$$
5
$$

$29 x+18+2$

[^0]

ELEMENTARY TRIGONOMETRY

BY

W. E. PATERSON, M.A., B.Sc. MATHEMATICAL MASTER, MERCERS' SCHOOL AUTHOR OF 'SCHOOL ALGEBRA

OXFORD

AT THE CLARENDON PRESS
LONDON, EDINBURGH, NEW YORK, TORONTO
AND MELBOURNE
HENRY FROWDE

SCHOOL ALGEBRA
 THIRD EDITION

The complete book

Without	With
Answers.	Answers.
4 s.	5 s.

In Parts-
Part I (Chapters I-XXII: to Indices and Logarithms, including Fractions and Quadratic Equations)

2s. 6d. 3s.
Part II (Chapters XXIII-XXXIV: Progressions and Ratio to Logarithmic Series, Theory of Equations and Theory of Numbers) .

2s. 6d. 3s.
In Sections-
Section A (Chapters I-XVII: to Quadratic Equations) .

2s. $\quad 2 \mathrm{~s} .4 \mathrm{~d}$.
Section B (Chapters XVIIIXXVILI: to Binomial Theorem for Positive Integral Index).

2s. 2s. 4 d.
Section C (Chapters XXIXXXXIV: Series, Partial Fractions, Theory of Equations, Determinants and Theory of Numbers) .
Sections A and B: 'Elementary Algebra,

3s. 6d. 4s.
Examples only-Section A.
1s. 3d. 1s. 6d.

PREFACE

The common examination syllabus 'Trigonometry up to and including solution of triangles' has caused most textbooks to treat the subject as if the sole use of Trigonometry were to solve triangles, and the practical examples deal almost exclusively with various forms of triangle-solving under the heading 'Heights and Distances'. Further it is customary to define the trigonometrical ratios by means of a right-angled triangle; this encourages the mistaken idea that the ratios are fundamentally attached to a triangle, and does not impress upon the pupil the fact that they are the property of an angle and of an angle only.

In this book the trigonometrical ratios are introduced as functions of the angle. The trigonometrical properties of the single angle are treated fully in the early chapters, and from the beginning the examples apply Trigonometry wherever it may be useful, to Geometry, Mensuration, Analytical Geometry, Physical formulae, \&c. The right-angled triangle definitions are given in Chapter V. This chapter contains, in addition to the usual matter, a short treatment of Plane Sailing in Navigation. It is hoped that the examples in Navigation will provide practice in the use of tables, and at the same time be of interest to the pupil. Other examples
in this chapter lead up to the formulae dealing with the ordinary triangle.

The formulae for $\frac{1}{2} A$ are proved by Geometry, independently of the addition formulae; thus the triangle is treated fully without breaking the sequence with a discussion of the $A+B$ and allied formulae.

A chapter is devoted to Projection. This includes a discussion of Vector Quantities, their composition and resolution, and finishes with a geometrical treatment of Demoivre's Theorem. In the last chapter, the addition formulae and the allied formulae are treated fully; the projection proofs are used and recommended but the old-fashioned proofs are also given

Throughout the book the student is given every opportunity of developing the subject for himself. A large portion of the bookwork first occurs among the examples of earlier chapters. Also, when a formula has been proved, the proofs of others of the same kind are left for the student to supply. Thus, when $\sin ^{2} A+\cos ^{2} A=1$ has been proved, the student should have no difficulty in proving the connexion between $\sec ^{2} A$ and $\tan ^{2} A$; when $\sin (A+B)$ has been found, the student should himself find the expanded form of $\cos (A+B)$, \&e.

The sets of examples in the body of a chapter are numbered IV.a, IV. b, ife.; these deal only with the matter immediately preceding them. The last set of examples in a chapter has no distinguishing letter and serves for revision of the whole chapter. There are also three sets of Revision Examples. Bookwork is frequently set as an example, both in the Revision Sets and elsewhere; only by constant repetition, oral or written, can the
bookwork be learnt. There are a few sets of oral examples; these are intended to fill up spare minutes at the end of a lesson and often bring out the weak points in a pupil's knowledge. The book contains nearly 1,000 examples ; it is not intended that any one should attempt all these, but it is hoped that they include a sufficient variety of types and a sufficient number of each type to meet all requirements.

Many examples are taken from Examination Papers by kind permission of the following authorities :-

The Controller of His Majesty's Stationery Office.
The University of Cambridge.
The Joint Matriculation Board of the Scottish Universities.

The Intermediate Education Board for Ireland.
The Oxford and Cambridge Schools Examination Board.

The Delegacy for Oxford Local Examinations.
The Syndicate for Cambridge Local Examinations.
The College of Preceptors.
I am indebted to Mr. Norman Chignell, B.A., of Charterhouse, for many suggestions and for assistance in correcting the proof-sheets. It is too much to hope that the answers are wholly free from mistakes, and I shall be grateful to receive early intimation of any corrections that may be found necessary.
W. E. P.

$$
\text { April, } 1911 .
$$

CONTENTS

CHAP. PAGE
Preliminary. Propositions in Geometry. Graphs. Logarithms. Greek Alphabet 9
I. Angles and their Measurement. The Degree. Positive and Negative Angles. The Grade. Connexion between Arc and Angle. Circular Measure. The Points of the Compass. Gradient. 25
II. Definitions of Trigonometrical Ratios. Their Graphs. Inverse Notation. Construc- tion of Angle with given Ratio 37
III. Elementary Formulae. Identities. Ratios of Complementary and Supplementary Angles. Ratios of $0^{\circ}, 90^{\circ}, 30^{\circ}, 60^{\circ}, 45^{\circ}$. The Small Angle 49
Revision Examples A 65
IV. Use of Tables. Harder Graphs. General Solutions of Equations. Use of Loga- RITHMS 70
V. The Right-angled Triangle Definitions of the Trigonometrical Ratios. Solution of Right-angled Triangles. Navigation: Plane Sailivg. Ratios of the Double Angle and Half Angle 85
VI. Relations between the Sides and Angles of a Triangle. Area of Triangle. The Circles of the Triangle 107
VII. Solution of Triangles 119
Revision Examples B 134
CHAP.
PAGE
VIII. Projection. Vector Quantities. Composition and Resolution of Vectors. Projection of an Area on a Plane. Geometrical Representation of Imaginary Quantities. Demolvre's 'Theorem 139
IX. Ratio of the Sum or Difference of two Angles. Sum or Difference of Two Sines or Co- sines. Product of Sines and Cosines. The Double Angle and Half-Angle 155
Revision Examples C 175
Miscellaneous Problems (taken from recent Army Entrance and Civil Service Exami- nation Papers) 184
Examination Papers 190
INDEX 201

The following course of reading is suggested for beginners:Chapter I, §§ 1-4, 9-11. Chapter II. Chapter III, §§ 21-31. Chapter IV, §§ 34-7, 40-2.
Chapter V, §§ 43-5, 51-3.
Chapter VI, §§ 54-8.
Chapter VII.

PRELIMINARY CHAPTER

GEOMETRY

A knowledge of the following geometrical facts is required.* In this book these propositions are referred to by the numbers given below.

Angles.

Prop. 1. If a straight line meets another straight line, the adjacent angles are together equal to two right angles.

Prop. 2. If two straight lines cut, the vertically opposite angles are equal.

Prop. 3. The angle at the centre of a circle is double an angle at the circumference standing on the same arc.

Prop. 4. Angles in the same segment of a circle are equal.
Prop. 5. Angles at the centre of a circle standing on different ares are in the same ratio as the lengths of the arcs.

Triangles.

Prop. 6. (a) The three angles of a triangle are together equal to two right angles.
(b) If one side be produced the exterior angle equals the sum of the two interior opposite angles.

Prop. 7. Any two sides of a triangle are together greater than the third.

Prop. 8. Two triangles are congruent (i. e. are equal in every respect) if they have -
(a) two sides of the one equal to two sides of the other, each to each, and the angle contained by the two sides of the one equal to the angle contained by the two corresponding sides of the other ;
or (b) three sides of the one equal to three sides of the other, each to each;
or (c) two angles of the one equal to two angles of the other,

* For proofs see Warren's Experimental and Theoretical Geometry (Clarendon Press), or any standard textbook.
each to each, and a side of the one equal to the corresponding side of the other.

Prop. 9. If two triangles have an angle of the one equal to an angle of the other, and the sides about another pair of angles equal, each to each, then the third angles are either equal or supplementary.

Pop. 10. (a) If two sides of a triangle are equal, the opposite angles are equal.
(b) If two sides are unequal, the greater side is opposite a greater angle.
(c) If all the sides of a triangle are equal, all the angles are equal.

Prop. 11. (a) If two angles of a triangle are equal, the opposite sides are equal.
(b) If two angles are unequal, the greater angle is opposite a greater side.
(c) If all the angles of a triangle are equal, all the sides are equal.

Prop. 12. Two triangles are similar (i.e. their angles are equal, each to each, and the ratio of pairs of sides opposite equal angles is the same for all three angles) if they have-
(a) their angles equal each to each;
(b) their sides in the same ratio ;
(c) an angle of the one equal to an angle of the other, and the sides about the equal angles in the same ratio.

Prop. 13. (Pythagoras' Theorem.) In a right-angled triangle the square on the hypotenuse is equal to the sum of the squares on the other two sides.

Parallel Lines.

Prop. 14. (a) If a line is drawn to cut two parallel lines, it makes (i) the alternate angles equal, (ii) the interior angles on the same side of it together equal to two right angles, (iii) the exterior angle equal to the interior opposite angle.
(b) The opposite sides and angles of a parallelogram are equal.

Area.

The unit of area is the area of a square whose side is of unit length.

Prop. 15. The number of units of area in a rectangle is equal to the product of the number of units of length in one side multiplied by the number of units of length in the other.

Or, more shortly : Area of rectangle $=$ length \times breadth.
Prop. 16. The area of a triangle $=\frac{1}{2}$ base \times altitude.

The Concurrencies of the Triangle.

Prop. 17. The lines bisecting the sides of a triangle at right angles are concurrent (i. e. meet at a point).

The point in which they meet is the centre of the circle passing through the three vertices and is called the circumcentre.

Prop. 18. The lines drawn from the vertices to bisect the opposite sides are concurrent.

These lines are called the medians and the point of concurrency is called the centroid.

Prop. 19. (a) The lines bisecting the angles are concurrent.
The point of concurrency is the centre of the circle that touches all the sides, and is called the incentre.
(b) If two of the sides be produced, the lines bisecting the exterior angles so formed and the line bisecting the interior angle contained by the produced sides are concurrent.

The point of concurrency is the centre of the circle that touches the two sides when produced and the third side (not produced); it is called an e-centre.

Prop. 20. The perpendiculars let fall from the vertices on the opposite sides are concurrent.

The point of concurrency is called orthocentre.

The Circle.

Prop. 21. The straight line passing through the centre, at right angles to a chord, bisects the chord.

Prop. 22. (a) The angle at the centre of a circle is twice the angle at the circumference on the same arc. (b) Angles in the same segment are equal. (c) The opposite angles of a quadrilateral inscribed in a circle are together equal to two right angles.

Prop. 23. The tangent at any point is at right angles to the radius drawn to that point.

Prop. 24. (a) Two tangents can be drawn to a circle from any external point. (b) The parts of these tangents between the external point and the points of contact are equal. (c) The line joining the external point to the centre bisects the angle between the tangents.

Prop. 25. The ratio of the circumference of any circle to its diameter is the same for all circles.

This ratio is denoted by the symbol π; its value is 3.1416 correct to five significant figures.

Prop.26. The area of a circle equals the area of the rectangle contained by the radius and a straight line equal to half the circumference.

This is usually expressed in the formula : Area $=\pi r^{2}$.

GRAPHS *

Geometrical. If two straight lines are drawn in a plane, the position of any point in the plane can be determined by means of its distances from those lines.

Fig. 1.
It is usual to draw one of the lines horizontal and the other perpendicular to it. The customary notation is shown in Fig. 1.
$X^{\prime} O X$ is called the axis of x;
$Y^{\prime} O Y$ is called the axis of y;
O is called the origin;
$O N$ is called the abscissa of the point P;
$N P$ is called the ordinate of the point P.
The abscissa and ordinate are called the co-ordinates t of the point P.

[^1]The abscissa is said to be positive if drawn to the right, negative if drawn to the left. Similarly, the ordinate is positive if drawn upwards from N, negative if drawn downwards. The number of units of length in $O N$, preceded by the proper sign, is usually denoted by x, and the number of units of length in $N P$, preceded by the proper sign, is denoted by y. In each case the sign + is often omitted.

Thus, in Fig. 2, the co-ordinates of A are $x=-4, y=2$, of $C, x=4, y=3$, of $L, x=0, y=-7$.

Fig. 2.
Very often a point is described by writing the values of the co-ordinates in brackets ; e.g. the point H might be described as the point $(-6,-4)$.

Exercise. Write down the co-ordinates of all the points in Fig. 2.

Graphs of Statistics. The magnitude of any quantity may be represented by a straight line which contains as many units of length as the quantity contains units of its own kind.

If two quantities are changing their values at the same time, .
the simultaneous values may be represented in the same figure by taking horizontal lengths to represent one magnitude and vertical lengths to represent the other.

Fig. 3.
In Fig. 3 the changing quantities are time and temperature; and the dots show that at noon on Sunday the temperature was 29°, on Monday the temperature was $35, \& c$. In fact the figure conveys the same information as the following table:-

Sun. Mon. Tues. Wed. Thurs. Fri. Sat.
Temp. $29^{\circ} \quad 35^{\circ} \quad 42^{\circ} \quad 31^{\circ} \quad 27^{\circ} \quad 43^{\circ} \quad 50^{\circ}$

If there is no information about intermediate temperatures, the points are joined by a series of straight lines. The figure now forms a graph.

In describing such a graph we should say that the abscissae represent time and the ordinates temperature.

Graphs of functions. If two quantities x and y are such that a change of value in the one causes a change of value in the other, then either of them is said to be a function of the other.

This is expressed thus : $y=f(x)$, or $x=f(y)$ where $f(x)$ means a function of x. A graph can be drawn in which the abscissae are proportional to the values of x and the ordinates to the values of y. This graph is called the graph of the function $f(x)$ or of the equation $y=f(x)$. This may be more easily understood by considering a few algebraical functions.

Example I. Draw the graph when $y=\frac{3}{5} x-\frac{2}{5}$.
(Choose values of x which will make y a whole number.)

$$
y=\frac{1}{5}(3 x-2)
$$

x	-6	-1	4	9
$3 x-2$	-20	-5	10	25
y	-4	-1	2	5

Fig. 4.
When the points corresponding to these values of x and y are plotted, it is found that they lie on the straight line shown in Fig. 4. It is also found
(i) That any simultaneous values of x and y connected by the given equation are the co-ordinates of some point on this straight line ;
(ii) That the co-ordinates of any point on the straight line satisfy the equation.

It is found by experience (and can be proved from the geo-
metrical propositions on proportion) that, when x and y are connected by an equation of the first degree, the graph is always a straight line.

Example II. In the same figure draw the graphs of

$$
y=x^{2}-3 x+2 \text { and } x=2 y^{2}+3
$$

Neither of these equations is of the first degree, therefore neither of the graphs is a straight line. At least six points must be found on each.

$$
\begin{equation*}
y=x^{2}-3 x+2 \tag{i}
\end{equation*}
$$

x	-3	-2	-1	0	1	2	3	4	5
x^{2}	9	4	1	0	1	4	9	16	25
$-3 x$	9	6	3	0	-3	-6	-9	-12	-15
y	20	12	6	2	0	0	2	6	12

Fig. 5.

$$
\begin{equation*}
x=2 y^{2}-3 . \tag{ii}
\end{equation*}
$$

y	-3	-2	-1	0	1	2	3	4
$2 y^{2}$	-18	8	2	0	2	8	18	32
x	15	5	-1	-3	-1	5	15	29
	-	-						

The co-ordinates of every point on graph i satisfy the first equation, and of every point on graph ii satisfy the second equation. Hence the co-ordinates of any points which are on both graphs, that is, the co-ordinates of the points of intersection, satisfy both equations.

Fig. 5 shows, therefore, that the values $x=3, y=1 \cdot 3$, and $x=2 \cdot 8, y=1 \cdot 6$, are the solutions of the two equations.

This graphical method of solving equations is very useful, but is, of course, only approximate. If more accurate answers are required, the graphs must be drawn on a larger scale in the neighbourhood of their points of intersection.

LOGARITHMS *

Fractional and Negative Indices. It is shown in Algebra that

$$
x^{\frac{p}{q}}=q \sqrt{x^{p}}, \quad x^{0}=1, \quad x^{-m}=\frac{1}{x^{m}},
$$

where p and q are any positive integers and x is any positive quantity, integral or fractional.

A fractional index may be expressed as a decimal ; thus such expressions as $4^{\cdot 96}, 10^{\circ 001}$ have a definite value. This value could in theory be found by reducing the decimal to a vulgar fraction and then replacing the power with a fractional index by a root, e.g.

$$
10^{\cdot 301}=10^{\frac{301}{1000}}={ }^{1000} \sqrt{10^{301}} .
$$

This is obviously not practical. The value can be found by a graphical method which is easy but only approximate.

Draw the graph of $x=10^{\nu}$.

* For a fuller treatment of Indices and Logarithms see School Algebra, Chapters XXI and XXII.

y	0	.5	.25	.125	.75	.625	.875	1
x	1	$3 \cdot 16$	$1 \cdot 76$	1.33	$5 \cdot 62$	4.26	7.49	10
-	-							

The values of x are obtained as follows:-
$10^{\circ}=1$ by definition given above.

$$
\begin{aligned}
& 10^{\cdot 5}=10^{\frac{1}{2}}=\sqrt{10} \\
& 10^{\cdot 25}=10^{\frac{1}{4}}=\sqrt{\sqrt{10}} ; \text { similarly } 10^{\cdot 125}=\sqrt{10^{\cdot 25}} \\
& 10^{\cdot 75}=10^{\cdot 5+25}=10^{\cdot 5} \times 10^{.25}, \& \mathrm{cc}
\end{aligned}
$$

The graph is shown on a small scale in Fig. 6.
It is seen that $10^{.30}$ is almost exactly 2 ; any other power of 10 can be found approximately from this graph when the index is between 0 and 10 .

Definition of a logarithm. The logarithm of a number to a given base is the index of the power to which the base must be raised to equal the number. Thus $3^{2}=9$, therefore the logarithm of 9 to base 3 equals 2 ; this is written $\log _{3} 9=2$.

In dealing with numbers the base is 10 . In the remainder of this chapter it is assumed that the base is always 10 , so that log 731 means logarithm of 731 to base 10.

The equation $x=10^{y}$ may be written $y=\log x$.
Hence Fig. 6 provides an approximate means of finding the logarithm of any number between 1 and 10 .

Characteristic and mantissa. Considei a number, such as 4378. It means

$$
4 \times 10^{3}-73 \times 10^{2}+7 \times 10+8
$$

Also a decimal number, such as 0376 , means

$$
\frac{0}{10}+\frac{3}{10^{2}}+\frac{7}{10^{3}}+\frac{6}{10^{4}}
$$

If we use negative indices, this may be written

$$
0376=3 \times 10^{-2}+7 \times 10^{-3}+6 \times 10^{-4}
$$

Similarly

$$
537 \cdot 13=5 \times 10^{2}+3 \times 10^{1}+7 \times 10^{0}+1 \times 10^{-1}+3 \times 10^{-2}
$$

It follows that

$$
\begin{gathered}
4378>10^{3} \quad \text { but }<10^{4}, \therefore \log 4378=3+\text { a decimal } ; \\
0376>10^{-2} \text { but }<10^{-1}, \therefore \log 00376=-2+\text { a decimal } ; \\
537 \cdot 13>10^{2} \text { but }<10^{3}, \therefore \log 537 \cdot 13=2+\text { a decimal } \\
4 \cdot 37>10^{0} \text { but }<10^{1}, \therefore \log 4 \cdot 37=0+\text { a decimal }
\end{gathered}
$$

We now see (i) that the logarithm of any number consists of an integer (which may be positive, zero, or negative) and a positive

Fig. 6.
decimal, (ii) that the integer is the index of the highest power of 10 contained in the number.

The integral part of a logarithm is called the characteristic ; the decimal part the mantissa.

Index	5	4	3	2	1	0	-1	-2	-3	-4	-5	-6
Number	3	7	8	9	0	0						
$"$			4	3	7	6	5	2				
$"$						3	4	6	7	8		
$"$						0.	0	0	7	3	4	8
$"$			2	0	0	0	0	0	0			

Consideration of the preceding table shows that the characteristic (i. e. the highest index) may always be found by the following rule: Count from the unit place to the first significant figure (i.e. the first figure which is not 0), the unit place being counted as nothing. The characteristic is positive or zero if the number is greater than one, negative if it is less than one.

The mantissa is independent of the position of the decimal point. An example will make this clear.

Given that $\log 4 \cdot 376=6411$, find $\log 4376$ and $\log \cdot 004376$.

$$
\begin{aligned}
& 4376=1000 \times 4.376 \\
& \quad \text { but } 4.376=10^{.6411} \text { since } \log 4.376=6411
\end{aligned}
$$

$\therefore \quad 4376=10^{3} \times 10^{\cdot 6411}=10^{3 \cdot 6411}$, i. e. $\log 4376=3 \cdot 6411$

$$
\cdot 004376=\frac{1}{1000} \times 4^{\cdot 376}=10^{-3} \times 10^{\cdot 6411}=10^{-3+\cdot 6411}
$$

$\therefore \quad \log { }^{\circ} 004376=-3+6411$.
The negative sign of a characteristic is always placed on top and the + before the decimal is omitted. Thus $\log { }^{\circ} 004376=$ $\overline{3} \cdot 6411$.

To find the logarithm of any number.
(a) Four-figure tables. The mantissa is found from tables, of which a specimen is given below.

Logarithms.

	0	1	2	3	4	5	6	7	8	9		2	3	4	5	6		8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152		2	3	3	4	5		7
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7
53	7243	7251	7259	7267	7275	7284	72926	7300	7308	7316	1	2	2	3	4	5	6	6
54	7324	7.332	7340	7348	7356	7364	73720	7380	7388	7396		2	2	3	4	5	6	6
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474		2	2	3	4	5	5	6

Consider the logarithms of 5467 and ${ }^{\circ} 05467$.
By counting, the characteristic of $\log 5467$ is found to be 3 , and that of $\log { }^{\circ} 05467$ to be $\overline{2}$.

Both logarithms have the same mantissa. Look for 54 in the extreme left-hand column. In the same line with 54 and under 6 we find 7372 ; this is the mantissa of $\log 546$. Under the 7 in the small columns to the right, and in a line with 54 , we find 6 ; this must be added to the last digit of the mantissa already found. Hence the mantissa is 7378 .

Therefore $\log 5467=3 \cdot 7378$ and $\log \cdot 05467=\overline{2} \cdot 7378$.
(b) Five-figure tables. Find the logarithm of $346^{\circ} 73$.

Proceeding as with four-figure tables, we find that the mantissa of $\log 346$ is ${ }^{5} 33908$. Under 7 in the side columns, we find 88 ; this must be added to the last two digits already found. For a 3 in the fourth place we should add 38 , for a 3 in the fifth place we add, therefore, $\frac{1}{10} \times 38$, i. e. 4 to nearest integer. Hence

$$
\log 3467 \cdot 3=2 \cdot 53908+88+4=2 \cdot 54000
$$

To find the number corresponding to any logarithm.
Method I. Reverse the process for finding a logarithm. Suppose the logarithm is $3 \cdot 7271$.

Look in the logarithms for the mantissa nearest to 7271, but less than it. We find 7267 , level with 53 and under 3 ; the first three figures of the number are 533. This leaves $7271-7267=4$; in the right-hand columns 4 is found under 5 . Hence the first four figures are 5335.

The characteristic is 3, therefore the left-hand digit 5 represents 5×10^{3}; hence the number is $53{ }^{3}$.

The number is called the antilogarithm of the logarithm.
Method II. If tables of antilogarithms are available, they are used in the same way as logarithm tables.

AN番LOGARITHMS.

0	1	2	3	4	5	6	7	8	9		2	3	4	5		7		9
5012	5023	035	504	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8		
5129	51	5152	5164	5176	5188	5200	12	52	5236	I		4	5	6	7	8	10	II
5248	5260	5272	5284 5408	5297	5309	5321	5333	5346	5358	I	2	4	5	6	7	9	10	II
5370	5383	5395	5408	5420	5433	5445	5458	5470	5483 5610	I	3	4	5	6	8		10	1 I
5495	5508	5521	5534	5546	5559	5572	5585	5598	5610					6	8	9	o	18
23	5636	5649	5662	${ }_{5675}$	689	5702	5715	5728	57	1	3	4	5	7	8			

Look for ${ }^{7} 72$ in the left-hand column ; level with 72 and under 7 we find 5333 ; in the small columns we find 1 under 1 . Hence the first four figures are 5334.

The characteristic is 3 ; as before, the number is 5334 .
Note.-The two methods give results differing by 1 in the last figure; this shows that the number is between the two results. On using five-figure tables, it is found that the antilogarithm of 3.7271 is $5334^{\circ} 5$.

Use of Logarithms.

By the definition of $\operatorname{logarithm} a=10^{\log a}, b=10^{\log b}$,

$$
\therefore a b=10^{\log a \times 10^{\log b}=10^{\log a+\log b} .}
$$

Hence

$$
\begin{aligned}
& \log (a b)=\log a+\log b \\
& \log a / b=\log a-\log b, \\
& \log a^{m}=m \log a \\
& \log \sqrt[m]{a} a=\frac{1}{m} \log a
\end{aligned}
$$

Thus, instead of
multiplying, we may use logarithms and add ; dividing, ,, ", subtract; raising to a power, ", multiply ; taking a root, ", divide.

Note.-There is no process with logarithms to correspond with addition or subtraction with ordinary numbers.

Example I. Find the value of $\frac{516.5 \times 852}{36500}$.

$$
\begin{aligned}
\log \text { of fraction } & =\log 516 \cdot 5+\log \cdot 852-\log 36500 \\
& =2 \cdot 7130 \\
& +\overline{1} \cdot 9304-4 \cdot 5623 \\
& =2 \cdot 6434 \\
& -4 \cdot 5623 \\
& =\overline{2} \cdot 0811
\end{aligned}
$$

$$
\therefore \text { fraction }=01205 .
$$

Example II. Find the cube root of 1765 .

$$
\begin{aligned}
\log \text { of cube root } & =\frac{1}{3} \log \cdot 1765 \\
& =\frac{1}{3} \text { of } \overline{1} \cdot 2467 \\
& =\frac{1}{3}(\overline{3}+2 \cdot 2467) \\
& =\overline{1} \cdot 7489 .
\end{aligned}
$$

Notice carefully this method of division when the characteristic is negative.

Hence $\sqrt[3]{\cdot 1765}=\sqrt{5610}$.

Exercises. Find the value of
(1) $\sqrt{319 \div 2} \times 1.756$. Ans. 31.37 .
(2) 03056×0.4105. Ans. 01254 .
(3) $3.142 \times(71.43)^{2}$ Ans. 16030 .
(4) $\frac{4}{3} \times 3.142 \times\left(9^{\circ} 67\right)^{3}$. Ans. 3787 .
(5) $254.3 \div 0.09027$. Ans. 2817.
(6) $\frac{(\cdot 1136)^{\frac{3}{6}} \times \sqrt{81 \cdot 86}}{\frac{3}{4} \times \sqrt[3]{2000}}$. Ans. 1874 .

THE GREEK ALPHABET

Greek letters are used so frequently in Trigonometry and other branches of Mathematics that it is useful to have the complete alphabet for reference.

Name.	Small.	Capital.
alpha	a	A
beta	β	B
gamma	γ	1
delta		Δ
epsilon	ϵ	E
zēta	ζ	Z
èta	η	H
thēta	θ	ө
iōta	ι	I
kappa	κ	1 K
lambda	λ	\checkmark
mu	μ	M
nu	ν	N
xi	ξ	Ξ
omicron	o	0
pi	π	Π
rho	ρ	P
sigma	σ	Σ
tau	τ	T.
upsilon	v	\boldsymbol{Y}
phi	ϕ	Φ
chi	χ	X
psi	ψ	Ψ
omega	ω	Ω,

CHAPTER I

ANGLES AND THEIR MEASUREMENT

1. Any angle such as $B A C$ (Fig. I) may be thought of as having been formed by rotating the line $A C$ about the point A from the position of coincidence with $A B$ to its final position $A C$.

Fig. I.
This way of regarding an angle shows clearly the intimate connexion between angles and arcs of circles and this connexion leads to the usual method of measuring angles.
2. The Degree.* From very early times it has been the custom to divide the circumference of a circle into 360 equal parts or

* 'The current sexagesimal division of angles is derived from the Babylonians through the Greeks. The Babylonian unit angle was the angle of an equilateral triangle; following their usual practice this was divided into 60 equal parts or degrees, a degree was subdivided into 60 equal parts or minutes, and so on; it is said that 60 was assumed as the base of the system in order that the number of degrees corresponding to the circumference of a circle should be the same as the number of days in a year which it is alleged wastaken, at any rate in practice, to be 360.' (From A Short Account of the History of Mathematics, by W. W. Rouse Ball.)
degrees, each degree into 60 parts or minutes,* each minute into 60 seconds. ${ }^{1}$

The angle at the centre of a circle, subtended by an arc of 1 degree, is taken as the unit angle, and it, too, is called a degree ; it is divided into minutes and seconds in the same way as the arc degree.

The notation used is shown in the following example:$47^{\circ} 15^{\prime} 37^{\prime \prime}$ is read 47 degrees 15 minutes 37 seconds.

If the line makes a complete rotation, thus returning to its original position, it has turned through an angle of 360°.

A right angle is produced by one-quarter of a complete rotation, and is, therefore, equal to 90°.

If two angles together equal a right angle, either of them is called the complement of the other. When the sum equals two right angles, either angle is the supplement of the other.
3. Positive and Negative Angles. In discussing the properties of a single angle it is usual to draw the initial line so that it is horizontal and to name it $O A$. If the rotating line moves in a direction opposite to that of the hands of a clock, the angle is said to be positive; if in the same direction as the hands of a clock, the angle is negative.

Fig. II.

Fig. III.

[^2]In Fig. II the line $O P$ has made $\frac{1}{8}$ of a complete turn, hence the angle $A O P=\frac{1}{8} \times 360^{\circ}=45^{\circ}$; in Fig. III the angle $A O P$ is reflex* and is equal to $5 \times 360^{\circ}=225^{\circ}$. If, in Fig. II, the line $O P$ reached its position by turning in the negative direction it would have made $\frac{7}{8}$ of a complete turn so that the reflex angle $A O P$ in Fig. II $=-315^{\circ}$. Similarly in Fig. III the obtuse angle $A O P=-135^{\circ}$.
4. Angles unlimited in size. In Fig. II the line $O P$ might have made one, two, or any number of complete turns, either positive or negative, and then have moved on to its final position : hence the angle $A O P$ may represent 405°, or 765°, or -675°. All possible values are included in the general formula

$$
A O P=360 n+45
$$

where n is any whole number, positive, zero, or negative.
Unless the problem under discussion allows the possibility of the angle being greater than 360°, it is always assumed that the angle is less than 360°.
5. The Grade. When the metric system was invented, the French Mathematicians introduced a new unit, the Grade, such that

$$
100 \text { grades }=1 \text { right angle, }
$$

100 minutes $=1$ grade,
100 seconds $=1$ minute .
This system never came into general use, even in France, and now. exists only in old-fashioned examination papers.

Examples I a.

1. Find the complement of each of the following angles: $32^{\circ}, 47^{\circ} 23^{\prime}, 75^{\circ} 13^{\prime} 14^{\prime \prime}, 68^{\circ} 0^{\prime} 13^{\prime \prime}, 27^{\circ} 42^{\prime} 186^{\prime \prime}$.
2. Write down the supplements of $75^{\circ}, 68^{\circ} 14^{\prime}, 115^{\circ} 17^{\prime} 48^{\prime \prime}$ $90^{\circ}, 78^{\circ} 24^{\prime} 36^{\prime \prime}$.
3. The angles of a triangle are found to be $42^{\circ} 13^{\prime} 17^{\prime \prime}, 73^{\circ} 47^{\prime} 5^{\prime \prime}$, $64^{\circ} 0^{\prime} 38^{\prime \prime}$. Is this correct?
4. Two angles of a triangle are $17^{\circ} 43^{\prime}, 92^{\circ} 16^{\prime}$; calculate the third angle.
5. In a triangle $A B C, \frac{1}{2}(A+B)=77^{\circ} 29^{\prime}$ and $\frac{1}{2}(A-B)=16^{\circ} 25^{\prime}$; find all the angles.

[^3]6. Express in degrees, minutes, and seconds the angle of (a) a square, (b) a regular pentagon, (c) a regular heptagon.
7. Express each of the angles of question 6 in grades.
8. The magnitude of an angle may be expressed either as D degrees or G grades; find the equation connecting D and G.
9. Draw the angles A and $\frac{1}{3} A$ in each of the following cases: (a) $A=54^{\circ}$, (b) $A=414^{\circ}$, (c) $A=774^{\circ}$, (d) $A=1134^{\circ}$, (e) 234°, (f) -126°.
10. Through what angles do the hour, minute, and second hands of a watch respectively turn between $12^{\mathrm{h}} 30^{\prime}$ a.m. and $5^{\mathrm{h}} 3^{\prime}$ a.m. ?
6. The ratio of the length of the circumference of a circle to the length of its diameter is the same for all circles. This constant value is denoted by the Greek letter π (pronounced $p i$), so that if
the circumference $=c$ units of length,
and diameter $=d$ units of length,
then
$$
\frac{c}{d}=\pi .
$$

The value of π can be found, correct to two or three significant figures, by actual measurement. By geometrical and trigonometrical calculations its value can be calculated to any desired number of places.

Correct to 5 significant figures, $\pi=3 \cdot 1416$.
Correct to 6 significant figures, $\pi=3 \cdot 14159$.
For mental calculations π may be taken as $3 \frac{1}{7}$.
7. By using Prop. 5, p. 9, problems dealing with the lengths of circular arcs may often be solved.

Fig. IV.

Example. Find the length of an arc which subtends an angle of 49° at the centre of a circle whose radius is 5 feet.

$$
\begin{aligned}
\frac{\operatorname{arc} A P}{\text { semi-circumference }} & =\frac{\text { angle } A O P}{2 \text { right angles }}, \\
\text { i. e. } \quad \frac{\text { arc } A P}{5 \pi} & =\frac{49^{\circ}}{180^{\circ}}
\end{aligned}
$$

The calculation is easily completed.

Similarly $\frac{\text { area of sector } A O P}{\text { area of circle }}=\frac{\text { angle } A O P}{4 \text { right angles },}$
i. e. $\quad \frac{\text { area of sector } A O P}{25 \pi}=\frac{49}{360}$.
8. Circular measure. By the method of the last section it is easily shown that the length of an arc of a circle, radius r, subtending an angle A° at the centre is $r \frac{A \pi}{180}$. In many other formulae the fraction $\frac{A \pi}{180}$ occurs in connexion with the angle A°. In theoretical work it has, therefore, been found convenient to use another unit angle, which simplifies formulae considerably.

The radian is the angle subtended at the centre of any circle by an arc equal in length to the radius.

Let x° equal 1 radian

$$
\begin{array}{rlrl}
\frac{\text { arc equal to radius }}{\text { semi-circumference }}=\frac{\text { angle of } 1 \text { radian }}{2 \text { right angles }} & =\frac{x^{\circ}}{180^{\circ}} \\
\text { i. e. } & \frac{r}{\pi r} & =\frac{x^{\circ}}{180^{\circ}} ; \\
\therefore & x^{\circ} & =\frac{180}{\pi} .
\end{array}
$$

Since π is the same for all circles, it follows that the radian is the same for all circles and may, therefore, be taken as a unit of measurement.

The number of radians in an angle is often called the circular measure of the angle. For this reason the symbol ${ }^{c}$ is used to show that the angle is measured in radians, e. g. 2^{c} means 2 radians.

When the radian is the unit angle, it is customary to use Greek letters to denote the number of radians, and the symbol c is then often omitted. When capital English letters are used, it is usually understood that the angle is measured in degrees.

Examples Ib.

1. How many times is an are equal to the radius contained in the semi-circumference? Reduce $180^{\circ}, 90^{\circ}, 60^{\circ}, 30^{\circ}$ to radians. (Do not substitute for π.)
2. Show by simple geometry that the radian is less than 60°.
3. How many radians are there in $10^{\circ}, 75^{\circ}, 138^{\circ}$, respectively? Give the answers correct to 2 decimal places.
4. Express the angle of (i) an isosceles right-angled triangle, (ii) a regular nonagon, in circular measure. Give the answers in terms of π.
5. One angle of a triangle is $\frac{1}{6} \pi$, another is $\frac{1}{4} \pi$; what is the circular measure of the third angle ?
6. Find the length of an arc of a circle which subtends an angle 78° at the centre, the radius being 18 feet.
7. An arc of length 5 feet subtends an angle of 132° at the centre ; what is the radius of the circle ?
8. Find the area of the sector of a circle if the radius is 12 feet and the angle 40°.
9. What time does the minute hand of a watch take to turn through (i) 3000°, (ii) 3000 grades, (iii) 3000 radians?
10. Fill in the missing values in the following table, which gives data about circular ares.

	Radius.
(1)	5 inches
(2)	$7 \cdot 6$ centimetres
(3)	
(4)	100 yards
(5)	320 metres
(6)	yards

Angle.
2 radians
$74 \cdot 6$ grades 314 degrees radians degrees 5 radians

Length.

413 feet 220 yards 1 kilometre half a mile
11. Express in radians the angle of a sector of a circle, being given that the radius is 7 inches and the area of the sector 100 sq. inches.
12. Show that the length of an are subtending an angle θ° at the centre of a circle, radius r; is $r \theta$. What is the area of the corresponding sector?
13. Find the circular measure of 1^{\prime} and of $1^{\prime \prime}$, correct to 5 significant figures.
9. The points of the compass. The card of the Mariner's Compass is divided into four quadrants by two diameters pointing North and South, East and West respectively. These are the Cardinal Points. Two other diameters bisecting the angles between the previous diameters give four other points, viz. NE., NW., SW., SE. The eight angles so formed are bisected and

eight more points are thus obtained. These are named by combining the names of the points between which they lie, beginning with the cardinal point. Thus the point midway between E. and SE. is ESE. (East South-East).

The sixteen angles now formed are bisected so that the circumference is finally divided into thirty two equal divisions. From their names the last sixteen points are called by-points. The point midway between N. and NNE. is called N. by E.; that midway between SW. and SSW. is called SW. by S., \&c.

The angle between two consecutive points of the compass is also called a point, thus N. 2 points E. is the same as NNE.; WSW. $\frac{1}{2}$ W. means $\frac{1}{2}$ a point W. of WSW.

The ordinary degree is sometimes used in defining a direction, for instance ENE. can be referred to as $22 \frac{1}{2}^{\circ}$ N. of E. Similarly we may have $32^{\circ} \mathrm{W}$. of $\mathrm{N} ., 40^{\circ} \mathrm{S}$. of W ., \&c.
10. Latitude and Longitude. The position of a point on a sphere can be defined by two angles, which may be compared with the abscissa and ordinate of plane geometry. These angles are easily understood by considering the special case of Longitude and Latitude.

Fig. V.
In Fig. V the meridian through Greenwich cuts the equator at A; the meridian through P cuts at $B . \quad O$ is the centre of the Earth.

The Longitude of P is the angle $A O B$ and may be either East or West of the Greenwich meridian.

The Latitude of P is the angle $P O B$ and may be either North or South of the Equator.

Note.-A geographical or nautical mile is the length of an arc of a meridian (or of the equator) subtending an angle of 1^{\prime} at the centre of the earth.

A ship travelling at the rate of 1 nautical mile per hour is said to have a speed of one knot.
11. Gradient. It is usual to estimate the inclination to the horizontal of a road or hill by the distance risen vertically for a certain horizontal distance. Thus a hill might be said to rise 3 in 5 ; this would mean that if a horizontal line were drawn through a point B on the hill to meet the vertical line through a lower point A at C, then $A C / B C$ would equal $\frac{3}{5}$. The hill is said to have a gradient or slope of 3 in 5 .

Fig. VI.
It is clear that in many cases it is easier to measure $A B$ than $B C$; and some books take a gradient of 3 in 5 to mean a rise of 3 vertically for a distance 5 measured along the incline; so that in the figure $A C^{\prime} A B$ would be $\frac{3}{5}$. This latter interpretation of gradient is very common in books on Theoretical Mechanics.

If the inclination is small, it makes no practical difference which interpretation of gradient is taken.

It should be noticed that the angle is the same whatever units be used ; that is whether we consider a rise of 3 inches in 5 inches, 3 furlongs in 5 furlongs, 3 miles in' 5 miles. This follows from Prop. 12 c.

Examples I c.

1. Express in degrees the angle between
(a) NNE. and E. by N.; (f) S. 2 points W. and W. 2 points S. ;
(b) W. by S. and SE. by N. ; (g) $40^{\circ} \mathrm{N}$. of W. and 30° E. of S. ;
(c) ESE. and NE. by N. ; (h) NE. by E. and 1 point W. of N. ;
(d) NNIV. and SSE. ;
(i) 30° S. of W. and ESE. ;
(e) N. by W. and SIV.;
(k) S. 2 points W. and W. 2 points N.

In the following questions take the radius of the Earth to be 4000 miles.
2. Two places on the Equator are 300 miles apart, find the difference of their Longitudes.
3. Quito (Longitude $79^{\circ} \mathrm{W}$.) and Macapa (Longitude $511^{\frac{1}{2}} \mathrm{~W}$.) are both on the Equator, find the distance between them. What time is it at Macapa when it is noon at Quito?
4. Find the distance between Poole (Lat. $50^{\circ} 43^{\prime}$ N., Long. $1^{\circ} 59^{\prime}$ W.) and Berwick (Lat. $55^{\circ} 46^{\prime}$, Long. $1^{\circ} 59^{\prime}$ W.).
5. Find the distance between Cape Breton Island (Lat. $45^{\circ} 50^{\prime} \mathrm{N}$., Long. $60^{\circ} \mathrm{W}$.) and the Falkland Isles (Lat. $51^{\circ} 32^{\prime}$ S., Long. $60^{\circ} \mathrm{W}$.).

Oral Questions.

1. What is a degree? How many degrees are there in the angle of a regular pentagon?
2. How lig is each acute angle of an isosceles right-angled triangle?
3. One angle of a triangle is A°, another 30°, how big is the third angle?
4. What is meant by a negative angle? When screwing an ordinary screw in, is the turning in the positive or negative direction?
5. Does the earth rotate in the positive or negative direction? In which direction does the sun appear to move?
6. Do you usually draw a circle in the positive or negative direction?
7. The needle of a mariner's compass is deflected from its normal position through a positive angle 39_{4}^{3} degrees, to what point of the compass does it then point?
8. Express the following angles in circular measure : $90^{\circ}, 60^{\circ}$, $180^{\circ}, 45^{\circ}, 30^{\circ}$. (Give the answers in terms of π.)
9. What is the locus of all places having latitude $35^{\circ} \mathrm{N}$. ?
10. What is the locus of all places having longitude $15^{\circ} \mathrm{W}$. ?
11. It is noon at the same time at two different places, what do you know about their longitudes or latitudes?
12. Give the latitude and longitude of the N. pole.

Examples I.

1. In a triangle $A B C, A=43^{\circ} 15^{\prime}, B=67^{\circ} 38^{\prime}$, calculate the number of degrees in (i) the angle C, (ii) the angle subtended at
the centre of the circumcircle by the side $B C^{\prime}$, (iii) the angle sultended at the centre of the inscribed circle by the side $B C$.
2. Express in circular measure, correct to 3 significant figures, (a) the supplement of 1.37 radians, (b) $74^{\circ},(c)$ the angle of a regulai octagon.
3. Define a radian and a grade. If an angle, containing D degrees, may be expressed as either θ radians or G grades, prove that $D / 180=\theta / \pi=G / 200$.
4. The hands of a clock are coincident at noon, through what angle does the hour hand turn before they next coincide?
5. Prove that whatever be the radius of a circle the size of the angle at the centre, which subtends an arc equal to the radius, is constant. What is this angle called? Show, by a geometrical construction, that it is a little less than 60°.
6. A wheel of a cart is 4 feet in diameter, through what angle does it turn when the cart moves forward 10 feet?
7. Explain how to find the length of a circular are being given the number of degrees in the angle subtended at the centre and the length of the radius.
8. Two places on the Equator differ in longitude by $37^{\circ} 16^{\prime}$, find the distance between them, correct to three significant figures. (Radius $=4000$ miles.)
9. Find the distance between a place, longitude $45^{\circ} 17^{\prime}$ E., latitude 0°, and another place, longitude $38^{\circ} 43^{\prime} \mathrm{W}$., latitude 0°.
10. Through what angle does the Earth turn between 9.30 a.m. and 4 p.m. ?
11. When it is noon at Greenwich what time is it at (a) Calcutta ($88^{\circ} 155^{\prime} \mathrm{E}$.), (b) New York ($\overline{7} 4^{\circ} \mathrm{W}$.). (c) Hawaii ($156^{\circ} \mathrm{W}$.) ?
12. The co-ordinates of two points P and Q are $(7,8),(9,11)$ respectively, find the gradient of the line $P Q$.
13. Draw an angle $A O P=35^{\circ}$, in $O P$ take 3 points P, Q, R such that $O P=1$ inch, $O Q=1.7$ inch, $O R=2.3$ inches. From P draw $P H$ at right angles to $O A$, at Q draw $Q K$ at right angles to $O Q$, and from R let fall $R L$ perpendicular to $O A$. Measure $O H, O K$, $O L$ and calculate, to 3 decimal places. the ratios $O H / O P, O Q / O K$, OL/OR. Justify the result.
14. Explain what is meant by a radian, and find how many degrees and minutes it contains.

Express in degrees, and also in radians, the angle of a regular polygon of 100 sides.
15. An explorer reaches a latitude of $87^{\circ} 28^{\prime} 48^{\prime \prime}$. Find how many miles he is distant from the pole, asstming the earth to be a sphere whose circumference is 25000 miles.
16. Find the gradient of a straight line joining two points whose co-ordinates are (x^{\prime}, y^{\prime}) and ($\left.x^{\prime \prime}, y^{\prime \prime}\right)$. Hence find the equation of the straight line.

CHAPTER II

THE TRIGONOMETRICAL RATIOS

12. Definitions. Let $O A$ the initial line be taken as axis of x, the axis of y being perpendicular to it at O; in the final

Fig. VII.
position of the rotating line take any point P. Figure VII shows four possible types of positions of $O P$.

Let fall PN perpendicular to $O A$ or $O A$ produced, so that $O N$ is the abscissa of P and $P N$ the ordinate. Then

$$
\begin{aligned}
& \text { sine of } A O P=\frac{N P}{O P}=\frac{\text { ordinate }}{\text { radius }}=\frac{y}{r}, \\
& \text { cosine of } A O P=\frac{O N}{O P}=\frac{\text { abscissa }}{\text { radius }}=\frac{x}{r} . \\
& \text { tangent of } A O P=\frac{N P}{O N}=\frac{\text { ordinate }}{\text { abscissa }}=\frac{y}{x} .
\end{aligned}
$$

These are the most important ratios ; the others are their reciprocals, viz. :

$$
\begin{aligned}
& \text { cosecant of } A O P=\frac{O P}{N P}=\frac{\text { radius }}{\text { ordinate }}=\frac{r}{y}, \\
& \text { secant of } A O P=\frac{O P}{O N}=\frac{\text { radius }}{\text { abscissa }}=\frac{r}{x} . \\
& \text { cotangent of } A O P=\frac{O N}{N P}=\frac{\text { abscissa }}{\text { ordinate }}=\frac{x}{y} .
\end{aligned}
$$

The following abbreviations are usually used :
$\sin A$ instead of sine of $A O P$,
$\cos A \quad, \quad$, , cosine of $A O P$,
$\tan A \quad, \quad$, tangent of $A O P$,
$\operatorname{cosec} A, \quad$, , cosecant of $A O P^{\prime}$,
$\sec A \quad, \quad$, secant of $A O P$,
$\operatorname{cotan} A, \quad$, cotangent of $A O P$.
Similarly, if $A O P$ is measured in radians, $\sin \theta, \cos \psi, \operatorname{cosec} \psi, \& c$., are used.
13. Trigonometry was developed by Arabian and Greek astronomers who based their work on the circular are and not on the angle. In the Middle Ages this early mathematical work was translated into Latin, and so the present names of the ratio were derived. The following section shows the reasons for these names.
14. Draw a circle with centre O cutting the initial line at A and the perpendicular to it at B.

Take a point P on the circumference of the circle.
Draw the tangent at A and prollues $O P$ to meet it at T.
Draw I ' N perpendicular to $O A$.
$A T$ was called the tangent of the are $A P$.
$O T$, which cut, the circle, was called the secant of the are $A I$.
$N P$ was called the sine * of the arc $A P$.
Clearly the lengths of $A T, O T, N P$ change when the radius $O A$ changes, even if the angle $A O P$ remain constant.

Fig. VIII.

But from similar triangles it is seen that, if the angle is constant, the ratios of $A T, O T, N P$ to the radius are also constant. Hence, as Trigonometry developed, it was seen to be advisable to divide by

* The word 'sine' is derived from the Latin sinus. If in Fig. VIII $P N$ be produced to meet the circumference at P^{\prime}, then $P A P^{\prime}$ resembles a bow (Latin arcus) of which $P N P^{\prime}$ is the string or chord (Latin chorda). To use the bow, the string is pulled till N touches the bosom (Latin sinus) ; hence $P N$ is called the sine. NA is often called the sagitta of the are.
the radius and to treat the subject as depending on the angle $A O P$ rather than on the arc $A I$. Thus we lave
angle $A O P=\frac{\operatorname{arc} A P}{\text { radius }}$ (when the angle is measured in radians),
$\sin A O P=\frac{\text { sine of arc } A P}{\text { radius }}=\frac{N P}{O P}$,
$\tan A O P=\frac{\text { tangent of arc } A P^{\prime}}{\text { radius }}=\frac{A T}{O A}=\frac{N P}{O N}$,
sec $A O P=\frac{\text { secant of arc } A I^{\prime}}{\text { radius }}=\frac{O T}{O A}=\frac{O P}{O N^{\prime}}$.
Now make a similar construction for the complementary are $B P$. Then
sine of the complement of the angle $A O P$

$$
\begin{aligned}
& =\frac{\text { sine of the complementary arc } 1: I^{\prime}}{\text { radius }} \\
& =\frac{N^{\prime} I}{O P} \\
& =\frac{O N}{O P} .
\end{aligned}
$$

'Sine of the complement of ' was shortened into co-sinc. l'ussibly 'complementary sine' was an intermediate stage. Similarly, cotangent and cosecant were derived.

Since the values of the ratios depend on the values of the angle, the term Trigonometrical Functions is often used instead of Trigonometrical Ratios. Frequently the ratios are referred to as Circular Functions.
15. Ratios rarely used. In Fig. VIII
$N A$ is called the versine (i. c. versed sine) of the are $A P$.
$\lambda^{\prime} B$ is called the coversine of the are $A P$.
$A P$ (not joined in the figure) is the chord of the are $A P$.
If we divide each of these by the radius we get the corresponding ratios of the angles $A O P$. These ratios are very rarely used. Another function that is now rarely used is the haversine, i. e. half the versed sine.
16. Projection Formulae. It is useful to remember that $O N$ (i. e. the projection of the radius on the initial line) $=r \cos \theta$
and NP (i.e. the projection of the radius on a line perpendicular to the initial line) $\quad=r \sin \theta$.
17. Polar co-ordinates. The position of a point P is determined if the distance $O P$ from a fixed point is known and also the angle this distance makes with a fixed line $O X$ through O. The length is usually denoted by r and the angle by θ; these are the polar co-ordinates of P. In this connexion O is called the pole.

18. Graphs of Trigonometrical Functions.

-The definitions of the last section lead to an easy method of drawing the graphs. On page 42 the sine graph (i.e. the graph of the equation $y=\sin x$) is given. It is obtained as follows :

Step 1. On the extreme left of the paper (which should be ruled in squares) draw a circle with its centre at the intersection of two lines. Take the horizontal radius $C A$ as initial line.

Step 2. The perpendicular $B^{\prime} C B$ gives the angles 90° and 270°.
The diagonals through C give the angles $45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$.
By stepping off chords equal to the radius, starting from A, the angles $60^{\circ}, 120^{\circ}, 240^{\circ}, \& c$., are obtained ; and, by starting at B, the angles $30^{\circ}, 155^{\circ}$, \&c., are obtained.

Only the points P, P^{\prime}, \ldots, on the circumference need be obtained as is shown in the third quadrant ; the radii are not needed for drawing the sine graph.

Step 3. Take a point O as origin, some distance along the initial line, and, with a convenient scale, mark off abscissae to represent the angles $30^{\circ}, 45^{\circ}, 60^{\circ}$, \&c., and, as far as space allows, mark off the negative abscissae.

Step 4. Through the points on the circumference draw parallels to the initial line to cut the corresponding ordinates. These points of intersection are points on the graph.

The ordinates of this graph* are proportional to the sines; if we divide by the radius, the actual values of the sines are found.

The sine graph is shown on a larger scale in Fig. X.
19. The tangent graph. To obtain the ordinates for the tangent graph the radii must be produced to meet the tangent to

[^4]

U1H	-
-9.0.	+\%. $\%$
	$-\quad-$
7	
	\square^{0}

Fig. X .
the circle drawn at A. This is done in Fig. IX, and a few points of the graph are marked, but the graph is not drawn.

The cosine graph. Since the cosine of x is the sine of the complement of x, the student should be able to modify the method for the sine graph so as to obtain the cosine graph.

The secant graph. This is obtained by marking off along the respective ordinates the corresponding values of $C T$ (see Fig. IX).

Examples II a.

(Answers should be given correct to 2 significant figures.)
By drawing to scale find the trigonometrical ratios of the following angles:

1. 30°.
2. 49°.
3. 79°.
4. 100°.
5. 78°.
6. 170°.
7. 250°.
8. 25°.
9. 300°.
10. 156°.
11. -80°.
12. 415°.

Find the ratios of the angle $\mathcal{A} O I^{\prime}$ when the coordinates of P are 13. $(4,3)$. 14. $(4,-3) . \quad 15 .(-4,-3)$ 16. $(-4,3)$. 17. $(3,2) . \quad$ 18. $(-7,-3) . \quad$ 19. $(-5,4)$ 20. $(63,-16)$.

The following graphs should be drawn carefully and kept for use :
21-26. A graph on a large scale for each function, for angles from 0° to 90°.

27-32. A graph on a smaller scale for each function for angles from -360° to $+360^{\circ}$.
33. The blanks in the following table are to be filled with the sign (+ or -) of the respective ratios :

$$
\begin{aligned}
& \text { Angle } 0^{\circ}-90^{\circ} \quad 90^{\circ}-180^{\circ} \quad 180^{\circ}-270^{\circ} \quad 270^{\circ}-360^{\circ} \\
& \text { sine } \\
& \text { cosine } \\
& \text { tangent }
\end{aligned}
$$

34. If the gradient of a hill, inclined at A° to the horizon, is known, what trigonometrical ratio of the angle is known ?
35. Construct an angle whose (i) tangent is $1 \cdot 45$, (ii) sine is 75 , (iii) cotangent is 1.45 , (iv) secant is 2.7 , (v) cosecant is 2%, (vi) cosine is 75 . Measure each angle in degrees.
36. Powers of the Trigonometrical Functions. The square of $\sin A$ is written $\sin ^{2} A$; and a similar notation is used for other powers and ratios; thus, in general, $\sin ^{\prime \prime} A$ means $(\sin A)^{\prime \prime}$.

Inverse notation. There is one exception to the above statement. Suppose $\sin A=\|$, then A is an angle whose sine is a. This is written $A=\sin ^{-1}$ (t. Similarly, $\tan ^{-1} a$ means an angle whose tangent is a; and so for the other ratios.

If we wish to express $\frac{1}{\sin A}$ as a power of $\sin A$, we must write $(\sin A)^{-1}$.

Note. Continental mathematicians denote the angle whose \sin is x by are $\sin x$. This notation sometimes oceurs in English books.

刃xample. Determine, by drawing, the angle $\sin ^{-1} \frac{2}{3}$.
Step 1. Draw axes $O A, O B$.
Step 2. Draw circle centre O, radius 3 units.
Step 3. Along $O B$ mark off $O K$ equal 2 units.
Step 4. Through K draw a parallel to $O A$ cutting circle at $P^{\prime} O P$. Join $O P, O P^{\prime}$.

We now have two angles $A O P, A O P^{\prime}$ each of which has its sine equal to $\frac{2}{3}$. $A O P$ is $41^{\circ} A O P^{\prime} 139^{\circ}$.

Fig. XI.

It is always understood that $\sin ^{-1} u$ means the smallest positive angle that has the sine equal to u; and similarly for the other ratios.

Examples II.

1. Find, by drawing to scale, the sine, cosine, and tangent of 30°, $45^{\circ}, 60^{\circ}$. Verify the results by calculation.
2. The sine of an acute angle is $\frac{3}{3}$; find the cosine, tangent, and secant.
3. The sine of an angle, not acute, is $\frac{3}{5}$; find the cosine and tangent.
4. The cosine of an angle is $\frac{\pi}{13}$; find the sine and tangent.
5. Draw as many angles as possible having the tangent equal to 8 .
6. Given that $\sin 63^{\circ}=89$ find $\cos 63^{\circ}$ and $\cos 27^{\circ}$.
7. Find the value of $\sin ^{2} A+\cos ^{2} A$, it being known that

$$
\sin A=\cdot 3907, \cos A=\cdot 9205
$$

Also find the values of $\tan A$ and $\sec A$.
8. Given $\tan \theta=\frac{12}{5}$, find $\cot \theta$ and $\sec \theta$.
9. Draw and measure an angle A such that (i) $\sin A=-5$, (ii) $\cos A=-5$, (iii) $\tan A=-\cdot 5$, (iv) $\sec A=-5$.
10. Find the value of $\sec ^{2} \theta-\tan ^{2} \theta$, when $\sec \theta=1 \cdot 221$ and $\tan \theta=7002$. Justify the answer by geometrical reasoning.
11. Are any of the following data inconsistent or impossible? Give reasons for your answers.

$$
\begin{aligned}
& \begin{array}{ll}
\text { (i) } \sin A=\frac{5}{4} ; & \text { (b) } \sec A=\frac{5}{4} ; \\
\text { (c) } \sin A=\frac{4}{3}, \cos A=\frac{3}{7} ; & \text { (d) } \sin A=4 \cdot \cos A=6 ; \\
\text { (e) } \sin A=6, \cos A= \\
\text { (f) } \sec A= & \tan A=\cdot 9 ; \\
\text { (g) } \tan A=1 ; & \tan A=1 \cdot 35 ; \\
\text { 12. Prove, by means of the definitions in } \S 12 \text {, that } \\
\cos A=\sin (90-A) \text { and tan }\left(\frac{1}{2} \pi-\theta\right)=\cot \theta .
\end{array}
\end{aligned}
$$

13. Find, by drawing to scale, (a) $\sin 36^{\circ}$ and $\sin 144^{\circ}$; (b) $\cos 42^{\circ}$ and $\cos 138^{\circ} ;(c) \cos 246^{\circ}$ and $\cos 66$.
14. By means of graphs (or otherwise) test the following statements: (a) $\sin (180-A)=\sin A$; (b) $\cos (180+A)=-\cos A$; (c) $\sin (90+A)=\sin A$.
15. By means of graphs find values for $\sin ^{-1} 6, \tan ^{-1} 2 \cdot 5$ $\cos ^{-1} \cdot 34, \cos ^{-1} 1 \cdot 5$.
16. Given $\sin 36^{\circ}={ }^{\circ} 5878$, find $\cos 54^{\circ}, \sin 144, \sin 216^{\circ}, \sin 324^{\circ}$.
17. Given $\cos 53^{\circ}=6018$, find $\sin 37^{\circ}, \cos 127^{\circ}, \cos 233^{\circ}, \cos 413^{\circ}$, $\cos 307^{\circ}$.
18. Prove that $\sin 117^{\circ}=\cos 27^{2}$.
19. Is it possible to find angles to satisfy the following equations? Give reasons.
(i) $\tan \theta=1$;
(ii) $\cos \theta=\frac{.934}{.866}$;
(iii) $\sin \theta+\cos \theta=1$;
(v) $\sec \theta=3 \cdot 1416$;
(vii) $\sin \theta=0$;
(iv) $\sin ^{2} \theta+\cos ^{2} \theta=\frac{1}{2}$;
(vi) $\operatorname{cosec} \theta=\frac{1}{\sqrt{ } 2}$;
(ix) $\cos \theta=1$;
(viii) $\tan \theta=100$;
(x) $\sec \theta=78$.
20. Show that (i) sine and cosine cannot be numerically greater than 1; (ii) tangent and cotangent may be either greater or less than 1 ; (iii) secant and cosecant cannot be numerically less than 1. Why is the word numerically inserted?
21. Find all the trigonometrical functions of 0° and 90°.
22. (i) Show that the straight line whose equation is $y=m x$ makes an angle $\tan ^{-1} m$ with the axis of x.
(ii) What is the tangent of the angle made with the axis of x by the straight line joining the two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$?
(iii) Show that the equation of the line joining the two points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ is $\frac{y-y_{1}}{y_{1}-y_{2}}=\frac{x-x_{1}}{x_{1}-x_{2}}$.
(iv) If the equation of a straight line is $y=m x+c$, give the geometrical meanings of m and c.
23. Show that, if x be any numerical quantity, positive or negative, an angle can be found whose tangent is equal to x.

Show what limitations in value, if any, exist in the case of each of the other trigonometrical ratios.
24. State concisely the changes in the sign and magnitude of $\sin A$ as A increases from 0° to 360°.
25. Define the cosine of an angle of any magnitude, explaining the conventions regarding the signs of the lines referred to in your definitions. Draw the graph of $\cos \theta$ from $\theta=0$ to $\theta=\frac{1}{2} \pi$.
26. Define the sine of an angle and find by geometrical reasoning the values of $\sin 45^{\circ}, \sin 90^{\circ}, \sin 135^{\circ}$.
27. Define the tangent and the rersed sine of an angle; and find the greatest and least values which each can have.
28. With ruler and compasses construct an angle whose cosine is $\frac{1}{3}$; also an angle whose cosine is $-\frac{1}{3}$. Calculate the sine of the latter angle to three places of decimals.
29. $A B C$ is a triangle in which $A N$ is the perpendicular from A to $B C$. If $A B=2.9$ inches, $A C=2.5$ inches, $A N=2$ inches, find the values of $\sin B, \cos C, \tan B, \operatorname{cosec} C$. Calcu'ate the length of $B C$ correct to one decimal place.
30. If A, B, C are the angles of a triangle, express $\sin \frac{1}{2}(A+B)$, $\cos \frac{1}{2}(A+B), \tan \frac{1}{2}\left(A+B\right.$ in terms of ratios of $\frac{1}{2} C$.

CHAPTER III

ELEMENTARY FORMULAE

21. Reciprocal Relations.

By definitions, $\quad \sin A=\frac{y}{r}, \operatorname{cosec} A=\frac{x}{y} ;$

$$
\begin{gathered}
\therefore \sin A \cdot \operatorname{cosec} A=1: \\
\text { i. e. } \quad \sin \mathbf{A}=\frac{1}{\operatorname{cosec} \mathbf{A}}, \operatorname{cosec} \mathbf{A}=\frac{1}{\sin \mathbf{A}} .
\end{gathered}
$$

In a similar way it can be proved that

$$
\begin{aligned}
& \cos A \sec A=1, \& c \\
& \tan A \cot A=1, \& c
\end{aligned}
$$

22. Relations deduced from Pythagoras' Theorem (Prop. 13, p. 10).

In Fig. VII, § 12, we have in all cases

$$
\begin{aligned}
& O N^{2}+N P^{2}
\end{aligned}=O P^{2} ; \quad \begin{aligned}
& x^{2}+y^{2}
\end{aligned}=r^{2} .
$$

Three sets of formulae are obtained by dividing in turn by r^{2}, x^{2}, y^{2}.

Divide by r^{2},

$$
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}=1
$$

$$
\text { but } \frac{x}{r}=\cos A, \frac{y}{r}=\sin A \text {. }
$$

Substitute,

$$
\cos ^{2} \mathbf{A}+\sin ^{2} \mathbf{A}=1
$$

The equivalent formulae must also be learnt, viz. :

$$
\begin{aligned}
& \sin ^{2} A=1-\cos ^{2} A, \sin A= \pm \sqrt{1-\cos ^{2} A} \\
& \cos ^{2} A=1-\sin ^{2} A, \cos A= \pm \sqrt{ } 1-\sin ^{2} A
\end{aligned}
$$

In a similar way the student should prove that

$$
\begin{aligned}
\tan ^{2} \mathbf{A}+1 & =\sec ^{2} \mathbf{A} \\
\text { and } \cot ^{2} \mathbf{A}+1 & =\operatorname{cosec}^{2} \mathbf{A}
\end{aligned}
$$

23. Relation between sine, cosine, and tangent.

$$
\begin{aligned}
& \tan A=\frac{y}{x} \\
&=\frac{y}{r} \\
& \frac{x}{r}
\end{aligned}
$$

Sulbstitute, $\quad \tan A=\frac{\sin A}{\cos A}$.
In a similar way it is proved that

$$
\cot \mathbf{A}=\frac{\cos \mathbf{A}}{\sin \mathbf{A}}
$$

24. Identities. By means of the relations proved in the preceding sections, any expression containing trigonometrical functions can be put into a number of forms. It is a useful exercise to prove that two expressions, apparently different, are identical ; such exercises serve to fix the relations in the memory and lead to facility in dealing with trigonometrical expressions.

Example. Prove that $\sec ^{2} A+\operatorname{cosec}^{2} A \equiv \sec ^{2} A \operatorname{cosec}^{2} A$.
[Express all ratios in terms of sine and cosine.]

Method I.

$$
\begin{array}{rlr}
\text { L. H.S. } & =\frac{1}{\cos ^{2} A}+\frac{1}{\sin ^{2} A} & \text { ly } \S 21 \\
& =\frac{\sin ^{2} A+\cos ^{2} A}{\sin ^{2} A \cos ^{2} A} \\
& =\frac{1}{\sin ^{2} A \cos ^{2} A} \quad \text { using Formula of } \S 22 \\
& =\frac{1}{\cos ^{2} A} \times \frac{1}{\sin ^{2} A} \quad \\
& =\sec ^{2} A \operatorname{cosec}^{2} A . \quad \text { Q.E. D. } § 21
\end{array}
$$

Method II.

$$
\begin{aligned}
& \sec ^{2} A+\operatorname{cosec}^{2} A \\
& \quad=\frac{1}{\cos ^{2} A}+\frac{1}{\sin ^{2} A}=\frac{\sin ^{2} A+\cos ^{2} A}{\sin ^{2} A \cos ^{2} A}=\frac{1}{\sin ^{2} A \cos ^{2} A}, \\
& \sec ^{2} A \operatorname{cosec}^{2} A=\frac{1}{\cos ^{2} A} \times \frac{1}{\sin ^{2} A}=\frac{1}{\sin ^{2} A \cos ^{2} A} ; \\
& \therefore \sec ^{2} A+\operatorname{cosec}^{2} A=\sec ^{2} A \operatorname{cosec}^{2} A . \quad \text { Q.E.D. }
\end{aligned}
$$

Method III. This method is clumsy, and should be used only if Methods I and II have been tried unsuccessfully.

$$
\begin{aligned}
& \quad \begin{aligned}
\sec ^{2} A+\operatorname{cosec}^{2} A & =\sec ^{2} A \operatorname{cosec}^{2} A \\
\text { if } \quad \frac{1}{\cos ^{2} A}+\frac{1}{\sin ^{2} A} & =\frac{1}{\cos ^{2} A} \cdot \frac{1}{\sin ^{2} A}, \\
\text { i. e. if } \quad \sin ^{2} A+\cos ^{2} A & =1
\end{aligned}
\end{aligned}
$$

But $\sin ^{2} A+\cos ^{2} A$ does equal 1 ;

$$
\therefore \quad \sec ^{2} A+\operatorname{cosec}^{2} A=\sec ^{2} A \operatorname{cosec}^{2} A .
$$

Note. The introductory 'if', or some similar conjunction, is vital to the logical statement of the work and must not be omitted.
25. Elimination. If two equations are satisfied by the same value of a single variable, there must be a relation connecting the constants of the equations; this is also the case when n equations are satisfied by the same values of $n-1$ variables. In order to find this relation we eliminate the variable or variables.

Example. Eliminate θ from the equations $\sin \theta=a, \tan \theta=b$.
By formulae

$$
\begin{aligned}
\tan ^{2} \theta & =\frac{\sin ^{2} \partial}{\cos ^{2} \theta} \\
& =\frac{\sin ^{2} \theta}{1-\sin ^{2} \theta} . \\
b^{2} & =\frac{a^{2}}{1-a^{2}}, \\
\frac{1}{a^{2}}-\frac{1}{b^{2}} & =1 .
\end{aligned}
$$

Substitute
i.e.

The result is called the eliminant of the original equations.

Examples III a.

1 If $\sin A=\frac{16}{6} 5$ use formulae to find the remaining ratios. Draw a figure to explain why some of the ratios may be either positive or negative.
2. Given that $\tan \theta=\frac{12}{5}$ find $\cot \theta$ and $\sin \theta$.
3. Find $\sec \theta$ in the following cases:
(i) $\cos \theta=7921$; (ii) $\tan \theta=1352$; (iii) $\operatorname{cosec} \theta=2 \cdot 583$.
4. Show how all the ratios may be found when (i) the cosine, (ii) the tangent is known.
5. Prove the following identities :
(i) $\sin A \cot A+\cos A \tan A=\sin A+\cos A$:
(ii) $\tan A+\cot A=\sec A \operatorname{cosec} A$;
(iii) $\sin \theta \tan \theta+\cos \theta \cot \theta=\sec \theta+\operatorname{cosec} \theta-\sin \theta-\cos \theta$;
(iv) $\sec ^{2} \theta-\operatorname{cosec}^{2} \theta=\tan ^{2} \theta-\cot ^{2} \theta$;
(v) $1-2 \sin ^{2} A=2 \cos ^{2} A-1$;
(vi) $\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=\frac{\sin \alpha \cos \beta+\cos \alpha \sin \beta}{\cos \alpha \cos \beta-\sin \alpha \sin \beta}$;
(vii) $\left(1-\tan ^{2} A\right) \div\left(1+\tan ^{2} A\right)=\cos ^{2} A-\sin ^{2} A$;
(viii) $(\sin A+\cos A)^{2}=1+2 \sin A \cos A$;
(ix) $\sin ^{3} A-\cos ^{3} A=(\sin A-\cos A)(1+\sin A \cos A)$;
(x) $\sin A \cot A \operatorname{cosec} A+\cos A \tan A \sec A=\sec A \operatorname{cosec} A$;
(xi) $\tan X-\tan Y=(\sin X \cos Y-\cos X \sin Y) \div \cos X \cos Y$;
(xii) $(\tan A-\tan B) \div(\cot A-\cot B)=-\tan A \tan B$;
(xiii) $\cos ^{4} d-\sin ^{4} \theta=2 \cos ^{2} \theta-1$;
(xiv) $\left(3-4 \sin ^{2} A\right) \div \cos ^{2} A=3-\tan ^{2} A$.
6. Prove that versin $A=1-\cos A$, coversin $A=1-\sin A$.
7. Show that the numerical value of $\sin ^{2} A \div(1-\cos A)$ diminishes from 2 to 0 as A increases from 0° to 180°, and illustrate your answer by a diagram.
8. Which is greater, the acute angle whose cotangent is $\frac{1}{5}$, or the acute angle whose cosecant is ${ }_{i}$?
9. Prove that, if θ is an angle less than 180° for which $1+\sin \theta=k \cos \theta$, then $\cos \theta=2 k \div\left(1+k^{2}\right):$ and express $\tan \theta$ in terms of k.
10. Eliminate θ from the following :
(i) $\sin \theta=a, \cos \theta=b$;
(ii) $\sin \theta+\cos \theta=a, \sin \theta-\cos A=b$;
(iii) $\sec \theta-\tan \theta=a, \sec \theta+\tan \theta=b$;
(iv) $a \sin \theta+b \cos \theta=p, c \sin \theta-b \cos \theta=q$;
(v) $a \sin \theta+b \cos \theta=p, a^{\prime} \sin \theta+b^{\prime} \cos \theta=p^{\prime}$.
11. If $a(1-\sin \theta)=b \cos \theta$, prove that $b(1+\sin \theta)=a \cos \theta$.
12. If $a(\sec \theta+1)=b \tan \theta$, prove that $b(\sec \theta-1)=a \tan \theta$.
13. If $x=a \cos \theta \cos \phi, y=a \cos \theta \sin \phi, z=a \sin \theta$, eliminate θ and ϕ.

26. Ratios of complementary ang'es.

Let $\mathrm{X} O P=A^{\circ}$ (Fig. XII) and $\mathrm{XOQ}=90-A^{\circ}$; make $O Q=O P$, and let fall $Q K, P N$ perpendicular to $O X$.

Fig. XII.
Then the triangles $Q O K, P O N^{\top}$ are congruent (Prop. $8 c$) ; so that $K Q=O N$ and $O K=N P$.

$$
\begin{aligned}
\text { Hence } \sin X O Q & =\frac{K Q}{O Q} \\
& =O N \\
& O P \\
& =\cos X O Y . \\
\text { i. e. } \sin (90-\mathbf{A}) & =\cos \mathbf{A} .
\end{aligned}
$$

In a similar way it is proved that. *

$$
\begin{aligned}
& \cos (90-A)= \\
& \tan (90-A)=
\end{aligned}
$$

Compare these results with § 11.
What are the corresponding results when angles are measured in radians?

27. Ratios of supplementary angles.

Make $X^{\prime} O P^{\prime}=A^{\circ}$, and $X O Q=180-A^{\circ}$, so that $Q O K=A^{\circ}$.

[^5]Make $O Q=O P$ and let fall the perpendiculars $P N, Q K$.
Then the triangles $Q O K$, PON are congruent (Prop. $8 c$) so that $O K=O N$ (in magnitude) and $K Q=N P$. But $O K$ and $O N$ are of opposite sign.

Fig. XIII.
Hence $\cos X O Q=\frac{(O K)^{*}}{O Q} \quad$ (where $(O K)$ denotes the magnitude

$$
\begin{aligned}
& =-O N \\
& =-\cos X O P,
\end{aligned}
$$

i.e. $\cos (180-A)=-\cos \mathrm{A}$.

In a similar way it is proved that

$$
\begin{aligned}
& \sin (180-\mathbf{A})= \\
& \tan (180-\mathbf{A})=
\end{aligned}
$$

28. Ratios of negative angles.

Make $X O P=+A^{\circ}$ and $X O Q=-A^{\circ}$.
Then $X O P=X O Q$ in magnitude.
Make $O Q=O P$.
Join $P Q$ cutting $O X$ at N.
Then in the triangles $P O N, Q O N$
$O P=O Q$,
$\{O N$ is common,
included angle $N O P^{\prime}=$ included angle $N O Q$.
$\therefore \quad N P=N Q$ in magnitude,
and $O N P=O N Q$, so that $P Q$ is perpendicular to $O X$.

[^6]\[

Hence $$
\begin{aligned}
\cos X O Q & =\frac{(O N)}{O Q} \\
& =\frac{(O N)}{O P} \\
& =\cos X O P
\end{aligned}
$$
\]

.e. $\cos (-\mathbf{A})=\cos \mathbf{A}$.

Fig. XIV.
In a similar way it is proved that

$$
\begin{aligned}
& \sin (-\mathbf{A})= \\
& \tan (-\mathbf{A})=
\end{aligned}
$$

The student should also work out the ratio of $90+A, 180+A$, $270-A, \& c$.
29. By means of the last three sections the ratios of any angle can be expressed in terms of the ratios of an acute angle not greater than 45°. For example

$$
\begin{aligned}
\cos 139^{\circ} & =\cos \left(180^{\circ}-41^{\circ}\right)=-\cos 41^{\circ} \\
\cos 246^{\circ} & =\cos \left(-114^{\circ}\right) \\
& =\cos \left(114^{\circ}\right) \\
& =\cos \left(180^{\circ}-66^{\circ}\right) \\
& =-\cos 66^{\circ} \\
& =-\cos \left(90^{\circ}-24^{\circ}\right) \\
& =-\sin 24^{\circ} .
\end{aligned}
$$

It is usually easy to work directly from the figure; thus in Fig. $X V$, where $X O P=246^{\circ}$ and $X O Q=66^{\circ}$,

$$
\begin{aligned}
\cos 246^{\circ} & =\frac{(O N)}{O P} \\
& =-\frac{O K}{O Q} \\
& =-\cos 66^{\circ} \\
& =-\sin 24^{\circ} .
\end{aligned}
$$

Fig. XV.
30. Ratios of 0° and 90°.

If $X O P=O^{\prime}, I^{\prime}$ and N^{\prime} coincide ; so that $N^{\prime} P^{\prime}=0, O N^{\prime}=O P^{\prime}$.
Hence

$$
\begin{aligned}
& \sin 0^{\circ}=\frac{N P}{O P}=0, \\
& \cos 0^{\circ}=\frac{O N}{O P}=1 \\
& \tan 0^{\circ}=\frac{N P}{O N}=\frac{O}{O N}=0 .
\end{aligned}
$$

If $X O P=90$, then $I{ }^{\prime} \lambda^{\prime}$ falls along the y axis and λ^{\prime} coincides with the origin O. In this case $N P=O P$ and $O N=0$.

Hence $\quad \begin{aligned} & \sin 90^{\circ}=\begin{array}{l}\mathrm{NP} \\ \mathrm{OP}\end{array}=1, \\ & \cos 90^{\circ}=\frac{\mathrm{ON}}{\mathrm{OP}}=0, \\ & \tan 90^{\circ}=\frac{\mathrm{NP}}{\mathrm{ON}}=\frac{\mathrm{NP}}{\mathrm{O}}=\infty .^{*}\end{aligned}$

31. Ratios of $30^{\circ}, 45^{\circ}, 60^{\circ}$.

Make $\mathrm{X}^{2} O P$ equal to 30°, Fig. XVI.
Let fall $P N^{\prime}$ perpendicular to $O X$.
Make $X O Q$ equal to 30° in magnitude, and produce $P N^{\prime}$ to meet $O Q$ in Q.

Fig. XVI.

Then, by Prop. $8 c$, the triangles $P O N, Q O N$ are congruent. It follows that the triangle $O P Q$ is equilateral.

* The symbol x means 'infinity', i. ρ. a number greater than any number we can imagine.

Consider the value of $1 / x$ as x gets smaller and smaller.

$$
\frac{1}{1}=10, \frac{1}{001}=1000, \frac{1}{000001}=1000000
$$

As x diminishes, $1 x$ increases, and, by making x sufficiently small, we can make $1 / x$ exceed any assigned value however great. This is expressed thus: when $x=0,1 / x=\infty$. Or more generally, if a is a constant, then $a / x=\infty$ when $x=0$.

ELEMENTARY FORMULAE

Hence

$$
P N=\frac{1}{2} P Q \text { since } P N=Q N
$$

$$
=\frac{1}{2} O P \text { since } P Q=O P
$$

also

$$
O N^{2}=O P^{2}-P N^{2}=O P^{2}-\frac{1}{4} O P^{2}={ }_{4}^{3} O P^{2} .
$$

\therefore

$$
O N=\frac{\sqrt{ } \overline{3}}{2} O P
$$

Hence

$$
\begin{aligned}
& \sin 30^{\circ}=\frac{N P}{O P}=\frac{1}{2}=5, \\
& \cos 30^{\circ}=\frac{O N}{O P}=\sqrt{3}=2 \\
& \tan 30^{\circ}=\frac{N P}{O N}=\frac{1}{\sqrt{3}}=: 577,
\end{aligned}
$$

Similarly $\sin 60^{\circ}=\frac{\sqrt{3}}{2}=\cdot 866$,

$$
\begin{aligned}
& \cos 60^{\circ}=\frac{1}{2}=5 \\
& \tan 60^{\circ}=\sqrt{ } \overline{3}=1.732
\end{aligned}
$$

As an exercise the student should find the values of the ratios of 45°.

$$
\begin{aligned}
& \sin 45^{\circ}= \\
& \cos 45^{\circ}= \\
& \tan 45^{\circ}=
\end{aligned}
$$

Fig. XVII.
32. The very small angle.

In Fig. XVII let the circular measure of the angle $A O P$ be θ.

Then arc $A P=r \cdot \theta, N P=r \sin A, A T=r \tan \theta$.
Hence Area of triangle $A O P=\frac{1}{2} O A \cdot N P$

$$
\begin{equation*}
=\frac{1}{2} r^{2} \sin \theta ; \tag{Prop.16}
\end{equation*}
$$

Area of sector $A O P=\frac{1}{2} r^{2} \theta$;
Area of triangle $A O T=\frac{1}{2} O A \cdot A T$

$$
\begin{equation*}
=\frac{1}{2} r^{2} \tan \theta \tag{§7}
\end{equation*}
$$

(Prop. 16)
But, if $A O P$ is an acute angle,
Triangle $A O P<$ sector $A O P<$ Triangle $A O T$,
i e. $\frac{1}{2} r^{2} \sin \theta<\frac{1}{2} r^{2} \theta \quad<\frac{1}{2} r^{2} \tan \theta$,
i.e. $\sin \theta<\theta<\tan \theta$.

This relation is true for any acute angle; if we multiply throughout by r we have

$$
r \cdot \sin \theta<r \cdot \theta \quad<r \cdot \tan \theta
$$

i. e. $N P<\operatorname{arc} A P<A T$.

Fig. XVIII.

But, as the angle diminishes, these three lengths more and more nearly coincide ; and are practically indistinguishable when the angle is very small. This is shown in Fig. XVIII, which also shows that $O N$ is indistinguishable from $O A$.

Hence, when θ is very small, there is very slight error in saying $N P=\operatorname{arc} A P=A T$, and $O N=O A$.

Substituting the trigonometrical values for the lengths of these lines, we have

$$
\sin \theta=\theta=\tan \theta \text { and } \cos \theta=1
$$

when θ, the circular measure of the angle, is small.
This may also be expressed thus: The limit of $\frac{\sin \theta}{\theta}$ or of $\frac{\tan \theta}{\theta}$, when θ is zero, is 1 ; or in symbols

$$
\mathbf{L}_{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \text { an }{ }_{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=1 .^{*}
$$

33. Error involved. Whatever be the value of A, it has been shown that $\quad \cos ^{2} \theta+\sin ^{2} \theta=1$.

Using the above approximations, we have

$$
1+\theta^{2}=1
$$

This last statement is true only when θ^{2} is so small as to be negligible. Hence

If θ is so small that θ^{2} may be neglected, we may say that

$$
\sin \theta=\theta, \quad \cos \theta=1, \quad \tan \theta=\theta .
$$

It is shown in Higher Trigonometry that $\sin A=\theta$ gives correct results if $\frac{1}{6} 6^{3}$ is negligible.

Example. If accuracy is required to four तecimal places, find the sine of 1 degree.

$$
1^{\circ}=\frac{1}{180} \pi \text { radians }=.01745 \text { radian }
$$

$\cdot 01745^{2}=\cdot 000295$. (We are not, therefore, justified in saying $\cos 1^{\circ}=1$.)
$\cdot 01745^{3}=\cdot 000005$. (This does not affect the first four places so we may use the approximation $\sin \theta=\theta$.)
Hence $\sin 1^{\circ}={ }^{\circ} 0175$, correct to four decimal places.

Examples III b.

1. Write down the sine, cosine, and tangent of
(i) $150^{\circ}, 240^{\circ}, 330^{\circ}, 840^{\circ}$;
(ii) $60^{\circ}, 300,135^{\circ}, 225^{\circ}$;
(iii) $1 \approx 0^{\circ}, 270^{\circ}, 405^{\circ}, 210^{\circ}$.
2. Find the secant and cosecant of $60^{\circ}, 45^{\circ}, 120^{\circ}, 225^{\circ}$.
3. Use the definitions of $\$ 14$ to find the ratios of $180-\lambda$.

[^7]4. Correct, if necessary, the following statements :
\[

$$
\begin{aligned}
\sin (180-A) & =\cos A ; \cos (270+A)=-\cos A ; \\
\tan (180+A) & =\tan A ; \sec (90-A)=\sec A ; \\
& \cot (90+A)=\cot A .
\end{aligned}
$$
\]

5. In a right-angled triangle the hypotenuse is 5 feet long and one of the angles is 60°; find the lengths of the other two sides.
6. A ladder 25 feet long is leaning against a wall and is inclined 45° to the horizontal ; how far up the wall does it reach?
7. Find $\sin 1^{\prime}$, correct to 3 significant figures.
8. Find $\sin 10^{\prime}, \cos 10^{\prime}, \tan 10^{\prime}$ correct to 5 decimal places.
9. What angle does a halfpenny (diameter 1 inch) subtend at the eye when at a distance of 10 feet?
10. A post 25 feet high subtends an angle of 30^{\prime} at a certain point on the ground. How far from the post is the point?
11. Find approximately the distance of a tower which is 51 feet high and subtends at the eye an angle $5 \frac{3^{1}}{}{ }^{\prime}$.
12. Prove that

$$
\tan ^{2} 60^{\circ}-2 \tan ^{2} 45^{\circ}=\cot ^{2} 30^{\circ}-2 \sin ^{2} 30^{\circ}-\frac{3}{4} \operatorname{cosec}^{2} 45^{\circ}
$$

13. Find approximately the number of minutes denoting the inclination to the horizon of an incline which rises $5 \frac{1}{2}$ feet in 420 yards.
14. In any triangle show that

$$
\cos (A+B)=-\cos C, \sin (B+C)=\sin A, \tan (B+C)=-\tan A .
$$

Write down the other similar relations.

Oral Examples.

Fill in the right-hand sides of the following equalities:

1. (i) $\sin ^{2} \theta=$
(ii) $\sin 45^{\circ}=$
(iii) $\cos 135^{\circ}=$
(iv) $\tan \frac{1}{4} \pi=$
(v) $\sin A \cot A$
2. (i) $\cos ^{2} 60^{\circ}+\sin ^{2} 60^{\circ}=$
(ii) $\operatorname{cosec}^{2} C=$
(iii) $\cot \frac{1}{5} \pi=$
(iv) $\cos (180-A)=$
(v) $\cot ^{2} \theta=$
3. (i) $\sec ^{2} A-\tan ^{2} A=$
(ii) $\cos 60^{\circ}=$
(iii) $\tan \theta=$
(iv) $\sin (180-A)=$
(v) $\sec (90-B)=$
4. (i) $\cos \theta \tan \theta=$
(ii) $1-\sin ^{2} x=$
(iii) $\tan 210^{\circ}=$
(iv) $\cos ^{-1} \frac{1}{2}=$
(v) $\cos ^{2} \frac{1}{4} \pi+\sin ^{2} \frac{1}{4} \pi=$
5. (i) $1+\cot ^{2} A=$
(ii) $\sin \theta \cot \theta=$
(iii) $\sin (180+A)=$
(iv) $\cos ^{2} 63^{\circ}+\sin ^{2} 63=$
(v) $\tan 330^{\circ}=$
6. (i) $\tan \frac{1}{4} \pi=$
(ii) $\sec 60^{\circ}=$
(iii) $\sin ^{2} \frac{1}{2} A+\cos ^{2} \frac{1}{2} A=$
(iv) $\tan \left(\frac{3}{2} \pi+\theta\right)=$
(v) $\tan 135^{\circ}=$
7. (i) $\tan 150^{\circ}=$
(ii) $\cos \theta / \sin \theta=$
(iii) $\cos 90^{\circ}=$
(iv) $\sec 240^{\circ}=$
(v) $\cot (180-A)=$
8. (i) $\tan 1200^{\circ}=$
(ii) $\tan \left(180^{\circ}+A\right)=$
(iii) $\tan \frac{1}{2} \pi=$
(iv) $\tan 15^{\circ} \cot 15^{\circ}=$
(v) $\tan ^{-1}(-1)=$
9. (i) $\cos ^{-1} \frac{\sqrt{2}}{2}=$
(ii) $\cos 225^{\circ}=$
(iii) $\cos (90+A)=$
(iv) $\cos (-\theta)=$
(v) $\cos (180-B)=$
10. (i) $\sin (360-A)=$
(ii) $\sin ^{-1} 2=$
(iii) $\sec ^{2} \frac{1}{5} \pi-\tan ^{2} \frac{1}{5} \pi=$
(iv) $\cos 0^{\circ}=$
(v) $\operatorname{cosec} 120^{\circ}=$
11. (i) $\sec 150^{\circ}=$
(ii) $\cos \left(360^{\circ}-A\right)=$
(iii) $\cos ^{-1} \sqrt{3}=$
(iv) $\sin 77^{\circ} \cot 77^{\circ}=$
(v) $\tan \frac{7}{4} \pi=$
12. (i) $\cos ^{2} 23^{\circ}+\cos ^{2} 67^{\circ}=$
(ii) $\cos \left(270^{\circ}+B\right)=$
(iii) $\sin ^{-1} 4+\cos ^{-1} 4=$
(iv) $\sin (-\phi)=$
(v) $\sin 225^{\circ}=$

Examples III.

1. Prove, from first principles, that $\sin (90+A)=\cos A$, $\cos (180+A)=-\cos A, \tan (360-A)=-\tan A$.
2. Show that $\sin (180-A)=\sin A$, when A is (i) obtuse, (ii) between 180° and 270°, (iii) between 270° and 360°.
3. Show that $\cos (90-A)=\sin A$, when A is (i) obtuse, (ii) between 180° and 270°, (iii) between 270° and 360°.
4. Show that $\tan (180+A)=\tan A$, when A is (i) obtuse, (ii) between 180° and 270°, (iii) between 270°, and 360°.
5. Give 6 different solutions of each of the following equations:
(i) $\sin A=\frac{1}{2}$;
(ii) $\sin A=\frac{\sqrt{2}}{2}$;
(iii) $\cos \theta=\frac{\sqrt{3}}{2}$;
(iv) $\tan A=1$;
(v) $\cos A=-\frac{1}{2}$;
(vi) $\sin \theta=-\frac{\sqrt{3}}{2}$.
6. Show that all angles having the stme sine as A are included in one or other of the forms: $180 n+\Lambda$, if n is an even integer,
$180 n-A$, if n is an odd integer ; and that these are included in the single form $180 n+(-1)^{n} A$ where n is any integer, positive or negative.
7. Show that all angles having the same cosine as A are included in the form $360 n \pm A$, where n is any integer.
8. Show that all angles having the same tangent as A are included in the form $180 n \pm A$, where n is any integer.
9. What do the forms of the three previous examples become when the angle is measured in radians?
10. If a small angle equals A°, what is the value of $\sin A$?
11. Show that using the approximation $\sin \theta=\theta$ is equivalent to regarding a circle as a polygon with a large number of sides.
12. What do the following equalities become when the angle θ is so small that θ^{2} is negligible ?
(i) $\sin 2 \theta=2 \sin \theta \cos \theta$;
(ii) $\cos 2 \theta=1-2 \sin ^{2} \theta$;
(iii) $\sin (\theta+\dot{\phi})=\sin \theta \cos \phi+\cos \theta \sin \phi$;
(iv) $C=G \tan \theta$;
(v) $r^{2}=4 g r \sin ^{2} \frac{1}{2} \theta$.
13. Two strings are tied to two pegs A and B in the same horizontal line, and knotted together at C; when the strings are pulled tight, it is found that $A C$ is 18 inches long and that the angles $C A B, C B A$ are 30° and 60° respectively; how far apart are the pegs and how far is C from $A B$?
14. An inclined plane, length 4 feet, is inclined at 30° to the horizontal, what is the length of the base?
15. A pendulum is held so as to make an angle of 30° with the vertical, what is then the distance of the end of the pendulum from the vertical line through point of support?
16. Prove the following identities:
(i) $\cot ^{2} A \cos ^{2} A=\cot ^{2} A-\cos ^{2} A$;
(ii) $\sec ^{2} A-\sin ^{2} A=\tan ^{2} A+\cos ^{2} A$;
(iii) $\sin \theta(\operatorname{cosec} \theta-\sin \theta)=\cos ^{2} \theta$;
(iv) $(\cos A+\operatorname{cosec} A)(\sin A+\sec A)$

$$
=2+\sin A \cos A+\sec A \operatorname{cosec} A:
$$

(v) $(\cos A+\sec A)(\sin A+\operatorname{cosec} A)$

$$
=\sin A \cos A+2 \sec A \operatorname{cosec} A \text { : }
$$

(vi) $\sec A-\sin A \tan A=\cos A$;
(vii) $(\sec A-\operatorname{cosec} A)(\sin A+\cos A)+\sec ^{2} A \cot A=2 \tan A$.
17. (i) If θ and ϕ differ by $\frac{1}{2} \pi$, prove that $\tan \theta \tan \phi=-1$;
(ii) Show that the lines whose equations are, respectively, $y=m x$ and $y=m^{\prime} x$, are at right angles if $m m^{\prime}=-1$;
(iii) Show that the graphs of the equations $a x+b y+c=0$, $a^{\prime} x+b^{\prime} y+c^{\prime}=0$ are at right angles if $a a^{\prime}+b b^{\prime}=0$, and are parallel if $a / a^{\prime}=b / b^{\prime}$.
18. If $\tan \theta=b / a$, find the value of $a \cos \theta+b \sin \theta$.
19. If $\tan ^{3} \theta=b / a$, show that $a / \cos \theta+b / \sin \theta=\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}}$.
20. Give a general formula for all values of A which satisfy the equation $\cos A=-1$.
21. If $a \sin ^{2} \theta+b \cos ^{2} \theta=c$ and $a \cos ^{2} \theta+b \sin ^{2} \theta=d$, prove that $a+b=c+d$.
22. From the vertex C of an equilateral triangle $A B C$ a perpendicular $C D$ is let fall on $A B ; D C$ is produced to E so that $C E$ equals $C A$, and $A E$ is drawn. From the resulting figure find the sine, cosine, and tangent of 15° and 75°.
23. A is an angle between 180° and 270°, also $\cos A=-\frac{3}{3}$; find the value of $\operatorname{cosec} A+\tan A$.
24. Define the cosine of an angle of any magnitude and express the cosine of an angle between 180° and 270° in terms of each of the other trigonometrical ratios.

If $\cos \theta=-\frac{63}{65}$, find $\sin \theta, \sec \theta, \cot \theta$, and explain any double signs which occur in your answer.
25. Prove the following identities:
(i) $(\sin A \cos B+\cos A \sin B)^{2}+(\cos A \cos B-\sin A \sin B)^{2}=1$;
(ii) $\sin ^{6} \theta+\cos ^{6} \theta=1-3 \sin ^{2} \theta \cos ^{2} \theta$;
(iii) $\cot A-\tan A=\sec A \operatorname{cosec} A\left(1-2 \sin ^{2} A\right)$;
(iv) $(1-\sin A-\cos A)^{2}=2(1-\sin A)(1-\cos A)$;
(v) $(2 \cos A-\sec A) \div(\cos A-\sin A)=1+\tan A$.
(vi) $\left(3 \sin \theta \cos ^{2} \theta-\sin ^{3} \theta\right)^{2}+\left(\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta\right)^{2}=1$;
(vii) $\sec ^{6} \theta-\tan ^{6} \theta=1+3 \tan ^{2} \theta \sec ^{2} \theta$;
(viii) versin $\left(270^{\circ}+A\right)$. versin $\left(270^{\circ}-A\right)=\cos ^{2} A$.
26. Prove that

$$
\cos \left(180^{\circ}-A\right)=-\cos A, \text { and } \cos \left(90^{\circ}+A\right)=-\sin A
$$

For what values of A is $\tan A=\sqrt{3}$ and $\sec A=-2$?
27. Solve for x the equations :
(i) $x^{2}+2 x \sec \alpha+1=0$;
(ii) $x^{2}+2 x \cos \left(x=\sin ^{2}{ }^{\prime \prime}\right.$;
(iii) $x^{2}+(\tan \alpha+\cot \alpha) x+1=0$.
28. Prove that the number of seconds in an angle whose circular measure is unity is 206,265 .

The moon subtends at the eje of an observer an angle of 30^{\prime}, its distance is 240,000 miles, find its radius.
29. If $\tan ^{2} \theta=\frac{5}{1}$, find versin θ, and explain the double result.
30. Eliminate θ from
(i) $a^{\prime} \tan \theta+b \cot \theta=c, a^{\prime} \tan \theta+b^{\prime} \cot \theta=c^{\prime}$;
(ii) $a \tan \theta+b \sin \theta=c, a^{\prime} \tan \theta+b^{\prime} \sin \theta=c^{\prime}$.

Revision Examples A.

i. Define the tangent of an angle. From your definition find $\tan 45^{\circ}$ and $\tan 135^{\circ}$, and prove that $\tan \left(\frac{1}{2} \pi-\theta\right)=\cot \theta$.
2. A surveyor goes 10 chains in a direction $35^{\circ} \mathrm{S}$. of E., then $7 \cdot 8$ chains 14° E. of S. ; then 56 chains 10° N. of W. Find by drawing how far he is now from his starting-point.
3. Prove the relation $1-\sin ^{2} A=\cos ^{2} A$ for the case where A lies between 90° and 180°.

Show that $(\sin A+\cos A)^{4}=1+4 \sin A \cos A+4 \sin ^{2} A-4 \sin ^{4} A$.
4. The gradient of a railway is 1 in 270 ; find the inclination to the horizontal to the nearest second.
5. When the sun's altitude is 60°, find the length of the shadow cast by a vertical rod whose length is 10 feet.
6. Draw the graph of $\cos x$ between $x=15$ and $x=135$ without using tables.
7. Explain how to find the length of the arc of a circle of given radius, when the angle subtended at the centre is given in degrees.

A wheel, radius $4 \frac{1}{2}$ feet, rolls along the ground ; what horizontal distance does the centre travel when the wheel turns through 157? ?
8. Why is the secant so called? Prove that the secant is the reciprocal of the cosine.

Given $\sec A=2 \frac{1}{2}$, find $\tan A$ and $\sin A$.
9. Show that the graph of the straight line $y=2 x-5$ is inclined to the axis of x at an angle $\tan ^{-1} 2$. Verify this by a careful drawing.
10. Trace the changes in $\sin \theta$ as θ changes from 0° to 360° and exhibit these changes by means of a graph.
11. Find the smallest angle which satisfies the equation

$$
3 \cos \theta+2 \sin ^{2} \theta=0
$$

Give also four other solutions.
12. If $\sin A=\frac{3}{5}$, prove that $\sec A+1 / \cot A=2$.
13. What is a radian ? Prove the formula

$$
\operatorname{arc}=r \times \theta .
$$

Show that if θ is small, $\sin \theta=\theta$ approximately.
14. Show that $\tan (180 n+A)=\tan A$ where n is any integer.

If $\tan 3 A=\sqrt{3}$, state three possible values for A that do not differ by 360°.
15. Find the value of the expression $\operatorname{cosec} A-\frac{5}{6} \cot A$, if $\sin A=\frac{63}{65}$ (i) when A is acute, (ii) when A is obtuse.
16. Prove the identity $2 \sin A \cos A=(2 \tan A) \div\left(1+\tan ^{2} A\right)$.
17. In a triangle $A B C, C=90^{\circ}, A B=15, \sin A=37$; find the length of $A C$ and $B C$.
18. Criticize the following statements:
(a) $\sin ^{2} \theta=4$;
(b) $\sin \theta \tan \theta=1$;
(c) $\sin ^{-1}(-3)=170^{\circ}$;
(d) $\sin \theta+\cos ^{2} \theta / \sin \theta=\tan \theta$.
19. Explain clearly what is meant by latitude.

A place has latitude $30^{\circ} \mathrm{N}$., what is its distance from (i) the earth's axis, (ii) the Equator, measured along the surface? (Radius of earth $=4000$ miles.)
20. Give a definition of cosine that applies to angles of any size. Prove that $\cos (180-A)=-\cos A$.

If $\sin A=\frac{1}{1} \frac{2}{3}$ and A is obtuse, find $\cos A$.
21. Prove that
$(\cos A \cos B+\sin A \sin B)^{2}+(\sin A \cos B-\cos A \sin B)^{2}=1$.
22. Draw the graph of $y=\sec x$ from $x=0^{\circ}$ to $x=180^{\circ}$.
23. What is meant by the statement that $\tan 90^{\circ}=\infty$?

Is sec 90° equal to tan 90° ? Give reasons.
24. Construct an angle A such that $\cos A=-\frac{2}{3}$ and $\tan A$ is positive.
25. Nime the points of the compass between West and South.

How many degrees are there in the angle between SW. by S. and S. by E. ?
26. Find the values of $\sin 45^{\circ}, \operatorname{ccs}^{-1} \frac{1}{2}, \tan \frac{1}{4} \pi$.
27. Prove by means of a figure that

$$
\sin ^{2} A+\tan ^{2} A=\sec ^{2} A-\cos ^{2} A
$$

Is this true when the angle is measured in radians? Give reasons.
28. Construct an angle such that its tangent $=\frac{\dot{s}}{4}$ and its versine is greater than unity.
29. Prove the identity $\cos ^{2} A-\sin ^{2} A=\left(\cot ^{2} A-1\right) \div \operatorname{cosec}^{2} A$.
30. Find the value of $\tan \theta$ from the equation

$$
3 \tan ^{2} \theta=2 \sqrt{3} \tan \theta-1
$$

Hence find three different values of θ that satisfy the equation.
31. Write down six positive angles which have the same cosine as the angle α; and find the positive values of θ less than two right angles which satisfy the equation

$$
\sin 4 \theta=\cos 5 \theta .
$$

32. Show how to find by calculation the value of $\sin 30^{\circ}$ correct to four decimal places.

Verify, by substitution,
(i) $\sin 60^{\circ}=2 \sin 30^{\circ} \cos 30^{\circ}$;
(ii) $\sin 120^{\circ}-\sin 60^{\circ}=2 \cos 90^{\circ} \sin 30^{\circ}$;
(iii) $\cos 60^{\circ}-\cos 120^{\circ}=2 \sin 30^{\circ} \sin 90^{\circ}$.
33. Prove the identities:
(i) $\operatorname{cosec}^{2} A-\operatorname{cotan}^{2} A=1$;
(ii) $\frac{5+13 \sin \theta}{12+13 \cos \theta}+\frac{12-13 \cos \theta}{5-13 \sin \theta}=0$.
34. A steamer travels along the equator from longitude $37{ }^{1} \mathrm{~W}$. to longitude $5^{\prime} 30^{\prime}$ E. in 4 days. What is the distance travelled in nautical miles? What was her average rate in knots?
35. What is meant by the chord of an angle?

For which angle is the chord equal to unity?
Explain how to draw an angle when a table of chords is given.
36. Express the following ratios as ratios of angles not greater than 45° :
$\sin 172^{\circ}, \cos 412^{\circ}, \tan 246^{\circ}, \sec 76^{\circ}, \operatorname{cosec} 147^{\circ}, \sec 236^{\circ}$, $\cot 138^{\circ}, \operatorname{cosine} 150^{\circ}, \sin 67^{\circ}, \tan 102^{\circ}$.
37. If the circumferenses of the quadrants of two circles be divided similarly to the right angles they subtend, what would be the radius of a circle divided according to the French scale, in which the length of the are of one grade would be equal to the length of the are of one degree on a circle whose radius was 18 feet?
38. Point out which of the trigonometrical functions are never numerically less than unity, and which may be either less or greater than unity.

Express the numerical values of $\sin 135^{\circ}$ and $\tan 150^{\circ}$ with their proper signs.
39. If n be a positive whole number, show that the angles

$$
\left(2 n \cdot 180^{\circ}+A\right) \text { and }\left\{(2 n+1) 180^{\circ}-A\right\}
$$

have the same sine as A.
Express these in a single formula.
40. Distinguish carefully between $(\sin A)^{-1}$ and $\sin ^{-1} A$.

Show that $\cos ^{-1} \frac{1}{2}+2 \sin ^{-1} \frac{1}{2}=120^{\circ}$.
41. Trace the changes in sign and magnitude of the expression $\cos x-\sin x$ as x increases from 0 to 2π. Illustrate your answer by a graph.
42. A church spire, whose height is known to be 45 feet, subtends an angle of 9^{\prime} at the eye; find its distance approximately.
43. What is meant by $\tan ^{-1} m$?

If $y=m x+c$ represents a straight line, state the geometrical interpretation of the coefficients m and c ?

What is the angle between the lines whose equations are

$$
y=x-4, y=\sqrt{3} x+2 ?
$$

44. Show that the equation of the line joining the points

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \text { is }\left(y-y_{1}\right) \div\left(y_{1}-y_{2}\right)=\left(x-x_{1}\right) \div\left(x_{1}-x_{2}\right) .
$$

45. Find the equation of a line passing through the origin and (i) parallel to, (ii) perpendicular to, the line whose equation is $y=m x+c$.

Deduce the conditions that the two lines whose equations are $a x+b y+c=0, a^{\prime} x+b^{\prime} y+c^{\prime}=0$, should be (i) parallel, (ii) perpendicular.
46. Find the equation of the line joining the origin to the point P^{\prime} whose co-ordinates are (x^{\prime}, y^{\prime}).

Find the equation of the line perpendicular to $O P$ and passing through P.

Hence show that the equation of the tangent to a circle at the point x^{\prime}, y^{\prime} is $x x^{\prime}+y y^{\prime}=r^{2}$, the equation of the circle being $x^{2}+y^{2}=r^{2}$.
47. If (r, θ) are the polar co-ordinates of a point, what locus is represented by
(i) $r=3$, (ii) $\theta=\frac{1}{6} \pi$, (iii) $r \cos \theta=5$, (iv) $r=5 \cos 6$?
48. If (x, y) are the Cartesian co-ordinates, $(r ; \theta)$ the polar co-ordinates, of the same point, what relations connect them?

Express the equations of the previous example in Cartesian co-ordinates.

Express (i) $x^{2}+y^{2}-4 x+5 y=7$, (ii) $3 x+4 y=5$ in polar coordinates.
49. The sum of two angles is 3 radians, their difference is 10 degrees. Find each angle in degrees, assuming that $43 \pi=135$.
50. A ring, 10 inches in diameter, is suspended from a point one foot above its centre by six equal strings attached to its circumference at equal intervals. Find the angle between two consecutive strings.

CHAPTER IV

USE OF TABLES

34. It has been shown in the previous chapters that the trigonometrical ratios of any angle may be found roughly by drawing to scale or by means of graphs. By methods which are explained in more advanced books on Trigonometry, the ratios can be calculated to any required degree of accuracy. There are many collections of tables published, containing not only the actual trigonometrical ratios (the natural functions as they are called) but also the logarithms of these ratios. These collections differ slightly in their arrangement, but the following general remarks apply to most of them.
35. Since any ratio of any angle is equal in magnitude to the same ratio of some angle less than 90°, it is necessary to tabulate the ratios only for angles between 0° and 90°. Thus

$$
\begin{aligned}
& \sin 156^{\circ}=\sin \left(180^{\circ}-24^{\circ}\right)=\sin 24^{\circ} \\
& \cos 215^{\circ}=\cos \left(180^{\circ}+35^{\circ}\right)=-\cos 35^{\circ}
\end{aligned}
$$

But the tables may be made even shorter, for any function of an angle between 45° and 90° is equal to the complementary function of an angle less than 45°. Thus

$$
\begin{aligned}
& \sin 76^{\circ}=\sin \left(90^{\circ}-14^{\circ}\right)=\cos 14^{\circ}, \\
& \tan 69^{\circ}=\tan \left(90^{\circ}-21^{\circ}\right)=\cot 21^{\circ} .
\end{aligned}
$$

This fact is used in two different ways. Some tables give all the ratios for angles from 0° to 45°; so that if, for instance, $\sin 72^{\circ}$ is required, it must be looked up as $\cos 18^{\circ}$. Other tables give the values of sine, tangent, and secant for angles from 0° to 90°; in this case, cosine, cotangent, and cosecant must be looked for as the sine, tangent, and secant respectively of the complementary angle.

The slight mental work involved is avoided by giving each column a "footing" as well as a heading. Thus "26892 is, in some tables, found on a page headed Natural Sines, on a level with 15° in the extreme left-hand column and under 36^{\prime}, i. e. $\cdot 26892=\sin 15^{\circ} 36^{\prime}$.

But the same page has Natural Cosines at the bottom, "26892 is on same level as 74° in the extreme right-band column and above 24^{\prime}, i.e. ${ }^{\circ} 26892=\cos 74^{\circ} 24^{\prime}$.

A few minutes' inspection will make the arrangement of any set of tables quite clear.
36. Logarithmic Functions. Since the sine and cosine cannot be greater than unity, their logarithms cannot be greater than zero; hence these logarithms have a negative characteristic. In order to avoid difficulties of printing it has been the custom to add 10 to all these logarithms, and to the other logarithmic functions. The values thus tabulated are called Tabular Logarithms and are denoted in writing by L , thus $\mathrm{L} \tan 75^{\circ}=\log \tan 75^{\circ}+10$.

Some of the modern tables give the ordinary logarithms with the negative characteristics.

When tabular logarithms are used it is advisable to subtract 10 mentally and to work with the correct logarithm.
37. Interpolation. It is impossible to give the ratios for all angles. Four-figure tables usually give values for every 6^{\prime}, sevenfigure tables for every 1^{\prime}. Intermediate values may, in some tables, be found from side columns giving the differences, as in the case of ordinary logarithms. If these side columns are not given, the method of proportional parts* must be used. This method is equivalent to assuming that the graph of the tabulated function may be treated as a straight line for portions lying between the points corresponding to two consecutive tabulated values. The practical use is easily followed from an example or two.

Example i. Given that

$$
\sin 28^{\circ} 9^{\prime}={ }^{\circ} 4717815, \text { and } \sin 28^{\circ} 10^{\prime}=4720350,
$$ find $\sin 28^{\circ} 9^{\prime} 43^{\prime \prime}$.

$$
\begin{aligned}
\sin 28^{\circ} 10^{\prime} & =\cdot 4720380, & & 000004275 \times 43 . \\
\sin 28^{\circ} 9^{\prime} & =4717815 . & & 00017100 \\
\text { Increase for } 60^{\prime \prime} & =0002565 ; & & 1282 \\
\therefore \quad \text { Increase for } 43^{\prime \prime} & =\frac{13}{\circ} \times \circ 0002565 & & 00018382^{-} \\
& & ={ }^{\circ} 0001838 ; &
\end{aligned}
$$

[^8]In practice the zeros are omitted as in the following example.
Example ii. Giren that loy $\cos 73^{\circ} 15^{\prime}=\overline{1} \cdot 4058617$, and $\log \cos 73^{\circ} 16^{\prime}=\overline{1} \cdot 4053816$, find the angle when the log cosine is 1.4056348.

Denote the angle by $73^{\circ} 15^{\prime} x^{\prime \prime}$.
$\cdot \log \cos 73^{\circ} 15^{\prime}=1 \cdot 4058617 . \quad \log \cos 73^{\circ} 15^{\prime}=1 \cdot 4058617$.
$\log \cos 73^{\circ} 15^{\prime} x^{\prime \prime}=\overline{1} \cdot 4056348$. $\quad \log \cos 73^{\circ} 16^{\prime}=\overline{1} \cdot 4053816$.
Decrease for $x^{\prime \prime}=$ 2269. Decrease for $60^{\prime \prime}=4801$.
$\left.\begin{array}{rlr}\text { Hence } & \frac{x}{60} & =\frac{2269}{4801} .\end{array} \begin{array}{rl}2269 \\ \therefore & x\end{array}=28 . ~ 4801\right) \overline{136140}$
4012
171
\therefore required angle $=73^{\circ} 15^{\prime} 28^{\prime \prime}$ to the nearest second.
Note. It is important to recollect that cosine, cotangent, cosecant, and their logarithms decrease as the angle increases ; conssquently proportional differences must be subtracted, not added.

If the graphs of the functions are carefully drawn, it is seen that in some parts they approach much more nearly to straight lines than in others. It follows that the method of proportional parts is more accurate for some angles than for others. For a complete discussion of Proportional parts see Nixon's Elementary Plane Triyonometry (Clarendon Press) or any advanced textbook.

Examples IV a.

Find, from tables, the natural function of the following angles, find the logarithm of the number found, and then look up the lograthmic function in the tables. There may be a slight discrepancy in the fourth decimal place.

1. $\sin 17^{\circ} 15^{\prime}$.	2. $\cos 73^{\circ} 47^{\prime}$.	3. $\tan 16^{\circ} 39^{\prime}$.
4. $\cos 23^{\circ} 19^{\prime}$.	5. $\sec 67^{\circ} 15^{\prime}$.	6. $\operatorname{cotan} 44^{\circ} 5^{\prime}$.
7. $\tan 78^{\circ} 53^{\prime}$.	8. $\sin 83^{\circ} 43^{\prime}$.	9. $\cos 63^{\circ} 28^{\prime}$.
10. $\sin 156^{\circ} 17^{\prime}$.	11. $\tan 176^{\circ} 16^{\prime}$.	12. $\cot 100^{\circ} 10^{\prime}$.
13. $\cos 137^{\circ} 42^{\prime}$.	${\text { 14. } \sin 126^{\circ} 37^{\prime} .}_{\text {15. } \tan 173^{\circ} 14^{\prime} .}$	

Explain carefully the difficulty that arises in comexion with some of the angles.
16. Find the Cartesian co-ordinates of a point whose polar coordinates are (i) $17,16^{\circ}$; (ii) $25,114^{\circ}$; (iii) $49,227^{\circ}$.

Find the angles less than 180° which are determined by the following data:

17. $r \sin \theta=873$.	18. $\cos A=-3469$.
19. $\sin B=9340$.	
21. $\mathrm{L} \cos A=9 . \log \tan A=\overline{1} \cdot 7932$.	
23. $\log \sin A$	$=\overline{1} \cdot 3465$.

25. $\mathrm{L} \cot C=10 \cdot 7386$.

Find the sine, cosine, and tangent of the following angles, which are measured in radians:
26. $\frac{1}{12} \pi$. $27 . \frac{1}{13} \pi . \quad 23.122 . \quad$ 29. $\frac{15}{15} \pi$.
30. Verify that

$$
\sin 112^{\circ}=\sin 70^{\circ} \cos 42^{\prime}+\cos 70^{\circ} \sin 42^{\prime}
$$

31. Find from the tables the values of

$$
\sin \frac{1}{15} \pi \text { and } \sin 27^{\circ} 18^{\prime} / \cos 32^{\circ} 45^{\prime} .
$$

32. Employ the tables to verify the formula

$$
\cot 24^{\circ} 45^{\prime}-\cot 49^{\circ} 30^{\prime}=\operatorname{cosec} 49^{\circ} 30^{\prime}
$$

33. Find the values of $\cos 110^{\circ}, \cot 160^{\circ}, \sin 250^{\circ}$.

A quantity μ is such that $\mu=\sin i / \sin r$; complete the following tables:

	i	r	μ
34.	16°	12°	
35.	$26^{\circ} 1 \aleph^{\prime}$		$1 \div 427$.
36.		$31^{\circ} 52^{\prime}$	1.467.
37.		$53^{\circ} 49^{\prime}$	1.5.

33. Find the polar co-ordinates of points whose Cartesian coordinates are (i) $(3,7)$; (ii) $(-3,7)$; (iii) $(-3,-7)$; (iv) $(3,-7)$.
34. The angle of friction ϵ and the coefficient of friction μ are connected by the relation $\mu=\tan \epsilon$. Determine the missing quantity in the following cases:

ϵ	$40^{\circ} 15^{\prime}$		$17^{\circ} 39^{\prime}$	$47^{\circ} 8^{\prime}$	
μ	67				

40. In a circle of radius 17 find the lengths of chords subtending angles (i) 37°, (ii) 73°, (iii) 143° at the centre. What are the areas of the corresponding segments?

38.

Graphs.

Example. Draw the groph of

$$
3 \sin \left(x+30^{\circ}\right)-2 \cos \left(x-30^{\circ}\right) \text { from } x=0^{\circ} \text { to } x=120^{\circ} .
$$

In other words, draw the graph of

$$
y=3 \sin \left(x+30^{\circ}\right)-2 \cos \left(x-30^{\circ}\right)
$$

x	0	15°	30°	45°	60°	75°	90°	105°	120
$\sin \left(x+30^{\circ}\right)$.	-500	$\cdot 707$	-866	$\cdot 966$	1.000	$\cdot 966$	- 866	707	-50
$\cos \left(x-30^{\circ}\right)$	- 866	-966	1.000	$\cdot 966$	-666	$\cdot 707$	- 00	-299	0.000
$3 \sin \left(x+30^{\circ}\right)$	1־500	$2 \cdot 121$	2.598		$3 \cdot 000$	2-898	2.598	$2 \cdot 121$	$1 \cdot 500$
$2 \cos \left(x-30^{\circ}\right)$	$1 \cdot 732$	1.932	$2 \cdot 000$		1732	$1 \cdot 414$	1.000	${ }^{5} 18$	$\cdot 000$
y	--232	- 189	598	-966	1-268	$1 \cdot 184$	1.598	$1 \cdot 603$	1.500

The graph is shown in Fig. XIX.

Use of Graph.

Interpolation. The value of the function can be found for any intermediate value of the angle. From the graph it is seen that $y=1^{\circ} 07$ when $x=50^{\circ}$, and $y=1.54$ when $x=81^{\circ}$. Calculation shows that the correct values are $1^{\circ} 075$ and $1^{\circ} 542$ respectively.

This is a useful method of testing the accuracy of a graph.
Maximum and Minimum. When, as x increases, y continually increases to a certain value and then decreases, that value is said to be a maximum ; similarly, when y first decreases and then increases there is a minimum value. These maximum and minimum values are clearly shown on the graphs; the corresponding points are called turning-points.

From the graph the maximum value of

$$
3 \sin \left(x+30^{\circ}\right)-2 \cos \left(x-30^{\circ}\right)
$$

is found to be $1 \cdot 62$, and the corresponding angle is 99°.

Rate of change of the function. The graph shows that, when x changes from 15° to 30°, the increase in y is more than when x changes from 60° to 75°; consequently the curve is steeper between 15° and 30° than between 60° and 75°. Thus the rate at which y changes compared with x is shown by the steepness of the curve.

Join two points P and Q on the graph, and draw $P K, Q K$ parallel to the axes to meet in K. Then
$\frac{\text { increase in } y}{\text { increase in } x}=\frac{K P}{Q K}=$ tangent of the angle $P Q K$
$=$ tangent of the angle $P Q$ makes with the axis of x.
This is called the slope of the line $P Q$.
When Q approaches indefinitely near to P, the chord $P Q$ becomes a tangent. Hence

The rate of increase of y at the point P is measured by the slope of the tangent at the point P.

Notice that the slope diminishes in the neighbourhood of a turning-point and is zero at the turning-point itself.
39. Solution of equations. By finding where two graphs intersect or where one graph intersects the axis of x or a line parallel to the axis, equations can be solved just as in Algebra.

Example. Solve the equation

$$
3 \sin \left(x+30^{\circ}\right)-2 \cos \left(x-30^{\circ}\right)=1^{\circ} 5
$$

It is seen in Fig. XIX that the graph cuts the line whose equation is $y=1.5$ where $x=77^{\circ}$ and $x=120^{\circ}$. These are, therefore, the solutions within the range of the graph.

Examples IV b.

(The graphs should be verified in the way that the example of $\S 38$ is verificd.)
Draw the graphs and find the turning-points of :

1. $\sin \frac{1}{2} x$ from $x=0^{\circ}$ to $x=90^{\circ}$.
2. $\cos { }_{2}^{1} x$ from $x=-90^{\circ}$ to $x=90^{\circ}$.
3. $\sin \frac{1}{2} x+\cos \frac{1}{2} x$ from $x=15^{\circ}$ to $x=135^{\circ}$.
4. $\frac{1}{2} \tan \left(x-60^{\circ}\right)$ from $x=0$ to $x=90^{\circ}$.
5. $\theta-\sin \theta$ from $\theta=0$ to $\theta=\frac{1}{2} \pi$.
6. $\sec x-\tan x$ from 0° to 90°.
7. $\cos ^{2} \frac{1}{2} x+\sin ^{2} \frac{1}{2} x$ from 0 to 360
8. Draw the graph of $\sin x+\cos x$ between $x=0$ and $x=360^{\circ}$. Solve $\sin x+\cos x=89$, and find the slope of the graph at the points corresponding to these values of r.
9. Draw the graph of $\cos x$ between the values of 0 and 2π for x. Show that an acute angle can be found to satisfy the equation $x=\cos x$.
10. Draw the graphs from $x=-1$ to $x=+1$ of (i) $\sin ^{-1} x$, (ii) $\cos ^{-1} x$, (iii) $\tan ^{-1} x$. How are they related to the graph of $\sin x, \cos x, \tan x$ respectively?
11. Draw the graphs whose polar equations are
(i) $r \sin \theta=17$;
(ii) $r=10 \sin \theta$;
(iii) $r=10 \cos \theta$;
(iv) $\tan \theta=245$.
12. Find from your tables the values of $\cos 2 x$ for the values $0^{\circ}, 10^{\circ}, 20^{\circ}, 30^{\circ}, 40^{\circ}, 50^{\circ}, 60^{\circ}$ of x.

Draw the graph of $\cos 2 x-\cos x$ as x increases from 0° to 60°.
13. Find, by drawing graphs of $2 \sin A$ and $\sin 2 A$, for what values of A, less than $90^{\circ}, 2 \sin A-\sin 2 A=1$.
14. Find, by the aid of the tables, the values of $\sin x-\tan 2 x$ for the values $0^{\circ}, 10^{\circ}, 20^{\circ} .45^{\circ}, 60^{\circ}$ of x.

Make a graph to give the values of $\sin x-\tan 2 x$ from $x=0$ to $x=60^{\circ}$.
15. Make a table giving the ralues of $\cos \theta$ at intervals of onefifth of a radian from $\theta=0$ to $\theta=$ two radians, taking the radian as $57^{\circ} 30^{\prime}$.

From your table plot the graph of $\theta \cos \theta$; and hence find for what value of θ, between the limits 0 and $2, \theta \cos \theta$ is greatest.
16. Plot the function $\frac{1}{2}\left\{\sin \theta+\sin 2\left(\theta+20^{\circ}\right)\right\}$ between $\theta=0^{\circ}$ and $\theta=180^{\circ}$, and find the maximum and minimum ralues of the function which occur within this range, and the corresponding values of θ.
17. Draw, in the same diagram, the graphs of $\sin x$ and $2 \cos x$ between $x=0^{\circ}$ and $x=180^{\circ}$. Show how to find from your diagram an angle whose tangent is 2.
18. Taking π as 3.1416 and using your tables, find the values of $\theta-\sin \theta$ when $\theta=\frac{1}{12} \pi, \frac{1}{6} \pi, \frac{1}{4} \pi, \frac{1}{3} \pi, \frac{5}{12} \pi$, and $\frac{1}{2} \pi$; and hence make a graph to give $\theta-\sin \theta$ froin $\theta=0$ to $\theta=\frac{1}{2} \pi$.
19. Draw the graph of (i) $\sin ^{-1} x+\cos ^{-1} x$; (ii) $\sin ^{-1}(1 / x)$.

Solution of Equations.

40. To solve a trigonometrical equation,
(i) express all the ratios involved in terms of one ratio,
(ii) find the value of this ratio by ordinary algebraical methods,
(iii) find the angle from the tables,
(iv) give the general solution.

Example i. Solve $2 \sin x+3 \cos x=2$.
Express in terms of sine,

$$
\pm 3 \sqrt{1-\sin ^{2} x}=2-2 \sin x
$$

Square

$$
9-9 \sin ^{2} x=4-8 \sin x+4 \sin ^{2} x .
$$

Transpose

$$
13 \sin ^{2} x-8 \sin x-5=0
$$

Factorize

$$
\begin{gathered}
(13 \sin x+5)(\sin x-1)=0 . \\
\therefore \quad \sin x=-\frac{5}{13} \text { or } 1 .
\end{gathered}
$$

Substituting in the original equation, we find that:
(i) If $\sin x=-\frac{5}{13}, \cos x=\frac{19}{15}=9231$.

Hence the bounding line is in the fourth quadrant.
From the tables it is found that $\cos 22^{\circ} 37^{\prime}={ }^{\circ} 9231$.
Hence the smallest positive angle satisfying the equation is

$$
360^{\circ}-22^{\circ} 37^{\prime}=337^{\circ} 23^{\prime}
$$

But we may add or subtract any multiple of 360° without altering the position of the bounding line; hence any angle satisfies the equation whose value is $360^{\circ} n+337^{\circ} 23^{\prime}$, where n is any integer positive or negative. This is the general solution.
(ii) If $\sin x=1, \cos x=0$.

The smallest solution is $x=90^{\circ}$.
The general solution is $360^{\circ} n+90^{\circ}$ or $(4 n+1) 90^{\circ}$.
Note. The same difficulty has arisen here that arises in Algebra when the original equation contains surds. After we have squared, the resulting equation is exactly the same as if we had started with the equation $2 \sin x-3 \cos x=2$. For this reason, after we found the value of $\sin \theta$, it was necessary to substitute in the original equation to, find the corresponding value of $\cos x$.

Example ii. Solve $\tan n^{2} A+4 \sin ^{2} A=5$.
Express in terms of $\tan A$.

$$
\tan ^{2} A+4 \frac{\tan ^{2} A}{1+\tan ^{2} A}=5
$$

Multiply by $1+\tan ^{2} A$
Take logarithms
Use tables
Hence a solution is
Consideration of the fundamental figure shows that the general .solution is

$$
A=180 n+56^{\circ} 13^{\prime}
$$

41.

General Solutions.
General solutions can always be obtained by mentally considering the possible positions of the radius vector that give angles having the same function as some angle already found. This is what has been done in the two preceding examples. It is, however, useful to know the formulae that give these general solutions.

Find an expression for all angles that have a sine equal to $\sin \alpha$.
We have to solve

$$
\sin \theta=\sin a
$$

Fig. XIX a.
The bounding line may have either of the positions shown in Fig. XIXa.

Thus the line may revolve through n.., where n is even, and then go on α, or may revolve through $n \pi$, where n is odd, and then come back α. Hence $\theta=n \pi+\alpha$ if n is even,

$$
\text { or } \quad n \pi-\lambda \text { if } n \text { is odd. }
$$

These are included in the one formula

$$
\theta=n \pi+(-1)^{n} \alpha .
$$

If $\quad \sin x=\sin A$, then $x=180 n+(-1)^{n} A$.
Exercises. In a similar way prove that
i.

$$
\begin{aligned}
& \theta=2 n \pi \pm \alpha, \text { when } \cos \theta=\cos \alpha \\
& x=360 n \pm A, \text { when } \cos x=\cos A .
\end{aligned}
$$

ii. $\quad \theta=n \pi+\alpha$, when $\tan \theta=\tan \alpha$;

$$
x=180 n+A, \text { when } \tan x=\tan A
$$

Example. Solve $\sin 3 \theta=\cos 54$.
This is the same as

$$
\begin{aligned}
& & \sin 3 \theta & =\sin \left(\frac{1}{2} \pi-5 \theta\right) ; \\
& \therefore & 3 \theta & =n \pi+(-1)^{n}\left(\frac{1}{2} \pi-5 \theta\right) . \\
\text { odd } & & 3 \theta & =n \pi-\frac{1}{2} \pi+5 \theta ; \\
& \therefore & 2 \theta & =\frac{1}{2} \pi-n \pi .
\end{aligned}
$$

If n is odd
Put $n=-2 p+1$, then $\theta=p \pi-\frac{1}{4} \pi$, where p is any integer.
If n is even

$$
3 \theta=n \pi+\left(\frac{1}{4} \pi-5 \theta\right) ;
$$

$\therefore \quad 8 \theta=n \pi+\frac{1}{2} \pi$.
Put $n=2 p \quad \theta=p \frac{1}{4} \pi+\frac{1}{10} \pi$. where p is any integer.
The complete solution is

$$
\theta=p \pi-\frac{1}{4} \pi \text { or } p \frac{1}{4} \pi+\frac{1}{16} \pi \text {. }
$$

Examples IV c.

Solve :

1. $2 \cos ^{2} \theta=3(1-\sin \theta)$.
2. $\sin \theta+\cos \theta=1$.
3. $\sin \phi+\cos \phi=\sqrt{ } \overline{2}$.
4. $12 \tan ^{2} A-13 \tan A+3=0$.
5. $2 \cos ^{2} x-1=1-\sin ^{2} x$.
6. $\sin 3 A=\sin 4 A$.
7. $3 \cot ^{4} \theta-10 \cot ^{2} \theta+3=0$.
8. $2 \sin A=\tan A$.
9. $\tan A+3 \cot A=4$.
10. $\sin (x+A)=\cos (x-A)$.
11. $\tan ^{2} A+4 \sin ^{2} A=6$.
12. $\sqrt{3} \tan ^{2} \theta+1=(1+\sqrt{3}) \tan \theta$.
13. $\operatorname{cosec} \theta=\cot \theta+\sqrt{3}$.
14. $\cos \left(135^{\circ}+A\right)+\sin \left(135^{\circ}-A\right)=0$.
15. $\cos ^{3} A-\cos A \sin A-\sin ^{3} A=1$.
16. $\cos 3 \theta+\sin \theta=0$.
17. $3 \tan ^{2} 2 \theta=1$.
18. $\tan 2 x=\tan 2 / x$.
19. $2 \sin ^{2} \theta-3 \sin \theta-2=0$.
20. $2 \cos ^{2} \theta+3 \cos \theta-1=0$.
21. $\tan ^{2} \theta+\sec ^{2} \theta=2$.
22. $1.7 \sin \theta-73=0$.
23. $3 \sin \theta+2 \cos \theta=2$.
24. $2 \tan ^{2} \theta+7 \tan \theta+3=0$.
25. $\tan \theta-2 \cot \theta=1.7$.

42. Examples of the use of logarithms.

Example i. Given that $\frac{a}{\sin A}=\frac{b}{\sin B}$, find B when $a=250, b=240, A=72^{\prime} 5^{\prime}$.

We have

$$
\begin{aligned}
& \frac{\sin B}{b}=\frac{\sin A}{a} \\
& \sin B=\frac{b \sin A}{a}
\end{aligned}
$$

i.e.

Take logs. $\quad \log \sin B=\log b+\log \sin A-\log a$

$$
\begin{aligned}
& =\quad 2 \cdot 3802-2 \cdot 3979 \\
& =\quad+\cdot \overline{1} \cdot 9784 \\
& =\quad 2 \cdot 3586 \\
& =-2 \cdot 3979 \\
& =\quad .9607
\end{aligned}
$$

$$
[\therefore \mathrm{L} \sin B=9.9607] ;
$$

$$
\therefore \quad \sin B=\sin 66^{\circ} .
$$

Hence

$$
B=180 n^{\circ}+(-1)^{n} 66^{\circ} .
$$

After a little practice the work may be arranged so that the logarithms are kept quite distinct from the remainder of the work. This same example is worked below to show the shorter method and the use of five-figure tables.

$$
\begin{aligned}
\frac{\sin B}{b} & =\frac{\sin A}{a} \\
\sin B & =240 \sin 72^{\circ} 5^{\prime} \div 250 \\
& =\sin 65^{\circ} 59^{\prime} .
\end{aligned}
$$

Logarithms.
2•38021
$+\overline{1} \cdot 9$ /841 $\overline{2 \cdot 35862}$
$-2: 39794$ $\overline{\overline{1} \cdot 96068}$

Example ii. The sides and angles of "triangle are connected by the relation $\tan \frac{1}{2}(A-B)=\frac{a-}{a+b} \cot \frac{1}{2} C$: find A and B when $a=2425, b=164^{\circ} 3 . C=54^{\circ} 36^{\prime}$.

$$
\begin{aligned}
\tan \frac{A-B}{2} & =\frac{78^{\circ} 2}{406^{\circ} \cdot} \cot 27^{\circ} 18^{\prime} \\
{[} & \left.=\frac{78^{\circ} 2}{406^{\circ} 8} \tan 62^{\circ} 42^{\prime}\right] \\
& =\tan 20^{\circ} 26^{\prime} ; \\
\therefore \quad \frac{A-B}{2} & =20^{\circ} 26^{\prime},
\end{aligned}
$$

Logarithms.

$$
\begin{array}{r}
1 \cdot 89321 \\
+\quad \cdot 28723 \\
\hline 2 \cdot 18044 \\
-2 \cdot 60938 \\
\hline \overline{1} \cdot 57106
\end{array}
$$

ly question $\frac{A+B}{2}=62^{\circ} 42^{\prime}$.
Hence

$$
\begin{aligned}
& A=83^{\circ} 8^{\prime} \\
& B=42^{\prime} 16^{\prime}
\end{aligned}
$$

The step in brackets is required if the tables do not give the cotangents. Since A and B are angles of a triangle, $\frac{1}{2}(A-B)$ cannot equal any of the angles $180 n+20^{\circ} 26^{\prime}$ (except when $n=0$). so that there is no need to give the general solution.

Example iii. If a, b, c are the sides of a triangle, $\tan \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$ where s is half the sum of the sides. Find A when $a=1762, b=893, c=1386$.

$$
\begin{aligned}
s & =(1762+893+1386) \div 2=4041 \div 2 \\
& =2020^{\circ} 5 \\
s-a & =258^{\circ} 5 \\
s-b & =1127^{\circ} 5 \\
s-c & =634^{\circ} 5 \\
\therefore \quad \tan & \frac{A}{2}=\sqrt{\frac{1127.5 \times 634^{\circ} 5}{2020^{\circ} 5 \times 255^{\circ}}} \\
\therefore \quad \frac{A}{2} & =49^{\circ} 29^{\prime} \\
A & =98^{\circ} 58^{\prime} .
\end{aligned}
$$

Logarithms.
305212
250243
$+5.85455$
3.30546

241246
$-5 \cdot 71792$
2) $\lcm{0.13663}$
0.06831

Examples IV.

1. Use the tables to find the values of $\sin 52^{\circ}, \cos 140^{\circ}, \tan 220^{\circ}$, $\cos 340^{\circ}, \sin 340^{\circ}$.
2. Divide $\sin 52$ by $\cos 52$; verify your answer ly finding the value of $\tan 52$ from the tables.
3. Write down by using tables the values of $\sin 140^{\circ}, \cos 160^{\circ}$, $\cos 220^{\circ}, \tan 320^{\circ}$.
4. Find the smallest positive value of θ which satisfies

$$
\cos \theta=\sin \left\{(4 n+3) \frac{1}{2} \pi+a\right\} .
$$

j. Find all the values of θ which satisfy the equation

$$
4 \cos \theta-3 \sec \theta=2 \tan \theta
$$

6. Find the inclination to the horizon of an incline which rises 5_{2}^{1} feet in 420 yards.
7. Solve the equation $\tan ^{2} \theta-(1+\sqrt{3}) \tan \theta+\sqrt{3}=0$.
8. Given that $\tan \frac{1}{2} C=\sqrt{(s-a)(s-b) \div s(s-c)}$, find C when $a=32, b=40 ; c=66$.
9. Solve the equations $\cos \left(2 x+3 y_{1}=\frac{1}{2}, \cos (3 x+2 y)=\sqrt{ } \overline{3} / 2\right.$.
10. Given $\log 2=` 30103$ and $\log 3=47712$, find (without the tables) $\mathrm{L} \sin 60^{\circ}$ and $\mathrm{L} \tan 30^{\circ}$.
11. Find the acute angle whose cosine equals its tangent.
12. The current C in a circuit, as determined by a tangent galvanometer, equals $G \tan \theta$, where G is a constant depending on the galvanometer only and θ is the deflexion of the needle. Determine the ratio of two currents which give deflexions of $27^{\circ} 14^{\prime}, 35^{\circ} 23^{\prime}$ respectively.
13. The length of a degree of latitude in latitude ϕ is $(1111 \div 317-5688 \cos \phi) 10^{4}$ centimetres.
Find the length at London (latitude $51^{\circ} 31^{\prime}$ N.) and Melbourne (latitude $37^{\circ} 50^{\prime} \mathrm{S}$. .).
14. The length of the seconds pendulum in centimetres, at a place whose latitude is λ, is $99 \cdot 3563-\cdot 2536 \cos 2 \lambda$. Find the length of the seconds pendulum at Paris (lat. $48^{\circ} 50^{\prime} \mathrm{N}$.) and Calcutta (lat. $22^{\circ} 33^{\prime} \mathrm{N}$.).
15. The acceleration of a falling body at a place whose latitude is λ, when measured in centimetres per second per second, is

$$
980 \cdot 6056-2 \cdot 5028 \cos 2 \lambda
$$

Find the acceleration at Montreal (lat. $45^{\circ} 30^{\prime} \mathrm{N}$.) and Cape Town (lat. $33^{\circ} 40^{\prime} \mathrm{S}$.).
16. A quantity Δ is determined by the relation $\Delta=\frac{1}{2} a b \sin C$. Complete the following table:

	Δ	a	b	C
i.		17	43	$77^{\prime} 14^{\prime}$
ii.	342.6	$21^{\circ} 3$	$38^{\circ} 19$	43^{\prime}
iii.	$984^{\prime} 2$		$43^{\prime} .82$	$4{ }^{\prime}$.

17. Draw the graph of

$$
\tan \theta-\theta \text { from } \theta=0 \text { to } \theta=\frac{\pi}{2} .
$$

Hence solve $\tan \theta=\theta+3$.
18. Given that A and B, the angles of a triangle, are connected by the relation $a \sin B=b \sin A$, find B when $a=181, b=217$, $A=34^{\circ} 15^{\prime}$.
19. If $2 R=a^{\prime} \sin A$, find the value of A when $R=179^{\circ} 4$ and $a=300$.
20. Verify that

$$
\cos 146^{\circ} 43^{\prime}-\cos 56^{\circ} 51^{\prime}=-2 \sin 44^{\circ} 56^{\prime} \sin 101^{\circ} 47^{\prime}
$$

21. Find the length of (i) the chord, (ii) the arc, subtending an angle 70° at the centre of a circle of radius 25 cm . Find also the area of the segment.
22. Find the length of the side of a regular decagon (i) inscribed in, (ii) described about, a circle of radius 2.7 inches.

CHAPTER V

THE RIGH'T-ANGLED TRIANGLE

43. In the previous chapters we have had to deal with only one angle at a time, and have been able to draw one of the lines containing that angle horizontal. In applications of Trigonometry we often have to deal with several angles in the same example, and the lines containing them are drawn in various directions; in such examples it would be difficult to apply the definitions of § 12. But it has been shown that the ratios of any angle can be expressed in terms of the ratios of an acute angle. In practice, therefore, it will often be found advisable to use the following definitions, which apply only to acute angles.

In a right-angled triangle an acute angle is contained by the hypotenuse and one of the other sides which is called the side adjacent to that angle. The remaining side is called the side opposite. Then in Fig. XX

Fig. XX.

$$
\begin{aligned}
& \sin \mathrm{BAC}=\frac{\text { opposite }}{\text { hypotenuse }} ; \quad \operatorname{cosec} \mathrm{BAC}=\frac{\text { hypotenuse }}{\text { opposite }} ; \\
& \cos \mathrm{BAC}=\frac{\text { adjacent }}{\text { hypotenuse }} ; \sec \text { BAC }=\frac{\text { hypotenuse }}{\text { adjacent }} ; \\
& \tan \mathrm{BAC}=\frac{\text { opposite }}{\text { adjacent }} ; \quad \cot \mathrm{BAC}=\frac{\text { adjacent }}{\text { opposite }} .
\end{aligned}
$$

These are clearly the same definitions as in "§ 12, the triangle $B A C$ taking the place of the triangle $P O N$; and the various formulae proved in Chap. III can be proved directly from the definitions of this section.
44. It is usual to denote the angles of any triangle $A B C$ by the capital letters A, B, C; the lengths of the sides opposite the angles A, B, C are denoted by a, b, c respectively.

Hence, in a triangle $A B C$, right-angled at C,

$$
\begin{aligned}
& \sin A=\frac{a}{c}, \text { i. e. } a=c \sin A \\
& \cos A=\frac{b}{c}, \text { i.e. } b=c \cos A \\
& \tan A=\frac{a}{b}, \text { i. е. } a=b \tan A
\end{aligned}
$$

Examples Va.

1. Prove, from the definitions of $\S 43$, that

$$
\begin{aligned}
\text { (i) } \cos A & =\sin B=\sin (90-A) ; \\
\text { (ii) } \sin A & =\cos B=\cos (90-A) \\
\text { (iii) } \tan A & =\cot B=\cot (90-A) \text {; }
\end{aligned}
$$

2.

In the figure $P N O, Q M O, Q K P$ are right angles.
If $O N=5, \quad N P=7, \quad O M=6, \quad M Q=5$, find the values of $\sin P O N, \tan K P Q, \tan K Q P, \sec Q O M, \cos K Q O, \operatorname{cosec} N R O$.
3. If, in Fig. XXI, $O P=8, P O Q=30^{\circ}, Q O N=45^{\circ}, P Q O=90^{\circ}$, find the lengths of $O Q, P Q, P K, Q M, O M$.
4. A circle is described on a horizontal diameter $A B$ of length 10 inches; a point C is taken on the circumference, such that $B C=7$, and $C D$ is let fall at right angles to $A B$. Find the size of the angle $B A C$ and the length of $C D$.
5. In a triangle, right-angled at C, a perpendicular is let fall from C to the hypotenuse; prove, by Trigonometry, that this perpendicular is a mean proportional between the sides containing the right angle.

Fig. XXII.
In the above figure (which is not drawn to scale) $A O$ is at right angles to $D E, O C$ is at right angles to $A G, O G$ is at right angles to $A O$ and $E F^{\prime}$; also G is the middle point of $A B$.

Use this figure in the following examples.
6. If $A C=10, C A D=40^{\circ}$, find, if possible, the lengths of all the other lines.
7. If $C D=8, A B=24$, find $\sin C A D$.
8. If $G F=18, A E=5, O C=5$, find $\cos A C D$ and the length of $A O$.
9. If $A B=l, C A D=?$, find $C D$ and $A O$.
10. If $C G=a, C G O=\theta$, find $A D$ and $A O$.

Fig. XXIII.
With the ordinary notation for the sides and angles of a triangle, find in the above figure:
11. The length of $A D$ when $c=70, B=49^{\circ}$.
12. The length of $A D$ when $b=42, C=72^{\circ}$.
13. The length of $B D$ when $c=76, B=39^{\circ}$.
14. The length of $C D$ when $b=114, C=114^{\circ}$.
(What geometrical fact does the negative sign in the result show ?)
15. Prove that the area of the triangle $=\frac{1}{2} a b \sin C$; give the proof, also, when C is obtuse.

Solution of Right-angled Triangles.

45. The angles and sides of a triangle are sometimes called the six parts of a triangle. The determination of all the parts, when only some of the parts are known, is called solving the triangle. If the triangle is known to be rightangled, the triangle can be solved if one side and one other part are known.

Example i. A man, stunding 100 feet from the foot of a church steeple, finds that the ungle* of clevation of the top

[^9]is 50°. If his eye is $\frac{1}{2}$ feet from the ground, whut is the height of the stceple?
[The figure should be drawn neatly but need not be drawn to scale.]
In Fig. XXIV $A E$ represents the steeple, $B C$ the man ; $C D$ is drawn parallel to $B A$.

Fig. XXIV.
[Mental. In the right-angled triangle $C D E$ we know that

$$
C D=B A=100 \mathrm{ft} ., \text { angle } D C E=50^{\circ},
$$

and we wish to find $D E$.

$$
\frac{\text { unknown side }}{\text { known side }}=\text { some ratio of known angle.] }
$$

Here

$$
\frac{D E}{D C}=\tan D C E,
$$

i.e.

$$
\begin{aligned}
D E & =100 \tan 50^{\circ} \text { feet } \\
& =100 \times 1 \cdot 1918 \text { feet } \\
& =119 \cdot 18 \text { feet } .
\end{aligned}
$$

Therefore height of steeple $=A D+D E=124.68$ feet.

Example ii. The shadou, cast by the sun on a horizontal plane, of a rerticul pole 10 feet high, is olscreed to be 14 feet long; find the altitude of the sun (i.e. the angle of eleration of the sun).

In Fig. XXV $A B$ represents the pole, $A C$ the shadow; so that $C B$ is the direction of one of the sun's rays.

Fig. XXV.
[Mental. In the right-angled triangle $B A C$ we know $B A$ and $A C$, and wish to find the angle $A C B$.
ratio of known sides $=$ some ratio of required angle.]

$$
\frac{A B}{A C}=\tan A C B
$$

$\therefore \quad \tan A C B=\frac{10}{1} \frac{0}{4} 71429$.

$$
\tan 35^{\circ} 30^{\prime}=\cdot 71329
$$

$$
\therefore A C B=35^{\circ} 32^{\prime} . \quad \therefore 100 \quad, \quad \frac{100^{\prime}}{44}=2^{\prime}
$$

Sun's altitude $=35^{\circ} 32^{\prime}$ to nearest minute.
Example iii. A ship C is observed at the same time from two coastguard stations A and $B, 1459$ yards apart. The angle $A B C$ is found to be 90°, and the angle

Fig. XXVI. $B A C$ to le $67^{\circ} 14^{\prime}$, what is the distance of the ship from station A ?

$$
\begin{aligned}
\text { Here } \quad \frac{A C}{A B} & =\sec B A C \\
\therefore \quad \log A C & =\log 1459+\log \sec 67^{\circ} 14^{\prime} \\
& =3 \cdot 16406 \\
& +41111 \\
& +120 \\
& =3 \cdot 57637,
\end{aligned}
$$

$$
\text { i.e. } \quad A C=3770 \cdot 3
$$

Distance of ship from $A=3770$ yards to nearest yard.

- If the tables do not contain the secants, the working must be made to depend on the cosine.

$$
\begin{aligned}
\frac{A C}{A B} & =\frac{1}{\cos B A C}, \\
\log A C & =\log 1459-\log \cos 67^{\circ} 14^{\prime} \\
& =3 \cdot 1641 \\
& -\overline{1} \cdot 5877 \\
& =3.5764, \\
\text { i. e. } A C & =3770 .
\end{aligned}
$$

Example iv. Two men, A and $B, 1370$ yards apart, observe an aeroplane C at the same instant and find the respective angles of elevation to be 40° and 67°. If the plane $A B C$ is vertical, calculate the height of the aeroplane.

Fig. XXVII.
Let h feet be height of aeroplane.
From triangle $A D C, A D=h \cot 40^{\circ}$.
From triangle $B D C, B D=h \cot 67^{\circ}$;

$$
\text { but } A D+B D=A B
$$

$$
\begin{aligned}
& \therefore h \cot 40^{\circ}+h \cot 67^{\circ}=137 . \\
& \therefore h=\frac{1370}{\cot 40^{\circ}+\cot 67^{\circ}} \\
&=\frac{1370}{1.61622} ;
\end{aligned}
$$

$$
\therefore \quad h=847 \cdot 62 ;
$$

$$
\begin{aligned}
& \cot 40^{\circ}=1 \cdot 19175 \\
& \cot 67^{\circ}=\cdot 42447 \\
& \text { Logarithms } \\
& 3 \cdot 13672 \\
& -\quad 20852 \\
& \hline 2 \cdot 92820
\end{aligned}
$$

Height of aeroplane $=848$ yards to nearest yard.

Examples V b.

1: The string of a kite is known to be 500 feet long, and it is observed to make an angle of 55° with the horizontal; find the height of the kite.
2. From the top of a cliff, 215 feet high, the angle of depression of a ship is observed to be $23^{\circ} 20^{\prime}$; what is the distance of the ship from the foot of the cliff?
3. From a point 56 feet from the foot of a tree the angle of elevation of the top is 73°; find the height of the tree.
4. The top of a conical tent is 9 feet above the ground; the radius of the base is 5 feet; what is the inclination of the side of the tent to the horizontal?
5. The shadow thrown by a flagstaff is found to be $55 \frac{1}{2}$ feet long when the sun's altitude is $53^{\circ} 15^{\prime}$; what is the height of the flagstaff?
6. I know that a certain tower is 144 feet high. I find that its elevation observed from a certain point on the same level as the base of the tower is $37^{\circ} 16^{\prime}$. Find the distance of that point from the base of the tower.
7. A sphere of radius 4 inches is suspended from a point A in a vertical wall so that it rests against the wall. The string is 11 inches long and is in the same straight line as a radius of the sphere. Find the inclination of the string to the vertical.
8. From the top of a cliff, 254 feet high, the angle of depression of a ship was found to be $9^{\circ} 28^{\prime}$, and that of the edge of the sea $72^{\circ} 40^{\prime}$; how far distant was the ship from the edge of the sea?
9. Two observers on the same side of a balloon and in the same vertical plane with it, a mile apart, find its angles of elevation to be 15° and $65^{\circ} 30^{\prime}$ at the same moment. Find the height of the balloon.
10. From the top of a tower, 108 feet high, the angles of depression of the top and bottom of a vertical column are found to be 30° and 60° respectively. What is the height of the column?
11. A flagstaff, 30 feet high, is fixed in the centre of a circular tower 40 feet in diameter. From a point on the same horizontal plane as the foot of the tower the elevations of the top of the flagstaff and the top of the tower are observed to be 35° and 30° respectively. Find the height of the tower.
12. A river, the brealth of which is 200 feet, flows at the foot of a tower, which subtends an angle $25^{\circ} 10^{\prime}$ at a point on the further bank exactly opposite. Find the height of the tower.
13. A person standing at the edge of a river finds that the elevation of the top of a tower on the edge of the opposite bank is 60°; on going back 30 feet he finds the elevation to be 45°; find the breadth of the river.
14. From the top of a tower, 50 feet high, the angle of depression of a man, walking towards the tower, is noticed to be 30°; a few moments after it was 45°. How far had the man walked between the two observations?
15. Two posts, 400 yards apart, at the sides of a straight roal running E. and W., are observed to bear N. 20° E. and E. $20^{\circ} \mathrm{N}$. respectively. Find the distance of the observer from the road.
16. Two points A and B and the foot D of a tower $C D$ are in a horizontal straight line, and the angles of elevation of C, the top of the tower, as seen from A and B respectively, are $25^{\circ} 45^{\prime}$ and $35^{\circ} 25^{\prime}$. If the distance $A B$ is 200 feet, find the height of the tower.
17. A vertical post casts a shadow 15 feet long when the altitude of the sun is 50°; calculate the length of the shadow when the altitude of the sun is 32°.
18. A vertical mast, having its base at A, is set up on a horizontal plane. B and C are points in the plane in a line with A, and such that the angular elevations of the top of the mast, when obserred at these points, are respectively λ and β. If $\tan \lambda=\frac{3}{4}, \tan \beta=\frac{2}{5}$ and the length of $B C$ is 105 feet, find the height of the mast.
19. A man standing on a tower at a height of 80 feet from the ground observes that the angles of depression of two objects on a straight level road running close to the foot of the tower are 60° and 30°. If the objects are on the same side of the tower, how far are they apart?
20. A, B, C are three points in succession on a straight level road, and P is another point so situated that the angles $P A B$, $P B A, P C A$ are respectively $90^{\circ}, 60^{\circ}$, and 45°. If a man walks at a uniform rate from A to B in 25 seconds find, to the nearest second, how long it will take him, at the same rate, to walk from B to C.
21. A ray of light passes through a hole A in a graduated horizontal scale $A B$ in a direction perpendicular to the scale and is reflected by a vertical mirror which is distant 30 inches from the scale and makes an angle x^{0} with the incident (i.e. approaching)
ray. After reflection the ray makes the same angle with the mirror as before and shines on the scale at a distance 8 inches from A. Find the value of x.

If the mirror now swings through an angle 1°, how far will the spot of light on the scale move?

Elementary Navigation.

\{The student should reviso $\S \S 9$ and 10 dealing with latitude and longitude and the points of the compass. \}
46. When at ship is sailing, the angle between its direction of sailing and the meridian the ship is crossing is called the course. If the course is constant, the ship

Fig. XXVIII. is said to sail on a rhumb-line. The distance between two positions of the ship is then measured along the rhumb-line. The difference of latitude of two places is the arc of a meridian intercepted between the parallels of latitude passing through the two places. The departure between two meridians is the distance between the two meridians measured along a parallel of latitude; thus the doparture between any two given meridians is not a constant but diminishes from the equator to the poles.*
47. A small portion of the earth's surface may be regarded as a plane; for distances small, compared with the earth's radius, we may therefore use the formulae of Plane Trigonometry.

Plane Sailing is the name given to that part of navigation which treats the surface of the earth as a plane. On this assumption the meridians become parallel straight lines, the rhumb-line becomes the hypotenuse of a right-angled triangle of which the departure is the side opposite to the course, and the difference of latitude is the side adjacent. Thus problems on Plane Sailing are merely examples in the solution of right-angled triangles.

[^10]
Examples V c.

(The distances are given in nautical miles.)

1. A ship sails SE. by S., a distance 81 miles; what is her departure and difference of latitude ?
2. A ship sails N. $49^{\circ} 41^{\prime}$ W., a distance 73 miles; what is the departure and difference of latitude?
3. A ship sails SSW. until its departure is 198 miles; what is the distance sailed and the difference of latitude?
4. If the course is $3 \frac{1}{2}$ points W . of N., and the difference of latitude 149 miles, what is the distance?
5. A ship sails between North and West, making a difference of latitude $157 \frac{1}{2}$ miles and departure 79 miles; what is the course?
6. A ship sails westward 247 miles along the equator from meridian 16° E.; what is now the longitude?
7. A ship sails 247 miles eastward along the parallel $40^{\circ} \mathrm{N}$. : what is the change in longitude?
8. When a ship sails any distance (great or small) along a parallel of latitude, show that difference of longitude in minutes $=$ departure \times secant of latitude.
9. A ship, from latitude $54^{\circ} 22^{\prime} 10^{\prime \prime} \mathrm{N}$., sails $195 \frac{1}{2}$ miles $\frac{1}{4}$ of a point S. of SE. ; what is now the latitude?
10. Leaving latitude $49^{\circ} 37^{\prime} \mathrm{N}$., longitude $15^{\prime} 22^{\prime}$ W., a ship sails SW. by W. 150 miles; find the new latitude and longitude.

Fig. XXIX.
48. Parallel Sailing. If λ^{3} is the latitude, then the radius of the parallel of latitude ($K P$ in Fig. XXIX) is $\cos \lambda \times$ radius of the
earth. If θ is the radian measure of the difference of longitude of two places on the same parallel, the length of the arc between them is $\theta \cos \lambda \times$ radius of the eartl. The radius of the earth is 21600
2π nautical miles.
Hence \quad departure $=\frac{1600}{2 \pi} \theta \cos \lambda$.
When θ is reduced to minutes, this relation becomes
departure $=$ difference of longitude \times cosine of latitude.
49. Middle Latitude Sailing. In Middle Latitude Sailing, the departure between two places, whose latitudes are λ and λ^{\prime}, is taken to be the departure between their meridians, measured at the latitucle $\frac{1}{2}\left(\lambda+\lambda^{\prime}\right)$. On this assumption, departure $=$ diff. of longitude $\times \cos \frac{1}{2}\left(\lambda+\lambda^{\prime}\right)$.
50. Traverse Sailing. If a ship sails on different courses, from A to B, from B to C, from C to $D, \& c$., then, by the methods of Plane Sailing, the total changes in latitude and longitude can be worked out. This is called the method of Traverse Sailing. This method can only be used when the whole area traversed can be regarded as plane without introducing a great amount of error.

Example. A ship left a position in which Oporto Light (lat. $41^{\circ} 9^{\prime} N$., long. $8^{\circ} 38^{\prime} W$.) bore W. by N., 15 miles distant. Afterwards she sailed as under:

Courses.	Distances.
N.W.	70^{\prime}
S. by W. $\frac{1}{2}$ W.	55^{\prime}
E.	35^{\prime}
N.W.W.	42^{\prime}
S.E.	51^{\prime}.

Find her bearing and distance from the Light in her last position.

We have a series of right-angled triangles to solve, the hypotenuse and an acute angle being given in each case. In practical navigation special tables are used, callerl Trarerse Tables.

The angle the hypotenuse makes with the meridian is taken in each case.
O to A.
Hypotenuse 15^{\prime}, angle 7 points $=78^{\circ} 45^{\prime}$.
Diff. of latitude $=15^{\prime} \times \cos 78^{\circ} 45^{\prime}$ 1.2902
$\therefore 2.926^{\prime} \mathrm{S}$.
Departure

$$
\begin{aligned}
& =15^{\prime} \times \sin 78^{\circ} 45^{\prime} \\
& =14.71^{\prime} \mathrm{E}
\end{aligned}
$$

$\stackrel{1}{ } \cdot 1761$
$\overline{1} \cdot 9916$
$1 \cdot 1677$

Fig. XXX.
Note that 0 bears W. by N . from A, but A bears E. by S. from 0 . A to B.

Hypotenuse 70^{\prime}, angle 45°.
Diff. of latitude $=70 \times \cos 45^{\circ}$

$$
=49^{\circ} 497^{\prime} \mathrm{N}
$$

Departure $\quad=49^{\circ} 497^{\prime} \mathrm{E}$.

B to C.		1.7404
Hypotenuse 55^{\prime}, angle $1 \frac{1}{2}$ points $=16^{\circ} 52 \frac{1}{2}^{\prime}$.		$1 \cdot 9809$
Diff. of latitude $=55 \cos 16^{\circ} 52 \frac{1}{2}^{\prime}$		$\underline{1.7213}$
Departure	$=52.64^{\prime} \mathrm{S}$.	17404
	$=55 \sin 16^{\circ} 52 \frac{1}{2}^{\prime}$	$1 \cdot 4628$
	$=15^{\circ} 97^{\prime} \mathrm{W}$.	1.2032

The other triangles are worked in the same way.

Tabulate the results thus:

Direction.	Distance.	Diff. of Latitude.		Departure.	
		N.	S.	E.	W.
E. by S	15^{\prime}		$2 \cdot 93$	14.71	
NW.	70^{\prime}	49:50		49.50	
S. by W. $\frac{1}{2} \mathrm{~W}$.	55^{\prime}		52.64		15.97
E.	35^{\prime}			35	
NNW.	42^{\prime}	$38 \cdot 80$			16.07
SE.	51^{\prime}		36.06		36.06
		88.30	$91 \cdot 63$	99.21	$68 \cdot 10$
			88.30	$68 \cdot 10$	
			$3 \cdot 33$	31.11	

We see now that the final difference of latitude from the light is 3.33^{\prime} S., and departure $31 \cdot 11 \mathrm{E}$.; so that we have to solve a rightangled triangle given the two sides.

In Fig. XXX

$$
\begin{array}{rlr}
\tan F O N & =\frac{3.33}{31.11} ; & \begin{aligned}
& 5224 \\
& \therefore \quad F O N=6^{\circ} 7^{\prime} . \\
& O F=\frac{31.4929}{\cos F O N} \\
&=31.29
\end{aligned} \\
\overline{\overline{1} \cdot 0295} \\
& \frac{1.4929}{1.9975}
\end{array}
$$

In her final position the ship bore $6^{\circ} 7^{\prime} \mathrm{S}$. of E., $31 \cdot 3$ miles distant from the Light.

To find the longitude of the ship.

Latitude of O	$41^{\circ} 9^{\prime} \mathrm{N}$.
Diff. of latitude for F	$3 \cdot 3^{\prime} \mathrm{S}$.
Latitude of F	$41^{\circ} 5 \cdot 7^{\prime} \mathrm{N}$.
Middle latitude	$41^{\circ} 7^{\prime}$.

Difference of longitude in minutes $=\frac{\text { departure }}{\text { cosine of middle latitude }}$

$$
\begin{array}{lr}
=\frac{31.11}{\cos 41^{\circ}} 7^{\prime} & -\frac{1.4929}{1.8770} \\
=41^{\circ} 30^{\prime} . & \frac{1.6159}{1.659}
\end{array}
$$

Longitude of $F^{\prime}=8^{\circ} 38^{\prime}-41^{\circ} 30^{\prime}$
$=7^{\circ} 57^{\prime} \mathrm{W}$.

Examples V d.

1. Find the distance on the parallel between Cape Agulhas (lat. $34^{\circ} 50^{\prime}$ S., long. $20^{\circ} 1^{\prime}$ E.) and Monte Video (lat. $34^{\circ} 50^{\prime}$ S., long. $56^{\circ} 9^{\prime} \mathrm{W}$.).
2. A ship steamed at the rate of 12 knots from Albany (lat. $35^{\circ} 3^{\prime}$ S., long. $118^{\circ} 2^{\prime}$ E.) to Cape Catastrophe (lat. $35^{\circ} 3^{\prime}$ S., long. $135^{\circ} 58^{\prime} \mathrm{E}$.). How long did she take on the voyage ?
3. A ship sailed from Port Elizabeth (lat. $34^{\circ} 7^{\prime}$ S., long. $25^{\circ} 40^{\prime}$ E.) SE. $\frac{1}{2}$ S., until her departure was 397^{\prime}; find her final position.
4. Find the course and distance from Syracuse (lat. $37^{\circ} 3^{\prime} \mathrm{N}$., long. $15^{\circ} 15^{\prime}$ E.) to Fano (lat. $39^{\circ} 52^{\prime}$ N., long. $19^{\circ} 19^{\prime}$ E.).
5. A ship left a position from which Cape Clear (lat. $51^{\circ} 26^{\prime}$ N., long. $9^{\circ} 29^{\prime}$ W.) bore NE. by E. $122^{\circ} 5$ miles distant and sailed South 150^{\prime} and then West 290 miles. Find the bearing and distance of Cape Clear from the ship in her last position.
6. Find, by Middle Latitude Sailing, the departure between two places whose positions are $13^{\circ} \mathrm{S} ., 50^{\circ} \mathrm{E}$. and $20^{\circ} \mathrm{S} ., 60^{\circ} \mathrm{E}$.
7. A ship sails from $50^{\circ} \mathrm{N} ., 50^{\circ} \mathrm{W}$. to latitude $48^{\circ} \mathrm{N}$., the distance being 157'; find the new longitude.
8. Cape Ortegal (lat. $43^{\circ} 45^{\prime} \mathrm{N}$., long. $7^{\circ} 6^{\prime} \mathrm{W}$.) bore SW. $\frac{3}{4} \mathrm{~W}$. 12 miles distant. Afterwards sailed as under:

True Courses.	Distances.
NNW. $\frac{1}{2}$ W.	70^{\prime}
ESE.	85^{\prime}
NNE. $\frac{3}{4}$ E.	101^{\prime}
S.	50^{\prime}
WSW.	92^{\prime}

Find the final latitude and longitude.
9. A ship left the Texel (latitude $52^{\circ} 58^{\prime} \mathrm{N}$.) and then sailed W. by N. 34^{\prime}, S. by E. 45^{\prime}, W. by S. 35^{\prime}, SSE. 44^{\prime}, WSW. $\frac{1}{2} \mathrm{~W} .42^{\prime}$. Find the course and distance to Dungeness which lies 139^{\prime} West of the Texel in latitude $50^{\circ} 55^{\prime} \mathrm{N}$.
10. A ship; latitude $17^{\circ} 10^{\prime} \mathrm{N}$., is making for a harbour, latitude $13^{\circ} 10^{\prime} \mathrm{N}$., and 180^{\prime} W. of the ship. She sails SW. by W. 27', WSW. $\frac{1}{2}$ W. 30^{\prime}, W. by S. 25^{\prime}, W. by N. 18^{\prime}, SSE. 32^{\prime}, SSE. $\frac{3}{4}$ E., 27^{\prime}, S. by E. 25^{\prime}, S. 31^{\prime}, SSE. 39^{\prime}. Find the course and distance to the harbour.
11. A ship left a position in which Heligoland bore ENE. 12', and then sailed NW. 24^{\prime}, S. by W. 20^{\prime}, NW. by W. 32^{\prime}, S. by E. 36^{\prime}, WNW. $\frac{1}{2}$ W. 42^{\prime}, SSE. $\frac{1}{2}$ E. 16^{\prime}, W. $\frac{3}{4}$ N. 45^{\prime}. What is then the position of the ship? Heligoland lies $54^{\circ} 12^{\prime} \mathrm{N} ., 7^{\circ} 54^{\prime} \mathrm{E}$.
12. A ship sailed from Barcelona ($41^{\circ} 25^{\prime}$ N., $2^{\circ} 10^{\prime}$ E.) SE. by E. $\frac{1}{2}$ E. until she reached latitude $36^{\circ} 21^{\prime} \mathrm{N}$. What was then her longitude?
13. A ship left a position in which Sable Island ($43^{\circ} 24^{\prime} \mathrm{N}$., $65^{\circ} 36^{\prime}$ W.) bore NW. $\frac{1}{2}$ W., distant 12 miles.

Afterwards sailed as under :

Courses.	Distances.
ESE.	72^{\prime}
SW. $\frac{1}{4}$ W.	37^{\prime}
NNE.	42^{\prime}
E.	25^{\prime}

Required the latitude and longitude reached.

51. The Double Angle.

In Fig. XXXI, the angle $B A C=A^{\circ}$; on $A B$ a semicircle is described with centre O, so that angle $B O C=2 A$.

Let fall $C N$ perpendicular to $A B$.

Fig. XXXI.

$$
\begin{aligned}
\cos 2 A & =\frac{O N}{O C} \\
& =\frac{A N-A O}{O C} \\
& =\frac{A N}{O C}-1
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\{ & =\frac{2 A N}{2 O C}-1 \quad \begin{array}{l}
\text { Fill in the vacant places with the } \\
\text { hypotenuse of the triangle of } \\
\text { which } A N \text { is a side. }
\end{array}
\end{array}\right\}
$$

Exercises. In a similar way prove
i. $\sin 2 A=2 \sin A \cos A$.
ii. $\cos 2 A=1-2 \sin ^{2} A$.

Deduce

iii. $\cos 2 A=\cos ^{2} A-\sin ^{2} A$.
iv. $\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}$.
v. $\sin A=2 \sin \frac{1}{2} A \cos \frac{1}{2} A ; \cos A=\cos ^{2} \frac{1}{2} A-\sin ^{2} \frac{1}{2} A$.
vi. $2 \cos ^{2} \frac{1}{2} A=1+\cos A$.
vii. $2 \sin ^{2} \frac{1}{2} A=1-\cos A$.
viii. $\tan \frac{1}{2} A=\sqrt{\frac{1-\cos A}{1+\cos A}}=\frac{\sin A}{1+\cos A}=\frac{1-\cos A}{\sin A}$.
ix. Prove the formulae for $\sin 2 A$ and $\cos 2 A$ when $2 A$ is obtuse.
x. Do these proofs apply to angles of any size? If not, between what limits do they apply? Why is the ambiguous sign omitted in viii ?
52. Geometrical questions may often be solved by using Trigonometry. For example:

If from a point outside a circle a secant and a tangent be drawn, the rectangle contained by the whole secant and the part outside the circle is equal to the square on the tangent.

In Fig. XXXII it is required to prove that rect. $P A \cdot P B=\mathrm{sq}$. on $P T$.

Fig. XXXII.
Let radius $=r, O P=c$, and angle $O P B=\theta$, angle $O A C=\phi$.

$$
P A=P C-A C
$$

$$
=c \cos \theta-r \cos \phi
$$

$$
P B=P C+C B
$$

$$
=P C+A C \quad \text { (Prop. 21) }
$$

$$
=c \cos \theta+r \cos \phi
$$

$$
\therefore \quad P A \cdot P B=c^{2} \cos ^{2} \theta-r^{2} \cos ^{2} \phi
$$

$$
=c^{2}-r^{2}-c^{2} \sin ^{2} \theta+r^{2} \sin ^{2} \phi .
$$

But

$$
c \sin \theta=O C \text { from triangle } O P C
$$

$$
=r \sin \phi \text { from triangle } O A C
$$

Hence

$$
\begin{aligned}
P A \cdot P B & =c^{2}-r^{2} \\
& =O P^{2}-O T^{2} \\
& =P T^{2} \text { since } O T P \text { is a right angle. }
\end{aligned}
$$

53. Known results in Geometry are useful for proving Trigonometrical relations.

Show that, in any triangle,

$$
\frac{\tan \frac{1}{2}(A-B)}{\tan \frac{1}{2}(A+B)}=\frac{a-b}{a+b} .
$$

With centre C and radius $C A$ (i.e. b), describe a circle cutting $C B$ in E and $C B$ produced in D.

Then $B E=a-b$, and $B D=a+b$.
Join $A D$ and $A E$.
Through E draw $E F$ parallel to $D A$ and meeting $A B$ at F.
Then the angle $D C A$ at the centre $=180-C=A+B$.
So that the angle $D E A$ at the circumference $=\frac{1}{2}(A+B)$.

Fig. XXXIII.
Also the angle $B A E=B A C-E A C=A-\frac{1}{2}(A+B)=\frac{1}{2}(A-B)$.
Also the angle $E A D$, being in a semicircle, is a right angle.

$$
\begin{aligned}
& \tan \frac{1}{2}(A+B)=\frac{A D}{A E} \\
& \tan \frac{1}{2}(A-B)=\frac{E F}{A E}, \text { since } A E F=E A D=\text { a right angle. }
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{\tan \frac{1}{2}(A-B)}{\tan \frac{1}{2}(A+B)} & =\frac{E F}{A D} \\
& =\frac{B E}{B} \bar{D} \text { since } E F \text { is parallel to } A D . \text { (Prop. } 12 a . \text {) } \\
& =\frac{a-b}{a+b} .
\end{aligned}
$$

Corollary. $A+B+C=180^{\circ} ; \quad \therefore \frac{1}{2}(A+B)=90-\frac{1}{2} C$.
Hence the above result may be written

$$
\tan \frac{1}{2}(A-B)=\frac{a-b}{a+b} \cot \frac{1}{2} C
$$

This formula will be used in a later chapter.

Examples V.

In the following examples:
A, B, C are the angles of a triangle $A B C$.
a, b, c are the sides, $s=$ half the sum of the sides; R is the radius of the circumcircle.
r is the radius of the inscribed circle.
r_{1} is the radius of the escribed circle touching the side $B C$.
Δ is the area of the triangle.
D, E, F are the middle points of the sides $B C, C A, A B$, respectively.
X, Y, Z are the feet of the perpendiculars let fall from A, B, C respectively on the opposite sides.
O is the centre of the circumcircle.
I is the centre of the inscribed circle.
K is the orthocentre.

1. Express in terms of the sides and angles the lengths of $A X$, $B X, C X, A K, B K, C K$.
2. Express the length of $A D$ in terms of (i) a, b, C, (ii) a, b, B, (iii) a, b, c.
3. Show that $a / \sin A=b / \sin B=c / \sin C=2 R$. Deduce that $R=a b c / 4 \Delta$.
4. Prove that $r\left(\cot \frac{1}{2} B+\cot \frac{1}{2} C\right)=a$. Write down the tiwo similar formulae.
5. Prove that $r=\Delta / s$. (No trigonometry required.)

Deduce that $\tan \frac{1}{2} A=\Delta \div\{s(s-a)\}$.
6. Show that $B X=a-b \cos c$; hence prove that

$$
c^{2}=a^{2}+b^{2}-2 a b \cos c
$$

7. Prove that (i) $\Delta=\frac{1}{2} a b \sin C$, (ii) $\Delta=r \cdot s$, (iii) $\Delta=a b c \div 4 R$, (iv) $\Delta=\sqrt{s(s-a)(s-b)(s-c)}$.
8. Prove that
(i) $\sin \frac{1}{2} A=\sqrt{(s-b)(s-c) \div b} c$, (ii) $\cos \frac{1}{2} A=\sqrt{s(s-a) \div b c}$,
(iii) $\tan \frac{1}{2} A=\sqrt{(s-b)(s-c) \div s(s-a)}$.
9. Show that the triangles $A B C$ and $A Y Z$ are equiangular ; hence prove that $Y Z=a \cos A$.
10. Two tangents are drawn from a point P to a circle of radius 10 cm . ; the tangents contain an angle of 43°. Find the lengths of the tangents and the distance of P from the centre.
11. A sheet of iron is shaped so that it can be rolled up to form a conical funnel 6 feet high with open circular ends 2 feet and 6 feet diameter respectively. Draw a plan of the sheet before rolling. What is the inclination of the edge of the funnel to the line joining the centres of the ends?
12. A circle rolls without slipping along a straight line : prove that the co-ordinates of a point fixed to the circumference are such that $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$; the origin being taken at the point where the fixed point meets the straight line, and θ being the angle turned through by the circle.
13. One of the angles of a right-angled triangle is the acute angle whose sine is $\frac{2}{3}$, and the length of the shortest side of the triangle is 10 feet. Find the lengths of the other two sides.
14. A is the highest point of a sphere with centre O; a particle slides from a position P, where the angle $A O P=\theta$, to the position Q where the angle $A O Q$ is ϕ. How much lower is Q than P and how much further from $O A$?
15. The time t of sliding from rest down a length s inclined at θ to the horizon is given by $s=\frac{1}{2} g t^{2} \sin \theta$ where g is a constant. A circle is held with a diameter $A B$ vertical; prove that the time of sliding along a chord from the highest point A to the circumference is the same whatever be the inclination of the chord, and that the time of sliding from the circumference along a chord to B is also independent of the inclination of the path.
16. A plane, inclined at 20° to the horizon, is placed with the line of greatest slope pointing north. A line is drawn on the plane, pointing NNE. ; find the inclination of this line to the horizontal.
17. A man 6 feet high walks along a straight line which passes 3 feet from a lamp-post. If the light is 9 feet from the ground, find the length of the man's shadow when his distance from the point on his path nearest to the lamp is 10 feet. What is the locus traced out by the extremity of his shadow as he walks along the line?
18. If, in the previous question, there is a vertical wall parallel to the man's path and distant 2 feet from it on the side remote from the lamp, what is then the length of the shadow and the locus traced by its extremity?
19. Draw the graph of $\theta / \sin \theta$ from $\theta=0$ to $\theta=\frac{1}{2} \pi$.

Use the graph to solve the following problem.
A string 30 inches long is tied to the ends of a cane 35 inches long, thus forcing the cane into a circular arc. Find the radius of the arc correct to the nearest inch.
20. Find the length of a strap which passes tightly round two pulleys of radii 2 feet and 3 feet, their centres being 6 feet apart.

CHAPTER VI

THE TRIANGLE

Several formulae connecting the sides and angles of a triangle have been proved in the examples of the preceding chapters. They are here gathered together for reference and proofs are given. Care should be taken that the proof applies when the triangle is obtuse-angled; if it does not, a separate proof must be given.

Relations between the sides and angles.
54. The angle formula. $\mathbf{A}+\mathbf{B}+\mathbf{C}=2$ right angles.

The sine formula. $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}(=2 R)$.

Fig. XXXIV.
Let O be the centre of the circumcircle, and D the middle point of $B C$.

Join $O B, O C, O D$.
Then, in the left-hand circle of Fig. XXXIV,

$$
\text { angle } \begin{aligned}
B O C & =2^{c e} \text { angle } B A C \\
& =2 \mathrm{~A} .
\end{aligned}
$$

Triangles $B O D$ and $C O D$ are congruent;
(Prop. 8 a.)

$$
\begin{gathered}
\therefore \quad B O D=C O D=A . \\
B D=\frac{1}{2} B C=\frac{1}{2} a .
\end{gathered}
$$

Also

In the right-angled triangle $B O D$,

$$
B D=O B \sin B O D
$$

$$
\begin{aligned}
& \text { i. e. } \quad \frac{1}{2} a=R \sin A ; \\
& \therefore \quad \frac{a}{\sin A}=2 R .
\end{aligned}
$$

In a similar way it may be proved that

$$
\frac{b}{\sin B}=2 R \text { and } \frac{c}{\sin C}=2 R .
$$

Hence

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R
$$

Exercise. Supply the proof when the angle A is obtuse.
Note. In using this formula the following algebraic result is often useful :

$$
\text { If } \frac{a}{b}=\frac{c}{d}=\frac{e}{f} \text {, then each fraction equals } \frac{p a+q c+r e}{p b+q d+r f} .
$$

55. The cosine formula $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$, and its equivalent $a^{2}=b^{2}+c^{2}-2 b c \cos A$.

This can be proved very shortly by assuming Euclid II, 13 and 14 ; but it is better to base the proof on the theorem of Pythagoras.

Fig. XxXV.

Fig. XXXVa.

Let $C Z$ be the perpendicular from C on $A B$, Fig. XXXV.
Then $Z C=b \sin A, A Z=b \cos A$, and $B Z=c-b \cos A$.

$$
\begin{aligned}
B C^{2} & =B Z^{2}+Z C^{2} \\
a^{2} & =(c-b \cos A)^{2}+(b \sin A)^{2} \\
& =c^{2}-2 b c \cos A+b^{2} \cos ^{2} A+b^{2} \sin ^{2} A,
\end{aligned}
$$

i.e.

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

or $\quad \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$.

If A is obtuse, then in Fig. $X X X V$ a,

$$
\begin{aligned}
& Z C=b \sin (180-A)=b \sin A \\
& A Z=b \cos (180-A)=-b \cos A, \\
& B Z=B A+A Z=C+(-b \cos A)=c-b \cos A .
\end{aligned}
$$

The proof is now the same as before.
Exercise. Write down the corresponding formulac for $\cos B$ and $\cos C$.
56. The Projection formulae

$$
\mathrm{c}=\mathrm{b} \cos \mathrm{~A}+\mathrm{a} \cos \mathrm{~B}
$$

In Fig. XXXV, $B Z$ is the projection of $B C$ on $B A$; and $A Z$ is the projection of $A C$.
i.e.

$$
\begin{aligned}
A B & =A Z+B Z \\
c & =b \cos A+a \cos B
\end{aligned}
$$

Exercises. Supply the proof when A is obtuse.
Write down the other two corresponding formulae.

57. Area formulae

The symbol Δ is used to denote area of triangle.
(i) $\Delta=\frac{1}{2}$ any side \times perpendicular from opposite angle.
(ii) $\Delta=\frac{1}{2} \mathrm{AB} \times \mathrm{ZC}=\frac{1}{2} \mathrm{c} \cdot \mathrm{b} \sin \mathrm{A}=\frac{1}{2} \mathrm{bc} \sin \mathrm{A}$.
(iii) $\Delta \doteq \sqrt{s(s-a)(s-b)(s-c)}$.

In Fig. XXXV, $B Z=a \cos B=a \times \frac{c^{2}+a^{2}-b^{2}}{2 c a}$.

$$
\begin{aligned}
Z C^{2} & =a^{2}-\frac{\left.c^{2}+a^{2}-b^{2}\right)^{2}}{(2 c)^{2}} ; \\
\therefore \quad(2 c \cdot Z C)^{2} & =(2 a c)^{2}-\left(c^{2}+a^{2}-b^{2}\right)^{2} \\
& =\left(a^{2}+2 a c+c^{2}-b^{2}\right)\left(b^{2}-\overline{a^{2}-2 a c+c^{2}}\right) \\
& =(a+b+c)(a-b+c)(a+b-c)(b+c-a) .
\end{aligned}
$$

Let $2 s=a+b+c$, then $b+c-a=2(s-a) \& c$. ; so that

$$
\text { 2c. } \begin{aligned}
Z C & =\sqrt{2 s \cdot 2(s-a) \cdot 2(s-b) \cdot 2(s-c)} ; \\
\triangle & =\frac{1}{2} \mathrm{AB} \cdot \mathrm{ZC} \\
& =\sqrt{\mathrm{s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})} .
\end{aligned}
$$

Exercise. Show that

$$
16 \Delta^{2}=2\left(b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}\right)-\left(a^{4}+b^{4}+c^{4}\right)
$$

58. From these formulae others may be deduced.

Example i. To show that in any triangle

$$
\begin{equation*}
\cos (A+B)=\cos A \cos B-\sin A \sin B \tag{i}
\end{equation*}
$$

From sine formula $\quad a \sin B-b \sin A=0$.
From projection formula $a \cos B+b \cos A=c$.
Square and add, $a^{2}+b^{2}+2 a b(\cos A \cos B-\sin A \sin B)=c^{2}$.
From cosine formula $\quad a^{2}+b^{2}-2 a b \cos C \quad=c^{2}$.
It follows that

$$
\cos C=-(\cos A \cos B-\sin A \sin B)
$$

From the angle formula $C=180-(A+B)$,
i.e.

$$
\cos C=-\cos (A+B)
$$

Hence $\quad \cos (A+B)=\cos A \cos B-\sin A \sin B$.
Example ii. In any triangle

$$
\sin (A-B)=\sin A \cos B-\cos A \sin B
$$

Multiply together equations (i) and (ii) above.
$a^{2} \sin B \cos B-b^{2} \sin A \cos A-a b(\sin A \cos B-\cos A \sin B)=0$.
From Fig. XXXVI it is seen that
$a^{2} \sin B \cos B=B Z . Z C=2^{c e}$ triangle $B Z C$,
and $\quad b^{2} \sin A \cos A=2^{c e}$ triangle $A Z C$

$$
=2^{c e} \text { triangle } A^{\prime} Z C
$$

($Z A^{\prime}=Z A$, so that triangles $C Z A, C Z A^{\prime}$ are congruent).
$\therefore a^{2} \sin B \cos B-b^{2} \sin A \cos A=2^{c e}$ triangle $B C A^{\prime}$
$=B C . C A^{\prime} \sin B C A^{\prime}$

$$
=a b \sin (A-B) .
$$

Fig. XXXVI.
Comparing this with the result above, we see that $\sin (A-B)=\sin A \cos B-\cos A \sin B$.
This result can, however, be obtained more quickly.

For $\quad \frac{\sin B C A^{\prime}}{A^{\prime} B}=\frac{\sin C B A^{\prime}}{C A^{\prime}}$,
i.e. $\quad \frac{\sin (A-B)}{\cos B-b \cos A}=\frac{\sin B}{b}$.

Hence

$$
\begin{aligned}
\sin (A-B) & =\frac{a \sin B \cos B}{b}-\cos A \sin B \\
& =\sin A \cos B-\cos A \sin B
\end{aligned}
$$

since $a \sin B=b \sin A$
Example iii. To show that the area of a quadrilateral inscribed in a circle is $\sqrt{(s-a)(s-b)(s-c)(s-d)}$ where $s=\frac{1}{2}(a+b+c+d)$.

In Fig. XXXVII
Area of $A B C D=$ sum of triangles $A B D$ and $B C D$

$$
\begin{aligned}
& =\frac{1}{2} a d \sin A+\frac{1}{2} l c \sin (180-A) \\
& =\frac{1}{2}(a d+b c) \sin A .
\end{aligned}
$$

From triangle $A B D$,

$$
B D^{2}=a^{2}+d^{2}-2 a d \cos A .
$$

Fig. XXXVII.
From triangle $B C D$,

$$
B D^{2}=b^{2}+c^{2}-2 b c \cos (180-A)
$$

Hence

$$
a^{2}+d^{2}-2 a d \cos A=b^{2}+c^{2}+2 b c \cos A,
$$

i.e.

$$
2(a d+b c) \cos A=a^{2}+d^{2}-\left(b^{2}+c^{2}\right) ;
$$

$\therefore \quad 2(a d+b c)(1+\cos A)=(a+d)^{2}-(b-c)^{2}$,
and $\quad 2(a d+b c)(1-\cos A)=(b+c)^{2}-(a-d)^{2}$.

$$
\begin{aligned}
& \text { Hence } 4(a d+b c)^{2}\left(1-\cos ^{2} A\right) \\
& \quad=(-a+b+c+d)(a-b+c+d)(a+b-c+d)(a+b+c-d), \\
& \text { i.e. }\left\{\frac{1}{2}(a d+b c) \sin A\right\}^{2} \\
& =\frac{1}{2}(-a+b+c+d) \frac{1}{2}(a-b+c+d) \frac{1}{2}(a+b-c+d) \frac{1}{2}(a+b+c-d) \\
& \therefore \quad \text { Area of } A B C D=\sqrt{(s-a)(s-b)(s-c)(s-d)} .
\end{aligned}
$$

Examples VI a.

1. From the three projection formulae deduce the three cosine formulae.
2. Prove that $\sin A=\sin B \cos C+\cos B \sin C$; and deduce that $\sin (B+C)=\sin B \cos C+\cos B \sin C$.
3. Prove that $\cos (A-B)=\cos A \cos B+\sin A \sin B$.
4. Show that $\Delta=\frac{1}{2}\left(b^{2} \sin C \cos C+c^{2} \sin B \cos B\right)$.
5. Show that $\Delta=\frac{1}{2} c^{2}\{\sin A \sin B \div \sin (A+B)\}$.
6. Prove that $\sin A+\sin B>\sin C$.
7. Prove that $\cot A+\cot B=c \operatorname{cosec} B \div a$. What third expression are these equal to ?
8. Show that
R (i. e. the radius of the circumcircle) $=s \div(\sin A+\sin B+\sin C)$.
9. Use the formula $\cos A=1-2 \sin ^{2} \frac{1}{2} A$ to prove that

$$
\sin \frac{1}{2} A=\sqrt{(s-b)(s-c) \div b c}
$$

Write down the similar formulae for $\sin \frac{1}{2} B$ and $\sin \frac{1}{2} C$.
10. In a similar way to that suggested in the previous example, prove that $\cos \frac{1}{2} A=\sqrt{s(s-a) \div b c}$. Write down the formulae for $\cos \frac{1}{2} B$ and $\cos \frac{1}{2} C$. What is the formula for $\tan \frac{1}{2} A$?
11. Given $a=17, b=12, B=37^{\circ} 15^{\prime}$, find A.
12. Given $a=14, b=13, c=12$, find the greatest angle.
13. Given $a=45, A=45^{\circ}, B=60^{\circ}$, find b.
14. Given $b=17, c=42, A=72^{\circ}$, find a.
15. Given $a=176, b=291, c=352$, find all the angles.
(Choose a formula adapted for logarithms.)
16. Given $a=7, b=5, C=49^{\circ}$, find c.
17. Given $b=9, c=10, C=57^{\circ}$, find a.
18. By considering two forms for the area of an isosceles triangle, prove that $\sin A=2 \sin \frac{1}{2} A \cos \frac{1}{2} A$.
19. Two sides of a triangle are 3 and 12 and the contained angle is 30°; find the hypotenuse of an isosceles right-angled triangle of equal area.
20. Two adjacent sides of a parallelogram, 5 inches and 8 inches long respectively, include an angle of 60°. Find the length of the two diagonals and the area of the figure.
21. If in a triangle $C=60^{\circ}$, prove that

$$
1 /(a+c)+1 /(b+c)=3 /(a+b+c) .
$$

22. On a straight line $A B, 4$ inches long, describe a semicircle, and on the arc of the semicircle find points P, Q, R, S such that the areas of the triangles $A P B, A Q B, A R B, A S B$ are 1 square inch, 2 square inches, 3 square inches, and 4 square inches respectively. If C is the centre of the circle, determine the sines of the angles $A C P, A C Q, A C R$, and $A C S$, and hence find, from the tables, the values of these angles.
23. If a quadrilateral can be inscribed in one circle and circumscribed about another, show that its area is $\sqrt{a b c d}$, where a, b, c, d are the lengths of the sides.

The circles of the triangle.

59. It is shown in any Geometry textbook that
(i) the centre of the circumcircle is the point of concurrence of the perpendicular drawn at the middle points of the sides;
(ii) the centre of the inscribed circle is the point of concurrence of the three lines bisecting the three angles;
(iii) the centre of an escribed circle is the point of concurrence of the bisector of the opposite interior angle with the bisectors of the two adjacent exterior angles.

In Fig. XXXVIII, we have

$$
\begin{align*}
A Q & =A R, \tag{Prop.24.}\\
B P & =B R, \\
C P & =C Q ; \\
\therefore \quad A Q+B P+C P & =\frac{1}{2} \text { sum of sides }=s . \\
A Q & =s-a .
\end{align*}
$$

Hence
In a similar way, prove that

$$
\begin{array}{ll}
B P= & C P^{\prime}= \\
C Q= & Q Q^{\prime}= \\
A Q^{\prime}= & P P^{\prime}=
\end{array}
$$

Fig. XXXVIII.

Examples VI b.

Prove the following formulae :

1. $R=a \div 2 \sin A$.
2. $R=$ alc $\div 4 \Delta$.
3. $r=\Delta / s$. (Consider the sum of the triangles BIC, CIA, AIB.)
4. $r=a \div\left(\cot \frac{1}{2} B+\cot \frac{1}{2} C\right)$.
5. $r_{\mathrm{j}}=\Delta /(s-a)$.
6. $r_{1}=a \div\left(\tan \frac{1}{2} B+\tan \frac{1}{2} C\right)$.

Using the above formulae, prove the following relations:
7. In a right-angled triangle $R+r=\frac{1}{2}(a+b)$.
8. $1 / r_{1}+1 / r_{2}+1 / r_{3}=1 / r$. 9. $1 / r_{2}+1 / r_{3}=2 \div b \sin c$.
10. $r r_{1} r_{2} r_{3}=\Delta^{2}$.
11. $r r_{1}=(s-b)(s-c)$.
12. $(a b c \div \sin A \sin B \sin C)^{\frac{1}{3}}$.
13. $2 R r=a b c \div(a+b+c)$.
14. $4 R \sin A \sin B \sin C^{\prime}=a \cos A+b \cos B+c \cos C$.
15. $\tan \frac{1}{2} A=\sqrt{(s-b)(s-c) \div s(s-a)}$.
16. $s^{2}=\Delta \cot \frac{1}{2} A \cot \frac{1}{2} B \cot \frac{1}{2} C$.
17. If $A B C$ is a triangle such that $2 b=a+c$, and p is the length of the perpendicular from B upon $A C$, show that $\tan \frac{1}{2} A$ and $\tan \frac{1}{2} C$ are equal to the roots of the equation

$$
x^{2}-(b / p) x+\frac{1}{3}=0
$$

18. Show that the sum of the radii of the escribed circles of a triangle is equal to the radius of the inscribed circle together with four times the radius of the circumscribing circle.
19. Show that the area of the triangle formed by joining the centres of the escribed circles is

$$
8 R^{2} \cos \frac{1}{2} A \cos \frac{1}{2} B \cos \frac{1}{2} C .
$$

20. The sides of a triangle are $3,5,6$; find the radii of the inscribed and circumscribed circles.
21. In an isosceles triangle the base is 100 cm . and the perpendicular from the vertex is 70 cm . ; find the radii of the inscribed and circumscribed circles.
22. A triangle is described with base $B C=5$ inches and angle $A=70^{\circ}$. What is the radius of the circumcircle? Find the distance of the centre of the circumcircle from $B C$.
23. Find the radius of the circumcircle of the triangle $A B C$ being given that $B C=7, C A=6$, and $C=60^{\circ}$.
24. If $a=32, b=16, C=42^{\circ}$, find R and r.
25. The area of a parallelogram having base 5.8 cm . and angle 123° is $37.7 \mathrm{sq} . \mathrm{cm}$. Find the other sides and angles. Find the radii of the circles which pass through three of the corners of this parallelogram.
26. Two of the sides of a triangle are 7.5 cm . and 9.3 cm ., the included angle is 37°. Find the radius of the circle which touches these sides produced and the third side.

Oral Revision Examples.

Complete the following identities and equations :

1. $\sin (270-A)=$
2. $\cos ^{2} \theta=$
3. $2 \tan A \cot A=$
4. If $\sin \theta=\frac{1}{2}, \theta=$
5. In any triangle $b^{2}=$
6. $\sin 2 A=$
7. If $\cos \theta=\frac{3}{5}, \tan \theta=$
8. In any triangle $R=$
9. $\tan 225^{\circ}=$
10. Δ in terms of the sides $=$
11. $\tan ^{-1} 1=$
12. length of arc $=$ radius x
13. Definition of tangent.
14. $\sec ^{2} A-1=$
15. $\sin ^{2} B+\sin ^{2}(90-B)=$
16. In any triangle $\cos C=$
17. In any triangle $b \cos C+c \cos B=$
18. In any triangle $b c \sin A=19$. In any triangle $r=$
19. $\tan \frac{1}{2} \pi=$
20. Definition of sine.
21. In any triangle $r_{1}=$
22. What formula connects a, b, and B ?
23. $\tan ^{-1}(-\sqrt{3})=$
24. $\tan ^{2} 73 \frac{1}{2}^{\circ}+1=$
25. $37^{\circ}=$? radians.
26. If $\cos \theta=-\frac{1}{2}, \theta=$
27. $a b c=$
28. $\cos \left(360^{\circ}-B\right)=$
29. In any triangle $\cos A=$
30. 37 ?
31. $\cos ^{2}\left(A-45^{\circ}\right)+\sin ^{2}\left(A-45^{\circ}\right)=$
32. $b \sin C=$
33. Express R in terms of the sides.
34. If $\sin \theta=\sin \alpha$, then $\theta=35 \cdot \cos \theta=$ (in terms of $\sin \frac{1}{2} \theta$).
35. Area of triangle $=$ 37. $a^{2}+c^{2}-2 a c \cos B=$
36. $\cos 1200^{\circ}=$
37. Maximum value of $2 \sin \alpha \cos \alpha=$
38. $\cos ^{4} \theta-\sin ^{4} \theta=$ (in its simplest form).
39. $\Delta \div(s-a)=$
40. $\tan (180-B)=$
41. $a \cos C+c \cos A=$
42. $b c \sin A=$
43. $\sin ^{2}(A+B)+\cos ^{2}(A+B)=46$. If $\cos x=\cos A$, then $x=$
44. In any triangle $\cos A=$
45. $\cos 2 \theta=$
46. $\tan 60^{\circ}=$
47. How many radians $=A^{\circ}$?

Examples VI.

1. Prove that $(a \cos A-b \cos B) \div\left(a^{2}-b^{2}\right)+\cos C / c=0$.
2. Prove that $c^{2}=(a+b)^{2} \sin ^{2} \frac{1}{2} C+(a-b)^{2} \cos ^{2} \frac{1}{2} C$.
3. In a triangle $A B C$ the lines drawn from A and C, perpendicular to the opposite sides, intersect in O. If the angle A is acute, show that $O A=b \cos A / \sin B$.

Also draw a diagram in which A is an obtuse angle, and establish the corresponding expression for $O A$ in that case.
4. Show that in any triangle the product of a side and the sines of the two adjacent angles is the same, whichever side be taken.
5. Find the area of a regular polygon of n sides circumscribed about a circle of radius r :
6. Regular polygons of 15 sides are inscribed in and circumscribed about a circle whose radius is one foot; show that the difference of their areas is nearly 20 square inches.
7. $A B C D$ are four points on a circle such that the angles $B A C$ and $B C A$ each equal θ. Show that $A D+C D=2 B D \cos \theta$.
8. If $2 \cos B=\sin A / \sin C$, prove that the triangle is isosceles.
9. If $\tan A / \tan B=\sin ^{2} A / \sin ^{2} B$, show that the triangle is isosceles or right-angled.
10. Express the sides of a triangle in terms of the angles and the semi-perimeter.
11. In a triangle $A B C$ perpendiculars $A D$ and $B E$ are let fall on the opposite sides; prove that the radius of the circle circumscribing the triangle $C D E$ equals $R \cos C$.
12. If in a triangle the median bisecting the base $A B$ is perpendicular to the side $A C$, prove that $2 \tan A+\tan C=0$.
13. If p and q are the lengths of the perpendiculars from A, B on any arbitrary line drawn through the vertex C of a triangle, prove that

$$
a^{2} p^{2}+b^{2} q^{2}-2 a b p q \cos C=a^{2} b^{2} \sin ^{2} C .
$$

14. An isosceles triangle, vertical angle 35°, is inscribed in a circle whose radius is 1.65 inches. Find the lengths of the sides.
15. Show that in any triangle

$$
\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c} .
$$

16. If R is the radius of the circumcircle of any triangle and x, y, z are the lengths of the perpendiculars let fall from its centre on the sides, prove that

$$
R^{3}-\left(x^{2}+y^{2}+z^{2}\right) R-2 x y z=0 .
$$

17. The rectangular co-ordinates of the angular points of a triangle are $(4,5),(6,7),(8,6)$; determine the sum of the two smaller angles.
18. A $\operatorname{rod} A B$, length $2 a$, can turn about a hinge fixed to the wall at A; it is supported by a string $B C$, length l, fastened to a point C on the wall at a height h above A.
(i) If $B C$ is horizontal, what is the inclination of the rod to the vertical?
(ii) If $B C$ is horizontal, what is the inclination to the vertical of the line joining the hinge to the middle point of the string?
(iii) If the string and rod are inclined at θ and ϕ to the vertical respectively, prove that (i) $2 a \sin \phi=l \sin \theta$, (ii) $l \cos \theta-2 a \cos \phi=h$.
(iv) In the general case, what is the angle between the string and the rod? Give the answer in terms of h, a, θ or h, l, ϕ.
(v) In the general case, what is the inclination to the vertical of the line joining the hinge to the middle point of the string? Give the answer in terms of h, a, ϕ.
19. Three equal spheres of radius 7 centimetres are fixed in a horizontal plane so as to touch each other; a sphere of radius 6 cm . rests upon these three. Find the height of the centre of the fourth sphere above the horizontal plane, and the inclination to the vertical of the line joining the fourth centre to one of the lower centres.
20. Three equal rods of length 54 inches are fixed so as to form a tripod. If their feet are at the corners of an equilateral triangle, side 18 inches, find the inclination of each rod to the vertical.
21. In any triangle prove that the centroid trisects the line joining the circumcentre to the orthocentre.
22. Find the lengths of the sides of the pedal triangle of the triangle $A B C$. Find also the radii of the inscribed and circumscribed circles of that triangle.
(The pedal triangle is formed by joining the feet of the perpendiculars let fall from the vertices on the opposite sides.)
23. If $a=5$ and $b=4$, draw a graph to show the value of c as C varies from 0° to 180°. Hence find the value of c when $C=40^{\circ}$.

CHAPTER VII

SOLUTION OF TRIANGLES

60. It is known from Geometry that, if three parts of a triangle are given, the remaining parts can in some cases be found; and that, in other cases, relations between the missing parts may be found even though their exact values cannot be determined. When actual numbers are given, results ean be obtained to a greater degree of accuracy by Trigonometrical methods than by drawing to scale. In all cases a formula is sought which shall contain the three given letters and one unknown letter.

61. Case I. Three angles given.

The angle formula shows that $A+B+C$ must be 180°. No formula contains the three angles and one side only; but from the sine formula, viz. $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$, we can find the ratios of the sides.

62. Case II. Two angles and one side given.

The third angle can be found immediately since

$$
A+B+C=180^{\circ} .
$$

Suppose a is the given side; and it is required to find b. The formula must contain a, b, and two of the angles; hence we use

$$
\frac{b}{\sin B}=\frac{a}{\sin A} .
$$

This is adapted for the use of logarithms as it involves no addition or subtraction. If the tables in use give the logarithms of the cosecant, it may be advisable to use the following logarithmic form $\quad \log b=\log a+\log \sin B+\log \operatorname{cosec} A$.
63. Case III. One angle and the two sides containing the angle are given.
Suppose a, b, C are the given parts. Then the cosine formula $c^{2}=a^{2}+b^{2}-2 a b \cos C$ enables us to determine c. When c is
determined, the remaining angles can be found by the sine formula.
This method is of practical use only when the numbers involved are small; the cosine formula is not adapted for the use of logarithms. It is usual, therefore, to use the formula proved in $\S 53$,* viz. $\quad \tan \frac{1}{2}(A-B)=\frac{a-b}{a+b} \cot \frac{1}{2} C$.

This determines $\frac{1}{2}(A-B)$; also $\frac{1}{2}(A+B)$ equals the complement of $\frac{1}{2} C$; hence A and B are found by adding and subtracting.
The value of c is then calculated by the sine formula.
64. Case IV. One angle and the two sides not containing the angle are given.

Suppose a, b, A are given. Then we can determine c from the formula $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A$.

This is a quadratic equation to determine c, and it is seen that there is the possibility of two distinct values for c. This is also seen from the geometrical construction. On this account this case is usually known as the Ambiguous Case.

If there are two values of c, there will be two values for B and for C. This is seen independently if the sine formula is used (as it usually is, on account of its adaptability for logarithms) :

$$
\frac{\sin B}{b}=\frac{\sin A}{a}
$$

Suppose that this leads to the result

$$
\sin B=\sin x
$$

Then

$$
B=x \text { or } 180-x
$$

This shows that, if there are two solutions, those two solutions are supplementary. Hence one of the solutions will be obtuse. Preliminary geometrical considerations often show that there can be only one solution.
(i) If the given angle A is not acute, then B must be acute and the olotuse-angled solution must be rejected.
(ii) If $a>b$ or $=b$, then $A>B$ or $=B$; consequently B cannot be obtuse.

Exercises. When a, b, A are given, show (i) from the geo-

[^11]metrical solution, (ii) from the cosine formula, (iii) from the sine formula, that
(a) there is no solution, if $a<b \sin A$;
(b) there is one solution only, if $a=b \sin A$;
(c) there are two solutions, if $a>b \sin A$ but $<b$;
(d) there is one solution only, if $a>b$.

Point out the difference in nature of the one solution in (b) and (d).

65. Case V. Three sides given.

Here again the cosine formula may be used, if the numbers involved are not inconveniently large. For logarithmic calculation the formula for $\sin \frac{1}{2} A, \cos \frac{1}{2} A$, or $\tan \frac{1}{2} A$ is used. These half-angle formulae are derived from the cosine formula.

$$
\begin{aligned}
2 \sin ^{2} \frac{1}{2} A & =1-\cos A^{*}(\S 51) \\
& =\frac{2 b c-b^{2}-c^{2}+a^{2}}{2 b c} \\
& =\frac{a^{2}-(b-c)^{2}}{2 b c} ; \\
\therefore \quad \sin ^{2} \frac{1}{2} A & =\frac{(a-b+c)(a+b-c)}{4 b c} ; \\
\therefore \sin \frac{1}{2} \mathbf{A} & =\sqrt{\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{bc}}} . \\
\cos \frac{1}{2} \mathbf{A} & =\sqrt{\frac{\mathrm{s}(\mathrm{~s}-\mathrm{a})}{\mathrm{bc}}} . \\
\tan \frac{1}{2} \mathbf{A} & =\sqrt{\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{s}(\mathrm{~s}-\mathrm{a})}}
\end{aligned}
$$

Similarly

Divide
Of these three formulae it is best to use the tangent formula; for the logarithms used in finding $\tan \frac{1}{2} A$ are the same as those required for finding $\tan \frac{1}{2} B$ or $\tan \frac{1}{2} C$. If only one angle has to be found, it is indifferent which formula is used.

There is a simple geometrical proof for $\tan \frac{1}{2} A$.

[^12]In Fig. XXXVIII I is the centre of the inscribed circle, E is the point of contact of the circle with $A C$.

Then

$$
\begin{align*}
\tan \frac{A}{2} & =\frac{I Q}{A Q} \\
& =\frac{r}{s-a} \\
& =\frac{\Delta}{s(s-a)} \\
& =\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} .
\end{align*}
$$

Examples VII a. (See p. 81 for arrangement of work.)
In the following triangles when

Case I.

1. $A=79^{\circ} 20^{\prime}, B=64^{\circ} 10^{\prime}$, find the ratios of the sides.

Case II.

2. $A=58^{\circ} 12^{\prime}, B=64^{\circ} 33^{\prime}, a=385$, find b.
3. $A=38^{\circ} 24^{\prime}, C=95^{\circ} 5^{\prime}, c=7 \cdot 832$, find a and b.
4. $B=63^{\circ} 55^{\prime}, C=48^{\circ} 27^{\prime}, c=5 \cdot 75$, find b.

Case III.

5. $a=409, b=381, C=58^{\circ} 12^{\prime}$, find A and B.
6. $B=23^{\circ} 46^{\prime}, c=9 \cdot 72, a=8 \cdot 88$, find A and C.
7. $a={ }^{\circ} 532, c={ }^{\circ} 259, B=39^{\circ} 33^{\prime}$, find A and C.
8. $A=73^{\circ} 15^{\prime}, b=7315, c=8013$, find B and C.

Case IV.

9. $A=38^{\circ} 14^{\prime}, a=3 \dot{3}, b=44$, find C.
10. $a=409, b=385, A=64^{\circ} 32^{\prime}$, find B and C.
11. $b=6^{\circ} 901, c=5^{\circ} 749, C=48^{\circ} 27^{\prime}$, find B.
12. $A=73^{\circ} 15^{\prime}, a=7315, c=8013$, find B and C.

Case V.
13. $a=17, b=13, c=12$, find the least angle.
14. $a=793, b=937, c=379$, find all the angles.
15. $s=1410, a=1437, b=811$, find all the angles.
16. $s=1437, a=1410, b=811$, find all the angles.
17. $a=13, b=7, C=60^{\circ}$, find A and B.
18. $a=32, b=40, c=66$, find C.
19. $a=250, b=240, A=72^{\circ} 4^{\prime}$, find B and C.
20. $a=2 b, C=120^{\circ}$, find A, B and the ratio of c to a.
21. $a=36, b=63, c=81$, find the smallest angle.
22. $b=5, c=3, A=42^{\circ}$, find B and C.

Oral Examples.

State the formula to be used in the following cases:

1. Given a, b, C, find c.
2. Given a, b, C, find A and B.
3. Given b, c, C, find B.
4. Given b, c, C, find a.
5. Given c, a, C, find A.
6. Given c, a, C, find B.
7. Given c, A, B, find C.
8. Given c, a, A, find b.
9. Given a, b, B, find C.
10. Given a, b, c, find C.
11. Given A, C, b, find a.
12. Given a, B, A, find c.
13. Given A, B, C, find α.
14. Given a, c, B, find C.
15. Given a, b, B, find A.
16. Given a, b, c, find B.
17. Given c, A, B, find b.
18. What is the ambiguous case ?
19. When a, c, A are given, what are the conditions that there should be no ambiguity?

Examples VII b.

Solve the following triangles :

1. $a=5, b=7, C=30^{\circ}$.
2. $b=4, c=3, C=60^{\circ}$.
3. $a=65, b=63, c=16$.
4. $b=8, c=9, C=45^{\circ}$.
5. $a=7, B=120^{\circ}, A=45^{\circ}$.
6. $a=6, b=7, c=5$.
7. $b=926^{\circ} 7, A=48^{\circ} 24^{\prime}, B=31^{\circ} 13^{\prime}$.
8. $a=407^{\circ} 4, c=115^{\circ} 9, A=127^{\circ} 45^{\prime}$.
9. $a=1263, b=1359, c=1468$.
10. $a=53^{\circ} 94, b=156{ }^{\circ} 5, C=15^{\circ} 13^{\prime}$.
11. $b=457^{\circ} 2, c=342^{\circ} 6, A=73^{\circ} 45^{\prime}$.
12. $a=246^{\circ} 7, b=342^{\circ} 5, B=32^{\circ} 17^{\prime}$.
13. $c=79^{\circ} 48, A=54^{\circ} 16^{\prime}, B=85^{\circ} 6^{\prime}$.
14. $a=7 \cdot 956, b=10 \cdot 35, c=9.412$.
15. $b=9463, c=7590, C=43^{\circ} 47^{\prime}$.
16. $a=739, c=937, B=146^{\circ} 12^{\prime}$.

$$
\begin{aligned}
& \text { 17. } c=79^{\circ} 5, A=35^{\circ} 14^{\prime}, C=117^{\circ} 35^{\prime} . \\
& \text { 18. } A=89^{\circ}, B=18^{\circ} 47^{\prime}, C=72^{\circ} 13^{\prime} . \\
& \begin{array}{l}
\text { 19. } a=87 \cdot 6, b=57 \cdot 4, c=46^{\circ} . \\
\text { 21. } A=79^{\circ}, C=97^{\circ}, \\
\text { 2 }
\end{array} \quad \text { 20. } a=79, c=97, \Delta=2437 . \\
& \text { 23. } a^{2}+b^{2}=841, \sin C=1, \tan B=73 \cdot 6, R=57, a=48^{\circ} 9 . \\
& \text { 24. } A=42^{\circ} 35^{\prime}, a=83, b=74 . \\
& \text { 25. } a=2^{\circ} 740, b=7401, C=59^{\circ} 27^{\prime} .
\end{aligned}
$$

Heights and Distances.

66. First a figure must be drawn, not necessarily to scale ; the known lengths and angles should be indicated in the figure. It may be necessary to solve, or partly solve, more than one triangle before the required measurement is found. The scheme for working should be carefully thought out before the work is actually begun.

Example i. Wishing to find the height of a house standing on the summit of a hill of uniform slope, I descended the hill for 40 feet, and then found the height subtended an angle of $34^{\circ} 18^{\prime}$. On descending a further distance of 60 feet, I found the subtended angle to be $19^{\circ} \mathbf{1 5}^{\prime}$. Find the height of the house.

Fig. XXXIX.
Scheme. - In triangle $A D C$ we know one side $C D$ and all the angles; so $A C$ can be found. Then in the trianglo $A C B$ two sides $A C, C B$ are known, and the included angle, hence $A B$ can be found.

From triangle $A C D$,

$$
\begin{aligned}
\frac{A C}{\sin A D C} & =\frac{C D}{\sin D A C}, \\
A C & =60 \sin 19^{\circ} 15^{\prime} \operatorname{cosec} 15^{\circ} 3^{\prime} \\
& =76^{\circ} 182 .
\end{aligned}
$$

From triangle $A B C$,

$$
\begin{aligned}
\tan \frac{1}{2}(B-A) & =\frac{b-a}{b+a} \cot \frac{1}{2} C \\
& =\frac{36^{\circ} 182}{116^{\circ} 182} \cot 17^{\circ} 9^{\prime} ;
\end{aligned}
$$

$$
\therefore \quad \frac{1}{2}(B-A)=45^{\circ} 16^{\prime},
$$

$$
\frac{1}{2}(B+A)=72^{\circ} 51^{\prime}
$$

$$
\therefore \quad A=27^{\circ} 35^{\prime} \text {. }
$$

Again, $\quad \frac{A B}{C B}=\frac{\sin A C B}{\sin C A B}$,
i.e. $\quad A B=\frac{40 \sin 34^{\circ} 18^{\prime}}{\sin 27^{\circ} 35^{\prime}}$

$$
=48.792
$$

Height of house $=48^{\circ} 8$ feet.
Example ii. Wanting to know the height of a castle on a rock, I measured a base line of 100 yards, and at one extremity found the angle of clevation of the castle's top to be $45^{\circ} 15^{\prime}$, and the angle subtended by the castle's height to be $34^{\circ} 30^{\prime}$; also the angle subtended by the top of the castle and the other extremity of the base line was $73^{\circ} 14^{\prime}$. At the other extremity the angle between the first extremity and the top of the castle was $73^{\circ} 18^{\prime}$. Find the height of the castle.

This requires a rough perspective figure of the whole, and subsidiary plane figures.

Fig. XL.
$A B$ represents the castle.
C is the point in the same vertical as $A B$, and in the same horizontal plane as $D E$, the base line.

The following magnitudes are known :
$D E=100$ yards.
$A C D$ and $A C E$ are each right angles.
$A D C, A D B$ are known, therefore $B D C$ is known.
$A D E, A E D$ are known.
Scheme. In triangle $A D E, D E$ and the adjacent angles are known ; hence $A D$ can be found. $A B$ can now be found from triangle $A B D$.

Fig. XLI.
From triangle $A D E$,

$$
\begin{aligned}
\quad \frac{A D}{\sin 73^{\circ} 18^{\prime}} & =\frac{D E}{\sin 33^{\circ} 28^{\prime}}, \\
\text { i.e. } \quad A D & =\frac{100 \sin 73^{\circ} 18^{\prime}}{\sin 33^{\circ} 28^{\prime}} .
\end{aligned}
$$

$$
\begin{aligned}
& 2 \cdot \\
&+\underline{1} \cdot 9813
\end{aligned}
$$

$$
\log A D=\overline{2 \cdot 2398}
$$

Fig. XLII.
From triangle $A B D$,

$$
A B=\frac{A D \sin 34^{\circ} 30^{\prime}}{\sin 79^{\circ} 15^{\prime}}
$$

Height of castle $=100$ yards.

2•2398
$+\overline{1} \cdot 7531$
1.9929

- $\overline{1} \cdot 9923$
$2 \cdot 0006$

Example iii. From the top of the Peak of Teneriffe the dip of the horizon is found to be $1^{\circ} 58^{\prime}$. If the radtius of the carth be 4000 miles, what is the height of the mountain?

In Fig. XLIII C is the centre of the earth, $A B$ is Teneriffe; $B H$ is the tangent drawn from B to the earth's surface, so that H is the farthest point seen from B; in other words, H is on the horizon. The angle between $B H$ and $B D$ (the perpendicular to the vertical) is called the dip of the horizon.

Fig. XLIII.
From triangle $B C H$,

$$
\begin{aligned}
\frac{B C}{\overline{C H}} & =\sec B C H, \\
\text { angle } B C H & =\text { complement of } C B H=H B D ; \\
\therefore \quad B C & =4000 \text { sec } 1^{\circ} 58^{\prime} \\
& =4000 \times 1^{\circ} 00059 \\
& =4002^{\circ} 36 \text { miles. }
\end{aligned}
$$

\therefore Height of mountain is $2: 36$ miles.

Note. Fig. XLIII is drawn much out of scale ; for small heights $B H$ and $B D$ are practically identical. Even for mountains the dip is very small, as in this example; in fact, so small that we may use the approximation sine of $\mathrm{dip}=\tan$ of $\mathrm{dip}=$ circular measure of dip.

If E be the other extremity of the diameter through B, we have, from § 52 ,

$$
\begin{aligned}
B A \cdot B E & =B H^{2}, \\
\text { i. e. } \quad h(2 r+h) & =d^{2},
\end{aligned}
$$

where r is radius of earth, h is height of place of observation, d is the distance of the horizon.
Hence $d=\sqrt{2 r h+h^{2}}$;

$$
\begin{aligned}
\therefore \quad d & =\sqrt{2 r \cdot h}\left(1+\frac{h}{2 r}\right)^{\frac{1}{2}} \\
& =\sqrt{2 r h}\left(1+\frac{h}{4 r}-\frac{h^{2}}{32 r^{2}} \cdots\right) \text { by the Binomial Theorem. }
\end{aligned}
$$

So far the work is accurate; usually h / r is so small that it may be neglected. Hence for ordinary heights

$$
\text { Distance of horizon }=\sqrt{2 r h}
$$

Exercise. (i) In the formula just obtained r, h, and the distance are all expressed in the same units. By taking $r=3960$ miles, prove that
Distance of horizon in miles
$=\sqrt{\frac{3}{2} \times \text { height of place of observation in feet. }}$
(ii) Show also that

Dip in minutes $=.9784 \sqrt{\text { height in feet. }}$

Examples VII.

1. Standing at a horizontal distance 100 yards from the foot of a monument, a man observes the elevation of its top to be $25^{\circ} 35^{\prime}$. Assuming the man's eye to be 5 feet from the ground, find the elevation of the top when the man stands 50 yards from the foot.
2. $O A$ and $O B$ are two straight roads intersecting at O and making with each other an angle of $35^{\circ} 12^{\prime} . A$ is a house 1572 yards from O, and B is a house 1129 yards from O. Find the direct distance between A and B.
3. A man observes the angles subtended by the base of a round tower at three points A, B, and C, in the same horizontal straight line with the centre of the circular base, to be $2 \alpha, 2 \beta, 2 \gamma$ respectively. Find the ratio of $A B$ to $B C$, and find the diameter of the tower in terms of $A C$.
4. A man observes that the elevation of the top of a tower is $37^{\circ} 40^{\prime}$, and that the elevation of the top of a flagstaff on the tower is $43^{\circ} 59^{\prime}$; show that the height of the fligstaff is one-fourth of the height of the tower very nearly.
5. Having given that the least side of a triangle is 17.3 inches, and that two of the angles are $63^{\circ} 20^{\prime}$ and $72^{\circ} 40^{\prime}$, find the greatest side.
6. If two sides of a triangle are 7235 feet and 4635 feet respectively, and if the included angle is $78^{\circ} 26^{\prime}$, find the remaining angles of the triangle.
7. The base of a triangle being 7 feet, and the base angles $129^{\circ} 23^{\prime}$ and $38^{\circ} 36^{\prime}$, find the length of the shortest side.
8. Explain the ambiguous case of the solution of triangles. When a, b, A are given and the question is asked whether, from these data, two triangles, one triangle, or no triangle can be constructed, show that the question can be answered from a consideration of the roots of the equation

$$
x^{2}-2 b x \cos A+b^{2}=a^{2} .
$$

9. From each of two ships, a mile apart, the angle is observed which is subtended by the other ship and a beacon on shore; these angles are found to be $52^{\circ} 25^{\prime}$ and $75^{\circ} 10^{\prime}$ respectively. Find the distances of the beacon from each of the ships.
10. A ship sailing due north observes two lighthouses bearing respectively NE. and NNE. After the ship has sailed 20 miles the lighthouses are seen to be in a line due east. Find the distance in miles between the lighthouses.
11. The angles A, B, C of a triangle $A B C$ are $40^{\circ}, 60^{\circ}$, and 80° respectively, and $C D$ is drawn from C to the base bisecting the angle $A C B$; if $A B$ equals 100 inches, find the length of $C D$.
12. A man standing at a certain station on a straight sea-wall observes that the straight lines drawn from that station to two boats lying at anchor are each inclined at 45° to the direction of the wall, and when he walks 400 yards along the wall to another station he finds that the angles of inclination are 15° and 75° respectively. Find the distance between the boats and the perpendicular distance of each from the sea-wall.
13. From a house on one side of a street observations are made of the angle subtended by the height of the opposite house, first
from the level of the street, in which case the angle is $\tan ^{-1}(3)$, and afterwards from two windows, one above the other, from each of which the angle is found to be $\tan ^{-1}(-3)$. The height of the opposite house being 60 feet, find the height of each of the two windows above the street.
14. A segment of a circle stands on a chord $A B 10 \mathrm{~cm}$. long and contains an angle of 40°. A point C travels along the arc; for what value of the angle $A B C$ is the chord $C A$ three times the chord $C B$? Verify by drawing a graph showing the chord $C A$ as a function of the chord $C B$.
15. If the sides of a triangle are 1011 and 525 feet, and the difference of the angles opposite to them is 24°, find (correct to the nearest degree) the smallest angle of the triangle.
16. A ladder is placed against the wall of a room and is inclined at an angle α to the floor. If the foot of the ladder slips outwards from the wall a distance of a feet, and the inclination of the ladder to the floor is then β, show that the distance which the top of the ladder will slide down the wall is $a \cot \frac{1}{2}(\alpha+\beta)$.
17. A man travelling due west along a straight road observes that when he is due south of a certain windmill the straight line drawn to a distant tower makes an angle of 30° with the direction of the road. A mile further on the bearings of the windmill and tower are NE. and NW. respectively. Find the distances of the tower from the windmill, and from the nearest point of the road.
18. A statue 10 feet high, standing on a column 100 feet high, subtends at the eye of an observer in the horizontal plane from which the column springs the same angle as a man 6 feet high standing at the foot of the column; find the distance of the observer from the column.
19. It is found that two points, each 10 feet from the earth's surface, cease to be visible from each other over a level plain at a distance of 8 miles; find the earth's diameter.
20. A plane, inclined at 33° to the horizontal, meets a horizontal plane in the line $B C$. From B a line $B D$ is drawn on the inclined plane making an angle 27° with the horizontal plane. If $B D$ is 18 inches long, find the height of D above the horizontal plane, and its distance from $B C$. Also find the angle $B D$ makes with $B C$.
21. A lighthouse was observed from a ship to be N. 23° E.; after the ship had sailed due south for 3 miles, the same lighthouse bore N. $12^{\circ} \mathrm{F}$. Find the distance of the lighthouse from the latter position of the ship.
22. Two streets meet at an acute angle; the one lies N. $51^{\circ} \mathrm{W}$., and the other S. $48^{\circ} \mathrm{W}$. The distance from the corner to a chemist's door in the first street is 315 yards; and the distance from the corner to a doctor's door in the other street is 406 yards. Find the length of a telephone wire going direct from the doctor's house to the chemist's.
23. From a vessel at anchor two rocks are observed to the westward, the one (A) bearing WNW., and the other (B) W. by S. from the ressel. From the chart it is found that A bears NNE. from B and is distant 645 yards from it. What are the distances of the rocks from the ressel ?
24. Three objects A, B, and C forming a triangle are visible from a station D at which the sides subtend equal angles. Find $A D$, it being known that

$$
A B=12 \text { miles, } A C=6 \text { miles, } C A B=46^{\circ} 34^{\prime} \text {. }
$$

25. A tower on the bank of a river, whose breadth is 100 feet, subtends angles $22 \frac{1}{2}^{\circ}$ and $67 \frac{1}{2}^{\circ}$ at two points A and B on the opposite bank of the river, whose distance apart is 600 feet, on a level with the base of the tower. Find the height of the tower.
*26. A, B, C are three given stations, so that the triangle $A B C$ is completely known. Show how to determine, by means of angles measured at a fourth station P, the distances $P A, P B, P C$, the four stations being all in one plane, the case for consideration being that in which P is within the angle A, and the points P and A on opposite sides of $B C$.

If $A B C$ is equilateral, and the angle $B P C$ equals 60°, show that

$$
2 \cos \left(60^{\circ}+B A P\right)+\cos (A B P-B P A)=0 .
$$

27. A tower stands on the edge of a circular lake $A B C D$. The foot of the tower is at D, and the angles of elevation of the top of the tower from A, B, C, are α, β, γ respectively. If the angles $B C A, B A C$ be each equal to θ, show that

$$
\operatorname{cotan} \alpha+\operatorname{cotan} \gamma=2 \operatorname{cotan} \beta \cos \theta
$$

[^13]28. A mountain is observed from a place A to have elevation $15^{\circ} 17^{\prime}$ and to bear N. $24^{\circ} 29^{\prime} \mathrm{W}$. From another place B which is 2347 yards north of A its bearing is N. $37^{\circ} 2^{\prime} \mathrm{W}$. Deduce the eleration from B.
29. The extremity of the shadow of a flagstaff 6 feet high, standing on the top of a regular pyramid on a square base, just reaches a side of the base and is distant 56 feet and 8 feet from the extremities of that side. If the height of the pyramid be 34 feet, find the sun's altitude.
30. A man observes that when he has walked c feet up an inclined plane the angular depression of an object in the horizontal plane through the foot of the slope is α; and that, when he has walked a further distance of c feet, the angular depression of the object is β. Show that the inclination of the slope to the horizon is $\cot ^{-1}(2 \cot \beta-\cot \alpha)$; and determine the distance of the object observed from the foot of the slope.
31. A straight flagstaff, leaning due east, is found to subtend an angle α at a point in the plain upon which it stands, a yards west of the base. At a point b yards east of the base, the flagstaff subtends an angle β. Find at what angle it leans.
32. Four rods are loosely jointed at their extremities to form a parallelogram with sides 4 and 5 inches long. Two of the opposite corners are connected by an elastic string of length 7 inches. Find the angle between the string and the shorter side.

If the length of the other diagonal be diminished by 1 inch, what does the angle become?
*33. Three posts on the border of a lake are at known distances from each other, namely 63 yards, 44 yards, and 76 yards. At a boat on the lake it is found that the two posts, whose distance is 63 yards, subtend an angle $89^{\circ} \mathbf{1 5}$, and the two posts, whose distance is 76 yards, subtend an angle $130^{\circ} 45^{\prime}$. Find the distances of the boat from the three posts.
34. A base line $A B$ is drawn 2 chains in length on a plane in the same horizontal plane as C the foot of a tree. The angles $A B C, B A C$ are found to be $79^{\circ} 56^{\prime}$ and $78^{\circ} 18^{\prime}$ respectively; the angle of elevation of the top of the tree is found to be $19^{\circ} 46^{\prime}$ at A. Find the height of the tree to the nearest foot.

[^14]35. A base line $A B, 2527$ links long, is measured on the seashore along the high water mark. C is a point where a distant rock meets the sea; the angles $B A C, A B C$ are found to be $89^{\circ} 15^{\prime}$, $86^{\circ} 21^{\prime}$ respectively. The angle of elevation of the highest point of the rock, which is vertically above C, as observed at A, is $1^{\circ} 48^{\prime}$. Neglecting the curvature of the earth, find the height of the rock and its distance from A.
36. A hill slopes upwards towards the North at an inclination 14° to the horizontal. The sun is $15^{\circ} \mathrm{W}$. of S ., at an altitude of 47°; find the length of the shadow cast on the hill by a vertical post 39 feet high.
37. If, in the previous question, the post is perpendicular to the surface of the hill, what is the length of the shadow?

Revision Examples B.

1. Define the tangent of any angle, and prove from the definition that (i) $\tan (90+A)=-\cot A$; (ii) $\tan (180-A)=-\tan A$.

Express the other trigonometrical ratios in terms of the tangent.
2. Show by substitution that

$$
\begin{aligned}
& \sin 45^{\circ}+\sin 30^{\circ}>\sin 60^{\circ} \\
& \cos 30^{\circ}-\cos 45^{\circ}<\cos 60^{\circ}
\end{aligned}
$$

and
3. Find the value of $\sin 45^{\circ}$ without using tables.

Solve the equation $4 \sin \theta \cos \theta+1=2(\sin \theta+\cos \theta)$.
Give the general solutions.
4. A man walks directly across the deck of a ship, which is sailing due North at 4 miles an hour, in 12 seconds, and finds that he has moved in a direction 30° East of North. How wide is the deck?
5. Show that in any triangle $A B C$,
(i) $\sin A / a=\sin B / b=\sin C / c$;
(ii) $\sin C(a \cos B-b \cos A)=(a+b)(\sin A-\sin B)$.
6. Prove geometrically that

$$
\cos 2 A=1-2 \sin ^{2} A
$$

Hence find the value of $\sin 15^{\circ}$.
7. The angle of elevation of the top of a spire seen from A is 30°, and it is found that at a point $B, 115 \frac{1}{2}$ feet nearer the foot of the spire, it is 60°. Find the height of the spire to the nearest foot.
8. Plot a curve giving the sum of $4 \sin \theta$ and $3 \sin 2 \theta$ from $\theta=0^{\circ}$ to $\theta=180^{\circ}$; and read off the angles at which the greatest and least values respectively of this sum occur.

Estimate the slope of the curve when $\theta=90^{\circ}$ and when $\theta=135^{\circ}$.
9. Define a radian. Express in degrees and minutes an angle of 1.36 radians.

Find the number of radians in the angle of a regular decagon.
10. Prove
(i) $\sin ^{2} A+\cos ^{2} A=1$;
(ii) $\tan A \div(1-\cot A)+\cot A \div(1-\tan A)=\sec A \operatorname{cosec} A+1$.
11. Draw the sine and cosine graphs, in the same figure, from $\theta=10^{\circ}$ to $\theta=20^{\circ}$.

From the graph find the angle which satisfies

$$
\sin \theta+\cos \theta=1 \cdot 2
$$

12. Find an expression which will include all angles having a given tangent. Write down the values of $\tan 225^{\circ}, \tan 780^{\circ}$, $\cot 1035^{\circ}, \cot 210^{\circ}$.

Construct an angle, having given the cotangent.
13. Find $a / \cos A+b / \cos B+c / \cos C$ in a form adapted to logarithmic calculation.
14. In any triangle prove that (i) $a=b \cos C+c \cos B$; (ii) $a(b \cos C-c \cos B)=b^{2}-c^{2}$; (iii) $r \cos \frac{1}{2} A=a \sin \frac{1}{2} B \sin \frac{1}{2} C$.
15. If the sides of a parallelogram are a, b, and the angle between them ω, prove that the product of the diagonals is

$$
\sqrt{a^{4}-2 a^{2} b^{2} \cos \omega+b^{4}}
$$

16. A vessel is steaming towards the East at 10 miles an hour. The bearing of a lighthouse as seen from the vessel is $42^{\circ} 24^{\prime}$ North of East at noon, and $25^{\circ} 12^{\prime}$ East of North 25 minutes later. Find how far the vessel was from the lighthouse at noon, and find also at what time the bearing of the lighthouse will be due North.
17. Assuming that a circle may be treated as a regular polygon with an infinite number of sides, show that the ratio of the circumference of a circle to its diameter is constant.

What is the circular measure of the least angle whose sine is $\frac{1}{2}$, and what is the measure in degrees, \&c., of the angle whose circular measure is ' 15708 ?
18. Prove by a geometrical construction that

$$
\cos 2 A=\cos ^{2} A-\sin ^{2} A
$$

Solve the equation $\cos 2 A=(\cos A+\sin A)^{2}$.
19. For what data will the solution of a triangle become ambiguous? Explain this.

Given $B=30^{\circ}, c=150, b=50 \sqrt{3}$, show that of the two triangles that satisfy the data one will be isosceles and the other right-angled. Find the third side in the greater of these triangles.

Would the solution be ambiguous if $B=30^{\circ}, c=150, b=75$?
20. $A B$ is a horizontal line whose length is 400 yards; from a point in the linc between A and B a balloon ascends vertically,
and after a certain time its altitude is taken simultaneously from A and B; at A it is observed to be $64^{\circ} 15^{\prime}$; at $B 48^{\circ} 20^{\prime}$; find the height of the balloon.
21. Find the radius of the circle circumscribing a triangle, in terms of its sides. If $c^{2}=a^{2}+b^{2}$, show that this radius equals $\frac{1}{2} c$.
22. Define the trigonometrical ratios of A involved in the equation $\cot A+\tan A=\sec A \operatorname{cosec} A$; and establish its truth by a geometrical construction.
23. Prove that

$$
\begin{aligned}
& \cos ^{-1} \sqrt{(a-x) \div(a-b)}=\sin ^{-1} \sqrt{(x-b) \div(a-b)} \\
&=\cot ^{-1} \sqrt{(a-x) \div(x-b)}
\end{aligned}
$$

24. Prove that $\sin \theta=\tan \theta \div \sqrt{1+\tan ^{2} \theta}$.

Having given $\tan \theta=\frac{3}{4}$, find $\sin \theta, \cos \theta$, and versin θ.
25. If θ is an acute angle whose sine is $\frac{8}{17}$, calculate the value of $\tan \theta+\sec \theta$.

What would the value be if θ were obtuse?
26. What is the angle between the diagonal of a cube and one of the edges at its extremity?
27. Obtain an expression for all the angles which have a given tangent.

Find all the angles lying between -360° and $+360^{\circ}$ which satisfy the equation

$$
\tan ^{2} x-\frac{2}{\sqrt{3}} \tan x-1=0
$$

28. A circular wire of 3 inches radius is cut and then bent so as to lie along the circumference of a hoop whose radius is 4 feet. Find the angle which it subtends at the centre of the hoop.
29. A triangle $A B C$ has angle $A=34^{\circ}, a=11^{\circ} 0 \mathrm{~cm}$., $c=7.8 \mathrm{~cm}$. Calculate the perpendicular from B on b, and the remaining angles and side of the triangle.
30. In a triangle $a=74, b=37, c=97$; find the value of (i) $a \cos B+b \cos A$, (ii) $a \sin B-b \sin A$.
31. If $A B C$ be a triangle, and θ an angle such that

$$
\sin \theta=2 \sqrt{a b} \cos \frac{1}{2} C \div(a+b),
$$

find c in terms of a, b, and θ.
If $a=11, b=25$, and $C=106^{\circ} 15 \frac{1^{\prime}}{}$, find c.
32. Find the area of a regular quindecagon inseribed in a cirele of one foot radius.
33. Find an expression for all angles having the same sine as the angle α.
Solve the equation $\sin (\alpha+x)+\sin (\beta+x)=0$.
34 . An angle α is determined by the equations $v^{2}=2 g h$, $-b=t v \sin \alpha-\frac{1}{2} g t^{2}, t v \cos \chi=a$. Show that

$$
a^{2} \tan ^{2} \alpha-4 h a \tan \alpha+a^{2}-4 h b=0 .
$$

35. Criticize the proposition that three measurements are sufficient and necessary to determine a triangle uniquely in shape and size.
36. A square house, measuring 30 feet each way, has a roof sloping up from all four walls at 35° to the horizontal. Find the area of the roof.
37. Draw up a table showing in three columns the values of $10 \sin \theta, 10 \cos \theta$, and $8 \sin \theta+6 \cos \theta$ for each 30° from 0° to 360°. From the table draw, in the same figure, the graphs of $y=10 \sin \theta$ and $y=8 \sin \theta+6 \cos \theta$; and from the curves determine approximately a value of θ for which $\tan \theta=3$.
38. Taking the earth as a sphere of radius 4000 miles, find the distance London travels in an hour in consequence of the rotation of the earth. (Latitude of London $51^{\circ} 30^{\prime} \mathrm{N}$.)
39. $A B C D$ is a quadrilateral in which $A B$ and $D C$ are parallel and 40 feet apart, and $A B$ is 100 feet long. The angle $D A B$ is $72^{\circ} 30^{\prime}$, and the angle $C B A$ is $38^{\circ} 15^{\prime}$. Find the lengths of $A D$, $D C$, and $C B$, and the area of the quadrilateral.
40. State the local time at the following places when it is noon at Greenwich.
Cape Town $33^{\circ} 56^{\prime}$ S., $18^{\circ} 25^{\prime} \mathrm{E}$. Fiji $18^{\circ} 0^{\prime} \mathrm{S} ., 178^{\circ} 0^{\prime} \mathrm{E}$. Edinburgh $55^{\circ} 57^{\prime} \mathrm{N} ., 3^{\circ} 10^{\prime} \mathrm{W}$. Singapore $1^{\circ} 17^{\prime} \mathrm{N}$., $103^{\circ} 50^{\prime} \mathrm{E}$.
41. Define the cosine and the tangent of an angle, and show how to express the tangent in terms of the cosine.

Having given that $\cos A={ }^{\circ} 8$, and that A is less than 90°, find the value of $\tan A$; and by means of the tables find the value of A, both from its cosine and from its tangent.
42. Prove that, in any triangle $A B C, \sin B: \sin C=b: c$. In the triangle $A B C$ the angle $C A B$ is 50°, the angle $A B C$ is 65°, and the side $B C$ is 4 inches long. Find the length of the side $A B$.
43. Show how to find the height of a tree by means of a chain for measuring lengths and of an instrument for measuring angles.

44 Find an expression for all the angles which have (i) a given tangent, (ii) a given sine.
45. Explain how it is that, $\tan \theta$ being given, $\tan 2 \theta$ is known; but that, $\sin \theta$ being given, $\sin 2 \theta$ may have either of two values.
46. Prove that the area of a triangle is $\sqrt{s(s-a)(s-b)(s-c)}$. Show also that the area is $\frac{1}{2} c^{2} \div(\cot A+\cot B$.
47. Find the radius of the circumscribing circle of the triangle for which $A=66^{\circ} 30^{\prime}, B=11^{\circ} 30^{\prime}, c=200$ feet.
48. A ship is sailing due East at a uniform rate: a man on a lighthouse observes that it is due South at $1 \mathrm{p} . \mathrm{m}$. and $16^{\circ} 30^{\prime}$ East of South at 1.20 p.m. In what direction will he see it at 2 p.m.?

CHAPTER VIII

PROJECTION. VECTORS

67. If from the extremities of a line $P Q$, of definite length, perpendiculars $P K, Q L$ are let fall on a line $A B$, which may be produced if necessary, then $K L$ is called the Projection of $P Q$ on the line $A B$.

Projections are subject to the same convention of sign as are abscissae and ordinates. Thus, in the above figure, $K L$ is positive, but $L K^{\prime}$ is negative. It follows that the projection of $P Q$ is not the same as the projection of $Q P$, so that the order of the letters in naming a line is

Fig. XLIV. of great importance when we are dealing with projection. When the direction of the line is to be taken into account as well as its length, it is called a directed length; and we shall, in future, use the symbol $(P Q)^{*}$ to denote the directed length of the line from P to Q. The number of units of length in that line we shall continue to denote by the symbol $P^{\prime} Q$.

Thus, in Fig. XLIV, the projection of $(P Q)$ is $(K L)$, and the projection of $(Q P)$ is $(L K)$.

Note. When we speak of the sum of directed lengths in the same straight line, the algebraical sum is always meant. Geometrically this means that we require the directed length between the startingpoint and final point, and not the length of the actual path traversed.
68. If the length of $P Q$ is l, and if θ is the angle between $P Q$ and the line $A B$, then projection of $(P Q)$ on $A B=l \cos \theta$.

[^15]Some care is necessary in applying this formula; the safest plan is to keep l and θ both positive.

Consider, for instance, the projection of $(Q P)$ in Fig. XLV.
Imagine a line drawn from the initial point Q parallel to the line $A B$. Then it is seen that the angle between $(Q P)$ and $A B$ is $\theta+\pi$, while the length $Q P$ is l.

Hence projection of $(Q P)$ on $A B=l \cos (\theta+\pi)=-l \cos \theta$.
Two other methods of treatment give the same result.

A
Fig. XLV.

In Fig. XLV the line $Q X$ is actually drawn parallel to $A B$; but it is usually sufficient to imagine it. Then we may take the angle between $(Q P)$ and $Q X$ to be the negative angle $X Q P$, i.e. $-(\pi-\theta)$; the length $Q P$ is positive so that

$$
\text { projection of } Q P=l \cos (-\pi-\theta)=-l \cos \theta
$$

Or we may regard θ as being the angle between $(Q P)$ and $Q X$; but this requires that the length of $(Q P)$ should be taken as $-l$, and so the projection of $(Q P)$ on $A B=-l \cos \theta$.

It will be found that, in all cases, $l \cos \theta$ gives both the magnitude and sign of the projection of $(P Q)$ on $A B$. Similarly,
the projection of $(P Q)$ on a line perpendicular to $A B$

$$
=l \sin \theta
$$

69. Proposition A. The sum of the projections on any
line of two sides $(A B),(B C)$ of a triangle is equal to the projection of the third side $(A C)$.

Fig. XLVI.

In either of the above figures (or in any other figure)

$$
\text { projection of } \begin{aligned}
(A B)+\text { projection of }(B C) & =(a b)+(b c) \\
& =(a c) \\
& =\text { projection of }(A C) .
\end{aligned}
$$

Proposition B. The sum of the projections on any line of the three sides $(A B),(B C),(C A)$ of a triangle is zero.

Sum of projections of $(A B),(B C),(C A)=(a b)+(b c)+(c a)$.
Hence on the line of projection we start at the point a and finish at the same point, so that the distance between the initial and final points is zero. That is, the sum of the projections is zero.

Proposition C. In any closed figure $A B C \ldots H K$, the sum of the projections of the sides $(A B),(B C) \ldots(H K)$ equals the projection of $(A K)$.

Proposition D. In any closed figure the sum of the projections of all the sides taken in order in the same direction is zero.

Propositions C and D are proved exactly in the same way as Propositions A and B .

Example. Prove that
$\cos A+\cos (120+A)+\cos (120-A)=0$.

Fig. XLVII.

Draw an equilateral triangle $P Q R$, side a units.
Draw a line $O X$ inclined at an angle A to $(Q R)$.
Then $(R P)$ is inclined at $A+120$ degrees to $O X$; and $(P Q)$ is inclined at $A+240$ degrees.

Project on $O X$; then, by Proposition B,

$$
a \cos A+a \cos (A+120)+a \cos (A+240)=0 ;
$$

but

$$
\begin{gathered}
\cos (A+240)=\cos \{360-(120-A)\}=\cos (120-A) ; \\
\therefore \quad \cos A+\cos (120+A)+\cos (120-A)=0 .
\end{gathered}
$$

Examples VIII a.

(These examples should be verified by drawing a figure to scale.)

1. Show that the projection of a line on a line parallel to itself is equal to the projected line, and that the projection of a line on a line perpendicular to itself is zero.
2. A line of length r, making an angle θ with $O X$ is projected on $O X$ and at right angles to $O X$; calculate the lengths of the projections in the following cases:

$$
\begin{array}{ll}
\text { (i) } r=5, \theta=60^{\circ} ; & \text { (ii) } r=-5, \theta=120^{\circ} \text {; } \\
\text { (iii) } r=5, \theta=248^{\circ} ; & \text { (iv) } r=5, \theta=300^{\circ} \text {; } \\
\text { (v) } r=-5, \theta=330^{\circ} . &
\end{array}
$$

3. Two rods $A B, B C$, of lengths 5 feet and 10 feet respectively, are joined together at an angle of 135°. The rods are fixed in
a vertical plane so that $C B$ is inclined at 60° to the horizontal, and the angle $A B C$ is beneath the rods; by projecting horizontally and vertically, find the inclination of the line $A C$ to the horizontal.
4. By projecting a diagonal and two sides of a square on a line making an angle A° with one of the sides, prove that

$$
\cos \left(A+45^{\circ}\right)=(\cos A-\sin A) \div \sqrt{2}
$$

Find a similar value for $\sin \left(A+45^{\circ}\right)$.
5. $P Q R$ is a triangle right-angled at Q, having the angle at P equal to $A^{\circ} ; P Q$ is inclined to $O X$ at an angle B°.

Prove by projection that
and

$$
\begin{aligned}
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \sin (A+B)=\sin A \cos B+\cos A \sin B
\end{aligned}
$$

70. If the projections of a line on two lines at right angles are given, the length and direction of the projected line can be found, but not its actual position.

Let r be the length of the line and θ the angle it makes with one of the lines of projection. Then $r \cos \theta$ and $r \sin \theta$ are known; suppose these values are x and y respectively, so that $r \cos \theta=x$ and $r \sin \theta=y$.

Then $r=\sqrt{x^{2}+y^{2}}$ and $\tan \theta=y / x$.
The projected line has therefore a definite length and a definite direction; it is the simplest example of a group of quantities called vector quantities or vectors.
71. A quantity which possesses a direction as well as magnitude is called a vector. Velocities and forces are examples of such quantities. The magnitude and direction can be represented by the length and direction of a directed straight line; hence the properties of a directed straight line that depend only on its length and direction represent properties common to all vectors.
72. Vector addition or Composition of Vectors.

A displacement from A to B followed by a displacement from B to C produces the same result as a single displacement from A to C.

Fig. XLVIII.
Or we may regard the displacements as being simultaneous.
Suppose a point to start from A and move along $A B$, and while this point is moving, suppose the line $A B$ to move parallel to itself, the point B moving to C while the point travels from A to B. The result of the two simultaneous displacements is that the point has travelled from A to C.

Hence the vector $(A C)$ is called the resultant of the vectors $(A B)$ and ($B C$).

Finding one quantity equivalent to two or more of the same kind is equivalent to the process of addition in Arithmetic.

If we use the sign + to denote this process, we have

$$
(A C)=(A B)+(B C)
$$

If P, Q, and R are the respective magnitudes of the vectors represented by $(A B),(B C)$, and $(A C)$, and if θ is the angle between the directions of $(A B)$ and $(B C)$ (in Fig. XLVIII the angle $A B C$ is the supplement of θ);
then

$$
\mathbf{R}^{2}=\mathbf{P}^{2}+\mathbf{Q}^{2}+\mathbf{P Q} \cos \theta
$$

Similarly, if a number of vectors are represented by the directed lengths $(A B),(B C),(C D) \ldots(H K)$, then their resultant is represented by the directed length ($A K$).

73. Resolution of vectors.

In Fig. XLVIII the vector $(A C)$ may be replaced by the two vectors $(A B)$ and $(B C)$. Viewed in this light they are called the components of the vector $(A C)$.

When we talk of the component of a vector in a given direction, and no mention is made of the direction of the other component, it is understood that the other component is at right angles to the first.

Fig. XLIX.
If ($O P$) in Fig. XLIX represents a vector of magnitude R inclined at an angle θ to $O X$, then its projection ($O N$) represents the component along $O X$, and the projection (NP) represents the component perpendicular to $O X$.

The vector is now said to be resolved along and perpendicular to $O X$.

Resolving along $O X$, we find that the component is $R \cos \theta$.
Resolving perpendicular to $O X$, we find that the component is $P \sin \theta$.
74. All the work of $\S 69$ on projections can be applied to vectors and their components. For instance, Proposition C gives the following proposition:

The sum of the components of any number of vectors in a given direction is equal to the component of their resultant in that direction.

Examples VIII b.

[In the following examples the letters P, Q, R imply that the vectors are forces; the letters u, v, w imply that the vectors are velocities. When possible, figures should be drawn to scale to check the calculation.]

1. Find the resultant R in the following cases:
(i) $P=17, Q=13, \theta=40^{\circ}$;
(ii) $P=17, Q=13, \theta=140^{\circ}$;
(iii) $P=114, Q=75, \partial=65^{\circ}$;
(iv) $P=123, Q=496, \theta=117^{\circ}$.
2. Find P when Q the other vector, θ the angle between them, and R their resultant have the following values:
(i) $Q=176, R=249, \theta=72^{\circ}$;
(ii) $Q=73, R=193, \theta=110^{\circ}$;
(iii) $Q=245, R=92, \theta=130^{\circ}$;
(iv) $Q=36, R=84, \theta=20^{\circ}$.
3. Show that, if the resultant of three forces is zero, the sum of their components in any direction is zero.
4. Show that if three forces produce equilibrium (their resultant is, therefore, zero) they are parallel and proportional to the sides of a triangle.
5. A boat is being rowed due E. at a speed of 6 miles an hour; at the same time a current carries it due S . with a speed of 3 miles an hour; find the magnitude and direction of the actual velocity.
6. Find the resultant of velocities u and v inclined at an angle θ, when

$$
\begin{aligned}
& \text { (i) } u=14, v=16, \theta=180^{\circ} \text {; } \\
& \text { (ii) } u=14, v=16, \theta=65^{\circ} \text {; } \\
& \text { (iii) } u=14, v=16, \theta=135^{\circ} \text {. }
\end{aligned}
$$

7. Vectors of magnitudes $7,8,9$ respectively are parallel to three consecutive sides of a regular hexagon. Find the sum of their components (i) parallel to, (ii) perpendicular to, the middle one of these sides. Hence find the magnitude and direction of their resultant.
8. Find the magnitude and direction of the resultant of four forces of magnitudes $5,10,15,20$ respectively, which act along the sides of a square.
9. A stream flows at the rate of 2 miles an hour. In what direction must a man swim in order that he may actually go straight across the river, his rate of swimming being 3 miles an hour?
10. A rod 5 feet long is hung by a string, attached to its two ends, over a smooth peg; it rests, at an angle of 20° to the horizontal, so that the two portions of the string are each inclined 35° to the vertical. Find the length of the string.

Projection on a Plane.

75. If from every point in a line, straight or curved, a perpendicular be let fall on a plane, the locus of the feet of the perpendiculars is called the projection of the line on the plane.

If from every point in the boundary of a surface a perpendicular be let fall on a plane, the area bounded by the locus of the feet of the perpendiculars is called the projection of the surface on the plane.
76. The angle between a straight line and its projection on a plane is called the angle between the straight line and the plane. It follows that the projection on a plane of a straight line of length l, making an angle α with the plane, is $l \cos \alpha$.

Any two planes, not parallel, intersect in a straight line. If from any point P in this line two perpendiculars $P A, P B$ are drawn to it, one in each plane, then the angle $A P B$ measures the angle between the planes.
77. If any plane surface, of area A, is projected on \AA plane making an angle α with its own plane; then the area of the projection is $A \cos \alpha$.
*Step I. Consider a rectangle $A B C D$, having the side $A B$ parallel to the plane of projection, and the side $B C$ making an angle α with that plane; then α is the angle between the plane of the rectangle and the plane of projection.

Then, in Fig. L, abcd is the projection of $A B C D$.

Fig. I.

* A slight knowledge of solid geometry is assumed in this pronf.

Now $B b$ is perpendicular to the plane $a b c d$, and therefore to the line $a b$;
$\therefore B b$ is perpendicular to $A B$;
but $B C$ is perpendicular to $A B$;
$\therefore A B$ is perpendicular to plane $B C c b$;
$\therefore a b$ is perpendicular to plane $B C c b$;
$\therefore a b$ is at right angles to $b c$,
i. e. $a b c d$ is a rectangle.

$$
\text { Hence arta of } \begin{aligned}
a b c d & =a b \times b c \\
& =A B \times B C \cos \alpha \\
& =\text { area of } A B C D \times \cos \alpha
\end{aligned}
$$

Step II. Consider a plane area with curved or rectilinear boundary. In the plane of the figure draw any line $P Q$ parallel to the plane of projection. Then in the area we can inscribe a number of rectangles having the short sides parallel to $P Q$ and the longer sides perpendicular to $P Q$.

Fig. LI.

The sum of these rectangles is less than the original area, but may be made to differ from that area by as small a quantity as we please by making their width small enough; and then the sum of their projections will differ from the projection of the area by an even smaller quantity. Hence in the limit, when the width is indefinitely small, the sum of each set of rectangles will equal the area of the corresponding circumscribing figure.

But the sum of projections of rectangles $=$ sum of rectangles $\times \cos A$;
\therefore the area of projected figure $=$ area of original figure $\times \cos A$.

Examples VIII c.

1. A pyramid $V A B C D$ has a square base $A B C D$, side a, and the faces $T A B$, \&c., are equilateral triangles. Find the length of the projection of VA on the base.

Verify that the sum of the areas of the projections of the four faces is equal to a^{2}.
2. A square house, whose side is 28 feet long, has a roof sloping up from all four walls at 40° to the horizontal, find the area of the roof.
3. Find, by projection, the area of the curved surface of a right circular cone; having height h, and semi-vertical angle 2α.
4. From a cone 6 feet high a smaller cone 2 feet high is cut off. If the radius of the base of the small cone is 1.6 feet, find the area of the curved surface of the remainder of the large cone.

Verify your answer by projecting this surface on the base.
5. A circle with radius a is projected into an ellipse with semiaxes a and b; show by projection that the area of the ellipse is $\pi a b$.
6. The vertical angle of a conical tent is 67°, and the radius of the base is 5 feet; find (i) the slant height, (ii) the area of canvas used, (iii) the content of the tent.
7. A pyramid on a square base is such that each of the other faces is an isosceles right-angled triangle, find by projection the angle between a triangular face and the base.

78. In Fig. LII $O A$ is of length r.

By the rsual convention a line $O A$ drawn to the right is

Fig. LII.
considered positive, so that (OA) represents $+r$. If now (OA) is turned through two right angles, it takes up the position $\left(O A^{\prime}\right)$ and, by the usual convention, $\left(O A^{\prime}\right)$ represents $-r$. Hence the
geometrical operation of turning through two right angles represents the algebraical operation of multiplying by -1 . Let us consider what the operation of turning through one right angle represents.

This is an operation which, if performed twice in succession, turns through two right angles, which represents multiplication by -1 .

But the algebraical operation of multiplying by $\sqrt{-1}$, if performed twice in succession, multiplies by -1 .

Hence it seems reasonable that the operation of turning a vector line through a right angle represents the algebraical operation of multiplying by $\sqrt{-1}$; that is, $(O B)$ at right angles to (OA) represents $r \times \sqrt{-1}$, i.e. $\sqrt{-1} r$.

In future we shall denote $\sqrt{-1}$ by i.
79. With the interpretation of i suggested by the last section,

Fig. LIII.
$x+i y$ is represented by a vector line of length x followed by a vector line of length y at right angles to the first vector.

$$
\begin{array}{rlr}
x+i y & =(O N)+(N P) \quad \text { (Fig. LIII.) } \\
& =(O P) . \quad \text { (By vector addition, § } 72 .)
\end{array}
$$

Or, in words, $x+i y$ is represented by the vector $(O P)$, that is by a vector line of length $\sqrt{x^{2}+y^{2}}$, making an angle $\tan ^{-1} \frac{y}{x}$ with the positive direction.
80. For our purposes this statement is more useful if reversed.
viz.

$$
\begin{aligned}
\left(O P_{)}\right. & =x+i y \\
& =r \cos \theta+i \cdot \sin \theta \\
& =(\cos \theta+i \sin \theta) r .
\end{aligned}
$$

Or, in words, the vector line of length r; in direction θ, represents the magnitude r multiplied by $\cos \theta+i \sin \theta$. This gives the important result that
turning through an angle θ represents multiplication by

$$
\cos \theta+i \sin \theta
$$

Hence

turning twice in succession through θ represents multiplication by $\cos \theta+i \sin \theta$ repeated twice;
i.e. turning through 2θ represents multiplication by

$$
(\cos \theta+i \sin \theta)^{2}
$$

but turning through 2θ represents multiplication by

$$
(\cos 2 \theta+i \sin 2 \theta)
$$

Hence the suggested interpretation of $\sqrt{-1}$ or i, leads to the identity $(\cos 2 \theta+i \sin 2 \theta) \equiv(\cos \theta+i \sin \theta)^{2}$.

If this is verified by algebraic multiplication and by the use of the ordinary formulae for $\cos 2 \theta$ and $\sin 2 \theta$, it will be found correct.

Carrying on the argument in the same way, we deduce that

$$
(\cos n \theta+i \sin n \theta) \equiv(\cos \theta+i \sin \theta)^{n}
$$

where n is any positive integer.
Again, turning through a half θ is an operation which, if repeated, turns through θ, and, therefore, represents a multiplication which, if repeated, multiplies by $\cos \theta+i \sin \theta$;
i.e.

$$
\left(\cos \frac{1}{2} \theta+i \sin \frac{1}{2} \theta\right)=(\cos \theta+i \sin \theta)^{\frac{1}{2}}
$$

Similarly,

$$
\left(\cos \frac{\theta}{n}+i \sin \frac{\theta}{n}\right)=(\cos \theta+i \sin \theta)^{\frac{1}{n}}
$$

and

$$
\left(\cos \frac{p}{q} \theta+i \sin \frac{p}{q} \theta\right)=(\cos \theta+i \sin \theta)^{\frac{p}{q}} .
$$

Lastly, turning through $-\theta$ cancels turning through θ, and, therefore, represents an operation which cancels multiplication by $(\cos \theta+i \sin \theta)$;
i.e. $\quad\{\cos (-\theta)+i \sin (-\theta)\}=(\cos \theta+i \sin \theta)^{-1}$.

Similarly,

$$
\operatorname{ccs}(-n \theta)+i \sin (-n \theta)=(\cos \theta+i \sin \theta)^{-n}
$$

where n is any positive quantity.

We have now deduced from the geometrical interpretation of $\sqrt{-1}$ that

$$
(\cos n \theta+i \sin n \theta)=(\cos \theta+i \sin \theta)^{n}
$$

for all real values of n.
This is known as De Moivre's Theorem.
Example. Use De Moive's Theorem to find $\sqrt[3]{1}$.

$$
\cos 2 n \pi=1, \sin 2 n \pi=0
$$

where n is zero or any integer.

$$
\text { Hence } \quad \begin{aligned}
1 & =\cos 2 n \pi+i \sin 2 n \pi ; \\
\therefore \sqrt[3]{1} & =(\cos 2 n \pi+i \sin 2 n \pi)^{\frac{\pi}{3}} \\
& =\cos \frac{2}{3} n \pi+i \sin \frac{2}{3} n \pi .
\end{aligned}
$$

If $n=0, \sqrt[3]{1}=\cos 0+i \sin 0=1$.
If $n=1, \sqrt[8]{1}=\cos \frac{2}{3} \pi+i \sin \frac{2}{3} \pi=\frac{1}{2}(-1+i \sqrt{3})$.
If $n=2, \sqrt[3]{1}=\cos \frac{1}{3} \pi+i \sin \frac{4}{3} \pi=\frac{1}{2}(-1-i \sqrt{3})$.
If $n=3, \sqrt[3]{1}=\cos 2 \pi+i \sin 2 \pi=1$.
For other values of n it is seen that the three roots are repeated, Hence De Moivre's Theorem shows that there are three different cube roots of unity. They are, of course, the three roots of the equation $x^{3}-1=0$. The student should verify that the same roots are obtained by Algebra.

Examples VIII d.

Represent graphically and by imaginary quantities the following vectors:

1. (i) Magnitude, $r=25$; direction $\theta=a$ where $a=\tan ^{-1} \frac{1}{31}$.

(ii)	,	$r=25 ;$,	$\theta=\pi-\alpha ;$
(iii)	$"$	$r=25 ;$	$"$	$\theta=\pi+\alpha ;$
(iv)	$"$	$r=25 ;$	$"$	$\theta=2 \pi-\alpha ;$
(v)	$"$	$r=25 ;$	$"$	$\theta=-\alpha$.

2. Show graphically that

$$
\left(x^{\prime}+i y^{\prime}\right)+\left(x^{\prime \prime}-i y^{\prime \prime}\right)=\left(x^{\prime}+x^{\prime \prime}\right)+i\left(y^{\prime}+y^{\prime \prime}\right) .
$$

3. Express the following in the form $\gamma(\cos \theta+i \sin \theta)$:
(i) $3+4 i$;
(ii) $5+6 i$;
(iii) $7-8 i$;
(iv) $-5-12 i$;
(v) $-5+12 i$;
(vi) $8 i$.
4. Interpret geometrically $(\cos \alpha+i \sin \alpha)(\cos \alpha-i \sin \alpha) r$; and justify your interpretation.
5. Show graphically that

$$
(\cos \alpha+i \sin \alpha)(\cos \beta+i \sin \beta)=\cos (\alpha+\beta)+i \sin (\alpha+\beta)
$$

6. Verify De Moivre's Theorem by calculation, when $n=2,3$, -1 , -2 .
7. Assuming De Moivre's Theorem, prove that $\sqrt[3]{-1}$ has three values, viz. $-1, \frac{1}{2}(1+\sqrt{ }-3)$ and $\frac{1}{2}(1-\sqrt{ }-3)$.
8. (a) Prove De Moivre's Theorem by induction when n is a positive integer.
(b) Deduce the proof when n is not a positive integer, by methods similar to those used for the Binomial Theorem in Algebra.*

Examples VIII.

1. A man walks one kilometre in a direction 16 degrees North of East; he then turns to the left, through an angle of 110 degrees, and walks one kilometre in the new direction. How far is he North and how far East of his starting-point?
2. Show that $a \cos \theta+b \sin \theta$ can be expressed in the form $r \cos (\theta-\alpha)$. Illustrate by a figure.
3. A number of rods are jointed together, and the two free ends are secured to two points A and B in the same horizontal line and distant c inches. If the length of the $r^{\text {th }}$ rod is a_{r}, and its inclination to the horizontal is θ_{r} (all the angles being measured in the same sense), prove that (i) $\Sigma\left(a_{r} \cos \theta_{r}\right)=c$; (ii) $\Sigma\left(a_{r} \sin \theta_{r}\right)=0$. (See § 89, Example ii.)
4. Prove by projection that

$$
\sin (90+A)=\cos A \text { and } \sin (270-A)=-\cos A
$$

5. In what respects can a vector quantity be represented by a straight line?

If three forces P, Q, R, acting at a point O, are such that $P / \sin Q R=Q / \sin R P=R / \sin P Q$ (where $\sin P Q$ denotes the sine of the angle between P and Q), show that the three forces produce equilibrium.
6. A man walks one kilometre in a direction A° North of East, one kilometre in a direction making 120° with the first direction, and one kilometre at an angle 240° with the first direction. Draw a figure showing that he has now returned to the starting-

[^16]point ; and by considering the distances he has gone to the East and North write down two trigonometrical identities concerning the sines and cosines of $A, 120+A, 240+A$.
7. Suggest a geometrical construction which may help to sum the series:
(i) $\cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots n$ terms;
(ii) $\sin \alpha+\sin (\alpha+\beta)+\sin (\alpha+2 \beta)+\ldots . n$ terms.

Deduce that both these sums become zero if $n \beta=2 \pi$.
8. A body which weighs 12 lb . is kept at rest by means of two cords, one being horizontal and the other inclined to the horizontal at an angle whose tangent is $\frac{3}{4}$; find the forces exerted by the cords.
9. A mine shaft is 1650 feet in length. It slopes downwards at an angle of 45° to the horizon for a certain part of its total length, say x feet, and at an angle of 35° for the rest of its length. If the total depth reached is 1000 feet, obtain an equation for x, and hence calculate x.
10. A man playing five holes of a golf course first walks 260 yards due East, then 140 yards 20° South of East, then 300 yards due South, then 200 yards 40° West of North, then 220 yards 30° West of South, thus arriving at the fifth hole. Find how far the fifth hole is from the first tee.
11. The perpendicular from the origin on a straight line equals p and makes an angle α with the axis of x; by projecting the co-ordinates of any point on the line show that the equation of the straight line may be put in the form $x \cos \alpha+y \sin \alpha=p$.
(This is known as the perpendicular form of the equation of a straight line.)

Hence find the length of the perpendiculars from the origin on the lines whose equations are (i) $3 x+4 y=7$; (ii) $5 x-12 y=2$; (iii) $x+2 y=6$. Verify by drawing to scale.
12. The co-ordinates of a point referred to rectangular axts $O X, O Y$ are x, y; referred to two rectangular axes $O V, O W$ through the same point O the co-ordinates are ξ, η. Prove by projection that $\xi=x \cos \alpha+y \sin \alpha$, where α is the angle between $O X$ and $O V$.

Find three other similar relations connecting ξ, η, x, y.

CHAPTER IX

FORMULAE FOR (i) THE FUNCTIONS OF THE SUM OR DIFFERENCE OF TWO ANGLES, (ii) THE SUM OR DIFFERENCE OF THE FUNCTIONS OF TWO ANGLES, (iii) THE FUNCTIONS OF THE DOUBLE ANGLE AND THE HALF-ANGLE
81. To express $\cos (\mathbf{A}+\mathbf{B})$ in terms of the sines and cosines of A and B .

Fig. LIV.

Fig. LV.

Let $O X$ be the initial line; and let the revolving line first turn through the angle A to the position $O A$ and then continue to turn through an additional angle B to the position $O B$. Then $O B$ is the bounding line of the angle $A+B$. Along $O B$ measure a length $O P=r$ units.

Project $O P$ on the initial line, produced backwards if necessary also project $O P$ on $O A$, produced backwards if necessary.

Figures LIV and LV show two of the many possible cases.

In all cases
the projection of $(O P)$ on $O X$
$=$ sum of the projections of $(O K)$ and $(K P)$ on $O X$;
i. e. $r \cdot \cos (A+B)=(O K) \cos A+(K P) \cos (A+90)$
$=r \cdot \cos B \cos A+r \sin B(-\sin A)$.

- Hence $\cos (A+B)=\cos A \cos B-\sin A \sin B$.*

Several proofs of this have already been given, but the earlier proofs have implied that A and B are together less than two right angles; this proof applies whatever be the values of A and B.

Exercises. (i) Deduce the formula for $\sin (A+B)$ by substituting $90-A$ in place of A, and $-B$ in place of B.
(ii) By similar substitutions deduce the formulae for $\cos (A-B)$ and $\sin (A-B)$.
(iii) By projecting perpendicular to $O X$, find the expanded form of $\sin (A+B)$.
(iv) Modify the construction so as to prove directly, by projection, the formula for $\sin (A-B)$ and $\cos (A-B)$.
(v) Complete the following formulae:

$$
\begin{aligned}
& \cos (A+B)= \\
& \cos (A-B)= \\
& \sin (A+B)= \\
& \sin (A-B)=
\end{aligned}
$$

(vi) Learn these formulae in words, as:

$$
\begin{aligned}
& \cos \operatorname{sum}=\cos \cos -\sin \sin \\
&=- \\
&= \\
&= \\
&
\end{aligned}
$$

[^17]82. The following proof does not involve any knowledge of projection; its chief drawback is that it applies only to the case when $A+B$ is less than a right angle. It is easily modified to suit any other given case.

Fig. LVI.
Let $X O A=A$ and $A O B=B$;
then $\mathrm{YOB}=A+B$, and in Fig. LVI is less than 90°.
Take a point P in the bounding line of $A+B$;
let fall $P N$ perpendicular to $O X$;
$\begin{array}{lllll}\text { ", } & P K & , \text {, } & \text { " } O A \text {; } \\ \text { " } & K L & \text { ", } & \text { " } P N \text { and, therefore, parallel to } O X \text {; } \\ \text { " } & O M & \text { " } & \text { " } O X\end{array}$
" KM ", "OX.

$$
\cos (A+B)=\frac{O N}{O P}=\frac{O M-M N}{O P}
$$

$$
\left[=\frac{O M}{\overline{O P}}-\frac{L K}{O P}\right]
$$

$$
=\frac{O M}{O K} O K-\frac{L K}{P K} \frac{P K}{O P}
$$

The spaces in the bracketed line (which dces not appear in the completed work) are filled in with the hypotenuses of the triangles in which the respective numerators occur.

Now angle $L P K=90^{\circ}-L K P=L K O=A$; therefore

$$
L K / P K=\sin A .
$$

Hence $\cos (A+B)=\cos A \cos B-\sin A \sin B$.
From the same figure, prove that

$$
\sin (A+B)=
$$

To find the functions of $A-B$, the angle $A O B$ must be made on the negative side of $O A$. The point P must he taken in the
pounding line of $A-B$, and the construction and proof proceed as before. It is found that

$$
\begin{gathered}
\cos (A-B)= \\
\sin (A-B)=
\end{gathered}
$$

Exercises. (i) Prove the four formulae when A and B are each less than 90° but $A+B$ is greater than 90°.
(Make the same construction as when $A+B$ is less than 90°, and pay careful attention to the signs of the lines.)
(ii) Prove the four formulae when A and B are each obtuse and together greater than 270°.

Examples IX a.

1. By using the formulae of $\S 81$, verify that $\sin (90-A)=\cos A$, $\cos (90+A)=-\sin A, \sin (180-A)=\sin A, \cos (180-A)=-\cos A$, $\sin (270+A)=-\cos A, \cos (360-A)=\cos A$.
2. Express $\cos 70^{\circ}$ in terms of the functions of (i) 40° and 30°; (ii) 45° and 25°; (iii) 95° and 15°; (iv) 35°.
3. Express $\sin 40^{\circ}$ in terms of (i) 30° and 10°; (ii) 25° and 15°; (iii) 70° and 30°; (iv) 20°.
4. From the expansions of $\sin (A+B)$ and $\cos (A+B)$ deduce the expansion of $\tan (A+B)$ in terms of $\tan A$ and $\tan B$.
5. From the expansions of $\sin (A-B)$ and $\cos (A-B)$ deduce the expansion of $\tan (A-B)$ in terms of $\tan A$ and $\tan B$.
6. Verify that $\sin 0^{\circ}=0$ and $\cos 0^{\circ}=1$ by using the formulae for $A-B$.
7. Show that (i) $\sin (A+B) \cos B-\cos (A+B) \sin B=\sin B$;
(ii) $\cos (A+B) \cos B+\sin (A+B) \sin B=\cos B$.
8. From the formulac for $A+B$ deduce that,

$$
\sin 2 A=2 \sin A \cos A \text { and } \cos 2 A=\cos ^{2} A-\sin ^{2} A
$$

What is the value of $\tan 2 A$?
9. Find the values of
(i) $\sin (A+B)+\sin (A-B)$; (ii) $\cos (A+B)+\cos (A-B)$;
(iii) $\sin (A+B)-\sin (A-B)$; (iv) $\cos (A+B)-\cos (A-B)$.

Account for the signs of (iii) and (iv) from first principles.
10. Prove that

$$
\sin A=\sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)+\cos \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B) .
$$

Prove similar results for $\cos A, \sin B$, and $\cos B$.
11. From the results of $\mathbf{1 0}$ deduce that

$$
\sin A+\sin B=2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)
$$

and three similar results.
12. Prove that
(i) $\cos ^{2} \theta+\cos ^{2} \phi-2 \cos \theta \cos \phi \cos (\theta+\phi)=\sin ^{2}(\theta+\phi)$;
(ii) $\sin ^{2} \theta+\cos ^{2} \phi-2 \sin \theta \cos \phi \sin (\theta+\phi)=\cos ^{2}(\theta+\phi)$.

83. Sums and differences of sines or cosines expressed as products.

These formulae are most easily derived from the formulae of § 81, as suggested in Examples IX \boldsymbol{a}. They can be proved independently by projection.

Make the angle $\mathrm{Y} O A=A$ and the angle $X O B=B$.*
On $O A$ and $O B$ take lengths $O P, O Q$ respectively, each equal to r units. Join $P Q$.

Fig. LVII.

Fig. LVIII.

Bisect the angle $Q O P$ by a line cutting $P Q$ at R.
Then the angles $R O P, R O Q$ each equal $\frac{1}{2}(A-B)$; and the angle $X O R=\frac{1}{2}(A+B)$.

From congruent triangles $R P=R Q$, and $P R O$ is a right angle.
The projection of $(O P)=$ sum of projections of $(O R)$ and $(R P)$, and the projection of $(O Q)=$ sum of projections of $(O R)$ and $(R Q)$.

[^18]\therefore projection of $(O P)+$ projection of $(O Q)=2^{c c}$ projection of $(O R)$, since projections of $(R P)$ and $(R Q)$ are equal but opposite.

Projecting on a line perpendicular to $O X$, we have

$$
r \sin A+r \sin B=2^{c e} \text { the projection of }(O R)
$$

But $(O R)$ is the projection of $(O P)$ on the direction $O R$,

\[

\]

Again, projection of $(O P)$ - projection of $(O Q)=2^{c e}$ projection of (RP).

Hence $\quad \sin A-\sin B=2 \cos \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B)$,

$$
\cos A-\cos B=-2 \sin \frac{1}{2}(A-B) \sin \frac{1}{2}(A+B) .
$$

The proofs apply to all cases whatever be the magnitudes of A and B.

The reason for the negative sign in the last of these formulae is obvious, for, if $A>B$, then $\cos A<\cos B$.

It is useful to learn the formulae in words, it being understood in all cases that the greater angle is put first.

$$
\begin{aligned}
\text { sine }+ \text { sine } & =2 \text { sine half sum cos half difference. } \\
& = \\
& = \\
& =
\end{aligned}
$$

84. Products of sines and cosines expressed as sums or differences.

In the formulae of the last section put

$$
\frac{1}{2}(A+B)=X, \frac{1}{2}(A-B)=Y
$$

so that $A=X+Y, B=X-Y$.
Then $\quad \sin (X+Y)+\sin (X-Y)=2 \sin X \cos Y$,
i. e. $\quad 2 \sin X \cos Y=\sin (X+Y)+\sin (X-Y)$.

Similar results are obtained from the other formulae. If we replace X by A and Y by B, the formulae become

$$
\begin{aligned}
& 2 \sin A \cos B=\sin (A+B)+\sin (A-B), \\
& 2 \cos A \sin B=\sin (A+B)-\sin (A-B), \\
& 2 \cos A \cos B=\cos (A+B)+\cos (A-B), \\
& 2 \sin A \sin B=\cos (A-B)-\cos (A+B) .
\end{aligned}
$$

These are more easily proved direct from the $A+B$ and $A-B$ formulae.

In using these formulae it is usual (but not necessary) to put the greater angle first; this shows why there are distinct formulae for $2 \sin A \cos B$ and $2 \cos A \sin B$.

Express the four formulae in words:

$$
\begin{aligned}
\text { Twice sine cos } & =\sin \text { sum }+\sin \text { difference. } \\
& = \\
& = \\
& =
\end{aligned}
$$

Examples IX b.

1. Apply the formulae of $\S \S 83,84$ to the following cases and verify from the tables:
(i) $A=70^{\circ}, B=30^{\circ}$;
(iii) $A=72^{\circ}, B=18^{\circ}$;
(ii) $A=110^{\circ}, B=75^{\circ}$;
(iv) $A=78^{\circ}, B=46^{\circ}$.
2. Prove, from the formula for $\sin A+\sin B$, that

$$
\sin 2 \theta=2 \sin \theta \cos \theta,
$$

and, in a similar way, show that

$$
1+\cos A=2 \cos ^{2} \frac{1}{2} A, 1-\cos A=2 \sin ^{2} \frac{1}{2} A
$$

3. Prove that
(i) $\sin A+\cos A=\sqrt{2} \cos (A-45)$;
(ii) $\sin A-\cos B=-2 \sin \left(45-\frac{A+B}{2}\right) \sin \left(45-\frac{A-B}{2}\right)$;
(iii) $\cos A+\sin B=2 \cos \left(45-\frac{A-B}{2}\right) \cos \left(45+\frac{A+B}{2}\right)$.
4. Prove that (i) $\sin 50^{\circ}+\sin 130^{\circ}=2 \cos 40^{\circ}$;
(ii) $\cos 50^{\circ}-\cos 130^{\circ}=2 \sin 40^{\circ}$.

Verify these by squaring and adding.
5. Prove that (i) $2 \cos 40^{\circ} \sin 50^{\circ}=1-\sin 10^{\circ}$;
(ii) $2 \cos 40^{\circ} \sin 40^{\circ}=\sin 80^{\circ}$;
(iii) $2 \sin 64^{\circ} \sin 26^{\circ}=\cos 38^{\circ}$.

Verify this last result from the tables.
6. Fill in the right-hand side of the following :
(i) $\sin 70^{\circ}+\sin 50^{\circ}=$
(ii) $\cos 30^{\circ}-\cos 110^{\circ}=$
(iii) $2 \sin 75^{\circ} \cos 10^{\circ}=$
(iv) $\sin 37^{\circ}+\cos 24^{\circ}=$
(v) $2 \cos 84^{\circ} \cos 72^{\circ}=$
(vi) $\cos 79^{\circ}-\cos 52^{\circ}=$
(vii) $\sin 75^{\circ}-\sin 116^{\circ}=$
(viii) $2 \cos 80^{\circ} \cos 35^{\circ}=$
(ix) $\cos 24^{\circ}-\sin 76^{\circ}=$
(x) $2 \sin 17^{\circ} \sin 48^{\circ}=$

1216

(xii) $2 \cos 14^{\circ} \cos 166^{\circ}=$ (xiv) $\sin \frac{1}{4} \pi+\cos \frac{1}{4} \pi=$ (xvi) $2 \cos 97^{\circ} \sin 46^{\circ}=$ (xviii) $\sin 49^{\circ}-\sin 53^{\circ}=$
(xx) $\cos 43^{\circ}-\cos 216^{\circ}=$
7. Prove that $4 \cos \left(75^{\circ}+A\right) \sin \left(75^{\circ}-A\right)=1-2 \sin 2 A$.

Formulae for the double angle and half-angle.
85. It has already been shown in $\S 51$ that

$$
\begin{aligned}
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =1-2 \sin ^{2} A \\
& =2 \cos ^{2} A-1 .
\end{aligned}
$$

The proof there given assumed that $2 A$ is less than 180°.
If we put A instead of B in the $A+B$ formulae the same results are obtained; thus they are true for all values of A.

The results can easily be proved independently by projection; the proofs are the same as in $\S 81, A$ taking the place of B.
86. From the last section, by putting $\frac{1}{2} A$ in place of A, we
have
also
Add
Subtract
Hence

$$
\begin{aligned}
\cos ^{2} \frac{1}{2} A-\sin ^{2} \frac{1}{2} A & =\cos A \\
\cos ^{2} \frac{1}{2} A+\sin ^{2} 1 & =1 . \\
2 \cos ^{2} \frac{1}{2} A & =1+\cos A . \\
2 \sin ^{2} \frac{1}{2} A & =1-\cos A . \\
\cos \frac{1}{2} A & = \pm \frac{1}{2}(\sqrt{1+\cos A}) \\
\sin \frac{1}{2} A & = \pm \frac{1}{2}(\sqrt{1-\cos A)} .
\end{aligned}
$$

If the value of A is given, there is no ambiguity of sign. If, for instance, $A=140^{\circ}$, then $\frac{1}{2} A=70^{\circ}$, and the sine and cosine are both positive ; if $A=264^{\circ}$, then $\frac{1}{2} A=132^{\circ}$, and the sine is positive, the cosine negative.

If the value of $\cos A$ is given but not the value of A, the ambiguity cannot be removed. Suppose $\cos A=\frac{1}{2}$, then A may have any value of the form $360^{\circ} n \pm 60^{\circ}$. Hence $\frac{1}{2} A$ may have any value given by $180^{\circ} n \pm 30^{\circ}$. If we tabulate these values, we have

E 1gle	cosine	sine
30°	$+\frac{1}{2} \sqrt{3}$	$+\frac{1}{2}$
150°	$-\frac{1}{2} \sqrt{3}$	$+\frac{1}{2}$
210°	$-\frac{1}{2} \sqrt{3}$	$-\frac{1}{2}$
330°	$+\frac{1}{2} \sqrt{3}$	$-\frac{1}{2}$

87. Tangent formulae.

From the sine and cosine formulae the following tangent formulae are derived ; the proof of the first only is given :

$$
\begin{aligned}
\tan (A+B) & =\frac{\sin (A+B)}{\cos (A+B)} \\
& =\frac{\sin A \cos B+\cos A \sin B}{\cos A \cos B-\sin A \sin B} \\
& =\frac{\tan \mathbf{A}+\tan \mathbf{B}}{1-\tan \mathbf{A} \tan \mathbf{B}} \quad \text { (By dividing throughout by }
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\tan (A-B) & = \\
\tan 2 A & = \\
\tan \frac{1}{2} \mathbf{A} & = \pm \sqrt{\frac{1-\cos \mathbf{A}}{1+\cos \mathbf{A}}}
\end{aligned}
$$

$$
= \pm \frac{1-\cos A}{\sin A} \text { or } \pm \frac{\sin A}{1+\cos A} \text {. (By rationalizing.) }
$$

88. These may all be proved directly from the figures used for the sine and cosine formulae ; e.g. in Fig. LVI.

$$
\begin{aligned}
& \tan (A+B)=\frac{N P}{O N} \\
&=\frac{M K+L P}{O M-L K} \\
&=\frac{\frac{M K}{O M}+\frac{L P}{O M}}{1-\frac{L K}{P K} \frac{P K}{O M}} . \quad \text { (By dividing so as to make the first } \\
& \text { term in the denominator to be 1.) }
\end{aligned}
$$

The triangles $L P K, O K M$ are similar ;

$$
\therefore \frac{L P}{O M}=\frac{P K}{O K}=\tan B .
$$

Hence $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$.
Exercises. Prove that
(i) $\tan (A+B+C)=\frac{\tan A+\tan B+\tan C-\tan A \tan B \tan C}{1-\tan B \tan C-\tan C \tan A-\tan A \tan B}$;
(ii) $\tan A+\tan B=\frac{\sin (A+B)}{\cos A \cos B}$;
(iii) $\tan A-\tan B=\frac{\sin (A-B)}{\cos A \cos B}$;
(iv) $\cot A+\cot B=\frac{\sin (A+B)}{\sin A \sin B}$;
(v) $\cot A-\cot B=-\frac{\sin (A-B)}{\sin A \sin A}$.

Example. To prove that $\tan ^{-1} \frac{1}{99}+\tan ^{-1} \frac{1}{23} 9=\tan ^{-1} \frac{1}{70}$.
Let

$$
A=\tan ^{-1} \frac{1}{99}, B=\tan ^{-1} \frac{1}{23} ;
$$

so that $\quad \tan A=\frac{1}{99}, \quad \tan B=\frac{1}{239}$.

$$
\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}
$$

$$
=\frac{\frac{1}{99}+\frac{1}{239}}{1-\frac{1}{99} \times \frac{1}{239}}
$$

$$
=\frac{239+99}{23900-240}=\frac{338}{23660}
$$

$$
=\frac{1}{\pi} \frac{1}{0},
$$

i.e. $\tan ^{-1} \frac{1}{99}+\tan ^{-1} \frac{1}{2} \frac{1}{9}=\tan ^{-1} \frac{1}{70}$.

Examples IX c.

1. Prove that $(\sin A+\cos A)^{2}=1+\sin 2 A$, and

$$
(\sin A-\cos A)^{2}=1-\sin 2 A
$$

2. Assuming the values of $\sin 45^{\circ}, \cos 45^{\circ}, \tan 45^{\circ}$, deduce $\sin 90^{\circ}, \cos 90^{\circ}, \tan 90^{\circ}$.
3. Find a formula for $\cot 2 A$ in terms of $\cot A$.
4. Show that $\sin 3 A=3 \sin A-4 \sin ^{3} A$. Explain how it is that there are three values of $\sin A$ when $\sin 3 A$ is given.
5. Find the values of $\tan 22 \frac{1}{2}^{\circ}, \tan 67 \frac{1}{2}^{\circ}, \tan 157 \frac{1}{2}^{\circ}$.
6. Prove that $2 \sin \frac{1}{2} A= \pm \sqrt{1+\sin A} \pm \sqrt{1-\sin A}$.

Find $\sin \frac{1}{2} A$ when $\sin A=\frac{1}{2}$. Illustrate by a figure.
7. Find $\cos \frac{1}{2} A$ when $\sin A=\frac{1}{2}$. Illustrate by a figure.
8. Prove that (i) $\sin 2 A=2 \tan A \div\left(1+\tan ^{2} A\right)$;
(ii) $\cos 2 A=\left(1-\tan ^{2} A\right) \div\left(1+\tan ^{2} A\right)$;
(iii) $\tan 2 A=2 \tan A \div\left(1-\tan ^{2} A\right)$.
9. Prove that $\quad \sin 3 A=3 \sin A-4 \sin ^{3} A$;
$\cos 3 A=4 \cos ^{3} A-3 \cos A$;
$\tan 3 A=\left(3 \tan A-\tan ^{3} A\right) \div\left(1-3 \tan ^{2} A\right)$.
10. Show that

$$
(\cos A+\sin A)^{3}+(\cos A-\sin A)^{3}=3 \cos A-\cos 3 A
$$

11 (a). Show that $\sin \frac{1}{2} A+\cos \frac{1}{2} A= \pm \sqrt{1+\sin A}$, and

$$
\sin \frac{1}{2} A-\cos \frac{1}{2} A= \pm \sqrt{1-\sin A}
$$

(b) Having given $4 \sin 54^{\circ}=\sqrt{5}+1$, apply the formulae in (a) to find $\sin 27^{\circ}$ and $\cos 27^{\circ}$, explaining how the ambiguities of sign are cleared up.
(c) Show that $8\left(\sin ^{2} 42^{\circ}-\cos ^{2} 78^{\circ}\right)=\sqrt{5}+1$.
12. Prove that

$$
\tan (A+B+C)=\frac{\tan A+\tan B+\tan C-\tan A \tan B \tan C}{1-\tan B \tan C-\tan C \tan A-\tan A \tan B} .
$$

Deduce the formula for $\tan 3 A$.
What can be cleduced if $A+B+C$ equals (i) 180°, (ii) 90° ?
13. If $\tan A=\frac{13}{2} \frac{1}{6}$ and $\tan B=\frac{7}{20}$, show that

$$
A+B=(4 n+1) \frac{1}{4} \pi
$$

14. Show that

$$
\cos \theta+\cos 3 \theta+\cos 5 \theta+\cos 7 \theta=4 \cos \theta \cos 2 \theta \cos 4 \theta
$$

15. Find all the solutions of the equation

$$
\sin \theta \sin 3 \theta=\sin 5 \theta \sin 7 \theta \text {. }
$$

16. If $\tan A=\frac{1}{3}, \tan B=\frac{3}{1}, \tan C=\frac{5}{27}$, and each angle is acute, prove that $A+B+C=\frac{1}{4} \pi$.
17. If $\tan \theta=\tan \frac{1}{2} \alpha \tan \frac{1}{2} \beta$, show that

$$
\tan 2 \theta=(\sin \alpha \sin \beta) \div(\cos \alpha+\cos \beta) .
$$

18. (i) If $\theta=\tan ^{-1} \frac{1}{3}$, find $\tan 2 \theta$.
(ii) Show that $2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}=\frac{1}{4} \pi$.
19. Prove that $\cos 2 A-\cos 2 B=2\left(\cos ^{2} A-\cos ^{2} B\right)=2\left(\sin ^{2} B-\sin ^{2} A\right)$.
20. Prove that
(i) $\quad \frac{1}{a+b \cos \theta}=\frac{\sec ^{2} \frac{1}{2} \theta}{(a+b)+(a-b) \tan ^{2} \frac{1}{2} \theta}$;
(ii) $\frac{1}{a \cos \theta+b \sin \theta}=\frac{1+\tan ^{2} \frac{1}{2} \theta}{a+2 b \tan \frac{1}{2} \theta-a \tan ^{2} \frac{1}{2} \theta}$.
21. Solve the equations
(i) $x^{2}-\sqrt{2} \sin \left(\frac{1}{4} \pi+\alpha\right) x+\frac{1}{2} \sin 2 \alpha=0$;
(ii) $x^{2}-2 \cot 2 \beta \cdot x-1=0$.
22. Solve for α and V the following equations:

$$
2 a g=V^{2} \sin 2 \alpha, 2 b g=V^{2} \sin ^{2} \alpha
$$

23. A hemispherical shell of radius 16 inches rests with its rim on a horizontal table; a rod is hinged to a vertical wall, 25 inches from the centre of the shell, at a point 5 feet above the table. The rod is in the same vertical plane as the hinge and centre of the shell, and touches the shell. Find its inclination to the vertical.

Oral Examples.

(a)

(i) $\sin (P-Q)$	$=$	(ii) $\cos X+\cos Y=$
(iii) $\cos \left(90-\frac{1}{2} \overline{A+B}\right)$	$=$	(iv) $\sin 270^{\circ}=$
(v) $2 \sin \alpha \cos \beta$	$=$	(vi) $\cos ^{2} \theta-\sin ^{2} \theta=$
(vii) $\tan (A-B)$	$=$	(viii) $\sin B-\sin C=$
(ix) $\cos ^{2} 45^{\circ}-\sin ^{2} 45^{\circ}$	$=$	(x) $\cos 2 A$

(b) (i) $\cos (C+A)$
$=$
(ii) $\sin B+\sin C=$
(iii). $2 \sin \frac{1}{2}(B+C) \frac{1}{2}(B-C)=$
(iv) $\cos \theta+\cos \phi=$
(v) $2 \cos ^{2} \frac{1}{2} C-1=$
(vi) $\tan 2 B=$
(vii) $\sin (180-\overline{B+C})=$ (viii) $\cos ^{2} 75^{\circ}+\sin ^{2} 75^{\circ}=$
(ix) $\cos \left(\frac{1}{2} \overline{A+B}+\frac{1}{2} \overline{A-B}\right)=$
(x) $\sin (360-2 C)=$
(c) (i) $\sin 2 B \quad=$
(iii) $\cos (\pi-\overline{\alpha+\beta})=$
(ii) $\sin (P+Q)=$
(v) $1-2 \sin ^{2} B=$
(iv) $2 \sin \frac{1}{2} C \cos \frac{1}{2} C=$
(vi) $\cos ^{2} \frac{1}{2} C-\sin ^{2} \frac{1}{2} C=$
(vii) $\cos ^{2} \frac{1}{2} C+\sin ^{2} \frac{1}{2} C=$
(ix) $\cos C-\cos A=$
(viii) $\tan (B-C)=$
(x) $(\sin B+\cos B)^{2}=$
(d) (i) $\sin B \cos C-\sin B \sin C=$
(ii) $\cos (X-Y)=$
(iii) $\sin 3 A$
$=$ (iv) $\sin \frac{1}{2} B \quad=$
(v) $\cos B+\cos C \quad=$ (vi) $2 \cos B \cos C=$
(vii) $\sin ^{2}(B+C)+\cos ^{2}(B+C)=$ (viii) $2 \cos ^{2} \frac{1}{2} \theta-1=$
(ix) $\left(\cos \frac{1}{2} A-\sin \frac{1}{2} A\right)^{2}=$ (x) $\tan (90-C)=$
89. The preceding formulae lead to a number of useful identities in the cases where $A+B+C=90^{\circ}$ or 180°. The method of dealing with these is shown in the following illustrative examples.

Example i. In any triangle $\tan \frac{1}{2}(B-C)=\frac{b-c}{b+c} \cot \frac{1}{2} A$. [Here $\frac{b-c}{b+c}$ gives the clue to the proof.]

By the sine formula,

$$
\frac{b}{\sin B}=\frac{c}{\sin C}
$$

i.e.

$$
\frac{\sin B}{\sin C}=\frac{b}{c}
$$

Componendo et dividendo, $\frac{\sin B-\sin C}{\sin B+\sin C}=\frac{b-c}{b+c}$;
\therefore

$$
\begin{array}{r}
\frac{2 \cos \frac{1}{2}(B+C) \sin \frac{1}{2}(B-C)}{2 \sin \frac{1}{2}(B+C) \cos \frac{1}{2}(B-C)}=\frac{b-c}{b+c}, \\
\frac{\tan \frac{1}{2}(B-C)}{\tan \frac{1}{2}(B+C)}=\frac{b-c}{b+c} ;
\end{array}
$$

lut $A+B+C=180^{\circ} ; \therefore \frac{1}{2} A+\frac{1}{2}(B+C)=90$.
Hence $\tan \frac{1}{2}(B+C)=\tan \left(90-\frac{1}{2} A\right)=\cot \frac{1}{2} A$.
Substituting above, $\quad \tan \frac{1}{2}(B-C)=\frac{b-c}{b+c} \cot \frac{1}{2} A$.
This formula has been proved geometrically in $\S 53$; it is usually proved by the method given above.

Example ii. In any triangle

$$
\cos A+\cos B+\cos C=1+4 \sin \frac{1}{2} A \sin \frac{1}{2} B \sin \frac{1}{2} C
$$

L.H.S. $=\cos A+\cos B+\cos C$

$$
\begin{aligned}
& =2 \cos \frac{1}{2}(A+B) \cos ^{1}(A-B)+1-2 \sin ^{2} \frac{1}{\frac{1}{2} C} \\
& =2 \sin \frac{1}{2} C \cos \frac{1}{2}(A-B)+1-2 \sin \frac{1}{2} C \cos \frac{1}{2}(A+B), \\
& \quad \quad \operatorname{since} \frac{1}{2} C=90-\frac{1}{2}(A+B) \\
& =1+2 \sin \frac{1}{2} C\left(\cos \frac{1}{2} \overline{A-B}-\cos \frac{1}{2} \overline{A+B}\right) \\
& =1+4 \sin \frac{1}{2} A \sin \frac{1}{2} B \sin \frac{1}{2} C .
\end{aligned}
$$

The symbol $\Sigma \cos A$ is sometimes used to denote

$$
\cos A+\cos B+\cos C
$$

and $\Pi \sin A$ to denote $\sin A \sin B \sin C$. The above result can be written :

$$
\Sigma \cos A=1+4 \Pi \sin \frac{1}{2} A
$$

Example iii. In any triangle $\Sigma \cos ^{2} A=1-2 \Pi \cos A$.
(Questions involving the sum of the squares of sines or cosines are usually solved by expressing these squares in terms of the cosine of the double angle.)

$$
\begin{aligned}
& 2 \Sigma \cos ^{2} A=2 \cos ^{2} A+2 \cos ^{2} B+2 \cos ^{2} C \\
&=1+\cos 2 A+1+\cos 2 B+2 \cos ^{2} C . \quad \text { (Note that one angle } \\
& \quad \text { is left unchanged.) } \\
& \therefore \Sigma \cos ^{2} A=1+\cos (A+B) \cos (A-B)+\cos ^{2} C \\
&=1-\cos C \cos (A-B)-\cos C \cos (A+B), \\
&=1-\cos C[\cos (A-B)-\cos (A+B)] \\
&=1-2 \cos A \cos B \cos C .
\end{aligned}
$$

Example iv. Solve the equation

$$
\sin \theta+\sin 2 \theta+\sin 3 \theta+\sin 4 \theta=0
$$

Rearrange $\sin \theta+\sin 4 \theta+\sin 2 \theta+\sin 3 \theta=0$.
Use formula for sum of two sines

$$
2 \sin \frac{5}{2} \theta \cos \frac{3}{2} \theta+2 \sin \frac{5}{2} \theta \cos \frac{1}{2} \theta=0 ;
$$

\therefore either $\sin \frac{5}{2} \theta=0$ or $\cos \frac{3}{2} \theta+\cos \frac{1}{2} \theta=0$;
i.e. $\quad \frac{5}{2} \theta=n \pi$ or $2 \cos \theta \cos \frac{1}{2} \theta=0$;
i.e. $\quad \theta=\frac{2}{5} n \pi$, or $\cos \theta=0$ or $\cos \frac{1}{2} \theta=0$;
i.e.

$$
\theta=(2 n+1) \frac{1}{2} \pi \quad \text { or } \quad \frac{1}{2} \theta=(2 n+1) \frac{1}{2} \pi .
$$

Hence the complete solution is

$$
\theta=(2 n+1) \pi,(2 n+1) \frac{1}{2} \pi \text { or } \frac{2}{5} n \pi .
$$

Example v. To prove that

$$
r=4 R \sin \frac{1}{2} A \sin \frac{1}{2} B \sin \frac{1}{2} C
$$

From the figure of §59,

$$
r \cot \frac{1}{2} B+r \cdot \cot \frac{1}{2} C=a
$$

i.e.

$$
r\left(\frac{\cos \frac{1}{2} B}{\sin \frac{1}{2} B}+\frac{\cos \frac{1}{2} C}{\sin \frac{1}{2} C}\right)=2 R \sin A
$$

i. e. $r \frac{\sin \frac{1}{2} B \cos \frac{1}{2} C+\cos \frac{1}{2} B \sin \frac{1}{2} C}{\sin \frac{1}{2} B \sin \frac{1}{2} C}=2 R \sin A$,
i.e.

$$
\begin{aligned}
& r \frac{\sin \frac{1}{2}(B+C)}{\sin \frac{1}{2} B \sin \frac{1}{2} C}=2 R \sin A, \\
& r \frac{\cos \frac{1}{2} A}{\sin \frac{1}{2} B \sin \frac{1}{2} C}=4 R \sin \frac{1}{2} A \cos \frac{1}{2} A ; \\
\therefore & r=4 R \sin \frac{1}{2} A \sin \frac{1}{2}(B+C)=90-\frac{1}{2} A ;
\end{aligned}
$$

i.e.

Exercise. Prove that $r_{1}=4 R \sin \frac{1}{2} A \cos \frac{1}{2} B \cos \frac{1}{2} C$.

Example vi. To show that the distance between the circumcentre and in-centre $=\sqrt{ }\left(R^{2}-2 R r\right)$.

Fig. LIX.
In Fig. LIX, with the usual notation,

$$
\begin{aligned}
& B D=R \sin A, D O=R \cos A, \\
& O P=r \cot \frac{1}{2} B, P I=r . \\
& O I^{2}=(B P-B D)^{2}+(I P-O D)^{2} \\
&=\left(r \cot \frac{1}{2} B-R \sin A\right)^{2}+(r-R \cos A)^{2} \\
&=\left.R^{2}-2 R r \cdot \sin A \cot \frac{1}{2} B+\cos A\right)+r^{2}\left(1+\cot ^{2} \frac{1}{2} B\right) \\
&= R^{2}-2 R r \cdot \frac{\sin \left(A+\frac{1}{2} B\right)}{\sin \frac{1}{2} B}+r^{2} \frac{1}{\sin ^{2} \frac{1}{2} B} \\
&= R^{2}-2 R r \cdot \frac{\sin \left(A+\frac{1}{2} B\right)}{\sin \frac{1}{2} B}+4 R r \cdot \frac{\sin \frac{1}{2} A \sin \frac{1}{2} B \sin \frac{1}{2} C}{\sin ^{2} \frac{1}{2} B} \quad \text { (Substitut- } \\
&\text { ing for } r \cdot) \\
&= R^{2}-2 R r \cdot \frac{\cos \frac{1}{2}(A-C)-2 \sin \frac{1}{2} A \sin \frac{1}{2} C}{\sin \frac{1}{2} B}, \\
&= \operatorname{since} \quad A+\frac{1}{2} B=90+\frac{1}{2} A-\frac{1}{2} C \\
&= R^{2}-2 R r \cdot \frac{\cos \frac{1}{2}(A+C)}{\sin \frac{1}{2} B}, \\
&= \operatorname{since} \frac{1}{2}(A+C)=90-\frac{1}{2} B .
\end{aligned}
$$

This is more shortly proved by Pure Geometry ; but the method used here is a general method to find the lengths of lines connected with the triangle.

Example vii. To prove that $\sin A+\sin (A+B)+\sin (A+2 B)+\ldots$ to n terms

$$
=\frac{\sin \frac{1}{2} n B \sin \left(A+\frac{1}{2} \overline{n-1} B\right)}{\sin \frac{1}{2} B}
$$

Let $S=\sin A+\sin (A+B)+\ldots+\sin (A+\overline{n-1} B)$.
Multiply by $2 \sin \frac{1}{2} B$.
Then $2 \sin \frac{1}{2} B$. S
$=2 \sin A \sin \frac{1}{2} B+2 \sin (A+B) \sin \frac{1}{2} B+\ldots+2 \sin (A+n-1 B) \sin \frac{1}{2} B$.
Use the formula for the product of two sines.

$$
\begin{aligned}
2 \sin \frac{1}{2} B \cdot S= & \cos \left(A-\frac{1}{2} B\right)-\cos \left(A+\frac{1}{2} B\right) \\
& +\cos \left(A+\frac{1}{2} B\right)-\cos \left(A+\frac{3}{2} B\right) \\
& +\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\
& +\cos \left(A+\frac{1}{2} \cdot \cdot \cdot \cdot \cdot\right. \\
= & \cos \left(A-\frac{1}{2} B\right)-\cos \left(A+\frac{1}{2} \overline{2 n-1} B\right) ; \\
\therefore \quad S= & \frac{\sin \frac{1}{2} n B \sin \left(A+\frac{1}{2} n-1 B\right)}{\sin \frac{1}{2} n B} .
\end{aligned}
$$

Note. Compare this with the formula for the sum of n terms of an Arithmetic Progression. Notice that $A+\frac{1}{2} \overline{n-1} B=$ half the sum of the first angle (A) and the last angle $(A+n-1 B)$.

Examples IX.

1. Prove the following identities:
(i) $\sin 3 A=4 \sin A \sin \left(60^{\circ}+A\right) \sin \left(60^{\circ}-A\right)$;
(ii) $\sin 3 A \sin ^{3} A+\cos 3 A \cos ^{3} A=\cos ^{3} 2 A$;
(iii) $\left(1-2 \sin ^{2} A\right) \div(1+\sin 2 A)=(1-\tan A) \div(1+\tan A)$;
(iv) $\frac{\tan \left(45^{\circ}+A\right)+\tan \left(45^{\circ}-A\right)}{\tan \left(45^{\circ}+A\right)-\tan \left(45^{\circ}-A\right)}=\operatorname{cosec} 2 A$;
(v) $\sin (y+z-x)+\sin (z+x-y)+\sin (x+y-z)-\sin (x+y+z)$

$$
=4 \sin x \sin y \sin z ;
$$

(vi) $\cot \frac{1}{4} \theta-\cot \theta=\operatorname{cosec} \theta+\operatorname{cosec} \frac{1}{2} \theta$;
(vii) $\cos 4 A+2(\cos A+\sin A)^{4}=3+4 \sin 2 A$;
(viii) $\sin A+\sin B=\sin (A+B)+4 \sin \frac{1}{2} A \sin \frac{1}{2} B \sin \frac{1}{2}(A+B)$;
(ix) $\sin A-3 \sin 3 A+3 \sin 5 A-\sin 7 A=8 \sin ^{3} A \cos 4 A$;
(x) $\cos (A+B+C)$
$=\cos A \cos B \cos C-\cos A \sin B \sin C-\sin A \cos B \sin C$
$-\sin A \sin B \cos C$
(xi) $\cos \frac{1}{2} \Lambda(2 \sin A-\sin 2 A)=\sin ^{2} \frac{1}{2} A(2 \sin A+\sin 2 A)$;
(xii) $\cos A+\cos B+\cos C+\cos (A+B+C)$

$$
=4 \cos \frac{1}{2}(A+B) \cos \frac{1}{2}(B+C) \cos \frac{1}{2}(C+A) .
$$

2. If A, B, C be the angles of a triangle, show that
(i) $\tan A+\tan B+\tan C=\tan A \cdot \tan B \cdot \tan C$;
(ii) $\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C$;
(iii) $\sin ^{2} \frac{1}{2} A+\sin ^{2} \frac{1}{2} B+\sin ^{2} \frac{1}{2} C+2 \sin \frac{1}{2} A \sin \frac{1}{2} B \sin \frac{1}{2} C=1$;
(iv) $\sin A+\sin B+\sin C=4 \cos \frac{1}{2} A \cos \frac{1}{2} B \cos \frac{1}{2} C$;
(v) $\cot A \cot B+\cot A \cot C+\cot B \cot C=1$;
(vi) $\cot A+\cot B+\cot C$
$=\cot A \cot B \cot C+\operatorname{cosec} A \operatorname{cosec} B \operatorname{cosec} C ;$
(vii) $\tan B \tan C+\tan C \tan A+\tan A \tan B$

$$
=1+\sec A \sec B \sec C ;
$$

(viii) $\cos A \sin (B-C)+\cos B \sin (C-A)+\cos C \sin (A-B)=0$;
(ix) $(\tan A+\tan B)(\tan A-\cot C)=\sec ^{2} A$;
(x) $\tan \frac{1}{2} B \tan \frac{1}{2} C+\tan \frac{1}{2} C \tan \frac{1}{2} A+\tan \frac{1}{2} A \tan \frac{1}{2} B=1$.
3. Show geometrically that $\sin (A+B)=\sin A \cos B+\cos A \sin B$ when each of the angles A and B is between $\frac{1}{2} \pi$ and π, and $A+B$ is less than $\frac{3}{2} \pi$.
4. Solve the equation $\cos 3 A+\cos 2 A+\cos A=0$.
5. Find all the values of θ which satisfy
(i) $\cos \theta+\cos 2 \theta+\cos 3 \theta+\cos 4 \theta=0$;
(ii) $\sin 3 \theta+\sin 4 \theta+\sin 5 \theta=0$.
6. Solve (i) $\sin \left(A+30^{\circ}\right)=1 \div \sqrt{2}$;
(ii) $\sqrt{3} \sin A+\cos A=\sqrt{2}$;
(iii) $\sin A+\cos A=1$;
(iv) $\sin A+\sqrt{3} \cos A=2$;
(v) $\sqrt{2}(\cos 3 x+\sin 3 x)=1$;
(vi) $a \cos \theta+b \sin \theta=c$ (put $a=r \cdot \cos \alpha, b=r \sin \alpha$).
7. Prove that (i) $2 \sin ^{-1} \frac{1}{2} \sqrt{2}=90^{\circ}$;
(ii) $2 \tan ^{-1} \frac{1}{2}=\tan ^{-1} \frac{4}{3}$.
8. In any triangle show that
$R(\sin 2 A+\sin 2 B+\sin 2 C)=2 r(\sin A+\sin B+\sin C)$.
9. In any triangle show that

$$
a^{2} \cos 2 B+b^{2} \cos 2 A=a^{2}+b^{2}-4 a b \sin A \sin B
$$

10. Prove the formula $(b+c) \tan \frac{1}{2}(B-C)=(b-c) \cot \frac{1}{2} A$.

Write down two corresponding formulae.
11. Using the fact that $3 \times 18^{\circ}=90^{\circ}-2 \times 18^{\circ}$, find the values of $\sin 18^{\circ}$ and $\cos 18^{\circ}$.

Give a geometrical method for determining $\sin 18^{\circ}$.
12. Simplify

$$
\begin{aligned}
& \text { (i) }\left(\frac{\sin 4 A}{\sin A}-\frac{\cos 4 A}{\cos A}\right) \div(\cot A+\cot 2 A) \text {; } \\
& \text { (ii) } \frac{\sin 5 \theta-\sin 3 \theta}{\cos 5 \theta+\cos 3 \theta}+\frac{2}{\sin 2 \theta}+\frac{\sin 5 \theta+\sin 3 \theta}{\cos 5 \theta-\cos 3 \theta} \text {. }
\end{aligned}
$$

13. D, E, F are the feet of the perpendiculars from A, B, C on the opposite sides; P is the orthocentre. Prove that
(i) $A P=2 R \cos A$; (ii) $P D=2 R \cos B \cos C$;
(iii) perimeter of triangle $D E F=4 R \sin A \sin B \sin C$.
14. State the general formula for all angles having a given cosine.

Solve $\sin 3 A+\sin 5 A+\sin 7 A=0$.
15. Find sec $(A+B)$ in terms of the secant and cosecant of A and B, and prove

$$
\sec 105^{\circ}=\sqrt{2}(1+\sqrt{3})
$$

16. Prove that
$\sin 18^{\circ}=\frac{1}{4}(\sqrt{5}-1)$; and that $\sin ^{2} 30^{\circ}=\sin 18^{\circ} \sin 54^{\circ}$.
Show that in any circle the chord of an arc of 108° is equal to the sum of the chords of arcs of 36° and 60°.
17. Given $\cos A=28$, determine the value of $\tan \frac{1}{2} A$, and explain fully the reason of the ambiguity which presents itself in your result.
18. Prove that

$$
\cos ^{-1} x+\cos ^{-1} y=\sin ^{-1}\left(x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right)
$$

and solve the equation

$$
\tan ^{-1}\{(x+1) \div(x-1)\}+\tan ^{-1}\{(x-1) \div x\}=\tan ^{-1}(-7)
$$

19. Express $\sin 3 A \div(\sin 2 A-\sin A)$ in terms of $\cos A$.
20. Prove the identities:
(i) $(1+\cos A) \tan ^{2} \frac{1}{2} A=1-\cos A$;
(ii) $(\sec A+2 \sin A)(\operatorname{cosec} A-2 \cos A)=2 \cos 2 A \cot 2 A$.
21. In any triangle prove that $(b-c) \cos \frac{1}{2} A=a \sin \frac{1}{2}(B-C)$.

If $A=80^{\circ}, a=10, b-c=5$, find B and C.
22. Prove the identity $\cos 2 x \sin 3 x=\sin x \cos 4 x+\cos x \sin 2 x$.
23. Solve the equations $\cos 2 \theta=\cos (\theta-a) ; \cos 3 \theta=\sin (\theta-\beta)$.
24. (i) If the equation of a straight line is put in the form $y=m x+c$, what is the geometrical interpretation of m ?
(ii) Show how to find the angle between two lines whose equations are $y=m x+c, y=m^{\prime} x+c^{\prime}$.
(iii) Deduce that the lines are at right angles if $\mathrm{mm}^{\prime}=-1$; and parallel if $m-m^{\prime}=0$.
(iv) Prove that the lines whose equations are $a x+b y+c=0$, $a^{\prime} x+b^{\prime} y+c^{\prime}=0$, are perpendicular if $a a^{\prime}+b b^{\prime}=0$, and parallel if $a / a^{\prime}=b / b^{\prime}$.
25. Find the angle between the lines whose equations are
(i) $3 x-4 y=5,4 x-2 y=7$;
(ii) $4 x+3 y=6,3 x-4 y=9$;
(iii) $2 x-y=3,4 x+5 y=1$;
(iv) $2 x-y=3,4 x+2 y=5$;
(v) $2 x+4 y=5, \quad x+2 y=3$.

In each case verify by drawing to scale.
26. Find the equations of the straight lines drawn through the point $(3,5)$, and respectively parallel and perpendicular to the line whose equation is $3 x-4 y=5$.
27. Find the equation of the straight line, parallel to the line whose equation is $x \cos \alpha+y \sin \alpha=p$, and passing through the point (x^{\prime}, y^{\prime}). Deduce that the length of the perpendicular from $\left(x^{\prime}, y^{\prime}\right)$ to the line $x \cos \alpha+y \sin \alpha=p$ is $x^{\prime} \cos \alpha+y^{\prime} \sin \alpha-p$.
28. Find in its simplest form the equation of the line joining the points $\{a \cos (\alpha+\beta), b \sin (\alpha+\beta)\},\{a \cos (\alpha-\beta), b \sin (\alpha-\beta)\}$.
29. Prove that $\sin 55^{\circ} \sin 15^{\circ}-\sin 50^{\circ} \sin 10^{\circ}-\sin 65^{\circ} \sin 5^{\circ}=0$.
30. Show that in any triangle

$$
\frac{a^{2} \sin (B-C)}{b+c}+\frac{b^{2} \sin (C-A)}{c+a}+\frac{c^{2} \sin (A-B)}{a+b}=0
$$

31. If $2 \cos \theta=x+1 / x$ and $2 \cos \phi=y+1 / y$, prove that $2 \cos (\theta+\phi)=x y+1 / x y$ and $2 \cos (\theta-\phi)=x / y+y / x$.
32. If $\theta+\phi=240^{\circ}$, and versin $\theta=4 \mathrm{versin} \phi$, find the values of θ and ϕ.
33. Draw a curve to represent the variations in sign and magnitude of $(\sin \theta-\sqrt{3} \cos \theta) \div(\sqrt{3} \sin \theta+\cos \theta)$, from $\theta=0$ to $\theta=\pi$.
34. If α and β are the roots of $a \sin \theta+b \cos \theta+c=0$, prove that

$$
\frac{\cos \frac{1}{2}(\alpha+\beta)}{b}=\frac{\cos \frac{1}{2}(\alpha-\beta)}{-c}=\frac{\sin \frac{1}{2}(\alpha+\beta)}{a} .
$$

35. Eliminate θ and ϕ from

$$
\begin{align*}
a \sin \theta+b \sin \phi & =h, \tag{i}\\
a \cos \theta-b \cos \phi & =l, \tag{ii}\\
\cdot \cos (\theta+\phi) & =l . \tag{iii}
\end{align*}
$$

36. Eliminate θ and ϕ when two equations are the same as (i) and (ii) in Ex. 35, and the third equation is (i) $\sin (\theta+\phi)=l$, (ii) $\tan (\theta+\phi)=l$.
37. Eliminate θ and ϕ from the equations

$$
\frac{a}{b}=\frac{\cos (\phi+\alpha)}{\cos (\theta-\alpha)}=\frac{\sin \phi}{\sin \theta}, a \sin (\theta-\alpha)+b \sin (\phi+\alpha)=c .
$$

38. Expand $\sin 5 \theta$ in terms of $\sin \theta$, and $\cos 6 \theta$ in terms of $\cos \theta$.
39. If $\sin B$ is the arithmetic mean between $\sin A$ and $\cos A$, prove that $\cos 2 B=\cos ^{2}\left(A+45^{\circ}\right)$.
40. If $a \cos \theta+b \sin \theta=c$, show that

$$
\theta=\tan ^{-1} b / a+\cos ^{-1} c /\left(\sqrt{a^{2}+b^{2}}\right)
$$

41. Find the maximum and minimum values of

$$
a \cos \theta+b \sin \theta=c
$$

Verify your answer when $a=3, b=5$, by drawing a graph.
42. Prove that
(i) $\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots$ to n terms

$$
=\frac{\sin \frac{1}{2} n \theta \sin \frac{1}{2} n+1 \theta}{\sin \frac{1}{2} \theta} ;
$$

(ii) $\cos A+\cos (A+B)+\cos (A+2 B)+\ldots$ to n terms

$$
=\frac{\sin \frac{1}{2} n B \cos \left(A+\frac{1}{2} n-1 B\right)}{\sin \frac{1}{2} B} ;
$$

(iii) $\cos \alpha+\cos (\alpha \beta)+\cos (\alpha+2 \beta)+\ldots$ to n terms $=0$, if

$$
n \beta=2 \pi
$$

43. Find the sum of n terms in the following series:
(i) $\sin ^{2} A+\sin ^{2}(A+B)+\sin ^{2}(A+2 B)+\ldots$;
(ii) $\cos ^{2} A+\cos ^{2}(A+B)+\cos ^{2}(A+2 B)+\ldots$;
(iii) $\sin A \sin 2 A+\sin 2 A \sin 3 A+\sin 3 A \sin 4 A+\ldots$.

Revision Examples C.

(All the following examples are taken from recent Examination Papers.)

1. Find, without reference to the tables, the values of (i) $\sin 45^{\circ}$; (ii) $\cos 150^{\circ}$; (iii) the tangent of the obtuse angle whose sine is $1 / \sqrt{10}$.
2. Trace the graph of the function $\cos \theta+2 \sin \theta$ between the values 0 and 180° of θ, and determine from your figure the value of θ for which the function (i) is greatest, (ii) is decreasing most rapidly.
3. Express $\tan \theta$ in terms of $\sec \theta$.

Show that $(\sin \theta-\cos \theta)(\sec \theta+\operatorname{cosec} \theta)=\tan \theta-\cot \theta$.
4. Prove that the sines of the angles of a triangle are in the ratios of the sides opposite them.
5. Solve the equation $2 \cos x+\sin x=2$.
6. In a right-angled triangle $A C B, C$ being the right angle, the angle A is 35°, the side $A B$ is 10 inches; find the other sides.
7. If $\cos (A+B)=\cos A \cos B-\sin A \sin B$, calculate $\cos (A+B)$ when $A=50^{\circ}$ and $B=50^{\circ}$.
8. If α is measured in radians,

$$
\sin \alpha=\alpha-\alpha^{3} / 3+\alpha^{5} /\left[5-\alpha^{7} /[7+\ldots\right.
$$

where $\quad 5$ means $1 \times 2 \times 3 \times 4 \times 5$. Find $\sin \alpha$ correct to four significant figures when $\alpha=0.3$. What is the angle α in degrees?
9. Define the tangent of an angle in such a way that your definition is true for all angles.

If θ be an acute angle, prove that $\cos (90+\theta)=-\sin \theta$.
10. Arrange in order of magnitude the angles

$$
2 \sin ^{-1} \cdot 51, \frac{1}{2} \cos ^{-1} \cdot 32, \tan ^{-1} 8 \cdot 9
$$

11. Draw the graph of $\cos x$ for values of x lying between 0° and 90°.

Use your figure to solve roughly the equation $x=100 \cos x^{\circ}$, and verify your solution by the tables.
12. Given that $\sin 20^{\circ}=0.34$ and $\cos 20^{\circ}=0.94$, write down the values of $\sin 160^{\circ}+\cos 160^{\circ}$, of $\sin 250^{\circ}+\cos 250^{\circ}$, and of $\sin 340^{\circ}+\cos 340^{\circ}$.
13. In any triangle $A B C$, show that
(i) $c=a \cos B+b \cos A$;
(ii) $c^{2}=a^{2}+b^{2}-2 a b \cos C$.

Find c when $a=5, b=6$, and $C=155^{\circ} 31^{\prime}$, having given $\cos 24^{\circ} 29^{\prime}=0.91$. Verify your result by a diagram drawn to scale.
14. Find to the nearest degree the angle subtended at a man's eye by a tower 50 feet high, when the man has stepped back 30 feet from the tower, assuming the height of his eye above the ground to be 5 feet 6 inches.
15. Write down a formula for $\sin \frac{1}{2} A$ in terms of the sides of the triangle $A B C$ and explain the notation. How is the formula modified when $b=c$?

Given that the sides are $100,200,160$ units in length, calculate the smallest angle.
16. A and B are two acute angles but $A+B$ is obtuse; prove that $\cos (A+B)=\cos A \cos B-\sin A \sin B$.

Solve completely $\cos x+\sin x=\cos \alpha-\sin \alpha$.
17. Define the tangent of an angle, and show geometrically that

$$
\tan A \tan \left(90^{\circ}+A\right)+1=0
$$

18. Draw a circle of diameter 1 inch. Draw a diameter $A B$ and the tangent to the circle at B, divide either of the semicircumferences between A and B into 8 equal parts, join A to the points of section, and produce the joining lines to meet the tangent at B. Measure the distances of the points so found from B, and use the results obtained for drawing the graph of $\tan A$ from $A=0^{\circ}$ to $A=90^{\circ}$.
19. Prove that the area of the triangle $A B C$ is

$$
\frac{1}{2} a^{2} \sin B \sin C / \sin A \text {. }
$$

Use this expression to find the area of the triangle when

$$
a=106^{\circ} 5 \text { yards, } A=56^{\circ} 37^{\prime}, B=75^{\circ} 46 .^{\prime}
$$

20. A person walking along a straight level road running due East and West observes that two objects P and Q are in a line bearing North-West, and after walking a further distance d he observes that P bears due North and that the direction of Q makes an angle A with the direction in which he is walking. Prove that the distance $P Q$ is $d \cos A / \sin \left(A-45^{\circ}\right)$. Find $P Q$ when $d=1372$ yards, and the angle $A=56^{\circ} 31^{\prime}$.
21. (i) Show that $(\sin A+\cos A)^{2}+(\sin A-\cos A)^{2}=2$.
(ii) Considering only values of A between 0° and 90°, find the value of A when $\sin A \cos A$ has its greatest value, and show that the same value of A gives the greatest value of $\sin A+\cos A$.
22. Let $A D$ bisect the angle A of a triangle $A B C$, and let it meet $B C$ in D; show that $B D \sin B=C D \sin C$.

Hence show that $B D . A C=D C . A B$.
23. (i) Show geometrically that

$$
\sin (A+B)=\sin A \cos B+\cos A \sin B
$$

when A, B, and $A+B$ are each less than 90°.
(ii) By means of this formula, and in view of the restrictions under which it has been obtained, show that

$$
\sin 464^{\circ}=\sin 153^{\circ} \cos 311^{\circ}+\cos 153^{\circ} \sin 311^{\circ}
$$

24. Find $\tan \theta$ and x in terms of a and b from the equations

$$
\begin{aligned}
a \sin \theta+b \cos \theta & =3 x \\
a \cos \theta-2 b \sin \theta & =2 x .
\end{aligned}
$$

25. An angle is made to increase gradually from 0° to 360°; state briefly how the values of its sine and of its cosine change during the increase of the angle.
26. Calculate the values of A between 0° and 360° for which $\tan A-2 \cot A=1$.
27. A and B are two milestones on a straight road running due East across a horizontal plane, C an object on the plane. The bearings of C as viewed from A and B are 35° North of East, and 55° North of West respectively. Find, to the nearest foot, (1) the distance of C from A, (2) the distance of C from the nearest point of the road.
28. Plot in relation to the same axis and origin the values of $\tan x$ and $2 \sin x$ for the values $0^{\circ}, 12^{\circ} 30^{\prime}, 37^{\circ} 30^{\prime}, 50^{\circ}, 62^{\circ} 30^{\prime}$, 75° of x, draw the graphs of $\tan x$ and $2 \sin x$, and find from them the values of x for which $\tan x=2 \sin x$. Give the general solution of the equation $\tan x=2 \sin x$.
29. Prove that $(\cos A+\sin A) \div(\cos A-\sin A)=\tan \left(A+45^{\circ}\right)$.
30. Prove for a triangle in which the angle B is obtuse the relation $\sin B / b=\sin C / c$, and deduce the relation

$$
\tan \frac{1}{2}(B-C)=(b-c) /(b+c) \cot \frac{1}{2} A .
$$

If $b=27^{\circ} 3$ yards, $c=15^{\circ} 8$ yards, $A=48^{\circ} 36^{\prime}$, find B and C.
31. Prove that in a triangle $r=4 R \sin \frac{1}{2} A \sin \frac{1}{2} B \sin \frac{1}{2} C$. $A B C$ is a triangle ; $B^{\prime} C^{\prime}$ is drawn through A parallel to $B C, A^{\prime} C^{\prime}$ through C perpendicular to $A C$, and $A^{\prime} B^{\prime}$ through B perpendicular to $A B$. Prove that the area of the triangle $A^{\prime} B^{\prime} C^{\prime}$ is

$$
\frac{1}{2} a^{2} \cos ^{2}(B-C) \div \cos B \cos C \sin A .
$$

32. (i) Find $\sin A+\sin B$ in terms of functions of half the sum and of half the difference of the angles A and B.
(ii) If $A+B$ is between 90° and 180°, find under what circumstances $\tan A+\tan B$ will be negative.
33. Find to the nearest minute the angle of a regular polygon of 17 sides.

What angles less than 360° satisfy the equation

$$
2 \cos ^{2} \theta+11 \sin \theta-7=0 ?
$$

34. Prove the identity

$$
\frac{\tan ^{3} A}{1+\tan ^{2} A}+\frac{\cot ^{3} A}{1+\cot ^{2} A}=\frac{1-2 \sin ^{2} A \cos ^{2} A}{\sin A \cos A} .
$$

35. Assuming the formula $a^{2}=b^{2}+c^{2}-2 b c \cos A$, establish a formula for $\tan \frac{1}{2} A$ in terms of the sides of the triangle, and find the greatest angle of the triangle whose sides are $13,14,15$.
36. Prove that for any triangle $A B C$

$$
a / \sin A=b / \sin B=c / \sin C .
$$

If $B=39^{\circ} 17^{\prime}, a=4.2$, and $b=3.5$, solve the triangle fully; draw a figure to illustrate your solution.
37. The angles of elevation of a vertical pole from two points on a horizontal line passing through its base and 6 feet apart are α and β; prove that the height of the pole is $b /(\cot \alpha-\cot \beta)$ feet.
38. From a point on a horizontal plane passing through the foot of a tower the angles of elevation of the top and bottom of a flagstaff 20 feet high, placed vertically at the summit of the tower, are 512° and 473°. Find the height of the tower.
39. Prove that (i) $\sin (A+B)=\sin A \cos B+\cos A \sin B$;
(ii) $\cos 2 A\left(1+\tan ^{2} A\right)=1-\tan ^{2} A$.

Use (ii) to find the value of $\tan 15^{\circ}$.
40. Reduce the fraction $a \div\left(\cos ^{2} A-\sin ^{2} B\right)$ to a form suitable for logarithmic calculation, and perform the calculation when $a=10, A=29^{\circ} 55^{\prime}$, and $B=15^{\circ} 5^{\prime}$.
41. Prove that $\sin ^{2} A+\cos ^{2} A=1$ for all values of A less than 180°.
A and B are each less than $180^{\circ}, \sin A={ }^{\circ} 3900, \sin B={ }^{\circ} 9208$, find four possible values of $A+B$.
42. Find from your tables the value to two decimal places of the expression $\sin \theta+\sin 2 \theta$, when θ is $10^{\circ}, 20^{\circ}, 30^{\circ}, \ldots 90^{\circ}$, and from these draw a graph of the expression on a suitable scale.
43. In a triangle $A B C$ prove that
(i) $2 b c \cos A=b^{2}+c^{2}-a^{2}$;
(ii) $\cos ^{2} A+\cos ^{2} B+\cos A \cos B=\frac{3}{4}$, if $C=60^{\circ}$.
44. In a triangle $a=12 \cdot 76, b=10 \cdot 87, c=8 \cdot 37$, find C.
45. Show how to find the distance between two visible but inaccessible objects.
46. In any triangle $A B C$ show that four times the area equals $\left(a^{2}+b^{2}+c^{2}\right) \div(\operatorname{cotan} A+\operatorname{cotan} B+\operatorname{cotan} C)$.

Show also that when C is a right angle this expression reduces to $2 a b$.
47. Prove the identities :
(i) $1 / \sin 2 A=1 / \tan A-1 / \tan 2 A=\tan A+1 / \tan 2 A$;
(ii) $\tan 3 A=\frac{\sin ^{2} A+\sin 4 A}{\cos 2 A+\cos 4 A}$.
48. What is the meaning of $\tan ^{-1} x$?

Prove that $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}[(x+y) \div(1-x y)]$.
Prove that 45° is one value of $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{1}{13}$.
49. Prove that (i) $\sec ^{2} A=1+\tan ^{2} A$;
(ii) $\operatorname{cosec} \theta-\cot \theta=\tan \frac{1}{2} \theta$.
50. Construct an angle whose sine is $0 \cdot 76$. From your figure obtain the value of the cosine of the angle.
51. On squared paper draw graphs of $\tan \theta$ and $\cot \theta$ between $\theta=10^{\circ}$ and $\theta=80^{\circ}$. From the graph, or otherwise, find angles which satisfy the equation $\tan \theta+\cot \theta=3$.

52 . Let D be the point in which one of the escribed circles touches the side $B C$ of a triangle $A B C$. If the sides a, b, c of the triangle are given, find expressions for the radius of that circle and for $B D$ and $C D$.
53. A tree which grows at a point A on the north bank of a river is observed from the points B and C on the south bank. The distance $B C$ is 200 metres, the angle $A B C$ is $46^{\circ} 30^{\prime}$, and the angle $A C B$ is $58^{\circ} 20^{\prime}$. Calculate the distance of A from the straight line $B C$.
54. Prove the formula $\sin \frac{1}{2} A=\sqrt{(s-b)(s-c) \div b c}$.

If, in a triangle $A B C, 2 b=a+c$, prove that

$$
\sin \frac{1}{2} B=2 \sin \frac{1}{2} A \sin \frac{1}{2} C .
$$

55. Find the angles B and C and the radius of the circumscribed circle of a triangle $A B C$ in which $A=32^{\circ} 42^{\prime}, a=36$, $b=44$.
56. State De Moivre's Theorem, and, assuming it for integral indices, prove it for fractional indices.

Write down all the values of $(\sqrt{-1})^{\frac{2}{5}}$.
57. If A is an obtuse angle whose sine is $\frac{5}{13}$, find the values of $\cos A$ and $\tan A$.
58. (i) Show, by drawing graphs of the two expressions $\sin x$ and $\cos \left(x+90^{\circ}\right)$, that $\sin x=-\cos \left(x+90^{\circ}\right)$.
(ii) If $\sin x=\frac{1}{2} \sqrt{2}$, find a formula which gives all the values of x which satisfy the equation.
59. Prove that in a triangle
(i) $\tan \frac{1}{2} B=\sqrt{ }(s-c)(s-a) \div s(s-b)$;
(ii) $b \cos B+c \cos C=a \cos (B-C)$.
60. If two sides of a triangle and the angle opposite one of them are given, show how to solve the triangle, and discuss by the aid of a figure all the cases that can arise.

One side of a triangle is 20 inches long, the opposite angle is $34^{\circ} 42^{\prime}$; another side is $30^{\circ} 41$ inches. Find the sides and angles of the two possible triangles.
61. Assuming the formulae for the sine and cosine of half an angle of a triangle in terms of the sides, prove that
(i) $r=\sqrt{(s-a)(s-b)(s-c) \div s}$;
(ii) $R=a / 2 \sin A$.
62. I observe the altitude of an airship to be 35°, and that of the sun, which is in the same vertical plane as my eye and the airship, to be 40°. The shadow of the airship falls on a tree on the same level as my eye and 500 feet in front of me. Find the height of the airship.
63. In any triangle prove that

$$
\sin A-\sin B+\sin C=4 \sin \frac{1}{2} A \cos \frac{1}{2} B \sin \frac{1}{2} C .
$$

Assuming the formula for expanding $\tan (A+B)$, find expressions for $\tan 2 A$ and $\tan 3 A$ in terms of $\tan A$.
64. Make an angle $A O C$ and bisect it by the line $O B$. From any point A in $O A$ draw $A B C$ perpendicular to $O B$, meeting $O B, O C$ in the points B and C respectively, and draw $A N$ perpendicular to $O C$. Use this figure to prove that
(i) $\sin 2 A<2 \sin A$; (ii) $\tan 2 A>2 \tan A$.
65. Prove that $\sin ^{2} A+\cos ^{2} A=1$.

Having given that the sine of an angle is $\circ 56$, calculate its cosine. 66. Show how to construct an angle whose sine is " 6 .

Find a value of x which satisfies the equation

$$
4 \sin x+3 \cos x=1
$$

67. Given two sides of a triangle and the included angle, show how to find the remaining side and the other angles. Prove such formulae as you require.

If $a=1097$ feet, $b=781$ feet, $C=31^{\circ} 30^{\prime}$, find c to the nearest foot.
68. A ship is sailing at the rate of 7 miles an hour. A man walks forward across the deck at the rate of 4 miles an hour
relative to the deck, in a direction inclined to the keel at an angle of 60°. Find the direction of his actual motion in space.
69. Prove the formula $\cos (A-B)=\cos A \cos B+\sin A \sin B$.

Show that if $x y=a^{2}+1$ then

$$
\cot ^{-1}(a+x)+\cot ^{-1}(a+y)=\cot ^{-1} a .
$$

70. Find an expression for $\cos (\alpha+\beta+\gamma)$ in terms of sines and cosines of α, β, and γ.

Prove the identity

$$
\begin{aligned}
\cos \alpha \cos (\beta+\gamma)+\cos \beta & \cos (\gamma+\alpha)+\cos \gamma \cos (\alpha+\beta) \\
& =\cos (\alpha+\beta+\gamma)+2 \cos \alpha \cos \beta \cos \gamma .
\end{aligned}
$$

71. At what angle must forces of 4 dynes and 5 dynes act so that their resultant may be a force of 6 dynes?
72. If θ be the circular measure of an angle, prove that, as θ is indefinitely diminished, the ratios $\theta: \sin \theta, \theta: \tan \theta$ approach to the limit unity.

A man standing beside one milestone on a straight road observes that the foot of the next milestone is on a level with his eyes, and that its height subtends an angle of $2^{\prime} 55^{\prime \prime}$. Find the approximate height of that milestone.
73. Write down the values of $\sin 36^{\circ}$ and $\cos 36^{\circ}$ as given by your tables. Calculate the sum of the squares of these numbers to six d ϵ cimal places, and explain why the result differs from unity.
74. Give definitions of the tangent and cotangent of an angle which is greater than 90° and less than 180°.

Prove that (i) $\tan (180-\theta)=-\tan \theta$;
(ii) $\tan (90+\theta)=-\cot \theta$.
75. In any triangle prove that $a / \sin A=b / \sin B=c / \sin C$.

If $B C$ be 25 inches, and $C A$ be 30 inches, and if the angle $A B C$ be twice the angle $C A B$, find the angles of the triangle $A B C$, and show that the length of the third side is 11 inches.
76. P, Q, R are three villages. P lies 7 miles to the North-East of Q, and Q lies $11 \frac{1}{4}$ miles to the North-West of R. Find the distance and bearing of I from R.
77. A point is moving with velocity 50 feet per second in a direction 60° North of East. Find the resolved parts of the velocity in directions East and North.
78. A man has before him on a level plane a conical hill of vertical angle 90°. Stationing himself at some distance from its foot he observes the angle of elevation a of an object which he knows to be half-way up to the summit. Show that the part of the hill above the object subtends at his eye an angle

$$
\tan ^{-1} \frac{\tan \alpha(1-\tan \alpha)}{1+\tan \alpha(1+2 \tan \alpha)} .
$$

79. The latitude of London is $51^{\circ} \mathrm{N}$., and the radius of the Earth 4000 miles. How far is London from the Equator measured along the Earth's surface, and how far from the Earth's axis?
80. Prove that $\sin A+\sin B=2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)$.

Show that $\sin 10^{\circ}+\sin 20^{\circ}+\sin 40^{\circ}+\sin 50^{\circ}=\sin 70^{\circ}+\sin 80^{\circ}$.

MISCELLANEOUS PROBLEMS

(The following examples are taken from recent Army Entrance and Civil Service Papers.)

1. I take measurements to determine the air space of a rectangular hall : length 18.4 metres, breadth 11.8 metres, inclination to floor of diagonal of side wall $31 \cdot 8^{\circ}$, of diagonal of end wall 44°. Calculate the air space.

More measurements were taken than were necessary. Check the measurements by deducing one of them from the other three.
2. The ancient Greeks measured the latitude of a place by setting up a vertical rod and comparing its length with the length of its shadow. Supposing observations taken at mid-day at the equinox (when the sun is vertical at the equator) to give $\frac{5}{3}$ as the ratio of the rod to shadow at Alexandria, and $\frac{4}{3}$ as the ratio at Carthage, find the latitude of each place.
3. The following method of determining the horizontal distance $P R$, and the difference of level $Q R$ between two points P and Q, is often used. A rod with fixed marks A, B on it is held vertical at Q, and the elevations of these points, viz. $A C D=\alpha, B C D=\beta$, are read by a telescope and divided circle at C, the axis of the telescope being a distance $C P=a$ above the ground at P. If $Q A=b$, and $A B=s$, write down expressions for $P R$ and $Q R$. Find $P R$ and $Q R$ when $\alpha=6^{\circ} 10^{\prime}, \beta=7^{\circ} 36^{\prime}$, the values of a, b, and s being 5 feet, $2 \frac{1}{2}$ feet, and 5 feet respectively.
4. Three balls, 5 cm . in diameter, lie on a floor in contact, and a fourth equal ball is placed on them. Find the height of the centre of the fourth ball above the plane of the other three centres. Find also the inclination to the vertical of any line that touches both the top ball and one of the lower balls.

5 . The curved surface of a right circular cone whose semivertical angle is 45° is made by cutting out a sector from a circular sheet of copper, the diameter of the sheet being 56 cm . Determine the angle of the required sector.
6. If tangents be drawn to the inscribed circle of a triangle parallel to the sides of the triangle, show that the areas of the triangles cut off by these tangents are inversely proportional to the areas of the corresponding escribed circles.
7. A rod $B C$, of length 5.8 cm ., rotates about B. Another rod $C A$, of length 8.6 cm ., has one end C hinged to the first rod, while the other end A slides along the line $B O$. By drawing the rods in various positions, find how the length of $B A$ varies as the angle B increases; and show $B A$ as a function of angle B in a graph for one revolution of $B C$, showing the actual length of $B A$ and representing 30° by 1 cm .

Write down an equation connecting the angle B and the lengths of the three sides of the triangle $A B C$. Solve the equation to find the length of $B A$ when angle B is 35°.
8. The extreme range of the guns of a fort is 8000 metres. A ship, 14000 metres distant, sailing due East at 24 kilometres an hour, notices the bearings of the fort to be $20^{\circ} 30^{\prime}$ North of East. Find, to the nearest minute, when the ship will first come within range of the guns.
9. The face of a building is 136 feet long. A photographer wants to take the building from a point at which the face subtends an angle of 37°, and for this purpose he starts off from one corner of the building in a direction making an angle of 127° with the face in question. Find by calculation the distance from the corner at which he must take the photograph. Calculate the area of ground in the triangular space between his position and the face of the building.
10. From the top of a telephone pole three wires radiate in a horizontal plane. One wire, A, exerts a tension of 100 lb . weight; the next, B, makes an angle of 90° with A and exerts a tension of 80 lb . weight; the third, C, makes an angle of 35° with B and an angle of 125° with A, and exerts a tension of 90 lb . weight. It is required to equilibrate the three tensions by means of a fourth wire. Find its direction and tension.
11. A man passing along a straight road measures the angle between the direction of his advance and a line drawn to a house on his left. At a certain moment the angle is $36^{\circ} 21^{\prime}$. He walks on 1500 yards and finds that the angle between the same direction
and the line to the house is now $125^{\circ} 36^{\prime}$. Find the distance of the house from the road.
12. Plot a curve giving the sum of $4 \sin \theta$ and $3 \sin 2 \theta$ from $\theta=0^{\circ}$ to $\theta=180^{\circ}$, and read off the angles at which the greatest and the least values respectively of this sum occur. For the angle use 1 cm . to represent 10 degrees, and for $4 \sin \theta+3 \sin 2 \theta$ use 1 cm . to represent unity. Also estimate the slope of the curve when $\theta=90^{\circ}$ and when $\theta=135^{\circ}$.
13. A, B, and C are three buoys marking the corners of a triangular yacht racecourse round an island. The angles A, B, and C of the triangle $A B C$ are found to be $75^{\circ}, 63^{\circ}$, and 42° respectively. P is a flagstaff on the island, from which A and B can be seen, and the distances of P from A and B are found by a range-finder to be 650 yards and 535 yards respectively, and the angle $A P B$ to be 137°. Calculate the length of one lap of the course.
14. Draw an angle $X O P$ of 30°, making $O P 2^{\prime \prime}$ long: through P draw $P Q$ parallel to $O X$ and in the same direction: produce $X O$ to X^{\prime}, making $O X^{\prime}=O P$, and join $X^{\prime} P$: cut off $P Q=P X$. Join $O Q$ and measure the angle $X O Q$ carefully. Now denote $X O Q$ by ϕ, $X O P$ by θ, and $O P$ by e, and write down an expression for the length $P Q$. Deduce an equation for θ and ϕ, and solve it for $\tan \phi$.

Use your tables to evaluate ϕ when $\theta=30^{\circ}$, and compare your result with the measured value. It is said that the given construction trisects an angle. What is the percentage error for 30° ?
15. In running a survey the lengths of a series of lines are measured, and the angle each line makes with the direction of magnetic North is measured by a theodolite. The data booked are given in the table below :-

Line.	Length in feet.	Bearing.
$A B$	433	$29^{\circ} 15^{\prime}$
$B C$	521	$89^{\circ} 12^{\prime}$
$C D$	352	$132^{\circ} 38^{\prime}$
$D E$	417	$233^{\circ} 25^{\prime}$

The angles are measured clockwise from the magnetic North direction.

By an error the measured length of the closing line $E A$ of the survey was not recorded, nor its bearing; from the data given in the table calculate these missing data.
16. $A O B$ and $C O D$ are two straight roads crossing one another at an angle of 57°. A motor-car, travelling at the rate of 18 miles an hour along $A O B$, is 1500 yards from O, when a man, walking at the rate of three miles an hour along COD, is a quarter of a mile from O; car and man are both approaching O. Find graphically the motion of the car relative to the man. Hence find the least distance between the car and the man, and when they are at this distance from one another.
17. In a triangle $a=10 \mathrm{~cm} ., b=7 \mathrm{~cm}$., one angle is 95°. There being no restriction as to which angle of the triangle is 95°, discuss how many distinct triangles can be made. Select any one case, and for this case calculate the remaining sides and angles.
18. X and Y are two fixed points in a straight line, P a point which so moves that $\cos P X Y+\cos P Y X=k$ (a constant). Prove the accuracy of the following construction for obtaining the locus of P : With X and Y as centres describe circles of radius $X Y / k$. From any point N in $X Y$ draw NAB perpendicular to $X Y$ cutting the former circle in A and the latter in B. Draw $X A$ and $Y B$, intersecting in P. Then P is a point on the locus.
19. A candle, C, is placed on the floor at a distance r from a point O on a wall, and at the same level as the candle-flame, and the angle which $O C$ makes with a perpendicular to the wall at O, is θ. The illumination received on the wall at O from the candle is known to be equal to $A \cos \theta / r^{2}$ where A is a constant. If the candle be moved about on the floor in such a way that this illumination remains constant, plot on a diagram the curve described by the candle-flame.
20. Two small islands are 5 miles apart, and there is known to be a rock distant 3 miles from each. A ship is in such a position that the islands subtend an angle of 66° at the ship. Calculate, to the nearest hundredth of a mile, her least possible distance from the rock.
21. Find by means of a graph two acute angles θ for which $5 \sin 2 \theta=3 \sin \theta+2.5$.

Find also the greatest value of $5 \sin 2 \theta-3 \sin \theta$ when θ is an acute angle, and the angle to which this value corresponds.

22 . The elevation of an aeroplane which is flying horizontally on a fixed course at a height of 150 feet is taken at two instants
at an interval of 20 secs. At the first observation the elevation is 10° and the bearing is due North, and at the second the elevation is $6 \frac{1}{2}^{\circ}$ and the bearing is N. 35° E. Find the course and speed of the aeroplane.
23. The strength of an electric current C is obtained from the formula $C=k \tan \theta$ where θ is the angle read off in degrees on an instrument, and k is a constant. If an observer makes an error of $\delta \theta$ in reading the angle θ, prove that the value of C thus obtained will be wrong by an amount equal to $\frac{1}{90} \pi C \operatorname{cosec} 2 \theta \delta \theta$. Hence find the error per cent. in C produced by making a mistake of $\frac{1}{10}$ degree when θ is 60°.

What value of θ is likely to produce the smallest error in the value of C ?
24. If P denote the pressure of wind in lb. per square foot on a plane surface at right angles to the direction of the wind, and p denote the normal pressure of wind in lb. per square foot on a plane surface inclined at an angle θ to the direction of the wind, the following formulae are used to determine the ratio $p: P$.
(i) $p / P=(\sin \theta)^{1 \cdot 84 \cos \theta-1}$;
(ii) $p / P=2 \sin \theta /\left(1+\sin ^{2} \theta\right)$.

Compare the values of p / P given by these formulae for the values 10° and 50° of θ.
25. A man walks due W. from a point A up a straight path inclined at 10° to the horizon. After walking 2 miles he reaches B, and turns up another straight path to the NE., sloping 15° upwards. He reaches C after walking one mile from B. What is the distance in a straight line from C to A ? What is the height of C above the level of A ? Taking the face of the hill $A B C$ as a plane surface, what is the greatest slope?
26. A flagstaff stands vertically on horizontal ground. Four ropes, each 56 feet long, are stretched from a point in the flagstaff; 50 feet above the ground, to four pegs in the ground, arranged at the corners of a square. Calculate the angle between two adjoining ropes.
27. Q is the centre of a circle of radius 10 cm ., and $Q O$ is a radius. The seven points $A B C \ldots$ lie on the circumference and the angles $O Q A, O Q B, O Q C \ldots$ have the values $10^{\circ}, 20^{\circ}, 30^{\circ} \ldots 70^{\circ}$. Find by drawing or calculation the lengths of the chords $O A$, $O B, O C \ldots$, and tabulate the results.

Draw a graph to give the length of chord of the circle in terms of the angle which it subtends at the centre (for angles up to 70°). Show the chord's actual size, and represent 4 degrees by 1 cm .

From your graph find the length of the chord which subtends an angle of 48°. Make a triangle having one side of this length, and the other two sides 10 cm . long, and therefore having an angle of 48°.

Check the accuracy of your drawing by measuring this angle.
28. A square made of jointed rods each 4 inches long is deformed into a rhombus having half the area of the squareCalculate the lengths of the diagonals of the resulting figure and check by drawing. If it is part of a lattice-work, the original height of which is 6 times the diagonal of one of these squares, find by calculation how much the height of the lattice-work could be increased if each square were reduced to half its area.
29. A straight rod $A B, 3$ feet 9 inches long, is held under water, A being 2 feet 6 inches and $B 9$ inches below the surface. Calculate (a) the distance below the surface of a point C on the stick which is 12 inches from $A,(b)$ the angle which the stick makes with the surface of the water.

If a parallelogram is held under water, show that in every position the sum of the depths of the 4 corners is 4 times the depth of the point of intersection of the diagonals.
30. If a closed loop of thread is placed on a soap-film that covers a ring of wire, and the film within the loop is pierced, the film outside takes up as small an area as possible and thus pulls the thread at A into a circle. Calculate the diameter and the area of the circle formed by the thread if length of thread forming the loop is 6 cm .

If the ends $B C$ of the thread are attached to the ring, and the film on one side of the thread is pierced, the thread again becomes a circular arc. If the thread $B C$ is 6 cm . long, and the angle it subtends at the centre of the circle of which it forms an arc is 120°, calculate the length of the chord $B C$.

EXAMINATION PAPERS

OXFORD AND CAMBRIDGE SCHOOLS' EXAMINATION BOARD.

School Certificate, 1910.

1. Define the tangent of an angle.

Construct an acute angle whose sine is 6 , and find its cosine and cotangent.
2. Prove that $\cos (180-\alpha)=-\cos \alpha$.

Arrange the angles α, β, γ in order of magnitude, if

$$
\sin \alpha=8211, \cos \beta=7738, \tan \gamma=-0.6104,
$$

the angles being positive and each less than 180°.
3. What is the length of the shadow of a man, 5 feet 8 inches high, cast by the sun when its altitude is $55^{\circ} 30^{\prime}$?
4. Draw the graph of $10+10 \cos 2 x$ for values of x between 0° and 60°. Find a value of x to satisfy the equation

$$
x=10+10 \cos 2 x^{\circ} .
$$

[Take one-tenth of an inch as unit along both axes.]
5. Prove that in any triangle $\sin A / a=\sin B / b$.

If $A=63^{\circ}, B=49^{\circ}, a=50$ inches, find b to the nearest tenth of an inch.
6. Prove that
(i) $\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}+\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}=\frac{2}{1-2 \sin ^{2} \theta}$;
(ii) $(\sec \theta+\tan \theta)(\operatorname{cosec} \theta-\cot \theta)=(\operatorname{cosec} \theta+1)(\sec \theta-1)$.
7. If $2 \sin \theta+5 \cos \theta=5$, prove that $\tan \theta=0$ or $20 / 21$.
8. Prove that $\sin (A-B)=\sin A \cos B-\cos A \sin B$, where A and B are both acute angles and A is greater than B.
Prove that $\frac{\sin 5 A+\sin A}{\sin 3 A-\sin A}=1+2 \cos 2 A$.
9. Show that in any triangle $A B C$

$$
\frac{b+c}{a}=\frac{\cos \frac{1}{2}(B-C)}{\sin \frac{1}{2} A}
$$

If $b+c=24.8 \mathrm{~cm}$., $a=11.89 \mathrm{~cm}$., $A=39^{\circ}$, find B and C.
10. A lighthouse is observed from a ship which is steaming due N . to bear $62^{\circ} \mathrm{W}$. of N .; after the ship has sailed 10 miles the lighthouse is observed to bear $40^{\circ} \mathrm{W}$. of S. Calculate the distance of the ship from the lighthouse when it was nearest to it.

Higher Certificate, 1910.

> Part I.

1. Give a definition of $\cos \theta$ that holds for all angles from 0° to 180°. Show that $\cos (180-\theta)=-\cos \theta$.
2. Show that $\sec ^{2} \theta=1+\tan ^{2} \theta$.

Draw the graph of $1+\sin 3 x^{\circ}$, where x lies between 0° and 60°.
3 . Construct an acute angle whose cotangent is 2 , an obtuse angle whose sine is 3 , and an obtuse angle whose secant is -3.5 . Measure these angles as accurately as you can with the protractor, and verify your results by means of tables.
4. (i) Verify that $30^{\circ}, 45^{\circ}$, and 60° are solutions of the equation $\sin 3 x+\cos 3 x=2 \cos 2 x$.
(ii) Show that
$(\operatorname{cosec} A+\sec A)^{3}+(\operatorname{cosec} A-\sec A)^{3}=2 \operatorname{cosec}^{3} A\left(3 \sec ^{2} A-2\right)$.
5. Show that in an obtuse-angled triangle

$$
\sin A / a=\sin B / b=\sin C / c
$$

A man observes that the angular elevation of the foot of a tower on a distant hillside is α, and that the angular elevation of the top of the tower is β, and he knows that the height of the tower is h feet. Show that his horizontal distance from the tower is $h \cos \alpha \cos \beta \operatorname{cosec}(\beta-\alpha)$.

> Part II.
6. Draw the graph of $\cot x$ between the values -180 and +180 of x, taking the unit of x to be $\frac{1}{60}$ inch and the unit of y to be one inch.

Find an acute angle to satisfy the equation $x=60 \cot x^{\circ}$.
7. Show that $\sin (A-B)=\sin A \cos B-\sin B \cos A$, taking A and B to be acute angles of which A is the greater.

If $\tan x=k \cdot \tan (A-x)$, show that

$$
(k-1) \sin A=(k+1) \sin (2 x-A)
$$

Use this result and tables to solve the equation

$$
\tan x=2 \tan \left(50^{\circ}-x\right)
$$

8. In the triangle in which $a=72$ feet, $B=40^{\circ}$, and $C=55^{\circ}$, find c.
9. Find in terms of a, b, and c the radius of the circle escribed to the side $B C$ of the triangle $A B C$.

If I_{1} is the centre of this circle, show that

$$
a A I_{1}^{2}-b B I_{1}^{2}-c C I_{1}^{2}=a b c
$$

10. $A B$ is a diameter of a circle whose centre is O; on $A B$ an equilateral triangle $A B C$ is described, and a point D is taken in $A B$ such that $7 B D=2 A B ; C D$ is produced beyond D to meet the circle at E. Show that $\tan A D C=7 / \sqrt{3}$ and that $\sin O E D=3 / \sqrt{5} 2$.

Hence, or otherwise, show that the error made in taking the are $B E$ to be one-seventh of the circumference of the circle is less than - 2 per cent.

Part III was beyond the scope of this book.

OXFORD LOCAL EXAMINATIONS.

$$
\text { Junior. } 1910 .
$$

1. (i) Find the sine of 60°;
(ii) If A is an acute angle, and $\cos A=\frac{4}{5}$, find the value of $4 \tan A+5 \sin A$.
2. P and Q are points on a straight stretch of a river bank and R is a point on the other bank. If $\cot P Q R=32, \cot Q P R={ }^{\circ} 43$, and the length of $P Q$ is 15 yards, find the breadth of the river.
3. Draw the graph of $\sin \left(45^{\circ}+2 x\right)$ between $x=0$ and 180°.
4. If $A, B, A-B$ are all positive acute angles, prove that

$$
\cos (A-B)=\cos A \cos B+\sin A \sin B
$$

5. (i) A, B, C are the angles of a triangle; if $\tan A=\frac{1}{2}$ and $\tan B=\frac{1}{3}$, find the angle C.
(ii) Prove that $\frac{\cos 5 A+\cos 3 A}{\sin 5 A-\sin 3 A}=\cot A$.
6. Solve the equation $\cos 2 \theta+\sin \theta=1$.
7. Prove for any triangle that
(i) $a / \sin A=b / \sin B=c / \sin C$;
(ii) $(b+c) \cos A+(c+a) \cos B+(a+b) \cos C=a+b+c$.
8. Find the angles A and B of a triangle $I B C$ in which $a=13$, $b=14, c=15$, having given :

$$
\begin{gathered}
\log 2=3010, \log 7=8451, \\
\angle \tan 26^{\circ} 34^{\prime}=9^{\circ} 6990 \\
\angle \tan 29^{\circ} 44^{\prime}=9^{\circ} 7569 .
\end{gathered}
$$

Semior. 1910.

1. Find the tangent of 30°.

Using the values of $\tan 30^{\circ}$ and $\tan 45^{\circ}$, prove that

$$
\tan 75^{\circ}=2+\sqrt{3}
$$

2. A man on a straight level road observed two olojects P and Q (P being the nearer) in a horizontal straight line inclined to the direction of the road at an angle α. If $\tan \chi=75, P Q=400$ yards, and the shortest distance of P from the road is 180 yards, what is the shortest distance of Q from the road?
3. Prove that $\cos 3 A=4 \cos ^{3} A-3 \cos A$. Find $\sin 18^{\circ}$.
4. If $A B C$ is a triangle in which $b=c=5$ inches and $a=8$ inches, find the values of $\tan A$ and $\tan B$.
5. Prove that

$$
\cos ^{2} A+\cos ^{2} B=\sin ^{2}(A+B)+2 \cos A \cos B \cos (A+B)
$$

6. Prove that in any triangle $c=(a+b) \sin \theta$, where

$$
\cos \theta=2 \sqrt{a b} \cos \frac{1}{2} C /(a+b)
$$

In a triangle $A B C, a=36$ feet, $b=4$ feet, $C=55^{\circ}$. Using the above formula, find the third side, having given

$$
\begin{aligned}
\log 6 & =\cdot 7782, \quad \angle \cos 57^{\circ} 51^{\prime}
\end{aligned}=9 \cdot 7261, ~ 子 \quad \sin 57^{\circ} 51^{\prime}={ }^{\circ} 8467 .
$$

7. Find the radius of the circle inscribed in the triangle $A B C$.
C is the centre of a circle of diameter d, and A, B are two points on the circumference of the circle. If l is the length of the chord $A B$ and δ is the diameter of the circle which touches $C A, C B$ and also the arc $A B$ at its middle point, prove that $1 / \delta=1 / d+1 / l$.

CAMBRIDGE LOCAL EXAMINATION.

Junior. 1909.

1. Define the sine of an angle. What are the greatest and least values which the sine of an angle can have?

Prove that $\sin A=\cos A \times \tan A$, and that $\sin A \sin B \cot B=\cos A \cos B \tan A$.
2. Construct an angle whose tangent is $1 \cdot 45$, and measure it with a protractor. Verify your results with the help of the tables.
3. Prove that

$$
\text { (i) } \sin A=\tan A /\left(\sqrt{1+\tan ^{2} A}\right) ; \text { (ii) } \cos \left(90^{\circ}+A\right)=-\sin A
$$

4. Find by drawing graphs of $\sin A$ and $\sin 2 A$ for what value of A, less than $90^{\circ}, 2 \sin A-\sin 2 A=1$.
5. A vertical post casts a shadow 15 feet long when the altitude of the sun is 50°; calculate the length of the shadow when the altitude of the sun is 32°.
6. Prove that $\sin A+\sin B=2 \sin _{\frac{1}{2}}(A+B) \cos \frac{1}{2}(A-B)$, and that $\tan 2 A=2 \tan A /\left(1-\tan ^{2} A\right)$.

Show that $\sin A-3 \sin 3 A+3 \sin 5 A-\sin 7 A=8 \sin ^{3} A \cos 4 A$.
7. Prove that, in any triangle $A B C, a \cos B+b \cos A=c$.

Show also that $(\tan A+\tan B)(\tan A-\cot C)=\sec ^{2} A$.
8. Show how to solve a triangle when three sides are given.

Find the greatest angle of the triangle whose sides are 5.2 inches, $7 \cdot 7$ inches, and $9 \cdot 1$ inches.

Senior. 1909.

1. Show that the ratio of the circumference to the diameter of a circle is an invariable quantity.

Find to an inch the diameter of a wheel which makes 400 revolutions in rolling along a track one mile long.
2. Any positive proper fraction being given, show that there are two angles, one acute and the other oltuse, such that the sine of either is equal to this fraction.

If the fraction is $\frac{1}{3}$, use the tables to find the angles, and the cosine and tangent of each.

3 . Find by aid of the tables the values of $\sin x-\tan 2 x$ for the values $0^{\circ}, 10^{\circ}, 20^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ of x.

Make a graph to give the values of $\sin x-\tan 2 x$ from $x=0$ to $x=60^{\circ}$.
4. Show that $\sin A+\sin B=2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(\Lambda-B)$.

Prove also that
(i) $\tan ^{2} A=(1-\cos 2 A) \div(1+\cos 2 A)$;
(ii) $\sin 55^{\circ} \sin 15^{\circ}-\sin 50^{\circ} \sin 10^{\circ}-\sin 65^{\circ} \sin 5^{\circ}=0$.
5. Find the greatest angle of a triangle whose sides are 15,21 , 28 inches in length.

Show that in any triangle

$$
\frac{a^{2} \sin (B-C)}{b+c}+\frac{b^{2} \sin (C-A)}{c+a}+\frac{c^{2} \sin (A-B)}{a+b}=0
$$

6. Find an expression for the radius of the inscribed circle of a given triangle.

Determine to one place of decimals the length of the radii of the inscribed circle, and of the escribed circle opposite the greatest angle of the triangle referred to in Question 5.

Questions 7 and 8 were outside the scope of this book.
(The two following questions may be taken instead of 7 and 8 , but considerably lower marks will be assigned to them.)
A. Show that if A, B, C are the angles of a triangle,

$$
\tan A+\tan B+\tan C=\tan A \tan B \tan C .
$$

Show also that

$$
\tan \frac{1}{2} B \tan \frac{1}{2} C+\tan \frac{1}{2} C \tan \frac{1}{2} A+\tan \frac{1}{2} A \tan \frac{1}{2} B=1 .
$$

B. Solve the equation $a \cos \theta+b \sin \theta=c$.

Find all the solutions of $\sin \theta \sin 3 \theta=\sin 5 \theta \sin 7 \theta$.

COLLEGE OF PRECEPTORS.

Christmas, 1910.

$$
\text { 11 } \frac{1}{2} \text { Hours. }
$$

[Four-place tables of logarithms and of natural functions and square-ruled paper are provided. All diagrams should be drawn as accurately as possible.]

Part I.

1. Define a radian, and find its magnitude in degrees to two places of decimals ($\pi=\frac{2}{2}$).

If the angle of an equilateral triangle were taken to be the unit angle, what would be the measure of a radian to two places of decimals?
2. Define the sine and tangent of an acute angle. Prove that

$$
\sin ^{2} A+\cos ^{2} A=1
$$

If $\tan A=\frac{15}{112}$, find the value of $\cos A-8 \sin A$.
3. Find, geometrically, $\tan 30^{\circ}$.

If $A=30^{\circ}, B=45^{\circ}, C=60^{\circ}, D=90^{\circ}$, find the value of :
(i) $\sin A \cos B-\sin B \cos A$;
(ii) $\left(\tan ^{2} B-\operatorname{cosec}^{2} A\right) /(\cot C+\cos D)$.
4. Use logarithms to find as nearly as possible the values of:
(i) $3.142 \times \cdot 9342 / \cdot 00532$;
(ii) $\sqrt{ } 562 \cdot 3 / 005984$.
5. Solve, using the tables, the triangle in which $C=90^{\circ}$, $a=654, A=38^{\circ} 45^{\prime}$.

Part II.
6. Find all the positive values of θ, less than 360°, which satisfy the equations:
(i) $\cos ^{2} \theta-\sin ^{2} \theta=0$;
(ii) $4 \sin ^{2} \theta \cos ^{2} \theta-\sin ^{2} \theta=\frac{1}{2}$.

Which of the following statements are possible?
(i) $\tan \theta=-2$;
(ii) $\sin \theta=\frac{3}{2}$.
7. Write down, without proof, the expansions of $\sin (A-B)$, $\cos (A-B)$.

Find the value of $\tan \overline{A-B}$ in terms of $\tan A, \tan B$.
If $\tan A=\frac{1}{3}, \tan B=\frac{24}{7}$, find $\tan (A+B)$.
8. Prove that, in a triangle, $a^{2}=b^{2}+c^{2}-2 b c \cos A$ when the angle A is (i) acute, (ii) obtuse.

Deduce that $\tan { }_{2}^{1} A=\sqrt{(s-b)(s-c) \div s(s-a)}$.
Find the greatest angle in the triangle whose sides are 256 , 389, 401.
9. $A B$ is a horizontal straight line. Λ vertical straight line is drawn from B upwards, and in it two points P, Q are taken, such that $B Q$ is five times $B P$. If the angle $B A P^{\prime}$ is 30°, calculate $\tan P A Q$.

LEAVING CERTIFICATE EXAMINATION (SCOTLAND). 1910.

1. Explain the circular measurement of angles.

Express $30^{\circ}, 50^{\circ}, 166^{\circ} 40^{\prime}$ in radians.
Express ${ }^{\circ} 0187$ radian in degrees, minutes, and seconds, taking $\pi=3 \cdot 1416$.
2. Taking a horizontal inch to represent 10° and 5 vertical inches to represent the unit of length, plot, with the help of your tables, the values of $\tan \theta$ when $\theta=0,10^{\circ}, 20^{\circ}, 30^{\circ}, 40^{\circ}, 50^{\circ}$.

Plot also the values of $\sin \theta$ for the same angles, join both series of points by smooth curves, and thus find a graphic solution of the equation $5(\tan \theta-\sin \theta)=1$.
3. State the relation which exists between the sine and cosine of any angle.

Use this relation to find, and express in a diagram, all the values of α, less than 180°, which satisfy the equation

$$
5 \sin \alpha+6 \cos ^{2} \alpha=7
$$

Either, 4 a. A man walked 5 miles due North and then walked 6 miles in a direction 27° East of North. Find by a figure drawn to scale how far he now is from his starting-point, and in what direction he should have originally started in order to go straight to his final position. Verify your results by calculation.

Or, 4 b . The sides of a parallelogram are 2 inches and 3 inches in length, and its area is $3 \frac{2}{5}$ square inches. Find by a diagram the sizes of its angles and the length of its longer diagonal. Verify your results by calculation.

Fither, 5 a. Draw a circle of radius 2 inches, and inscribe in it a triangle $A B C$, such that $\angle B=34^{\circ}, \angle C=73^{\circ}$.

Measure the lengths of the sides as nearly as possible.
Calculate with the help of the tables the lengths of the sides to the nearest hundredth of an inch, and thus test the correctness of your diawing.

Or, 5 b . State and prove the formula which gives $\tan (A+B)$ in terms of $\tan A$ and $\tan B$.

Apply this formula to find expressions for $\tan 2 A, \tan 3 A$, and $\tan 5 A$ in terms of $\tan A$.

INTERMEDIATE EXAMINATION (IRELAND)。 Middle Grade (Pass). 1910.

1. Prove that $\sin ^{2} A+\cos ^{2} A=1$, where A is an obtuse angle.
2. Find the value of the expression $\operatorname{cosec} A-\frac{5}{6} \cot A$, if $\sin A=\frac{11}{61}$, when A is acute, and when A is obtuse.
3. Prove the identity $\left(1-\tan ^{2} A\right) \div\left(2 \cos ^{2} A-1\right)=\sec ^{2} A$.
4. In a triangle $C=90^{\circ}, c=65^{\circ}, \tan A=\cdot 28$. Find a and b each to two decimal places.
5. In a triangle $a=5 \sqrt{3}, b=11, C=150^{\circ}$. Find c and $\cos A$.
6. In a triangle $B=45^{\circ}, b=20, c=4$. Find $\sin C$, and prove that the perpendicular from A on $B C$ divides $B C$ into two segments one of which is seven times the other.
7. Prove that the length of the perpendicular from the vertex A of a triangle on the opposite side $B C$ is equal to $a /(\cot B+\cot C)$, considering the cases when both angles are acute, when one is right, and when one is obtuse.
8. Find the angles between 0° and 360° which satisfy the equation $6 \sin \theta-4 \operatorname{cosec} \theta+\cot \theta=0$, being given $\cos 48^{\circ} 11^{\prime} 23^{\prime \prime}=\frac{2}{3}$.

Middle Grade (Honours). 1910.

1. Show by a graph the values of $\operatorname{cosec} A$ for values of A between -90° and 360°.
2. If A is an angle in the first quadrant, prove that

$$
\sin A+\cos A+\tan A+\cot A>\sec A+\operatorname{cosec} A
$$

3. Prove the identity
$3(\sin A-\cos A)^{4}+6(\sin A+\cos A)^{2}+4\left(\sin ^{6} A+\cos ^{6} A\right)=13$.
4. The sides of a triangle are 37,7 , and 40 . Find all the angles, being given that $\cos 69^{\circ} 25^{\prime} 48^{\prime \prime}=13$.
5. In a triangle $a=\sqrt{5}, b=\sqrt{12}, C=455^{\circ}$. Find c, and prove that $\cot A=2 \sqrt{\frac{6}{5}}-1$.
6. Find a solution between 180° and 270° of the equation

$$
5(1+\sin x)=-3 \cos x
$$

being given $\cos 28^{\circ} 4^{\prime} 21^{\prime \prime}=\frac{1}{1} \frac{1}{i}$.
7. Prove by drawing a line through B, making an angle x with the side $B C$, or otherwise, that in a triangle $A B C$,

$$
c \cos (B-x)+b \cos (C+x)=a \cos x
$$

P is a point on the hypotenuse $A B$ of a right-angled triangle $A B C . A P=x, P B=y, P C=z$. Find $\cos C P B$ in terms of x, y, and z. Find the sides of the triangle when $x=3-\sqrt{3}, y=\sqrt{3}+1$, $z=\sqrt{6}$.

Senior Grade (Pass). 1910.

1. Find the distance from the earth to the moon, assuming that the moon's diameter, 2165 miles, subtends an angle of $31^{\prime} 10^{\prime \prime}$ at the earth.
2. Prove that $\tan \frac{1}{2} A=(1-\cos A) / \sin A$.

Find $\tan 15^{\circ}$ and $\tan 22 \frac{1}{2}^{\circ}$ without using the tables.
3. Find x if $\cos ^{-1} x+\cot ^{-1} 2=\frac{1}{4} \pi$.
4. Assuming the formulae for the sines of the sum and difference of two angles, prove that

$$
\sin A-\sin B=2 \cos \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B) .
$$

Find the corresponding expressions in factors for $\cos A-\cos B$.
5. Find the solutions between 0° and 360° of the equation

$$
\cot 2 x-3 \tan x=3
$$

6. In a triangle $a=183, b=247, C=\delta 1^{\circ} 40^{\prime}$. Find A and B.
7. In a triangle $A=54^{\circ} 30^{\prime}, B=69^{\circ} 20^{\prime}, a=341$. Find b and c.
8. Prove that in a triangle

$$
a \cos B-b \cos A=\left(a^{2}-b^{2}\right) / c
$$

9. Prove that in a triangle $r \cot \frac{1}{2} A=s-a$, where r is the radius of the inscribed circle, and s the perimeter.

Senior Grade (Honours). 1910.

1. An arc 40 feet in length is taken on a circle whose radius is 35 feet. Find, to the nearest inch, the length of the perpendicular from the centre on the chord of this arc.
2. Prove the identity

$$
\cos 5 A^{\prime} \sin A+\sin 5 A / \cos A=2 \operatorname{cosec} 2 A-4 \sin 2 A
$$

3. If $\cos x+\cos y+\cos z+\cos x \cos y \cos z=0$, prove that

$$
\tan \frac{1}{2} x \tan \frac{1}{2} y \tan \frac{1}{2} z= \pm 1 .
$$

4. If $x=\cot ^{-1} \sqrt{\cos y}-\tan ^{-1} \sqrt{\cos y}$, prove that

$$
y=2 \tan ^{-1} \sqrt{\sin x}
$$

5. In a triangle $A=35^{\circ} 20^{\prime}, a=127, b=194$. Find B, C, and c.

0
 －

。

INDEX
-

INDEX

Abscissa, 12.
Addition formulae, 155.
Altitude of sun, 89.
Ambiguous case, 120.
Angle, 25.
circular measure of, 29 .
measurement of, 25.
negative, 26.
of elevation, 88 .
of depression, 88 .
Antilogarithm, 21.
Arc, length of, 28.
functions of, 38.
Area of triangle, 109.
Axes, 12.
Characteristic, 18.
Chord of angle, 15.
Circular functions, 40.
measure, 29.
Complementary angle, ratios of, 40.

Co-ordinates, 12.
cartesian, 12.
polar, 41.
Cosecant, 38.
Cosine, 38.
formula, 108.
$\cos (A \pm B), 155$.
$\cos A \pm \cos B, 159$.
Cotangent, 38.
Course, 94.
Coversine, 40.
Degree, 25.
De Moivre's theorem, 15\%.
Departure, 94.
Difference of Latitude, 94.
of two angles, ratios of, 156 .
of two sines, 159.
of two cosines, 159.
Dip of the horizon, 127.
Double angle, ratios of, 100, 162 .
Elementary formulae, 49.
Eliminant, 51.
Elimination, 51.

Equations, solution of, 78.
solution by graphs, 17, 76.
general solution of, 79.
Functions, algebraical, 14.
circular, 40.
trigonometrical, 40.
Geometry enunciations, 9.
Grade, 27.
Gradient, 33.
Graphs, general treatment, 12.
of trigonometrical functions, 41 , 163.
harder trigonometrical, 74.
Greek alphabet, 24.
IIalf-angle, ratios of, 101, 104, 121, 162.

Haversine, 40, 121.
Heights and distances, 88, 124.
qIdentities, 50, 64, 167, 168, 170.
Imaginary quantities, 149.
Indices, fractional, 17.
negative, 17.
Interpolation, 37.
Inverse functions, 45, 164.
Latitude, 32.
Logarithm, 18.
base of, 18.
use of, 22,81 .
tabular, 36.
Longitude, 32.
Mantissa, 19.
Mariner's compass, 31.
Maximum value, 74.
Meridian, 32.
Minimum valuc, 74.
Návigation :
plane sailing, 94.
parallel sailing, 95.
middle latitude sailing, 96 ,
traverse sailing, 96.

Negative angle, 26.
ratios of, 54.
direction, 13.
Oral exampies, $34,61,116,123$, 166.

Ordinate, 12.
Origin, 12.
Parts of a triangle, 88.
Point, 32.
Points of the compass, 31.
Powers of trigonometrical ratios, 44.

Product of sines and cosines, 160.
Projection, definition, 139.
of area, 147.
propositions, 140.
length of, 40.
formulae, 40, 109.
Proportional parts, 71.
Quadrilateral, area of cyclic, 111.
Radian, 29.
Radius of inscribed circle, 114,168.
of circumeirele, 114.
of escribed circle, 114, 168.
Rate of change of function, 76.
Ratios, trigonometrical, 37.
of $90-A, 53$.
of $180-A, 53$
of $-A, 54$.
of 0° and $90^{\circ}, 56$.
of $30^{\circ}, 45^{\circ}, 60^{\circ}, 57$.
of $2 A, 100,162$.
of $\frac{1}{2} A, 101,162$.
of $3 \mathrm{~A}, 164$.
of $A+B, 154$.
of $A-B, 156$.
of $3 A, 164$.
Rhumb line, 94.

Secant, 38.
Sector, area of, 29.
Sine, 38.
formula, 107.
graph, 41.
$\sin (A \pm B), 154$.
$\sin A \pm \sin B, 159$.
Slope of curve, 76.
Small angle, 59.
sine and tangent of, 60.
Solution of right-angled triangle, 88.
of triangles, 119.
of equations, 78,168 .
of equations by graphs, 17, 76.
Sum of two angles, ratios of, 154.
of two sines, 159.
of two cosines, 159.
Summation of a series, 169.
Supplementary angle, ratios of, 53.

Tabular logarithm, 36.
Tangent, 38.
graph, 41.
$\tan (A \pm B), 163$.
Triangle formulae, 107.
solution of, 119.
Trigonometrical ratios:
general definition of, 38 .
right-angled triangle, definition of, 86 .
Turuing-points, 74.

Vectors, 143.
addition of, 144.
resolution of, 145.
Versine, 40.

Five-figure Logarithmic and

Trigonometrical Tables

ARRANGED BY
W. E. PATERSON, M.A., B.Sc.

MATHEMATICAL MASTER, MERCERS' SCHOUL
ALTHOR OF 'SCHOOL ALGEBRA,' ‘ELEMENTARY TRIGONOMETRY'

ONFORD: AT THE CLARENDON PRESS LONDON: HENRY FROWDE, AMEN CORNER, E.C.
AND AT
edinburgh, glasgow, new york, TORONTO and melbourne

OXFORD: HORACE HART PRINTER TO THE UNIVERSITY

These five-figure tables are intended to give results correct to four figures ; the fifth figure in the answer may be inaccurate.

The decimal point is printed before all the logarithms of numbers; it is hoped that this will obviate the common mistake of reading off logarithms instead of antilogarithms, and vice-versa.

The trigonometrical tables are arranged so that, at one opening of the tables, all the functions of an angle may be found on the left-hand page and their logarithms on the right-hand page; here again confusion is avoided. The characteristics of the logarithmic functions are the true characteristics; no useful purpose is served by increasing them by 10 .

It should be noticed that, instead of dividing by a sine, one may multiply by the cosecant, \&c., and, similarly, instead of subtracting the logarithm of a sine, one may add the logarithm of the cosecant, \&c. In many cases this shortens calculation.

For quick reference the last page may be used, which gives the trigonometrical functions, to four figures only, for every whole degree up to 90° and the corresponding circular measure to five figures.

Logarithms of R for Compound Interest

Constants used in Mensuration and their Logarithms

π	$=3.14159265$
$\frac{1}{2} \pi$	$=1.57079633$
$\frac{1}{6} \pi$	$=052359878$
$\frac{1}{3} \pi$	$=4.18879020$
$\sqrt{\pi}$	$=1.77245385$
π^{2}	$=9.86960440$
$\sqrt[3]{\pi}$	$=1.46459189$
$\pi / 180$	$=0.01745329$

| logarithm | | logarithm |
| ---: | ---: | ---: | ---: |
| 0.497150 | $\mathrm{I} \div \pi=0.31830989$ | $\overline{\mathrm{I}} .502850$ |
| 0.196120 | $\mathrm{I} \div 4 \pi=0.07957747$ | $\overline{2} .900790$ |
| I .718999 | $\sqrt[3]{6 \div \pi}=1.24070098$ | 0.093667 |
| 0.622089 | $\sqrt[3]{3 \div 4 \pi}=0.62035049$ | $\overline{\mathrm{I}} .792637$ |
| 0.248575 | $\sqrt{1} \div \pi=0.56418958$ | $\overline{\mathrm{I}} .751425$ |
| 0.994300 | $\mathrm{I} \div \pi^{2}=0.10132118$ | $\overline{1} .005700$ |
| 0.165717 | $\sqrt[3]{\pi^{2}}=2.14502940$ | 0.331433 |
| $\overline{2} .241877$ | $180 / \pi=57.2957795 \mathrm{I}$ | 1.758123 |

Naperian (or Natural) Logarithms

$$
\begin{gathered}
e=2.7182182 \quad \log _{10} e=.43429448 \quad \log _{e} 10=2.30258509 \\
\log _{10} N=\log _{e} N \times \log _{10} e . \quad \log _{e} N=\log _{10} N \times \log _{e} 10
\end{gathered}
$$

LOGARITHMS OF NUMBERS

	5	6	7	8	9			3						
							I		2	202	24	283	323	364
	-06	. 06	-			37	74		148	5	222	259	296	333
	-096	-100	-10		9	34	68	02		170		,	272	307
	-13033	-13354	- 1367	- 13988	-14301	32	63	2	126	158	-	22 I	3	,
	-16	-16		-17026	-17	29	59	88	I I	147	7	206	236	263
	-19	-19	-1951			28	55	83		138	65	193	221	248
	-21	- 2	- 22	- 2	- 22	26	52	78		30	156		08	33
	- 24	- 24	-2	$\cdot 2$	$\cdot 25$	24	49	73	98	23	47		6	220
	- 26					23	6		93	I 16	39	162	85	208
	- 29				-29885	22	44	66	88	I 10	132	I54	176	198
						21	42	6	84	105	6	7	8	188
	- 33	- 33	-336	-33			40	60	80	0	2	140	60	O
2	. 35	- 35	- 356	- 357		19	38				II 5	4	3	72
23		- 37	-374	- 376	-3	18	37	55	73	9 I	IIO	128		
	$\cdot 38$	- 3909	- 39	-3944		18	35	53	\% 0	8	105	123	140	8
	-40	- 4082	-409			17	34	51		84	101	8	35	52
2		$\cdot 4248$	-426			I6	32	49	65	81	97	114	30	46
	-43	- 44	-4424			16	31	47	63	78	94		125	1
	- 45	-45	-457		-46	15	30	45	61	76	91	106	121	6
	. 46	4	-4	4		14	29	4	58	73	87	102	117	131
						14	28	42	56	71	85	9	II3	127
	- 498	- 499		-50		14	27		55	68	82	6		23
	$\cdot 51$	-513				13	27	40	53	66	80	93		
	$\cdot 525$	- 36	$\cdot 5$	$\cdot 5289$	'53	13	26	39	5 I	64	77	90	103	16
	-537	-5390				I 3	25	38	50	63	75	88	100	13
	- 550	- 5514	- 55	'55		12	24	36	49	61	73	85	97	
3			-5646			12	24	35		59	71	3	95	
			$\cdot 376$	- 5		12	23	35	46		69	I	92	
						II	22	34	45	56		78	90	101
39						II	22	33	4	55	66	76	87	
			,		,		21	32	43	53	64	4	85	96
			- 62	-6						52		73		
	. 6283	-62						30		51	6	7 I	81	
		-639			- 6	10	20	30	40	50	60	70	79	9
	-6483	-649.33					19	2		4	5	68		
				. 66087	- 6	10	19	29	38	8	57	7	76	86
46	-66745	-6683	-669	. 67025		9	19	28	37	47	56	65	74	4
			. 6785		-68	9	18	27	36	46	55	64	73	
48	-68574	-68664	. 68753	-68842	-68931	9	18		36	45	5	62	71	O
49	-6946	. 6	. 69636	. 69723		9	17	26	35	44	52	61	70	8
			7	70586	'70672	9	17	26	34	43	51	0	68	7
		-712		,	$\cdot 7151$		1	25	34			9		
	$\cdot 720$	-72099		-72263	-72345	8	16	25	33	4 I	4	58	6	
	-72835	-7291	-72997	-730	-73159	8	16	24	32	40	48	57	5	73
	$1 \cdot 73640$	$\cdot 737$	$\cdot 7379$	-7387	-7395	8	16	24	32	40	48	55	63	71

	0	1	2	3	4			3	4			7	8	9
5	74036	'74115		-74273	74351	8	16	24	31		7	5	63	71
56	.74819	- 74896	$\cdot 74974$	-75051	-75128	8	15	23	3 I	39	46	54	62	69
57	$\cdot 75587$	$\cdot 75664$	$\cdot 75740$	-75815	-75891	8	15	23	30	38	46	53	61	68
58	-76343	-76418	$\cdot 76492$	$\cdot 76567$	-76641	7	I 5	22	30	37	45	52	60	67
59	$\cdot 77085$	$\cdot 77151$	$\cdot 77232$	$\cdot 77305$	$\cdot 77379$	7	15	22	29	37	44	51	59	66
6	-77815	$\cdot 77887$	-77960	$\cdot 78032$	-78104	7	14	22	29	36	43	51	58	65
6	$\cdot 78533$	$\cdot 78604$	- 78675	$\cdot 78746$	-78817	7	14	21	28	36	43	50	57	64
62	-79239	$\cdot 79309$	$\cdot 79379$	-79449	-79518	7	14	21	28	35	42	49	56	63
63	-79934	-80003	-80072	-80140	-80209	7	14	2 I	27	34	4 I	48	55	62
64	-80618	-80686	-80754	-8082 1	-80889	7	14	20	27	34	4	47	54	61
65	-81291	-81358	-81425	-8149I	-81558	7	13	20	27	33	40	47	53	60
66	-81954	-82020	-82086	-82I5I	-82217	7	13	20	26	33	39	46	52	59
67	-82607	-82672	-82737	-82802	-82866	6	13	19	26	32	39	45	52	58
68	-8325 1	-83315	-83378	-83442	-83506	6	13	19	25	32	38	45	51	57
69	-83885	-83948	-8401 I	-84073	-84136	6	13	19	25	31	38	44	0	56
70	-84510	- 84572	- 84634	-84696	-84757	6	12	19	25	31	37	43	49	56
71	-85126	-85187	-85248	-85309	-85370	6	12	I 8	24	31	37	43	49	55
72	-85733	- 85794	-85854	-85914	-85974	6	12	18	24	30	36	42	48	5
73	-86332	-86392	-8645 I	-86510	-86570	6	12	18	24	30	36	42	48	5
74	-86923	-86982	-87040	-87099	-87157	6	12	18	23	29	35	4 I	47	5
75	. 87506	-87564	-87622	-87679	. 87737	6	II	17	23	29	35	40	46	52
76	-8808 1	-88138	-88195	-88252	-88309	6	1	17	23	29	34	40	46	51
77	- 88649	-88705	-88762	-88818	-88874	6	II	17	22	28	34	39	45	5
78	- 89209	-89265	-89321	-89376	-89432	6	II	17	22	28	33	39	44	50
79	-89763	-89818	-89873	-89927	- 89982	5	II	16	22	27	33	38	44	49
80	-90309	-90363	'90417	'90472	'90526	5	II	16	22	27	33	38	43	49
81	-90849	-90902	-90956	$\cdot 91009$	-91062	5	II	16	2 I	27	32	37	43	48
82	-91381	-91434	-91487	-91540	-91593	5	11	16	2 I	27	32	37	2	48
83	-91908	-91960	-92012	- 92065	-92117	5	10	16	2 I	26	3 I	37	42	47
84	-92428	-92480	-92531	-92583	-92634	5	10	15	21	26	3 I	36	4	46
85	-92942	$\cdot 92993$	'93044	'93095	. 93146	5	10	15	20	26	31	36	4 I	46
86	-93450	-93500	-9355 I	-93601	-9365 I	5	10	15	20	25	30	35	40	45
87	-93952	-94002	-94052	-94101	-9415 5	5	10	15	20	25	30	35	40	45
88	-94448	-94498	-94547	-94596	-94645	5	10	15	20	25	30	34	39	44
89	-94939	-94988	'95036	$\cdot 95085$	-95134	5	10	15	19	24	29	34	39	44
90	'95424	'95472	'9552 I	95569	'95617	5	10	14	19	24	29	34	39	43
91	-95904	-95952	-99599	-96047	-96095	5	10	14	19	24	29	33	30	4
92	-96379	-96426	-96473	-96520	-96567	5	9	14	19.	24	28	33	38	42
93	-96848	-96895	-96942	-96988	-97035	5	9	14	19	23	28	33	37	4
94	-97313	-97359	-97405	-9745 I	-97497	5	9	14	18	23	28	32	37	41
95	-97772	-97818	-97864	-97909	-97955	5	9	14	18	23	27	32	36	41
96	-98227	-98272	-98318	-98363	-98408	5	9	14	18	23	27	32	36	41
97	-98677	-98722	-98767	-988 I I	-98856	4	9	13	18	22	27	31	36	40
98	-99123	-99167	-992 1 I	-99255	-99300	4	9	13	18	22	27	31	35	40
99	-99564	-99607	-9965 I	. 99695	. 99739		9	13	17	22	,	31	35	39

LOGARITHMS OF NUMBERS

		6	7	8										
	744	74507	74	74663	74741	8	16	23	31	39	47	55	5	
	$\cdot 75$	$\cdot 75$	$\cdot 75$	$\cdot 75435$	-75511	8	15	23	31	38	46	3		
	$\cdot 75$	$\cdot 76$	- 76	$\cdot 761$	- 76268	8	15	23	30.	38	45		3	
	$\cdot 76$	$\cdot 76$	$\cdot 76$	$\cdot 76938$	-770	7	15		30	37			9	
	$\cdot 77452$	$\cdot 77525$	$\cdot 77597$	$\cdot 77670$	$\cdot 77743$	7	15	22	29	36	44		158	
						7	14	21		6	43			
	78	$\cdot 789$	$\cdot 79029$	$\cdot 79099$	79169	7	14	21	28	35	42	49		
	-79588	-796	$\cdot 7227$	$\cdot 79796$	$\cdot 79865$	7	14	21	28	35	42			
	. 80	. 80346	. 80414	. 80482	. 80550	7	14	20	27	34	4	48		
	. 8095	. 81023	. 81090	-81158	-8122	7	13		27	34	40			
	8r	-81690	. 81757	. 81823	. 8188	7	13	20	26	33	40	46	6	
	. 82282	- 82347	.82413	. 82478	. 82543	7	13	20	26	33	39	46		
	-8	-82995	. 83059	.83123	-8318	6	13	19	26	32		45		
	83	. 83632	. 83696	-83759	-83822	6	13	19	25	32		44		
	.84198		- 84323		. 84448	6	12	19	25	31	37	44	50	
						6	12	18	25	31	37			
	8543I	-8549	.85552	-85	.85673	6	12	18	24	30		4		
	- 8	-86094	-86153	. 86213	. 86273	6	12	18	24	30	36	4		
	-866	- 86688	-86747	-8680	. 86864	6	12	18	24	29	5	4	4	
	-872	- 87274	-87332	-8739	- 87448	6	12	17	-	29	35			
	- 3779	-87852	-87910	. 87967	. 88024	6	II	17	23	29	34	40	46	5
	-8836	-88423	-8848	. 8853	. 88593	6	11	17	23		34	40	45	
	-8893	-88986	-89042	- 89098	.89154	6	II	17	22		33	39	45	
	89487	-89542	-89597	-89653	-89708	6	II	17	22	28	33	9		
79	90037	-90091	-90146	-90200	. 90255	5	11	6		27		38		
	90580	'90634	'90687	9		5	II	16	22	27	32	38	3	
	9111	-91169	-9122	-91275	-91328	5	11	16	21	27	32	37		4
	916	-91698	-9175	-91803	-91855	5	10	16	21	26	31	37	42	4
	9216	-92221	-9227	-92324	. 92376	5	10	16	21	26	31	36	4	
	92	-92737	-92788	-9284	-92891	5	Io	15	20	26	31	36	41	
	93197	-93247	-93298	-93349	-93399	5	10	15	20	25	30	35	40	4
	93702	-93752	. 93802	-93852	-93902	5	10	15	20	25	30		40	
	9420	-94250	-94300	-94349	-94399	5	10	15	20	25	30	35	40	4
	2469.4	-94743	-94792	-9484I	-94890	5	10	15	20	25	29	34	39	4
	95182	-9523I	-95279	-95328	-95376	5	10	15	19	24	29	34	39	
	95665	.95713	'9576	'9580	-95856	5	10	14	19	24	29	,	38	
	96142	-96190	-96237	-96284	-96332			14	19	24	28	33	38	4
	96614	-9666.	-26708	-96755	- 96802		9	14	19	23	28	33	37	4
	97081	-97128	-97174	-97220	-97267		9	14	19	23	28	32	37	4
	97543	'97589	-97635	-97681	-97727	5	9	14	18	23	27	32		4
	98000	-98046	98091	-98137	. 98182	5	9	14	18	23	27	32	6	4
	98453	-98498	-98543	-98588	-98632		9	13	18	22	27	31	36	
	-98900	-98945	-98989	-99034	-99078		9	13	18	22	27	31	6	
	'99344	'99388	-99432	-99476	-99520	4	9	13	18	22	26	31	35	45
	9978	. 9982	-9987	.99913				13	17		26		35	

	10													
	10													
	10													
	10													
	11													
	12													
	12					3								
	12													
	13		132		13									
		1									19			
				139	139			610	13		19			
	14	14	14	1422	14256			7 10	13	16				
	1445		145	14555	145					17				
	14791		148		14									
	15136	1517	15	15	152									
	15488	15524	15	15596	156									
	1584	15885	15	15959	15996	4			15	18				
	16			16331						19	23			
	16									19				
					17140									
	17	17	17	174	17539									
	17	17		179	179					21	125			
	18								17	21				
					1893				17					
				1918	19231							3		
	19	195		19634	19679					2		3		
	199	19999	20	20091	2013	5	9	14	18	23	28	,		
				2055				14	19	2	8	3		
		209		2103			Io	15	19	24	29			
		21	214	215			10	15	20	25	30			
		219	21979	22029			o			25	30			
	22	22	2249	2254	2259	5	10	16	21	26	31	36	1	
			23014	2306	2312		II	16	21	27	32	3		
	23	2349	2355	23605	236		11	16	22	27	33	38		
	239	240	24099	24155	24		11	1	22	28	33	39		
	2	2460		24717	24		11	17	23	28	34			
	25119	251	25235	2529	25	6	12	17	23	29	35	41	47	
					25		12	18	24	30	36			
42					265		12	18	24	30	36	43	49	
4	26			27102	2716		12	19	25	31	37	44		
		27	27	27733	2779	6	13	19		32	38	45	51	
	28184	28	28	28379	2844	7	13	20	26	33	39	46	52	
	28840			29040	29		13	20	27	33	40	47	53	
	29512		296	29717	29		14	21	27	34	41	48		
龶		30	30	30409	30	7	14	21			42	49	56	63
	30903													

	5	6	7	8										
		10							9			6		
	10351	10375	10399	10423	10447			7	10	12	14	17	19	
	10593	10617	1064I	10666	10691					12	15	17		
	I0839	10864	10889	10914	10940				10	13	15	18		
	11092	11117	III43	II 169	11194				0	13	15	18		
	11350	11376	11402	11429	11455			5	II	13	16	18		24
	1161	11641	11668	11695	11				11	14	16	19		
	I1885	11912	1	11967	11995				1	14	17	19		
	162	12190	12218	12246	12274				II	14	17			
	12	12474	1250	12531	12560			9	2	14	17			
	127	12764	12794	12823	12853			9	12	15	18	21	24	
	13	13062	13092	13122	13152				12	15	18			
	13335.	13366	13397	13428	13459				12	16	19			
	13646	13677	13709	I 374	13772				13	6	19			
	13964	13996	14028	1406	14093			Io		16	19	23		
	14289	14322	14355	14388	14421	3		10	13	17	20	23		30
	14622	14655	14689	14723	14757				14	17	20			
	14962	14997	15031	1506	15101				14	17	21			
	1531	15346	15382	15417	15453				14	18	21	25		
	1566	15704	15740	15776	158				14	18	22			
	16032	16069	1610	16144	1618	4			15	19	22	26		33
	16406	16444	16482	165	16558					19	23	27		
	1678	16827	1686	16904	16943			12		19	23			
23	17179	17219	17258	17298	1733	4		2	16	0	24			
	17579	17620	17660	1770	17742	4			16			29		
	17989	18030	18072	181	181	4		12	17	1	5	29		
	18408	1845	18493	18535	1857	4		3	17			30		
	18836		18923	18967	1901			13				1		
	19275	1932	19364	19409	1945			13		22	27	31		
	1972	1977	19815	1986	1990			9 14	18	23	27	32		
30	2018	2023	20277	203	2037	5	9	14	19	23	8	33		
31	2065	20701	207	2079	208	5	10	14	19	24	29	33		
32	21135	2118	21232	212	2133	5	ro	15		25	9			
33	2162	21677	21727	2177	2182	5	Io	15		25	30			
	22131	22182	22233	2228	2233		10				31			
	22646	22699	22751	2280	2285	5	II	16	21	26	32	37		
	2317	23227	23281	2333	2338		11			27	32			
	2371	23768	23823	23878	23933		II	16	22	27	,			
	2426	24322	24378	24434	24491	6	1	17	2	2		39		
	24831	24889	24946	2500	250	6	12				35			
	25410	25468	25527	2558	2564	6	12	18	24	29	35	41		
	2600	2606	261	26182	262	6	12			30	36			
	2660	26669	26730	26792	26853	6	12			31	37	43		
	27227	27290	27353	27416	27479	6	13	$1{ }^{1} 19$		32	38			
	2786	27925	27990	280	2811	6	13	19		32	39			
	2851	28576	28642	2870	28774	7	13	320	26	33	40	46		
	29174	29242	29309	2937	29444	7	14				41 42			
	29854	29923	29992	3006	30		14	4			42			
	30549	3062	30	30	30		14	4 4 4	29		$\begin{array}{l\|l} 5 & 4^{2} \\ 5 & 43 \end{array}$			

	0	1	2	3										
	31		31769	31		7	715							
5	32	32434	3250	325			15	23	30					
	3311	33189	33	333			15	23	31	38	46		61	
	3388	33963	34041	34	341		16	24	31	39			63	
	34674	34754	34834	34	3499		16	24	32	40	48		64	
	3548I	35563	35645	357	3581	8	816	25	33	41	49	58	66	
	36	36392	36475	36			817	25	34	42	50	59	67	
5	37154	37239	37325	37	37497	9	17	26	34	43	52		69	
	38019	38107	38194			9	18	26	35	44	53	62		
5	38905	38994	39084	39	39264	9	18	27		45	54		72	
	398II	39902	3999	40	40	9	18	28	37	46	55	65	74	
	40738	40832	4092	4	4III		19	28	38	47	57	66		
	41687	41783	41879	4	4	10	19	29	39	4	58			
	42658	42756	42855	429	43	10	20	30	40	49	59			
6	43652	43752	43853	439	44	10	102	30	40	51	61	71		
	44668	44771	44875	4497	450	10	- 21	31	4	52	62	73	83	
	45709	4581	45920		461	11	1121		4	53	6	74		
	46774	4688	46989	4709	47	II	1122		43	5				
	47863	47973	48084	4819		11	1122		44	55		78	89	
	48978	4909	4920	4931	49	11	1123							
7	50119	50234	50	5046	50582	12	23	35	46	58	70	81	3	
71	5128	51404	5152	5164	5176	12	1224		48	59	71			
72	5248	5260	527	5284	52966	12	24	36	49					
73	53	53827	53	54	542	12	125		50	62		87		
74	54954	55081	5520	55335	55	13	25	38	51	64		89		
75	56234	56364	56494	56624	5	13	26	39	52	65	78	1		
$\cdot 76$	575	57677	57810	57943		13	327		53	67				
77	58884	59020	5915	592		14	27	41		68	82			
$\cdot 78$	60256	60395	60534	6067	60	14	28	42		70				
	61660	61	61944	6208	62230	14	429	43		71				
	63096	63241	63387	63533	6368	15	29	44	58	73	88	IO2		
	64565	64714	64863	6501	6	15		45						
	66069	6622	66374	665	66681				61		92			
	67608	6776	67920	680	68		31	47	63					
	69183	6934	6950	6966	6982	16	132		64					
	70795	70958	71121	71285		16	33	49	66		98			
	72	72611	72	729		I7	34							
	74131	743	74	746					69					
	75858	7603	7620	7638		18								
	77625	7780	77983	78163		18								
-90	79433	79616	79	7998		18	37							
	81283	8147	8165	8184		19								
92	83176	83368	83560	8375	83946	19		58						
	85114	85310	85507	8570				59						
	87096	87297	87498	87700	87902	20		61		101				
95	89125	89331	89536	89743	89950	21		62	83	103			165	
-96	91201	91411	91622	9183	92			6			127		169	
	93325	93541	93756	93	9	22	43	65						
	95499	95719	95940	9616		22			88			5	7	
	9772		0817	984										

ANTILOGARITHMS

	5			8	9									
	319	320	32				15	22	230					
－51	32	328	32885	329			15	23	330		45	53		
52	33497	33	33651	33	33806		15	，	31	I 39	46	54	62	
53	34277	343	3443	345	34		16	24	43	20	48	55	63	
－54	35075	3515	35237	35318	354		16	2	432	21	49			73
55	35892	35975	36058	36141	36224	8	17	25	533	42	50	58	67	75
． 56	36728	36813	36898	36983	37068	9	17	26	34	43	51	60	68	77
57	37	37670	37757	378	379		17	26	635	54	52	61	70	
58	38	38548	38637	38726			18	，		45	54	62	71	
－59	39	39446	39537	39628	397		18	27		46		64	73	
	40	40365	40458	40551	40644		19	28	8	47	56	65	75	
61	4	41305	41400	41495	41591	IO	19	29		48	57	67		
62	4	42267	42364	42462	42560	10	20	29	9 39	49		68	78	
． 63	43	43251	43351	4345	435	10	20	30	－ 40	50		70	80	
	44157	44259	44361	44463	445	10	20	31	141	15	61	72	82	
65	45186	45290	45394	45499	45604	Io	21	31	142	52	63	73	84	
66	46238	4634	4645		4666	II	21	32	243	34		75		
67	47315	47424	47534	476	4775	II	22	33	34		66	7	88	
	48	48529	48641		48865	II	22	34	45	56	67		90	
69		49659	4977	49	003	II	23	34	46		6		92	
70	5069	50816	50	51051	5116	I2	23	35	47	59	70	82	94	
7 I	5188		5	52240	5236	12	24	36	48		72	84	96	
72	53088	53	5333	534	535	12	25	析	49	62	74		98	
73	54	54	5457	54702	548	13	25	咗	50	63	75	88	oo	
74	55590	5571	55847	55976	10	I3	26	39	52		77	90	103	
75	56885	5701	57148	5728	41	13	26	40	53	36	79	92	105	
－76	5821	58	58479	586	58	13	27	40	54	67	81	94		
	595	59	5984	59	60117	14	28	4 I	55	69	82	97		124
－78	609	61094	61235	61	61518	14	28	42	56	71	85	99	113	127
79	62373	－62517	6266	628	629		29	43	58	72	87	101	118	130
	63826	63973	64121	642	644	15	30	44	59	74	88	104		133
． 81	6531	65464	65615		659	15	30	，	60	76	91			136
82	66834	66988	67143	67298	674	15	31	46	62		93			139
83	6839	68549	6870	68865	6y024	16	32	48			95		127	
	6998				70632	16	32	49		81	97			146
				7	722	17	33	50		83	100		133	枵
86		73	73	73		17	34	51	68	84	10	119	I 3	
		75	75336	7550		17	35	52	70	8	104		I 39	156
		76913	77090	7726		18	36	53	71	8	107			
		78705	78886	79068	792	18	36	5	73	91	10	127	1	64
		80538	80724	80910	81og6	19	37	56	74	93	112	130	149	167
		82414	8260	8279	82985	19	38	57		95		133	15	71
			84528	84723	84918	19	39	58	78	97	117	136	156	175
	86099	86298	86497	86696	86896	20	硅	60		100		140		179
		88308	8851	88716	88920	20	41	61	82			143		
		90365	90573	90782	90991	21	42	63	84	104	125	1	167	188
		？ 470	92683	92897	93 III	21	43	64	85	107		150	171	192
		24				22	44	66	87	109	131	153	175	197
			9705	97275	97499	22	45	67	90	12	134	r 57	179	
			9931	9954		23	46	69		115	137		183	

NATURAL FUNCTIONS

Differences are given for every 10'. Intermediate values can be found by method of proportional parts ; e. g. :-

$$
\begin{aligned}
& \text { To find } \tan 43^{\circ} 56^{\prime} \text { and } \cos 37^{\circ} 34^{\prime} \\
& \tan 43^{\circ} 50^{\prime}=.96008 \cos 37^{\circ} 30^{\prime}=\cdot 79335 \\
&+ \text { diff. for } 6^{\prime}= 337 \\
& \therefore \tan 43^{\circ} 56^{\prime}=96345 \therefore \cos 37^{\circ} 34^{\prime}=-79264
\end{aligned}
$$

When there is no entry in the difference column, the value of the function char too rapidly for correct interpolation by proportional parts. Greater accuracy is t obtained by expressing the function in terms of the sine and cosine.

To find $\tan 67^{\circ} 23^{\prime}$.
by proportional parts, diff. for $3^{\prime}=592$
This gives $\tan 67^{\circ} 23^{\prime}=2.4004 \mathrm{I}$. (The correct value is 2.40038 .)

Subtract differences when dealing with co-functions

	sine	D	cosecant	D	tangent	D	cotangent	D	secant	D	cosine		
0°	-00000		∞		-00000		∞		1.00000		1.00000		
${ }^{1}{ }^{\prime}$	-00291	291	343.78		91	291	343.77		I -00000	${ }^{0} 2$	-		
$\begin{aligned} & 20^{\prime} \\ & 30^{\prime} \end{aligned}$	-00582	291				291	${ }^{171.89}$		1.00002 r 00004 1		8		
$\begin{aligned} & 30^{\prime} \\ & 40^{\prime} \end{aligned}$.00873	291	114.59 85.946			291	114.59 85.940		I $\cdot 00004$ I	-03	36		
50'	-1454	291	68.757		-1455		68.750		I $\cdot 00011$	004	-99989		
1°	-1745	29	57.299		01746	291	57.290		1.00015		'99985		
	-02036	291	49.114		-02037	291	49'104		1	006	-99979		
20^{\prime}	. 02327	,	76		-02328	91	$42 \cdot 964$ $38 \cdot 188$ 18		I-00027				
		290				291			$1 \cdot 00034$				
50^{\prime}	-03199	291	矿		-23201	291			1.00		.99949		
2°	-03490	291	28.654		-3492	291	28.636		r.0006		9993		
10	3781		$26 \cdot 451$		-03783	291	26.432		O072		999		
	. 04071		24.562		- 04075		24.54		Oo83		-9991		
30^{\prime}	-4362		22.926		-4366		22.904		$1 \cdot 00095$				
	465		21.494		-4658		21.4		108		.99892		
	494				-4949						-99878		
3°	-		19-107		241		19.081		1.00137		99863		
					angent	D	tangent						

The values given here are the true logarithms; the characteristic is not increased by io as in many tables.

Differences are given for every 10 '. Intermediate values can be found by the method of proportional parts.

The differences for the logarithm of a function and of the reciprocal of the function are the same in magnitude but opposite in sign.
When there is no entry in the difference column, the rate of change of the logarithm changes too rapidly for correct interpolation by proportional parts.

The following rules may be used when the angle is small :-
Log sine. Add $\bar{\sigma} \cdot 68557$ to the \log of the angle expressed in seconds and subtract $\frac{1}{3}$ of the \log secant.
Log tan. Add $\overline{6} \cdot 68557$ to the \log of the angle expressed in seconds and add $\frac{2}{3}$ of the log secant.
When the log sine is given, the angle is found in seconds by adding $5 \cdot 31443$ to the \log sine and $\frac{1}{3}$ of the corresponding log secant (found in the ordinary way).
When the $\log \tan$ is given, the angle is found in seconds by adding $5 \cdot 31443$ to the $\log \tan$ and subtracting $\frac{2}{3}$ of the corresponding log secant (found in the ordinary way).

Subtract differences when dealing with co-functions

	$\log \sin$	D	\log cosec	$\log \tan$	D	\log cotan	\log sec	D	\log	
$0{ }^{\circ}$	- ∞		∞	$-\infty$		∞	0.00		0.00	90°
	$\overline{3} \cdot 46373$		2.53627	$\overline{3} \cdot 46373$		$2 \cdot 53627$	-00000	OOI	-0.00000	50^{\prime}
	$\frac{3}{3} \cdot 76475$		$2 \cdot 23525$	$\frac{3}{3} \cdot 76476$		$2 \cdot 23524$	-00001	OOI	İ.99999	40^{\prime}
	3.94084		$2 \cdot 05916$	3.94086		$2 \cdot 05914$	0.00002		İ-99998	30^{\prime}
	2.06578		I.93422	$\frac{2}{2} \cdot 0658 \mathrm{I}$		I•93419	-00003		İ•99997	20^{\prime}
50^{\prime}	$\overline{2} \cdot 16268$		1.83732	$\overline{2} \cdot 16273$		1.83727	- 000005		İ.99995	o^{\prime}
$1{ }^{\circ}$	$\overline{2} \cdot 24186$		I•75814	$\overline{2} \cdot 24192$		I.75808	0.00007	002	İ99993	89°
10^{\prime}	$\overline{2} \cdot 30879$		I.69121	$\overline{2} \cdot 30888$		I. 6	0.00009	00	İ9999	50^{\prime}
20	$\overline{2} \cdot 36678$		I.63322	$\underline{2} \cdot 36689$		I.63311	$0 \cdot 00012$	$\begin{aligned} & 003 \\ & 003 \end{aligned}$	İ-999	+0',
30^{\prime}	$\underline{2} \cdot 41792$		I 558208	$\overline{2} \cdot 41807$		I.58193	0.0001 5	003	$\overline{1} \cdot 99985$	30^{\prime}
40^{\prime}	$\overline{2} \cdot 46366$		I.53634	$\frac{2}{2} \cdot 46385$		I.53615	8	003	İ.99982	
5	$\overline{2} \cdot 50504$		1.49496	$\overline{2} \cdot 50527$		I-49473	$0 \cdot 0$	004	İ.99978	10^{\prime} 88 $8{ }^{\prime}$
2°	$\overline{2} \cdot 54282$		1.45718	$\overline{2} \cdot 54308$		1.45692	$0 \cdot 0$	004	İ99974	88°
10^{\prime}	$\underline{2} \cdot 57757$		1.42243	$\overline{2} \cdot 57788$		1.42212	$0 \cdot 00031$	005	I'99969	
20^{\prime}	$\overline{2} \cdot 6097$		I.39027	$\overline{2} \cdot 61009$		I-38991	0.00036		I'99964	40^{\prime}
30^{\prime}	$\overline{2} \cdot 63968$		$1 \cdot 36032$	$\overline{2} \cdot 64009$ $\overline{2} \cdot 66816$		I.35991	0.00041		${ }_{\text {I }}^{1} \cdot 99959$	$33^{\prime \prime}$
40^{\prime}	$\frac{2}{2} \cdot 66769$		1.33231	$\begin{aligned} & 2.66816 \\ & 2.60153 \end{aligned}$		$\begin{aligned} & 1.33184 \\ & 1 \end{aligned}$	O-00047	006	I'99953	20^{\prime} 10^{\prime} 81
5	$\left[\begin{array}{l} \overline{2} \cdot 69400 \\ \overline{2} \cdot 71880 \end{array}\right.$		$\begin{aligned} & \text { I-30600 } \\ & \mathrm{I} \cdot 28 \mathrm{I} 20 \end{aligned}$	$2 \cdot 69453$		$\begin{aligned} & 1 \cdot 30547 \\ & 1 \cdot 28060 \end{aligned}$	- 000	O06	İ.99947 í 99940	87°
	log cos	I)	\log sec	log cotan	1)	log tan	log cos	D	log sin	

NATURAL FUNCTIONS

	sine	D	co	D	tangent	D	cutangent	D	secant	D	cosine	D
${ }^{\circ}$	-05234		$19 \cdot 1073$		-0524 ${ }^{1}$		19.081		$1 \cdot 00137$	or6	$\cdot 99863$	6
10^{\prime}	-05524		18.1026		-05533		18.0750		$1 \cdot 00153$	6	-99847	
20^{\prime}	-05814		$17 \cdot 1984$		-05824		$17 \cdot 1693$		1.00169	O18	-9983I	OI8
30^{\prime}	-06105		$16 \cdot 3804$		-06116		I6.3499		I-00187	8	-99813	O18
40'	-06395		15.6368		-06408	29	$15 \cdot 6048$		1.00205	019	-99795	
5	-06685	29	14.9579		-06700	293	14.9244		I $\cdot 00224$		-99776	0
4°	-06976		14.3356		-06993	292	14.3007		I.00244	1	-99756	020
10^{\prime}	-07266	290	13.7631		-07285	293	I 3.7267		I.00265	022	-99736	2
	. 07556	290	I 3.2347		-07578	292	13.1969		1.00287	2	-99714	2
	-07846	290	12.7455		-07870	293	$12 \cdot 7062$		1.00309.	024	-99692	024
40^{\prime}	-081 36	290	12.2913		-08163	293	12.2505		I $\cdot 00333$	024	-99668	24
50^{\prime}	-08426	290	I I•8684		-08456	293	II 1-8262		1.00357	025	'99644	025
5°	-08716	289	II.4737		-08749	293	I 1 44301		1.00382	026	'99619	025
10^{\prime}	-09005	290	II•1046		-09042	293	II $\cdot 0594$		I.00408	027	-99594	027
20^{\prime}	-09295	290	10.7585		-09335	294	10.7119		I 00435	028	-99567	027
30^{\prime}	-09585	289	10.4334		-09629	294	10.3854		I $\cdot 00463$	028	-99540	029
40^{\prime}	$\cdot 09874$	290	10.1275		-09923	293	10.0780		I 000491	030	-995 11	029
'	-10164	289	$9 \cdot 83912$		-10216	294	9.78817		I.005 2 I	O30	-99482	030
6°	-10453	289	$9 \cdot 56677$		-10510	295	9.51436		I $\cdot 00551$	031	'99452	031
10,	-10742	289	$9 \cdot 30917$		-10805	294	$9 \cdot 25530$		I.00582	032	-9942 I	C3I
20^{\prime}	- 11031	289	9.06515		- I I O99	295	9.00983		I $\cdot 00614$	033	-99390	-33
30^{\prime}	- I I 320	289	$8 \cdot 83367$ $8 \cdot 61379$		- I I 394	294	$8 \cdot 77689$ $8 \cdot 55554$		I $\cdot 00647$	O34	-99357	-33
5	- I1609	289	$8 \cdot 61379$ $8 \cdot 40466$		-II688	295	$8 \cdot 55554$ $8 \cdot 34496$		I•0068 I	034	-99324	O34
5	-11898 $\cdot 12187$	289	$8 \cdot 40466$ $8 \cdot 20551$		-11983	295	$\cdot 34496$		715	036	-99290	035
	-12476	28	8.01565		-125	296			I $\cdot 00788$	037	. 99219	036
	-12764		$7 \cdot 83443$		-12869	295			I $\cdot 00825$	037	.99182	037
30^{\prime}	-13052		7.66130		-13165		$7 \cdot 59575$		I 000863	038	-99144	38
40^{\prime}	- I 3341	28	7-49571		- 13461		$7 \cdot 42871$		I 000902		-99106	
50^{\prime}	- I 3629	28	7-33719		-13758		$7 \cdot 26873$		I 000942	41	-99067	040
8	-13917		$7 \cdot 18530$		-14054		$7 \cdot 11537$		-00983		- 99027	I
	-14205		$7 \cdot 03962$		-14351		$6 \cdot 96823$		1 01024		-98986	2
	-14493	288	$6 \cdot 89979$		-14648		$6 \cdot 82694$		1.01067		-98944	0.42
	-14781	288	$6 \cdot 76547$		-14945	298	$6 \cdot 69116$		I OIIII	4	-98902	044
4	-15069	287	6.63633		-15243	297	$6 \cdot 56055$		IOII 55	45	-98858	44
50^{\prime}	-15	287	$6 \cdot 51208$		-15540	298	$6 \cdot 43484$		O1200	047	-98814	045
	- 15643	288	$6 \cdot 39245$		-15838		$6 \cdot 31375$		I 01247	47	-98769	046
	-15931	287	$6 \cdot 27719$		-16137	298	$6 \cdot 19703$		I 01294	048	$\cdot 98723$	
	-16218	287	$6 \cdot 16607$		-16435	298	$6 \cdot 08444$		I 0134^{2}	049	$\cdot 98676$	
	-16505	287	6.05886		-16734	299	5.97576		I 01391	049	-98629	049
	-16792	286	5.95536		-17033	300	$5 \cdot 87080$		O1440	051	-98580	049
	-17078	287	$5 \cdot 85539$		-17333	300	$5 \cdot 76937$		O1491	052	98531	050
10°	$\cdot 17365$		5•75877		-17633		5.67128		I 101543	-5-	-9848I	-5
				D		I)	ngen	U	sce	D	sinc	D

	$1 \mathrm{log}_{2}$	D			I)	log cotan		D		
3	$\overline{2} \cdot 71880$			$\overline{2}$						87
	$\overline{2} \cdot 74226$).00066		I-99934	50'
	$\overline{2} \cdot 76541$		-23549	$\overline{2} \cdot 76525$		3475	0.00074		İ99926	40^{\prime}
	$2 \cdot 78568$		21432	$\overline{2} \cdot 78649$		$1 \cdot 21351$	$0 \cdot 0008$ I		I.99919	30^{\prime}
	$\overline{2} \cdot 80585$			$\overline{2} \cdot 80674$		6	89	8	I.999 I I	${ }^{\prime}$
50^{\prime}	2.82513		I-1748	$\overline{2} \cdot 82610$		390	$0 \cdot 00097$	8	İ99903	10^{\prime}
4	$\overline{2} \cdot 84358$		I'I5642	$\overline{2}$		1-15536	00106		I-99894	86
	$\overline{2}$.			-872			15	009	5	'
	$\overline{2} \cdot 87829$			$\overline{2} \cdot 87953$			24	OIO	$\overline{1} \cdot 99876$	40^{\prime}
	$\overline{2} \cdot 89464$		I-10536	$\overline{2} \cdot 89598$		I 10402	34	OIO	$\overline{\mathrm{I}}$-99866	O',
	$\overline{2} \cdot 91040$		I.08960	$\overline{2} \cdot 91185$		I.088I 5	144	010	$\overline{1} \cdot 99856$	20^{\prime}
	$\overline{2} \cdot 92561$		I 07439	$\overline{2} \cdot 92716$		I.07284	55		45	10^{\prime}
5	$\overline{2} 94030$		I 05970	$\overline{2} \cdot 94195$		I-05805	66		4	85°
10,			I 04550	$\overline{2} \cdot 95627$			7		99823	50,
20^{\prime}			1.	2-97013		I.02987	88		İ.998 12	40^{\prime}
			$1 \cdot 01843$	$\overline{2}$		I 01642	0		0	30^{\prime}
40^{\prime}	$\overline{2} \cdot 99450$			$\overline{2}$			13	3	7	20'
			-	$\overline{\mathrm{I}} \cdot 0093$			25	4	5	10^{\prime}
6			0.98077	$\overline{\mathrm{I}} \cdot 02 \mathrm{I} 6$		0.97838	9		1	84°
10			$0 \cdot 9$			0.96639	2		8	50^{\prime}
	$\bar{I} \cdot 04262$		0.95738	I'04528		0.95472	66	OI4	4	40^{\prime}
	$\overline{\mathrm{I}} \cdot 05386$		$0 \cdot 9$	$\overline{\mathrm{I}} \cdot 05666$		$0 \cdot 94334$	00280	OI 5	İ99720	0^{\prime}
,	$\overline{\mathrm{I}} \cdot 0648 \mathrm{I}$		0.93519	$\overline{\mathrm{I}} \cdot 06775$		$0 \cdot 93225$	$0 \cdot 00295$	O15	99705	,
50^{\prime}	$\overline{\mathrm{I}} \cdot 07548$		$0 \cdot 924$			0	10		99690	10^{\prime}
7	$\overline{\mathrm{I}} \cdot 08589$			$\overline{\mathrm{I}} \cdot 08914$		0.91086	0.00325		99675	3
						$0 \cdot 90053$	1			50^{\prime}
20^{\prime}	$\overline{\text { İ }} 10599$		$0 \cdot 89401$	$\overline{\mathrm{I}} \cdot 10956$		$0 \cdot 89044$	57		-99643	
	$\overline{\mathrm{I}}$ - I 1570		0.88430	$\overline{\mathrm{I}}$-II943		o'88057	$0 \cdot 00373$		-99627	
	$\overline{\mathrm{I}}$-12519		0.87481	$\overline{\mathrm{I}} \cdot 12909$		$0 \cdot 87091$	$0 \cdot 00390$			
50	$\overline{\mathrm{I}}$-1 3447		0.86553	$\overline{\mathrm{I}}$ - $3^{8} 54$		0.86I 46	$0 \cdot 00407$	O17 018		10^{\prime}
8	$\overline{\mathrm{I}}$-14356		0.85644	İ14780		0	00425	o18	-99575	82°
10^{\prime}	$\overline{\mathrm{I}}$ - 15245		0.84755	$\overline{\mathrm{I}}$ - 15688		0.84312	$0 \cdot 00443$		İ99557	
20	$\overline{\text { İ-16116 }}$		0.83884	$\overline{\mathrm{I}}$-16577		0:83423	$0 \cdot 0046 \mathrm{I}$		İ99539	
	İ169		0.83030	$\overline{\mathrm{I}}$-1 7450		0.82550		19	$\overline{1} \cdot 99520$	
40	$\overline{\mathrm{I}} \cdot \mathrm{I} 7807$	837 821	0.82193	$\overline{\mathrm{I}}$-I8306	$\begin{aligned} & 856 \\ & 840 \end{aligned}$	$0 \cdot 81694$	0.00499	019 019	I-99501	
	$\overline{\mathrm{I}}$-18628	805	0.81372	$\overline{\mathrm{I}} \cdot 19146$	$\begin{aligned} & 840 \\ & 825 \end{aligned}$	$0 \cdot 80854$	0.00518	019	-99+82	10^{\prime}
9	İ	805	0.80567	$\overline{\mathrm{I}}$-19971		029	0.00538		2	81°
	$\overline{\mathrm{I}} \cdot 20223$		$0 \cdot 79$	$\overline{\mathrm{I}} \cdot 20782$		$0 \cdot 79218$	0.00558			
	$\overline{\mathrm{I}} \cdot 20999$		$0 \cdot 7900$	$\overline{\mathrm{I}} \cdot 21578$		$0 \cdot 78422$	$0 \cdot 00579$		I'9942 I	40,
	I-21761		$0 \cdot 78239$	$\overline{\mathrm{I}} \cdot 2236 \mathrm{I}$		$0 \cdot 77639$	- 0	O2I	$\overline{\mathrm{I}} .99400$,
	$\overline{\mathrm{I}} \cdot 22509$		$0 \cdot 77491$	$\overline{\mathrm{I}} \cdot 23130$		$0 \cdot 76870$	-		99	
50^{\prime}	İ.23244		$0 \cdot 76756$	$\overline{\mathrm{I}}$.		0.76113	+3			10^{\prime}
10	$\overline{\mathrm{I}}$.		0.76033	I'24632		0.75368	0.00665		$\overline{\mathrm{I}} \cdot 99335$	80
	$\log \cos$	D	log	log cotan	D	log tan	og	I)	\log	

10° NATURAL FUNCTIONS

		D	cosecant	D	tangent	D	cotangent	D		D	cosine		
10°	- 17365		5.75877		-17633		$\overline{5.67128}$		I-01543		.9848I	5 I	80
10^{\prime}	-17651	28	$5 \cdot 66533$		-17933		$5 \cdot 57638$		I.OI 595	054	-98430	52	50
20	-17937	287	$5 \cdot 57493$		-18233	301	$5 \cdot 4845 \mathrm{I}$		I.OI649	O54	-98378	53	40
30^{\prime}	-18224	285	$5 \cdot 48740$		-18534	301	$5 \cdot 39552$		I-01703	055	-98325	53	30
40^{\prime}	-18509	286	$5 \cdot 40263$		-18835	301	5•30928		I.OI758	-55	- 98272	54	
50^{\prime}	-18795		5-32049		-19136		$5 \cdot 22566$		I 018 I 5		'98218	55	10
11°	-19081		5.24084		-19438		5.14455		I-01872		-98163	56	79
10	-19366	286	$5 \cdot 16359$		-19740	302	$5 \cdot 06584$		I 01930	5	-98107	57	50
20^{\prime}	-19652	286	$5 \cdot 08863$		-20042	302	4.98940		I 01989	\%	-98050	58	
30^{\prime}	-19937		$5 \cdot \mathrm{OI} 585$		- 20345		4.91516		I 02049		-97992	58	O'
40^{\prime}	- 20222		4.94517		-20648		$4 \cdot 84300$		02110	1	-97934	59	
50^{\prime}	-20507	28	$4 \cdot 87649$		-20952		$4 \cdot 77286$		02171	3	-); 875		
12°	-20791		$4 \cdot 80973$		-21256		$4 \cdot 70463$		I 02234		-97815	61	78
10^{\prime}	-21076		4.74482		- 21560		4.63825		I O 2298		-97754	62	50^{\prime}
2	- 21360		$4 \cdot 68167$		- 21864		$4 \cdot 57363$		I 02362		-97692	62	\% ${ }^{\prime}$
3	- 21644		$4 \cdot 62023$		- 22169		4.51071		I 02428		-97630	64	30^{\prime}
40^{\prime}	-21928		$4 \cdot 56041$		- 22475	306	4.44942		I O2494	8	-97566	64	
50^{\prime}	-22212	28	$4 \cdot 50216$		-22781		$4 \cdot 38969$		I 02562	8	'97502		
13	- 22495		4-44541		-23087	306	$4 \cdot 33148$		0		'97437	66	77
10^{\prime}	- 2277		$4 \cdot 39012$		-23393		$4 \cdot 27471$		1.02700		-973	67	
20^{\prime}	- 2306		4.33622		- 23700		4.21933		$1 \cdot 02770$		-97304	67	O^{\prime}
3	-23345		$4 \cdot 28366$		- 24008		$4 \cdot 16530$		I 0284 I	1	-97237	68	30^{\prime}
40^{\prime}	-23627		4.23239		-24316		$4 \cdot 11256$		I 02914		-97169	69	O'
50^{\prime}	- 23910		4.18238		- 24624		$4 \cdot 06107$		I 02987		-97100		
14°	-24192		4-13357		- 24933		4.01078		-0306I		-97030	71	6°
10^{\prime}	- 24474		4.08591		-25242		3.96165		I.03I 37		-96959	72	O^{\prime}
20^{\prime}	- 24756		4.03938		- 25552		3.91364		1.032 I 3		- 96887	72	O^{\prime}
30^{\prime}	- 25038		3.99393		- 25862		$3 \cdot 8667 \mathrm{I}$		I O3290		-96815	73	0^{\prime}
40^{\prime}	- 25320		3.94952		-26I 72		3.82083		I O3368		-96742	75	
50^{\prime}	-25601		3.906 I 3		-26483		3.77595		I O3447		96667		
15	- 25		3.86370		-26795		3•73205		I 03528		- 96593	76	75
1	- 26163		3.82223		-27107		$3 \cdot 68909$		I $\cdot 03609$			77	0^{\prime}
20^{\prime}	- 26443		3.78166		-27419		$3 \cdot 64705$		I 03691		- 96440	77	
	- 26724		3.74198		-27732		$3 \cdot 60588$		1.03774		. 96363	78	30
40^{\prime}	-27004	280	$3 \cdot 70315$		-28046		$3 \cdot 56557$		I.03858	6	- 96285	79	20
50^{\prime}	- 27284	28	$3 \cdot 66515$		-28360		$3 \cdot 52609$		I $\cdot 03944$		-96206		10
16°	-2		$3 \cdot 62796$		- 286		87		O		-96126	80	74°
10^{\prime}	- 27843		3.5915		-28990		3.4495 I		1.04117		. 96046	82	50
20	- 28123		3.55587		-29305		3.41236		I.04206		. 95964	82	
3	-28402		3.52094		-2962 I		$3 \cdot 37594$		I.04295		- 95882	83	30
40^{\prime}	- 28680		3.48671		- 29938		$3 \cdot 34023$		I $\cdot 04385$		-95799	84	20
50^{\prime}	- 28959	27	3.45317		- 30255		$3 \cdot 30521$		1.04477		-95715	85	1
17°	- 29237		3.42030		- 30573		$3 \cdot 27085$		1.04569		- 95630	85	73°
	cosine	I)	ant	D	cotangent	D	tangent	D	cosecan	D		,	

	\log	D	$\log \operatorname{cosec}$		D					
10°	$\overline{\mathrm{I}} \cdot$		$0 \cdot 76033$	$\overline{\mathrm{I}} \cdot 24632$		0.75368	5		I'99335	80
	İ 246	6	0.75323	$\overline{\mathrm{I}} \cdot 25365$		0.74635	0.00687			50^{\prime}
	$\bar{I} \cdot 25376$	68		$\overline{\mathrm{I}} \cdot 26086$	71	$0 \cdot 73914$	$0 \cdot 00710$,
	$\overline{\mathrm{I}} \cdot 26063$		$0 \cdot 73937$	$\overline{\mathrm{I}} \cdot 26797$	71	0.73203	$0 \cdot 00733$	023		30^{\prime}
	$\overline{\mathrm{I}} \cdot 26739$		$0 \cdot 73261$			$0 \cdot 72504$	$0 \cdot 00757$		I'99243	20^{\prime}
5	$\overline{\mathrm{I}} \cdot 27405$		$0 \cdot 72595$				$0 \cdot 00781$		I•99219	10^{\prime}
$1{ }^{\circ}$	$\overline{\mathrm{I}}$.		0.71940	$\overline{\mathrm{I}} \cdot 28865$		0.71135	0.00805		5	79
	$\overline{\mathrm{I}} \cdot 28705$		$0 \cdot 71295$	I-29535	66		$0 \cdot 00830$,
	$\overline{\mathrm{I}} \cdot 29340$		$0 \cdot 70660$	İ-30195		$0 \cdot 69805$	$0 \cdot 00855$		$\overline{1} \cdot 99145$	40^{\prime}
	I- 2996	6	$0 \cdot 7$	$\overline{\mathrm{I}} \cdot 30846$		0.69154	0.00881		İ99119	30^{\prime}
	$\overline{\mathrm{I}} \cdot 30582$	607		$\overline{\mathrm{I}} \cdot 31$			$0 \cdot 00907$		İ99093	20',
50	$\overline{\mathrm{I}} \cdot 31189$	599	$0 \cdot 6$	İ32122	62	0.67878	3			10^{\prime}
12°	- $\cdot 31788$		0.68	$\overline{\mathrm{I}} \cdot 32747$		3	0.00960		0	78°
	I-32		-	I-33365						
	$\overline{\mathrm{I}}$ -		$0 \cdot 67$	$\overline{\mathrm{I}}$-33974		0.66026				40
	$\overline{\mathrm{I}} \cdot 3$	566	0.66466	$\overline{\mathrm{I}} \cdot 34576$				28		30^{\prime}
4	İ34100	558	0.65900	$\overline{\mathrm{I}} \cdot 35170$		0.64830	0.01070	029		20^{\prime}
50^{\prime}	$\overline{\mathrm{I}}$-3	55	0.65342	$\overline{\mathrm{I}} \cdot 35757$	507	0.64243	- 01099			10
13°	$\overline{\mathrm{I}} \cdot 35209$		0.64791	$\overline{\mathrm{I}} \cdot 36336$		4	$0 \cdot 01128$		2	77
			-64248	$\overline{\mathrm{I}} \cdot 36909$		605				50'
	$\overline{\mathrm{I}} \cdot 36289$		0.63711	$\overline{\mathrm{I}} \cdot 37476$			0.01187		İ9881 3	40^{\prime}
	$\overline{\mathrm{I}} \cdot 36819$		0.63181	$\overline{\mathrm{I}} \cdot 38035$		0.61965	0.01217			30'
40^{\prime}	$\overline{\mathrm{I}}$-37341		0.62659	$\overline{\mathrm{I}} \cdot 38589$	547	$0 \cdot 61411$	0.01247	1		
5			0.62142		547	$0 \cdot 60$	$0 \cdot 01278$	O32	22	10^{\prime}
14°			0			23	0.01310		0	6°
	$\overline{\mathrm{I}} \cdot 3887$			1.40212			1			50^{\prime}
	$\overline{\mathrm{I}} \cdot 393$		0.60631	İ 4074		-. 59258	-01373	033	27	,
	$\overline{\mathrm{I}} \cdot 39860$		0.60140	I-4126		$0 \cdot 58734$	$0 \cdot$	O33	İ.98594	30^{\prime}
4	$\overline{1} \cdot 40346$	479	-. 59654	$\overline{\mathrm{I}} \mathrm{T} 41784$		$0 \cdot 5$	$0 \cdot 01439$	O33	98561	
50	$\overline{\mathrm{I}} \cdot 40825$	475	$0 \cdot 59175$	$\overline{\mathrm{I}} \cdot 42297$		$0 \cdot 57703$	$0 \cdot 01472$	-34	-98528	
15°	$\overline{\mathrm{I}} .41300$	468	0.58700	I- 42805		0.57195	0.01506	034	-98494	${ }^{\circ}$
		4	0.58232		4	- 56692	0.01540	4	$\overline{\mathrm{I}} \cdot 98460$	50^{\prime}
20	$\overline{\mathrm{I}} .4223$		$0 \cdot 57768$	İ.43806		0. 56194	-01574		$\overline{\mathrm{I}} \cdot 98426$	
	$\overline{\mathrm{I}} .4269$		$0 \cdot 57310$	I- 44299		0.55701	0.01609		98391	
4	$\overline{\mathrm{I}} .43143$		$0 \cdot 56857$	$\overline{\mathrm{I}} \cdot 44787$		0.55213			6	
5	$\overline{\mathrm{I}} .43591$		0			9			0	
16°	$\overline{\mathrm{I}} .44034$		0	4575		0.54250	6		284	74°
	$\overline{\mathrm{I}} \cdot 44472$		0.55528			0.53776	$0 \cdot 01752$			
2	İ 44905		$0 \cdot 5$	İ 4		O. 53	0.01789		1	40^{\prime}
30	$\overline{\mathrm{T}} \cdot 45334$		0					038		30^{\prime}
4	$\overline{\mathrm{I}} .45758$	420			458	0.52378	0.01864	-38		
$5{ }^{\circ}$		416	$0 \cdot 3$	İ	454		O	-38	İ98098	73
17°	$\overline{\mathrm{I}} \cdot 46594$		0.5	$\overline{\mathrm{I}} .4853$	454	$0 \cdot$	0.01940		$\overline{\mathbf{I}} \cdot 98060$	73
	\log	D	log sec	1 lg cotan	D	log tan	$\log 0$	I)	\log s	

17° NATURAL FUNCTIONS

	,	D	cosecant	D	tangent	D	cotangent	D	ant	D	cosine	D	
17°	-29237	278	3.42030		30573	318	$3 \cdot 27085$		I 04569	0	95630		5
10^{\prime}	- 29515	278	$3 \cdot 38808$		-30891	318	$3 \cdot 23714$		I $\cdot 04663$	09	-95545		5
'	- 29793	278	$3 \cdot 35649$		-31210		$3 \cdot 20406$		I.04757		-95459	086	4
30^{\prime}	-30071	277	$3 \cdot 3255 \mathrm{I}$		-31530	32	3-17159		I •04853	096	-95372	087	3
40 50 0^{\prime}	- 30348	277	$3 \cdot 29512$		-31850	321	$3 \cdot 13972$		I $\cdot 04950$	097	-95284	088	
50^{\prime}	- 30625	277	$3 \cdot 26531$		32 I 7 I	32	3•10842		I 05047	099	-95195	089	1
	-30902	276	3.23607		- 32492	322	$3 \cdot 07768$		I 05146		-95106		7
	-31178	276	$3 \cdot 20737$			322	3.04749		I.05246		-9501 5		5
30^{\prime}	-31454	276	$3 \cdot 1792$		36	324	3.01783		I O5 347	102	-94924		4
40^{\prime}	- 32006	276				323			-05449	103	94832	092	3
50^{\prime}	- 32282	276	3.09774		34108	325			2	105	-94740	094	
19°	-32557		$3 \cdot 07155$		-34433	325				105		094	,
10^{\prime}	- 32832	5	3.04584		- 34758	325				107		095	
20^{\prime}	-33106	274	3.02057		- 35085	327				107		096	5
30^{\prime}	-33381	275	3.99574		-35412	327				109		097	
40^{\prime}	-33655	274	$2 \cdot 97135$		- 35740	328	$2 \cdot 79802$		I.06195	110		097	
50^{\prime}	- 33929		$2 \cdot 94737$		- 36068	328	$2 \cdot 77254$		I 066306	I I	-94068	099	
20°	-34202		$2 \cdot 92380$		- 36397	3	$2 \cdot 74748$		I.064 18	112	-93969	099	7
10,	- 34475		$2 \cdot 90063$		- 36727	330	$2 \cdot 72281$		I $\cdot 0653 \mathrm{I}$	113	. 93869	00	
20	- 34748	273 273	$2 \cdot 87785$		- 37057		$2 \cdot 69853$		I $\cdot 06645$	114	-93769	0	
30^{\prime}	-3502 I	273	$2 \cdot 85545$		- 37388	331	$2 \cdot 67462$		I $\cdot 0676 \mathrm{I}$		-93667	02	3
40^{\prime}	- 35293	27	$2 \cdot 83342$		-37720	332	$2 \cdot 65109$		I $\cdot 06878$	117	- 93565	102	2
5	- 35565	272	2•81175		- 38053	333	$2 \cdot 62791$		I $\cdot 06995$	117	-93462	103	IC
21°	-35837		$2 \cdot 79043$		-38386		$2 \cdot 60509$		1.07115		-93358		65
1	-36108		$2 \cdot 76945$		-3872 I		$2 \cdot 5826$ I		1.07235		-93253		
20^{\prime}	- 36379		$2 \cdot 7488$ I		- 39055	334	$2 \cdot 56046$		I.07356		-93148	105	4
30	- 36650		$2 \cdot 72850$		-39391	3	$2 \cdot 53865$		I 07479	123	-93042		30
40^{\prime}	-3692 I	27	$2 \cdot 70851$		- 39727		$2 \cdot 51715$		1.07602	123	-92935	7	0
50^{\prime}	-37191	27	$2 \cdot 68884$		-40065		$2 \cdot 49597$		1.07727	5	-92827		10
22°	-3746r		$2 \cdot 66947$		-40403		$2 \cdot 47509$		1.07853		-92718		68
10^{\prime}	- 37730	269	$2 \cdot 65040$		-4074 I		$2 \cdot 4545$ I		I.07981		-92609	9	O
20^{\prime}	- 37999	269	$2 \cdot 63162$		4I08I	340	$2 \cdot 43422$		I.08109		-92499	10	40
30^{\prime} 40^{\prime}	- 38268		$2 \cdot 61313$		-4142	340	$2 \cdot 41421$		I.08239		-92388	11	30
40^{\prime}	- 38537	268	$2 \cdot 59491$		-41763		2-39449		I 108370	1	-92276		20
${ }^{\circ}$	- 38805	268	$2 \cdot 57698$		-42105		$2 \cdot 37504$		I.08503	3	-92164		10
23	$\cdot 39073$	268	2.55930		-42447		$2 \cdot 35585$		I.08636		-92050		67
10^{\prime}	-3934I	26	2.54190		-42791		2.33693		I.0877		-91936		50
20^{\prime}	- 39608		$2 \cdot 52474$		-43I 36	345	2•31826		I.08907	130	-91822		40
30^{\prime}	- 39875	267	$2 \cdot 50784$		- 4348 I	345	$2 \cdot 29984$		1.09044	137	-91706		30
40^{\prime}	-40142	266	2.49119		-43828	347	$2 \cdot 28167$		1.09183	139	-91590		20
50^{\prime}	-40408	266	$2 \cdot 47477$		-44175	348	$2 \cdot 26374$		I 09323		-91472		10
24°	40674		$2 \cdot 45859$		- 44523	8	2.24604		I 0946	141	'91355		66
	cosine	1)	secant	D	tangent	1)	tangent	D	cosecant	D	sine	D	

	log	D			D					
17°			0.5				0.01940			
							-0.01979		1	
			-				0.02018			40^{\prime}
				$\overline{\mathrm{I}} \cdot 49872$						
40^{\prime}			0.51787	$\overline{\mathrm{I}} 50311$	439	$0 \cdot 496$	$0 \cdot 02098$			
50^{\prime}			0.51393	I'50746	435	54	-02139			
18°	$\overline{\mathrm{I}}$.		$0 \cdot 5$			0.48822	79		r	2°
			0	$\overline{\mathrm{I}} \cdot 51606$		4				
			$0 \cdot 50232$	$\overline{\mathrm{I}} \cdot 52031$	42	9	$0 \cdot 02262$			
			$0 \cdot 49852$	$\overline{\mathrm{I}} \cdot 52452$	4	7548	4			
			$0 \cdot 49477$	$\overline{\mathrm{I}} \cdot 52870$		O	0.02347			
							90			
19°	$\overline{\mathrm{I}} \cdot 51264$						433			71
				I•54106			7			
	$\overline{\mathrm{I}}$ -		$0 \cdot$	I'5		O	$0 \cdot 02521$			
	$\overline{\mathrm{I}} \cdot 5$		0.4	$\overline{\mathrm{I}} \cdot 54915$		$0 \cdot 45085$				
		352	0.47295	$\overline{\mathrm{I}} \cdot 55315$		0.44685	$0 \cdot 02610$	046		
50^{\prime}	$\overline{\mathrm{I}} \cdot 53057$		$0 \cdot 46944$	$\overline{\mathrm{I}} \cdot 55712$					İ97344	
20°	$\overline{\mathrm{I}}$		$0 \cdot$	$\overline{\mathrm{I}}$ -		3	1		9	70°
	İ.54		- 4590	$\overline{\mathrm{I}} \cdot 56887$		3				
			$0 \cdot 4556$	$\overline{\mathrm{I}} \cdot 57274$		6	$0 \cdot$			
40^{\prime}	$\overline{\mathrm{L}} \cdot 54769$		$0 \cdot 45$	$\overline{\mathrm{I}} \cdot 5765$		2	0.02889			
50^{\prime}			0	I•58039		0				
${ }^{\circ}$			0.4							
			39							
			$0 \cdot 43915$	$\overline{\mathrm{I}} \cdot 59168$			3			
			0	$\overline{\mathrm{I}} \cdot 59540$						
40^{\prime}			0.43273	$\overline{\mathrm{I}} \mathrm{F} 5990$						
5	$\overline{\mathrm{I}} 57044$			$\overline{\mathrm{I}} .60276$		- 339724	0.03233		7	
${ }^{\circ}$							-			68°
				$\overline{\mathrm{I}} .61722$			$0 \cdot \mathrm{O} 3$			
40^{\prime}				$\overline{\mathrm{I}}$ - 6						
50				$\overline{\mathrm{I}} .62433$						
23										
10										
									İ.96294	
40			3	1.64175						20^{\prime}
50			\bigcirc							
4°	$\overline{\mathrm{I}}$.		$0 \cdot 39069$	$\overline{\mathrm{I}}$		0.35142	0.03927		$1 \cdot 96073$	66°
	log cos	D	$\log \operatorname{stc}$	\log cotan	D	og ta	log cos	1)	og sin	

$$
\begin{array}{r}
10 \\
20 \\
30 \\
40 \\
50 \\
\hline
\end{array}
$$

$$
25^{\circ}
$$

$$
\begin{array}{ll}
10
\end{array}
$$

$$
\begin{gathered}
26 \\
\hline
\end{gathered}
$$

$$
\begin{aligned}
& 10^{\prime} \\
& 20^{\prime} \\
& 30^{\prime} \\
& 40^{\prime} \\
& 50^{\prime} \\
& 7^{\circ}
\end{aligned}
$$

$$
20^{20}
$$

$$
10^{\prime}
$$

20^{\prime}
30^{\prime}
40^{\prime} ∞

$$
\begin{gathered}
10 \\
\begin{array}{c}
10 \\
30 \\
30 \\
30 \\
300 \\
300
\end{array}
\end{gathered}
$$

10
20^{\prime}
30^{\prime}
40^{\prime}
50^{\prime}
31°

	D		D		D		D		D		D
-40674		2.45859		- 44523		2		4		5	
-40939		$2 \cdot 44264$		-44872		$2 \cdot 22857$		I 09606		-91236	
-41204		$2 \cdot 42692$		-45222		2.21132		I 09750		-91116	
-41469		$2 \cdot 41142$		- 45573		2.19430		I -09895		-90996	
-41734		2.39614		-45924		2•17749		I $\cdot 1004 \mathrm{I}$		-90875	
-41998	26	$2 \cdot 38107$		-46277		2•16090		I $\cdot 101$	49	$\cdot 90753$	
- 42262		$2 \cdot 36620$. 4663		2•1445I		I•10338	0	-90631	
- 42525		$2 \cdot 35$ 1 54		-46985		$2 \cdot 12832$		I $\cdot 10488$			
- 42788		2-33708		-4734 I		2•11233		I $\cdot 10640$		-90383	
-430	26	$2 \cdot 32282$		-4769		$2 \cdot 09654$		I $\cdot 10793$	154	-90259	
-43313		2-30875		-48055		$2 \cdot 08094$		I - 10947	I 56	-901 33	
- 43575		$2 \cdot 29487$		-48414		$2 \cdot 06553$		I•II IO3	15	-90007	
-43837		2.28117		-4		2.05030		I-II260		-89879	
- 44098		$2 \cdot 26766$		-4		$2 \cdot 03526$		I•II419		-89752	
-44359		$2 \cdot 25432$		-49495		$2 \cdot 02039$		-11579	I	-89623	
-44		$2 \cdot 24116$		-498		$2 \cdot 00569$		-1 1740	3	-89493	30
-44		$2 \cdot 22817$		$\cdot 502$		I•991 16		I•11903	4	-89363	
- 45140		$2 \cdot 21535$		$\cdot 50$		I $\cdot 9768$ I		I•12067	6	-89232	131
- 45399		2-20269		-50953		I.9626		I 12233		-89101	
-45		2•19019		-51		I $\cdot 9485$		I•I2400	8	-88968	
- 459		2•17786		-51		I $\cdot 93470$		I - 12568		-88835	
-46175		$2 \cdot 16568$		-5205		I•92098		I•I2738	2	-8870 I	
- 46433	257	$2 \cdot 15366$		-52427		I 900741		I•12910	173	-88566	
- 46690	257	$2 \cdot 14178$		-5279		I $\cdot 89400$		I-13083	174	-8843 I	135 136
$\cdot 4$		2.13005		-5317		1-88073		13257	6	-88295	37
-47204		2-1 1847		-53545		I-86760		I•I3433		-881 58	38
- 47460		$2 \cdot 10704$		- 5392		I $\cdot 85462$		I•13610	7	-88020	38
- 47716		$2 \cdot 09574$		- 5429	377	I-84177		I•I 3789	8 I	- 87882	
-4797 I	255	$2 \cdot 08458$		- 5467	378	I $\cdot 82906$		I 3970	182	- 87743	139
-48226	255	$2 \cdot 07356$		-5505		I $\cdot 8$ I 649		14152	8	$\cdot 87603$	
- 4	25	$2 \cdot 0626$		- 5		I.80405		14335	86	-87462	1
$\cdot 48735$		$2 \cdot 05191$				I•79174		1452 I	6	-87321	
-48989	253	$2 \cdot 04128$		$\cdot 56$		I•77955		I•14707	9	-87178	142
-49242	253	$2 \cdot 03077$				I•76749		I•14896	189 189	-87036	144
- 49495	253	2.02039				I•75556		I•15085	192	- 86892	
- 49748		$2 \cdot 01014$		- 5734		I•74375		-15277	193	- 86748	
'50000		2.00		$\cdot 5$		1-73205		15470		- 86603	
- 50252		I •98998		-58124		I-72047		1-15665		-86457	
- 50503	251	I $\cdot 98008$		-58513		$1 \cdot 70901$		I-15861		-86310	
- 50754		I $\cdot 97029$		- 58905		I 69766		I•I6059	-	-86163	
$\cdot 51004$		I $\cdot 96062$		- 59297		I 68643		-16259	201	-86015	149
-51254		I•95106		-5969I		I 67530			201		149
-51504		I.9416		-6008		I				-85717	
cosine			1)	cotange	1)	tangent	D	cosecant	I)	sin	D

		D								
$4{ }^{\circ}$										
	-		$0 \cdot 38786$				-03983			
			$0 \cdot 38506$			$0 \cdot 34465$	$0 \cdot 04040$		O	
	$\overline{\mathrm{I}} .6 \mathrm{I}$		$0 \cdot 38227$			0.34130	0.04098	7		
40^{\prime}	$\overline{\mathrm{I}}$-62049		$0 \cdot 37951$	$\overline{\mathrm{I}} \cdot 66204$		$0 \cdot 33796$	0.04I56	9	$\overline{\mathrm{I}}$-95845	
5			$0 \cdot 37677$	$\overline{\mathrm{I}} .66537$		0.33463	0.04214			
25°	$\overline{\mathrm{I}} \cdot 62595$		0.37405	$\overline{\mathrm{I}} .66867$		0.33133	2		-95728	65
	$\overline{\mathrm{I}}$.					- 32804	32			
	İ. 63					$0 \cdot 32476$	91			
30^{\prime}	İ63398		0.36602			$0 \cdot 32150$	51		$\overline{\mathrm{I}} \cdot 95549$	
	$\overline{\mathrm{I}} .63662$		- 36	$\overline{\mathrm{I}} .68174$		-	$0 \cdot 04512$			
${ }^{\circ}$	$\overline{\mathrm{I}} \cdot 6$		$0 \cdot 36076$	$\overline{\mathrm{I}}$-68497		$0 \cdot 31503$	$0 \cdot 04573$			
6°			$0 \cdot 35816$	$\overline{\mathrm{I}}$-68818		0.31182	$0 \cdot 04634$			64
			- 35558			0.30862	0.04696			
			$0 \cdot 35302$	$\overline{\mathrm{I}} .69457$		- 30543	O			
	$\overline{1} \cdot 6495$		$0 \cdot 35047$	I-69774	317	26	$0 \cdot 0482 \mathrm{I}$			
	$\overline{\mathrm{I}} \cdot 65205$		$0 \cdot 34795$	$\overline{\mathrm{I}} \cdot 70089$			$0 \cdot 04884$			
			0.34544	$\overline{\mathrm{I}} \cdot 70404$		6	$0 \cdot 04948$			
27°			0.34295	$\overline{\mathrm{I}} \cdot 70717$		0.29283			8	63°
			0				$0 \cdot 05077$			
			O. 3	$\overline{\mathrm{I}}$-71 339		0.2866I	0.05142			
	$\overline{\mathrm{I}}$-66441		- 33559	$\overline{\mathrm{I}}$-71648			$0 \cdot 05207$			
	İ.6668		$0 \cdot 33318$			$0 \cdot 28045$	$0 \cdot 05273$			
50	$\overline{\mathrm{I}}$-66923		- 33	$\overline{\mathrm{I}} \cdot 72262$		7738	-0.05340			
28°			0.	$\overline{\mathrm{I}} \cdot 72567$		3	0.05407		3	62°
			$0 \cdot 326$				0			
20			$0 \cdot 3236$			0.26825	-.05542			40^{\prime}
			0.32134			26524				
4			0.3			$0 \cdot 26223$			2 I	
50^{\prime}				$\overline{\mathrm{I}} \cdot 74077$		25923	-			
29°						0.25625	0.05818		2	61°
						0.25327				
20			$0 \cdot$	$\overline{\mathrm{I}}$.		1	-0.05959			
3						6				
40				$\overline{\mathrm{I}} \cdot 75558$		42				
5						$0 \cdot 24148$	$0 \cdot 06174$			
30°							7			60°
							0.06394			
			0.29453			-	-			
40						2269			$\overline{\mathrm{I}}$.93	
50^{\prime}						$0 \cdot 22409$				
31°	I'71184		0.288ı6	1 77877		0.22123	9		$\overline{\mathrm{I}} 933307$	
	$\log \cos$	D	log sec	log co	D	g t	$r \cos$		og sin	

31° NATURAL FUNCTIONS

	sine	D	cosecan	D	tangent	D		D	sec	D	,	D
31°	- 51504		I'94160		- 60086		I $\cdot 66428$		I 16 t 63		.85717	
IO'	- 51753		I 93226		-60483		5337		6868		-85567	I
20	- 52002	2	I 92302		-6088I		I. 64256		7075		. 85416	I
	- 5	248	I'91 388	914	-61280	399	I.63185		7283	208	-85264	2
40^{\prime}	- 52498	2	I.90485	3	8 I	4	$1 \cdot 62125$		3	2 IO	-85112	2
50^{\prime}	- 52745		I.8959I		83		I 61074		17704		. 84959	3
32°	$\cdot 5$		8708		87		3		17918		84805	
1							2		I•I8I33			5
2									I-I 8350	7		5
		24	I.86I 16							219		6
4		245		8		4				221		7
50		245		8		4		994		222		157
3°		24		8		4 13				4		5
		2		8		414				227		59
		243	- 82790		-65355		O		19463		8	
2	- 5	243	I.8198I		-65771		I. 52043		-19691		. 83549	159 I 60
30	- 5519	243	I-8II 80	801	-66189	418	I. 5 IO84		I•I9920		. 83389	160
40^{\prime}	. 55436	242	I.80388		-66608		I.50133		I-20152		. 83228	
50^{\prime}	. 55678				-67028		I-49190		I-20386		- 83066	
34°			I		-6745		I 48256		- 20622		. 82904	
1									9			
20				759	. 6830 I				9			
		2		751	$\cdot 68728$			910	1341	242	413	
40^{\prime}		2		744			I $\cdot 44598$	903	I $\cdot 21584$	243	-82248	
50^{\prime}	. 57119	2		735	-69588		I.43703		I-21830		. 82082	
35°	-57358		I.								81915	
10												
2		2	1	713	$\cdot 7$	436	I.4106I			2		
3		23	I		-71329	438	I-40195		9	4		
4		23		-		440		9		6		
5	. 58543	23		691	$\cdot 7$	442			-23347			170
36°					-726							170
I		2						838				
20^{\prime}		2				4		832		5		
		23		5		4		826		266		
40^{\prime}		23		657		45 I		819		9		
50^{\prime}		23	I $\cdot 66$	65 I		453		812		27 I		174
37°		2	I	,	$\cdot 75355$	455			I-25214	4		
IO'		2		638		4		800		5		
$2 \mathrm{O}^{\prime}$		23		2		400						
3		2				46		7		O		7
4		23		-		4				283		
50^{\prime}		230		OI 3	-	465				285		
50	-	229	I. 63035	608		468	I 28764		I•206I 5		78950	
38°	. 6156		I		$\cdot 78129$		127994		1-26902		8801	179
	cosine])	secant	1)	angent	I)	tangent	I)	cosecall	D	sine	I)

	$\log \mathrm{s}$	D	log	$l o g$ tan	D	n	g se	D	og \cos	
31°	$\overline{\mathrm{I}} \cdot 71184$		0.28816	$\overline{\mathrm{I}} \cdot 77877$		$0 \cdot 22123$	0.06693		$\overline{\mathbf{I}} \cdot 93307$	59°
10^{\prime}	I•71393		$0 \cdot 28607$	$\overline{\mathrm{I}} \cdot 78163$		$0 \cdot 21837$	0.06770	076		
20^{\prime}	I•71602	209	0.28398	İ78448	285 284	O.2 I 552	0.06846	076		40^{\prime}
30^{\prime}	I'71809	207	0.28191	I•78732	284 283	0.21268	0.06923	077	- 1.93077	30^{\prime}
40^{\prime}		204	$0 \cdot 27986$	İ79015	283	$0 \cdot 20985$	$0 \cdot 07001$			20^{\prime}
50^{\prime}	$\overline{\mathrm{I}} \cdot 72218$		$0 \cdot 27782$	I-79297		$0 \cdot 20703$	$0 \cdot 07079$			'
32°	$\overline{\mathrm{I}} \cdot 7242 \mathrm{I}$		0	$\overline{\mathrm{I}} \cdot 79579$		0.2042 I	0.07158		$\overline{\mathrm{I}} \cdot 92842$	58°
10^{\prime}			O	I•79860		40	0.07237		I.92763	
2	$\overline{\mathrm{I}} \cdot 72823$	20	$0 \cdot 27177$	$\overline{\mathrm{I}} .80140$		O.19860	0.07317			40^{\prime}
	$\overline{1} \cdot 73022$		$0 \cdot 26978$	I.80419		O.195	0.07397		$\overline{\mathrm{I}} \cdot 92603$	'
40	$\overline{\mathrm{I}} \cdot 73219$		$0 \cdot 2678 \mathrm{I}$	$\overline{\mathrm{I}} .80697$	2	$0 \cdot 19303$	0.07478	I	I'92;22	20^{\prime}
50^{\prime}	$\overline{\mathrm{I}} \cdot 734 \mathrm{I} 6$	19	$0 \cdot 26584$	$\overline{\mathrm{I}} .80975$	2	O-19025	0.07559	O82	I	IO'
33°	$\overline{\mathrm{I}} \cdot 736 \mathrm{I}$ I		0.26389	$\overline{\mathrm{I}} .81252$		0.18748	0.07641	082	9	57°
1	I'73805		0.26195	$\overline{\mathrm{I}}$-8I528		472	$0 \cdot 07723$			${ }^{\prime \prime}$
20			$0 \cdot 26003$	$\overline{\mathrm{I}} .8 \mathrm{I} 803$		O-18197	$0 \cdot 07806$		4	40^{\prime}
3	I-74189	19	$0 \cdot 25811$	$\overline{\mathrm{I}} \cdot 82078$	275	O•I 7922	0.07889		I•92 I I I	30^{\prime}
40	$\overline{\mathrm{I}} \cdot 74379$		$0 \cdot 25$	$\overline{\mathrm{I}} \cdot 82352$		O-17648	0.07973		I.92027	20^{\prime}
50^{\prime}	$\overline{\mathrm{I}} \cdot 74568$		$0 \cdot 2$	$\overline{\mathrm{I}} \cdot 82626$		O•I7374	0.08058		I.91942	10^{\prime}
34°	$\overline{\mathrm{I}} \cdot 74756$		0.252	$\overline{\mathrm{I}}$		0.17IOI	0.08143		$\overline{\mathrm{I}} \cdot 91857$	56°
1	I•74943		$0 \cdot 25057$	$\overline{\mathrm{I}}$-83171		6829	8		I.91772	5
20	$\overline{\mathrm{I}} \cdot 75128$		$0 \cdot 24872$	$\overline{\mathrm{I}} \cdot 83442$		O.16558	$0 \cdot 08314$			40^{\prime}
30	$\overline{\mathrm{I}} \cdot 75313$		O-2	$\overline{\mathrm{I}} \cdot 83713$		O.16287	$0 \cdot 08401$			'
40	$\overline{\mathrm{I}} \cdot 75496$		O.	$\overline{\mathrm{I}} \cdot 83984$		$0 \cdot 16016$	$0 \cdot 08488$		I'91512	20^{\prime}
50	$\overline{\mathrm{I}} \cdot 75678$		O. 2			O-15746	$0 \cdot 08575$		$\overline{\mathrm{I}} \cdot 91425$	IO'
35°	$\overline{\mathrm{I}} \cdot 75859$		$0 \cdot 2$	$\overline{\mathrm{I}} .84523$		O - I 5477	0.08664		I'91336	55°
10^{\prime}			O. 2	$\overline{\mathrm{I}} .8479$		O-I 5209	0.08752		I-91248	'
2	I-762 18		0.23782	I-85059		O.I 4941	0.08842		I-91158	40^{\prime}
30	$\overline{\mathrm{I}} \cdot 76395$		$0 \cdot 23605$	$\overline{\mathrm{I}} \cdot 85327$		O.14673	$0 \cdot 0893 \mathrm{I}$		I-91069	30^{\prime}
40^{\prime}			$0 \cdot 23428$	$\overline{\mathrm{I}} \cdot 85594$		$0 \cdot 14406$	$0 \cdot 09022$		8	20^{\prime}
50^{\prime}	$\overline{\mathrm{I}} \cdot 76747$		$0 \cdot 23253$	$\overline{\mathrm{I}} \cdot 85860$		40	3		7	IO'
36°	$\overline{\mathrm{I}} \cdot 76922$		0.23078	.8612		13874	0.09204		I'90796	4^{3}
10	I•77095			I.86392		8	0.09296			
20	İ77268	I	$0 \cdot 22732$	$\bar{I} \cdot 86656$		O-I 3344	0.09389		I	40^{\prime}
3	İ77439		$0 \cdot 2256 \mathrm{I}$	$\overline{\mathrm{I}} \cdot 8692 \mathrm{I}$		O-13079	0.09482		8	30^{\prime}
40^{\prime}	$\overline{\mathrm{I}} \cdot 77609$		O-22	$\overline{\mathrm{I}} \cdot 87 \mathrm{I} 85$		O-12815	0.09576		I.90424	20^{\prime}
50^{\prime}	$\overline{\mathrm{I}} \cdot 77778$		$0 \cdot 22222$	$\overline{\mathrm{I}} \cdot 87448$		2	$0 \cdot 09670$		I $\cdot 90330$,
37°	$\overline{\mathrm{I}} \cdot 77946$		0	$\overline{\mathrm{I}} \cdot 8771$		2289	5		I'90235	53°
10^{\prime}	$\overline{\mathrm{I}} \cdot 781 \mathrm{I} 3$		O.21887	I.87974		O•12026	0.0986I		9	50
20^{\prime}	$\overline{\mathrm{I}} \cdot 78280$		$0 \cdot 21720$	$\overline{\mathrm{I}} \cdot 88236$		4	,		I. 900	40^{\prime}
30^{\prime}	$\overline{\mathrm{I}} \cdot 78445$		O.2I555	$\overline{\mathrm{I}} \cdot 88498$		O2	O.10053			30^{\prime}
40^{\prime}	$\overline{\mathrm{I}} \cdot 78609$			$\overline{\mathrm{I}} \cdot 88759$		O.1 1241	-1015		-884	20^{\prime}
50^{\prime}	$\overline{\mathrm{I}} \cdot 78772$		O.21228	$\overline{\mathrm{I}} \cdot 89020$		O.10980	(). IO 248	7	¢ $\cdot 89752$	10^{\prime}
38°	$\overline{\mathrm{I}}$.		0.	$\overline{\mathrm{I}} \cdot 892$		$0 \cdot 10719$	0.10347		$\overline{\mathrm{I}} .89653$	52°
	$\log \cos$	D	$\log \mathrm{sec}$	\log cota		$\log \tan$	$\log \operatorname{cosec}$	D	$\log \sin$	

38 NATURAL FUNCTIONS

LOGARITHMIC FUNCTIONS

	10	D	c		D			D		
38°	$\overline{\bar{I} \cdot 78934}$		$0 \cdot$	$\overline{\bar{I}} \cdot 8928 \mathrm{I}$			O. 10		$\overline{\mathrm{I}} \cdot 89653$	52
	$\overline{\mathrm{I}} \cdot 79095$		$0 \cdot 20905$			$0 \cdot 1$	- 10446		4	50^{\prime}
	İ.79256		$0 \cdot 20744$	$\overline{\mathrm{I}} .89801$		$0 \cdot 10199$	O.10545		$\overline{\mathrm{I}}$ - 89455	10'
30^{\prime}	$\overline{\mathrm{I}} \cdot 794 \mathrm{I} 5$	159 158 15	0.20585	$\overline{\mathrm{I}} \cdot 9006 \mathrm{I}$		$0 \cdot 09939$	- 10646			3
40^{\prime}	İ-79573		$0 \cdot 20427$			0.09680	- 10746		$\overline{\mathrm{I}} \cdot 89254$,
50^{\prime}	I. 7					$0 \cdot 09422$				
39°	$\overline{\mathrm{I}}$.		0.20113	$\overline{\mathrm{I}} \cdot 90837$	8	$0 \cdot 09163$	0•10950		50	51°
	$\overline{\mathrm{I}} \cdot 80043$		- 19957	$\overline{\mathrm{I}} \cdot 91095$		0.08905	O-11052			${ }^{\prime}$
	$\overline{\mathrm{I}}$-80197		-19803	$\overline{\mathrm{I}} \cdot 91353$		0.08647	O-III 56		-88844	40^{\prime}
	$\overline{\mathrm{I}} .8035 \mathrm{I}$	153	- 19649	$\overline{\mathrm{I}} \cdot 91610$	258	0.08390	O-11259		I. 88741	30^{\prime}
	$\overline{\mathrm{I}} \cdot 80504$	152	- •19496	$\overline{\mathrm{I}} \cdot 91868$	257	0.08132	-11 1364	IO5		20^{\prime}
5		15	- 19344	$\overline{\mathrm{I}} .92125$	2	0.07875	- 11469		88531	10^{\prime}
40°	$\overline{\mathrm{I}} .80807$	15	0.19193	I-9238I		$0 \cdot 07619$	5	106	88425	50°
	$\overline{\mathrm{I}} \cdot 80957$		$0 \cdot 19043$		25	0.07362	O-I	107	I. 88319	50^{\prime}
	$\overline{\mathrm{I}} \cdot 81106$	14	-1889	İ.92894		$0 \cdot 07106$	O-II788	107	I-88212	
	$\overline{\mathrm{I}} \cdot 8 \mathrm{I} 254$	14	O•18746	$\overline{\mathrm{I}} \cdot 93150$		$0 \cdot 06850$	O•II895		I.88IO5	O'
40	$\overline{\mathrm{I}} \cdot 81402$		$0 \cdot$			$0 \cdot$	O-12004		$\overline{\mathrm{I}} .87996$	${ }^{\prime}$
5	$\overline{\mathrm{I}} \cdot 81549$	14	-	$\overline{\mathrm{I}}$.	255	$0 \cdot$	0	109	I. 87887	
41°			0.18306	İ93916		0.06084	0.12222		8	49°
	$\overline{\mathrm{I}}$.		-			$0 \cdot 0$	$0 \cdot 12332$			
20^{\prime}	$\overline{\mathrm{I}}$ - 81		O•18017	İ94426		0.05574	O•I 2443			40^{\prime}
30	İ. 82		-	İ9468 I		0.05319	-12554		$\overline{\mathrm{I}} .87446$	30^{\prime}
40	$\overline{\mathrm{I}} \cdot 82269$	143	$0 \cdot 17731$	$\overline{\mathrm{I}}$-94935	254	$0 \cdot 05065$	- 12666		$\overline{\mathrm{I}} \cdot 87334$	
50^{\prime}		141	$0 \cdot 17590$	$\overline{\mathrm{I}} .95190$		$0 \cdot 04810$	- 12779	113		
42°	$\overline{\mathrm{I}}$-82551		- 177449	$\overline{\mathrm{I}} \cdot 95444$		0.04556	0-12893		7	48°
	$\overline{\mathrm{I}} .8269$		-1	$\overline{\mathrm{I}} \cdot 95698$		$0 \cdot 04302$	- 1			
	$\overline{\mathrm{I}} .82830$		$0 \cdot 17170$	$\overline{\mathrm{I}} \cdot 95952$		0.04048	-1 1		$\overline{\mathrm{I}} .86879$	40^{\prime}
3	$\overline{\mathrm{I}} \cdot 82968$		$0 \cdot 17032$	$\overline{\mathrm{I}} .96205$		0.03795	O.13237			
40	$\overline{\mathrm{I}} \cdot 83106$		-1.16894	$\overline{\mathrm{I}}$-96459		$0 \cdot 0354 \mathrm{I}$	O-13353		$\overline{\mathrm{I}} \cdot 86647$	20^{\prime}
50°	$\overline{\mathrm{I}} .83242$					0.0328	O-1 3470	7	0	10^{\prime}
43°				$\overline{\mathrm{I}} \cdot 96966$		0.03034	- 13	8	I. 86413	47°
			0.16487	İ97219		0.02	O-13705			
20	$\overline{\mathrm{I}} .83$		O-16352	İ97472		0.02528	O-I3824			
	$\overline{\mathrm{I}}$-83781		- 16219	İ97725	253	$0 \cdot 02275$	O-I 3944	20	$\overline{\mathrm{I}} \cdot 86056$	
40	$\overline{\mathrm{I}} .8$		0•16086	$\overline{\mathrm{I}} .97978$		$0 \cdot 02022$	$0 \cdot 14064$		6	
50^{\prime}	$\overline{\mathrm{I}}$.		- 15954	$\overline{\mathrm{I}} .9823 \mathrm{I}$		0.01769	O-I		5	
44°			$0 \cdot 1$			0.01516	O•I		3	46°
			O.I 5692	I'98737		O	- 14429			
20	$\overline{\mathrm{I}}$.		0	İ.98989		- 010	O-1		I. 85448	40^{\prime}
	$\overline{\mathrm{I}}$.		O	İ.99242		0.00758	O-I			
40^{\prime}	$\overline{\mathrm{I}}$ -		$0 \cdot 15306$	$\overline{\mathrm{I}}$. 99495		$0 \cdot 00505$	-1 14			
		12	0	İ99747	25	0	14			10^{\prime}
45	I.	12	0	$0 \cdot 00000$	2	0.0000	0.1505		$\overline{\mathrm{I}} .84949$	45
	log \cos	D	$\log \mathrm{sec}$	\log cota	D	og tan	log cose		og sin	

FOUR-FIGURE TRIGONOMETRIC h^{\prime} TABLES

Radians	Degrees	Sine	Cosec.	Tangent	Cotan.	Secant	Cosine		
000	0	-0000	∞	0000	∞	1.0000	1.0000	90	$1 \cdot 57080$
-01745	I	-OI 75	57-2986	-OI75	57-2899	$1 \cdot 0002$	-9998	89	I. 55334
-03491	2	-0349	$28 \cdot 6537$	-O349	28.6362	$1 \cdot 0006$	-9994	88	I. 53589
.05236	3	-0523	19•1073	-0524	19.08 I I	I $\cdot 0014$	-9986	87	I. $51 \mathrm{I}^{\circ} 44$
-0698 I	4	-0698	14.3356	-0699	14.3006	I 00024	-9976	86	98
-08727	5	-0872	11.4737	-0875	II.4301	$1 \cdot 0038$	-9962	85	1.48
-10472	6	-1045	$9 \cdot 5668$	-105 I	9.5144	I 0055	-9945	84	I. 45
-12217	7	-1219	$8 \cdot 2055$	-1228	8-1443	I 00075	-9925	83	1.448.-
-1 3963	8	- I 392	$7 \cdot 1853$	-1405	7-1154	I $\cdot 0098$	-9903	82	1.431.7
-15708	9	-1564	$6 \cdot 3925$	-1584	6.3138	I OI25	-9877	81	I.41372
-17453	10	-1736	$5 \cdot 7588$	-1763	5.6713	I.OI 54	-9848	80	I $\cdot 39626$
-19199	II	-1908	$5 \cdot 2408$	-1944	5-1446	1.0187	-9816	79	- $\mathrm{T}_{7} / 8 \mathrm{8}$!
-20944	12	- 2079	$4 \cdot 8097$	- 2126	$4 \cdot 7046$	1.0223	-97 1	78	1-261:5
-22689	13	- 2250	$4 \cdot 4454$	-2309	4.3315	1.0263	-972	77	I. 34 - 30
-24435	14	-2419	$4 \cdot 1336$	-2493	4*0108	I.0306	-9703	76	1.3264"
-26180	15	- 2588	$3 \cdot 8637$	- 2679	3.732 I	1.0353	-965'	75	1.309\%
-27925	16	- 2756	$3 \cdot 6280$	- 2867	$3 \cdot 4874$	1.0403	-961	4	I-291
-29671	17	- 2924	$3 \cdot 4203$	-3057	$3 \cdot 2709$	I.0457	-9563	73	1.2746
-31416	18	- 3090	$3 \cdot 2361$	- 3249	3.0777	I.0515	'951 1	72	$56 C$
-3316I	19	- 3256	3.0716	- 3443	$2 \cdot 9042$	I. 0576	-9455	73	$1 \cdot 23918$
-34907	20	- 3420	$2 \cdot 9238$	- 3640	$2 \cdot 7475$	1.0642	-9397	70	1.22173
-36652	21	- 3584	$2 \cdot 7904$	-3839	$2 \cdot 605 \mathrm{I}$	I.071 I	-9336	69	I.20428
-38397	22	- 3746	$2 \cdot 6695$	-4040	$2 \cdot 475$ I	$1 \cdot 0785$	-9272	65	1-18682
-40143	23	- 3907	$2 \cdot 5593$	-4245	$2 \cdot 3559$	I 0864	-9205	67	$1 \cdot 16937$
-41888	24	- 4067	$2 \cdot 4586$	-4452	$2 \cdot 2460$	I 0946	-9135	66	1.15192
-43633	25	-4226	$2 \cdot 3662$	-4663	$2 \cdot 1445$	I.IO34	-9063	65	I-1 3446
-45379	26	-4384	2-2812	-4877	$2 \cdot 0503$	I•II26	- 8988	64	I-11701
-47124	27	- 4540	$2 \cdot 2027$	-5095	I.9626	I-I223	-8910	63	I $\cdot 09956$
-48869	28	-4695	2.1301	-5317	I.8807	I-1 326	-8829	62	1.08210
-506I 5	29	- 4848	2.0627	-5543	I $\cdot 8040$	I-1434	. 8746	61	1.06465
-52360	30	$\cdot 5000$	$2 \cdot 0000$	- 5774	$1 \cdot 7321$	I• 1 547	-8660	60	1.04720
-54105	31	- 5150	I $\cdot 9416$	-6009	I.6643	I-1666	-8572	59	I 02974
$\cdot 55851$	32	$\cdot 5299$	I.887 I	-6249	I* 6003	I 1 I 792	-8480	58	1-OI229
57596	33	- 5446	1.836 I	-6494	I.5399	1-1924	-8387	57	-99484
-5934 I	34	- 5592	$1 \cdot 7883$	- 6745	I. 4826	$1 \cdot 2$. 8290	56	-97738
-61087	35	- 5736	1.7434	-7002	1.428 I	I-2 208	-8192	55	95993
. 62832	36	$\cdot 5878$	1•7013	7265	I 3764	1.2361	-8090	54	-94243
64577	37	-6018	$1 \cdot 6616$	-7536	I•3270	I-2521	-7986	53	-92502
. 66323	38	-6157	I $\cdot 6243$	-7813	I 2799	I $\cdot 2690$	-7880	52	-9075
-68068	39	-6293	I. 5890	-8098	1-2349	I $\cdot 2868$	-7771	51	-8901
-69813	40	-6428	I.5557	-8391	I-1918	I•3054	-7660	50	-872 ;
-71559	41	-656I	I 5.243	-8693	I-1504	I•3250	-7547	49	-85'-1
$\cdot 73304$	42	-6691	I.4945	-9004	-1 10	I-3456	-7431	48	. 83776
$\cdot 75049$	43	- 6820	$1 \cdot 4663$	'9325	I $\cdot 0724$	I•3673	7314	47	-82030
-76794	44	- 6947	1.4396	-9657	I $\cdot 0355$	1-3902	-7193	46	-80285
$\cdot 78540$	45	-707 I	1.4142	$1 \cdot 0000$	1.0000	1.4142	7071	45	-78540
		Cosine	Secant	Cotan.	Tangent	Cosec.	Sine	De. grees	Radiaus

$$
\begin{aligned}
& \left(9-\pi^{2}=14\right. \\
& \text { (-) }=\frac{1}{3} \\
& 4 r=-\frac{L}{4-x}-N
\end{aligned}
$$

$$
\begin{aligned}
& N=+2 \\
& M+r^{3}
\end{aligned}
$$

```
Rac
.00
OI
O3
-05
.06
.08
-IO
-I 2
-I }
-15
-17
-19
-20
-22
-24
-26
-27
-29
-3I
-33
-34
-36
-38
-40
-4 I
-43'
-45
-47
-48:
-50
-52.
-54
-55'
57!
-59.
-6IC
-62&
64!
-66!
-68c
-69{
-7I!
`73!
-75C
.767
-785
```


14 DAY USE
 RETURN TO DESK FROM WHICH BORROWED LOAN DEPT．

This book is due on the last date stamped below，or on the date to which renewed．
Renewed books are subject to immediate recall．

U. C. BERKELEY LIBRARIES
 C061350833

t.

UNIVERSITY OF CALIFORNIA LIBRARY

$$
:
$$

$$
\cdots
$$

[^0]: + 4 the

[^1]: * For a fuller treatment of Graphs see School Algebra published by the Clarendon Press.
 \dagger These co-ordinates are called Cartesian co-ordinates because they were first used by the French mathematician, Deseartes.

[^2]: * Minutes derived from the Latin partes minutae; seconds from the Latin partes minutae secundue.

[^3]: * A reflex angle is an angle greater than two right angles, but less than four right angles.

[^4]: * The graph of the sine is a wavy or sinuous curve. The name sine is therefore appropriate, although it is improbable that the originators of the name ever drew the graph.

[^5]: * The student is expected to complete there formulae.

[^6]: * In writing it is usual to use the symbor $\overline{O K}$ to denote length preceded by correct sign; it is more convenient to print (OK).

[^7]: * For explanation of the worl 'limit' ree School Alyelru, Part ii, p. 446.

[^8]: * For a fuller treatment sce School Algch re, Part II, p. 376.

[^9]: * If a person is looking upwards, the angle his line of sight makes with the horizontal is the angle of elevation ; similarly, if he is looking downwards, the angle his line of sight makes with the horizontal is the angle of depression.

[^10]: * In navigation distances are usually measured in nautical miles; a nautical mile is the length of an are of a meridian (or the equator) which subtends an angle of 1^{\prime} at the centre of the earth; thus a distance of 75 nautical miles is usually written 75^{\prime}.

[^11]: * Another pruof is given on p. 103.

[^12]: * In old books on Trigonometry the 'haversine' was used for solving triangles, and tho values of \log haversine were tabulated in mathematical tables. The haversine equals half the versed sine; hence haversin $A=\frac{1}{2}$ versin $A=(1-\cos A) \div 2=\sin ^{2} \frac{1}{2} A$. The formula for solution of the triangle then becomes

 $$
 \text { haversin } A=(s-b)(s-c) \div b c
 $$

[^13]: * This example is best solved by using the formulae of $\S \S 83$ and 84 .

[^14]: * This example is best solved by using the formulae of $\S \S 83$ and 84 .

[^15]: * This is usually written $\overline{P Q}$.

[^16]: * See School Algebra, pp. 407, 435, 465.

[^17]: * When Fig. LV is being used it must be recollected that (OK) is negative, and that its inclination to $O X$ is $X O A$ not $X O K$, see § 68 . If ($O K$) is regarded as positive, its actual length is $-r \cos B$; but the angle is then $X O K$, the cosine of which is $-\cos A$. Whatever way it is taken, the projection of $(O K)$ on $O X$ is found to be $r \cos B \cos A$.

[^18]: * Notice the difference between this construction and the construction of § 81 .

