order to deduce from

these axiomatic truths the laws of motion, experience, in a

more special sense, is necessary, to enable us to interpret

and apply our fundamental conceptions. Thus a part of

each law is necessarily true; while a part is proved, or at

least learnt, only by attention to facts.

The nature of the truth which belongs to the laws of

motion will perhaps appear still more clearly, if we state, in

the following tabular form, the analysis of each law into

the part which is necessary, and the part which is em-

pirical.
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Neccssaiy.

FIRST LAW.
Velocity does not change without

a cause. «

SECOND LAW.
The accelerating quantity of a

force is measured by the acceleration

produced.

THIRD LAW.

Reaction is equal and opposite to

action.

Empirical.

The time for which a body has al-

ready been in motion is not a cause

of change of velocity.

The velocity and direction of the

motion which a body already possesses

are not, either of them, causes which

change the acceleration produced.

The connexion of the parts of a

body, or of a system of bodies, and the

action to which the body or system is

already subject, are not, either of

them, causes which change the effects

of any additional action.

Of course, it will be understood that, when we assert

that the connexion of the parts of a system does not change

the effect of any action upon it, we mean that this connexion

does not introduce any 7iew cause of change, but leaves the

effect to be determined by the previously established rules

of equilibrium and motion. The connexion will modify the

application of such rules ; but it introduces no additional

rule : and the same observation applies to all the above stated

empirical propositions.

This being understood, it will be observed that the part

of each law which is here stated as empirical, consists of a

negation of the supposition that the condition of the moving

body with respect to motion and action, is a cause of any

change in the circumstances of its motion ; and from this

it follows that these circumstances are determined entirely

by the forces extraneous to the body itself.

There are other propositions, some of which may occur

hereafter, which have been called Mechanical Principles ; and

some of these have been brought forwards as elementary.

Many of these are valuable, both as remarkable propositions

in Dynamics, and as convenient steps in the solution of ex-

tensive and difficult classes of problems ; but when distinctly

stated and examined, they will be found, so far as they are

true, to be consequences and combinations of the preceding

three laws of motion.

X
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CHAP. II.

UNIFORM MOTION AND COLLISION.

133. When two bodies which are in motion, acted

upon by no extraneous forces, impinge upon each other, and

then move on, together or separate, the motions of each

before the impact, and also after it, will, by the first law

of motion, be uniform and rectilinear. The change which

takes place in consequence of the impact will depend upon

the third law of motion, as we shall see hereafter. This is,

in some respects, the most simple case of dynamical action.

We have only to consider two states of each body with re-

spect to velocity and direction ; that before, and that after

the collision. We have not, as in most other instances, a

perpetual and continuous change of velocity, or a curvilinear

path. The alteration which the concourse of the bodies pro-

duces, is supposed to be abrupt and instantaneous ; so that,

between their condition before and after that event, there is

no intermediate one which requires to be contemplated.

It is true, as has already been observed, that, in fact, the

change which collision produces in the motions of bodies does

occupy a finite time ; that the velocity is increased or dimi-

nished not at once, but by degrees ; and that no body passes

from one state of motion to another without going through

all the intermediate states. But in the cases to which we
shall apply our reasonings, the time which this change em-

ploys, that is, the time during which two impinging bodies

continue in contact, is so small, that it may be neglected as

inconsiderable, and all that we attend to are the preceding

and succeeding states, which it divides. During the mutual

action, however, of the two bodies, they exert a certain

pressure upon each other, which will produce and destroy

velocity according to the third law of motion.
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134. If the bodies be not, as we liave supposed tlieiii

to be, of inconsiderable magnitude, the point in each which

is taken to represent it, is its center of gravity ; and its path

is the line described by t?liis point. The bodies are sup-

posed in general to be homogeneous, and bounded by sphe-

rical surfaces, or, at least, by such convex surfaces that

their contact may only take place in a point. The action

which takes place at this point of contact will necessarily

be exerted in the line which, passing through that point,

is perpendicular to the surfaces which there touch ; and this

line is supposed to pass through the center of gravity of each

body. That this may be the case in every position of the

bodies, they must necessarily be spherical ; but for a par-

ticular position it may happen with innumerable different

forms.

If the line of the action of the bodies upon one another did

not pass through the center of gravity of one of the bodies, the

action would communicate to that body a rotatory motion

;

Avhich is a case that we do not consider here.

If the line in which the action of the bodies takes place be

the line in which they are moving, the impact is called direct.

If either or both of them be moving in any other line, their

impact is said to be oblique.

The relative velocity of two bodies is the velocity with

which they approach to or recede from each other ; and is

therefore the difference of their velocities when they move

in the same, and the sum of their velocities when they move

in opposite directions.

Now in the direct impact of two bodies which move in

opposite directions with equal momenta, as we have already

said, the velocity of each is destroyed during the compression,

(Art. 129) and a certain velocity is again generated during the

restitution of the figures. The ratio of the velocities destroyed

and generated may be taken as the measure of the proportion

of the forces of compression and restitution, and we must then

examine by experiment how these forces are related.



164 UNIFOHM MOTION AND COLLISION.

135. Piior. When two bodies meet, moving in the same
straight line, with equal momenta, in opposite directions, their

velocities are destroyed by the force of compression, and new
momenta, opposite and ecpiol to each other, are generated by

the force of restitution.

It has been seen in the proof of the third law of motion,

(Art. 129,) that if two inelastic bodies moving in opposite

directions in the same straight line, meet with equal momenta,
the collision will destroy the motions of both, and they will

remain at rest. If they be not inelastic, they will, after the

impact, separate with velocities differing according to the

nature of the bodies.

In this case, the action between them will manifestly con-

sist of two parts ; the compression, or change of figure

which their concourse and mutual pressure produce ; and

the restitution of figure which takes place in consequence of

the elasticity, and makes them again rebound from each

other.

It is obvious that the effect in the former part of the

process is the same as if the bodies were inelastic ; for

when the compression is completed, and just before they

begin to recover their figures, if we suppose the internal

constitution of the bodies to undergo a sudden change by
which they lose all their elasticity, they will remain in con-

tact, and the laws of their motion will be the same as those

of inelastic bodies. Hence in this first part of the collision

they will lose their whole velocities, as inelastic bodies would

have done.

When they separate by their elasticity, the momenta which

are communicated to them afresh by their mutual pressure

will be, by the third law of motion, equal. The actual

magnitudes of tlie velocities, and consequently the relative

velocity with which the bodies separate, depend upon the

elasticity of the bodies, and the laws which regulate these

circumstances are to be determined from experiments, as we

will shew.
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136. Prop. In the direct impact of elastic bodies, the

force of restitution is to the force of compression in a ratio

which is constant for bodies of the same nature.

That is, whatever be the velocities, magnitudes, and

figures of the bodies in question, so long as the material con-

tinues the same, the ratio of the velocity of each after im-

pact, to the velocity before impact, is the same. Hence also,

since the velocity of each body after impact bears a certain

proportion to its velocity before, the sum of those velocities,

that is, the relative velocity with which the bodies separate,

ought to have a given ratio to the velocity with which they

approach ; and this is found to be the case.

The experiments necessary for the proof of this pro-

position may be made in the manner already described in

proving the third law of motion : see Note, Art. 129. Two
balls ^, B, fig. 137, are hung by vertical strings CA, DB

;

and being drawn out of their vertical position, are allowed

to fall so as to come together at the lowest point, where

they meet and recoil. The arcs down which they fall, and

up which they rise, afford the means, as will be shewn

hereafter, of knowing the velocities before and after the im-

pact. And thus it was found by Newton and others, that

the relative velocities before and after impact are always

in a given ratio*.

* Newton, Principia, Book I, Scholium to the Laws of IMotiou. " Propterea

quod vis ilia (elastica) certa ac determinata sit (quantum sentio) faciatque ut cor-

pora redeant ab invicem cum velocitate relativa quas sit ad velocitatem relativam

concursus in data ratione." He then goes on to mention in what manner and on

what substances he made his observations. Experiments upon elastic bodies were

made by Wren and Hooka before the Royal Society about 1670. ]\Iariott, a French

mathematician, also made experiments, of which he has given an account in his

Traitc de Percussion. Mr Smeaton (see Phil. Trans. Vol. Lxxii.) repeated the

fundamental experiments upon elastic bodies with an ingenious apparatus for sepa-

rating the effects on soft and on elastic bodies. But all these mechanicians, except

Newton, have considered their experiments as made on bodies perfectly elastic ; and

have taken, as approximations to such bodies, the most elastic bodies which occurred.

The theory of imperfect elasticity has, it would appear, been taken for granted on

the authority of Newton ; and, if it were necessary to rest upon authority, there is

none on which wc might rely with less scruple. But, that elasticity, depending upon
the internal constitution of bodies so completely different, metals, stones, ivory, cork,

&c..



166 UNIFORM MOTION AND COLLISION.

If the bodies be made to meet with velocities which

are not in the inverse proportion of their masses, we may
find, as we shall shortly shew, what their motions ought

to be after impact ; and these are found to coincide with

the results of observation. The case in which the experi-

ment is most easily made, is when one of the bodies is at

rest and is struck by the other.

Bodies are called perfectly elastic when the force of re-

stitution is equal to the force of compression. When the

force of restitution is less, the bodies are said to be im-

perfectly elastic.

The elasticity of imperfectly elastic bodies is the frac-

tion which the force of restitution is of the force of com-

pression.

Thus it appears from Newton"'s experiments that in the

collision of balls of worsted, the relative velocity after im-

pact is to that before as 5 to y. Hence the fraction \ ex-

presses the elasticity in this case. In balls of steel, the

ratio was nearly the same; in cork, it was a little less;

in ivory, it is 8 to 9 ; in glass, 15 to 16. According to

this way of measuring, perfect elasticity will be represented

by 1. In every case the value of the elasticity may be

ascertained by a single experiment ; and represented by a

fraction e, which expresses the portion that the force of

restitution is of the force of compression.

&c., should in all instances obey one general law, is, though not improbable, highly

curious, and, if it be really and exactly true, worth establishing by repeated trials.

And even if further observation should prove the truth of Newton's results, there

are still several obvious questions to which his experiments do not enable us to give

any answer whatever. For instance, if two bodies of different degrees of elasticity

impinge upon each other, how are their motions to be determined ? Manifestly this

and similar problems can only be resolved by obtaining from new experiments the

principles on which they depend.

[Addition to Fifth Edition. Recent experiments by Mr. Eaton Hodgkinson, not

yet published, appear to confirm the constancy of the ratio of elasticity.]

The authors of the common Theory of Collision, were Wren, Wallis, and Huy-
ghens, who about the same time (160!() sent to the Royal Society papers on the

subject. Wren appears to have confirmed his results by experiment; the attempts

to establish the doctruie upon axioms independent of observation, have been, as they

must be, very unsatisfactory.
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We now proceed to determine from these principles the

motions of bodies in every case of direct impact.

1. IJlrect Impact.

137- Prop. Two inelastic* bodies, moving with given

velocities, impinge directly upon each other : it is required

to determine their common velocity after impact.

Let A, B represent the magnitudes, and a, b the velo-

cities of the bodies. And first, let them move in opposite

directions, and let a and b be inversely as A and B ; that

is, let Aa = Bb, or let the momenta be equal. In this case,

as has been seen in considering the third law of motion,

the bodies will destroy each other"'s velocities by the impact

;

and they are supposed to be inelastic, and have therefore

no tendency to separate; they will therefore remain at rest

in contact.

* The bodies here mentioned may be either soft bodies, which change their figure

without recovering it, or bodies of any kind, which, when they meet, are prevented

from separating by some such contrivance as that mentioned in the note to Art. 12I».

In the former case the effect will be the same, whatever be the quantity of com-
pression which the bodies suffer, and the time employed in producing it, provided

there be no elasticity. The compression, and the time during which it is produced,

will be less as the inelastic body is harder ; but we cannot conceive any action taking

place between two bodies, which does not occupy some portion of time. Hence we
cannot conceive the action of two bodies which are perfectly hard, that is, which

are not susceptible of the smallest change of figure. If there were such substances,

the actions which would take place between them would be of a nature entirely

different from any thing with which we are acquainted, and therefore we should
have no right to extend our laws of motion to them. Accordingly, those who have
reasoned concerning such bodies have gone upon arbitrary or inconsistent assumptions.

Wallis makes the motions of hard bodies to be such as we have shewn those of soft

bodies to be. Huyghens and Wren suppose these motions to be the same as those

of perfectly elastic bodies. Succeeding authors have "generally followed the former
theory with respect to the motions of two hard bodies, though the congress of a

perfectly hard and a perfectly elastic body is supposed to follow the laws of two
elastic bodies. It is clear, that since we do not find in nature any facts from which
the principles of such cases can be deduced, the problems can only be solved by
gratuitous hypotheses, and do not form any portion of mechanics considered as the

science of the laws by which motions are actitnllij regulated.

On the subject of the effect of the different degrees of hardness in modifying
the circumstances of impact, see a succeeding chapter of this work.
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Now if the motions and collision of these bodies take

place in a limited space which is not at rest, but which

is moving uniformly in any direction, these motions will,

by the second law of motion, still continue to be the same

as before, relatively to the parts of that space. Let the

space move in the direction of ^""s motion with a velocity

V ; and in this space, let A and B meet with velocities

a and (3 relative to the space, and such that Aa = Bfi.

Hence they will, after the impact, be at rest relatively to

this space.

But since the space which includes the two bodies is

carried in the direction of ^'s motion with the velocity v,

A has, before the impact, an absolute velocity a + v ; and

B, which is carried in the same direction with a velocity v,

and in the opposite direction by its own motion with a

velocity /3, has in the former direction an absolute velocity

« — /3, supposing V greater than /3. Also, after the impact

the bodies are at rest in the space, and are carried by its motion

with a common velocity v.

Hence it appears that if a body A with a velocity

a = a + V overtake a body B moving with a velocity b = v — (3,

they will after the impact move on with a common velocity

r. Now since

a = a + V, and h = v — (3,

we have a = a — i', and (3 = v — b ;

and the equation Aa = B(3 becomes A (a - v) = B (v - b) :

hence Aa + Bb =Av + Bv ;

Aa + Bb
and V =

A +B

If 7) be not greater than /3, the absolute velocity of B
before the impact is /3 — v in a direction opposite to that of A.

If this be called 6, we have

^ = /> + V, and A (a - v) = B (b + v) ;

Aa - Bb
whence v =— —- :

4 + B
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which differs from the former case, only in having the sign

of h negative.

Henc€ if a and b represent the velocities in the same

direction^ and if velocities in the opposite direction be con-

sidered to be negative ; the first expression for v is general for

all cases.

CoR. 1. If the resulting value of v be negative, the

bodies will, after impact, move in a direction contrary to

that which was supposed positive.

CoK. 2. If h = 0, or if A impinge on B at rest, we have

for their velocity after impact

;

Aa
A + B'

Cor. S. The velocity lost by A is

Aa-^Bb B(a-b)
a - V = a A+B A+B

The velocity gained by B in the direction of -^'s mo-

tion is

, Aa + Bb A(a-b)
V — b = h = —

;A+B A+B
a - b is obviously the velocity with which A approaches B ;

that is, the relative velocitv.

Cor. 4. If B before the impact be moving in a direction

opposite to A, the velocity gained by B in the direction

of A's motion, is not the excess of the velocity after impact
above the velocity before, but the sum of the velocity de-

stroyed in the opposite direction and of the velocity com-
municated in ^'s direction. This is also the result which we
obtain from the expressions in the last Corollary, paying proper
attention to the signs. The same is applicable to the velocity

lost by A^ when it moves in the opposite direction after the

impact.

Y
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Cou 5. The momentum lost by A is

The momentum gained by B is

BA (« - 6)Bv-Bb =
A+ B

Hence the momentum gained by B and the momentuni

lost by A are equal. This is what is meant by the equality

of action and re-action in this case.

This equality of action and re-action is sometimes made
the principle on which the theory is established. See Art. 124.

138. Prop, l^wu bodies of which the cmmnon Elasti-

city is e, moving ivith given Velocities^ impinge directly upon
each other ; it is required to determine their Velocities after

Impact.

Let A, B be the bodies, and a, b their velocities. And
first, let their velocities be inversely as their masses, and

opposite : that is, let Aa = Bb. As before, in the first part

of the collision the velocities will be destroyed ; and then, by
the elasticity, there will be generated new velocities in the

opposite directions, with which the bodies will separate. By
Art. 136, these velocities will be to the velocities before impact

in the ratio of e to 1. That is, A will return with a velocity

ea, and B with a velocity eft, and thenceforth the bodies

will move uniformly witli these velocities.

Now let the same actions take place in a space which is

moving with a velocity .r in the direction of ^J's motion. Let

A and B meet with velocities a, /3, relative to this space, and

such that Aa = B (3. They will then separate with velocities

ea and efi relative to this moveable space. Hence if a, 6,

be the absolute velocities in the same direction before impact,

and 7C, V the velocities after it ; since ^'s velocity will be its

velocity in the space together with the velocity of the space,

a = a + X ; similarly, ft = ,r — /3 ; .'. a = a — a,', fi = <v — b :

also, Aa = B(i ; hence A {a - <r) = B (r - h) ;
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Aa+Bb B(a-b) ^ , A(a-b)

A + B A+ B ^ A + B

And since after impact A is carried forwards with the

velocity .r, and backwards with the velocity ea ;

w = X — ea. Similarly, v = r + «/3.

Hence

Aa +Bb -eB (a - 6)
u =

V =

A + B
Aa + Bb + eA {a - />)

A + B

If the bodies are not moving in the same direction before

impact, attention to the signs of the velocities will preserve

the truth of the formulae.

CoR. 1. The velocity lost by A is

(1 + e) . 5 . (« - b)
a — u = a + X — (a — ea) = a + ea= —

.

A + B
The velocity gained by B is

1 J / OS o o (^ +e) .A. (a - b)v-b = x + ef3- (.V - ^) = /3 + e/3 = — j^ b
'

Both these are greater than the velocities gained and lost

in the case of inelastic bodies, in the ratio l + e : 1.

Cor. 2. The momentum lost by A and that gained by B
are each

(1 +e)AB{a - h)

A+B
Hence the sum of the momenta is the same before and

after impact : or Aa ->- B h = Au + Bv.

CoR. 3. The relative velocity after impact is

V - u = .r + efi - (r - ea) = e (a + /3)

B{a-b) + Aia-b)
= '- aTb = ''(^'-^>)-
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Hence, for the same bodies, the velocity before impact

is in a given ratio to the relative velocity after impact.

Cor. 4. If the bodies be equal, or A = B, we have for

the velocities after impact,

M = J {(1 -e) o + (1 + e)6} ;

v = ^{(l +e)a+ (1 -e)h] .

CoR. 5. If B he at rest before the impact, 6 = 0, and

{A - eB)a

(A + eA) a
v = —

.

A+B

139. Prop. When the Elasticity is perfect, to determine

the Motio7i8.

We must here make e = 1 in the preceding expressions.

Hence,

2B(a-b)
the velocity lost by ^ =

the velocity gained by B =

A + B

2A(a-b)
A + B

Also the relative velocity after impact = a — b = the

relative velocity before impact.

Cor. 1. If the bodies be equal, B = A. Hence

velocity lost hy A = a — b-^ velocity gained by jB = a - b.

Therefore ^'s velocity after impact = a — (a - b) = b,

B's =b + {a-b)= a.

Hence the bodies in this case interchange velocities.

CoTj. 2. If B he at rest when it is struck by A, b =0.
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Hence

velocity lost by ^ = ——- ;

, n J. , . n • ^Ba (A-B)a
therefore A s velocity after impact = a -

5'!=

A + B A+B
2Aa
A + B

Hence if the bodies be equal, after the impact A will stop.

and B will move on with ^"'s velocity.

If A he the less body, it will move backwards, and B
will move forwards with less than A''s original velocity. If

A be the greater, B will move forwards with a velocity

greater than ^'s original velocity, and A will follow it more
slowly.

CoE. 3. Hence if there be a row of j^erfectly elastic

bodies at rest,

A, B, C, D, E,...

and if the first. A, be made to impinge on the second, B,

with a certain velocity ; and B, with the motion thus acquired,

on C ; C on D ; and ao on ; we see what will become of the

bodies. If they be all equal, each will stop after impact, and

the last will move off with the original velocity. If they go
on increasing, each will, after it is struck, move forwards

with a velocity less than the preceding; and after it has struck

the next, will move backwards. If they are a decreasing

s^ies, each will move faster than the preceding, and after the

impacts they will all move forwards.

140. Prop. To compare the Velocity comrmmicated
immediately from A to C with that commu?iicated by the

interventioti of B as in the last Corollary.

Let a be A\ velocity. Then, by Cor. 2, Art. 139,
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the velocity communicated by A to C = —
.

^ ' A + C

Also the velocity communicated by A to B = ~ = h suppose;

• 11 ^ -^^ 4'ABa
•. the velocity communicated by S to C = =. -; = .--—^^.^—77, •

B + C (A + B)(B+C)

The latter of these velocities communicated to C is greater

than the former,

.^ 2Aa iABa
if -: -<
A + C (A + B){B+ C]'

if iA+B)(B+C)<2BiA + C);

if B' + AB+ CB + AC<2AB+2CB;
if B'- AB- CB + AC<0;

if (B - A)(B-C)<0;

which will be the case if one of the factors B — A, B — C, be

positive, and one negative ; that is, if the body B be greater

than one and less than the other of the bodies A, C. In this

case the velocity communicated by the mediation of B is

greater than that communicated immediately from A to C.

The velocity communicated through B is the greatest

when i? is a mean proportional between the other two bodies,

as may easily be shewn*.

• To find what must be the magnitude of B tliat the velocity communicated by

its interposition may be the greatest possible, we must make the expression for the

velocity of C a maximum, or its reciprocal a minimum ; that is,

{A + B)(B+C) . , . . .—, '-; =mm. ; and omittmg constant factors,

ACB + A + C -\
—— =min. ; and, differentiating with respect to the vari-

es

able B, and putting the differential coefficient - ;

.-. B' = AC, B^\'{AC) :

or B is a mean proportional between A and C.
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CoK. If We interpose in the same manner a body which

is a mean proportional between A and B, or between B and C,

the velocity communicated to C will be increased. By in-

creasing perpetually the number of mean proportionals between

the first and last body, we increase the velocity communicated

to the last, and make it approach to a certain limit, whicli

we shall find in the next Article.

141. Prop. To Jind the Limit of the Velocity commu-
jiicated in the last Corollary.

Let there be n + l perfectly elastic bodies A, B^ C, D...Z,

their magnitudes being in a geometrical progression of which

the common ratio is l + r. Therefore

5 = (1 + r) A, C = (I + r)' A, &c. Z = (l + r)" A.

Let A impinge with a velocity a upon B, and communicate

a velocity /; : and let B communicate to C a velocity r, and

so on ; z being the velocity of Z. Hence,

<2Aa 2Bh
A + B B + C

9,(1 4ta
or h = , c = -, , &c.

2 + r (2 + ry

.
2"

«

a
and % =

(2 + r) ( r
' '

1 + -

But since Z = (l f ?•)" J, ^/Z = (l + r^ y/A ; and multi-

plying this equation by the former one,

/v / / (^ + "^
% y/ Z = a^A

r
1 + -

2

Now 1 / I -I-
'*- j = 7i 1 / 1 +

l-^l
= yj ^ _ 1 . L + &c.} .

1 (I + ,.)5 = -1(1 +r) = -\r --?- + &C.L
2 ^ ^ 2 \ 2

j
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1 - 1 r + &c.

1(1 + ,.)2 1-ir + &C.
*

And as 7i becomes very large, r becomes very small, and

ultimately may be neglected in comparison with 1. Hence the

second side of this equation becomes 1, when n becomes

indefinitely great. Therefore, ultimately,

('+^)" = (. + '•)';

.'. X '\/Z = a y/A ;

/. - = \/ — and z = - ,^ . a ; which is the value to
^ ^ A ^Z

which the velocity approximates, by increasing indefinitely

the number of mean proportionals between A and Z.

142. Prop. In the direct impact of perfectly elastic

bodies, the sum of each body into the square of its velocity is

the same before and after impact.

We have, by Cor. 2, Art. 138,

Aa -\- Bb = Ail + Bv;

.-. A (a- u) = B(v - b).

Also a - b = V — u, or a + u = v + b ; (Art. 139.)

hence, multiplying the equations,

A {a^ -u') = B (v^ - b'),

y y or ^a- + Bb^ = Au' + Bv^.

143. Prop. In the direct impact of imperfectly elastic

bodies, to compare the sum of each body into the square

of its velocity before and after impact.
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By Cor. .S, Art. 138,

e {a — h) = V — M

;

.•. en + 11 = eh + V
;

and 2ea +2u = 2eb + 2v ;

or (l+e) (a+u) - (l-e) {a-7(.) = (1 + e) {v + h) 4 (l-e) (t)-/>).

Also by Cor. 2, Art. 138,

Ja + Eh = J?/ + 5i?,

or A {a - u) = B (y —h).

Multiply the former equation by this, and we have

{\+e) A (a- - ir) -{l-e) A (a - uf =(l+e) B (ir - hf.

+ {\-e)B {v - by.

Hence ,

Aa"-Au'+Bb^-Bv^= l-Zl ^J (a - uf + B{v-bf].

Let the velocity lost by A = a — u = p, and the velocity

gained hy B = v — h = q, and we have

Aa^+ Bh^ = A u' + Bv~ + ^—-^ (A p" + Bq%

2. Ohlique Impact.

144. Prop. In oblique impact the mutual action of

the bodies is perpendicular to the surfaces at the point of

contact ; and it affects only the velocities resolved in this

direction.

Suppose a ball B, fig. 139, moving uniformly in a straight

line bB, to be struck by a ball A, which is moving in a direc-

tion aA at right angles to bB. The impact is supposed to

take place in such a way, that the line of ^"'s motion passes

through the centre of B, and is perpendicular to the surfaces

at the point of contact. Therefore, neglecting the effects of

friction*, the action of each of the bodies upon the other

* During the time that the bodies are in contact, the surface of B must by its

lateral motion slide along the surface of A, and hence, if we suppose the surfaces

not to be perfectly smooth, its motion in that direction will be, in some measure,

retarded.

z
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is entirely in this line. The quantity of the compression will

not be altered by the lateral motion of B, and hence the

action in this direction will be the same as if A impinged on

B at rest. The motion of B in the direction hB will not be

affected by this action ; and the motion impressed by A will

be combined with this original motion by the second law of

motion. Let Bn represent the velocity which A would com-

municate to B at rest; and let Bm on the same scale repre-

sent the original velocity of B. Then if we complete tlie

parallelogram mn, and draw the diagonal Bq; by Art. 121,

the velocity of B after impact will be represented by Bq.

In the same way it will appear in every other case, that

the mutual action of the bodies is wholly in a direction per-

pendicular to the surfaces in contact. The motion at right

angles to this direction will not be affected ; the motion in

this direction will be regulated by the same laws as if the

bodies had no lateral motion ; and these motions, combined

according to the second law of motion, give the motion after

impact.

145. Prof. Two given bodies of given elasticity meet

with given velocities in given directions ; it is required to

find their motion after impact-

It is supposed, as before, that at the instant of collision,

the line joining the centers of gravity of the two bodies passes

through the point of contact of the surfaces and is there per-

pendicular to them.

Let PA, QB, fig. T40, represent the velocities of the

bodies which meet at A and B. Draw AB joining their cen-

ters, wliich will be perpendicular to their surfaces in the point

of contact c. Produce AB and draw PM, QA^ perpendicular

upon it. The velocities PA, QB, may be considered as

compounded of PM, MA, and of QN, NB ; and by what
has just been said, it appears that the lateral velocities PM,
QN are not affected by the collision, and continue the same
after the impact. Also the action in the direction AB is

the same as if the bodies had onlv the velocities MA , NB.
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Suppose, therefore, the bodies to impinge with the velo-

cities AIJ, NB ; and let Am^ Bn be their velocities after

impact, found by Art. 138. Draw mj), nq perpendicular

to AB, and equal to PJ/, QN respectively. Join Ap^ Bq;
these will be the velocities of A and B after impact : for

they are compounded of the' velocities PM, QN, which are

not affected by the collision, and of Ain,Bn, which will be

the velocities in the direction AB.

Hence if we can find where the bodies meet, we can de-

termine all the circumstances of the collision.

146. Prop. When two spherical bodies move in the

same straight lijie, to determine tchere they ivill meet.

When A is at J/, fig. lil, let B be at iV, and let MO,
yQ represent their velocities. Let A, B be the positions of

the centers at the time of concourse ; therefore AB is the

sum of the radii of the spheres, and is known.

And since MA, NB, are described in the same time,

MA : NB :: MO : NQ;

.: MA : iMA - NB :: MO : MO - NQ;

and MA - NB = MN + NA - (NA + AB) = MN - AB.

And hence the three last terms of the proportion are

known, and therefore MA ; which gives the position of ui,

and hence of B, at the time of concourse. y

147. Prop. When two spherical bodied move uniformly

in any two straight lines in the same plane, to determine

their concourse.

In fig. 142, MO, NO being the directions of the motions,

let MO be taken to represent yl\s velocity, and let NQ, on the

same scale I'epresent the velocity of B. Join il/N, and com-

plete the parallelogram MP, and join PQ. With center O
and radius equal to the distance of the centers of A and B
when in contact, describe a circle meeting PQ in D. Join
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DO ; draw DB parallel to OM, and BA parallel to DO ;

Ay B will be the positions of the centers at the instant of

concourse.

By similar triangles,

NP : BD :: NQ
ov MO : AO :: NQ
. . MO : MA :: NQ
or MA : NB :: MO

BQ;

BQ;

NB;

NQ :: vel. of A : vel. of B;

therefore when one body comes to A, the other comes to B.

Also AB = OD = the distance of the centers ; therefore they

will then be in contact. And if we divide AB in c, so that

Ac and Be may be the distances of the surfaces from the

centers, a plane perpendicular to AB in c will touch both the

surfaces at the instant of contact.

The circle described with center O will meet PQ in two

points; of these we must take the one which is nearest to P.

When the two directions are not in the same plane, the

problem may be solved in a manner nearly similar.

148. We may also find the position thus.

Let ilfO, NO, fig. 142, be the lines; M, N the positions

at the beginning of the time t ; a, 6, the velocities ; the

angle MON ; and c the distance, AB, of the centers, when the

bodies meet ; which will be the sum of the radii if the bodies

are spherical. The bodies are supposed to move towards the

point O; hence if OM = m, and ON = n, at the end of the

time t the distances from O will be OA = m — ta, OB = n = th.

And we shall have

AB"" = OA' + OB- -2 0A.0B, cos. ;

or at the point of concourse.

c- = (m - taY + (n - tlr) - 2 {m - ta) (n - tb) cos. ;

which would enable us to detern)ine t by means of a qua-

dratic. Of the two roots, we must manifestly take the less
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for the value of the time ; for that will give the first time

that the surfaces come in contact ; and after that they will

no longer go on in the same lines ; so that the second root

will not be applicable.

These processes will give the solution of the problem

Avhen it is possible. It is impossible, when the centers of the

bodies in the course of their motions never approach within

a distance sufficiently small to bring their surfaces into contact.

This will happen when the roots of the quadratic become

impossible ; and (which is the same thing), when the circle

in the construction does not meet the line PQ.

149. Prop. When the bodies do 7iot meet, to jind at

what instant they approach nearest to each other.

It appears from the demonstration in Art. 147, that if

any line OD be drawn, and DB parallel to OM, and BA
parallel to DO ; A, B, will be the positions of the bodies

when their distance is equal to OD. Hence their distance

will be least when OD is least. Therefore if we draw Od
perpendicular to PQ, and d6, ha, parallel to OM, OD; we

shall have h and a the positions of the bodies when their dis-

tance is Of/, the smallest possible.

150. When bodies are in motion, influenced by no forces

but their mutual action, there are some remarkable properties

of their center of gravity ; which we now proceed to demon-
strate.

Prop. When two bodies move uniformly in straight

lines, their center of gravity also moves uniformly, and in

a straight line.

Let MO, NO, fig. 143, be the paths; when the bodies

are in any positions, A, B, let G be the center of gravity r

when A is at O, let B be at Q, and the center of gravity

Ht R. Take Bb^QO; .. bO = BQ, hence

OA : Ob :: OA : QB :: velocity of ^ : velocity of 5;

a constant ratio : hence the triangle AOb is similar in all posi-

tions of ^, B. Take^ so that Ag : hg :: B : A, a constant
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ratio; therefore the triangle AOg is similar in all positions,

and the locus of ^ is a straight line. But

Ag : bg :: B : A :: AG : BG; .: Gg is parallel to Bb;

and

Gg : Bb :: AG : AB, or

Gg : OQ :: B : A + B :: OR : OQ ;

therefore Gg is equal and parallel to OR ; and OG is a

parallelogram, RG being parallel to Og. Hence the locus

of G is a straight line. Also RG = Og, is in a given ratio

to OA, and therefore, RG increases uniformly as OA does,

and G moves with a uniform velocity.

It is easy to extend this demonstration to the case when

the bodies are in different planes.

151. The proposition in last Article may also be proved

in the following manner.

First, let the bodies A, B, move in the same straight

line ; and at any time t let .v, x be their distances from a

given point 0. Then the center of gravity Avill be in this

line ; and if g be its distance from O, we have, (Art. 47,)

AoG + Boo'

^" A + B

Now in the uniform motion of A and B, if a and b be

their velocities, and m and m their distances from O at the

beginning of the time t, we have, by Art. 114,

w = m -^ t a, X = m + tb

;

,
Am + Ata + Bni + Btb Am + Bm t(Aa + Bb)

whence it appears that the center of gravity is a point whose

^ ,,.. „, . . Am + Bm'
distance irom O at the begmnnig of the time t is — ——

,

^ . . Aa + Bb
and whose velocity is — —-.A+B
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152. Now, let A and B move in any straicrht lines in the

same plane, and, as befoi-e, let a and b be their velocities.

Through a point O in this plane draw two lines at riglit

angles, to represent the axes of .r and y. Let the direction

of A's, motion make with the axis of x an angle a, and let

the direction of jB's motion make an angle /3 with the same

line : consequently the angles which these directions make
with the axis of y will be i tt - a and -^ tt - /3. Now if a', y
be the co-ordinates of A, and x' , y those of B ; also ^, h

those of the center of gravity ; we shall have, by Art. 48,

Ax + BiV Ay-\^By'

But if the velocity of A be resolved in the directions of

X and y, it will be uniform in these directions ; and its com-

ponent parts will be a . cos. a, a . sin. a. Hence if yn and 71

be the co-ordinates of A when t = 0, we have

X = m + ta . cos. a ; y = n \- ta . sin. a ;

similarly, ,r'= m' +tb . cos. /3 ;
y' = n + tb . sin. /3 ;

m', n\ being the corresponding quantities for B. Hence

Am + Bm' {A a . cos. a + Bb . cos. Q)
ff = h t —

:^ A + B A + B

An-^Bn' (Aa . sin. a + Bb . sin. f^)^^ A + B -"* A^~B
•

From which it appears that g and h are spaces described

with the uniform velocities,

A a . cos. a + Bb . cos i3 , Aa . sin. a + Bb sin. 3
, and ; —— :A+B ' A+B

which velocities are the components, in those directions, of

the velocity of the center of gravity ; which is therefore

uniform, and its motion rectilinear, as would easily be shewn
by compounding the two uniform velocities.

If the paths be not in the same plane, we must take three

rectangular co-ordinates for each of the bodies, and it will

easily be shewn, in the same way as before, that the motions
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of the center of gravity resolved in these three directions,

and of course its whole motion, are uniform.

Cor. 1. The angle which the path of the center of gravity

makes with the axis of ,v has its tangent

Aa . sin. a 4- Bb . sin. /3

J a . cos. a + Bb . cos. /3

Cor. 2. It may be shewn, in the same way, that the

motion of the center of gravity of any number of bodies is

uniform.

153. Prop. The dii'ection and velocity of the motion

of the center of gravity are not altered by the impact of

the bodies.

First, let the bodies move in the same straight line. The
center of gravity will, both before and after impact, move in

this line; and, by Art. 151, the velocity of this center will be

Aa + Bb . Au + Bv
before impact —:

; after impact —: =— •

^ A + B ^ A + B

And by Cor. 2, Art. 138, Aa + Bb - Arc -\- Bv. Hence the

velocity will not be affected by the impact.

Next, let the bodies move in different straight lines in the

same plane. Let them be referred to rectangular co-ordinates

as in the last Article ; and let these be so taken that the

axis of X is parallel to the surfaces which are in contact in

the collision. Then the motion in the direction of x will not

be altered by the collision, by Art. 145. Also the motions

in the directions perpendicular to this will be affected as if

there were no other motions ; and therefore, by what has just

been shewn, the motion of the center of gravity will not be

altered. Since therefore the motion of the center of gravity

in these two directions at right angles to each other remains

the same, this point will manifestly go on describing the same

straight line, and with the same velocity, as before the impact.

If the paths be not in the same plane, the demonstration is

easily extended to tliat case, in the same way as before.
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3. Impact on Planes.

154. When an elastic body impinges perpendicularly

upon an immoveable surface, so as to be reflected, its elas-

ticity is supposed to act according to the same laws as in the

former case ; that is, the velocity with which the body is

reflected is supposed to bear a certain constant ratio to

that with which it impinges, which ratio is independent both

of the magnitude and of the velocity of the elastic body.

Hence we shall be able to determine the result of oblique

impact.

Prop. A body of given elasticity impinges in a given

direction iipon a plane : to find the direction in which it ivill

be rejlected.

It is supposed, as before, that the perpendicular to the

plane at the point of contact passes through the center of

gravity of the impinging body.

Let CD be the plane, and let PA, fig. 144, represent the

velocity of the body before impact ; and let CA be perpen-

dicular to the surface at the point of impact. Draw PM
perpendicular to CA. Then the velocity PA may be supposed

to be resolved into the two PM, MA : and, in the same
manner as in the oblique impact of bodies, the first of these

will not be affected, if we leave out of consideration the

momentary friction during the contact. The body will be

impelled against the plane by the other part of the velocity

MA, and will rebound with a velocity Am, which is to AM
in the ratio of e to 1 ; e being the elasticity between the body
and the plane. Hence if we take mp perpendicular to Am^
and equal to PM, the velocity after impact will be compounded
oi Am and mp, and will therefore be represented in quantity

and direction hy Ap.

CoR. 1. AVhene = 1, or the elasticity is perfect, produce
PM to Q so'that MQ = PM, and AQ will be the motion after

impact.

Cor. 2. The angles which the directions of the body
before and after impact make with the perpendicular to the

plane are called the Angles of Incidence and of Reflexion.

A A
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In the case of perfect elasticity, these angles are PJM, QAM.,
which are manifestly equal.

Cor. 3. In any other case, PAM, /)-4w?, arc the angles

of incidence and reflexion. Now we have

tan. PAM : tan. p J in ::
—— :

~—
AM Am

:: Am : AM, because pm = PM

;

or tan. ang. incidence : tan. ang. reflexion :: c : 1.

CoR. 4. If we join Qp, it will be parallel to AM ; hence

QA : Ap :: sin. QpA : sin. AQp

:: sin. pAM : sin. QAM,

or since QA = PA, and QAM = PAM,

vel. before impact : vel. after impact :: sin. ang. reflexion : sin.

ang. incidence.

Cor. 5. When the body is perfectly inelastic and per-

fectly smooth, it will, after impact, move along the plane

with its lateral velocity ; and

vel. before impact : vel. after impact :: PA : PM
:: 1 : cos. APM,

where APM is the angle which the direction of incidence

makes with the plane.

From the principles of this Chapter we can without diffi-

culty solve such problems as the following.

155. Prob. I. A and B are two bodies whose elasticity

is e : to find their proportion, so that A, impinging directly

upon B, may be at rest after the impact.

By Cor. 5. to Art. 1.S8, the velocity of A after the im-

. iA-eB)a . , ,, ,

; IS —
; and that this may be = 0,

A = eB ; or A less than B in the ratio of e to l,

. (A-eB)a , , ,. , ,

pact is ; and that this may be = 0, we must have
71 "h x>
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This conclusion is independent of the velocity of A, and

might therefore be made a means of trying the accuracy

of the common hypothesis concerning elasticity, by observing

whether, experimentally, in the collision of two bodies which

have this proportion, A remains at rest.

156. Prob. II. A perfectly elastic ball A, strikes ati

equal perfectly elastic ball B which is at rest ; to find the

conditions under which it is possible that after impact they

may strike two given points P and Q respectively. Fig. 14-5.

Join Q with 5, the center of the second ball, and let QB
produced meet the surface of the second ball in c. In order

that B may move in the direction BQ after collision, the

contact must manifestly take place in the point c : and hence

the center J, of the other ball, must be in the line QB pro-

duced. Let a A be its velocity before impact; draw am
perpendicular to Q4; then, since the bodies are equal, the

part mA of the velocity will, by Cor. 2. to Art. 139. be

entirely destroyed. Hence the body A will retain only its

velocity parallel to aw; and, if AP be perpendicular to AQ,
will move in the direction AP.

Since PAQ is a right angle, the locus of the possible

positions of A at the moment of contact is a semicircle on

PQ. If the balls be small, the locus of the positions of B
for which the problem is possible, is nearly a semicircle.

157- Prob. III. In the last Article^ the elasticity of
the balls being imperfect and = e, to find the conditions ne-

cessary to make the balls after impact strike tivo give?i

points P' ayid Q. Fig. 145.

Let aA be the velocity of A before impact; as before,

the center of A must, at the moment of contact, be in QB.
And mA being the velocity in this direction before impact,

we shall find the velocity An after impact in the same
direction by Cor. 4, Art. 138. But by that Corollary we
have, making 6 = 0, An = ^(l - e) . Am . and drawing np
perpendicular to An and equal to am, Ap will be the direc-

tion of ^'s motion after impact, which, by the question, is

to pass through P'.
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Hence conversely, if we join AP', and from any point

p in AP' draw pn perpendicular on AQ., and take Am so

that

, ^
2 An

A?i = ^(l - e) Am^ or A m =
;

"^
1 — e

and draw tno perpendicular to Am and equal to np •, a A is

the direction in which A must impinge.

In this case, the problem is always possible, when the

point A is without the semicircle described on P'Q.

158. Prob. IV. To jind in what direction a perfectly

elastic ball must be projected from a giveti point P, that

after reflexion at a giveti plane DE, it may strike a given

point Q. Fig. 146.

Draw Q\ perpendicular on the given plane; produce it

and make Nq = NQ ; join Pq meeting DE in A ; PA is the

direction required.

Join AQ. The triangles QNA, qNA are manifestly

equal; hence PAD = NAq = N^AQ; and since in this case

the angle of incidence is equal to the angle of reflexion ; the

ball projected in the direction PA, will be reflected in the

direction AQ, and will strike the point Q-

We have here supposed the ball to be a point. If its

magnitude be not inconsiderable, let de be the plane, and

draw DE parallel to it, at a distance equal to the radius of

the ball : DE will be the plane at which the reflexion of

the center of the ball may be supposed to take place.

159. Prob. V. The same things being given, and the

ball being imperfectly elastic, to find the direction in 2vhich

it must be projected in order to strike the point Q. Fig. 147.

Draw QN perpendicular to the plane, and produce it to q,

so that Nq : NQ :. \ : e ; e being the fraction which ex-

presses the elasticity. Join Pq, and this will be the direction

in M'hich the body must be projected. For let Pq meet DE
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ill J, and join AQ; and draw J a; perpendicular to the

plane. Then

tan. PAx : tan. QAz :: tan. AqN : tan. JQN

AN AN ^^^^ ,,
:: : — :: NQ : Nq :: e : \.

Nq NQ ^

Hence by Cor. 3, Art. 15J-, if the body impinge in the

ilirection PA, it will be reflected in the direction AQ, and

will strike the point Q.

If the ball be of finite magnitude, the construction must

be modified as in the last problem.

Con. If PM, perpendicular to the plane, meet QA in

/>, we have, as may easily be shewn,

PM : Mp :: qN : NQ :: 1 : e.

Hence the point A may be found by taking PM : Mp ::

1 : c and joining p Q.

160. Prob. VI. A hall of given elasticity, perfect or

imperfect, is to be projected from a given point P, so that,

being reflected at any number of given planes in a given

order, it may afterwards strike a given point Q. Fig. 148.

Let Z)E, EF, FG be the planes, and let them be pro-

duced when necessary.

Draw QN perpendicular on the last plane, and take

Q.N : Nq :: e : 1.

Draw qn perpendicular on the next plane, and take q7i :

nq' v. e : \.

Draw cin' perpendicular on the next plane, and take q't^ :

n q :: e : 1.

And so on if there be more planes.

Join /V/'', and this will be the direction in which the ball

must be projected.
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For let Pq' meet the first plane in A\ join Aq meeting

the second plane in A'\ join A'q meeting the third plane

in A'\ join A!' Q..

It may be shewn, as in the last problem, that if the body

strike the plane in the direction PA, it will be reflected in

the direction Aq ; that if it strike the second plane in the

direction AA' it will be reflected in the direction Aq\ and

so on. Hence its path will be PAA'A^'Q, and it will strike

the point Q as required.

If the elasticity be perfect, QN and Nq, qn and nq\ &c.

must be equal respectively.

Cor. If we had begun the construction from P, and

made PM : Mp :: 1 : e, &c. we should have got the

same result. Also if we had drawn perpendiculars on some

of the planes beginning from Q, and on others beginning

from P, so as to comprehend all the planes between the two

extremes, we should still obtain the same solution, and the

proof would be nearly the same.
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CHAP. III.

UNIFORMLY ACCELERATED MOTION AND GRAVITY

161. The simplest case of the action of a continuous

force, is when the force is uniform, and acts in the straight

line in which the body moves. We shall consider in the

first place what will be the motion of a body under these

circumstances ; and in the next place to what cases these

conclusions are applicable.

1 . Uniformly Accelerated 3Iofion.

When a body is accelerated in a straight line hy a

tmiform force, the velocity is as the time from the beginning

of the motio7i.

This is already proved in Art. 114.

If / be the accelerating force, t the time from the be-

ginning of the motion, v the velocity, v = tf; therefore v

is as t.

The force is represented by /, the velocity which it

generates in 1 second.*

* If gravity be called 1, of course a force which is F times gravity will be

called F. Let g be the velocity generated by gravity in 1", then Fg will be the

velocity generated by the force F in 1"
; and we shall have

v = Fgt.
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162. Prop. On t/ie same supposition, the space from
the beginning of the motion is as the square of the time.

During the time t, the velocity of a body acted on by

a force / begins from 0, and increases incessantly up to a

certain finite magnitude v. It is manifest therefore that

the space described in any portion of the time, with this

increasing velocity, is less than the space which would have

been described in the same portion of time, if the velocity

had been, during the whole portion, as great as it is at

the end of that portion. Let the time t be divided into 7i

equal portions t, t, &c. so that nr = t. Then by the

last Article, we know the velocities at the end of each of

these portions of time ; and the space which would have

been described if these velocities had been respectively con-

tinued uniform through each portion of time will be found,

by Art. 104, by multiplying the velocity by the time in each

portion. Thus, at the end of

the 1st, 2d, 3d, 4th ...7i^^ of the portions t,

the velocities are /r, 2/t, SfT, \fr,,..nfT.

Hence, if these velocities had been 7iniform through their

respective times r, the space described would have been

in the 1st, 2d, 3d, 4th ...w"',

fr\ 2fT% 3fT-, 4/t^..w/t-^

and the sum of all these is

h' =
1 , because rti = t.

2 2n 2 2n

Now the space which is actually described by the uni-

formly accelerated body, is, as has been said, in each of

these portions, less than the corresponding space just found.
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Hence the whole space described, which we call *, is less

than the sum of all these spaces ; that is,

ft' ff
s < — +•— .

2 2n

But the sum of all the spaces described with the uniform

velocities will differ less and less from the actual space, as

the portions of time are made smaller and smaller, and of

course as their number is made larger and larger ; and by

increasing this number indefinitely, the aggregate of the

spaces described with the successive velocities, approaches

indefinitely near to the space described with the accelerated

motion ; that is

ff ff
s approaches to '— + '-— when n becomes indefinitely large.

ff ff^
Or s = -— *, because the fraction ^— becomes indefinitely

2 2w

small.

Hence s varies as f.

* That tliis is the accurate value of s may perhaps be made more evident as

follows.

The velocities at the beginning of the

1st, 2d, 3d »"' of the portions t,

are 0, /t, 2/t («-1)/t.

Hence if these initial velocities had been continued uniform through these portions

respectively, the spaces described would have been

0, /r^ 2fT^- {n-l)fTK

And the sum of these (an arithmetical progression) is,

, n .
{
u - 1) _^ f-r^ n-> f-r-^n ^ ffi ffi

•

2 2 2»i 2 2n'

Now the space described (s) when the velocity increases continually, is greater

than this. Hence, (combining this with what is said in the text,) whatever be «,

* > -L •— , and .« < "i— + <—
2 2n' 2 ^2n

And as the fraction^ may become smaller than any assigned quantity by increasing

n, this cannot be true except s = -—.

If we had taken gravity for our unit of force, the formula would have been

s = ^Fgf^; or, if m be the space through which a body would fall in 1", s = mF(^.

Bb The
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Coil, 1. In the two equations v = ft, s = ^fi~, we
have four quantities, any two of which serve to determine

the other two. By simple eliminations tve obtain the following

results

;

\

2/

25-

,,^ft = _=^{2fs);

V 2s /2s
* = !.= —= V "T '

2 s

^ t 2s f

AA).

Cor. 2. Since s = ^^y, and tv is the space described in

the time t with the velocity v, it appears, that the space

described by a body uniformly accelerated from rest, is half
the space described in the same time with the last acquired

velocity.

Hence also the space through which the body moves in

the first second is the half of /, because / is the velocity

acquired in l".

Cor. 3. The space described in t seconds = ^ft^ ;

in ^- 1 seconds =^f{f - l)' = ^f{tr-2t+ 1>;

therefore, subtracting, we have

the space in the t^^ second = \f{^t — 1).

The equations in the text may be immediately obtained from the equations

— = /, and -TT =1", putting g for /, and integrating. "U'e have tJius

dv
-j-=9, .-.v^gt;

ds

dt
= v = gt, «=2;

There are no corrections required in these integrations, for, when t-\i, r = 0,

and s -iK
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Hence the space in the 1st, 2d, 3d, 4th, &c. seconds

are J/. 1, ^f-S, J/- 5, 1/.7, SvC. and are as the odd

numbers 1, 3, 5, 7, &c.

163. Prop. Lei a body be projected with a given ve-

locity u, and acted on in the same direction by a constant

force f; it is required to determine the relation of the

space, time, ayid velocity.

It is manifest that if the body is, at a certain point,

moving with a certain velocity, its motion after that point

will be the same, however we suppose the velocity to have

been acquired. Hence the motion will be the same, if we

suppose that velocity to have been generated by the force

accelerating the body from rest. Let the force / generate

the velocity u by acting for a time #', through a space s.

Hence u =ft'. Let the body afterwards continue to be

acted on by the same force, and describe a space s in a

time t ; so as to describe a space s + s from rest in a time

t' + /. Hence we have, by the last Article,

s' + s =y {f + ty- ^^{t'"' + <it' t + 1'),

and, /= \ft''' ;

.-. s=\f{^.t't^t^)=ft't + ye,
but u=ff; .-. s = tu + \f^-

Cor. 1. Since tn is the space which the body would

have described in the time t, with the uniform velocity u,

and ^ff the space through which the force would have

drawn it in the same time ; it appears that the space iii

any time is equal to the space described ivith the velocity

of projection, plus the space described from rest by the

action of the force.

CoR. 2. If V be the velocity at the end of the time t,

V = f (t' + t)= ff + ft = u 4- ft.

Hence the velocity after any time is equal to the velocity

of projection phis the velocity generated by the force : as

is also manifest from the definition of uniform force.
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CoK, 3. We have also, by equations {A),

o»=2/(s'+s); u''=2fs: ,

hence v^ - u^ = 2fs ; v^ = u^ + 2fs.

164. Prop. When a body is projected in a direciiofi

opposite to that in which the force acts, the same formulae

wilt be true as in the last two Articles, s being the space,

and t the titne, from the end of the motion.

In this case the force will diminish the velocity ; and,

since it is unifornij will produce equal decrements in equal

times. In a certain time, the body will be reduced to rest,

and during tliis time, the velocity will go on decreasing by
exactly the same degrees by which it increased when a body

was accelerated from rest. Hence the spaces reckoned from

the end of this motion will be the same as the spaces from

the beginning of the former motion.

Cor. 1. Let the body be projected with the velocity u,

and let f be the time and s' the space in which the whole of

the velocity would be destroyed by the action of the force in

the opposite direction. In a time t let a space s be described

;

then in the remaining time t' - t from the end of the motion

in a direction opposite to the force, there would be described

a space s' ~ s. Hence we have

.s'- - s =^f(f' - ty = \f{t" - 2t't + t') ;

,:s=if(ot't-t')^ft't-^ft%

and since ;/ =ft', s = tu — kft

CoK. 2. Htncc, as in the last Article, the space in any
time is equal to the space described with the velocity of
projection, minus the space described from rest by the action

of the force in that time.
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Cor. 3. Siniilaiiy, the velocity after any time is erjiial to

the velocity of projection, minus the velocity generated hy the

force in that time.

2. Vertical Motion hij Gravity.

165. Gravity, near the earth'^s surface is a uniform

force.

This has already been stated in Article 113«.

When a stone falls from rest by the action of gravity,

its velocity goes on perpetually increasing so long as it falls

freely. The law according to which this acceleration takes

place, is, of course, to be determined from experiment ; and

it is found, that whatever be the material and mass of the

falling body, and the other ciicum stances of the fall, if we
make allowance for the effects produced by the resistance

of the air and other impediments, the velocity generated

by gravity is as the time, and consequently, from what has

been said, that the force of gravity is constant.

This was first asserted by Galileo ; some facts were

adduced by him to prove the hypothesis; and all the ex-

periments which were made afterwards, tended to confirm

it. The motions of bodies which fall freely, are so rapid,

that they cannot be observed with sufficient accuracy ; and

hence some contrivance is necessary which may diminish the

velocity while it preserves the law of the acceleration. This

effect may be obtained in different ways. Instead of allow-

ing the body, the velocity of which we observe, to fall, un-

connected with any other, we may cause it to descend, draw-

ing up another body, or producing rotatory motion in a

mass fixed upon an axis ; by which means the motion will

be so much retarded that it may be measured. Or we
may make the body descend down a very smooth inclined

plane, or other inclined surface ; and by making the inclina-

tion small, the velocity will become sufficiently slow to be

observed. Or we may cause bodies to descend down circular

arcs by hanging them to strings of given lengths, and
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making them swing ; which will be equivalent to letting

them descend down perfectly smooth circular surfaces. This

last method is susceptible of great accuracy. The times of

oscillation of the pendulums depend upon the velocities

with which the bodies move in the circular arcs ; and these

velocities have a known relation to the velocities with which

the bodies would fall perpendicularly, as will be seen in a

succeeding Chapter. Hence, since the times of the oscillations

of pendulums agree with the theory as deduced from the

supposition of constant gravity, that supposition is proved

to be true. In the same way the other experiments confirm

the proposition that gravity is a constant force*.

* The contrivance first mentioned is employed in the machine invented by

Atwood, and an account of experiments made with it may be found in his Trea-

tise of Rectilinear and Rotatory ^lotion, Sect. 7. The descent of bodies down

inclined planes was the method used by Galileo. It does not admit of much
accuracy, on account of the effects of friction, which causes the bodies to roll

instead of sliding, and otherwise affects their motion.

The quantities on which we might expect the variation of gravity to depend,

if it were not constant, might be the situation of places upon the earth's surface,

and their elevation ; the velocity of the body on which the force acts, and the

size and substance of the body. Accurately speaking, it does vary with some of

these. Gravity is a force arising from the attraction of the earth, tending at every

point nearly to its center, and dependent on the distance from that center ; at

different distances from the equator, and at different altitudes, it is perceptibly dif-

ferent if the intervals be taken of sufficient magnitude : and it is only in con-

sequence of the smallness of this variation in any spaces with which we are here

concerned, that we may suppose gravity to be constant and to act in parallel lines.

There are also other variations still more inconsiderable, arising from the irregulari-

ties of the form and materials m the structure of the earth, which in some measure

influence its attraction, from which gravity arises.

In producing the same effect upon a body, whatever be its previous velocity,

gravity differs remarkably from all the mechanical powers which we can exert.

For instance, supposing that by turning a winch with a certain muscular exertion

we could communicate to a wheel a certain angular velocity in 1", we should not add

an equal velocity, if we were to exert the same effort for the next second, because part

of the muscular power must be employed in movmg the hand so as to keep up with

the winch. In the same way, if motion were communicated by a spring, the action of

the spring would be less as the body receded faster from it ; and the body might move
with such a velocity that the effect of the spring should be only just sufficient to

enable it to keep up with the body, and should not at all increase its motion. Gravity,

on the contrary, acts with the same energy, whether the body acted on be at rest, or

moving in the direction of its action, or in a contrary direction.

It was formerly supposed that heavier bodies descended faster than lighter ones in

proportion to their weight. The falsity of this was shewn by Galileo from experiment.
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166. Prop. Gravity is the same in all bodies, tvhatever

be the difference of material or magnitude.

In bodies of different material this was proved by Newton

from experiments upon pendulums : (see Principia, Book III.

Prop. 6 :) he inferred from his observations that all substances

would descend to the earth with equal velocities.

That bodies of the same material and different magni-

tudes would descend with the same velocity, is easily seen.

For if one body be 10 times the other, let the first be divided

into 10 bodies, each equal to the second. If these were all

to fall at the same time from the same point, but separate,

they would descend each with the same velocity as the second

body. Hence if they were supposed to be connected and

united, they would not accelerate or retard each other's

motions ; and therefore the whole mass would still descend

with the same velocity.

167- The intensity of gravity, or the space through

which a body would fall in l", must be determined by ex-

periment. The most accurate observations for this purpose

are those that are made upon pendulums. It will be shewn

hereafter, that, knowing the length of a pendulum which

oscillates once in a second, we can find the space through

which a body would fall in the same time. By the latest

experiments of this kind it appears that in the latitude of

London, and at the surface of the earth, a body would, i7i

vacuo, fall through a space of 193.14- English inches, or

l6j^ feet nearly. Consequently, (Art. l62. Cor. 2,) the ve-

locity generated in that time would in the same time carry

it through 386.28 inches ; and thus this space measures the

velocity generated in l" by gravity, and is therefore the

value of that force, according to the way of measuring

So far as gravity is concerned, the same velocity is communicated to all bodies, what-

ever be their mass ; but in consequence of the resistance of the air, which is propor-

tionally greater on smaller bodies, heavy ones do, in the atmosphere, descend with

greater celerity.



200 UNIFORMLY ACCELF.RATEU MOTION AND GRAVITY.

accelerating forces (Art. 11.3). This quantity will generally

be represented by g.

Hence we can easily solve all questions relating to the

fall of bodies in vacuo by gravity. We have only to sub-

stitute the known quantity g for / in the formulae (A) of

Art. 162 : as is seen in the following examples*.

Ex. 1. To Jind how far a body will fall in vacuo in

2i", and the velocity acquired.

By the first expression for .5 in (J), puttings f»''/i

s = ^gt^= ^ X 32.-2 X (-] feet = 100.6 feet.

By the first expression for the velocity

;

V =gt = 32.2 X -feet = 80.5 feet.
2

Ex. 2. A body is projected upwards with a velocity of
100 feet; to Jind how high it will rise, and in what time it

will reach its greatest height.

By Art. lC4, the height to which it will rise will be the

same as the height down which it must fall to acquire the

velocity. Hence, by the third expression for s in (^),

?r 100^ 10000
•s = — = = = 15,5.28 feet.

9.g 2 X 32.2 64.4

Similarly the time of the ascent is equal to the time of

the descent ; hence, by the first expression for t,

V 100
,

^ .32.2

* The descent of a body iu the atmosphere will be nearly the same as in vacuo,

so long as the velocity is small. But when bodies fall freely through great heights,

the resistance becomes very large, and the effect arising from this may be made to bear

any ratio to the whole.
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Ex. 3. On the same supposition, to find how high the

body will ascend in 2".

Putting g for / in Art, 164., we have

s = tu - \gt'= 2 X 100 - J X 32.2 X 4 = 200 - 6"4.'l = 135.6 feet.

By means of our formulae we can easily solve such

problems as the following

:

168. Prob. I. A person drops a stone into a well, and
after t seconds hears it strike the water ; to find the depth

to the surface of the water.

We neglect the resistance of the air. The velocity of

sound, as appears by experiment, is uniform, and equal to 1130

feet in a second. Now the time between dropping the stone

and hearing the sound, is equal to the time of the stone

falling the depth of the well, together with the time of the

sound rising through the same distance. Let x be this

depth, and n the velocity of sound. Then

time of falline- through
/2x

time of sound''s passage = —

;

n

.1' /^A-

n

2cV , 2 to; cf-

g n 7r

•. .r^ - 2 ( t7i ^ ] X = — t'lr ;

g

n-
X = tn + — ±

g ' \ g
Cc

\ g g I
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The negative sign must be taken*. Also it will be found

that - = 35 nearly -f ;

g

•. ,v = n

= 91 . {t + 35 -^ (jot + 1225) \

.

Thus, let the time t be 3''; then

w = n. {3S - v^l435} = n. {38 -37-88
J

= . 12 7Z= 138.6 feet.

169. Prop. When two bodies hang over a fixed puUy,

to determine their motioti, iieglecting the inertia of the pully

and the string.

Thus let two unequal bodies p and q, hang over a pully

as in fig. 136 ; {p corresponding to P + ^ and q to B). Let p
be greater than q. If p were equal to q, it would just

balance q, and there would be no motion ; the weight which is

employed in producing motion is the excess of p above q,

or p — q. Also the two bodies move with equal velocities,

and hence the mass in which motion is produced is _p + ^•

The accelerating force is therefore equal to multiplied

into some constant quantity. (Art. 125.)

• For /, the whole time, must be greater than the time of the sound's motion,

which is

.r ^ n / /2tn n-\
-

, or < + - ± V —- + — •

But t is not greater than /+ - + \/ {. 1—
- ) with the positive sign.

ff \ ff g'l

11
-|- If »i be equal to 1127 feet, — is accurately equal to 35. The values generally

g
taken for n have been 1142 and 1130 feet. Kecent experiments would seem to shew

that at the usual temperature of the air, the velocity is less ; but the determinations

are too various to entitle us to fix upon any particular value. See Trans, of Camh. Phil.

Soc. Vol. II. Part I. p. 120.
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p — fJ

Let the accelerating force f= c: and when r/ = 0,

or p descends freely, the force is g. Therefore c = g. Hence

p — Qm other cases/= .g: which agrees with Ex. 2. Art. 126.

p + q

By substituting this value for / in equations (A) we can

find the circumstances of the motion in any given case.

Ex. Supposbig p = 81 ounces and q = 80 ; to find the

space descended by p iw l", and the velocity acquired.

s = l^Pjllf = 16.1 ^ X 1^ = . 1, or ,4. of a foot.
2 p ^ q 161

'10

V — q 1

V = g . - 32.2 X —:- = . 2, or 4- of a foot.
p+q 161

•'

If instead of p drawing q vertically upwai'ds, p draw q
along a horizontal plane ; as for instance, if q be laid upon
a perfectly smooth table, and p, connected with it by a string,

hang over the edge of the table ; the whole weight of ji is

employed in producing motion ; and, as before, the two bodies

move with the same velocity, and therefore may be considered

as one mass p + q- Hence the accelerating force

/•= J^
p+q'

3. Motion on Inclined Planes.

170. Prop. To find the force which accelerates a body

down an inclined plane.

When a body q is supported on an inclined plane whose
height and length are h and I respectively, by a force p, acting

parallel to the plane, we have, by Art. 38, Cor. 2,

p : q :: h : I; .-. /^ = y
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Hence, when q is not supported, — is the pressure which it

exerts along the plane, and which is employed in producing

motion. Also if the body be suffered to descend by its weight,

the mass moved is the body q itself*. Therefore, by Art. 12fi,

the accelerating force will be proportional to - or - ; and, as in

hg
last Article, equal to — . By substituting this value for /" in

equations (^), we obtain the circumstances of the descent of

bodies down inclined planes.

Also if the body descend down the whole length of the

plane, I may be put for *.

By this means, from the first value of 5 in {A), we have

1 gh ,, o
2Z- /2l'

Also by the third expression for the velocity,

Since this expression for the velocity is independent of

the length, it appears that the velocity acquired down all

planes whose perpendiculai' heights are equal, will he the

same ; and equal to the velocity acquired by falling down the

perpendicular height. This principle was assumed by Galileo

as the basis of his reasonings on inclined planes.

Cor. If a be the inclination of the plane to the horizon,

- = sm. a, and ^sm. a is tlie accelerating force upon the plane ;

t

which may be substituted for / in the formula? {A).

* The plane is supposed to be perfecthj smooth, so as to exert no resistance to

motion along it ; in which case the body q will slide, and not roll, down the plane,

even if it be spherical in its form. In actual cases the friction is almost always great

enough to produce rotatory motion in round bodies. This circumstance changes the

value of the accelerative force, as may be shewn hereafter.
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Ex. A smooth pkme, 10 feet long, has one end 1 foot

higher than the other : tofind the time of a body sliding down
it, and the velocity acquired.

By the formula just obtained,

/2/- /200 10
t = \/ — = \/ = — , nearly, = 2^ .^ gh ^ 32.2 4 ' "

' 2

Also V = \/{2gh) = ^/ (64.4) = 80.2 feet.

171. PuoB. II. A right-angled triangle being jdaced

with its two sides horizontal and vertical respectively, it is

required to determine their proportion, so that the time of
the body falling doivn the perpendicular and describing the

base with the velocity acquired, may be equal to the time

of descent down the hypotenuse.

Let x and y be the vertical and horizontal sides re-

spectively ; therefore the hypotenuse will be = '\/{v' + y-).

And by formula {A),

/'ice
time down x = \J — ; velocity acquired = '\/{2goc) ;

time through y = y

Also by last Article, .i' and \/(.i- + y') being the height and

length on an inclined plane,

, , ,
/2(a-^ + 2/^)

time down the length = \/

Hence \/ = \/ — +

gx

y

gx g ^ {2gr)

"

2(3?- + y-) ^ 2j; 2^ y-

gx g g 2gx^

.'. 4.f- + 4?/^ = 4cr^ + ^xy + %f ;

squaring, — = — + "T + o

.1" o
3y = 4.r, or - = -
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Hence also ^ = - ; and the sides of the triangle

y 4

are as 3, 4, and 5.

172. Prop. To find the accelerating force, when a

heavy hody draws another along an inclined jilane.

Let, in fig. 4-6, the weight W{= q) be fixed to a string

WC, which is parallel to the inclined plane on which the

weight rests, and, passing over a fixed pully at C, has a weight

p appended to it and hanging freely. If p = —
; p and q

will balance. And if p be greater than this value, it will

descend and draw q up the inclined plane. If p be less

than the value just mentioned, q will descend down the in-

clined plane and draw up p. In both cases the accelerating

force will be constant.

AVhen jj draws up q, the part — of p is employed in sup-

porting q, and the remainder, p -— , is the pressure which
L

produces motion in the two bodies p, q. And these two

bodies move with the same velocity. Hence the accelerating

force in this case is

qh

I pi — qh

p + q pi + ql

and by substituting this value for/ we can apply our formulae.

Prob. III. The notation remaining, to find the time in

which p will draw q up the given platie whose length is 1 and

height h.

We have, as before, I = Iff = ^^izl^
.^

pi + ql 2

^ g{pi-qh

* Prop. On, the same supposition, h, p, and q being given, to find 1 so that the

time of drawing q up it may be the least possible.
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173. Prop. If a circle he 'placed with its plane ver-

tical, the times of descent down all chords drawn through the

highest or lowest points are equal.

Let ABP, fig. 149, be a circle, and AB a vertical dia-

meter. Let PA he any chord drawn through A. By
Article 1 70, we ' have

time down AP . ^'^'^
g.AM

. . -1 . , AP AB AP' ^_
but by similar triangles —-- = —— ; .•. —-77 = AB

;

^ ^ AM AP AM
/2AB

.•. time down AP - \/ •

g

This is independent of the position of P : and hence the

times down all chords AP, Ap, &c. are equal; and of course

equal to the time of falling freely down AB.

In the same way it may be shewn that times down all

chords PB, pB, &c. are equal.

CoR. Also we have

velocity acquired down AP =\/i2g. AM; (Art. 170.)

AP^-
and as before AP~= AM . AB ; .-. AM = -7^;AB

.-. velocity = \/~j^ = APV^ .

We must have the above expression for t a minimum, and therefore its square a

minimum ; and it will also be a minimum if we omit the constant factors 2{p +q)
and g. Hence

I- . pi-nil—- ;=:mni. ; .-. —
^,., -=niax.

pl — qll I-

fj — L- = max. ; .*. differentiating — ,- + -,„— = ;

I t- I- I''

l^2qh
~ P '

Here 79=—^—; that is, p is twice as great as it is for equilibrium.
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And as g and AB are constant, the velocities acquired down
planes AP, Ap, ^-c. are as the lengths AP, Ap, &c.

174. Prop. Let APB, AQC, Jig. 149, he two circles

with their diameters in the same vertical line AB, and with

the highest point common ; Apq, APQ any chords : the times

down PQ, pq from rest at P and p are equal.

On BC describe a semi-circle
; join CQ, meeting this semi-

circle in i?; join BR. The angles APB, AQC, BRC are

right angles, and therefore AQ, BR, and PB, QC, are parallel.

Hence PBRQ is a parallelogram, and BR is equal and pa-

rallel to PQ ; and hence the time down PQ is equal to the

time down BR. Similarly if Br be drawn parallel to pq, the

time down pq will be equal to the time down Br. But the

times down BR, Br are equal ; therefore the times down PQ
pq are equal.

Cor, Similarly, if two circles touch each other at the

lowest point, and chords be drawn through this point ; it may
be shewn that the times down those portions of the chords

which are intercepted between the circles are all equal.

4. Planes of Qnickest and Slowest Descent.

175. There are a number of Problems concerning the

planes on which bodies Avovdd descend between given points,

lines, and circles, so as to employ in their descent the longest

or the shortest time possible. The constructions and demon-

strations are very nearly similar for all of them, and the

student will have no difficulty, after one or two specimens,

in making out the rest. We shall give the Problems with

their constructions, and the demonstrations in some of the

most important cases, which will suggest them in the others.

It is required to find the plane of shortest descent.

Prob. IV. From a giveti point ¥ to a given straight

line AB, Jig. \50.

From the given point P draw a horizontal line meeting

the given line in A. Take AQ doivnwards along the given

line, and equal to AP: PQ will be the plane required.
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Prob. V. From a given straight line AB to a given

point P, Jig. 1 50.

Draw PA as before; and along the given line measure

a distance upwards from A, equal to AP ; the line joining

the extremity of this distance with the point P is the plane

required.

Prob. VI. From a given point without a given circle

to the circle.

Join the given point with the lowest point of the given

circle : the part of the joining line which lies without the

circle is the plane required.

Prob. VII. From a given circle to a given point with-

out it.

Join the given point with the highest point of the given

circle: the part of the joining line which lies without the

circle is the plane required.

Prob. VIII. From a given point within a given circle

to the circle.

Join the given point and the highest point of the circle:

the part of the joining line produced which is between the

point and the circle is the plane required.

it.

Prob. IX. From a given circle to a given point within

Join the given point and the lowest point of the circle :

the part of the line produced which is between the circle

and the point is the plane required.

Prob. X. From a given straight line (RM, ^^^ 151,)

without a given circle (ASB) to the circle.

Through 5, the lowest point of the circle, draw BM hori-

zontal. Take MR upwards equal to MB, and join RB
RS is the plane required.
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Prob. XI. From a given circle to a given straight line

without it.

Draw a horizontal line through the highest point of the

circle, terminated by the given line ; and take dotvnwards along

the given line a distance equal to this horizontal line. Join

the extremity of this distance with the highest point : a

part of this joining line is the plane required.

Prob. XII. From a given circle to another given

circle ivithout it.

Join the highest point of the first circle with the loiv-

est point of the second : the portion of the joining line

which is between the circles is the plane required.

Prob. XIII. From a given circle to another given

circle within it.

Join the lowest point of the first circle with the lowest

point of the second : the part of the joining line produced

which lies between the two circles is the plane required.

Prob. XIV. From a given circle within another given

circle to the other circle.

Join the highest point of the first circle with the highest

point of the second : the part of the joining line produced

which lies between the two circles is the plane required.

It may also be required to find the plane of longest

descent ;

—

Prob. XV. From a given point ivithont a given circle

to the circle.

Join the given point and the highest point of the circle

:

this joining line, produced till it again meets the circle, is

the plane required.

Prob. XVI. From a given cirple to a given point

without it.
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Join the given point and the lowest point of the circle :

this joining line, produced till it again meets the circle, is

the plane required.

Pros. XVII. From a given circle to another given

circle without it.

Join the lowest point of the first circle with the highest

point of the second : the joining line, produced both ways,

till it again meets the circumferences, is the plane required.

The plane of longest descent cannot be determined in

any case when there is a possibility of drawing a horizon-

tal plane under the conditions : for as the plane approaches

to this position, the time of descent increases without limit.

Also the plane of shortest descent cannot be determined in

any case when the circles, &c. between which it is to be

drawn, intersect each other : for by bringing the extremities

of the plane near this point, we may diminish the plane

and the time down it indefinitely.

176. We shall now give the demonstrations of Prob. 4,

Prob. 7, and Prob. 12.

Demonstration for Prob. 4. Fig. 150. Draw PO vertical

and QO perpendicular to AQ. Since AQ was taken equal to

AP, the angles AQP, APQ are equal. Also APO, AQO are

equal, being right angles. Hence OPQ, OQP are equal,

and therefore OP, OQ. With center O and radius OP
describe a circle, which will pass through Q, and there

touch AQ : also P will be the highest point. Draw any

line Pr, meeting the circle in q. Now by the last Article

the time down Pq is equal to that down PQ ; hence the

time down Pr, which is greater than that down Pq, is

greater than that down PQ : and as this is true for every

line Pr which does not coincide with PQ, the time down
PQ is the shortest.

Demonstration for Prob. 7. Fig. 151. P being the

given point and AB u vertical diameter of the given circle,

AP is joined, and QP is the plane required. For C being
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the center of AQB, let CQ meet a vertical line PO in O.

The angles OPQ, QAC, CQA, OQP are equal: hence OP,
OQ are equal. With center O describe a circle PQ, which

will touch AQB. As before, the time down QP may be

shewn to be less than the time down any other plane rP.

Demonstration for Prob. 12. Fig. IS'-I. AB, ah being

vertical diameters of the given circles, ^6 is joined, and PQ
is the plane required. It appears from the demonstration

for Prob. 7, that whatever be the point to which the plane

is drawn, it must pass through the highest point A of the

first circle, in order that the time may be less down the

plane than down any other plane from the first circle to the

point Q in the second. Hence, we liave to determine down
which of the planes pr, which produced pass through the

point A, the time is least. The center of aQh being c, let

cQ meet AB in O, and as before OA, OQ are equal. With
center O describe a circle AQ. Then it follows from Cor. 1,

to Art. 174, that the time down PQ is equal to the time down

pq, and therefore less than the time down pr. Hence PQ is

the plane of shortest descent of all that pass through A ;

and hence, by what has been said, of all that can be drawn

from one circle to the other.
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CHAP. IV.

TJIE MOTION OF I'KOJECTILES.

177- When a body is projected in any direction, not

vertical, and acted upon by gravity, it will describe a curve

line. The nature of this curve may be deduced from the

principles laid down in Chap. I. It follows, from the

second law of motion, that if a body be projected in the

direction AR, fig. 153, with any velocity, and if, in the

time in which it would describe AR with this velocity

continued uniform, it would, by the action of gravity, fall

through the space Am from rest; its place at the end of

this time will be P, so situated that RP is equal and

parallel to Am.

It appears from this that the motion of the body will

be in a vertical plane.

178. Prop. A body is projected from a given point,

in a given direction, with a^given velocity; it is required

to find xohere it will strike the horizontal plane passing

through the point of projection.

In fig. 153, let A be the point, AT the direction of

projection, and APH the path ; AH being horizontal. Let

TAH, the angle of projection, = a ; the velocity of projection

= V ; and the time of describing APH = T. Then for the

reasons mentioned in the last Article, in the time T, ^7^ would

have been described uniformly, and TH would have been

fallen through by the force of gravity. Therefore

AT = T . V, sinA TH = \gT\ (Art. 162.)

Also TH = AT . sin. a, or ^gT'= T .V. sin. a ;
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2 F sin. a

Hence AT = T . V =

g

2 V^ sin. a

g
2 V'^ sin. a cos. a V"^

,^^ = AT . cos. a = —— = — sin. 2a.
g g

The distance AH is called the range^ and T is called

the time ofJlight of the projectile.

Cor. 1. If # be any other time, in which the arc AP
is described, and if RPM be vertical; AR = V .t, RP = \gf,
and

PM = MR - RP= F# sin. a - \gf.

Also AM = Vt COS. a ;

and therefore the point M moves uniformly in AM.

V sin. ct

Coil. 2. Let t = ^ T = '-— , and let F in the figure

g

be the corresponding place of the body ; then we have, by

Cor. 1,

F^ sin.^a F'^sin.^a F^sin.^a
PM or VG =

g ^g ^g

Cor. 3. Let t be greater or less than ^T. Suppose

1 ^ / . V sin. a ,

t = 1T{1 ± m) = (1 ± m),
g

Then by Cor. 1,

„,, F"sin."a^ ^ F" sin.-a
^PM = (1 i m) — (1 i mV

g "^g

Sin. a
= (l - m^\.

2g >

Hence it appears that PM is greatest when m — 0, that is,

wlien t-\T; or the greatest height VG occurs in the

middle of the time of flight.
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Cor. 4. It appears also that for equal values of w,

whether they be positive or negative, we have the same

value of PM ; hence on the two sides of the highest point

F, the points P, P\ corresponding to equal times from F,

are at the same height above the horizontal plane.

Also equal distances GM, GM', correspond to equal

times from F(Cor.l.). Hence the curve consists of two equal

and similar arcs from V to A^ and from V to H.

179- Prop. Oji the same suppositions, it is required

to Jind where the body will strike atiy given plane passing

through the point of projection.

Let the body be projected in the direction AT, fig. 154;

and let AQhe the line in which the vertical plane passing

through AT meets the given plane; AH horizontal. Let

TAH=a, QAH=i; .: TAQ=a-i.

Also let T be the time of flight in AQ; R the range

or distance AQ; V the velocity of projection. Hence, as

in last Article,

AT= T. F, TQ = ^gT'.

But by Trig. QT : AT :: sin. QAT : sin. AQT,

and sin. AQT = sin. AQH = cos. QAH.

^^ .^ sin. QAT ,^ sin. QAT
Hence QT = AT .

-—-^ = AT . ;

sin. AQT COS. QAH

COS. I g COS. I

JT= TV- -^^' /'"-("^'O

g COS. I

Again AQ : AT :: sin. ATQ : sin. AQT.

And sin. ATQ = cos. TAH ; sin. AQT = cos. QAH, as before;
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. AQ-AT ''"^'^'^
AT "^^lliE.

2V~ sin. (a — t) cos. a 2 F' sin. (a — i) cos. a
or B =

g COS. I COS. t ^ COS.^ I

180. Prop. T^o Jind in what direction a body must

be projected with a given velocity, that its range upon a

given plane may be the greatest possible.

On a horizontal plane, the ranffe = — . sin. 2a.
g

This will be greatest when sin. 2 a is greatest, that is,

when 2a = a right angle, and a, the angle of projection,

= half a right angle.

_ . , , 1 ,
V^ 2 sin. (a - 1) cos. a

On an inclined plane, the range = — . ; .

'

g COS."^ I

Since t is constant, the range will be greatest when

2 sin. (a — t) cos. a

is greatest. But

2 sin. (a - t) cos. a = sin. {a + (a - i)} - sin. [a - (a — i)}

= sin. (2a — t) — sin. t

:

which, since i is constant, is greatest when sin. 2a — t is

greatest; that is, when 2a -i is a right angle; or,

2 a — i=— ; •'. a = -k \
—

\- i

2 \2

... a _
t = 1 f^ _ , ^ or TJQ = 1 ZAQ; AZ being vertical.

Hence in this case AT bisects the angle ZAQ,-

CoR. Hence, on the inclined plane, the greatest range is
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V^ 2 sin. (a — t) cos. a V^ c • . . • >

= — . ^^^-

—

--^ = — {sin. (2a - i) - sin. i\

g COS.^ I g COS."^ I

V ( . TT . ] F- (1 - sin. i) V^
- ism. sin. I > = ; -. T-— = —. ;

: .

g cos.^ I \ 2
] g\} - sin- g\^ + sm. t)

181. Prop. To e.vpress the formulce for 'projectiles in

terms of the height due to the velocity of projection.

The height due to the velocity of projection is the

height down which a body must fall so as to acquire that

velocity. Let h be this height : then V~ = 2gh ; h = — ,
—

= 2A ; and by the preceding Article we shall find,

On a horizontal plane,

Range = 2 A sin . 2a.

/^h
Time of flight = \/ — . 2 sin. a-

Greatest height = h sin.'* a-

Greatest range = 2h.

On an inclined plane,

^ , sin. (a - i) COS. a
Range =4A ^^

^
cos.' I

2h

COS. I

{sin. (2a - i) - sin. /}.

,. n- . A A 2 sin. (a - i)
Time of flight = V — . ^^

Greatest range =

g cos. *

2h

1 + sm.t

182. Prop. The curve described by a jyrojectile is a

parabola, and the velocity of the projectile at any point is that

acquired by falling from the directrix of the parabola.

Ee



218 THE MOTION OF PROJECTILES.

In fig. 1.53, AR = V.t, and RP = \gf\

JR'' 2 V'
.•..^^ = = 4A: and AR^=4h.RP;RP g

or, Am being vertical, and mP parallel to AR^

{mPy= 4^h.Amr.

Hence the curve AP is a parabola, of which Am is the

abscissa, mP the ordinate, and 4h the parameter.

If AC be taken in mA produced, = one-fourth the para-

meter at A, and CK drawn at right angles to AC, CK will

be the directi'ix of the parabola. And one-fourth the para-

meter at A is h, the height due to the velocity.

Hence the velocity at the point of projection A is equal

to the velocity acquired in falling from the directrix. Also

the velocity at any point P will be the same as if P were

considered as the point of projection. Hence at any point

the velocity is equal to that acquired in falling down DP,
the distance from the directrix.

CoK. 1. It is manifest that AR will be a tangent to

the curve at the point A. Now the tangent to the para-

bola makes equal angles with two lines, the one drawn to the

focus, and the other perpendicular to the directrix. Hence

if we make the angle RAS = RAC, the focus will be in

the line AS.

Also the distance of a point from the focus is equal to

its distance from the directrix. Hence if we take AS = AC,

S will be the focus.

Cor. 2. To find the principal parameter or latus rectum

of the parabola.

If we draw SK perpendicular to the directrix, and bisect

SK in V, V will be the vertex of the parabola: and iSV or

2SK will be the principal parameter. Now



THE MOTION OK I'ROJECTILES. 219

SK = GK^GS= AC + AS. cos. SA m = AC - AS . cos. SAC

= AC -AS. COS. 2 TAC = AC {i -cos.2TAC}

= AC . 2sin.^ TAC, by Trigonometry;

.-. the principal parameter = 2^A'= 4^C . sin.^ TAC = 4/t cos.'^a.

183. Prop. To find an equation to the curve referred

to horizontal and vertical co-ordinates.

In fig. 153, let AM = x, MP=y; t any time; the rest

of the notation as before.

AM = AR . COS. a ; ox x = V . t . cos . a ; -. t =

RP-hgf =1 0./2- - ^

V. COS. a
'

sx^

^^ 2F-cos.2a*

Also MR = AM . tan. a. And J/P = MR - RF ;

.'. y = ,r tan. a —
2 F^cos.^a

the equation to the curve.

y2
Cor. 1. If, as before, h= —

,

2g

x^
y = X tan. a —

4Acos.^a

Cor. 2. To find where the curve meets the horizontal

plane.

For this point we must have y = ;

x~
.'. X tan. a ; ;— = 0.

4«cos. a

This gives two values; viz. x=0, which belongs to the

point A ; and

'^'
1

tan. a ; —- = 0, whence
4« cos,''

a

X = 4^ tan. a . cos.^a = 4 A sin. a . cos. a = 2h sin. 2a ;

which agrees with Article 181.
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184. Paop. To find the angle which the curve makes

with the horizon at any point.

The horizontal velocity with which P, or M moves is

always the same, and is = Fcos. a.

The vertical velocity of P is the velocity with which

MP, or MR — RP, increases : that is, it is the velocity with

which MR increases minus the velocity with which RP in-

creases. The former of these velocities is V sin. a ; the latter

is gt, by last Chapter. Therefore the vertical velocity is

Fsin. a — gt. Hence if <p be the angle which P's path makes

with a horizontal line

vertical velocity Fsin a — gt gt
tan. = :

= 1—.— = = tan. a
^ horizontal velocity Fcos. a Vcos.a

= tan a - ~—~ (Art. 183.) = tan a -
V~ cos.^ a 2h COS.- a

Cor. To find the point V when the height of the pro-

jectile above a given plane AQ is the greatest. Fig. 154.

At this point it is evident that the dii'ection of the mo-

tion must be parallel to ^Q; hence tan. = tan. t;

,r

.•. tan. I = tan. a —

= tan. a — tan. i =

2 h COS." a

sin. a .sin. i

2 A cos. ^ a cos.fx COS. £

sin, (a - t)

AL = ,f = 2/*

COS. a COS. I

sin. (a — t) COS. a

COS. I

xj 4/-1 ^^ - sin. (a - t) COS. a
Hence AG = = 2h ^^ ~ .

COS. I COS.~ I

By comparing this with the value of AQ, the range,

Art. 181, it will be seen that AG = ^AQ.
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185. Prob. I. A body is to be projected from a given

point with a given velocity so as to strike another given

poijit : to find the direction of projection. Fig. 154.

Let Q be the point to be struck ; then AQ and the angle

QAH are known as before. Let AQ = R, QAH = i. Then
by Articles 179 and 181 ;

„ 2V~ sin. (a — t) • COS. a 2/i .
. ^ . . ,R= . ^ ~ = —7- • {sin. (2a -i)-sin.t ;

g COS"^. I COS.'^ I ^
'

R COS." t

.-. sin. (2a - i) = h sin. t.

2/i

When the problem is possible, this equation will neces-

sarily give a value of 2a - t less than Itt ; let this be 9 : then

since the sine of tt - is the same as the sine of 9, the equa-

tion will also be satisfied if tt - be the value of 2a - t. Let
a, a" be the two values of a ; that is, let

2a'-i = 9; 2a"-i = 7r-9;

, 9+1 „ TT — 9 + I

or a =
, a =

.

2 2

Both these values are comprehended in the formula

If AI bisect the angle QAZ, lAH = ^ + 1 /^ - t^j

= 4(^ + • Hence, if, in fig. 154, TAH, tAH be the two

values of a given by the formula, AT and At, which are the

required directions of projection, make equal angles with AI.

We can easily find the limits within which this problem
is possible. It is impossible if sin. (2 a - t) be greater than
1 ; that is,

. R COS.- 1

11 ; h sin. t> 1 ;

2/i

which may happen either from R becoming too large, .or from
V, and therefore A, becoming too small.
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This problem might likewise have been solved by putting

the known values of AN., NQ for cc and y in the equation to

the curve, Art. 183; by which means a, which determines

the direction of projection, will be the only unknown quantity,

and may be found.

It is easy also to obtain, from the properties of the para-

bola, geometrical constructions, which shall satisfy the ques-

tion.

186. Prob. II. A body is projected in a given directiofi

with given velocity, from the summit of a hill whose form is

an upright paraboloid : tojind where the projectile will strike

it. Fig. 155.

Let AQ be the section of the hill which is in the vertical

plane of projection ; AQ is a parabola ; and if we refer the

curve AQ to horizontal and vertical co-ordinates .i', y, its

equation will be, if b be the parameter,

y being negative, because ordinates measured upwards are

positive. At the point Q where the projectile strikes the

hill, the parabola AQ and the curve of the projectile must

have the same co-ordinates. Hence, equating this value of

y with that of the ordinate to the curve APQ, Art. 183,

we have

— — — X tan. a —
b 4th COS. a

= tan. a ;

4A cos.' a b

4tbh sin. a . cos. a

b — ^h cos.^ a
X =

2bh sin. 2a

6 - 4/i cos.^ a
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If 4A cos.^ a = b, or 2 V- cos.- a = hg, x is infinite, and

the projectile never meets the parabola. In this case, by

Art. 182, the two parabolas have equal parameters, and are

parallel. If b be less than this value, the parabolas diverge,

and never meet.

In the same way we may find where a body, projected

under given circumstances, meets any curve, given by an

equation between its co-ordinates

187- Prob. III. A body is projected from a given

point with a given velocity : to find the direction, that it

may just touch a given plane. Fig. 155.

Let Bb be the intersection of the given plane with the

vertical plane of projection; Bb must necessarily be above A.

Tjet AB = b, and the angle ABb =
fi. Hence the equation

to the line Bb is

y = (,r 4- h) . tan. /3. Also for the path of the projectile,

y = w . tan . a —
ihcos.' a

And .since at the point P, where the projectile touches the

plane, we must have the co-ordinates common, we have

(x + b) tan. fi = x . tan. a —
4 h COS.- a

Also since the curve and the line touch at P, we must
have the tangent of the angle which they make with the

horizontal line the same for both. Now for the straight

line Bb this tangent is tan. (3 ; and for the path of the pro-

jectile it is (Art. 184)

= tan. a —
2 h cos.'^ a

Ilencc tan. (.i = (an. « r-

—

t-
2h cos.''

a
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From this equation, .v = 2/< cos.- a (tan. a - tan. ^),

2h . COS. a . sin. (a - jS)

COS. /3

which substituted in the former equation, or in

a~
h . tan. (5 = -t' (tan. a - tan. (5)-

A'h cos.'^a

X . sin. (a - /3) .v'^

COS. a cos. /3 4 /i cos.^ a

ffives /> . tan. Q = —7, . sin.^(a - /3) —7, . sin.^ (a - /3)
cos.'^ p COS.- /i

'*
sin.^ (« - ^).

cos.^/3

. , ^, (6sin.i3cos.i3)'^ ib sin. 2By
Hence sin. (« - /3) = ± ^

^-j ^-^ = ± J —Tl
.

^ '^
h^ \ 2 ft. j

It appears from this, that there are fivo directions which

answer the condition: and if A a be drawn parallel to Bb,

these directions make with A a equal angles a AT, a At.

In nearly the same way it may be shewn how to make
the path of the projectile touch any given curve.

188. Prob. IV. Several bodies being projected in dif-

ferent directions with the same velocity from the same point A:
to find the locus of them all at the end of a given tim^e.

Fig. \56.

Let AR, AR', AR" be any directions in which the bodies

are projected. If AR = AR' = AR", be the space which the

bodies would describe in any time with the uniform velocity of

projection, and RP = R'P'= R"P" the space through which

a body would fall by gravity in the same time ; it appears

by what has been said, that P, P', P" will be the places of

the bodies at the end of this time.

Let AM be vertical and = RP. Hence MP = AR, MP'=
AR', MP" = AR". Therefore MP = MP' = MP'. Hence

P, P', P'' are all in the circumference of a circle whose center

is M and radius MP. The center of thi^ circle descends
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according to the laws of a falling body, and the radius in-

creases uniformly.

Coil. If the projections take place in different vertical

planes, the bodies will, at any time, be situated in the surface

of a sphere.

189. Pbob. V. On the same supposition, to jind the.

locus of the vertices of the parabolas described, Jig. 157-

Let V be the vertex of any one of the parabolas ; JU = p,
VU = q, vertical and horizontal co-ordinates. It is manifest

that UV = AG = ^AH, AH being the horizontal range ; and

AU = GV, the greatest height above the horizontal plane.

Hence if h be the height due to the velocity of projection,

« the angle which the direction of projection makes with the

horizon, we have, by Art. 181 ;

q = h . s\n 'ia = 2h . sin. a . cos. a ; p = h . sm!^ a ;

P ^ > • I
.'. sin.^ a = 7 ; (f = 4-h~ . sin. a . cos.- a

h

- ^h^ . sin.- a • (l - sin.^a)

= 4^- . ,

h

= 4 . {hp - f).

And if A = - ; we shall have A = S/c, 4, 4 = — ; whence
2 /p-

I 2

q' = j-r,{2kp - p-):

which is the equation to an ellipse whose minor axis is

2k = AC, the height due to the velocity of projection; and
whose major axis is 2h, horizontal, and double the former.

190. Prob. VI. Planes AQ, AQ', AQ", being draivn

in eiiery direction from the point A, and bodies projected

from A with a given velocity, at such angles that the ranges

on each of these planes shall be the greatest : to find the

locus of all the e.vtreme points, Q, Q', Q". Fig. 157-

Ff
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By Art. 181, if i be the angle HAQ, we have

2^ 2h . ^ j^ ^AQ = ;— = putting CJQ = 0.
1 + sin. I 1 + COS. d

And this is the equation to a parabola whose parameter

is 4 A. Hence Q, Q', Q" is a parabola with focus A.

Cor. 1. This parabola circumscribes all those described

by projectiles from the point A with the velocity V = ^y(2gh).

For these parabolas will meet any point in this curve ; and

they will reach no point without it, as would be clear by

joining such point with the point A.

Cor. 2. It has been seen that AR bisects the angle

CAQ: hence the focus S, of AVQ, is in ^Q ; and hence the

parabolas AVQ, CQ have a common tangent at Q, for the

tangent must bisect the angle AQq, Qq being parallel to the

axis. Hence the parabola CQQ'Q" touches all those described

by projectiles from A with the velocity V.

CoR. 3. If the bodies be projected in different vertical

planes, their paths will all be circumscribed by a parabolic

conoid, formed by the revolution of QA round CA.
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CHAP. V.

MOTION UPON A CURVE.

191. When a body is compelled to move along a curve,

it is acted on at every point by the re-action, which is per-

pendicular to the curve, and therefore to the direction of

the body's motion. Hence this force neither accelerates nor

retards the body. To determine the velocity of the body,

we must take the resolved part of the force in the direc-

tion of the curve, and consider the effect produced by this

resolved force.

Pkop. If a body descend doivn any curve by the action

of grai'ify, the velocity acquired at any point will be the

same as if the body had descended down the same vertical

space falliyig freely.

In fig. 158, let a body which has any velocity at P descend

down the curve PQ to Q. Let PJ/, QN be horizontal lines

meeting a vertical line in M and N ; and let a body, which

has at ill the same velocity as the body at P, fall to N. The
velocity of the body falling freely at N will be equal to the

velocity of the body descending on the curve at Q.

Let the arc PQ be divided into small portions PP\ P P'\

&c. and let MM', M'M", &c. be the corresponding portions

of 3IN. Suppose the force which accelerates the body down
the curve to be uniform throughout PP', and equal to its

value at P ; uniform through P'P' , and equal to its value

at P; and so on. Then the velocity thus acquired at Q
will approach to that acquired by the real action of the force

down PQ, as the portions PP' &c. become smaller and more
numerous.
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Let PT be a tangent at P meeting MP' in T; and TG,
a perpendicular at T meeting the vertical line PG. If PG
represent the force of gravity at P, this force may be resolved

into PT, TG. Of these, TG is counteracted by the re-action

of the curve, and PT is the force which accelerates the body's

motion along the curve at jP. If ^ be the force of gravity,

PT
g .
—— will be the force at P. Also if MT meet PG in U, we

shall have

PU : PT :: PT : PG

;

PU MM'
therefore s .

—— , or s .
——- , is the force at P, in the direction

t) p'T' ° PT
of the curve.

When the force acts uniformly in PF', F'P", &c. let u be

the velocity at P, u' at P', u" at P", &.c. and v at Q. By
Art. 162, Cor. 3, we have, if the force / act uniformly from

P to P',

PP' MM'

PP" MM"
similarly, u'"'^ - u''^ = 2/" . PP" = 2g

.

—

^

, &.c.

And adding all these equation together, observing that v^

is the last of the values u, u, u", &c.

f PP' PP" ]

v' - u^ = 2g }^MM'y^ + M'M' -^^ + &c.|

.

Also as the portions PP', P'P\ &c. are taken smaller and
smaller, the velocity thus generated approaches to that actually

acquired in the curve. And on the same supposition, each of

, ^ . PP' PP"
the tractions -7— , ^r^r, &c. approaches to unity. Hence

taking the limits, and considering v and tc as the actual

velocities at Q and P,

V- - 7/ = 2g { MM' + M'M" + &c.} = 2^ . MN,
and -u^ = 71^ + 2g . MN.
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And this is (by Art. 1()2,) the value of the square of the

velocity of iV, on the supposition of the body falling freely

from Jf, with the velocity at ii. Hence the velocities ac-

quired down MN and down PQ are the same.

CoR. 1. The same is true of any other force which acts

in parallel lines upon a body, while the body moves upon a

curve. If / be the force, ri the velocity at one point, v the

velocity at another point, and h the distance of these points

in the direction of the force,

v^ = tC + 2fh.

Cor. 2. If a body begin to move up the curve QP from

Ci with the same velocity with which another body is projected

vertically upwards at iV, they will have the same velocities

when they arrive at P and M. For the velocity destroyed in

ascending QP is equal to that generated in decending PQ, that

is, to that acquired down ilfJV, and therefore to that destroyed

up NM.

CoR. 3. If a body begin to ascend a curve surface with

a certain velocity, it will rise to the same height above the

initial horizontal line, whatever be the form of the curve.

For in each case it will ascend to the same height as if

it had been projected vertically upwards.

192. Prop. To find the time of falling down any arc

of an inverted cycloid*.

* If a circle EPF, fig. 160, Ifil, roll along a straight line C7?c, a point P in the

circumference of this circle will describe a curve which is called a Cycloid.

M'hen the circle has made one complete revolution, the describing point wliicli was
in contact with the straight line at C, will return to it again at c, having described the

curve CPAc.
If we bisect Co in B, and draw BA at right angles to it, A will be the position of

the describing point when the circle has made half a revolution ; and the two liranches

AC, Ac will be equal and similar.

AB is called the axis of the cycloid; Cc its base; A its vertex; and the circle

AQB is called the generating circle.

Prop. I. Fig. IfiO. // an ordinate IVIQP he drawn perpendicular to the a,i'is

QP = arc QA.
Let EPF be the position of the generating circle at the time when tiie describing

point is at P. Then the arc /'/•' has been applied to fl\ so that all the poinls of each

have
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Let A, fig. 159, be the vertex of the cycloid, and L the

point from which the body begins to fall: LH horizontal,

have successively coincided : therefore the two are equal, that is, CF = arc PF = arc

QB. For the same reason C£ = semicircle AQB. Hence, taking away equals, FB =

arc AQ. But evidently PN^QM, and therefore PQ = NM=FB. Hence PQ =

arc AQ.
Prop. II. Fig. 160. The tangent to the cycloid at the point P is parallel to the

chord AQ.
If the circle EPF be supposed for an instanl to turn round a fixed point F, instead

of rolling along FB, the motion of P will be ultimately in the same direction on either

supposition. But on this supposition the motion of P will evidently be perpendicular

to FP, or in the direction PE. Hence the direction of the curve CP at P is PE, and

therefore PE is a tangent. And PE is parallel to QA : hence the tangent at P is

parallel to QA.
Prop. III. Fig. IfiO. The length of the arc of the cycloid AP, beginning from

the vertex, is double of the chord of the circular arc AQ czd off by the same ordinate.

Let M'Q'P' be an ordinate very near to MQP. Let AQ meet M'Q' in R, and

draw at Q a tangent to the circle meeting M' Q' in S, and meeting a tangent at A in T.

Also draw SO perpendicular upon QR.
Since TA=TQ, angle TAQ=TQA. And TAQ=QRS, and TQA = RQS;

therefore QRS= RQS and SQ = SR. Hence the triangles SOQ and SOR are equal

;

QO=RO, and QR = 2Q0.
Now when Q' approaches indefinitely near to Q, S approaches to Q', and OS coin-

cides ultimately with a circular arc to radius AQ' and center A. Hence QO is ulti-

mately the excess of BQ' above AQ or the quantity by which ^Q is increased.

Also QR is parallel to the tangent at P, and hence QR is ultimately equal to PP\
the quantity by which ^P is increased.

Hence it appears, that, for corresponding points, AP is increased by a quantity

twice as great as the increase of AQ; and, therefore, as AP and AQ begin together,

AP will always be twice as great as the chord AQ.
Cor. AP = 2PE.
Prop. IV. To make a pendulum oscillate in a given cycloid.

Let APC, fig. 161, be a given semi-cycloid, AB being its axis. Produce AB to S,

making SB = AB : complete the rectangle SBCD, and with an axis, CD, and base

DS, describe a semi-cycloid CS.

Draw any line EFG parallel to ABS; and on opposite sides of this line describe

the two semi-circles, EPF, FOG, of the generating circles of the cycloids AC, CS.

Join OF, FP. Then arc FP = FC, and arc FPE = BFC ; therefore arc PE = BF,
and BF = SG = arc GO. Hence PE = GO; and therefore the angles EFP, GEO
are equal. Hence OFP is a straight line. Hence also OF = FP; therefore OP =
2 OF = arc OC, by Cor. to Prop. III. And by Prop. II, OP is a tangent to the

cycloid at O.

Hence it appears, that if a string SOC, fixed at S, and wrapped along the semi-

cycloid SOC, be unwrapped, beginning at C, its extremity will describe a semi-cycloid

CPA, And if an equal and similar semi-cycloid Sc be placed with its base Sd in the

same line with DS, the same string fixed at S and wrapping upon the semi-cycloid Sc,

will, with its extremity, describe the serai-cycloid Ac, thus completing the cycloid

CAc. Hence a body P, suspended by a string SOP between two such semi-cycloids

in a vertical plane, will oscillate in an inverted cycloid.
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meeting the axis in H ; and PM horizontal meeting in q a

semi-circle described on AH.

The velocity at P acquired down LP, is equal to the

velocity acquired down HM, by Art. 191 ; hence

velocity at P =^ (2^ . HM)

=v(...fa=^,x/iAH
Also, if AQB be a semi-circle described on AB, AP =

2 chord AQ, (see Note)

.-. AP = 2y/{AB.AM)

= 2Aq ^''AH
And similarly, if P'M' be near and parallel to PM,

AP'=2Aq'\/-
AB
AH'

/ AB
Therefore PP'=2{Aq-A q') \/ ——

.

Hence, if PP' be described uniformly with the velocity at P,

time in PP =
PP' Aq-Aq' /2AB

vel. at P Hq

And if we take the times, supposing PP' indefinitely

diminished, the sum of all such intervals from L to P will

approximate to the actual time of describing LP.

Join Hq' meeting Aq in o. And since AoH approximates

to AqH, a right angle, oq approximates to Aq - Aq'. Hence

taking the limit, we have

. ^w oq /2AB
time in PP = ~~VHq ^ g

, „ /2AB
= angle qHo \/ ;
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and angle qHo = qHq = ^qCq ;

.-. time in PF = -^qCq \/ .

And the whole time in LP will be found if we take the sum

of all such intervals from L to P. Now the sum of all the

angles qCq' is evidently HCq. Hence

/2AB
time in LP = ^HCq

g

Cor. 1. To find the time of descendinor throuoh the

whole arc LA, we must put for the angle HCq its value for

that case, which is two right angles. Hence we have

TT /2AB
time in LA —

g

Cor. 2. If we suppose the body, after coming to the

vertex A, to go on and to ascend the opposite semi-cycloid,

{Ac, fig. \6l.) it will ascend to a point /, having described an

arc Al equal to AL. And the time of ascending through Al
will be equal to that of descending through LA. Hence we
shall have

^2AB
time in LA 1 = 2 time in LA = tt

g

CoK. 3. Since the time of descending down LA is inde-

pendent of the position of the point L, it appears that the

times down all arcs LA are the same, whatever be the mag-
nitude. Hence the curve CA is said to be isochronous.

193. Prop. When a body oscillates in a cycloid ; to

determine the time of oscillation.

If two equal inverted semi-cycloids SC, Sc, fig. l6"l, be

placed in contact at S, in the same vertical plane, and if a

string SOP equal in length to either of them, be suspended

from S and oscillate between them, its extremity P will de-

scribe a cycloid CAc. (Note to Art. 192.) And if a body be

suspended by this string, it will move in the same manner

as if it moved upon a curve PAp. After descending down
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LA, it will, with the velocity acquired, ascend up A I, de-

scribing an arc equal and similar to AL. And after coming

to / it will again descend through IA and ascend through AL,
and so on continually.

Let / be the length of the pendulum SA. Then / = 2AB

;

and we shall have, by last Article, the time of oscillation

Cor. 1. Since \/ - = \/——^ = time of falling down

^l, (Art. 162,) we shall have time of oscillation = tt x time

of falling down 1 pendulum.

Cor. 2. For very small distances from the point A^ the

cycloid will very nearly coincide with the circle whose center

is S. Hence the motion of the cycloidal pendulum SOP
will very nearly coincide with the motion of a body suspended

by a string SA and oscillating freely through very small arcs.

We shall suppose the times of oscillation of these two pen-

dulums to be equal.

Hence we may determine all the circumstances of the small

oscillations of pendulums in circular arcs from the expression

above.

= 7rV -,
g

where I is the time of oscillation.

CoR. 3. It is manifest that t varies as the root of /, when

g is constant

:

Also that t varies inversely as the root of g-, when I remains

the same : And that g varies as /, when f remains the same.

Hence if L be the length of the pendulum which oscil-

lates seconds, and t the time in seconds of the oscillation of

a pendulum whose length is /,

=yi. hence / = Lf/^

Gg
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The value of L, the length of the seconds pendulum in

the latitude of London, (in vacno), is found by experiment

to be 39.1386 inches.

From this value of L we can find the value of g\ for

I, we have

= TT \/— ; •• g = ttL = 386.28 inches.

g

Ex. 1. To find the time of oscillation of a pendulum

240

making #=1, we have

20 feet long,

^/: - = 2.5", nearly.
^9.1386

Ex. 2. To find the length of a pendulum which shall

make its oscillations in half minutes,

1= L . (30)-= 39.138G X 900 inches = 978.4. yards.

194. Prop. If a pendulum he slightly altered in lengthy

to find the number of oscillations gained or lost in a day.

If w be the daily number of oscillations of the pendulum

in the latitude of liondon, {in vacuo.,') and iV = 24 x 6o x 6o

= 86400, the number of seconds in 24 hours ; we have

-••?=V^--N N /I LN~
t =

71 n

If 71 and I be nearly equal to N and Z, we may obtain

approximations for the differences.

Suppose the length of the pendulum L to be increased by

a small quantity p : to find 9, the number of seconds it will

lose in a day.

LN'^ / 2o\ . . qHere L + p = -~~ = L { 1 + rr= ; omitting powers of —.;

(iV - qy V NJ ^ N
2qL

, pN

The same formula will apply when L is diminished, and

consequently N is increased.
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Ex. A seconds pendulum is lengthened ^jj-^- of an inch : to

find the number of seconds it will lose per day.

.01 X 864.00 4.3200
,,Here » = .01 ; .-. 7 = = = 11 nearly.

2 X 39. 13 3913 -^

195. Prop. If the force of gravity be slightly altered,

to find the number of seconds gained or lost in a day by

a seconds pendulum.

Let G be the value of g at a given place ; when I remains

the same, f varies inversely as the root of^; hence

t_ _ JG G Gir

1
S

Jg ' ^ ^' N-^

Hence if a seconds pendulum is taken to a place where

the gravity is greater, n will be greater than N, and the

pendulum will gain, and vice versa. The increase of gravity

is generally small, and hence we may approximate as before.

Let g = G (1 + A), and let the pendulum gain q seconds a

day;

GiN-^qf G(N''+2qN) . .

.-. G{1 + h) = --^ = ^ '
.
-

> omitting q-
;

Ex. 1. A pendulum which would oscillate seconds at the

equator, would, if carried to the pole, gain 5 minutes a day :

to find the proportion of the polar and equatoreal gravity,

2 X 300" 1

86400 ~ 144.

'

hence gravity at the ecpiator : gravity at the pole :: 144- : 145.

Ex. 2. A pendulum which oscillates seconds, is carried

to the top of a mountain whose height is m: to find the

number of seconds which it will lose per day ; gravity being-

supposed to vary inversely as the square of the distance from

the center.
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Let r be the distance from the center of the earth to the

first station, and G the gravity at that station. Therefore

r + m is the distance of the second station from the center

of the earth, and the gravity at that station is

= G 1 , omitting — , &c.
(r + »?)- \ r J r

2 fit

Hence, putting — for h in the formula, which will be the

same for the diminution as for the increase of gravity,

2m 2q Nm
r J\ r

If the radius of the earth be 4000 miles, and the height of

the mountain 1 mile,

316400 „ . , , .
q = =21 .6, the number of seconds lost per day.

4000 ^ -^
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CHAP. VI.

ROTATION ABOUT A FIXED AXIS.

196. In the preceding Chapters we have considered the

effect of forces acting directly upon points. This includes

the case when a single material particle moves about a fixed

axis with which it is connected by a rigid arm ; for the motion

of a point in a circular arc, treated of in the last Chapter

(Art. 193) would be the same whether the material point

were connected with the center of the circle by means of a

flexible string, or by means of a rigid rod ; supposing the

string and the rod to be without weiffht and without inertia.o

But when a system of several material particles connected

by rigid rods, or any other rigid system, moves about a

fixed axis, the moving forces of the separate particles modify

one another ; and the motion of the system is determined by
the Third Law of Motion extended to indirect action, as

explained in Article 131. Thus in figure 100, if a, m, n, p,
be material particles, rigidly connected by the arms ca, cm,

en, cp, with the center of motion p, and with each other, no

one of them, as a, can move, except all the others move with

velocities which are to its velocity in a given ratio. And
hence the motion of a will no longer be determined by the

third law of motion applied to direct action, but requires us

to consider the mutual action of the particles in producing and

This remark applies to the motion of rigid bodies in

general ; for any such body may be considered as a collection

of material particles rigidly connected. AVhen such a body
has any rotatory motion, its parts act upon one another, and
thus modify the effects of the other forces by which they are

acted on. Any body, under such circumstances, may be con-
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sidered as a machine ; and by means of its rigidity or its other

properties, the forces which are applied to one part of the body

propagate their effect to another ; so that each particle both

presses with its own force, and serves to form levers and rods

by which the pressures of other particles are communicated.

The laws according to which this connexion of diiferent

particles modifies the effect of the forces which move them,

are to be the subject of our consideration in the present and

following Chapters.

197- The principle on Avhich our reasonings must depend

in such cases, is, as we have said, the third law of motion,

extended to the case of indirect action. According to this law,

the moving force is in all cases proportional to the Pressure

(Art. lol). In order clearly to distinguish these two quan-

tities, the moving force, as collected from the momentum
actually impressed on each particle, is called the Effective

(moving) Force of that particle ; and the pressure, or other

external force which operates on the system, is called the

Impressed (moving) Force ; and this latter force does not, in

such cases, produce its whole effect on the point on which it

acts, being modified by the connection of this with other

points.

198. The third law of motion, extended to the case of

indirect action, may be expressed in the following manner.

In the motion of any system of connected points, the

Impressed Forces and the Effective Forces are statically equi-

valent to each other.

The Impressed Forces, that is, the pressures which act

upon the system, produce the same effect as would be produced

by any other pressures, which, according to the nature of the

.system, are statically equivalent to them. Thus a force P,

acting perpendicularly at the distance CP (fig. 97) from the

axis, to turn the body round C, exerts the same effort as a

force 2/* acting perpendicularly at half the distance, CP', and

will produce the same cfl'cct.
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This follows necessarily from tlie nature of material

connexion as a mode of transmitting pressure. When we say

that a moving body is rigid, we imply that any force applied

at one part communicates its effect to other parts according

to the same law as if the body were at rest.

Thus any force which acts to turn a body round an axis,

acts effectively upon all the particles ; the body itself trans-

mitting the action after the manner, and according to the

laws, of a lever.

The Effective Forces are the moving forces inferred from

the momentum generated in each part of the system in a

unit of time. Both the Impressed and Effective Forces are

measured as Moving Forces ; that is, as mass multiplied into

Accelerating Force, or as mass multiplied into velocity

generated.

It has been shown that in the case of direct action these

Impressed and Effective Forces are equal to each other : and it

has been stated already (Art. 131) that in passing to the case

of indirect action, we do not find any ground, either in reason

or in experiment, to suppose that the equality ceases to obtain;

and that by experiments fitted to decide the point, it appears

that this equality is still rigorously true.

199. The above law of motion is often enunciated and

applied in the following form ; in which form it is called

D'Alemuert's Principle.

Prop. When any forces produce motion in any material

system^ the Movi^ig Forces Lost hy the different parts of the

system must balance each other.

Let 7)1 be one of the material points of the system, and

let w be the velocity which the force that acts upon m would

communicate to it in a unit of time if m were detached: then,

if T be a very small time, 71 r would be the velocity which the

force would communicate to m in the time t. Let (jt be the

velocity which in the actual state of the system is commimicatcd
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to m in the time t: and let the velocity ut be resolved into

two velocities pT and qr. The accelerating force which would

produce the velocity ut in the time t, or u in the unit of

time, is u ; therefore the moving force which would produce

this velocity is mu. In like manner the moving forces which

would produce the velocities jiT and qr in the time t, are mp
and 7nq respectively : and since forces are resolved in the same

manner as velocities, the force tnu may be resolved into mp
and mq. Of these forces, mq is effective, and mp is the force

lost by the point m.

If in the same way ?«', u', p\ q represent the quantities

analogous to 7», ?/, p, q for another point ; m", ?^", p'\ 7",

for another, and so on ; m p .^ m!'p'\ and so on, will be the

forces lost by these points m', w", &c.

By the last Article, all the impressed forces

mu^ m'u\ m" u'\ &c.

are equivalent to the effective forces

mq, m'q', m" q'\ &c.

according to the statical conditions of equili})rium of the system.

That is,

7«;j, mq, m'p , m'q', m"p" , m" q"
, &c.

are equivalent to

mq, m'q, m'q', &c.

Therefore the forces

mp, m'p' , m"p", &c.

are statically equivalent to nothing ; that is, they balance each

other on the machine.

Cor. In this case, some of the forces lost will be negative,

and if the negative sign be omitted, these may be considered

as forces gained.

Thus if a point m' be acted upon by no forces, m' q being

the effective force, m'p is - m'q ; and the force lost being

- m' q , the force gained is m' (/

.
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If we adopt tliis term, tlie proposition may be stated by
saying that

I71 every system the moving forces lost and gained by the

different points balance each other.

Tiiis is the application to the case now considered, of

the general principle, that Action and Reaction are always

equal and opposite to each otiier.

200. We proceed to determine the angular motion pro-

duced when forces act upon a body moveable about a fixed

axis. We consider the effect in producing motion only : the

other effects, of producing pressure upon the axis, and of

affecting the motion of the axis when it is moveable, will be

investigated afterwards.

Piiop. In a rigid system cotisisting of any number of

points m, n, p, q, ^-c. -fig. o8, in the same plane, moveable

about an aais C, perpendicular to that jilane, a force F acts

to turn the system ,• to find the effective accelerating force

on any point.

Let F be a moving force which acts perpendicularly at an

arm Cf. And let 71/, N, P, &c. be the effective accelerating

forces on m, n, p, &c. Therefore Mm, Nn, Pj), &c. are the

effective moving forces ; and they are perpendicular to CM,
CN, CP, &c. because the motion is so.

Hence, we have

Impressed force . . . . F acting perpendicularly at an arm CF,

Effective forces .... Mm, Nn, Pp, &c. acting perpendicularly

at arms Cm, Cn, Cp, &c.

Hence, by Art. 198, and by the general proposition of

the lever,

F .Cf-M.m.Cm- N .n.Cn- P.p. Cp - &c. = 0.

But since m, n, p, &c. must all move with the same angu-

lar velocity round C, their linear velocities must always be as

Cm, Cn, Cp, &c. and therefore all alterations of the velocities

must be in this ratio, and the accelerating forces which produce

H II



242 ROTATION ADOUT A FIXED AXIS.

such alterations in the same time must be in the same ratio.

M.Cm
Hence, we have M : N :: Cm : Cn., therefore N =

Cm
. . M . Cp

similarly P =—'-—^, &c. And substituting these values in

the above equation, it becomes

F . Cf. Cm

C u~ Cif
F. Cf- M. m . Cm - M .n.- J/, p .

_L _ &c. = 0.

C m Cm

Whence J/ =

Similarly N =

P =

m
.
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If instead of the force F, we have any forces acting- in

any manner upon the system, we must substitute, instead of

F . Cf the moment of these forces about the axis C, that is,

the sum of each into the perpendicular upon it from C; those

being taken negative which tend to turn the system in the

opposite direction.

CoR. 1. Since the effective accelerating force on / is

F
Cm- Cn~ C]f

It appears, that the resistance which ?« opposes to the

communication of motion, is the same as that of a mass w . -z:;-^

placed at /, and acted upon immediately : and similarly of the

other particles.

Cor. 2. It appears by the demonstatiou, that the ef-

fective forces on diff'erent points are as their distances from

the axis C.

CoR. 3. If the force F, and the radius C/, be constant,

the effective force on each point will be constant ; the motions

will be uniformly accelerated, and the formula for such motions

may be applied. If F be variable, the formula; for variable

motions may be applied.

CoR. 4. If the force which acts be the weight of any

body, this body must be included among the bodies m, ti, p,

&c. in the denominator.

Thus if a system of material points in horizontal planes,

m, 71, p, fig. 99^ be moved about a vertical axis AC, by a

weight W acting perpendicularly at the radius Cf, by means

of a string passing over a pully B ; W moves with the same

velocity as a body at the extremity of the area Cf; and there-

fore the same eff'ective force is employed in moving W, as

if it were at /". Hence, we have

^ ,. ^ ,.
weight of IF. Cy^

effective lorcc on / = — ' — „ ,
'' W .Cf + m. Cm- V n • Cw' + &c.

and the effective force on W is the same as on /'.
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Cor. 5. The quantities IF, m, w, &c. in the denominator

in the last Corollary, are the masses of the bodies ; the Aveight

of W in the numerator is a moving force. If g represent the

accelerating force of gravity, the weight of W is IVg.

Cor. 6. If the lines, m, n, p., &c. be not in the same

plane perpendicular to the axis, let lines Cm, C n, C"p, &c.

be their perpendicular distances from the axis: the same for-

mulas as before will be true, putting these lines for Cm, Cn,

Cp, &c.

Or, if we take a plane Cmn, perpendicular to the axis, and

refer the points of the system to this plane, by lines parallel

to the axis ; m, n, p, &c. being the points as thus referred,

the same formulae will be true.

Cor. 7. If, in fig. 98, the body p be not fixed to the

radius Cp, but be fastened to the extremity of a flexible string

Avhich is perpendicular to Cp at p, and v.'hich is kept stretched

by the forces which act, the effect, for an instant, will be the

same as if p were fixed at the extremity of Cp. For the

moving force which the string exerts on the body will be

the same as the reaction which it exerts upon the extremity

of the radius Cp ; and will be, for an instant, perpendicular to

Cp. Plence the effective moving force on the body will be

identical with the force which must act at the extremity of Cp
in order to balance the reaction of the string; and the equili-

brium of the impressed and the effective forces will still sub-

sist, including the effective force on the body fastened to the

string.

Cor. 8. Hence, if as in fig. 102, a body P be connected

with the system by a string which is wrapped round a cylinder

having the center of motion C for its center, the formulas of

this Article may be applied, in the same manner as if P were

fixed to the cylinder at the point where the string leaves it:

for the string will be at every instant perpendicular to the

radius drawn to the point of its contact with the cylinder.

201. The denominator of the fractions which express the

effective forces in the preceding formula', is a quantity which

is described by a pccidiar term, the moment of inertia.
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Def. The Slim of each particle multiplied itito the

square of its distance from the axis, is called the Moment
of Inertia with respect to this axis*. This quantity occurs

perpetually in considering the subject of rotation.

If the system, instead of consisting of distinct material

points, be a continuous body of finite magnitude, the Moment
of Inertia will be the sum of each point into the square of

its distance from the axis, and will consist of an indefinite

number of terms. The sum of these terms may be found

by the integral calculus, as will be shewn elsewhere.

If the points be w, mi, m.,, m.^, &c. and their distances

from the axis. Cm, Crn^, Cm.>, Cm^, &c. the moment of inertia

may be represented by 2(m.Cw2^). And if 7^ be a moving

force which acts perpendicularly at a distance Cf, we shall

by Art. 200, have the accelerating force at the point where the

force acts

2 {m . Cm^)

We may suppose k to be such a quantity that

k^^m = 2 (m . Cm?),

S»i indicating the sum of all the jsoints of the system.

In this case k is called the Radius of Gyration.

If forces act upon every point of the system, the effect

may be calculated by the same principle as before, as will be

seen in the next Problem.

" The inertia of a body is the measure of its effect in resisting the communication of

motion (Art. 127): in a single point, it is as the mass simply; but in a body revolving

about an axis, the effect of a particle in resisting m.otion depends on the distance from

the axis, like the effect of the force acting on a lever. The effect on a lever is as the

product of the force and distance, and this product is called the moment; the effect of

the inertia of the mass in resisting rotatory motion, appears from the above investiga-

tion to be as the product of the mass and square of the distance, and hence, this pro-

duct is called the moment of inertia : and the sum of these products is called the

moment of inertia of the system.
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202. Prop. A rigid system of material points, moveable

about a horizontal axis, has all its parts acted on by gravity

;

it is required to determine the accelerating force.

Let C, fig. 100, be the axis, and m, n, p, the points.

Draw a horizontal line through C, meeting vertical lines

through m, n, p, in d, e, h. Then the moving forces im-

pressed are the weights of m, n, p. Let M be the effective

accelerating force upon m ; therefore in the same way as before,

the effective accelerating forces on n, p, are

M. Cn M.Cp
Cm ' Cm

And the effective moving forces are

M.n.Cn M.p.Cp
M.m,

Cm ' Cm

Now Cd, Ce, Ch are perpendicular to the directions of the

former forces, and Cm, Cn, Cp are perpendicular to the di-

rections of the latter forces ; also if m be the mass of one of

the bodies, its weight or moving force is ?ug, and so for the

rest. Hence, by the principle of the equilibrium between the

impressed and the effective forces. Art. 1.98, and by the pro-

perty of the lever. Art. 22, we have,

m.g . Cd -{- n . g .Ce + p . g . Ch

^ M.n.Cn^ M.p.Cp~
= M. m . Cm + + ^ ^ •

M =

Cm Cm

( m . Cd + n . Ce + p . Ch) Cm . g
m . Cm^ + n . Cn^ -\- p . Cp"

Cou. 1. If we had supposed that there were more bodies,

we should have had a corresponding number of terms, both

in the numerator and denominator.

CoH. 2. There will be negative terms in the numerator,

when any of the bodies are on the other side of the vertical

line drawn througli C; the terms in the denominator will
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always be positive, because the bodies all move in the same

direction round C ; and therefore the effective accelerating

forces are always in the same direction.

CoR. 3. The effective accelerating force on any other

point of the system, as n, will be

{i7i. Cd + n. Ce + p.Ch) Cn .g

m . Cm' + n . Cn~ + /; . Cp'

CoR. 4. If G be the center of gravity of the system, and

if a perpendicular from G meet Ch in H^ we have, by Art. 62,

{m .Cd-\-n.Ce + p.Ch) = (m + n + jf) • CH ;

and if 9 be the angle which CG makes with the vertical,

CH = CG . sin. 6.

Hence,

(m + n + p) CG . sin. 6 . Cm .gM =
m . Cin^ + n . Cn~ + p . Cp'

or, denoting m + n + p by 2w, and the denominator by

2 (rn . Cnf), whatever be the number of bodies,

Cm . CG . g sin. 6 .^m
2 (w . Cm^)

203. Prop. To Jind a point of a rigid system, move-

able about a Jiooed horizontal a.vis, which shall be accelerated

by gravity, exactly as much as a single point, moveable about

the same awis, would be accelerated in the same position.

If O, fig. 100, be any point in CG, we shall have, by

Art. 202,

CO . CG.g. sin. O.^m
accelerating: force on O =

E (7)1 . Cm')

Now, if a single particle were placed in O, and all the rest

removed, we should have

accelerating force on particle in O =^ g f^in-O;
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because the particle may be considered as moving upon a

circular arc, of which the radius is CO., and this arc will,

at O, make the same angle d with the horizontal line, which

CO makes with the vertical. Hence, by Art. 170,

gh
Force = — = g sin. Q.

And we have to find O, so that these accelerating forces

may be equal. For this purpose, we must have

CO. CG.Em = 2(w.C//2');

...CO.^^ („,CG . 2.m

The point O is called the Center of Oscillation ; a single

point placed in O, would, in any position of CG, be acted

on by the same accelerating foi'ce as when O is a point in

the system ; and therefore, the oscillations of CO and of the

system would be exactly the same as if we had but one

particle O.

Cor. ]. The time of oscillation of the system, is the same

as that of a simple pendulum, whose length is CO. Hence,

if we make CO = /, we shall have the time of one of the small

oscinations = ir \/ - (Art. 1.93.)

Cor. 2. When v/e know the moment of inertia, and the

place of the center of gravity, the center of oscillation with

respect to the axis C is found by the formula

^ (m . Cm^)
C0 =

CG.^m
and this is applicable, whether the system consist of distinct

points, or of finite bodies.

204. Prop. The moment of inertia of any system, tvitk

respect to any give7i axis, is equal to the moment of inertia

about an axis parallel to this, passing through the center of
gravity, plus the moinent of inertia of the whole body, (col-

lected in its center of gravity,) about the given axis.
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Let fig. 101 represent any system, moveable about an axis

C; and let m, n, p, q, he the particles of it, referred to a plane

perpendicular to the axis. Let G be the center of gravity of

m, n, p, q. Draw md perpendicular on CG .,

Then, Cm~ = CG' + Gm- + 2CG.Gd.

Similarly, if ne-, ph, qk, be perpendicular on CG.

Cti^ = CG~ + Gn- -2CG.Ge,

&c. = &c. ;

.'. m . Cmr + n . Cn"^ + p . Cp- + he.

= m . CG- + 71.CG- + p .CG- + &c.

+ m . G«r + 72 . Gn~ + p . Cp~ + &c.

+ 2 CG (m . Gd-n.Ge+p.Gh - he.)

And, since by the property of the center of gravity,

m . Gd — n Ge + p . Gh — &c. = ;

we have

w . Crn^ + n . Cn^ + p . Cp^ + &c. = (in + n + p + Sec.) CG"

+ m . Gm^ + n . Gn- + p . Gp" + he.

Or, moment of inertia about C

= moment of inertia of (m + n + p -\- he.) at G about C

+ moment of inertia of m, ;?, p, &c. about G.

Cor. 1. We may represent this theorem thus, whatever

be the number of bodies;

2 (m . Cm^) = CG~'2m + S (wi . Gtnr) ;

or if Cm = r, CG = o, 2m = i¥, 2 (m . Gm') = Mfc\

it will become 2 . wr' = M {a^ + Jc^).

CoR. 2. Knowing the moment of inertia about G, we
may, from this expression, find the moment of inertia about C.

Cor. 3. The moment of inertia about G, the center of

gravity, is less than that about any other axis C, parallel to G.

Ii
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205. Prop. The Centers of Suspension and Oscilla-

tion are reciprocal

:

That is, if the center of oscillation be made the point of

suspension, the former point of suspension will become the

center of oscillation.

In fig. 100, C0= ' \ by Art. 203.

But by Art. 204,

2 (m . Cm') = 2 {m . Gm^) + CG^ . 2w ;

or, putting M for 2m the mass, and k^ M for 2 (m . Gm^),

CO=^ + CG; whence G0=^, and CG =^ .

CG Ctr (jU

If therefore, we suspend the body from O, C will be its

center of oscillation, by the same formula.

CoR. 1. CO depends on CG alone, and will be the same,

so long as CG is the same. Hence, if with center G (fig. 100,)

and radius GC, we describe a circle CC; (in the plane of

oscillation, that is, in a plane perpendicular to the axis of

suspension ;) CO is the same, from whatever point of this

circumference we suspend the body. And therefore, the time

of oscillation is the same, from whichever of such points the

body is suspended.

Cor. 2. Also, if we describe a circle 00' with radius

6rO, the time of oscillation will be the same, whether the

body is suspended from any point in the circumference 00',

or from any point in the circumference CC.
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CHAP. VII.

MOTION OF MACHINES.

206. We shall in the present Chapter apply the pre-

ceding principles to determine the accelerating forces of the

mechanical powers, and of other simple combinations of bodies

acting on each other.

The accelerating forces being known, the motions are

known by the Integral Calculus ; as will be seen in the

Analytical Dynamics.

Sect. I. Motion about a fixed Axis.

Prop. To determine the Accelerating Force of weights

on a Wheel and Axle, fig. 102.

Let P draw up Q by means of strings wrapping round

two cylinders, A, B, which have a common horizontal axis.

Let a, 6, be the radii of the cylinders respectively ; and as

in Art. 206, let the moment of inertia of the machine AB,
about its axis, be k^^m, or k' M, M here indicating the

whole mass of the machine, and k its radius of gyration. We
shall then have

impressed forces, Pg at distance a, — Qg at distance b ;

of which the moment is Pga — Qgb.

Hence, by Cor. 8, Art. 200, and Cor. 2, Art. 201, we have

(Pa-Qh)ga
,

accelerating force on P = ——: —
-^ r—r downwards ;^ Pa~ + Qb^ + Mk^

(Pa-Qb)gb
accelerating force on Q = —-g -—5 z-TTr> upwards

;

° Pa^ + Q6- + Mk' ^
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and since these are constant, the motion may be found by the

formulae for constant forces.

Coil. 1. If Qh>Pa, the force will act in the opposite

direction, and if Q be at rest originally, it will descend.

CoR. 2. If Tg be the tension of the string by which P
hangs, P is impelled downwards by its weight, and upwards
by the tension. Hence, the moving force on P is Pg - Tgy

(P - T)g
and the accelerating force —

;

.
{P - T) ^ {Pa-Qb)ga

T =

Pa- + Qh~ + Mk' '

P(Qb~ + Qab + Mk'')

Pa' +Qb' + Mk^

Similarly, if T' be the tension of the string by which Q hangs,

Q{Pa^ + Pab+ Mk^)
T' =

Pa"" + Qb^ + Mlc'

Cor. 3. The pressure on the center of motion arising

from P, Q, will be the sum of these tensions, and will be

counteracted by a reaction equal to this sum, for the forces

which act on the machine must be in equilibrium according

to the principles of Statics :

.
, rr^rj., PQ(a+by+iP + Q)Me

.-. pressure on the center I + J = =—

^

-—
-g

—

—

p
.^ Pa~ + Qb^ + Mk g

207- Prop. To determine the Accelerating Force of

weights acting on a Combination of Wheels and Axles,

fig. 103.

The wheels and axles may act on each other, either by

means of teeth, as at Z>, or by strings passing round both the

wheel and the axle, and turning them by friction, as at D' ;

or in other ways : the mechanical conditions of the problem

are the same in all these cases.

Let a, b be the radii of the first wheel, and of its axle,

respectively ; n', b' the radii of the second wheel and axle, a".
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h" of the third, and so on. Then the impressed moving forces

are Pg acting at A, and Qg acting in the opposite direction

at B. By Statics, the latter would be counterbalanced by
h 1 ' h"

a force at P equal to Q,g •
—7—7,- Hence, the moving force
a a a

impressed, and employed in producing motion, is equivalent to

h\)\i' .
, ,.Pg — Qg —7—TT acting at A, at distance a from C.

a a a

Let 71/At, M' lc''~, M" k'"^ be the moments of inertia of the

respective wheels JW, M, M" about their centers, (including

the axles) : and let ,v be the effective accelerating force on P or

on A. Then, since the accelerating forces are as the velocities,

the accelerating force at D or E will be — ; that at D' or E'
a

.„ , bb\v
, , „ , bb'b'\v

will be —- ; and that at B or Q, —j—fj-

.

a a aa a

Now, since the effective accelerating fdrce at P is ^i', that

bx
at any distance r from C, in the wheel M^ is — ; and if m be

a

771 V 00

a particle at that distance, the effective moving force is .

a

And this is equivalent, in its moment round C, to a force 7- ,

or

acting at A. And hence, the whole effective moving forces

• 1 ^ cv2.mr~
. ...

in M are equivalent to a force acting at A ; that is,

they are equivalent to — at A.

Similarly, the effective moving forces in M' are equivalent

bx M'k'~ ^ ,., n . ,

to — .
—-— at E ; which force is, by the property of the

machine, equivalent in its effect to turn the system round C, to

b\v M'k'-
a torcc —- . —;— at A.

a~ a~
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1} b b iF

The effective accelerating force on Q is y—^ ; which
aa a

. ^ bb'b"w . , h'b'"b"\v
gives a moving force —y—^ Q, equivalent to --———„ at J.

aa a a^a'^a

Hence, we have the moment of the impressed forces, about C,

/„ bb'b'
= ga P-Q-J-,

And the moment of all the effective forces, about C\

b^b'~b"~
Pax + Qaw

2 h l'2
a a a

+ Max . — + M ax . — . + M ax .
——, . —jj

a a^ a a'a"^ a

Equating these forces (by Art. 198,) and putting w, n', n" for
I

// h"
-

, — ,
—J-, , we have, for the accelerating force on P,ana

(P — Qnn'n")g
X = — ^2 F^°~ "W^

'

P + Qrv^n'^n" + M -^ + M'n — + M"nn-j-
a a- a

The accelerating force on Q = nn 7i'' x. These accelerating

forces are constant.

208. A machine was constructed by Atwood, to measure

the spaces and velocities of bodies descending by gravity, in

order to compare them with theory. It is represented in

fig. 104. Two equal weights P, Q, hang by a fine string over

a fixed pully M. One of them is made to descend, by placing

upon it a small weight Z>, and the times and spaces of the

motion are observed. The weights at P and Q are enclosed

in equal and cylindrical boxes ; so that the effect of the re-

sistance of the air will be the same upon both, and will not

affect the motion. And the effect of friction is nearly removed

by making the axis of M very slender, and causing each end

of it as C to rest upon Friction Wheels, as M, J/'*. The

• To shew that these wheels will diminish the eflect of friction, we may consider

friction as a force acting in a tangent to the axle. If the axle C rested on immoveable
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times are observed by means of a pendulum, and the spaces

by a scale of inches BF, down vvhicli P descends. To deter-

mine the velocity, P is made to pass through an opening MN,
in a stage fastened to the scale BF ; and the weight D, whicli

is too large to pass, is left resting on il/, A^. Therefore, since

the weight of D produces the only accelerating force which

exists in the machine, after passing the point E, P will move
uniformly with the velocity acquired. Wlien P has passed

through a given space EF, it is stopped by striking the stage

F, which is there fixed to the scale.

The body P being allowed to descend from rest at a given

point B, descends till D is heard to strike the stage M, N,
and the time is noted ; it then descends till P is heard to strike

the stage F, and the time is noted : the space EF, divided by

the interval of the two times, gives the velocity ; and the

space BFy and the time of describing it, being known, we

can compare our results with theory. The velocities of P, Q
are small, both because D is small, and because the wheels

F\ M', M" are to be moved, and their moment of inertia is

a part of the denominator of the accelerating force.

Observing, that besides the friction wheels, J/', M", there

are two others at the other end of the axis A ; calling the

moment of each of these M' k''~, and that of il/, MA", and the

radii of the wheels and axles a, 6, a', 6', we have

Dg
accelerating force on P = «^

2P + D + M.'-^ + 4.M' .- —
a a a-

surfaces, and the amount of the friction were F, its effect at ji would be — . But
a

if the axle C rest upon friction wheels, their circumferences will turn with the circum-

ferences of the axle, and between these surfaces there will be no friction. The friction

will take place at the axles C, C ; and if we suppose it to be F at the surface of the

axle C, this force will be equivalent to 7^ - at the circumferences of the axle (\ and

to F —; at A. And as there are four ends of the axles C for one C, the effect of

the friction, when such friction wheels are used, is 4 F — acting at A. Hence, by
(I a

means of such a contrivance, it is diminished in the ratio of «'
: -ih'. supposing F ia

he the same in botli.
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The effect of the inertia of the wheels is the same as if

k' h hf'

a mass J/. — + l-M' .

-

—

,,, were collected at the circumference
a a a

of M.

The reader will find, in Atwood's Treatise on Rectilinear

and Rotatory Motion, Sect. 7, an account of experiments made
with this machine. The results of all of them agreed ac-

curately with the formulfE for constant forces.

209. Prop. To determine the Accelerating Forces of

two iveights on a Lever, fig. 105.

Let P, Q, be attached to the extremities of a lever whose

arms are a, b ; and let M be the mass of the lever, and h the

distance of its center of gravity from the center of motion.

Let PQ he any position in which the lever makes an angle 6

with the vertical. Then a cos. 0, h cos. 9, h cos. are the per-

pendiculars from the center of motion upon the vertical

directions of the forces of P, Q, M. And the momont of the

forces is (Pa + Mh — Qb) g cos. 0, which acts to make P
descend. Hence, if Mk'' be the moment of inertia of the lever

itself, we have

. ^ „ (Pa+ Mh-Qb)ga COS.
accelerating lorce on P = —- -— ——5^

.
Pa- + Qb^ + 3Ik-

acting perpendicular to CP.

210. Piiop. A body moveable about an axis C is struck

at a given point by a given mass ivith a given velocity ; to

determine its motion, fig. 106.

Impact is, properly speaking, a violent pressure continued

for a short time. Now if any force act at a distance a from

the axis of a body whose moment of inertia is Mk'\ the effect

1 J •„ 1 , -x.
Mk'

produced at any mstant will be the same as it a mass
d'

were collected at the distance a. Hence, the whole effect

produced will be the same as if such a mass were substituted
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for the body, whatever be the time which the change employs.

And hence, the effect of perpendicular impact at a distance n

M k"
will be the same as if it took place upon a mass placed

there.

In fig. 106, let a mass P impinge directly (that is, in a di-

rection perpendicular to the surfaces where the contact takes

place,) on a system CA, with a velocity F; and let CA be
a perpendicular on P's direction. If CA = a, the effect on the

Mk"'
system will be the same as if P impinged on a body .

Let the substances be supposed inelastic, and the bodies will

both move with the same velocity after the impact ; and since,

by the third law of motion, the mass multiplied into the

velocity will be the same before and after the blow, we shall

have, if x be the velocity of A after the stroke,

P.^1 = Pr.

PVd'
<r =

Pa? + MK'

If the body be acted upon by no force after the impact, it

will revolve uniformly. If it move about a horizontal axis,

and be acted on by gravity, it will ascend till all the velocity

be destroyed, and then descend, and so oscillate.

If the bodies be elastic, we must apply the rules for im-

pact in that case. On this supposition, P and M will separate

after the impact. And if the impact be not direct, we must,

supposing the bodies perfectly smooth, take that part of it

which is perpendicular to the surfaces at the point of contact.

211. An instrument depending upon these principles

was constructed by Robins for the purpose of measuring the

velocities of musquet and cannon bullets, and has been called

the Ballistic Pendulum. It consisted in an iron plate CA,

fig. 107, suspended from a horizontal axis at C, and faced

Kk
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with a thick board DE. When this was at rest, a bullet was

shot into the board as at P, which caused the pendulum to

move through an arc MN. The chord of this arc was known
by means of a ribbon fastened to the pendulum, as at iV,

and sliding through a slit at il/, so that when drawn to the

length MN it did not return. The ball stuck in the wood,

and was prevented from going through by the iron.

Let O be the center of oscillation of the pendulum, includ-

ing the bullet. Then the motion of the pendulum when left

to itself, will be the same as if all the matter were collected

in O. And hence tlie arc up which O will move will be that

down which it would acquire the velocity which it has at the

lowest point. If d be this angle, the velocity acquired in

describing it would be that acquired down the versed sine of Q ;

or down a perpendicular height CO . ver. sin. 6. Let C = l\

.'. (velocity)- of O at lowest point

— V^(2^/ ver. sin. 9) = 2 sin. -^/igl)-

But since the velocity of P at the lowest point is, by last

Article,

PVa^

Pa" + M/c'
'

the velocity of O, which is to this as CO to CP, will be

PVal G—

—

——
- , which is = 2 sin. - \/(ffl) by what has been said.

Pa^ + Mk^ 2 ^ ^ ^

If h be the distance from C of the center of gravity of the

pendulum, including the ball, by Arts. 203, 201,

Pa/ + Mk''

.-. PVal = 2sm.-(P+ M)hl^(ffl),

. e p + M h .^ ^V=2 sin. -
.
— a/(^0-

2 P a^ ^^ '
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If the pendulum, after being struck by the ball, makes n
oscillations in a minute, we have

Go // / 60^
time of oscillation = — = tt \/ - ; .'. \/(gl) = •

n g
V vo ^ ^^

And, F = 2 sin. - .
.
—2_ .

2 P Tvna

Q
This agrees with Dr Hutton''s formula. We have 2 sin. - by

dividing the chord MN by the radius CN.

Dr Hutton himself however, in his own experiments,

found the velocity of balls, by suspending the cannon which

he used, and observing the arc through which it was driven

by the recoil. The same formula is still applicable, M now
representing the weight of the cannon and its appendages

without the ball. For the effect will be the same, whether

a velocity be communicated to the pendulous body by the

impact of the ball, or by its reaction. And the momentum
communicated at the axis of the cannon will be PV, because

the momentum communicated to the ball in one direction, and

to the pendulum in the other, must be equal.

It is found by experiments of this kind, that the velocity

of musquet and cannon bullets varies from 1600 to 2000 feet

per second.

Sect. II. Motion of Bodies rolling and unrolling.

212. A body rolls when it moves in contact with a line

or surface so that the parts of the surface of the body are

applied continuously to the successive portions of the line or

surface. In this case a motion of translation implies also a

motion of rotation, and conversely ; and a force which pro-

duces the one of these motions must produce the other.

When a string has its end fastened to a body, the body, by

revolving in a proper direction, wraps the string on or unwraps
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it ofF the body, and produces a motion which resembles roll-

ing; when the body thus unwraps itself we may term the

motion unrolling.

In all such cases the body does not revolve about a per-

manent fixed axis, and therefore the proportions of the pre-

ceding chapter are not here immediately applicable. The
following proposition will however enable us to reason con-

cerning such cases.

In all these cases we shall suppose all the motions to take

place in planes perpendicular to the axis of revolution : the

consequence of this will be that the axis of instantaneous

revolution will always be parallel to the axis of apparent

revolution passing through the center of gravity, or through

any other point,

213. Pkop. When a body rolls or unrolls, the center of

gravity moving in a straight line, it is required to Jind the

Resultant of the Effective Forces, and their Moment.

Let the body move for two successive seconds, and in each

of these seconds let it be supposed that the motion is resolved

in the following manner ;—the center of gravity moves out of

its initial into its final position, the body moving parallel to

itself; and then the body moves out of the position into which

it is thus brought, into its final position, the center of gravity

remaining at rest. In this manner the motion in each second

will be resolved into a motion of translation and a motion of

revolution.

The effective force (supposing it to be constant) is measur-

ed by the increment of velocity in one second. The velocity

of each point being resolved in the manner just described,

the increments of the velocity will be resolved in the same

manner, and therefore the effective forces will likewise be so

resolved. Hence the effective forces will be those which are

due to the motion of translation, together with those which are

due to the motion of rotation.

If / be the effective accelerating force Avhich is due to

the motion of the center of gravity, mf will be the moving
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force due to the motion of translation of any particle m ; and

the sum of all those forces will be S . w/, which, since they

are all equal and parallel, will be /2w, or J//, if M be the

mass of the body.

Also the resultant of all the parallel forces mf will pass

through the center of gravity of the body, and will be in

the direction of the motion of the center of gravity : therefore

its moment with respect to any point in that direction will

be nothing.

The resultant of all the effective forces due to the rotatory

motion will be nothing; for if be the effective accelerating

force on a particle at the distance 1 from the axis of rotation

passing through the center of gravity, mr(p will be the effec-

tive moving force on a particle m at distance r from the axis,

and will act perpendicular to the radius r. If x, y be the

co-ordinates of the point m as referred to the center of gravity

by rectangular axes in the plane of rotation, the components of

the effective moving force in the directions of x and y, will

be proportional to the sides of the triangle y, x, of which the

third side is r, by Art. 28, these three sides being respectively

perpendicular to the force and its components ; and hence,

considering the directions of the forces, 7iiy^ and — mx(p
will be the components of iyir<p in the directions of these co-

ordinates ; and "Z-mycp and "^.-mxcp will be the result-

ing forces in these directions. But ^ . mycp = (pl^my = 0,

by the property of the center of gravity ; and in like manner

2 . — mxy = ch^mx = 0. Therefore the resultant of the

effective forces due to the rotatory motion is 0.

The moment of the force mr0 with reference to the axis

'passing through the center of gravity is mr^cp, and the sum
of all such moments is "2

. mr'cj) = (p'S. .mr^ = Mk~(p, Mk^
being the moment of inertia for the axis now supposed.

Hence, it appears that the effective forces which act on

the system M, are equivalent to a force Mf acting at the

center of gravity^ and in the direction of the motion of that

center ; and that their moment is equivalent to a moment

Mk-cp, acting to move the body about the point where its

center of gravity is at any instant ; / being the effective force
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due to the motion of the center of gravity, and (p the effec-

tive force due to the rotatory motion of a particle at a dis-

tance 1 from the axis of rotation passing through the center

of gravity.

214. Prop. A cylindrical body M (fig. 108,) unrolls

itself from a vertical string ABP, ivhich passes over a Jl.ved

pully ajid has a iveight P appended to its other extremity

;

to determine the motion.

The tension of the string ABP will be the same through-

out, if we neglect the inertia of the pully B ; let this be sup-

posed, and let the tension be Tg:, and let, as in the last Article,

Mk- be the moment of inertia, / the effective accelerating force

on the center of gravity, (b the effective accelerating force on

a particle at a distance 1 from the axis ; and let a be the

radius of the cylinder.

The impressed forces are Tg at the circumference of the

cylinder, acting upwards, and the force of gravity on each of

the particles of the body, which is equivalent to Mg at the

center of gravity acting downwards. The impressed and

effective forces must have their resultants equal and opposite,

and also their moments equal and opposite, by the conditions

of statical equilibrium. Therefore, by last Article,

Mg-Tg = Mf,

Tga = Mk^(p.

But if f be the effective accelerating force which acts on

P, we shall have, for a like reason,

Pg-Tg=Pf'.

Now it is clear that if, when any radius, as CA., is hori-

zontal, the point C moves downwards with a velocity v, and
the point A moves upwards with a velocity v, the relative

velocity of A with respect to C, will be v + v , and the angular
{1 _(. ^1 J

velocity of A about C, will be , or — (« -f- v').
a a

Hence the effective accelerating force due to the rotatory

motion will be
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- (force which increases v + force which increases j/)
a

= ^ (/+/)•
a

Therefore <^ = - (/ + /), or / +/' = a 0.

Taking the values of f, f and (b from the above three

equations, this gives

PMg - PTg + PMg - MTg = PTg—

.

k~

Hence, 2PMk^ = {Pa' + (M + P)k'\ T,

2PMk'

~ Pa'+ {M+P)k^

'

Irom this we nnd / = M
_ Pa' + (M-P)k''
~ Pa- + (M+ P)k'

Pff - Tg
J p

Pa"" - (31 - P)¥

g

gr ar + yr + ivi)k-

Tfra

Pa' + (P + M)k^

Tga
Mk^

2Pga
" Pa^ + {M - P)k^'

These forces are constant, and therefore the motion of

the center of gravity downwards, the motion of P down-

wards, and the motion of rotation, will be uniformly accele-

rated.

Cor. 1. If / be negative, M will ascend, that is, if

M k~ — €?
Pa" + {M - P) k' < 0, or if — < ^-

:

P a-

this cannot be, except a is less than k.
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Coil. 2. If /' be negative, P will ascend, that is, if

Pa--{M -P)1i^<0, or if ^ >_!_-.

Coil. 3. It is not necessary that the whole body should

be cylindrical, but only that the part of it from which the

string unrolls should be a cylinder, of which the axis passes

through the center of gravity. The vertical plane of the

string must be perpendicular to the axis of the cylinder,

and must pass thi'ough the center of gravity.

Cor. 4. If the figure be a cylindrical shell of small

thickness, the whole matter is at the distance a from the

center, and k = a ;

Hence, accelerating; force on C = —— ;

2P - M
accelerating force on P = —— — . g ;

2MP
tension =

2P+ M
CoR. 5. If the figure be a solid homogeneous cylinder,

it will be seen in the Analytical Dynamics that k^ = —

.

P + M
Hence, accelerating force on C = —— —

. g-,

3P-M
acceleratinof force on P = — —

. £•,^ 3P + M ^

2MP
tension =

sP + M
215. Prop. A cylindrical body unrolls itself from a

vertical string, the other end of which is Jiwed ; to deter-

mine the Accelerating Force, fig. 109.

If we assume P, in last Article, to be such that it shall

neither ascend nor descend, we may suppose the string AB
to be fixed at the point J5, and the motion will be the same
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as before. We must therefore in this case, have tlie acce-

lerating- force on f* = ;

MIc'
or , Po'- - (M - P)k~ = 0, whence, /* = —

a- + k'

Hence also, T = — —
a- + Ir

(M - T)g erg
And acceleratine- force on C = — = —, ri;-

- M rr + A"

Con. 1. If the fioure be a cylindrical shell, k = a ;

g r M
accelerating force on C = - , T = — .

CoR. 2. If the figure be a solid cylinder, /r = —
,

(see

Analytical Dynamics,)

'-zg M
accelerating force on C = — , T = —

.

^
3 3

CoR. 3. If the figure be a globe, it will appear (Analy-

tical Dynamics) that A" =
2 a-

5g 2M
acceleratino- force on C — — , T =

CoR. 4. If the string, instead of being vertical, be laid

along an inclined plane as BA, fig. 110, the same conclusions

are manifestly true ; putting for g the force of gravity down

the plane, which is ^ x sin. inclination. The tension will also

be Tg X sin. inclination.

CoR. 5. If Jf, instead of rolling by means of a string,

roll down the plane in consequence of the friction entirely

preventing its sliding, the results will be the same. The
tension of the string is now replaced by the effort which the

friction exercises to prevent sliding.

Hence, when a body rolls down an inclined plane, the

accelerating force is 1 if it be a hollow cylinder, |- if it be

a solid cylinder, and y if it be a globe, of the force with

which a body would slide down the plane, if friction were

removed.

L I.
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Sect. III. Motion of Pullies.

216. Prop. One body draws another over a single

fixed pully ; to determine the Accelerating Force, fig. ill.

Let Mk~ be the moment of inertia of the pully, a its

radius. And let w be the effective accelerating force on P
downwards ; which is therefore also the effective accelerating

force on the circumference of the pully M, and the effective

accelerating force on Q upwards. Let Tg be the tension

of the string AP, and T'g of BQ. Hence, the force impressed

at the circumference of the pully is Tg — T'g, and therefore,

by Art. 205,

{T-r)ga'
X = —

Mk~

But the accelerating force on P = x =

and the accelerating force on Q = ,r =

.'. Px={P-T)g, Qx={T'-Q)g;

.: (P+Q)x=(T' - T)g+(P-Q)g (2).

Multiply (1) by Mk', and (2) by a% and add;

.-. Mk'x + {P + Q) a~x = {P- Q)ga-,

{P-Q) ga'
'^ Mk' + (P+ Q) a'

'

Cor. 1. The tensions of AP, and BQ, are respectively

(Mk' + 2Qa'') Pg (M k' + 2Pa^) Qg
Mk' + (P + Q)a-' Mk' + (P + Q) a

"

Cor. 2. Hence, when strings are in motion about pullies,

the tension of each string is no longer the same throughout
its length. A part of the tension of PA is employed in turn-

ing M; and it is only the remainder which is continued along
the cord, so as to act in BQ.
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The same results might have been obtained from Art. 210,

by making the radii of the wheel and axle equal.

217. Prop. In the single moveable pully with the

strings parallel ; to determine the Accelerating Force, fig. 112.

Let P, Q, be the weights ; Mk^, M'k'^, the moments of

inertia of the fixed and moveable pullies AB, DE ; a, a' their

radii. And let the tension of AP = Tg, of BD = T'g, of

EF = t'g. Then, if 00 be the accelerating force on P, - will

be the accelerating force on Q, because it moves with half the

velocity, Also, the accelerating force at the circumference of

M will be ci' : and since, while E remains fixed, the center of

M' rises with half P's velocity, the relative motion of E about

the center, is half P\ velocity, and therefore, the effective

CG

accelerating force at the circumference of M' round C is - .

2

And if we consider the forces which act upon M', we have

Impressed forces, T'g, t'g upwards, Qg downwards

;

Q including the weight of M'.

Effective forces, — acting upwards on Q, and — acting at

the circumference, turning M' round C' ; whence the force

<v

about C is — , at distance 1, and by Art. 213, the moment
2a "^

, . .I' M'k'-'
about C IS — —r— .

Hence, by Art. 202, we nuist have

{T + t:)g-Qg = Q'^,

and, considering the moments with respect to C',

(T -t)ag= ~^.-; or(r -t)g = -^.-
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V. M'lc''- .r
.-. adding, 2 Tg - Qg = Q - + -^, .

-

Also, we liavc, as before,

P-T
-g, or (P- T)g^Pw,

P

{T-r)gcr Mk'

add these two, and the result of former one, namely,

^, Qg Q,v M'k'"- .!•

and we have

Qg ( Q Mk' M'k'-'-\

2 \ 2 a. 2 rr J

P + -.3 + -V- + -T-TTT
2' «- 2-a-

from this also the tensions might be found.

218. Piiop. In the tiystem of moveah/e piiUies, ivhere

eacli puUy hangs by a separate striny ; to determine the

Accelerating Force, fig. 113.

The strings are supposed parallel.

Let M, M', M', M'" be the pullies ; Mk\ M' k'~, M"k"\

&c. their moments; r/, «', a", &e. their radii. Let x be the ef-

fective accelerating force on P\ then - will be the accelerating

force on M' ; — on M" ; — on M'" ; and these will also, as
2 2

in last Article, be the effective accelerating forces producing

rotation at the circumferences of J/, J/', J/", &c. And, by

reasoning with respect to each pully, as we have done for M'
in last article, we have these equations.
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(P - T) ^ = l\v, ( T - 7") g=-^a.>.
a

(r + t')fr - M'^r.T'g = M'^' {T -t')g = ^'l,
2 a- 2

( T + n g - M"g - T" g = M"-
, (

T' -n g = ^,|-- t .

2" a 2

and so on.

Eliminating /', /^

", &c. from each successive pair, we have

Pg = Pv + Tg,

M/r
Jg = -:7-.r+ Tg,

((

M'k"' .V M'w M'g T"g

^^=-^V^ 2-^T^^'
M"k"- a- M\v M"g T"

g

antl bo on.

Therefore,

MA:'- M'W' 01 M"k"' .V

Pg = Pv + — .V + ^ . — + —y.7-. -5 + &C.
a- a' 2^ a ^ 2^

J/'.I' Ji-'\r iW> M"g T'g
2 2 2 2 2

The hiw of continuation is manifest : and the last tension

(as T'^ in the figure) is that which immediately raises Q,.

Hence, we have

V (T^''- Q)g
the effective acceleratini*- force on Q, = — = '—;

"^ 2-^ Q
'

.-. T^g=Qg+Q^^.

Substituting this, and obtaining the value of r, we have

p _ ^' _^ _ &e. - ^

„ Mk' M' M'k'- M' M"k"' Q
'

n'^ 2~ 2'^a 2 2^ ft 2^

and similarly for any number of pullies.
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By similar reasoning, we shall have the accelerating force

in the system of pullies in which each is attached to the

weight : but more immediately in all such cases by the next

Proposition.

219. Prop. To Jind the Accelerating Force resulting

from the action of gravity on any machine whatever^ in which

the ratios of the velocities of different points are constant.

Let P be one of the bodies of the machine, and let P' be

the mass, which, placed at P, would preserve the equilibrium.

Then the weight (P — P')g is the impressed force, which pro-

duces the motion.

Let 71 be the velocity of P, and v, v', &c. the velocities

of any other bodies m, m', &c. in the system. If x be the

effective accelerating force on P, since the forces are in the

dv .

vdtimate ratio of the increments of the velocities. * — will be
d?i

dv
the accelerating force on ni, and mx — the effective moving

d?i

force. Therefore the forces which must balance each other

according to Art. 199, are (P — P')g, &c. in one direction,

IT. dv , dv' . - . ,, .

and Pa', m,v — , m x—-, , &c. in the opposite direction.
du dn

Now 11, V, v', &c. may be considered as the virtual

velocities of the points where these forces are applied. Hence

by the principle of virtual velocities, (Analytical Statics,

Art. 22,)

dv dv'
(P - P)g . u ~ P. I . u - m X -—

. V - m x —— . v - &c. = ;

dn du

. .,
(P- P')g iP - P')g

^ mv dv m'v' dv' „ mv dvP+— -- + :j-+^c. P+2.— —
u du u du u du

Let a mass M, which forms any part of the system, be

considered as for an instant moving about some stationary axis.

This is always a possible way of representing the motion.
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Let the distance of the center of gravity of M from the

imaginary stationary axis be rt, and the velocity of this

center be a. Then if m be any particle of M which is at the

T a
distance r from the axis, w's velocity = —

;

a

ra dv r da
, ^ , i , p ,^

whence v = — , -j— = ;— ; and lor the whole of Tlf,

a du a du

mv dv ^ mr^a da a da
,2 .

— 7=2. -^^ -j- = -^- —- 1 . mr-
u du o~u an an du

(by Article 204) = — —M (a- + k^) = M 1- M .

a^ti du u du a^u du

Hence in the denominator of the accelerating force x^ we shall

have, for each mass M, two terms, such as we have just found :

one of them depending on the quantity of matter J/, and the

other on the moment of inertia Mk-.

If the machine be such that the velocities of the particles

have to each other ratios constant for the same particle, let

a = nil, where n does not vary with the time; therefore

da a a da or—— — 71 = - , and - — = —
;du u u du ii'

whence the two terms of tlie denominator of .r, corresponding

to the mass il/, are

-^ a^ ,, k''a-M —+ M -p-r, .

u a' u'

Also - is the angular velocity of M about its centre:

therefore if w be the angular velocity, tlie two terms corre-

sponding to M will be

M — + M—- .

ti~ u

It will be seen by comparison, that this includes all the

preceding propositions of this Chapter.
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CHAP. VIII.

ON THF. FRICTION OF BODIES T\ MOTION'.

220. When two bodies move so that their surfaces ruh

or roll against each other, there is exerted between them a

force of friction which has a tendency to affect their motions.

It diminishes the motion produced by a given force, and

makes a crreater force requisite to produce a given motion.

The friction of a body which is dragged along a road

on a sledge, or on a wheel-carriage ; the friction of a wheel

revolving upon a fixed axis ; the friction of the pins, joints,

sliding rods and valves, of pumps, steam engines, and other

machines; all operate in this manner.

The Friction of bodies in motion is of different kinds

:

for example

;

l'\ The Friction of Sliding or Ruhbing.

221. This is experienced when a body moves along a

surface, touching it always with the same part of its surface,

as a sledge drawn along the surface of the snow, or a flat

stone thrown so as to run flatways along a sheet of ice.

We have a friction of the same kind when an axle turns

in a hole, or on the sides of a notch ; or when a body

revolves upon a pivot, as a top upon its peg. In all such

cases the friction would, in the course of time, destroy the

motion, if it were not maintained by the action of some force

;

and in order to keep up a uniform motion, a greater force

is requisite, in proportion as the friction is greater.



FRICTION OB BODIES IN MOTION. 273

2^ Friction of a Rolling Body.

222. When a cylinder rolls upon a horizontal plane, the

opposition to its motion is much less than if it were to slide,

but the resistance does not absolutely vanish. It would

seem that in this case the resistance must arise rather from

the cohesion of the surfaces than from friction properly so

called, since the surfaces do not all ruh upon each other.

This kind of friction may be neglected in statical problems.

In the case of motion it is found that the friction of rolling

cylinders is as the pressure directly, and as the diameter

of the cylinder inversely. Hence we see one of the mechanical

advantages of large wheels.

When a cylinder of mahogany, of diameter 3 inches,

rolled on a plane of oak, the friction was -j^ the pressure ;

when the same cylinder rolled on a plane of elm, the friction

was -YiTo t^"^ pressure.

S\ Friction of Wheels.

223. The wheels of carriages roll on the road, while the

axle slides round in the hole into which it is inserted. Hence

the friction of wheels will depend on both circumstances;

the rolling friction of the rim, and the sliding friction of the

axle. And the whole friction will be diminished by any

change which diminishes either of these portions of it ; for

instance, by making the road smoother, or by smearing the

axle with a lubricating substance.

In all these cases the friction is equal to some certain

pressure, acting in a direction opposite to the body's motion

and retarding its velocity, or requiring to be counteracted by

a force acting in the direction of the motion.

224. We do not in Statics consider the effect of forces

in producing or changing motion, having for our immediate

subject the forces which keep a body at rest. But the forces

which will keep a body in unifarm motion are exactly those

which will destroy or balance the resistances which oppose

its motion : for bodies are in themselves indifferent to rest

Mm



274 FRICTION OF BODIES IN MOTION.

or motion, and will go on moving uniformly if the resistances

be balanced or destroyed, as has been explained in speaking

of the First Law of Motion. Hence the forces which produce

uniform motion may be reasoned upon by means of statical

principles ; and their results may be traced by the help

of those principles, with the addition of the First Law of

Mothwi.
4

Prop. If a body move along a horizontal plans, andsy^

he perpetually urged forwards by a force exactly equal to the

force of friction upon this plane, it will go on moving

uniformly.

For the force which urges it forwards, and the resistance

produced by friction, are two equal and opposite forces,

and exactly destroy each other's effects ; therefore the body

will move as if it were not acted on by any force ; and

therefore, by the First Law of Motion, it will go on moving

uniformly.

Thus if a body in motion upon a horizontal plane ex-

perience a friction of — of its weight, a pressure of the amount
n

n , . .

of — of the weight, acting horizontally on the body, will keep

it in uniform motion.

225. The force which is requisite to keep a body in

uniform motion is sometimes called the power of tractio7i.

The power of traction differs, as has been said, according

to the differences in the wheels of the carriage, and also

according to differences in the road. Taking carriages of

the usual kind under the usual circumstances, the following

are the results of the most recent experiments upon the

subject.

The power of traction over a level well-constructed pave-

ment varies from 32 to 39 lbs. for every ton. A waggon
weighing 21 cwt. 8 lbs., drawn over a well-laid pavement,

in Piccadilly, required a power of traction varying from

33 to 40 lbs. In a place where the pavement was uneven
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and worked into holes, the power was increased to 48 lbs. ;

but it may be assumed that the power of traction on the

best laid pavement, when newly laid, is at the rate of about

32 lbs. to the ton, or yL, of the weight. On a broken-stone

surface of old flint the traction is about 64 lbs. being double

that of a pavement. On a gravel road, the power of traction

is nearly 150 lbs. to the ton; or -^^ of the weight: on a

broken-stone road having a rough pavement foundation, the

traction is 45 lbs. to the ton, or -J^.

The power of traction required on a well-constructed

level rail-way is found to be from -^-^ to yto ^f the load

drawn.

226. Piiop. The effect offriction upon bodies in motion

is nearly independent of the velocity.

This is proved by experiment. Coulomb, in a series

of experiments made with great accuracy and on a large

scale, found that bodies sliding on a plane, on which they

were moved by a constant force of traction, (greater than

the power of traction requisite for maintaining a uniform

velocity) were uniformly accelerated. Therefore the acce-

lerating force which actually affected their motion must have

been constant. (Art 114.) Therefore the pressure which

produced motion must have been constant. (Art. 126.) But

the pressure which produced motion was the excess of the

force of traction above the force of friction ; and as the

former force was constant, the latter must have been so

likewise.

It appears also by experiment that the friction which

opposes the motion of a body when once set a going is less

than the friction which opposes its beginning to move. Ac-

cording to Euler, the friction is reduced to one-half when
the body is actually put in motion. The reduction appears

in some cases to be greater than this. Coulomb found that

the friction of wood sliding upon wood became less when

the body began to move, than it had been the instant before,

in the ratio of 2 to 9. The intensity afterwards did not change

But the friction, so far as it depends on the softness of the

surface as in roads, will increase with the velocitv.
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227. Prop. When the friction of carriages on a road

is diminished, the maximum slope must be proportionally

diminished, in order that the power of traction requisite

for travelling may be diminished in a corresponding degree.

The sloping parts of a road may be considered as in-

clined planes ; and the force requisite to sustain a weight

on these inclined planes is a traction of the weight which

has the vertical height of the plane for its numerator, and

the length of the plane for its denominator. Thus if the

rise of the road be 1 foot in 20 feet of length, the force

which must act up the slope in order to prevent a carriage

from running down the hill (omitting the consideration of

friction) is -^ of the weight of the load and carriage.

(Art. 38.)

The force which would just sustain the load is, by the

reasoning in Art. 225, equal to the power of traction which

is requisite to keep the carriage in uniform motion. And
the power of traction must overcome or balance both the

power of friction and the resistance produced by the slope.

The friction upon the slope may be supposed to be the same

as that upon the horizontal road, for the pressure is very

nearly the same*.

Hence on a road on which the horizontal friction is -^
and the greatest slope ^, the average power of traction

required will be -j^, and the greatest power required will

be -jL + -jL- or -j^. The greatest power requisite for tra-

velling is 2J- times of the average.

If the friction be reduced to -^, the slope remaining

the same, the greatest power now required is -^ + 2^-, or ^^3-,

which is 4 times the average. While the average is reduced
to one-fifth of what it was, the greatest power is only one-half

of what it was ; and except we have an available power
amounting to this greatest force, we cannot travel on the

road.

• By Art. 38, the pressure on the inclined plane is to the weight of the load as the

cosine of the inclination of the plane is to the radius. For a slope of 1 in 20, the

pressure in the inclined plane is only m P^rt less than on the horizontal plane.
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But if the slopes be now reduced so that their maximum
is -^ ; the greatest power is now tit + tt ^^ tw ' which

is 2i of the average, and -^ of the former greatest power.

If the road become a rail-road, with a friction of only
-g-i-^ of the load, and if the slopes were still as much as 1 in 20,

the carriage could not ascend these slopes without a force

of YTTT + "sV ^^ "iVo" ' ^^^t is, we must be able to use in

these parts of the road a force 13 times as great as the force

which we want on the level parts ; and thus the advantage

which a reduction of the requisite force of traction in the

latter cases would give us, is lost by the necessity of pro-

viding for the hills.

But if in these cases we can reduce the slope very much,

for instance, to 1 in 300, the greatest force then requisite is

TTo" + ToTT = T^' which, Compared with -j\^, the force on a

Macadamized road, with a slope of -^, (-^ + -^) is less in

the ratio of 3 to 28, or 1 to 9^.

This reasoning is applicable whatever be the kind of

force employed. If the roads of a country in general be so

much improved that a single horse can draw a double-bodied

phaeton with ease along a level, such carriages may be used

with one horse, provided the hills be also so far cut down
or avoided, that one horse can draw the carriage up them

with moderate effort : but if this is not done, the improvement

of the surface of the road will not make such a kind of

carriage fit for common use.

228. Prop. With small velocities, canals are more
advantageous than roads ; but with large velocities, good

roads are more advantageous than canals.

In canals the force which opposes the motion is the re-

sistance of the water ; and the power of traction must be

sufficient to counteract this resistance, in order to maintain

the speed of the boat. But this resistance increases in a

higher proportion than the square of the velocity ; while

on roads, as we have stated, the friction is the same whether

the velocity be large or small. If a carriage travel on a

road 10 miles in .'5 hovn-s, or 10 miles in I hour, the power
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of traction must be nearly the same*; but if a boat be pro-

pelled on a canal 10 miles in 1 hour, the power of traction

must be more than 25 times that which would be necessary

to carry it 10 miles in 5 hours.

A vessel moved on the Paddington Grand Junction Canal,

at the rate of 2^ miles an hour, loaded with 21 tons, re-

quired a force of traction amounting to 77lbs. ; while the

same vessel moving at a rate of something less than 4 miles

an hour, required a force of traction amounting to 308 lbs.

Thus while the speed was increased in a somewhat less

proportion than 2-i- to 4 or 10 to l6, the resistance was

increased in proportion of 77 to 308 or 10 to 40. The pro-

portion of the square of the velocities would have been

100 to 256 or 10 to 25.6: that of their cubes 10 to 40.196.

Other experiments also give the resistance in a greater pro-

portion than the square of the velocity.

Let the boat just mentioned be compared with a car-

riage or train of carriages of equal weight, moving upon a

road, on which the friction is — of the weight : and let the
n

resistance be supposed to vary as the square of the velocity.

The resistance at 4 miles an hour was 308 lbs, for

21 X 20 X 112 lbs, that is, -j-^ of the weight. If the resistance

vary as the square of the velocity, it will for a velocity of

V miles an hour be of the weight. The resistance
16 X 152

^

on the road is — the weight ; and the resistance of the canal
n *=

will be the less of the two so long as nv^ is less than l6 x 152

or 2532.

Hence if w be given, there is a certain velocity upon

the canal for which the resistance is equal to the friction

on the road ; for smaller velocities the resistance is less than

that on the road, and may be made much less by diminishing

* The different speed depends principally, as we shall see in the next chapter, on

the different rate at which tlie power of traction is supplied and applied. But tiic

resistance of the air makes a greater power of fraction requisite for the j^reater velocity.



FRICTION 01' BODIES IN MOTION. 279

the velocity. In larger velocities the resistance on the canal

is greater than that on the road, and may become much
greater by increasing the velocity.

Thus if the friction of the road be -^ ; the canal will

have the advantage in this respect, as long as v~ is less

than 33, that is, till the velocity is about 5^ miles an hour.

But if the load be placed on a rail-road, when the friction

is XTTJ ^^^ canal requires a greater force when v~ becomes 10-g-,

that is, when the velocity reaches 3\ miles an hour.

229. A remarkable exception to the above rule of the

connexion of the resistance and the velocity of boats drawn

on a canal, is found to obtain when the velocity is very great.

Beyond 8 miles an hour it appears that the resistance does not

increase nearly so rapidly as the above rule would give it.

It does not seem to be clearly ascertained whether this

curious anomaly arises from the circumstance of the boat being

made to rise in the water by the rapid motion, and thus ex-

posing a less surface to the resistance ; or from a difference

in the kind of motion communicated to the parts of the

water.

230. There is another point in which the advantages

of canals and roads come in competition ; namely, in their

power of supporting loads. The pressure of the wheels of

carriages on a rail-road is limited by the strength of the

rail, and is seldom more than 3 tons upon each wheel. The
pressure on the wheels of carriages on a turnpike road is

limited by the strength of the crust of the road : on the

broad wheels of the heaviest waggons the pressure never

exceeds two tons. But the weight which a canal is capable

of sustaining, is only limited by the magnitude of the boats

which the breadth and depth of the canal allow to float

upon it : the weight of the boat and its cargo being, by

the principles of Hydrostatics, equal to the weight of the

water which is displaced by the part of the boat immersed

in the canal.
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CHAP. IX.

ON THE MEASURE OF THE POWER OF MECHANICAL AGENTS

AND OF WORK DONE BY MACHINES.

231. Various mechanical agents, as animal strength,

weight, wind, water, steam, are employed by man : and their

agency is made, by various contrivances, to produce certain

desired effects. The nature of the effect may be infinitely

varied according to the details of the machinery which is put

in action : but in all cases there must be some force exerted

in order to produce any effect ; and there will be a certain

relation between the force exerted and the effect produced,

which relation we shall here consider.

As examples, we may take a horse drawing a cart, a

water-mill or windmill grinding corn, a steam engine em-

ployed in raising ore from a mine, or in propelling a loco-

motive carriage along a rail-road ; and we shall in all these

cases suppose the rate of working to be uniform : we may
then assert the following Proposition.

232. Prop. When work is done by any machine, the

pressure at the work may be considered to be statically

equal to the resistance overcome.

On the above supposition, there is in these, and in all

other cases, a constant pressure exerted at the work. In

the case of the carriage, this pressure is the amount of the

friction on the road, and of the resolved part of the

weight acting down the slope, if the road be inclined.

In the mill, the corn is by various mechanical contri-

vances brought between the mill-stones, so that it is ground

when one of them turns upon the other : and the resist-
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ance to turning which is produced by this abrasion, is tlie

pressure which must be overcome in order to keep the

machine working. In the case of ores, or any other

weights raised, the force which supports or raises the

weight must be equal to the weight. When a locomotive

engine moves itself, it must produce an excess of pressure

in the direction of the motion, equal to the friction and

other resistances.

Such pressures, however, as are here described, would

only just balance the resistance to motion, and therefore they

would not produce motion. But the slightest excess of

force above this amount would produce motion, and, if

we suppose the excess to be permanent, would work the

machine : and as we are not here considering the rate of

working, we may suppose the excess, or accessory force, to

be as small as we choose, and may neglect it in comparison

of the definite and principal force which is requisite to

balance the resistances.

Thus the force which will balance the resistances is

sufficient to keep the machinery in a state of uniform motion

But it is to be observed that in this assertion we suppose

the resistances to be estimated for the state of motion.

In many cases however the action of a machine is not

uniform, but intermitting or alternate. Thus in the common
process of pumping, we draw up the piston and thus raise

a column of water ; but before we can make another effective

stroke, the piston must be returned to the bottom of the

chamber in which it moves.

In such cases we shall, at least at first, consider only

the effective part of the working process. By improve-

ments in the machinery, the force ' expended in the inef-

fective part of the operation may be diminished without any

known limit.

This may be effected in various ways. For instance, in

the case just quoted of the pump, something might be done

Nn
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by diminishing tlie inertia and friction of the piston and

other moveable parts. But the effective working might be

made continuous by connecting two pumps, so that the same

movement should produce the downstroke of one, and the

upstroke of the other.

A resource generally applicable to such cases is a Fly

Wheel, which may be kept in motion by a force either con-

tinuous, interrupted or alternating ; and may be made to

exert a pressure at the work, either continuous or interrupted

according to any law, provided there be a sufficiently great

disproportion between the whole work which the wheel is

capable of doing, and each separate effort.

233. Prop. The amount of work done may be measured

by the pressure exerted at the work, and the space through

which it is exerted, jointly.

If the pressure necessary to keep the machinery in motion

be increased in any ratio, the work done will be increased

in the same ratio. For instance, in the examples above men
tioned, if the weight of the carriage and load be doubled, or

if the mass raised be doubled, while the space through which

the carriage travels or the weight rises remains the same,

the woi'k done is also doubled : and the same may be said

of any other ratio.

Also if the space through which the weight be moved be

increased in any ratio, the work done is increased in the same

ratio. Thus the work done in drawing a carriage two miles,

is double of the work done in drawing the same carriage one

mile ; the work done in raising a weight through 20 feet is

double of the work done in raising the same weight 10 feet:

the work done in producing two turns of a mill-stone is

double of the work done in producing one turn, the resist-

ance being the same ; and the same is true of any other

ratio.

Hence when both the pressure and the space through

which it acts vary, the work done is as the quantities jointly

:

and may be meosnred by the product of the pressure exerted
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at the work^ multiplied into the space through which it is

exerted.

Cor. According to this mode of measurement the work

done is neither increased nor diminished by dividing it into

separate portions. If we have to raise lOOOlbs. through 20

feet, the work done may be represented by 1000 x 20. And
whether we raise the whole weiffht at once through the whole

space ; or raise it lOOlbs. at a time ; or raise it through 5 feet

at a time ; the whole work done will be the same according to

the measure here stated. And thus our measure of work

done agrees with the useful effect produced.

If 1000 lbs. be carried 20 feet high, 10 lbs. at a time,

by a person or a machine which had to return for each

successive load, the force employed in the returns is not a

part of the useful effect, and is not taken into account in

our measure.

It is universally true, that the work done, measured as

above, is not increased or diminished in amount by the rate

of working, nor by the substitution of any action through

machinery for direct action, however much this substitution

may modify the time of producing the effect and the kind

of work done. To prove this is the object of the following

proposition.

234. Piiop. The work done in the direct action of any

mechanical agent, is equal to the work done by the same

agent through any machine, whatever he the nature of the

machine or the rate of working.

Let / be the pressure exerted directly through the small

space 5, by the agent : and let F be the pressure exerted

at the work, *S' the space there corresponding to s. By
Art. 232, / and F balance each other on the machine ; and

s and S are small spaces through which the parts of the

machine at which f and F act, would move in the same time.

Therefore by Art. 43, f x s = F x s.

Now f X s is the work done by the agent acting directly

in the time of describing the space s : and F x S is the work
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done when the agent acts through the intervention of the

machine in the same time : and hence the proposition is

manifest.

Thus a man can mount on a ladder 1000 feet in 1 hour.

If his weight be 150lbs., the work done in this hour con-

sists in raising 150lbs. through 1000 feet. And if the same

man work on a tread-mill, and thus, by machinery, exert

a pressure / through a space s, we shall have, for one hour,

fxs = 150 X 1000, whatever be the machinery.

When rectilinear is converted into rotatory motion, as

when the piston of a steam-engine is made to turn a fly-wheel

by means of a crank, the same proposition is still true. Thus,

if the engine make a double stroke during one revolution of the

wheel, the pressure on the piston multiplied into the double

length of the stroke, will be equal to the pressure exerted

perpendicularly to any radius of the wheel, multiplied into

the circumference of a circle corresponding to that radius.

This might also be easily proved from elementary mechanical

principles for any small portion of the motion, and hence

for the whole motion.

The force here spoken of, as exerted perpendicularly to

the radius of the wheel, is the sustaining force, which is re-

quisite to counteract the resistances and to keep the machine

in a state of regular motion. We do not here consider the

force by which the momentum of the fly-wheel is generated

from rest, but the force by which this momentum, whence

once acquired, is preserved nearly uniform.

In the cases hitherto treated of, the work was done by
the whole action of the machine upon the materials : but

in some' cases the useful eff^ect is the excess of the action

above the re-action : we shall now consider a case of this

description—the Locomotive Engine.

235. Prop. In a locomotive engine which is made to

travel by turning a ivheel on which it rests, the force re-

quired is the same as if the center of the wheel were fixed,

and the resistance of the motion acted at the circumference

of the ivheel.
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The figure represents the " Rocket"''' engine of Mr Ste-

phenson.

Let C, D be the axles of the fore and hind wheels of

a locomotive engine, which rests on a road at the points A, B.

And let a force act from some point of the carriage, by the

rod GF^ upon the crank CF, which turns with the wheel CA
round the axle C. The rod exerts a certain action upon

the crank at F, and an equal re-action upon the carriage at

G : if FG meet CA and DB in H and E, the action on the

wheel CA may be supposed to take place at H, and the

re-action on the carriage may be supposed to take place at

E. Join CE, and draw HK parallel to CE: and let the

equal action and re-action in the line GF or EH be repre-

sented by EH and HE.

The force EH is equivalent to KH, CH, of which the

latter is supported and destroyed at A ; the former is effec-

tive on the wheel CA,

The force HE is equivalent to KE, CE, of which the

former diminishes the pressure at 5, the latter draws C to-

wards E.
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Therefore the wheel CA is acted upon by two forces KH,
CE ; which tend to turn it about A. Also the resistance

which the carriage experiences to its motion in the direction

CD may be considered as a force acting at C perpendicular

to CA. Let R be this force, and let ANM be perpendicular

to CE, HK. Then, the forces and the resistance must

balance each other, and by the property of the lever, if ^S*

be the force KH or CE,

Rx CA + S X AN= S X AM:, or R x CA = S x MN.

Let CO be drawn perpendicular from C upon EH, and

HI upon CE ; and let P be the pressure exerted by the rod

GF. We then have

P : S :: EH : EC :: HI : CO :: 3IN : CO;

therefore P x CO = S x MN;
and R X CA = P X CO.

Hence the effect is the same as if C were fixed, and the

force P acted by means of the rod GF and crank CF to pro-

duce motion in the wheel, in opposition to a force R acting

at the circumference.

In order that the engine may be urged in the direction

CD, the force which acts by means of the rod GF must be

a pushing force while the line GF falls below C, and a pulling

force when this line falls above C. If G be connected with

the piston of a steam-engine, these two parts of the motion

must correspond to the up and down stroke, or the back-

wards and forwards stroke.

The same reasoning which is here applied to locomotive

steam-engines, is equally applicable to other locomotive en-

gines ; for instance a row-boat. In the case of such a boat

the oar may be considered as a radius of a wheel, turn-

ing about the row-lock : the whole resistance of the water

to the boat must then be considered as transferred to the

blade of the oar, and balanced by the whole pull of the rower.

236. Prop. In a locomotive engine moving uniformly,

the pressure on the pistons multiplied into the length of the
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double stroke is equal to the resistance to the motion mul-

tiplied into the circumference of the driving wheels.

Let R be the resistance to the motion, Q the mean

pressure on the piston, I the length of the stroke, D the

diameter of the driving wheel. Then, while the piston moves

up and down through 2/, the wheel makes one revolution,

and a point at the circumference moves through ttD. Now
the force Q and the resistance^ balance each other: (Art. 234.)

Hence, by the principle of virtual velocities,

i? X 7rZ> = Q x2/.

Cor. 1. We have here represented by Q the effective

pressure on the piston : but if Q be the whole pressure on

the piston and A the pressure of the atmosphere on the

piston, the effective pressure is Q — A:, whence

R X7rD= (Q- A)2l.

CoR. 2. In the proof we have spoken of one piston only;

but if Q be the mean pressure on both the pistons where

there are two, the equation will still be true.

Hence the work done by an agent working a locomotive

engine is determined in the same manner as the work done

by any other machine.

237- Since in all circumstances the product of pressure

and space moved through, when an agent acts by means of

any machine, is equal to the product of the pressure exerted

directly and of the space through which it is exerted, this

product may be taken as representing the power of the agent

to do work ; and a particular term may be applied to it.

Mr Davies Gilbert (Phil. Trans. 1827, p. 25, " On the ex-

pediency of assigning specific names to all such functions of

simple elements as represent definite properties ; with the

suggestion of a new term in mechanics,'") has proposed to

term this product the efficiency of the agent.

The term duty is used by engineers to express the work

actually done by a steam-engine, estimated by the number



'2SH MEASURE OF THE I'OWEK OF MECHAXICAL AGENTS

of pounds raised one foot high by one bushel of coal. Per-

haps it will be most convenient to call the product of the

pressure and space moved through by the agent the theore-

tical duty ; and the work really performed the practical

duty: the former is what the machine ought to do; the

latter is what it does.

238. We shall now consider the application of the pre-

ceding measure in some of the most important cases.

The agents, or sources of power which are commonly

employed in doing work are, the weight of solid bodies

;

the weight of fluids ; the elasticity of solids ; the impulse of

fluids either inelastic, as water, or elastic, as air ; the elas-

ticity of aerial fluids, as steam ; the muscular power of men
and animals. Fuel is mediately a source of power, because

it may be used in converting water into steam.

In some of these agents the efficiency is capable of being

accumulated and treasured up for any length of time, as

weight and elasticity : in others the efficiency is necessarily

expended immediately ; it can only be produced at a certain

rate, and must be employed when it is produced ; as is the

case with the strength of men and animals. In the former class

of cases the preceding principles enable us to estimate the

total efficiency of the agent ; in the latter class we estimate

the efficiency of the agent for a given time, as the efficiency

of a man working for a minute.

1. Potver of Weights, or Gravity.

239. This is a very extensive source of motion, as in the

clock, in which it moves both the pendulum and the weight

:

in the heavy hammer, in which gravity is sometimes com-
bined with other forces : in the pile-drivei", in which gra-

vity alone produces the impact.

When the weight of bodies is used as a moving power^

the theoretical duty is the weight which we can command,
multiplied into the space through which it can descend.
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Thus a weight of lOOOlbs. which can descend 10 feet,

has a theoretical duty of 10000.

This weight may be made, by means of proper machinery,

(neglecting friction, &c.) Jp raise lOOOOlbs. 1 foot high, or 1

pound 10000 feet high: in both cases the work done is the

same.

And the total work done is the same whether the whole

weight descend at once, or in parts ; and whether it descend

the whole height at once, or descend a small height at a time.

240. One of the instances in which the weight of bodies

is used as a moving power on a larger scale is the case of

" self-acting planes ;" that is, sloping parts of a rail-road

where the weight of loaded carriages descending is made to

draw up unloaded ones.

In this case, however, the motion of the descending car-

riages is generally not uniform, but is, during a considerable

portion of the descent, accelerated from rest by tlie force of

gravity ; and the equality between the maintaining force and

the resistances, which is sufficient for the working of machines

in uniform motion, is not sufficient for the proper effect of

this contrivance.

In this case a part of the theoretical duty is employed

in doing work in the sense above explained : and a part is

expended in producing and increasing velocity.

Let there be a self-acting plane, the height of which is

100 feet, and the length 4000. On this plane let loaded car-

riages, of 3 tons each, draw up as many empty carriages of

1 ton each: and let in each case the friction be l-200th part

of the weight.

The theoretical duty is that corresponding to the differ-

ence of the descending and ascending weights : that is, for

each carriage, to 2 tons descending through 100 feet : whence

it is, in pounds,

2 x: 20 X 112 X 100 or 448000.

Oo
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The tvork done is the friction and resistance overcome

on a length of 4000 feet (for the weight raised has already

been taken account of).

3 X 20 X 112
The friction of the descending carriage is® '^

200

20 X 112
pounds ; of the ascending one, ; and the sum of these

is 44.8lbs; which multiplied into 4000 feet gives 199200 for

work done.

Hence there is an excess of more than one half the theo-

retical duty over the work done ; and this excess is employed

in generating and accelerating motion. Upon this excess of

force depends the rapidity of the working.

The friction being 44.8 lbs. and the excess of descending

weight 4480 lbs. these forces would balance if the ascent of the

plane were 1 in 100: and if the slope were less than this, the

plane would not work at all.

24] . When weight is employed, altogether or in part, in

generating velocity, the work done in generating velocity may
be represented by the product of the weight moved, into the

vertical space due to the velocity. This being assumed.

Prop. The work dotie by any machine, working by

weights, is equal to the theoretical duty ; including in the

estimate of the work done, the velocity generated i7i the

weights.

Let a body m descend to a given point from a height h

;

then, by what precedes, the work which it might have done

in descending is mh.

But if it has done no work in descending, the whole of

its weight has been employed in producing velocity : and in

this case, if v be its velocity, v~=2gh.

Hence the work which it might have done in descending

. mv' , v^-

is , smce h = — .

2g 2g
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If, during a part of the descent, some of the weight has

been employed in doing work, as for instance in overcoming

friction or resistance, let h' be the height which m has de-

scended, when a part m of the weight begins to be required

to overcome resistance. Then the vertical accelerating force

on tn after this pomt is g instead oi g; and it %i be the
m

velocity of m after it has fallen through /*', and u the ve-

locity after it has fallen through h,

m — m
tr = r 2-i- 2 g (/j - h ), (Art. l63, Cor. .3.)

m
or, since r'^= ^gh\

m
"\

u''=2g{h {h - k
[ m

o
ftl tt

Hence (- m (h — h')= mh.
<ig

Let k be the height through which a body must fall to

acquire the velocity u : then i^ = 'igk ; the above equa-

tion becomes

m k + m {h - li) = m h.

That is, the work done is equal to the theoretical duty

of the machine; including in the work done, the velocity gene-

rated, according to the above mode of estimation : for mk
is the work done in generating this velocity, and m (h - h')

is the work done in overcoming resistances.

242. Also the above proposition is true, however m' (the

portion of the weight requisite to overcome resistances) may
vary during the motion. For when h — h' is made small, h — h'

may be considered as an element of the vertical height, and

m being constant during this element, the proposition is true

for this element ; and in like manner it is true for the next

element ; and so on to the end of the motion.

The proposition is also true for any number of bodies,

and for any number of resistances : thus if Wj, »?2, w^ be the
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weights ; /i,, lu, h-i the spaces through which they can descend,

/Pi, /c,, k.^ the spaces due to the velocities acquired by

mj, W22» ^37 1^'
> wz" the weights requisite to overcome the

resistances, and k\ k" the spaces through which these weights

are required to act, we have

m^k]^ + mok-i + m-^k^ + m'k' + m" k" = m, h^ + m^h^ + niih^ ;

as will appear by the reasoning of the last Article.

If «<j, «2> ^'3 be the velocities actually acquired by mj, m^,

m^ ; t^i, 45^, U3 the velocities which they would have acquired

falling freely through h^, A^, A3; u\ u" the velocities which

bodies would acquire falling freely through k', k" ; we have

since 7/,"= 2gk^, &c,

orii ti^ + rn^ui + m^iui + tw'?//^ + m"u"'^ = m^v^ + m;;^^^ + m^v^.

Def. TAe *z<7w 0/ aZ/ ^Ae bodies of the system, each mul-

tiplied into the square of its velocity, is called the Vis Viva

of the system.

It appears by what precedes that the Vis Viva of a

system acted on by gravity only is equal to that which it

would have had if the parts had fallen freely ; adding to the

actual vis viva, that which corresponds to the resistances

overcome.

It is, however, often very difficult to apply this proposi-

tion, for there are many cases in which we have no means of

estimating the resistances overcome ; for instance, when bodies

aifect each other's form by collision or mutual pressure,

it is difficult to determine how much of the vis viva is thus

absorbed.

2. Power of Water.

243. When water is used as a moving power and made

to work by its weight, as in overshot or bucket-wheel, its

theoretical duty and the work done by it are governed by the

same rules as the corresponding quantities in the case of
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solids. The Duty is the weight of the water which we can

command, multiplied into the height through which we can

cause it to descend.

When water works by means of the pressure or impulse

arising from its motion (as in an undershot wheel), the duty

is estimated by considering the height due to the velocity,

as the space through which the weight of the water can

move. And this would be a proper estimate, if all the velo-

city of the water could be employed in doing work. For if

the velocity of each particle of water were to be turned in a

vertical direction, each particle would lose the whole of its

velocity in ascending to the height due to the velocity. And
when each part of the water has thus been raised through the

height due to the velocity, we may conceive the whole of the

water to be at rest, and to have the power of descending

through this space ; and therefore the theoretical duty would

be the weight of the water multiplied into the space.

But in the action of water in motion, the whole effect is

much less than this, a large portion of the force being

absorbed in the mutual action of the parts of the fluid.

The theoretical duty of a water-wheel of either kind

would, by what has been said, be the gravity of water ex-

pended, multiplied into the head of water : the head meaning

either the actual descent or the hypothetical descent due to the

velocity.

In all cases the work done is less than this theoretical

duty ; some of the power being expended in unappreciated

resistances, intestine motions of the fluid, and in other ways.

If a water-wheel or any other water-engine be employed

to raise a weight, it follows from what has preceded that the

weight of water expended, multiplied into the head of water,

would be equal to the weight raised, multiplied into the height

through which it is raised, if the whole power were effective.

Other things remaining the same, the quantity of water

expended is as the velocity ; and the head is as the square
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of the velocity : thei-efore the effect must vary as the cube

of the velocity. This agrees with the result of experiments

made by Mr. Smeaton, on models *. He collected from

the same experiments, that in overshot wheels the proportion

of the theoretical duty or power expended, to the work

done or effect produced, is as 5 to 4 nearly ; estimating, as

work done, only the weight raised, and neglecting friction, &c.

He found also that in undershot wheels the proportion

of the power expended to the effect produced, estimated in

the same way, is as 10 to 3 nearly.

It is asserted that the machine in which the work done

approaches inost nearly to the power expended is the Hy-
draulic Ram.

3. Poiver of Air.

244. Air is employed as a power by taking advantage

either of its elasticity or its motion. Air-guns act by the

sudden expansion of air. The disturbance of the equilibrium

of air, by the change of temperature and other causes,

produces currents which are used as sources of motion, as in

the smoke-jack ; and on a larger scale, in the case of winds,

which are employed to move windmills and ships.

The effect of winds, as moving powers, may be calculated

theoretically in the same manner as the effect of streams of

water. The theoretical duty of a given mass of air is equal

to a weight, equivalent to the elasticity of the air, multiplied

into the height due to its velocity.

Smeaton proved experimentally that in the case of wind-

mills the effect of wind varied as the cube of its velocity :

which agrees with the rule just stated*.

" riiil. Trans. l7o9.
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4. Power of Elastic Bodies.

245. Elastic bodies, as springs, are used to pi'oduce

continued motion ; as in the watch, in various self-acting

musical instruments, and other automata : sometimes also to

produce a more sudden and intense effect, as in the bow
and the trap.

The efficiency of a spring while it expands or contracts

from a constrained position through any small space is

measured by the pressure which it exerts at any point,

multiplied into the space through which that point moves.

As the spring moves, it will generally happen that the

pressure constantly varies. In this case the whole efficiency

is the sum of all the elementary portions of the space

described, each multiplied into the pressure exerted during

the respective element of the motion.

5. Power of Steam.

246. Steam acts by means of it elasticity, and its

capability of being generated and condensed by heat and

cold. Its efficiency may be measured in the same manner

as that of any other elastic body, but it has peculiar properties

which make a more special consideration necessary.

Steam is used as a mechanical agent in various ways, of

which the principal will be exemplified by considering, 1. At-

mospheric Engines^ in which the pressure of the atmosphere

is made available by the condensation of steam : 2. Condensing

Engines^ in which the motion of the piston each way is pro-

duced by steam on one side of it, rendered available by the

condensation on the other side : in this case the steam may
have a higher elasticity than the atmospheric air ; 3. High-

pressure Engines^ in which the steam must have a greater

elasticity than the atmosphere, since it is made to urge the

piston against the pressure of the atmosphere without con-

densation.
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1. Atmospheric Engines.

In Atmosperic Engines, a piston, moveable in a vertical

cylinder, rises to the top of the cylinder when steam is

admitted below it, of the same elasticity as the atmosphere ;

the piston being slightly overbalanced. The steam is then

condensed, and the piston is urged, by the whole pressure of

the atmosphere, to the bottom of the cylinder. The steam

being again admitted under the piston, the piston rises to the

top of the cylinder ; and so on.

In this case the efficiency of the machine is that corre-

sponding to the descending stroke : the raising of the piston

does not produce any power, but is necessary to the continuance

of the alternatins; motion.

247. Prop. To find the theoretical duty of an atmo-

spheric steam-engine corresponding to l cubic foot of water.

The space occupied by steam, of the temperature of

boiling water, and consequently of the elasticity of the

atmosphere, is 1711 times the bulk of the water which produces

it. {Tredgold on the Steam Engine, Art. 302.) Hence 1

cubic foot of water produces 1711 cubic feet of steam of the

pressure of the atmosphere: this pressure is, at its mean, 2120

pounds on a square foot. Hence the whole pressure is

1711 X 2120 = 3627320 lbs. supposing the steam to occupy a

space a foot high and 1711 feet in horizontal surface. And
when this is condensed, the whole of this pressure acts through

1 foot; and therefore the theoretical duty is 3627320 lbs.

If the steam occupy a prismatic space h feet high, the

1711
horizontal surface will be , and the pressure on the piston

1711
X 2120; and when the steam is condensed, the piston will

h

move through h feet : whence 1711 x 2120 will still be the duty

of the machine.
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If the piston be overbalanced by an excess of pressure p in

its ascent, and if q be the pressure of the atmosphere on the

piston, h the length of the stroke ; there is an efficiency ph
capable of doing work in the ascent of the piston ; and the

efficiency in the descent is (q —p)h: hence the whole efficiency

of the double stroke is qh; which is the same as when there

is no available excess of balancing force.

If p be ^q, the efficiency in the ascent and descent will

be equal, namely ^^^ in each case. This is a mode in which

atmospheric engines are often employed.

248. Prop. To Jind the theoretical duty of an Atmo-
spheric Steam-e?igine, corresponding to lib. of coal.

It appears (Tredgold, Art. 191.) that it requires from 7

to 10 lbs. of Newcastle coal to form a cubic foot of water into

steam of the elasticity of the atmosphere. Mr Watts states

that a bushel of coal (84' lbs.) would evaporate 10 cubic feet

of water (Wood on Rail Roads, p. 353.): Mr Davies Gilbert

gives 14 cubic feet as the water evaporated by one bushel.

Taking Mr Watt's statement, we have 8.4 lbs. for the coal

requisite to evaporate 1 cubic foot.

Hence dividing the efficiency of l cubic foot of water by

8.4, we have 431824 for the efficiency of lib. of coal.

Or, since a bushel of coal reduces 10 cubic feet of water

to steam, we have, by the last Article, 36273200 for the effi-

ciency of a bushel of coal in an atmospheric engine ; and this,

divided by 84, gives 431824 for the efficiency of lib.

Mr Gilbert gives 39361000 for the efficiency of a bushel

of coal employed in an atmospheric engine.

From this must be deducted the efficiency requisite to

work the air pump, which is usually about one eighth of the

whole ; and the resistance arising from imperfection of the

vacuum, as well as the friction.

Pp
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2. Condensing Engines.

249. In these the motion of the piston to and fro is

produced by the alternate action of steam upon each side

of the piston, the steam on the other side being condensed.

The steam here may be and often is of a gi'eater elasticity

than the atmosphere.

We shall not attempt here to find the theoretical duty of

a given quantity of coal. It appears by the results that this

is a very advantageous way of using steam.

The duty of such engines has been much increased by two

expedients :—First, by raising the temperature of the steam

above that of boiling water, by which its elasticity is made
greater than that of the atmosphere ; this proceeding being of

course accompanied by an increased expenditure of fuel.

Secondly, by causing the steam to act expansively ; that

is, by stopping the influx of steam when the piston has

moved along part of the length of the cylinder, so that the

remainder of the stroke is produced by the expansive power
of the steam already admitted.

By these and other improvements in the machinery and

economy of condensing steam engines, the efficiency of a bushel

of coals has been carried much beyond the limit calculated

above for atmospheric engines. In 1829 an engine in Corn-

wall, with a cylinder of 80 inches diameter, gave an actual

duty of 75628000, and several others approached this amount.

We may thus consider 70 millions as below the actual

duty of a bushel of coal, and 840000 as the actual duty

of a pound of coal, working to great advantage in a condens-

ing engine. *

Hence one pound of coal is capable of raising itself

through 840000 feet, or about l60 miles.

3. High-pressure Engines.

250. If a piston be moveable in a cylinder as before, and
if steam of a greater elasticity than the atmosphere be admitted
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on one side of the piston, the cylinder on the other side having

an opening into the atmosphere, the piston will be moved to

the open end. If then this end be closed and steam of the

same kind admitted into it, the other end being opened, the

piston will move back again ; and by a continuation of this

process an alternating motion may be produced.

Pnop. To find the theoretical duty of a High-pressure

Engitie.

In order to determine the theoretical duty of a high-

pressure engine corresponding to a given quantity of coal,

it is necessary to know the quantity of steam, of the elasti-

city employed in the engine, which the given fuel would

produce. Moreover it appears that in the transmission of

high-pressure steam from the boiler to the cylinder a portion

of its elasticity is lost in its passage through the valves.

If we know the elasticity of the steam in the cylinder,

we may determine the theoretical efficiency, as in the follow-

ing example.

In a locomotive engine the surface of the pistons was

127.2 square inches ; the elasticity of the steam in the boiler

50 lbs. per square inch more than the pressure of the atmo-

sphere ; the length of the stroke 2 feet ; the diameter of the

travelling wheels 37 inches : to find the efficiency expended

in travelling 388 yards. (Wood on Rail Roads, p. 34f).)

The pressure on the pistons is 6360 lbs, and the space de-

scribed by the piston in a double stroke is 4 feet ; and hence

the efficiency for one such stroke is 6360 x 4.

The diameter of the wheels being 37 inches, the circum-

ference is 11 6.24. And the length of path described is

3 X 388 X 12 inches : hence the number of revolutions of the

wheel is 3 X 388 x 12 -f- 116.24 = 120 revolutions. And to

each revolution corresponds a double stroke of the piston.

Therefore the whole efficiency expended is 6360 x 4 x 120 =

3052800, supposing the steam in the cylinders to be of the

same elasticity as that in the boiler.
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It appeared in the experiment to which this calculation

refers that the total amount of the resistances was 1829 lbs.

which was moved over 3 x 388 feet : therefore the work done

was 1829 X 3 X 388 = 2128956.

The excess of the efficiency expended over the work done

is to be attributed partly to resistances which have been left

out of the account, and partly to the different elasticity of

the steam in the boiler and in the cylinders.

In engines of this kind it was found that it required from

18 to 21 lbs. of coal to evaporate a cubic foot of water.

251. The following may be taken as another example

of this calculation. In a small high-pressure engine the cylin-

der was 8 inches in diameter, with a stroke of 4^ feet : it

worked a pump 18^ inches diameter and 4^ feet stroke, which

raised water 28 feet high. The engine consumed SOlbs. of

coal per hour, working 18 strokes per minute.

The section of the column of water = 18.5 x 18.5 x .7854 =
268 . 8 square inches ; and the pressure of a column of water

1 foot high on a square inch is .434 lbs. Hence the weight

of the column of water is 268.8 x .434 x 28 = 3266.5lbs.

The motion of the piston per minute is 4-^ x 18 = 81 feet,

or 4860 feet per hour : and this multiplied by 3266.5 gives

15875190 for the hourly efficiency.

And dividing by 80 we have, for the efficiency of one

pound of coal, 198439.5.

In this case, since the stroke of the pump and of the piston

are equal, the pressures must be equal, in order that they

may balance each other. Hence the pressure on the piston is

3266.5 lbs; and since the area is 8 x 8 x .7854= 50^ square

inches; the effective pressure per inch is 65 lbs. This is the

excess of the elasticity of the steam above that of the

atmosphere.

In locomotive engines moving uniformly, the pressure is

employed in maintaining the velocity ; and since the resistance



AND OF WORK DONE BY MACHINES. 301

is independent of the velocity, the pressure on the piston is also

independent of the velocity. Hence when the same engine

moves with different velocities, the elasticity of the steam in

the cylinder is nearly the same : the principal difference is the

rapidity of its generation.

252-. Prop. To compare the efficiency of a given quan-
tity of coal in a Locomotive and in an Atmospheric engine.

It appears that the best modern locomotive engines on
rail roads require half a pound of coal per ton per mile.

If we suppose the friction to be
-g-j-o"

of ^^^ weight, the

friction for a ton is 9^ lbs : and in one mile the work done is

pi X 5280 = 48840 for half a pound of coal, or 9768O for one

pound of coal.

The duty for one pound of coal in an atmospheric engine

is, as we have seen, 431824, which is 4-3 times as much as the

other.

It appears that the fuel consumed is very nearly propor-

tional to the work done in locomotive engines, at whatever rate

they travel. The speed depends upon tlie degree of rapidity

with which the water can be converted into steam of the given

elasticity. Hence the speed is increased by increasing the

surface of the boiler which is exposed to the fire ; and by

increasing the draft of the furnace.

One mode of producing the latter effect which has been

found very efficacious in practice, is the throwing the waste

steam up the chimney when it is driven out of the cylinder.

There appears to be theoretically no limit to the velocity

which may thus be attained.

253. Practically speaking, the velocity of a locomotive

engine is, as we have said, limited by the rate at which the

water can be converted into steam. Hence we shall add the

following proposition.*

* De Patnbour on Locomotive Engines, p. 187«
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Prop. Given the rate of evaporation, and the pressure

of the steam in the boiler, to find the velocity of the engine,

moving uniformly.

Let the whole resistance to the motion of the carriage,

arising from the friction of the road and of the engine, be R ;

let D be the diameter of the driving wheels, C the diameter of

each of the two steam cylinders, I the length of the stroke,

m the pressure of the atmosphere on a square inch.

Let q be the pressure of the steam in the cylinder on a

square inch : then, since the area of the two pistons is ^ttC^,

(q — m) J 7rC~ is the effective pressure on the piston. And
by Art. 236, the principle of vertical velocities may be here

applied ; hence

R X ttD = (q - m) i ttC^ X 21

DR

Let p be the pressure of the steam per inch in the boiler

:

Let s represent the rate of evaporation, that is, the number

of cubic feet the boiler is able to evaporate in a minute at the

pressure p :

And let n be the ratio of the volume of steam at the

pressure p, to the volume of water.

Hence ns will be the volume of the steam generated in the

boiler in a minute.

Then since q is the pressure of the steam in the cylinder,

the steam, in going from the boiler to the cylinder, passes from

the pressure p to the pressure q, and (by known principles)

changes its volume in the inverse ratio of the pressures.

n sj)
Hence, in the cylinder, the volume of the steam will be .

This volume of steam passes through the cylinders in a

minute. Hence if we divide it by the section of the cylinders,

or^TrC^, we shall have its mean velocity. Hence the mean
velocity of the steam, and therefore of the piston, is

2nsp
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Now the velocity of the carriage is to that of the piston

as ttD to 9,1 : therefore the velocity of the carriage is

nspD
Cql '

or putting for q its value, the velocity is

ns])D

DR + mCH'

Ex. In an engine of which the load was 100 tons, the

cylinders were 11 inches diameter, the stroke l6 inches, the

wheels 5 feet ; the effective pressure of the steam in the boiler

50lbs. per square inch, the effective evaporating power 41.87

cubic feet of water per hour, or 0.7 cubic feet per minute.

Find the rate of travelling.

This water is immediately transformed in the boiler into

steam at the effective pressure of 50 lbs. per square inch, or

at the total pressure of 65 lbs. per square inch.

According to tables founded on experiment, steam gene-

rated under a total pressure of 65 lbs. per square inch occu-

pies 435 times the space of the water which produced it.

Thus the water expanded in each minute formed a volume of

steam of 0.7 x 435 = 304 cubic feet.

It appeared by calculations respecting the engine in ques-

tion, that with a load of 100 tons, the resistance was 461bs. per

square inch of the piston. Hence the steam, in passing from

the boiler to the cylinders, was reduced from the pressure

65 to 46. The volume being increased in the same ratio

becomes

65 ...
304 X — = 430 cubic leet,

46

which passes through the cylinders every minute.

Now the area of the two cylinders is 190 square inches,

or 1.32 square feet. Hence the above steam passes through

the cylinders with a velocity of

430
= 326 feet per minute,

1.32
^

which is the mean velocity of the piston.
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The velocity of the carriage, is to that of the pistons in the

proportion of the circumference of the wheel to the double

stroke ; that is, 5.887 to 1. Hence the velocity of the

carriage is

5.887 X 326 feet per minute ; or

60
5.887 X 326 X = 21.83 miles per hour.

5280 ^

6. Power of Men and Horses.

254. The strength of man may be employed in doing

work in various ways ; two obvious cases are those in which

weights are raised by the use of the arms and of the legs.

If a man go up a staircase, or up a steep hill, he lifts his

own body, and any additional weight which he carries, by the

action of his legs. In like manner a man working on a

tread-mill raises his body at every step, as much as the wheel

sinks.

The following experiments afford an estimate of the effi-

ciency of a man.

(1) It is found that a man working on a tread-mill raises

himself 10000 feet in the course of one day. He has here his

weight only to raise : if we assume this to be 150 pounds, he

daily exerts an efficiency of 1500000.

(2) To ascend a hill of 10000 feet high would be a good
day's labour : this gives the same result.

(3) In an experiment of Coulomb, porters, mounting a

convenient staircase 12 metres high, made 6Q journies in a day,

carrying 68 chilograms each time. This gives 4488 chilograms

raised 12 metres, for the daily efficiency, together with the

man's weight raised 792 metres. The man's weight being

estimated at 70 chilograms, this gives for the daily efficiency

4488 X 12 + 70 X 792 = IO9296 chilograms raised one metre.

A metre is 3,28052 feet, and a chilogram 2.2063 poimds.

Hence tlie daily efficiency estimated as before is 791139.
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This amount is much less than the former. The carrying

of weights of 6'8 chilograms (150 pounds) is therefore a less

advantageous mode of employing the strength than the raising

the weight of the body alone. The alternate ascent and

descent also will diminish the estimated efficiency, since the

last is not reckoned.

The following are examples of the efficiency of men
working with their arms.

(4) In pile-driving the strength of man is employed in

raising a ram which then falls by its weight. Thirty-eight

labourers, working 10 hours a day, made in each hour 12

efforts, each effort consisting of 30 pulls ; and in each pull

a ram of the weight of 587 chilograms was raised 1.45

metres.

The daily number of pulls was 3600. Hence the effect

587
of each workman was x 1.45 x 3600 = 80635.3 chilograms

38
°

raised 1 metre.

This reduced to pounds and feet is 583678.

(5) Workmen employed in turning a wheel exerted a

force of 7 chilograms and made 20 turns in a minute, the

circumference described by the force being 2.3 metres. The
effective time of work was 6 hours.

Hence the number of turns is 7200, and the daily effect

7 X 2.3 X 7200 = 115920 in chilograms and metres, or 839087

in pounds and feet.

(6) Desaguliers considers that a man can raise a weight

of 550 pounds 10 feet high in a minute, and continue to do

so for 6 hours. This gives 360 x 550 x 10 = 19SOOOO for the

daily efficiency.

According to this estimate the efficiency of a man in a

minute is 5500 : but this is considered by other authors too

high.
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(7) Smeaton thinks that a good labourer can raise 370

pounds 10 feet high in a minute ; this gives 3700 for the

efficiency per minute.

In the case of the tread-mill, [see (l)] if we suppose the

time of working to be 8 hours ; the efficiency per minute is

3125.

Horses.

255. According to Desaguliers a horse drawing a weight

out of a well over a pully, can raise 200 pounds for 8 hours

together, at the rate of 2^ miles an hour. This gives, for

the efficiency, 200 pounds raised twenty miles, or 105600 feet

:

whence the efficiency of such a day''s work is 21120000.

If a horse draw a ton on a common road, at the rate

of 2-|^ miles an hour, we may suppose the friction to be

the 12^'' part of a ton, or 186 pounds: whence the efficiency

in one minute is

21 X 5280 X 2240 220 x 2240 492800
-^ = = — = 41066.

60 X 12 12 12

The usual estimate of the power of a horse as employed

by engineers in their calculation is 33000 per minute.

Mr Smeaton states the efficiency of a horse to be 550

pounds raised 40 feet in one minute : this gives 22000 for the

measure of a horse''s power.

256. Prop. To compare the power of animals moving
with different velocities.

The strength of men and of animals is most powerful,

as pressure, when directed against a resisting object which

is at rest : when the animal is in motion, the pressure which

it can exert is diminished ; and with a certain velocity the

animal can do no work, and can only keep up the motion

of its own body.

The following formula is given for the power of a man
as modified by this cause. Let v represent his velocity in
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miles per hour : then the force which he exerts in dragging

4
forwards a load is - (6 — vy in pounds.

Thus when v is 0, or the man is at rest, he pulls with

a force of 29 pounds : when he moves at the rate of 2 miles

an hour, his power of traction is reduced to 13 pounds:

and if he quicken his pace to 4 miles an hour, he can only

draw with a force of 3 pounds. His extreme velocity is

6 miles an hour.

The efficiency will be the pressure exerted, multiplied

into the space described : and therefore in 1 hour, it is

4t5 ,— (6 - vy.
o

Hence, making v respectively 0, 1,2, 3, 4, 5, 6, we have

the efficiency in these cases

V 12 3 4 5 6

efficiency 20 25-|- 2 if 12-|- 4

Hence the efficiency is greatest when he moves at the

rate of two miles an hour.

257- The power of traction of a horse may be ex-

pressed nearly by (12 - t))- pounds, when v is the number of

miles per hour, which the horse is moving. If the rate be

4 miles an hour, the power of traction would be 64 pounds.

Also the efficiency would be this pressure into the space de-

scribed. At 4 miles an hour, the space described in one

5*^80
minute is or 352 feet ; and therefore the efficiency in

a minute is 22528. If the horse were to move with a velocity

of 1 mile an hour, the efficiency would be, in like manner,

121 X 88 = 10648 ; and with a velocity of 10 miles an hour,

the efficiency would be only 4 x 880 or 3520.

A waggon on a turnpike road, loaded to the amount of

8 tons, may be drawn by 8 horses at the rate of Q.\ miles

an hour, the horses working for 8 hours daily. Thus the

performance of a horse in this way will amount to 1 ton
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transported 20 miles a day ; or if the friction be I-IS**" of

the load, this amounts to a pressure of if ton through a

space of 1 mile; or in pounds and feet to 19712000 per day,

and 41066 for one minute.

A mail coach weio-hing 2 tons and travellinor at the rate

of 10 miles an hour, may be worked on a line of road in

both directions by a number of horses equal to the number

of miles. The performance of each horse would amount

to 2 tons drawn 2 miles daily, or 1 ton drawn 4 miles.

Thus with this great velocity, the work done is only one-

fifth of what it was in the other case. The horse-power

in this case is 8215.

258. Prop. To express the efficiency of animals by

the equivalent quantity of coal employed in a steam-engine.

Ex. It has appeared (Art. 249) that the efficiency of 1

pound of coal is 840000 ; and the daily efficiency of a man is

1500000 (Art. 254) : hence such a day's work is equivalent

to something less than 2 pounds of coal.

259- In order to compare the efficiency of a man or horse,

working for one minute, with the efficiency of a steam-

engine for the same time, we must know the rate of working

of the engine.

The pressure on the piston, multiplied into the space

described in one minute, will by the preceding principles,

be the efficiency in one minute.

The pressure on the piston will be as the square of

the piston, in inches, and as the pressure on one circular

inch. If the force employed be that of the atmosphere,

the available part of this pressure is 5.9 pounds. Hence
the pressure on any piston may be found.

The space described by the piston in one minute, by

the action of the force of the atmosphere, will be the length

of the stroke, multiplied into the number of double strokes

made per minute.
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Ex. The diameter of the cylinder of an atmospheric

steam-engine was 72 inches, and the length of the stroke 9 feet,

9 strokes being made per minute.

In this case the pressure on the piston = 72' x 5.9 pounds,

and the space described in a minute = 9x9. Hence the

efficiency per minute is 72^^ x 5.9 x 81 = 2477433.6.

Dividing by 33000, we have 75 for the number of horses'

power to which the efficiency of the machine is equivalent.

On the Effect of Springs on the amount of JVork done.

260. When a carriage runs with a uniform velocity on

a smooth horizontal road, it must be constantly drawn in

the direction of the motion, by a force equal to the friction.

If the carriage runs up an inclined plane with a uniform

velocity, the force of traction must be equal to the sum
of the friction and of the resolved part of the weight of the

carriage. In these cases all the parts of the carriage move
uniformly in parallel lines ; and any change which takes place

in the velocity may be supposed to be produced by a force

applied at the axle of the wheel, the whole inertia of the

carriage being also supposed to be collected at the point

where the force is applied.

If a carriage, running along a smooth horizontal road,

pass suddenly over a small obstacle, as a stone, the parts of

the carriage no longer move in straight lines. If we conceive

the parts to be perfectly stiff, and suppose the obstacle to be
of such a form that the wheel, in passing over it, touches

it in one point only, it is evident, that the center of the wheel

will, during this passage, describe a circular arc of which

the point of contact is the center ; the center of the wheel will

therefore describe a path in which it passes suddenly from

a straight line to this circular arc, and then, the obstacle

being surmounted, resumes the straight line.

If the whole carriage be perfectly stiff, a portion of the

velocity will be lost in thus passing on such an obstacle;

and in order to keep up the velocity an additional force

will be requisite.
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261. Prop. To find the efficiency expended in keeping

up the velocity of a stiff carriage which surmounts a small

rise on a horizontal road.

Let a be the velocity, r the radius of the wheel, and

h the height of the obstacle. When the wheel comes in

contact with the obstacle, the radius drawn to the point of

contact, makes with the vertical line an angle of which the

versed sine is h. And this radius then begins to move about

the point of contact, whence it appears that the new path

of the center of the wheel makes with the horizontal line

an anffle of which the versed sine is h to radius r. Let this

angle be a.

The center of the wheel having its direction suddenly

changed from a horizontal direction, to a direction making

an angle a with the horizon, loses a portion of its velocity :

the velocity which it retains is a cos. a (Art. 154. Cor. 5). Let

e be the uniform resistance, arising from friction, &c. on the

horizontal road, and let / be the force which, when the car-

riage passes over the obstacle, acts in the direction of the

motion, and which is such, that the velocity when the obstacle

has been surmounted is the same as it was before meeting

the obstacle.

Suppose m to be the inertia of the carriage, collected

at the center of the wheel, and suppose the resistance arising

from friction, &c. to be the same in the curvilinear as in the

horizontal portions of the path. At any point of the cur-

vilinear path, there will be a resolved portion of the force

of gravity acting in the direction of the motion. Let g' be

this resolved portion : then the whole accelerating force in

f-e
the ascent will be g

.

m

And the change produced in the velocity, during each

elementary portion of the motion, will be the difference of

f- e
the acceleration arising from the constant force, "

, and

of the retardation arising from the variable force g. Let u

be the velocity at the highest point of the curvilinear path,
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/ the length from the limit of the curve to the highest point.

By Art. l63, Cor. 3, the square of the velocity in passing

f- e
through the space / is altered by the quantity 2 /, by the

f- e
action of the force "

; and by Art. 191, Cor. 2, since h ism
the vertical height of the highest above the lowest point, the

square of the velocity is altered by the quantity 2gh, by the

action of gravity. Therefore, since a cos. a is the velocity at

the lowest point,

f-e
u^ = (r cos.^ a + 2 "

I — 2gh.
in

Now if the velocity at the highest point is required to

be equal to the velocity before contact with the obstacle, u is

equal to a. Also

r-h , , 2h h?
, cos. a — , whence cos." a = 1 1

—-;
r r r

o / 2/i }i'\ f-e
hence a~ = w

\
1 ^—-\ +2 ' / — 2fi-A.

V r 1"

)

m

And (f—e)l = mgh + m {a- a- —:).
\ r 2rj

But the horizontal path corresponding to the length of

path /, is r sin. a ; and / is the arc of which the horizontal

path is the sine to radius r ; and I is therefore ra. Hence
the requisite efficiency, if the road were perfectly horizontal

with the same friction e, would be er sin. a-

Therefore the excess of the requisite efficiency in order

to keep up the velocity is

// - er sin. a = / (/- e) + er(a - sin. a),

sin.^a
or since a = sm. a H h &c.

eT
the excess is /(/"— e) + — sin-^a + Scc,

and since a is small, sin.'' a, &c. may be neglected.
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Therefore the excess of requisite efficiency

= (f-e)l = mgh + m {a^ - - a^ —- >

.

[ r 2 r'-J

The first terra on the second side is the portion of this

efficiency, which arises from the amount of the ascent ; the

second is the portion which arises from the suddenness of

the change of direction, or from the jerk.

262. Prop. To compare the ttvo portions just mentioned^

of the ejfficienc]) requisite to surmoutit an obstacle.

The proportion of these two portions of the efficiency is

. '^^ -> h- , a^h
sh : a ar — ; or sr : a- .S

^ 2,..' S
2,^2

If h be small compared with r, this proportion becomes

gr : d^; and the hindrance arising from weight will be less

than the hindrance arising from jerk, so long as gr is less

than a^; that is, so long as the velocity of the carriage is

greater than the velocity acquired by falling down half the

radius of the wheel.

Ex. A carriage travelling 10 miles an hour with wheels

4 feet diameter, surmounts a sudden rise in the road : compare

the hindrance arising from jerk and from weight.

n., ^ ' . 5280 XlO ^ 1 , ,Ihe velocity is or 14 feet a second: and the
•^ 60 X 60

proportion is therefore 14"
: S2 x 2, or 3 to 1 nearly.

263. The hindrance arising from jerk may be removed

in a great measure by the use of springs. In the part of

the carriage which is suspended in springs there is no sudden

change of the direction of the motion of the parts. When
the wheel meets the obstacle, the suspended part is acted

on by the pressure of the springs, and the path of its center

of gravity thus deviates from a straight line ; but it describes

a curve to which the rectilinear portion of the path is a

tangent, and there is no finite angle between two successive

portions of the path. Hence the diminution of the velocity
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from a to a cos. a, does not take place in the suspended

part. If we suppose the action of the springs to be always

perpendicular to the path described by the center of the

suspended part, there will be no loss of velocity in consequence

of the change of direction of the motion of that part. And
the use of springs will on this supposition render unnecessary

all that portion of the efficiency requisite to surmount the

obstacle, which arises from the suddenness of the effect ; which

is, as we have seen, much the larger part.

264. If the carriage pass over the obstacle, and on

leaving it go on in a continuation of its first path, some

additional considerations are requisite.

Prop. To fiyid the efficiency expended on a stiff' car-

riage in passing over a small obstacle iyi a smooth horizontal

road.

Let h be the height of the obstacle, and the rest of the

notation as in Art. 259. We have for the ascent, as before,

f-e
u'^- = n- cos." a + 2

'

I — 2gli.
m

And if V be the velocitv at the bottom of the descent,

we have in like manner,

f-e f-e
v~ = 7r + 2 / + 2gh = a~ cos.- a + 4'

/.

m ni

The length of the arc of descent is the same as the

length of the arc of ascent ; and the angle a which these

arcs make with the horizontal line is the same at the two

extremities. The velocity u, when the motion of the carriage

resumes the horizontal direction, is reduced by the change

of direction to i' cos. a. But it is required to be the same

as at first. Therefore v cos. a = a. And

f-e
or = v" cos.^ a = a- cos.'* a + 4 I cos". a.

Hence 2 (f - e) I = m — .

Ru

1 — COS.' a

cos.'

«
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h
If, as before, we put 1 for cos. a, h being small : we

have

2 {f— e) I = m .a- —

.

And, as before, this is the efficiency expended in passing

over the obstacle, in addition to that which would be requisite

if there were no obstacle.

In this case the hindrance arising from weight disappears,

the carriage being as much accelerated by gravity in descending

as it had been retarded in ascending.

265. If the road be paved, it may be considered as a

row of obstacles close together, and the carriage never moves

in a horizontal line. In this case we may suppose that the

center of the wheel describes a series of circular arcs of which

the centers are the summits of the paving- stones over which

the wheel passes. Let it be supposed that these arcs are all

equal, and that each of them makes an angle a with the

horizontal line at its extremity. Then the center of the wheel

in passing from one arc to another, changes its direction

suddenly by an angle 2 a. In general a will be small.

Prop. A stiff' carriage travels along a horizontal re-

gularly paved road; to Jind the efficiency, in addition to

that due to the friction, requisite for uniform progression.

Let u be the velocity at the highest point of each arc

;

the rest of the notation as before. Then

f-e
l?2 = 11^ + 2- / _ 2gh.m

And since the carriage, beginning the next ascent with

the velocity v cos. 2 a, has, at the next summit, the same

velocity w,

f-e
7i^=v^cos.^2a + 2- l-2gh.

m
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f - e
Hence v^ = vr cos.^2a + 4 I ;m

2 (f — e) I = ^mv~ sin.- 2 a.

And the excess of efficiency requisite is, as before,

2/Z — 2e?' sin. a = 2 (f — e) I + 2er {a - sin. a)

= ^mv sin.- 2a + 2er (a - sin. a),

sin.^a
or, since a = sin. « h \- &c.

o

, . ^ .,
sin.-* a

excess = 2mv- sin.'a cos.' a + er ,

o

or, neglecting sin.- a and sin.* a as small,

excess = 2m v'- sin." a-

If we neglect — as small, sin. a is \/— , and v'^ is equal

, , cm- 2mu"h
to li' ; hence excess of efficiency = .

Cor. The efficiency which becomes requisite in conse-

quence of the roughness of a road, is as the square of the

velocity, and as the height of the paving-stones directly, and

the radius of the wheels inversely.

266. The efficiency thus wanted is rendered less by the

use of springs, by means of which the sudden change of

direction of the motion of the suspended portion is avoided.

If the springs be extremely flexible and perfectly elastic,

the hindrance arising from the successive jerks will be entirely

removed, so far as the suspended portion is concerned.

267. This is the effect of springs as connected with

the subject of the present chapter. An effect however, no

less important, is the preservation of the materials both of

the carriage and of the roads, from the destruction arising from

the collision of hard bodies. The following chapter shews

the mode of calculating the effects of collision in some cases.
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CHAP. X.

ON THE CONNEXION OF PRESSURE ANl) IMPACT,

268. In Art. 128, it was observed that impact is really a

pressure of short duration. The duration of the pressure

depends, cceteris paribus^ upon the materials of which the

impinging bodies are composed, viz. upon their hardness.

Various results are connected with the changes of this ele-

ment, some of which we shall here consider.

Suppose a hammer moving with a considerable velocity

impinges on a hard block. The block sustains a very great

force, and the magnitude of this force depends cceteris paribus

on its own hardness, and the hardness of the hammer. An
iron hammer produces a greater effect than a soft ball of

worsted ; and an iron anvil sustains a greater force than a

soft pillow. How is this to be accounted for ? The answer

is not difficult. The momentum of the hammer must be

destroyed by a finite force continued for a finite time ; and

the shorter the time, the greater must be the force. But

the time will evidently be shortest with those bodies which

undergo the least compression from a given force, since the

time in which the momentum of the hammer is destroyed,

begins at the instant of the first contact, and terminates when

the center of the impinging body is nearest to that of the

body struck, that is, when the sum of their compressions

has attained its greatest value. The less, then, that this

compression is, the -less will be the space that the impinging

body describes before its momentum is destroyed, and there-

fore the greater will be the force M'hich will have resisted it.



I'KESSUKK AKU IMPACT. 317

269- To subject this to mathematical calculation, it will

be convenient to assume some law connecting the com-

pression of a body with the force with which it endeavours

to return to its former state. As one of the most probable

liypotheses, suppose this force to be proportional to the com-

pression : then if cv be the space which the surface of the

struck body has yielded, - will be the force necessary to keep
a

it in that state, or the force which it is then sustaining, a

being a constant coefficient which is different for every dif-

ferent body.

In the same manner if b be the constant in the impinging

body, and y the space through which its surface has yielded,

- will be the force which it is exertmg.
b

270. Prop. When one body imjnnges on another, the

force exerted is greater in proportion as the bodies are harder.

a: y
Let as above - and - be the forces exerted by the

a b

striking body, and the body struck. These must be equal,

.V y
or - = - .

a b

Let H be the weight of the striking body or hammer,

V its velocity at the instant of first contact : a- the space

described by its center, since that time. This space is de-

scribed in consequence of the conipression of the two bodies,

therefore s = x + y.

-, . ..v y bx a + b
But smce - = -

, y = — , x = x + y = s

;

a b a a

as . ., 1
^^

.-. X = ; similarly y =
.

a + b a + b

Also if s; be the force of gravity, ^is the pressure on //;
b

gfj 1 gs
and the force which retards // is -^-^ , or .

— .

Hb a + b H
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dv
Hence by the equation v — =/, Art. 117, we have (t? being

the velocity of H)^

ds a + b H a -{- h II

> S^^
and since n = V when 5 = 0, v- = V~ -

H{a + h)'

g

y ^ Vx/H
and the pressure at this moment = - = + ^

At this moment the whole motion of the hammer is destroyed,

and the compression is greatest and the force greatest ; i. e.

the force increases from the first contact, when it is 0, till it is

V^/H
\/(a + b)g

Now the harder the bodies are, the greater is the force

for a given compression, and the smaller are a and h. Hence

this force is greater as the bodies are harder.

Coil. Upon the law here assumed, it appears that the

force exerted is, cceteris paribus, as the square root of the

weight of the hammer.

Since the body struck was in the preceding case supposed

to be kept at rest by an immoveable obstacle, this is the

greatest pressure which can take place from the impact

of H upon the other body. If the other body can move,

it is evident that the force will not be so great. We will

consider the effect of impact in moving a body in opposition

to a uniform force ; and first we will consider the body struck

as being so small that its weight and inertia may be neg-

lected. This will be nearly the case of a hammer driving

a nail, the friction being supposed uniform.

271. Prop. To find how far a given hammer will

drive a nail.
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Taking the same letters as before, and putting F for

the friction, it is evident that the nail will not stir till the

compression of the nail and hammer is sufficient to cause a

force f = F. This will be the case when

f = s = F, or s= (a + b)F.
b a + b

Hence by the last Article, if v be the velocity of the hammer,
when the nail begins to move,

H(a + b) H

We must now consider that the hammer and nail move
on, resisted by the uniform force (pressure) F, till the

momentum of the hammer is destroyed. Let s' be the

space through which they move : the retarding force being

.•.(Art.l6.).'=— =-(--|.(«+6)f).
^ H

This space will = 0, or the blow will not move the nail at

all, if

F- = ^ . (a + 6) F% or less.H
If V be very great, the space through which the nail

moves will be almost independent of the hardness : but if

V be barely sufficient to move the nail, a small increase in

the hardness of the hammer or nail will much increase the

space through which it moves. If while friction prevents

the nail from moving in the block into which it is driven,

it move with the block on account of the yielding of the

block, this must evidently produce the same effect as the

softness of the nail, that is, b will be increased ; hence it will

be driven farther (cceteris paribus) into a substance that

does not yield than into one that does.
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Since at the limit of motion V~H = gF^ {a + b), when

the bodies are very hard, or a and b very small, a small

hammer and small velocity will produce the effect of a very

great pressure F. Thus it is found that a sledge hammer
driving hard oak pegs produces as great an effect as a

pressure of 70 tons.

Suppose now we consider the weight of the body moved,

as in this example.

272. Prop. A pile, of weight W, is driven by a hammer,

or a ram H, impinging with a velocity V : the friction being

represented by F, to find the motion.

We will here take account of the weight as well as the

momentum of the ram. Let s be the space through which

the aggregate compression takes place before the pile moves.

Then, as in the last Article, this will occur when the force

y
downwards = the resistance, or - + W = F. Hence

o

= y = F- IF, s = (a + b) (F - W).
a + b b

Also as before

dv 1 gs

ds a + h H

... „-<^= V^ -~2gs,
a + b H

because when a^ = 0, it = V.

And if V be the velocity of the ram when the pile begins

to move, putting s' for s,

V'^= V -^(a+b)(F- W)~ + 2g{a + b)F- IV (l).

Now as the inertia of the pile resists the communication

of motion, the compression will still go on increasing after

this time. Let r be the space through which the ram has

moved since the first contact ; p that through which the pile

has moved. Then p = r — s, and s = r — p.



PRESSURE AND IMPACT. 321

For the motion of the ram, (Art. 117)

drr s g

and for that of the pile,

subtracting,

d-p _ -y g Fg
~df

~ ^ ""
« + b W W '

d's gs ( 1 1 \ Fg
de a + b\H W) H

. Fg
,

. g H+W
JV a + h HW
Fg

.-. s =—^- + A COS. nt + B sm. nt.
n' W

Suppose ^ = when the pile begins to move: then, as has

already been shewn, at this point of time .s'= {a -t h) {F - IF) ;

hence

I FW \

Again, when f = 0, the velocity of the pile = u and that of

the ram = V . Therefore

ds dr ^/>^p._()^j.
df dt df

But generally

ds
= — An sin. nf + Bn cos. )it,

dt

• Bn=V\ B= — .

S .s
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Hence, substituting for A, B and /r,

,, FH ( FW \ V
s=\a + b) YTTW^ + (^' + ^0 77

—

TTr
" ^ ^os. w7 + — sin. nt.H + It V//^ + W I n

And substituting this,

d'p
(

F \ ^ ^
V'g

.

d/^ \ H +W) {a ±1)71 W

or, putting £• — 1 = m,

d~p V'g
-—— = — m + m COS. 7Lt ] sni. 7tt.
at' (a + b)n W

Integrating twice, making — and p both = when f = 0,

we have

dp m . . V's
__ = {nt - sin. nt) +

rf-^r„. (l " cos. nt)
at n ^ (rt + h) n^W '

m
/ 1 , ., ,

V's
P = —A^ -\rrt~-cQ^.nt)±-^ ° ...Ant-^m.nt) (2).

n~ ^
(ff + h) n^ W

dp
Now when the I'de ceases to move, we shall have — = 0.

dt

V'e
Hence (1 - cos. «/) + sin.w^ - nt = 0.,.(.S),

[a + b)mn W
whence t is determined. Also t being known, we have p, the

whole space through which the pile is driven.

273. If we suppose V to be small, that is, the velocity

to be such as only just to stir the pile, we may approximate.

In this case #, the time during which the pile moves, will be

very small. Hence, expanding sin. oit and cos. 7it in (3),

and taking only the lowest two terms ;

V'e n~ t"' w'^ t^

+— = ;

(a + 6) miiW 2 2.3
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or putting for n^(a + b) and m their values,

* ~ g{F -H - W)'

Hence find p from (2), again taking the lowest term only ;

V'g nH'
^"

{a + b)n'W'^Ts

gip r^
~ 2{a + h) W{F-H-W)' g"

'

From what precedes we may draw the following conclu-

sions :

1st. If the ram will just stir the pile, V' in (1) is small,

and a slight increase of the hardness of the ram or pile (i. e.

of a or 6), or of the weight of the ram (i. e. of H)^ will very

much increase F', and thus increase very considerably the

distance p to which the pile is driven.

2d. The resistance of F being supposed great, the space

p will be very nearly inversely as W the weight of the pile

;

consequently the lighter the pile is cceteris paribus the faster

it will be driven.

3d. The space p varies directly as the cube of the weight

of the ram, the velocity with which the pile begins to move

being given. And since this velocity itself is much increased

by increasing the ram, there is on both accounts a great

advantage in making the ram heavy.

274. The quantities a and b in the preceding investiga-

tions depend upon the hardness and elasticity of the substances

striking and struck. If we suppose that a body of wlu'ch the

diameter is D would, by the action of a force E, undergo

a contraction or expansion D, in linear dimensions (the law

by which the contraction r takes place being supposed to

D
,

D
extend to this case;) we shall have E= — , and ft = —.

a E

Hence the force for i\ compression r is —_ . \r\<\ if the torcr
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E be expressed by means of the weight of a column of the

substance itself of height JE, E will be the same thing as the

modulus of elasticity, in Analytical Statics, Art. 79- The harder

the bodies the greater is this modulus, and the less is a.

The modulus of elasticity of iron or steel is about 90OOOOO

feet. By means of this value we can obtain numerical values

in the preceding propositions.

Prob. I. An iron hammer strikes an anvil with a velocity

acquired down a height H ; to find the compression.

The weight of the hammer H may be expressed by means

of a column of iron of which the base is the surface in contact

with the anvil. If the hammer be a parallelopiped, H will be

its height. Also P= 2gh. And if A be the diameter of the

anvil in the direction of the stroke, we have by Art. 3 of this

Chapter,

(since (t =^, E

= \/2h\/
(A + H)H

E

Thus if the hammer be ^ foot high, and fall on an anvil

2 feet high from a height of 8 feet.

= a/i6\/ ?•
1

4 4

9000000

= of a foot,
1000

which is the space through which both have been compressed ;

and the hammer and anvil share this compression in the pro-

portion of 1 : 8.

Also to find the greatest pressure in this case, we have

by the formula" in p. .321.

\/27i\/lIE
pressure = —

\/A +H



I'RKSSUHE AND IMl'ACT. 325

VTe X V I
X

4
yoooooo

s/
= 4000.

Hence in this case the pressure is equal to that of a column

of iron 4000 feet high.

If we suppose the face of the hammer to be a square inch,

the pressure will be 48000 inches of iron, which is above 12000

pounds.

Prob. II. The friction of a nail in wood being equal to

the weight of a column of iron having its base the surface of

the nail-head in contact with the hammer, and its height F

;

to find the space through which the nail is driven.

Using the same letters as in the last problem {A being now

the length of the nail) we have by Art. 4 of this Chapter,

,_Hh
J
(A + H)F

' "^"^ E '

or since A is small in comparison with H,

, Hh , HF

Hence the space through which the nail is (h'ivcn is, by the

defect from absolute hardness, diminished by the quantity

^ E

275. Tile same principles give easy and curious results

in such problems as these. To find the effect of impact on the

wedge, friction being taken into account. To find the weight

which dropped from a given height into the empty scale of a

balance, will raise any weight in the other, &c.

It is evident tliat impact cannot be conveniently used to

overcome any continuous force, except that force cease as soon

as the motion ceases. This is the case with the resistance ot
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friction, and some others: and in these instances the effect of

impact is greater than that of any pressure which it would be

practicable to employ. A construction which is rather a modi-

fication than a direct application of this principle is used in

punching iron plates for fenders, and a similar one is employed

in coining. The long lever which turns a screw is loaded at

its ends with heavy weights ; a man gives it a considerable ve-

locity; and when the screw is suddenly stopped by the punches,

the force impressed is enormous. In the same way (though

by a construction rather different) the holes in the nuts of

screwbolts are punched in iron bars sometimes ^ inch thick.

All these, as well as the simplest cases of force produced by

impact, depend on the same principles, viz. that to destroy

momentum in a short time a great force is necessary.

The same principle may be used to explain some facts

observed by w-oi'kmen, which at first sight appear very strange.

It is found that if a cylindrical hole be made in a block of gra-

nite, and an iron rod driven into it, of such a size that a few

blows with a hammer will overcome the friction, the block mav
be raised by this rod : but if the same process be used with a

block of soft stone, the block cannot be raised by it. The
reason appears to be this ; the granite yields so little that a

blow of the hammer overcomes a very great friction ; whereas

in the soft stone, except the friction be very small, the iron

yields with the stone to the blow of the hammer, and the fric-

tion which is really overcome in the granite, and which sustains

the granite when it is raised, is much greater than that which

the same blows overcome in the soft stone.

THE END.
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